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Abstract ⌅
Nowadays different observational campaigns agree on the standard cosmological model to explain
and describe the formation and evolution of large scale structures in our Universe. In this scenario,
almost 95% of the energy content of the Universe is in unknown forms of energy and matter, generally
called dark energy and dark matter. The structures observed today are assumed to have grown gravi-
tationally from small and initially Gaussian density fluctuations. As the universe expands, sufficiently
overdense regions expand until they reach a maximum size and then collapse under the action of their
own gravity: since dark matter is believed to be the dominant matter component of the universe, it
leads the gravitational collapse process, forming structures called dark matter haloes. It is within the
potential wells of these haloes that gas can shock, cool and eventually form stars and galaxies.

The main theoretical models on the gravitational collapse of dark matter haloes are the spherical
collapse [24] and the ellipsoidal collapse (EC) [70] models. The former describes haloes as spherical
overdense regions embedded in an uniform background, while the latter allows more possible shapes,
defining haloes as homogeneous ellipsoids. Moreover, the ellipsoidal collapse model predicts that
there is a direct connection between the evolution of an halo and the properties of the corresponding
region in the initial conditions. Despite the fact that a triaxial modelling is obviously more realistic,
the spherical approximation is still the most common choice.

In this work we analysed the results of several cosmological simulations (the GIF2 [20], Le SBAR-
BINE - designed and run in Padova by our group - and the Millennium XXL [3] simulations), with the
aim of study the triaxiality of dark matter haloes in detail. In particular, we developed a new halo
finder, called “Ellipsoidal Overdensity Halo Finder” (EO), which identifies dark matter haloes as triax-
ial ellipsoids at all times, thus following the prescription of the EC model. Using its results, we studied
the properties of protohaloes in the initial conditions and their evolution through the whole history
of the Universe: this is crucial to understand the role of the initial density peaks, which are believed
to be the seeds of all the observed structures. Our results help to understand the dynamics of halo
collapse, confirming many predictions of the EC model, but also provide hints for a more realistic
modelling.

As the issue of halo triaxiality is still not completely solved in theory and simulations, it started to
be considered very recently in observational studies. Galaxy clusters are the largest virialized systems
in the Universe and, following hierarchical clustering, also the last to form; almost 80% of their mass
is attributed to dark matter, while the rest to baryons. The estimate of mass of clusters is still an
open problem and the uncertainties are also related to the triaxiality of the haloes that surrounds
them. For example, the estimated mass is on average biased to be lower than the true one, due to
the fact that the haloes are embedded are typically prolate and so the spherical modelling is not able
to capture their real structure. We studied the shape distributions of dark matter haloes at all times
and for different cosmologies, using Le SBARBINE and the MXXL simulations. In this way, we derived
some universal relations between the shape parameters and the mass of haloes, independent from
the cosmological model and redshift. These results will be useful to generate mock halo catalogues
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4 ELLIPSOIDAL COLLAPSE OF DARK MATTER HALOES

with given triaxial properties and can be used in triaxial mass reconstruction methods that require
priors for the axial ratio distributions. Then, we concentrated on very massive haloes to provide more
accurate predictions for cluster-size haloes.

Finally, we studied the halo mass function [52, 8, 60, 59] and tested its universality. With this pur-
pose, we identified dark matter haloes at six different density thresholds (the virial one and other
multiples of the background and the critical densities, which are commonly used in literature). Our
results confirm the universality of the halo mass function, when measured with virialized haloes,
while it does not hold for other halo identifications. We provide the fitting formulae for all the over-
density, believing that they could be useful for observers, and a method to rescale from one to the
others.

This work is organised as follows: the first two Chapters give an overview of the standard cosmo-
logical model and of the principal theories of structure formation; Chapter 3 describes cosmological
simulations (both the state of the art and the data used in this work); from Chapter 4 to Chapter 7, we
present our results. In particular:

• Chapter 1 describes the current cosmological model and the standard theoretical model of
structure formation:

• Chapter 2 focuses on the ellipsoidal collapse model for gravitational collapse, which is the start-
ing point of this work; we describe the original formulation by White & Silk (1979,[70]) and the
more recent works that developed the model;

• Chapter 3 discusses the state of the art of cosmological simulations and then presents our new
set of six simulations (Le SBARBINE simulations), completed by our group during the last year,
and finally the post-processing pipeline. This last includes the Ellipsoidal Overdensity Halo
finder, developed in this work: it identifies triaxial dark matter haloes, making a comparison
with the EC model easier and more straightforward;

• Chapter 4 adress the problem of halo triaxiality both from a numerical and an observational
point of view: we use galaxy clusters - and in particular the mass estimate through strong grav-
itational lensing - as an example of the importance of taking triaxiality into account. Then we
sum up the main findings on halo triaxiality obtained by previous works and show the results
obtained with the EO finder, focusing on the differences between the spherical and ellipsoidal
halo identification:

• Chapter 5 studies the evolution of dark matter protohaloes, from the initial conditions to the
present time, in a direct comparison with the predictions of the EC model;

• Chapter 6 presents some universal distributions of the shape parameters, independent of red-
shift and cosmology, which may be used to obtain priors and estimates for observations and
theoretical modelling;

• Chapter 7 adressed the universality of the halo mass function, testing its validity at many density
thresholds and providing an accurate fitting formula.

The results presented in this thesis have been partially published in three papers:

1. Despali, Tormen & Sheth MNRAS 2013: “Ellipsoidal halo finders and implications for models of
triaxial halo formation” [15]

2. Despali, Giocoli & Tormen MNRAS 2014: “Some like it triaxial: the universality of dark matter
halo shapes and their evolution along the cosmic time” [14]
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3. Bonamigo, Despali et al. MNRAS 2015: “The Universality of the Shape of Dark Matter Haloes
over six decades in Mass: Insights from the Millennium XXL and Sbarbine Simulations” [7]





Sommario ⌅
Al giorno d’oggi molte campagne di osservazioni convergono su quale sia il modello cosmologico
standard, che sia in grado di spiegare e descrivere la formazione e l’evoluzione delle strutture su
grande scala nel nostro Universo. In questo scenario, circa il 95 % del contenuto energetico dell’Universo
è sotto forma di materia ed energia oscura, ancora in parte sconosciute. Le strutture che formano
l’Universo attuale si sono formate a partire da piccole fluttuazioni Gaussiane nel campo di densità
iniziale e sono cresciute sotto l’azione della gravità. Durante l’espansione dell’universo, le regioni
sufficientemente sovradense - dopo un periodo iniziale di espansione - collassano a causa della loro
autogravità: la materia oscura, ritenuta la principale componente di materia nell’Universo, dom-
ina il processo di collasso gravitazionale formando strutture chiamate aloni di materia oscura. E’
all’interno delle buche di potenziale create da questi aloni che il gas può subire processi di shock e
condensazione, che portano alla formazione di stelle e galassie.

I principali modelli teorici di collasso gravitazionale per gli aloni di materia oscura sono il modello
di collasso sferico [24] e di collasso ellissoidale [70]. Il primo considera gli aloni come regioni sferiche
sovradense immerse in un background uniforme, mentre il secondo permette una descrizione più
completa della forma dato che definisce gli aloni come ellissoidi triassiali e omogenei. Inoltre, sec-
ondo il modello del collasso ellissoidale, l’intera evoluzione di un alone dipende direttamente dalle
sue proprietà iniziali. Nonostante il fatto che l’utilizzo di forme triassiali anzichè sferiche sia indubbi-
amente più realistico, queste ultime sono spesso le più utilizzate. In questo lavoro abbiamo analizzato
i risultati di diverse simulazioni cosmologiche (le GIF2 [20], Le SBARBINE - prodotte a Padova dal nos-
tro gruppo - e la Millennium XXL [3]), con lo scopo di studiare nel dettaglio la triassialità degli aloni di
materia oscura. In particolare, abbiamo sviluppato un nuovo codice per l’identificazione degli aloni,
chiamato “Ellipsoidal Halo Finder”, in grado di identificare gli aloni come ellissoidi triassiali ad ogni
tempo, in linea con il modello teorico. In questo modo abbiamo studiato le proprietà dei proto-aloni
alle condizioni iniziali delle simulazioni, e la loro evoluzione attraverso tutta la storia dell’Universo:
questo tipo di analisi è cruciale per comprendere il ruolo dei picchi di densità iniziali, ritenuti i “semi”
da cui si sono originate le strutture che osserviamo oggi. I nostri risultati aiutano a comprendere la
dinamica del collasso, confermando molte predizioni del modello ellissoidale, ma forniscono anche
la traccia per una modellizzazione più realistica.

Se per il caso delle simulazioni e dei modelli teorici, il problema della triassialità degli aloni non è
del tutto risolto, in campo osservativo si è iniziato a considerarlo molto recentemente. Gli ammassi
di galassie sono i più massicci sistemi del nostro Universo e quindi, seguendo il clustering gerarchico,
anche quelli che si sono formati più recentemente; circa l’80% della loro massa è attribuita alla mate-
ria oscura e solo la restante percentuale alla componente barionica. La determinazione della massa
degli ammassi è un problema ancora aperto, le cui incertezze sono legate anche alla triassialità degli
aloni di materia oscura che li circondano. Per esempio, la massa stimata tende ad essere inferiore a
quella reale, dal momento che gli aloni sono tipicamente prolati, e quindi una modellizzazione sfer-
ica non è in grado di descriverne la struttura con precisione. In questo lavoro abbiamo analizzato le
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distribuzioni della forma degli aloni a tutti i tempi e per diverse cosmologie, usando la MXXL simu-
lation e Le SBARBINE. In questo modo, abbiamo ricavato alcune relazioni universali tra i parametri
che descrivono la forma di un alone e la massa, che risultano essere indipendenti dal modello cos-
mologico e dal redshift. Questi risultati possono essere utili per generare cataloghi simulati e possono
essere inseriti nei metodi di ricostruzione della massa che richiedono delle distribuzioni a priori per
i rapporti assiali. Abbiamo poi studiato nel dettaglio gli aloni di grande massa, per fornire predizioni
più accurate nell’intervallo di massa degli ammassi di galassie.

Infine, abbiamo studiato la funzione di massa degli aloni [52, 8, 60, 59] e testato la sua universalità.
Con questo scopo, abbiamo identificato gli aloni usando sei diverse soglie di densità (la sovradensità
viriale e altri multipli della densità di background e della densità critica, che sono comunemente usati
in letteratura). I nostri risultati confermano l’universalità della funzione di massa, se misurata per gli
aloni virializzati; questa non si mantiene invece per le altre identificazioni. Presentiamo le formule di
best fit per tutte le sovradensità, ritenendo che possano essere molto utili in campo osservativo, e un
metodo per riscalare da una sovradensità all’altra.

Questa tesi è organizzata come segue: i primi due Capitoli danno una panoramica del modello
cosmologico standard e delle principali teorie di formazione delle strutture; il Capitolo 3 descrive le
simulazioni cosmologiche (sia lo stato dell’arte che, più in dettaglio, i dati usati in questo lavoro); nei
Capitoli dal 4 al 7, presentiamo i risultati. In particolare:

• il Capitolo 1 descrive il modello cosmologico attuale e i modelli standard di formazione delle
strutture;

• il Capitolo 2 si concentra sul modello di collasso ellissoidale (EC), che costituisce il punto di
partenza di questo lavoro; presenta la formulazione originale di White & Silk [70] e i più recenti
lavori che hanno ulteriormente sviluppato il modello:

• nel Capitolo 3 si discute lo stato dell’arte delle simulazioni cosmologiche e in seguito viene pre-
sentato il nostro nuovo set di sei simulazioni (Le SBARBINE simulations), completato dal nos-
tro gruppo durante lo scorso anno; e infine la pipeline per il post-processing delle simulazioni.
Quest’ultima include il codice Ellipsoidal Overdensity Halo Finder, sviluppato per questo la-
voro;

• il Capitolo 4 illustra il problema della triassialità degli aloni, sia da un punto di vista numerico
che osservativo: usiamo gli ammassi di galassie - e in particolare la stima della loro massa
dall’effetto di strong gravitational lensing - come esempio dell’importanza del considerare la
triassialità. Infine riassumiamo i principali risultati ottenuti da precedenti lavori e mostriamo le
differenze che si ottengono identificando gli aloni come ellissoidi (usando il codice menzionato
al punto precedente) o come sfere;

• nel Capitolo 5 studiamo l’evoluzione dei proto-aloni di materia oscura, dalle condizioni iniziali
fino al tempo presente, confrontando i risultati con le predizioni del collasso ellissoidale:

• il Capitolo 6 presenta le distribuzioni universali dei parametri della forma, indipendenti da red-
shift e cosmologia, che possono essere usati come stime a priori per studi teorici e osservativi;

• il Capitolo 7 descrive l’universalità della funzione di massa degli aloni e ti test sulla sua validità
a varie soglie di densità, fornendo una modellizzazione molto accurata.

I risultati presentati in questa tesi sono stati parzialmente pubblicati in tre articoli:

1. Despali, Tormen & Sheth MNRAS 2013: “Ellipsoidal halo finders and implications for models of
triaxial halo formation” [15]
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2. Despali, Giocoli & Tormen MNRAS 2014: “Some like it triaxial: the universality of dark matter
halo shapes and their evolution along the cosmic time” [14]

3. Bonamigo, Despali et al. MNRAS 2015: “The Universality of the Shape of Dark Matter Haloes
over six decades in Mass: Insights from the Millennium XXL and Sbarbine Simulations” [7]





Structure formation scenario 1
1.1 Standard cosmological model

Cosmology is a branch of science studying the origin and the evolution of the Universe; it is strictly re-
lated to theoretical physics and to other branches of astrophysics, as galaxy formation and evolution
Modern cosmology is founded upon Einstein’s theory of General Relativity and so cosmology adopts
its own metric (the Robertson-Walker metric) to describe space-time. Yet, the GR formulation for
the space-time of the Universe is quite simple, due to the common assumption of homogeneity and
isotropy of the matter distribution, called cosmological principle. Observing the Universe on galactic
and extragalactic scales we see that the matter is distributed in an irregular way, forming clumps of
matter as galaxies and galaxy clusters. On the other hand, from observations on larger scales, we no-
tice that the properties of the Universe are similar at any point and in any direction. This concept has
been introduced for the first time by Albert Einstein to ensure a simple basic structure of the universe.
The most important confirmation of the cosmological principle comes from the Cosmic Microwave
Background (CMB), which was discovered by Penzias and Wilson in 1965 and has been measured
with high precision by satellites as WMAP and Planck [48, 46]. The CMB, a trace of the early universe,
is highly homogeneous: the temperature fluctuations have an amplitude ∑ 10°5. Figure 1.1 shows the
all-sky measurements of the CMB done by Planck and, below, a stripe of the CMB superposed to the
image of our own galaxy.

Robertson-Walker metric and Friedmann equations

The strongest force of nature on large scales is gravity, so Einstein’s General Relativity, is the most
important part of the physical description of the universe. While in Newton’s theory gravitation is a
force, in General Relativity it is considered ad a property of space-time:the geometry of space-time is
determined by the matter-energy content of the Universe through the Einstein field equation

Rµ∫°
1
2

gµ∫R ° gµ∫§= 8ºG
c4 Tµ∫. (1.1)

Rµ∫ is the Ricci tensor, which describes the local curvature of space-time, R is the curvature scalar,
gµ∫ is the metric , Tµ∫ is the energy-momentum tensor and § the cosmological constant. The most
general form of the space-time metric can be written as:

ds2 = gµ∫dxµdx∫ (1.2)

where repeated suffixes imply summation and µ,∫ both run form 0 to 3; x0 = ct is the time coordinate
and x1, x2, x3 are space coordinates. In this equation, ds2 represent the space-time interval between
two points labelled by xµ and xµ+d xµ. If ds2 > 0, then the interval is timelike, if ds2 < 0 the interval

11
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Figure 1.1: Top: All-sky CMB measurements from Planck. Bot tom: First light measurements from Planck: a
stripe of CMB superposed to out galaxy.
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is spacelike and if ds2 = 0 the interval is lightlike, that means that the two points are connected by a
light ray.

In our case we need the appropriate metric to describe the geometry of our universe, so we must
construct a universe in which the cosmological principle holds. The first thing to do is investigating
the geometry of a homogenueous and isotropic space; then we assume that we can consider the uni-
verse as a continuous fluid and assign to each fluid element the three spatial coordinates xÆ and a
time parameter (the proper time measured by a clock moving with the fluid element). The coordi-
nates xÆ are called comoving coordinates. It can be shown that the most general space-time metric
describing a universe in wich the cosmological principle holds is, in spherical polar coordinates:

ds2 = (cdt )2 °a(t )2
∑

dr 2

1°K r 2 + r 2(dµ2 + si n2µd¡2)
∏

(1.3)

where r, µ and ¡ are the comoving coordinates, t is the proper time, a(t) is the cosmic scale factor
and K is the curvature parameter (which takes only the values 1, 0 or -1). This metric is called the
Robertson-Walker metric. The curvature value K = 0 represents the Euclidean space, with its well
known properties; for K = 1 we have a hypershpere, that is a closed space with finite volume, but no
boundaries: this property allows us to make an analogy with the case of a sphere; finally, for K = °1
we have the hyperbolic space, open and infinite.

Thus, the geometry of an homogeneous and isotropic universe is described by the Robertson-
Walker metric, which in turn is specified by the curvature and the expression for a(t ). For this, we
need to solve the Einstein’s equation, considering the case of a uniform ideal flluid with rest-mass
energy density Ωc2 and pressure p. These solutions are called Friedmann cosmological equations and
are:

ä
a =°4

3ºG
°
Ω+3 p

c2

¢
+ §c2

3

° ȧ
a

¢2 = 8
3ºGΩ°K c2 + §c2

3 .

(1.4)

From the last equations we can obtain some important cosmological parameters. The first is the
critical density which comes from the second Friedmann equation (neglecting the§ term:

Ωc =
3

8ºG

µ
ȧ
a

∂2

(1.5)

Then, using Ωc we can write the demsity parameter ≠ as

≠(t ) = Ω

Ωc
(1.6)

The value of≠ depends on the curvature K :

• if K =°1 (closed space) then≠> 1

• if K = 0 (flat space) then≠= 1

• if K = 1 (open space) then≠< 1 .

Recent measurements agree on the fact that≠' 1 for our Universe, meaning that the geometry of
space-time is flat. Moreover, the critical density of the Universe is estimated asΩc ' 2.771011MØh°1M pc°1,
while the background density can be calculated as Ωb = Ωc≠m(z = 0).
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The components of the Universe

In the current “standard cosmological model” the vast majority of the energy content of the universe
is in unknown forms of matter and energy, commonly called “dark matter” and “dark energy”. The first
one - called “dark” for its property of not emitting any kind of radiation - has been first proposed by the
swiss astronomer Fritz Zwicky in the 30s and is now used to explain a number of effects, which cannot
be due to the presence of the sole ordinary baryonic matter: the high value of velocity dispersion in
galaxy clusters, the rotation velocity curves of spiral galaxies, strong deflections due to gravitational
lensing and so on. Apart from being “dark”, the dark matter particles are thought to be very heavy
and thus to move at quite low velocities. Nevertheless, the exact composition of dark matter is still
unknown and it is widely studied in particle physics; one of the most favoured hypothesis comes from
the model of supersymmetry, which would allow the existence of particles with the right properties,
called WIMPs (Weakly Interacting Massive Particles). Dark energy comes from more recent theories
and has been introduced as a cosmological-constant factor in the Friedmann equations. It is thought
to be responsible of the accelerated expansion of the Universe and to be some form of vacuum energy,
originated in the very first phases of our Universe. Dark energy constitutes the 70°75% of the whole
energy content fo the Universe, while dark matter the 20°30%, leaving a very small contribution to
baryonic matter - even if this last actually builds up all the visible structures of the Universe.

For many years, the standard combination of values has been≠m = 0.3,≠§ = 0.7 and H0 = 70kms°1M pc°1.
The Planck mission furnished the last estimate of the density of components of the universe:

≠m = 0.315±0.016
≠§ = 0.665±0.016

H0 = 67.3±1.2kms°1M pc°1

≠bh2 = 0.02205±0.00028
æ8 = 0.828±0.012

ag e = 13.817±0.048G yr s.

(1.7)

1.2 Standard scenario for cosmic structure formation

In the standard cosmological model, the Universe is assumed to be highly homogeneous at early
times: the structures observed today are assumed to have grown from small initial density pertur-
bations due to the action of gravity. In this scenario, structure formation involves the properties of
the initial density perturbations and the evolution of these perturbation in the expanding universe. A
full description of the growth of perturbations requires General Relativity, in particular if we want to
consider perturbations larger than the cosmological horizon. We will start considering a simpler situ-
ation: Newtonian perturbation theory in the linear regime. This applies to structures smaller than the
horizon size and with an overdensity ±<< 1 (so in the linear regime). The easier way to perform the
calculations is to decompose the cosmological perturbations into Fourier modes; doing this, we find
that some modes are amplified during the linear evolution while other are damped. The evolution
therefore acts as a filter of the primordial density perturbations generated in the early universe.

In this model, dark matter leads structure formation, controlling the gravitational collapse pro-
cess: gravitational instability makes the first systems collapse and reach an equilibrium, forming dark
matter haloes. The formation of visible galaxies happens next, when the baryonic matter (that is,
gas) feels the gravitational potential of dark matter haloes and falls in the potential wells: kinetic en-
ergy is transformed into termic energy by shock processes and adiabatic compression; the gas heats
up, reaches the equilibrium temperature of the system and then looses heat by radiation and forms
clouds and stars. This process is the starting point of galaxy formation, which continues until there is
gas available in the interstellar medium.
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In this Chapter we will first present the results of perturbation theory in the linear regime: (i) the
simple case of a static universe, which does not describe our actual universe, but is useful to under-
stand which scales determine the behaviour of perturbations: (ii) the model of an expanding universe
and its components, which presents more complex and realistic solutions. Despite a certain degree of
accuracy in the simple linear regime description, many objects in the present-day Universe, includ-
ing galaxies and clusters, have densities orders of magnitude higher than the average density of the
Universe. These objects are thus in the highly nonlinear regime, where ± >> 1. To complete our de-
scription of structure formation in the Universe, we therefore need to go beyond perturbation growth
in the linear regime. In general, nonlinear gravitational dynamic is difficult to deal with analytically,
and so in many applications computer simulations have to be used to follow the evolution in detail.
However, by making simple assumptions about the symmetry of the system, analytical models can
be constructed: these will not give an accurate description of the true non-linear evolution, but will
provide a valuable approximation to the complex processes involved. In particular, the Zel’dovich
approximation [71] and the Spherical Collapse model [24] will be described in this Chapter. The next
and more complicated model - the Ellipsoidal Collapse model [70] - will be described in more detail
in the next Chapter, since it constitutes the starting point of this work.

1.3 The Jeans scale and a static universe

Perturbations do not collapse and form objects everywhere in the universe: it depends on the energy
balance, because gravitation and kinetic energy (in the form of peculiar motions) always fight against
each other. There is a scale separating the two regimes: the one in which gravity dominates leading
the system to collapse and the one in which the kinetic energy wins against gravity. This is called the
Jeans scale. To explain how we find the Jeans scale definition, we consider an uniform fluid, presenting
small density fluctuations on every scale; then we choose a certain spherical region (with radius R,
mass M and density Ω) in which dark matter is overdense compared with the background. The fluid
description is valid as long as the mean free path of the particles is much smaller than the scale of
interest: this applies to a baryonic gas and also to a pressureless dust, as dark matter.

As we already said, gravity between particles tries to compress the region, while peculiar motions
of particles tend to move each particle away from the others; if these last dominate the region expands
and the overdensity is reduced. The gravitational and the kinetic energy of the overdense spherical
region are:

Eg '°GM 2

R
'°GM

R
'°GMΩR2 (1.8)

Ek ' M v2

2
(1.9)

and so, using the total energy at equilibrium and energy conservation, we get

E = Eg +Ek = 0 ! Ek =°Eg ! v2

2
=GΩR2. (1.10)

Inverting the last equation, we find the Jeans radius

RJ = v

s
1

2GΩ
. (1.11)

RJ separates two regimes:

• if R > RJ , the right side of equation 2.3 dominates: gravity wins and the pertubation collapses
due to its own gravity;
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• if R < RJ , the left side of equation 2.3 dominates: kinetic energy wins and the pertubation is
disperded.

In the standard cosmological model we have a §CDM universe. We should use this model to solve
the conservation equations , but if we need only a qualitative solution for the Jeans scale we can start
from the simplest model: a static universe. We consider the matter of the universe as a perfect fluid
and so the quantities required to fully describe it are: density, velocity, pressure, entrophy and the
gravitational potential. Then, we need the following conservation equations:

• the continuity equation, expressing the mass conservation:

@Ω

@t
+r ⇧ (Ωv) = DΩ

Dt
+Ωr ⇧ v = 0; (1.12)

• the Euler equation, showing the momentum conservation

@v
@t

+ (v ⇧r)v = Dv
Dt

=° 1
Ω
rp °r¡; (1.13)

• the Poisson equation, which relates the gravitational field to its source

r2¡= 4ºGΩ; (1.14)

• the state equation of the fluid
p = p(Ω,S); (1.15)

In all the equations D/Dt stands for the lagrangian derivative, that is the time derivative as a quantity
moves with the fluid:

Dw
Dt

= @w
@t

∞∞∞∞
r
+ @w
@r

@r
@t

= @w
@t

∞∞∞∞
r
+ (u ⇧r)w . (1.16)

This description, based on the assumption that the matter content of the universe is a non-relativistic
fluid, could also be extended to cases where the universe contains a smooth background of relativis-
tic particles or vacuum energy; in such a case, both the continuity and the Euler equations would
mantain the same form, while we should add the new density terms in the Poisson equation.

Considering the simple case of adiabatic and isoentropic systems (which imply dS/dt = 0), we
remain with only four equations and the state equation reduces to p = p(Ω). The unperturbed equa-
tions of motion in such a static universe are

8
>>>>><

>>>>>:

Ω = Ωb = const
p = pb = const

v = 0
¡=¡b = const

S = const .

(1.17)

This solution, representing a perfectly static, homogeneous and isotropic universe, is physically in-
consistent: the presence of a constant potential ¡b implies r2¡ = 0, and this does not agree with
Ω 6= 0. However, this approximation is useful to study what happens to a simple model when intro-
ducing small perturbations. Perturbing the previous system we have

8
>>><

>>>:

Ω = Ωb(1+±) = Ωb +±Ω
p = pb +±p

v = ±v
¡=¡b +±¡
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(1.18)

where the density fluctuation (assumed ±<< 1) is defined as

±= ±(r, t ) = Ω(r, t )°Ωb

Ωb
= ±Ω(r, t )

Ωb
. (1.19)

We insert these values in the conservation equations, linearize them and remove the unperturbed
terms; what we obtain at the end is a new formulation of the conservation equations, which describes
the perturbation evolution:

• continuity equation:
@±Ω

@t
+Ωbr±v = 0 (1.20)

• Euler equation:
@±v
@t

=°
v2

s

Ωb
r±Ω°r±¡ (1.21)

• Poisson equation:
r2±¡= 4ºG±Ω (1.22)

The easiest way to solve this system is switching to the Fourier space and writing each perturbation
w as a plane wave

±w(r, t ) = ±wk exp(i~k ⇧~r + i!t ) (1.23)

where k = 2º/∏ is the wave number, determining the wavelenght of the oscillation, ! = 2º∫ is the
frequence and wk the amplitue of the plane wave. The final result is

!2 = k2v2
s °4ºGΩb (1.24)

in which we can distinguish the two regimes separated by the jeans scale: !2 < 0 and !2 > 0. The
value !2 = 0 defines the Jeans wave number kJ and the Jeans wavelenght ∏J :

!2 = 0 ! k2
J =

4ºGΩb

v2
s

(1.25)

and so

kJ =
s

4ºGΩb

v2
s

, ∏J =
2º
kJ

= vs

s
º

GΩb
. (1.26)

To understand what happens in the two situations, it is useful to rewrite ! as

!2 = k2v2
s

∑
1° 4ºGΩb

k2v2
s

∏
= k2v2

s

∑
1°

µ
∏

∏J

∂2∏
. (1.27)

Now, if ∏<∏J , !2 > 0 and so ! has the real value

!=±kvs

∑
1°

µ
∏

∏J

∂2∏1/2

. (1.28)

In this case ±Ω is represented by a couple of progressive sound waves, of amplidude ±Ωk = const ,
moving in the directions ±k. In the limit ∏ ! 0 the propagation velocity of the wave tends to the
sound propagation velocity of the fluid, and so the wave tends to a pure sound wave. On the other
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hand, when ∏! ∏J the propagation velocity tends to zero and we have a stationary wave. If ∏ > ∏J ,
!2 < 0 and ! is imaginary

!=±i (4ºGΩb)1/2
∑

1°
µ
∏J

∏

∂2∏1/2

. (1.29)

This time the wave is stationary, because only the real part of a wave has a physical meaning, and this
makes the amplitude grow exponentially with time because

±Ω(r, t ) = ±Ωk exp(±k!kt )exp(i k ⇧ r ). (1.30)

We have gravitational instability.

1.4 Expanding universe

Important scales and epochs

Obviously, as Edwin Hubble first noticed, our universe is expanding; so we must generalize the results
of a static universe to the case of an expanding universe, in particular §CDM. This implies the intro-
duction of two new important scales, apart from the Jeans scale ∏J : the cosmological horizon RH (t )
and the dissipation scale ∏D . The first is defined as

RH (t ) = a(t )
Zt

0

cdt
0

a(t 0)
= a(t )

Zt

0
ctø (1.31)

where dø = dt/a(t ) is the conformal time, that is, a time scale independent of the expansion of the
universe. On scales ∏ > RH acts only gravity, because the points outside the horizon are too far to
be causally connected to the observer. The dissipation scale separates scales ∏D < ∏ < ∏J , in which
perturbations propagate as sound waves, from scales ∏<∏D , where a wave is calcelled by irreversible
processes.

In this model the relevant epochs are those in which the universe, or one of its components, switch
from a relativistic regime to a non-relativistic regime: one example is the equivalence moment teq

which separates radiation and matter dominated epochs.

An approximate solution for ∏> RH

As we said, gravity dominates on scales ∏ > RH and so in these regions we can use the Friedmann
equations, which are relativistic (so we can apply them in every epoch and on every scale, regarding
that gravity dominates). We consider a perturbation as a denser universe contained in another less
dense universe: the perturbation will be a sphere whith radius ∏ > RH and mean density Ω > Ωcr ,
embedded in an unperturbed Eistein-de Sitter universe. The Friedmann equations for these two uni-
verses are:

H 2
per t =

8ºG
3

Ωper t °
c2

a2 (1.32)

H 2
b = 8ºG

3
Ωb . (1.33)

Choosing the moment in which Hper t == Hb we can rewrite the system as

8ºG
3

Ωper t °
c2

a2 = 8ºG
3

Ωb ! Ωper t °Ωb = 3c2

8ºGa2 (1.34)

from which, defining as usual ±(t ) = (Ωper t °Ωb)/Ωb , we have the solution

±(t ) = 3c2

8ºGΩb a2 . (1.35)
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The evolution of the perturbation in different epochs can be obtained knowing that the equation
of state has the form p = wΩc2 (from which Ωb / a°3(1+w)). This implies, for the perturbation:

±(t ) / a3(1+w)°2 / a1+3w . (1.36)

On scales larger than the cosmological horizon, perturbations of all the components are coupled to
the ones of the dominant component, which is radiation for t < teq and dark matter for t > teq , and
so:

1. for t < teq

Ω ' Ωr ad ! w = 1
3

! (1.37)

±(t ) ' ±R (t ) / a2 / t ! a / t 1/2 (1.38)

2. for t > teq

Ω ' ΩM ! w = 0 ! (1.39)

±(t ) ' ±DM (t ) / a / t 2/3 (1.40)

On the contrary, on scales smaller than the horizon, but larger than the Jeans scale, perturbations of
non-dominant components behave in a different way, depending on the interaction between them
and the dominant component. For example, until recombination, baryon fluctuations are coupled
to the radiation ones (because the hydrogen ions are coupled to electrons by Coulombian forces and
these are coupled to radiation by Thomson scattering); then, after recombination, baryons follow the
gravity of dark matter.

Newtonian equations

A complete and precise description on the evolution of the universe (in the expanding model) re-
quires General Relativity; there are, as we said, some spatial and temporal regimes in which Newto-
nian Gravity, which simplifies the calculations, is enough: if we consider non relativistic perturba-
tions, only on scales ∏< RH .

We decide to call~r the spatial coordinate in the physical reference frame and~x the coordinate in
the comoving system; they are related by the equation~r = a~x. The velocity ~u of an element of fluid
is formed by two terms: H~r is the velocity caused by the universe expansion, while ~v is the peculiar
velocity, due to gravitational attraction of the matter:

d~r
dt

= ȧ~x +a~̇x = H~r +~v =~u. (1.41)

Knowing this, the fluid equation in the physical reference frame can be written as:

@Ω

@t

∞∞∞∞
r
+~rr (Ω~u) = 0 Continuity equation (1.42)

D~u
Dt

= @~u
@t

∞∞∞∞
r
+ (~u ⇧~rr )~u =° 1

Ω
~rr p °~rr© Euler equation (1.43)

r2
r©= 4ºGΩ Poisson equation (1.44)
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Matter universe, inside the horizon

The first case that we consider is the solution for the matter component, and for ∏ < RH . As done
for the static universe, the fluid equations must be perturbed and then the solution for ±(t ) is found
by switching to the Fourier space ; since we are interested in the solutions for the density field, we
must assume that the rotational part of velocity is not coupled with ± and decays: we remain with
an irrotational field, which is linear. This expresses the conservation of the angular momentum in
an expanding universe. At the end of the calculations we find a single equation for the change of ±,
which is

±̈k +2
ȧ
a
±̇k +±k

∑
k2v2

s

a2 °4ºGΩb

∏
= 0 . (1.45)

The second term is the Hubble drag term, which tends to suppress perturbation growth due to the
expansion of the universe; the sign of the third term, which contains the gravitation and pressure
contributions, determines which kind of solution we have. The change of ±, of course, depends on
the value of≠ and so on the kind of universe that we consider. The general solution, which considers
any possible value of≠, is

±+(z) = H0

a2
0

(1+ z)(1+≠0z)1/2
Z1

z

d z(1+ z)

H 3
0 (1+ z)3(1+≠0z)3/2

(1.46)

which holds for t > teq and ∏> ∏J . ±+ indicates the growing mode, since we are not interested in the
decaying solutions. The last equation always admits an analytical solution, but in general the solu-
tions can be distinguished in three possible behaviours, corresponding to the most common choices
for≠:

1. ≠0 = 1 : the solution for a flat universe is

±+(z) = (1+ z)3/2
Z1

z

d z

(1+ z)7/2
/ (1+ z)°1 / t 2/3 (1.47)

2. ≠0 < 1 : for an open universe we have

±+(z) = 1+ 3
x
+ 3(1+x)1/2

x3/2
ln

£
(1+x)1/2 °x1/2§ x =

∞∞≠°1(z)°1
∞∞ ; (1.48)

3. ≠0 > 1 : the last case is the close universe, for which

±+(z) =°1+ 3
x
° 3(1°x)1/2

x3/2
tan°1

∑≥ x
1°x

¥1/2
∏

0 < µ <º (1.49)

±+(z) =°1+ 3
x
° 3(1°x)1/2

x3/2

Ω
tan°1

∑≥ x
1°x

¥1/2
∏
°º

æ
º< µ < 2º . (1.50)

Considering a flat Einstein-de Sitter universe we can easly understand from where these results
come from and what is their physical meaning: of course the results are different for the other uni-
verses, but the general meaning and the length scales involved remain the same. The calculations are
particularly simple, because≠= 1 and we can substitute in the equations:

Ωb(t ) = 1
6ºGt 2 (1.51)

a(t ) = a0

∑
3H0t

2

∏2/3

(1.52)

with a / t 2/3. Equation 1.45 can be rewritten as

±̈k +
4

3t
±̇k +

2
3t 2±k

µ
k2v2

s

4ºGΩb
°1

∂
= 0 (1.53)
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Figure 1.2: Growth of fluctuations in matter-dominated
universes, for different values of ≠. The green line rep-
resents the ≠ = 1 solution, the dashed blue lines the
≠< 1 solutions and the dotted red lines the≠> 1.

This equation admits a power-law solution for the
fluctuation: ±/ tÆ. We substitute this solution, and its
derivatives, in the equation and solve for Æ; for ∏ < ∏J

the solutions are imaginary and correpond to progres-
sive sound waves, while for ∏>∏J the solutions are real
and gravitational instability takes place. In the limit of
scales in which pressure in negligible with respect to
gravity (∏>>∏J ), the solution is much simpler and goes
like

±±(~x, t ) / exp(i~k ⇧~x)t°(1±5)/6. (1.54)

This tells us that one solution is growing with time,
while the other is decaying. As we already said, the in-
teresting one is the growing solution, which determines
the growth of perturbations:

±k,+(t ) / t 2/3 / a. (1.55)

This result holds for any matter-dominated universe,
so both for baryons and dark matter. The only differ-
ence is the interpretation of the sound speed term: for
baryons this is the actual sound speed, while for dark

matter, which is non-collisional, this term gives an estimate of the typical velocity dispersion æv

which acts against gravity.
Going back to the general solution, and looking at Figure 3.1, we can characterize the evolution of

universes with different≠with respect to the flat Einstein-de Sitter universe:

1. ≠=1 : perturbations in an expanding flat universe have a linear growth. If if was static, the
growth would have been exponential, but the underneath expansion of the universe slows it
down.

2. ≠>1 : the growth of perturbations is faster, because this universe contains more matter, which
contributes to decelerate the expansion

3. ≠ <1 : contrary to the previous case, perturbations grow slower in an open universe, because
the expansion tends to dissipate them.

Dark matter: stagnation effect and free streaming

Before equivalence, so in the radiation dominated epoch, also dark matter behaves in a very peculiar
way: dark matter perturbations almost don’t grow. Considering all the universe components together
and solving the ±̈ Equation 1.45, we find

±k,DM ,+(a < aeq ) / 1+ 3
2

a
aeq

. (1.56)

The total growth of the perturbations from the entrance in the horizon aH to the equivalence is given
by

±(aeq )

±(aH )
= 1+3/2

1+3ah/2aeq
∑ 5

2
(1.57)



22 ELLIPSOIDAL COLLAPSE OF DARK MATTER HALOES

which is exactly 5/2 when aH ! 0. This shows that dark matter fluctuation almost don’t grow before
equivalence (and inside the horizon). Physically, this happens because, before equivalence, the ex-
pansion time scale is shorter than the gravitational free-fall time scale: this last is t f f ª

p
1/GΩDM (t ),

while the expansion time comes from

Ω(t ) ª ΩR (t ) = 3
32ºGt 2 ª 1

Gt 2 ! tH ª
p

(1/GΩR ). (1.58)

Knowing that, before equivalence, ΩR > ΩDM , we have t f f > tH ; this means that dark matter pertur-
bation do not manage to grow in an Hubble time: this is called stagnation effect or Meszaros effect
(Meszaros,1974).

Since the universe is not an ideal fluid, we can oberve some dissipation phenomena, in particular
on small scales: the dissipation for dark matter is called free streaming. Particles of dark matter move
from overdense regions to underdense regions, smoothing the perturbations: after decoupling from
radiation, dark matter particles move influenced only by the mean gravitational field and not by the
local field; moving in this way they destroy the perturbations which are smaller than the scale that
they cover in a time interval ¢t . The definition of the free streaming scale is similar to the one of the
cosmological horizon, and is:

∏F S(t ) = a(t )
Zt

0

v(t
0
)

a(t 0)
d t

0
. (1.59)

The free streaming mass is then defined as MF S / ∏3
F SΩDM . For dark matter, the Jeans scale and the

free streaming scale are determined by the same physical process, that is particles diffusion, and so
they both depend on the mean particle velocity. There is, however, a difference: the first is found, at
every t , by the ±̈ Equation 1.45, while the second is defined by the distance covered by the particles
from t = 0 to t , which is more physical. This means that, while MJ can decrease with time, MF S can
only increase, or remain constant.

In the Cold Dark Matter model, the maximum value of the Jeans mass is negligible ( MJ (aeq ) ª
10°6MØ): this means that all the perturbation which are interesting for cosmology are able to grow.

Baryons behaviour

After recombination, baryons are decoupled from radiation: their behaviour will from now on be
influenced by dark matter gravity. For baryons, the solution is ±B / a, and in particular ±B is in some
way proportional to ±DM :

±B (a) = ±DM (1°adec /a). (1.60)

This means that, after recombination and decoupling, ±B has a period of accelerated growth, because
baryons are subjected to the gravitational attraction of dark matter; soon the baryon’s growth slows
down to follow the normal dark matter growth. This is called baryon catch up.

1.5 Zel’dovich approximation

Zel’dovich (1970) [71] provided an approximate solution to the problem of perturbations growth,
which is correct even if the perturbations are not small. The calculation mixes linear and non-linear
elements, allowing to describe the growth of perturbations also in the non-linear regime (and in par-
ticular until they become strongly non linear): we use non-linear equations, but we assume that the
acceleration in the Euler equation remains the linear one, derived from the Poisson equation.

Given that all fluctuations were small at early times, it is reasonable to assume that at more recent
epochs only the growing mode has a significant amplitude. From linear theory, the evolution can be
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written as:
±(x, a) = D(a)±0(x) (1.61)

where ±0(x) is the density perturbation at some initial time t0 and D(a) is normalized such that
D(a0) = 1. Thus the density field grows self-similarly with time. The same is also true both for the
gravitational acceleration and the peculiar velocity, this can be seen by substituting the last expres-
sion for ± into the Poisson equation:

r2©(x, a) = 4ºGΩ̄a2±= 4ºGΩ̄a2D(a)±0(x) ! ©(x, a) = D(a)
a

©0(x) (1.62)

where r2©0(x) = 4ºGΩ̄a3±0(x). In an Einstein-de Sitter universe, where D / a this implies that © is
independent of a, and so of time. We find © also in the definition of the Euler equation (perturbed
and linearized):

v̇+ ȧ
a

v =°r©
a

. (1.63)

This can be integrated for fixed x to give

v =°r©0

a

Z
D
a
dt . (1.64)

By definition, D(a) satisfies the already seen fluctuation growth equation:

±̈+ 2ȧ
a
±̇= 4ºGΩ̄±. (1.65)

Knowing this we can write the Euler equation in a different way:

Z
D
a
dt = Ḋ

4ºGΩ̄a
! v =° Ḋ

4ºGΩ̄a2 r©0(x) =° 1
4ºGΩ̄

Ḋ
D
r©0(x). (1.66)

We can see that the peculiar velocity is poportional to the current gravitational acceleration. Since
v = aẋ, integrating another time gives us the solution for x:

x = x0 °
D(a)

4ºGΩ̄a3 r©0(x0) (1.67)

This reformulation of linear perturbation theory is due to Zel’dovich (1970) [71]. It is a Lagrangian
description that specifies the growth of structures by giving the displacement x°x0 and the peculiar
velocity v for each mass element in terms of the initial position. As we mentioned, Zel’dovich sug-
gested that this formulation could be used to extrapolate the evolution of structures up to the regime
± ª 1: this procedure is known as the Zel’dovich approximation. Assuming that the acceleration re-
mains the linear one, particle’s trajectories are straight lines, with the distance travelled proportional
to D . This can be seen also in Equation (4.8), where the position x at a certain time t is determined by
the initial position x0, then by a second term which expresses the displacement: r© determines the
direction of the displacement and D its absolute value.

The solution for the density field can be found by calculating the deformation tensor and its eigen-
values∏1 ∏∏2 ∏∏3: this means that we calculate the derivatives of the physical coordinate r = ax with
respect to the comoving coordinate x, getting

@ri

@xk
= @

@xk
(ax) = a °aD@ j@k (©0/4ºGΩ̄a3). (1.68)

We then choose the coordinate system along the principal axes defined by the deformation tensor
and so get the reduced form

De f =

∞∞∞∞∞∞

a °∏1D 0 0
0 a °∏2D 0
0 0 a °∏3D

∞∞∞∞∞∞
.
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From this we finally obtain the solution for the density field:

1+±=
∞∞∞∞
@x
@x0

∞∞∞∞
°1

= 1
(1°∏1D)(1°∏3D)(1°∏3D)

. (1.69)

In the linear case, where∏1D << 1, we get±(~x) = D(a)(∏1+∏2+∏3) = D(a)±0(x), as expected. Zel’dovich
(1970) [71] proposed that this equation holds also for ∏1D ª 1: in this case the density becomes infi-
nite when ∏1D == 1. At this point the first non-linear structures form: these will be two dimensional
sheets, called pancakes. Then, when also ∏2D == 1, the structure will become a filament.

However, the Zel’dovich approximation is obviously no longer valid after the formation of pan-
cakes, when shell crossing occours. In reality, particles falling into pancakes will oscillate in the grav-
itational potential, rather than move out along the directions of their initial velocities as it would be
predicted by the approximation.

1.6 Spherical collapse

The first and simplest model that can give a valuable approximation of gravitational collapse is the
spherical collapse: it describes the evolution of a spherical mass shell in an expanding universe. Con-
sidering the perturbation as spherical, and not triaxial, allows to ignore the shape-related inhomo-
geneities and to concentrate on the collapse dynamics.

Collapse in a universe with§= 0

We consider the perturbation as a spherical universe, embedded in a larger expanding universe, with
lower background density. The evolution of a tophat perturbation like this is given by

d2R
dt 2 =°GM

R2 (1.70)

where M is the mass within the shell. In this model, concentric shells remain concentric as they
evolve, so the total mass and the mass of each shell are constant. The equation of motion can be
integrated once, to yield:

1
2

µ
dR
dt

∂2

° GM
R

= E = const. (1.71)

If E = 0 we obtain the classic solution for R:

R =
µ

9GM
2

∂1/3

t 2/3. (1.72)

The perturbation evolves like t 2/3 / a3/2, as we already found for the Einstein-de Sitter universe.
Otherwise, if E < 0 the derivative dR/dt can change sign, and so, if the perturbation is sufficiently
denser than the background, it will expand initially, but will eventually pull away from the background
expansion, and collapse after reaching a maximum size. As we saw in Jeans theory, the perturbation
collapses if the gravitational potential energy wins over the kinetic energy; if ±i << 1 and if we assume
that the initial velocities are simply given by the Hubble flow ((dR/dt )i ' Hi Ri ), then we can write:

Ki =
(Hi Ri )2

2

Wi =°GM
Ri

=°≠i (1+±i )
(Hi Ri )2

2
(1.73)

where K stands for the kinetic energy and W for th gravitational potential. The total energy is

Ei = Ki +Wi = Ki (1°≠i (1+±i )). (1.74)
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Collapse will occour if Ei < 0 and so if (1+±i ) > 1/≠i . The exact time evolution of each shell can be
written also in a parametric form:

R
Ri

= A(1° cosµ)

t +T
ti

= B(µ° sinµ) (1.75)

where µ grows from 0 to 2º. This form of the equations allows a simple and useful interpretation of
the problem.

Turnaround and virialization

The turnaround is defined as the instant of maximum expansion of the perturbation; this corre-
sponds to the moment when in which the kinetic energy is zero and all the energy is contained in
the gravitational potential term. Using energy conservation we can calculate the perturbation size at
turnaround; the total energy in this moment is

E =° GM
Rmax

= Ei . (1.76)

After turning around, the perturbation will collapse, trajectories of particles in different shells will
cross and the object will virialize. Again from energy conservation, we know that at virial equilibrium:

2Kvi r =°Wvi r (1.77)

and

E = Kvi r +Wvi r . (1.78)

Therefore

E = Kvi r +Wvi r =°Wvi r

2
ª GM

2Rvi r
=° GM

Rmax
! Rvi r ª

Rmax

2
. (1.79)

Thus, at virialization, the system is half the size and eight time denser than it was at turnaround.
Obviously, in the parametric form of Equation 1.76, turnaround corresponds to µ =º and collapse to
µ = 2º: at turnaround we set A by requiring Rmax /R = 2A and then we set B using the relation above.
In an Einstein de-Sitter model we have≠= 1 and Ω̄(t ) = 1/(6ºGt 2), so the overdensity grows as

1+±= Ω̄i

Ω̄(t )

µ
Ri

R

∂3

' (t/ti )2

A3(1°cosµ)3 = B 2(µ° sinµ)2

A3(1°cosµ)3 = 9
2

(µ° sinµ)2

(1°cosµ)3 (1.80)

Considering the limit of small time intervals, we can calculate the Taylor expansions of the last ex-
pression and then remove high order terms; doing these approximation we can derive the prediction
of the spherical collapse model for the case of linear growth. We get, for the growing mode:

±' 3µ2

20
' 3

5
±i

µ
t
ti

∂2/3

. (1.81)

The linear results, calculated from the last equation, are:

• µ =º : at turnaround ±L = 1.062

• µ = 2º : at virialization ±L = 1.686 .
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The last result comes from the equation describing the overdensity for a mass shell to collapse at time
tvi r :

±c (tvi r ) = 3g (tvi r )
5

(∑
º

≠1/2(tvi r )H(tvi r )tvi r

∏2/3

°
£
1°≠°1(tvi r )

§
)

. (1.82)

Since H(t ) and g (t ) depend only on ≠(t ) in matter dominated epochs, the critical overdensity for
collapse depends only on≠(tvi r ) and it can be approximated by:

±c (tvi r ) = 3
5

µ
3º
2

∂2/3

[≠(tvi r )]0.0185 ª 1.686[≠(tvi r )]0.0185 (1.83)

with a very weak dependence on≠.
Without doing any approximation, we can now calculate the nonlinear values of the perturbation

density with respect to the background:

• at turnaround, so for µ =º

1+±max = 9
2

µ
º2

23

∂
= 9º2

16
' 5.55 (1.84)

• at virialization, so for µ = 2º, we cannot use directly Equation 1.81, because (2º°cos(2º)) ! 0
and so we make use of some considerations: since ±> 1, the object is already significantly non
linear at tournaround. If≠= 1, then the universe expands by a factor of 22/3 between tmax and
tvi r and so at virialization the background universe is less dense by a factor 4. Knowing this, we
find that the perturbation at virialization is denser than the background by a factor

1+±vi r =
9º2

16

µ
Rmax

Rvi r

∂3 µ
Ω̄max

Ωvi r

∂
= 9º2

16
£8£4 ª 178 (1.85)

These results do not depend on the mass of the object and so suggest that all virialized objects will
have the same density relative to the background, whatever their mass and the underestimate in-
creases as the collapse proceeds. It is clear how the linear theory underestimates the growth of ±: at
the turnaround the linear theory predicts ±max ' 1.062, while the nonlinear result is ±max ' 4.55; at
virialization the difference is eve bigger, since the linear result is ±vi r ' 1.686, while in the non linear
case ±vi r ' 178. This means that, as the collapse proceeds, the estimation error of the linear theory
becomes bigger: we have a confirmation of what we have always said, that is linear theory works well
only until ±ª 1.

Despite the limits of the spherical collapse model these values (1.686 and 178 - usually approxi-
mated to 200) have become the references ones for the identification of dark matter haloes in simu-
lations and for the definition of the mass.

Some limits of the spherical model

As the mass shell turns around and begins to collapse, particles in the mass shell can cross the mass
shells that were originally inside it, and consequently the mass enclosed by the initial mass shell is no
longer constant, making the assumption of a constant M invalid. This is a first limit in the accuracy
of the spherical collapse model. Another one can be seen noticing that, formally, µ ! 2º implies
±!1, but in practice an infinite density is not physical and the object will virialize at a certain finite
radius and density value. A common way to deal with this last problem is to stop the evolution at a
“freeze-out” moment, chosen in order to reproduce the virial density contrast.
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Extension to a flat universe with§> 0

In a universe with a non-zero cosmological constant, the equation of motion of the mass shell has
one extra-term and becomes:

d2R
dt 2 =°GM

R2 + §
3

R, (1.86)

where we have used the fact that the cosmological constant contributed to the gravitational accelera-
tion through an effective density Ω+3P/c2 =°2Ω =°§c2/4ºG . Integrating the previous equation we
have, as before, E = const :

1
2

µ
dR
dt

∂2

° GM
R

° §c2

6
= E . (1.87)

With this new contribution, the solution for the density contrast becomes

±i =
3
5

(1+≥)
µ
!i

≥

∂1/3

(1.88)

where !i =≠§(ti )/≠m(ti ), ≥=§c2R3
max /6GM and Ri /Rmax ª (!i /≥)1/3. From this, the overdensity at

the time of collapse can be approximated by

±c (tcol l ) = 3
5

µ
3º
2

∂2/3

[≠m(tcol )]0.0055 ª 1.686[≠m(tcol )]0.0055. (1.89)

As for cosmologies with zero cosmological constant, the dependence on ≠m is extremely weak and
therefore, to good approximation ±c (tcol ) ª 1.686 for all realistic cosmologies.

Spherical collapse with shell crossing

As we said, the spherical collapse assumes that shells of matter do not cross. Of course this assump-
tion is not physically realistic, because a mass shell of collisionless particles will oscillate about the
center after collapse, with an amplitude that may change with time. Gunn (1977) [24] considered a
simple model in which the oscillation amplitude is assumed to be a constant proportional to the ra-
dius of the mass shell at its first turnaround. The mean density within a radius r can be written as

Ω̄(r ) = 3M
4ºr 3(M)

(1.90)

where r (M) / rt a(M). The density profile can then be obtained knowing how rt a changes with M .
As an example, we consider a perturbation ±i / r°3≤

i / M°≤ in an Einstein-de Sitter universe. In thi
case rt a / ri /±i / M (≤+1/3) and the density profile is

Ω(r ) / r°∞ with ∞= 9≤/(1+3≤). (1.91)

For the special case in which the initial perturbation is assoiciated with a point mass embedded in an
Einstein-de Sitter background, ≤= 1 and Ω(r ) / r°9/4.

Unfortunately, this treatment of shell crossing is not accurate. It assumes that the original mass
enclosed by the shell is almost the same as the total mass enclosed by the shell at the apocenter, since
the mass shell is expected to spend most time near its apocenter. However, the total mass at apocenter
includes not only the particles initially enclosed by the mass shell, but also those which were initially
outside it but have current radii smaller than its apocentric radius. Because of this additional mass,
the apocentric radius in general changes with time and so the density profile will be a bit different.
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1.7 Relaxation processes

In dynamics, relaxation is the process by which a system approaches equilibrium or by which it re-
turns it returns to equilibrium after a disturbance. So far in this chapter we have discusses the gravita-
tional collapse of collisionless systems and the properties of virialized equilibrium systems. We now
turn our attention for a while to the relaxation mechanisms that operate during the collapse process
and lead to these equilibrium configurations. It is clear that statistical mechanics alone cannot de-
termine exactly the relaxed equilibrium state of a collisionless system. This state must depend on
the details of the collapse process and on the initial conditions that determine how efficient the re-
laxation will be. We study two extensions of the collapse model, the secondary infall model and the
violent relaxation. One of the main difference between these two model is whether the final config-
uration preservs the memory of the initial conditions or not, and thus if it is possible to correlate the
two epochs. Even if now it is known that they do not work perfectly, they are still useful to give a more
physical description of the collapse process.

Secondary infall model

The secondary infall model of collapse tries to give a more realistic description of the collapse process,
starting from two simple considerations: first of all, there is no real motivation for the assumption
that the virial radius equals half the turnaround radius, and that virialization happens at twice the
turnaround time; secondly, at any given time the mass of the collapsing object is made up of two
types of particles, those which spend most of their time close to the center and those which are just
passing by, which are assumed to be not dominating. The secondary infall model attempt to account
correctly for the effects of these extra particles.

Let Madd (r ) be the mass due to particles on orbits with large radii which spend some of their time
within the halo radius r . A particle on an orbit which carries it out to a maximum distance r

0 > r from
the center, spends within r the fraction of time given by

p(r |r 0
) =

Zr

0

dr
v(r )

,Zr
0

0

dr
v(r )

. (1.92)

The velocity v is obtained by integrating the equation of motion of the shell: dr 2/dt = °GM/r 2. If
Mx (r ) denotes the mass in particles which do not go further away from the center more than r

0
, we

set

v2(r ) = GMx (r )
r

° GMx (r
0
)

r 0 = GMx (r
0
)

r 0

√
Mx (r )r

0

Mx (r 0)r
°1

!

. (1.93)

If we assume a density profile Ωx (r ) = Ωx r°∞, we have Mx (r ) / r 3°∞ and

p(r |r 0
) =

Zr /r
0

0

dr /r
0

p
(r /r 0)2°∞°1

,Z1

0

dr /r
0

p
(r /r 0)2°∞°1

. (1.94)

The contribution to the total mass from particles just passing through r is given by taking tha total
mass in particles within r

0
, multiplying by the fraction of time that these particles spend within r , and

integrating over all r
0 > r out to the turnatound radius Rmax :

Madd(r )

Mx (r )
=

4º
RRmax

r dr
0
r
02Ωx (r

0
)P (r |r 0

)

4º
Rr

0 dr 0r 02Ωx (r 0)
. (1.95)

This expression shows that the additional mass, when expressed as a fraction of the total mass, de-
pends on r . This additional effective mass in the inner regions of the object means that the outer
shells actually contract a little more than they would have done otherwise. Since this depends on r ,
the assumption of a constant collapse factor must be modified.
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Violent relaxation

Calculations could be complicated also by the fact that, even if we usually assume the energies of the
individual paricles to be conserved during collapse, the relaxation processes are generally accompa-
ined by changes of the gravitational potential©(x, t ). If we let ≤= v2/2+© be the specific energy for a
given particle, then

d≤

dt
= @≤

@v
⇧ dv
dt

+ @≤

@©

d©

dt
=°v ⇧r©+ d©

dt
=°v ⇧r©+ @©

@t
+v ⇧r©= @©

@t
(1.96)

where we have used dv/dt =°r©. Thus, a time-dependent potential of a collisionless system can in-
duce a change in the energies of the particles involved: in a time-varying potential, energy is no longer
an integral of motion. Exactly how the energy of a particle changes depends in a complex way on the
initial position and energy of the particle: particles can both gain or loose energy, and some particles
can even become unbound. Overall, the effect is to broaden the range of energies. The additional re-
laxation mechanism, provided by this potential variation, is called violent relaxation. As evident from
the last equation, d≤/dt is independent of the particle mass, so violent relaxation has no tendency to
segregate particles of differing mass during the relaxation process. This is different from collisional
relaxation, where the momentum exchange associated with the two-body gravitational encounters
drives the system towards equipartition of kinetic energy. The time scale for violent relaxation can be
defined as

tvr = h 1
≤2

µ
@©

@t

∂2

i
°1/2

, (1.97)

where the average is taken over all the particles that make up the collective potential. As shown by
Lynden-Bell (1967), this is approximately equal to the free-fall time of the system, t f f = (3º/32GΩ̄)1/2,
showing that the relaxation process is very fast, and so vi olent .

In general, during relaxation processes, most information regarding the initial condition is erased.
However, the mixing associated with violent relaxation is self-limiting, because as soon as the system
approaches any equilibrium state, the large scale potential fluctuations, which drive the evolution,
vanish. Mixing destroys the coherent motions required to maintain these variations, for example, in
the later phases of the collapse of a system ot the merger of two systems. As a result it is difficult to
predict the extent to which the properties of the initial conditions are reflected in the final equilib-
rium state. Numerical simulations have shown that violent relaxation is never complete, in the sense
that the final energies of particles are correlated with their initial values and the shape of the final
system clearly remembers that of the initial conditions. The simulations show also that the final den-
sity profile depends strongly on the initial conditions, in particular on the initial virial ratio |2T /W |,
which basically expresses how far the initial system is from virial equilibrium (virialized systems have
a virial ratio of unity). During the early stages of the collapse, the system rapidly contracts to a com-
pact configuration; the initial collapse is followed by a series of expansion and contraction phases,
during which the particles either gain or loose energy resulting in a final distribution of particles en-
ergies, which is much broader than the initial distribution. The time it takes for the system to settle
in equilibrium depends on the initial virial ratio; in addition, the large potential fluctuations cause
a larger fraction of particles to be flung out to large radii, giving rise to a more extended halo which
takes longer time to set in equilibrium. The final distribution extends well beyond the outer bound-
ary of the initial configuration, with the central density comparable to the density of the system at the
time when it first collapses. The velocity field of the equilibrated structure is nearly isotropic in the
inner regions, but dominated by radial orbits in the outer part: this is a natural consequence of the
fact that the particles in the outskirts were launched there due to potential fluctuations.
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1.8 Excursion sets model and the halo mass function

We have seen that the linear theory holds until ± ª 1; thereafter the nonlinear effects become im-
portant and the collapsing region separates from the background universe to form a collapsed halo.
When the halo starts to form, ± has already reached the critical value ±c = 1.686, predicted by the
spherical collapse model. We have seen that, following the exact evolution of a perturbation in the
non-linear regime is extremely difficult; we need a statistical way to characterise the halo population
without following the nonlinear dynamics in detail. With this aim, we should look at the problem
from a new point of view: instead of considering an evolving field ± and a fixed critical value ±c , we
can imagine a time-dependent critical value, or barrier, ±c (t ). On the contrary, the density fluctuation
field is rescaled at the initial time t0: ±(x) = ±(x, t0). Using this model, a mass element located at x,
is contained in a halo of mass M at time t if the linear density fluctuation ±(x,R), centered in x and
filtered on scale R / M 1/3 is

±(x,R) ∏ ±c (t ). (1.98)

In this picture we are assuming that haloes form from peaks in the initial density field, obtained after
smoothing with a window function of characteristic scale R. The abundance and the clustering prop-
erties of these density peaks can ben calculated as a function of their height and shape. It is tempting
to interpret the number density of peaks in terms of a number density of collapsed objects of mass
M / ΩR3. However, there is a serious problem with this identification, because a mass element which
is associated with a peak of ±1(x) = ±(x,R1) can also be associated with a peak of ±2(x) = ±(x,R2), where
R2 > R1. If ±2 < ±1 the mass element can be considered part of both M1 and M2: the overdensity will
first reach the critical values for collapse on scale R1 and then on scale R2. This situation reflects the
fact that M1 is the mass of a collapsed object at t1 which merges to form a bigger object of mass M2

at t2: so M1 should no longer be considered as a separate object. In the opposite case, when ±2 > ±1,
the mass can never be a part of a collapsed object of mass M1 and must be incorporated directly into
the larger system M2. This problem turns to be quite difficult to be solved rigorously.

Press-Schechter formalism

What is required to predict the mass function of collapsed objects is a method to partition the den-
sity field at some early time into a set of disjoint patches, each of which will form a single collapsed
object at some later time; then we must calculate the statistical properties of this partition. The Press-
Schechter formalism (1974, [52]) allows to describe in a simpler and less rigorous way the mass func-
tion calculation. The filtered density field is given by the convolution of ±(x) with a window function
W (x,R). Using Fourier theory we can write:

±(x,R) = 1
(2º)3

Z
d 3kexp(i k ⇧x)±̂(k)Ŵ (kR) '

Zk f

0
dkk2±̂(k). (1.99)

This shows that W (x,R) acts as a filter and erases the contribution of all the perturbations with k ∏ k f .
The ansatz of the Press-Schechter formalism is that the probability that ± > ±c (t ) is the same as the
fraction of mass elements that at time t are contained in haloes with mass greater than M . If ±0(x)
(and so ±(x)) is a Gaussian random field, then the probability that ±> ±c (t ) is given by:

P = 1
p

2ºæ(M)

Z1

±c (t )
exp

∑
° ±2

2æ2(M)

∏
d±= 1

2
erfc

∑
±c (t )

p
2æ(M)

∏
. (1.100)

Here

æ2(M) =< ±2(x,R) >= 1
2º2

Z1

0
P (k)Ŵ (k,R)k2dk (1.101)

is the mass variance of the smoothed density filed; P (k) is the power spectrum of the density pertur-
bations. The probability 1.101 is equal to F (> M), that is the mass fraction of collapsed objects with
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mass greater than M . The resulting formula for the number density of collapsed objects with masses
in the range [M , M +dM ] is

n(M , t )d M = Ω

M
@F (> M)
@M

dM = 2
Ω

M
@P (> ±c (t ))

@æ

ØØØØ
dæ

dM

ØØØØdM

=
r

2
º

Ω

M 2 exp
µ
°
±2

c

2æ2

∂ØØØØ
d lnæ
d ln M

ØØØØdM . (1.102)

This is known as the Press and Schechter mass function. Using the variable ∫ = ±c (t )/æ(M), it can
also be written in the compact form:

n(M , t )dM = Ω

M 2

r
2
º
∫exp(°∫2/2)

ØØØØ
d ln∫
d ln M

ØØØØdM . (1.103)

The PS formalism provides a useful way to understand how nonlinear structures develope in a hier-
archical model. From Equation 1.104 we can see that halos with mass M can only form in significant
number when æ(M) & ±c (t ); if we define the characteristic mass M?(t ) by æ(M?) = ±c (t ) = ±c /D(t ),
then only haloes with M ∑ M? can have formed in significat number at time t . Since, in hierarchi-
cal models, D(t ) increases with t and æ(M) decreases with M , the characteristic mass increases with
time. Thus, as time passes, more and more massive haloes start to form.

The excursion sets model

An alternative derivation of the halo mass function was obtained by Bond et al. (1991, [8]), using what
is called the excursion set formalism. In this model S(M) =æ2(M) is used as the mass variable: since
in hierarchical models S is a monotonically declining function of M , a larger value of S corresponds
to a smaller mass. Each location x in the density field corresponds to a trajectory ±(S), which reflects
the value of the density field at that location when smoothed with a filter of mass S. We consider
a set of random walks (S,±), starting from S = ± = 0 and growing with increasing S; a random walk
which crosses for the first time the barrier ±c (t ) at a certain point (S,±) corresponds to a fluid element
cointained in haloes of mass M(S) at time t . This means that each time t determines a horizontal
barrier ±c (t ). It is important to remark that the right mass value that is associated with a trajectory
corresponds to the first barrier crossing (Figure 1.3). This is because three different kind of trajectories
are possible: trajectories which cross the value at some k and remain over the barrier, trajectories
which have always been under the barrier and finally trajectories which cross the barrier at some
k, but then return under it. In order to calculate the correct number of objects at some time t , we
need to exclude these last trajectories. For this we can use the fact that, since we are using random
walks, all trajectories may have a mirror trajectory: at any time the trajectories have equal probability
of moving upwards or downwards. These vi r tual trajectories correspond, for example, to random
walks starting from (S,±) = (0,2±c ) and they satisfy the same equations of nor mal trajectories: we
can use their probability distribution to exclude the third kind of walks which intersect the barrier
more than once. Thus our probability will be:

P = 1
p

2ºS

Z1

±c (t )
exp

∑
°±

2

2S

∏
°exp

∑
° (±°2±c (t ))2

2S

∏
d±. (1.104)

Excluding those trajectories corresponds to assume that all the walks which cross the barrier ±c (t ) are
absor bed .
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1.9 Scaling relations for hierarchical clustering

Figure 1.3: Trajectories of ± versus S for a subset of
walks that make their first upcrossing of a barrier height
!2 at S2, and then continue until they eventually cross
through a second barrier of height !1 > !2 at various
values of S1. From Lacey & Cole (1993,[30]).

Now that we have described various models for the
evolution of cosmic density perturbations, we can use
these results to examine how gravitational collapse pro-
ceeds and what kind of structures are to be expected
from such collapse. In particular, in the current stan-
dard model of structure formation, large scale struc-
tures form through hierarchical clustering: objects on
small scales form first and then they merge to form al-
ways more massive structures. This can be seen from

æ2(r, t ) =
∑

r
r?(t )

∏°(n+3)

=
∑

M
M?(t )

∏°(n+3)/3

(1.105)

where

P (k) / kn M?(t ) / [D(t )]6/(n+3) . (1.106)

M?(t ) is the mass on which æ = 1 at time t . Since
the critical linear overdensity of gravitational collapse is
ª 1.68, according to spherical collapse model, we can
imagine that nonlinear structures with mass ª M begin
to form in significant numbers when the linear value of
æ(M ; t ) reaches ª 1.68. Therefore, the time dependence
of M? can be used to understand how nonlinear struc-
tures develop with time for a given linear power spec-
trum. Since D(t ) increases with t , the mass scale of nonlinearity M?(t ) increases with t for n >°3: in
this case structure formation is bottom-top, in the sense that smaller structures form prior to larger
ones. For cold dark matter, the effective spectral index is larger than °3 over all lenght scales. From
the last equation we can derive scaling laws for the other significant quantities:

D(t ) / M (n+3)/6 t / M (n+3)/4 (1.107)

Ω/ [1+ z(t )]3 / M°(n+3)/2 (1.108)

r / (M/Ω)1/3. (1.109)

If n > °3 smaller objects formed earlier and have higher densities. At any given time t , the Uni-
verse contains collapsed objects of variuos masses up to the characteristic value M?(t ); as time goes
by, M? increases and larger and larger objects form by accretion and merger of smaller objects. An-
other limitation of the range of possible n is given by the fact that the binding energy of an object must
not be dominated by that of its progenitors, and so n < 1 must hold: in this way the typical binding
energy increases as larger objects form.

We can then divide the evolution of the cosmic density field in three different regimes:

1. M >> M? : on these scales the density fluctuations are still in the linear regime

2. M << M? : the density fluctuations corresponding to low mass objects have already collapsed
to form virialized objects

3. M ª M? : the fluctuations are in the quasi-linear regime and the structure is dominated by
large-scale pancake and filaments; so M? can be considered the typical mass of haloes that are
forming now.
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Figure 1.4: The distribution of formation times of
haloes in a CDM universe; the solid, dotted, short-
dashed and long-dashed curves are stand for present
halo masses M0/h°1MØ = (106,109,1012,1015). (Lacey
& Cole, 1993 [30])

At any gien time, the cosmic density field is there-
fore a complicated web consisting of virialized haloes,
large scale filaments and pancakes, that surround low
density regions (voids). A confirmation of the hierar-
chical model can be seen in Figure 1.4, where Lacey &
Cole (1993) plotted the distribution of formation times
for haloes of four different masses. Knowing that the
formation time is defined as the moment at which the
main progenitor of an halo has accreted half of the fi-
nal halo mass, we note that more massive haloes form
evidently later than low-mass haloes.

1.10 Dark matter haloes

Dark matter haloes are the fundamental “units” of large
scale structures: haloes form under the action of grav-
ity, evolve and merge, forming the ever-changing cos-
mic web. They are also biased tracers of galaxies and
so of the distribution of baryonic matter. Understand-
ing their basic properties is - and has been - one of the
main issues in cosmology. In thi Section we will recall
the main features of dark matter haloes and the works

that led to their determination (the aspect of halo triaxiality - which is the focus of this work - will be
treated in detail in the following chapters and so we do not mention it here).

Density profile

As a first approximation, we can model a dark matter halo as a spherical object. In this way, the inter-
nal mass distribution is fully described by a density profile such as Ω(r ). Since different haloes have
different formation histories, we may expect a significant halo-to-halo variation of the density profile.
On the other hand, virialized dark matter haloes are highly nonlinear objects and so the information
regarding their formation histories may have been erased by the nonlinear collapse, in particular dur-
ing the relaxation process (as we mentioned, talking about violent relaxation). Physically, we observe
that matter is more concentrated in the central part of the halo than in the outskirts; this could be
model by a general profile:

Ω(r ) = Ω0
≥

r
rs

¥∞ h
1+

≥
r
rs

¥Æi(Ø°∞)/Æ
(1.110)

where rs is a scale radius. This equation describes also the density profile of elliptical galaxies and it
represents a sphere with a double broken power-law density distribution: at small radiiΩ/ r°∞, while
at large radiiΩ/ r°Ø;Ædetermines the sharpness of the break. All the most common parametrisation
of the density profile can be reduced to this general formula, for different combinations of Æ,Ø,∞.

Since we can approximately model dark matter haloes as spheres, we should derive some initial
guesses on the density profile using the spherical collapse model. This suggests that the ratio of the
inital radius of a shell to the radius at which it turns around is related to its initial density:

R
Rmax

/ ±i (R). (1.111)

Suppose that, on average, after turnaround, the matter collapses and virializes at some fraction of the
turnaround radius, and that this fraction is independent of the initial radius: for the spherical tophat
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model we know that this fraction is 1/2. Then, the final density profile must satisfy

Ω(< r )
Ω(< rvi r )

= M(r )
M(rvi r )

≥rvi r

r

¥3
ª

µ
±i (R)

±i (Rvi r )

∂3

(1.112)

where the last comes from the previous equation; in these equations R indicates the initial radius,
while r indicates the final radius. As we said, a reasonable choice for fluctuations in a Gaussian ran-
dom field with P (k) / kn is ±(R) / R°(n+3). Using this

Ω(< r )
Ω(< rvi r )

'
µ
±i (R)

±i (Rvi r )

∂3

'
µ

Rvi r

R

∂3(3+n)

=
µ

r
rvi r

∂°3(3+n)/(4+n)

. (1.113)

When n =°1 the final slope is °2. The typical halo profile will then be

Ω(r ) /
Ω

r°2 n =°1
r°(3n+9)/(n+4) n >°1.

Over the range of interest, °3 < n < 0, this model thus predicts that virialized haloes resemble isother-
mal spheres: the simplest model is therefore to assume that dark matter haloes are truncated singular
isothermal spheres:

Ω(r ) / r°2. (1.114)

This holds up to the limiting radius of the halo, which is defined as distance from the center within
which the mean matter density is Ωh = ±hΩcr i t≠m (a reasonable choice would be to take ±h = ±vi r ;
however, since the criterion for virialization is not strict, other definitions are also in use in the litera-
ture).

Of course the isothermal model is, at best, an approximation: many effects may cause deviations
from this simple profile. For example:

• collapse may never reach an equilibrium in the outer region of a dark halo

• non-radial motions may be important

• merging events associated with the hierarchical formation process may render the spherical
collapse model invalid.

An extension of the isothermal model is the Hernquist profile, proposed by Hernquist [25] starting
from the observed luminosity distribution for elliptical galaxies and bulges. His resulting form for the
density profile is

Ω(r ) / Ω0
≥

r
rs

¥≥
1+ r

rs

¥3 . (1.115)

This model does not suppose the existence of a defined core and two broken power-laws, but a gently
changing logaritmic slope. This happened because the isothermal sphere model, charaterized by
the core radius and the velocity dispersion, has been challenged by numerical simulations of the
formation of haloes, which provided no firm evidence of the existence of a core. The slope of the
density profile changes from Ω/ r°1 at small radii, to Ω/ r°4 at large r . Since Herniquist profile has
been derived analytically, we could go backwards and compute the distribution function, which can
be expressed in terms of elementary functions.

Using high resolution N -body simulations of structure formation, Navarro et al. (1996) [43] showed
that the density profiles of the simulated dark matter haloes are shallower than r°2 at small radii and
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steeper at large radii. Their new formula for the density profile, known as the NFW profile, rapidly
became the standard definition of the density profile and is:

Ω(r ) = Ωc±c
≥

r
rs

¥≥
1+ r

rs

¥2 (1.116)

where rs is a scale radius and ±char is a characteristic overdensity. The logarithmic slope of the NFW
profile changes gradually from -1 to -3 at large radii (rather than -4 as in the Hernquist profile), and
only resembles that of an isothermal sphere at radii r ª rs . This profile is found to be a good repre-
sentation of the equilibrium density profiles of dark matter halos of all masses and in all CDM-like
cosmologies. We can see that this formula resemble the general density profile, that we proposed
at the beginning, with Æ = 1, Ø = 3 and ∞ = 1. Thus, haloes formed by dissipationless hierarchical
clustering seem to have a universal density profiles.

Recently, many works started to use a third parametrisation of the density profile : the Einasto
profile [16]. It has an extra free parameter, the shape parameter Æ, and may be written as:

ln
µ
ΩE

Ω°2

∂
=° 2

Æ

∑µ
r

r°2

∂Æ
°1

∏
, (1.117)

where r°2 marks the radius where the logarithmic slope of the profile is equal to -2.

Halo substructure

Cold dark matter haloes are not smooth, but they contain a lot of self-bound substructures. The cen-
ters of these substructures should correspond to the locations of galaxies or satellites. Subhaloes have
cuspy, NFW-like density profiles, but they are also subjected to tidal stripping and so they tend to be
less extended than comparable haloes in the field. The subhalo population has also been accreted re-
cently and so is much less concentrated than the halo, since subhaloes tend to reside in the outskirts
of the parent halo. A widely known problem is the excess of subhaloes with respect to the number of
satellite galaxies. A plausible explanation for the discrepancy is that galaxy formation is extremely in-
efficient in small halos: various forms of feedback (such as reionization or the injection of supernova
energy) render all but a handful of the largest subhalos invisible. Although deprived of stars, these
dark subhalos are, in principle, detectable from their gravitational lensing effects.
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model 2
As seen in the previous chapter, the spherical evolution model improves the description of gravita-
tional collapse by introducing non-linearity, but it is however an approximation: wherever large-scale
structures in the universe can be delineated, they turn out to be far from spherically symmetric. This
is the reason why we need a more realistic model of gravitational collapse: an example of such a
model is the Ellipsoidal Collapse model (EC). It considers structures as homogeneous ellipsoidal re-
gions embedded in a background universe, bringing to light several features which are not present in
the spherical models. Certainly this model maintains some approximations or simplifications, which
have to be pointed out: first of all, real density fluctuations evolve through configurations that are far
from being homogeneous as they separate from the Hubble flow and begin to collapse - any proto-
system is composed by a number of subunits which have already collapsed and come to equilibrium
and this could make a homogeneous ellipsoid a poor approximation. Secondly, the assumption of a
smooth universe outside the perturbation may eliminate some non-negligible effects. Nevertheless,
as we will describe in this chapter, this approach offers many advantages: first of all, even with the
limit of triaxial symmetry, it allows a variety of shapes for dark matter haloes. The origin of this model
lies in a work of White & Silk 1979 [70], who for the first time used a triaxial model for dark matter
halo evolution. It has been used and further developed in many other works, as for example Bond et
al. 1991 [8], Sheth & Tormen 1999 [60], Sheth et al. 2001 [59], Porciani et al. 2002 [50], Shen et al. 2006
[57], Rossi et al. 2011 [54], Despali et al. 2013 [15], Despali et al. 2014 [14], Ludlow et al. 2014 [36],
Borzyszkowski et al. 2014[10] and Bonamigo et al. 2015 [7].

2.1 The origin: White and Silk 1979

The ellipsoidal collapse model has been introduced in the work of White and Silk (1979,[70]), which
considers ellipsoidal density perturbation for the first time: such perturbations evolve through a se-
ries of increasingly eccentric homogeneous ellipsoids until their shortest axis goes to zero and a "pan-
cake" is formed. The evolution of the ellipsoidal perturbation is treated separately from the back-
ground evolution, as a overdense closed universe (as already in the spherical collapse model).

The gravitational potential within a uniform ellipsoid (and for a zero pressure fluid) may be written
as

©e =°ºGΩe

3X

i=1
Æi x2

i , (2.1)

where Ωe is the density of the ellipsoid, the coordinate axes coincide with the principal axes and Ve

37
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has been set equal to zero at the origin. The coefficients Æi are given by

Æi = a1a2a3

Z1

0
(a2

i +∏)°1
3Y

j=1
(a2

j +∏)°1/2d∏, (2.2)

where the ai are the half-lengths of the principal axes, with a1 ∑ a2 ∑ a3. Substituting this potential
into Poisson’s equation shows that X

i
Æi = 2. (2.3)

The potential due to the smooth background density within the spherical surface which contains the
perturbation is

©b =°2
3
ºGΩb

X

i
x2

i . (2.4)

Summing the two potential contributions, we obtain the total potential within a homogeneous ellip-
soidal overdensity in an unperturbed universe:
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Ωb
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To obtain the equations of motion from this potential, we assume that, as the perturbation evolves,
the background remains uniform and that the external density can be calculated from the usual co-
mological equations. Of course this is only approximately correct, because the background becomes
inhomogeneous once the perturbation enters in the nonlinear regime. Anyway, at this point, the
evolution of the perturbation is governed mostly by its own self-gravity, and so the last assumption
introduces only a small error. The perturbation evolves through a serie of homogeneous ellipsoidal
configurations (provided that the initial velocity field is linear in the coordinates: for the initial ve-
locity field here we use only the Hubble flow). The evolution of the ellipsoidal perturbation is then
described by the equations:

d2ai

dt 2 =°2ºG
∑
ÆiΩe +

µ
2
3
°Æi

∂
Ωb

∏
ai ,

d2Rb

dt 2 =°4º
3

GΩbRb ,

Ωe a1a2a3 = const ,

ΩbR3
b = const , (2.6)

where Rb is the scale factor of the background universe. The first equation represent the evolution
of the ellipsoidal perturbation (and so the evolution of its axes), the second equation is one of the
Friedmann equations and stands for the evolution of the background; the last two equations are the
conservation of mass for the perturbation and for the background. For the numerical results White &
Silk (1979) [70] integrated these equations using a fourth-order Runge-Kutta scheme; moreover, the
evaluation of the integrals Æi can be avoided by integrating the auxiliary equation given by Fujimoto
(1968):
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. (2.7)

In this approach particular model is specified by giving initial values of ≠, Ωe /Ωb , a2/a1 and a3/a1.
The initial values of Æi are calculated and the equations of motion are integrated until the shortest
axis of the ellipsoid approaches zero and a pancake is formed.

After these considerations, White & Silk (1979) [70] give an approximate solution of the equations
of motion: they assume that the time dependence of the Æi can be neglected and that Ωe ai and Ωb ai
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have the same time dependence of the spherical perturbations of density Ωe and Ωb respectively; then
the equations may be written as

d2ai

dt 2 =
Ω

3
2
Æi (t0)

d2Re

dt 2 +
∑

1° 3
2
Æi (t0)

∏
d2Rb

dt 2

æ
ai (t0), (2.8)

that is, they apply the Friedmann equations both for Ωe and Ωb . t0 is the initial time and Re is the
scale factor for a universe with the given initial Hubble constant but with initial density Ωe (t0). Now,
assuming Re = Rb = 1 and integrating twice the last equation, the resulting approximate solution is

ai (t )
ai (t0)

= 3
2
Æi (t0)Re (t )+

∑
1° 3

2
Æi (t0)

∏
Rb(t ) = (2.9)

Rb(t )° 3
2
Æi (t0) [Rb(t )°Re (t )] . (2.10)

These equations clearly describe the evolution fo homogeneous spherical perturbations exactly, and
they resemble the linearised equations which Zel’dovich (1970, [71]) suggested could be extrapolated
to give a qualitative description of the nonlinear evolution of a general inhomogeneous density field.
These equations also describe the evolution of ellipsoidal perturbations quite well. Zel’dovich theory
(1970, [71]) predicts evolution through a series of homogeneous coaxial ellipsoids with

ai (t ) / Rb(t )°Æi b(t ) (2.11)

where b(t ) is proportional to the amplitude of growing perturbations in linear perturbation theory;
for an Einstein-de Sitter universe we have b(t ) / R2

b / t 4/3, giving
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In Figure 2.1 we see the numerical solutions for two typical cases compared with the approximate
solutions of White & Silk (1979, [70]). Some general points are illustrated by the figure: first of all, the
shape of the perturbation does not change much until it ha s a significant overdensity with respect
to the background; an important consequence of this observation is that deviations from self-similar
evolution are much larger in an open universe, in which a perturbation can obtain a significant over-
density early in its evolution. Thus, in the Einstein-de Sitter model, both the longest and the medium
axes are contracting when the perturbation pancakes, while in the open model both of them are still
expanding. Another important conclusion considers the collapse time: the collapse time of perturba-
tion - with fixed initial overdensity - decreases with increasing eccentricity meaning that near oblate
configurations collapse faster than near prolate ones. In addition, the evolution is faster in a lower-
density universe; however, the scale factor also increases more rapidly when ≠ is small and - unless
the perturbation is highly eccentric - collapse occurs at larger values of Rb in lower-density universes.
The ratio of the uncollapsed axes at the instant of pancaking is 2.07:1 for both models: this is an
example of a surprising regularity. They find that

a2(tc )
a3(tc )

ª a2(t0)°a1(t0)
a3(t0)°a1(t0)

(2.13)

where we find tc setting a1(tc ) = 0; this results confirms a regular behaviour. From this it is clear that
the kinematic properties of a pancaked ellipsoid depend both on the initial shape of the perturbation
and on the density of the background universe.
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Figure 2.1: Evolution of homogeneous ellipsoidal perturbations in an expanding universe. Two models with
the same initial density and Hubble constant are plotter; each has initial axes in the ratio 1:1.25:1.5. The solid
lines stopping at Rb = 873 give numerical solutions for the relative expansion factors along the three axes of
a perturbation in an Einstein-de Sitter universe as a function of the background scale factor. The other three
solid lines stopping at Rb = 1650 refer to a universe with≠< 1 (≠= 0.97 initially and≠= 0.02 at collapse). The
dashed lines are the predictions of the approximate equations and the dotted lines the predictions for the EdS
case. (White and Silk 1979)

2.2 Excursion sets approach in ellipsoidal collapse: a moving barrier

The excursion sets model (Bond et al. 1991, [8]) describes how the assumption that objects form by
spherical collapse (Press and Schechter) can be combined with the fact that the initial fluctuations
distribution is gaussian, in order to predict n(m, z). They assume that a region collapses at a time z if
the initial overdensity within it exceeds a critical value ±sc (z). This critical value depends on z, but is
independent of the initial size of the region; the dependence is given by the spherical collapse model.
They also assume that, given the Gaussian nature of the fluctuation field, a simple approximation of
n(m, z) is obtained by considering the barrier crossing statistics of many independent, uncorrelated
random walks: the barrier shape B(m.z) is given by the fact that ±sc is independent of m. Numeri-
cal simulations show that the mass function predicted by this model may fail for small haloes (Lacey
and Cole 1994 [31]; Sheth and Tormen 1999 [60]). This is not surprising, because many approxima-
tion are requested to reach a reasonably simple analytic solution. In particular, the spherical collapse
model may not be accurate enough to describe the dynamics, because perturbation in Gaussian den-
sity field are triaxial. To incorporate the effects of non-spherical collapse in the standard formalism,
Sheth, Mo and Tormen (2001) [59] consider the possibility of using a moving barrier for ellipsoidal
collapse, instead of the fixed barrier of spherical collapse. In this approach, the effects of the back-
ground cosmology and power spectrum can be neatly separated: the cosmological model determines
how ±sc depends on z, whereas the shape of the power spectrum tells how the variance depends on
scale r , so it fixes how æ depends on mass m / r 3.
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Thus, in this excursion sets approach, to incorporate the effects of ellipsoidal collapse we need to
determine the new barrier shape associated with the non-spherical dynamics. The initial shape of an
ellipsoid can be specified by its initial overdensity and by the parameters e and p that characterize
the asymmetry of the tidal field:

±i =∏1 +∏2 +∏3, e = ∏1 °∏3

2±i
, p = ∏1 +∏3 °2∏2

2±i
(2.14)

where ∏1 ∏∏2 ∏∏3. Thus defined, e (∏ 0) is a measure of the ellipticity in the (∏1,∏3) plane, and p de-
termines the oblateness (0 ∑ p ∑ e) or prolateness (0 ∏ p ∏°e) of the tidal ellipsoid. Oblate spheroids
have p = e, prolate spheroids have p = °e and spheres have e = p = 0. In general the shortest axis
(the one parallel to ∏1) will be the first to collapse to zero. When this happens our equations are no
longer valid. However, in order to study the collapse of the whole ellipsoid, we need to make addi-
tional assumptions so as to integrate the equations of motion all the way to when the longest axis is
considered to have collapsed. A common practice is to assume that all axes are frozen at the same
radius equal to (200)1/3 times the Lagrangian radius, so that the mean density within it is about 200
times the mean density of the universe at the time of collapse. This choice is somewhat arbitrary but
tries to reproduce the virial density contrast obtained from the spherical collapse model, which was
approximately 178.

Using the Bond & Myers (1996) [9] formalism, for an Einstein-de Sitter model a good approxima-
tion of the ellipsoidal barrier is given by solving

±ec (e, p)
±sc

= 1+Ø
∑

5(e2 ±p2)
±2

ec (e, p)

±2
sc

∏∞
(2.15)

for ±ec (e, p); Ø= 0.47, ∞= 0.615 and the plus (minus) sign is used if p is negative (positive) (Sheth, Mo
& Tormen 2001, [59]).

Figure 2.2: The evolution of an ellipsoidal perturbation in an
Einstein-de Sitter universe. We see the expansion factor when the
longest axis collapses and virializes, as a function of initial e and p.
At a given e, the large, medium and small circles show the relation
at p = 0, |p| ∑ e/2, |p| ∏ e/2, respectively. The solid curve show
SMT fitting formula for the p = 0 result, and the dashed curves show
|p| = e/2.

As we can see in Figure 2.2, this approxi-
mate fitting formula is good to better than 10
percent or so. This figure shows also the de-
pendence of ±ec on æ and so on mass: low-
mass haloes have a grater value of æ, which
corresponds to higher ellipticities and also
to a higher barrier.

Then the barrier height for the ellipsoidal
collapse depends on the three numbers ±, e
and p and in principle the problem of esti-
mating the corresponding mass function is
one of crossing a barrier in a higher dimen-
sional space. However Sheth, Mo and Tor-
men (2001, [59]) suggested that the compu-
tational complexity could be reduced signif-
icantly if one used suitably chosen represen-
tative values for e and p. Thus, they derived s
a reformulation of the fitting formula for the
case p = 0: this is useful because in a Gaus-
sian field on average p = 0. This can be seen
from the distribution function of the three
deformation tensor eigenvalues in a Gaus-
sian density field, obtained by Doroshkevich
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(1970):
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Doroshkevich’s formula is the product of two independent distributions, a Gaussian for ±/æ, and an-
other one made by a combination of the other five independent elements of the deformation tensor.
Integrating the lastformula over ± yields the joint distribution of e and p (given ±s):
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Now, for all e this distribution peaks at p = 0. We must now find a suitable approximate value for e,
which possibly relates it to the mass m: due to Gaussian probability, regions initially having a given
value of ±/æ most probably have an ellipticity emp = (æ/±)/

p
5. To collapse and form a bound object

at z, the initial overdensity of such a region must have been ±ec (emp , z). If we require that ± on the
right-hand side for emp is equal to this critical value ±ec (emp , z), then this sets æ2(R f ). This provides a
relation between e and mass, anche hence between±ec and mass. Inserting p = 0 and emp = (æ/±)/

p
5

in Equation 2.15, it is straightforward to compute the associated ±ec (e, z).

±ec (æ, z) = ±sc (z)

(

1+Ø
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æ2

æ2
?(z)
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(2.19)

where æ?(z) = ±sc (z). We notice that, as in the spherical case, the power spectrum enters only in the
relation between æ and m, whereas the effects of cosmology enter only in the relation between ±sc

and z. The last equation has a number of noticeable features:

• for massive objects, which have æ/æ? < 1, the equation suggests ±ec (æ, z) ª ±sc (z) and so the
critical overdensity required for collapse at z si approximately independent of mass: this means
that massive objects are well described by the spherical collapse model;

• we know that the critical overdensity increases with æ(m), so it is larger for less massive objects:
smaller objects are more influenced by external tides and so they must have a greater internal
density if they have to hold themselves together as they collapse.

Now, using Equation 2.19 when setting B(æ, z) = ±ec (æ, z), we can write a new mass function, for the
ellipsoidal collapse moving barrier:
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where q = 0.3 and A ª 0.32222. This first crossings distribution differs from that predicted by the
standard constant barrier model, for which q = 0 and A = 1/2. Using this equation, once the barrier
shape is known, all the predictions of the excursions sets model can be derived easily.
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2.3 The initial density field

Much about the halo evolution can bee understood by looking at the properties of the initial density
field of the Universe; this is represented by the Initial Conditions (hereafter IC) of a simulation, which
are generated at a sufficiently high redshift. As shown in the previous section, the Ellipsoidal Collapse
model predicts that the properties of initial protohaloes are determinant for the entire evolution of
large scale structures [59].

Moreover, according to the Tidal Torque Theory (hereafter TTT) [49], the origin of angular momen-
tum can be found in the initial conditions and in particular from the cross-talk between the inertia
I and shear T tensors. According to the TTT, the i -th component of the angular momentum can be
written as:

Li (t ) = a2(t )Ḋ(t )≤i j k D j l Ilk (2.21)

where ≤i j k is the antisymmetric tensor and the two key quantities are the de f or mati on tensor and
the i ner t i a tensor:
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where q is the Lagrangian position and q
0 = q + q̄. Here we assume that the potential is varying

smoothly within the volume °, such that it can be approximated by an expansion around the cen-
ter of mass:
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Only the traceless parts of the two tensor matter for the calculation of Li (t ); these are the veloc-
ity shear or t i d al tensor Ti j = Di j ° (Di j /3)±i j , and the traceless quadrupolar inertia tensor Ii j °
(Ii j /3)±i j . This means that, at first order, the angular momentum of the protohalo is generated by the
gravitational coupling of the quadrupole moment of its mass distribution with the tidal field coming
from the neighbouring density fluctuations: it is due to the misalignment of the principal axes of the
two tensors.

In simulations, the protohalo regions are defined by tracing all the particles of the final virialized
haloes back to the ICs, and so to their Lagrangian positions. Then, for each protohalo, one can com-
pute the Lagrangian inertia tensor as

Ii j = m
NX

n=1
q

0(n)
i q

0(n)
j , (2.24)

where the q
0(n) are the positions of each particles with respect to the center of mass. The shear tensor

of the protohalo is calculated by smoothing the potential and differentiating it twice with respect to
the spatial coordinates. The equivalent of this is smoothing the initial (Zel’dovich) displacements
and differentiating them once with respect to the coordinates. Porciani et al. (2002, [50]) calculated
the misalignments between the two tensors, as shown in Figure 2.3. The eigenvectors îk and t̂k are
labelled in sich a way that the corresponding eigenvalues are i1 ∏ i2 ∏ i3 and t1 ∑ t2 ∑ t3. Thus, i1 is
the longest axis of the protohalo mass distribution and t1 is the direction of maximum compression.

The highest correlation is in the bottom-right panel (cosine almost equal to 1), indicating a very
strong alignment between the minor axes of the two tensor and thus between the smallest axis of the
mass distribution and the direction of least compression/expansion. The second highest correlation
indicates a quite strong alignment also between the two major axes, while the alignment between
the intermediate ones is weaker. These values show a tendency for orthogonality between the major
axis of one tensor and the minor axis of the other, which is confirmed by the anti-correlations in the
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Figure 2.3: Alignments of I and T. The eigenvectors îk and t̂k are labelled in sich a way that the corresponding
eigenvalues are i1 ∏ i2 ∏ i3 and t1 ∑ t2 ∑ t3. From Porciani et al. 2002 [50].

bottom-left and top-right panels. Figure 2.4 shows a few examples of the correlation between the two
fields, ina regions of the simulation box.

The implication of the alignment between the two tensors is that protohalo spins are due to small
residuals from this correlation. It also indicates that the tidal field plays an important role in deter-
mining the positions and shapes of protohaloes: the largest compression flow towards the center is
along the major inertia axis, since this is required to compress the elongated protohalo into the more
spherical and concentrated shape at virialization.

2.4 Evolution equations

The equations giving a full description of triaxial collapse must be solved numerically in general,
since the evolution does not have a simple analytical solution. In this section we discuss an accurate
analytical approximation to the evolution, developed by Shen et al. (2006) [57] and then by Rossi et
al. (2011) [54], which results to more accurate than the Zel’dovich approximation [71].

The initial shear field is usually characterised by the ellipticity e and prolateness p of the initial
potential field: the components of the 3£3 initial deformation tensor are the second derivatives of
the potential field. Its eigenvalues can thus be expressed as a function of (±i ,e,p), as already explained
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Figure 2.4: Examples of the correlation between the two fields. The top panels show maps of the density (le f t )
and velocity r i g ht ) fields at z = 50; the contours refer to the density contrast linearly extrapolated to z = 0. The
bottom panels show all the protohaloes whose contres of masses lie within one smoothing length of the plane;
the left panel shows the projection of the protohalo particle positions and the right panel the projections of the
major axes of the inertia tensor (dark lines) and the shear tensor (light lines). From Porciani et al. 2002 [50].

in the previous sections:

∏1 =
±i

3
(1+3e +p)

∏2 =
±i

3
(1°2p) (2.25)

∏3 =
±i

3
(1°3e +p)

with ∏1 > ∏2 > ∏3,
P

j ∏ j = ±i and so e ∏ 0, °e ∑ p ∑ e. Then, the scale factors of the three principal
axes of the ellipsoid are set by the Zel’dovich approximation [71]:

Ak (ti ) = a(ti )([1°∏k (ti )] (2.26)

where now A3 ∏ A2 ∏ A3, meaning that at the initial conditions the shortest axis of the ellipsoid is
aligned with the direction of maximum compression of the potential field and vi cever sa the longest
axis is aligned with the minimum compression. The full evolution is given by (Bond & Myers 1996
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[9]):
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where ¯r ho = a°3 is the mean density of the universe and the two last terms account, respectively, for
the interior and exterior tidal forces. More precisely
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If the tidal force terms are not included, these equations reduce to the spherical collapse ones: if
e = p = 0 all the three eigenvalues are equal to ±i /3 and an initially spherical object remains spheri-
cal. Otherwise, an initially spherical regions is deformed by the tidal forces into a collapsing homo-
geneous ellipsoid.

Given an initial set of (±,e,p) values, equation 2.27 must be solved numerically for each axis: the
result can be seen in Figure 2.5 which shows the physical evolution of axis lengths for many combina-
tions of the initial values. However, a similar result can be obtained using an analytic approximation:
Shen et al. (2006, [57]) show how to extend the approximation provided by White & Silk (1979, [70]
- already described in the previous sections - so that it redices self-consistently to the Zel’dovich ap-
proximation at early times. The axis lengths can then be written as:

Ak (t ) ' a(t )
ai

Ak (ti )[1°D(t )∏k ]° a(t )
ai

Ah(ti )
∑

1° D(t )±i

3
° ae (t )

a(t )

∏
, (2.30)

where Ah(ti ) = 3/
P

k Ak (ti )°1, D(t ) is the linear theory growth mode and ae (t ) is the expansion factor
of a universe with initial density contrast ±i =

P
k ∏k (ti ). We can see that the first term is the Zel’dovich

approximation [71] to the evolution and that this approximation is exact for the case of a sphere (for
which ∏i = ∏ = ±i /3. The left panel of Figure 2.6 show the approximation together with the full nu-
merical solution of the EC model and the Zel’dovich approximation [71]: it is easy to see that equation
2.30 is significantly more accurate than the Zel’dovich approximation. The right panel shows the re-
sults from Rossi et al. (2011, [54]), where ±0 is equal to 1.6753 instead of 2; again, the approximation
given by Equation 2.30 works very well for the adopted§CDM model. The numerical solution would
allow each axis to shrink to arbitrarily small sizes, but all works stop collapse along each axis at a
non-negligible freeze-out radius, which is Ak = 0.177a for and Einstein-de Sitter model: in this way
the final object is 178 times denser than the background universe, as in the Spherical Collapse model.
This f r eeze °out moment can be seen both in Figure 2.5 and in the right panel of Figure 2.6. The
critical density required for collapse by the present time is well approximated by

±ec (e, p) ' ±sc

1°Ø
p

5(e2 ±p2)
. (2.31)

Since the initial values of ∏k and ai yield the initial (±i ,e,p), the collapse model provides an estimate
of the freeze-out time for each axis. Figure 2.7 (from Shen et al. 2006 [57]) shows the critical densities
for collapse along one, two and three axes (from bottom to top) at z = 0, for p = 0 and e = (æ/±)/

p
5.

From equation 2.30, we can also derive - to first order in ±(ti ):
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Figure 2.5: Evolution (in physical coordinates) of axis lengths in the EC model; the initial (±,e,p) values are
specified in each panel (from Rossi et al. 2011 [54]).
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It is easy to notice that, when p = 0, the second axis evolves exactly as in the spherical model:

A2(t )
A2(ti )

' ae (t )
a(t )

. (2.34)

In this respect, a spherical collapse can be imagined as an imperfect ellipsoidal collapse, where the
virialization is identified with the collapse of the second axis.

2.5 A recent extension of the EC model

We have seen how one of the limitation of the EC model is considering initially spherical protohaloes.
In 2014, two works by Ludlow, Borzyszkowski and Porciani [36, 10] presented an extension of the
model which aims to fill this gap. The initial motivation for this extended model resides in the fact
that, even if the agreement between the EC model and simulations is quite remarkable, there are
still some inconsistencies. Even though their results are extremely interesting, their works have been
published very recently and so we will not directly compare with them in this thesis. Nevertheless, we
find it worth to mention some of their results between the others on ellipsoidal collapse and we plan
to make a comparison with their work in the future.

In the EC model, the initial overdensity ±i is a fundamental quantity: it is thought to depend on
the properties of the tidal field, rather than on those of (proto)haloes. In the left panel of Figure 2.8,
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Figure 2.6: Comoving evolution of axis lengths in the ellipsoidal model. Le f t : results from Shen et al. 2006
[57] - the full EC model is represented by the solid lines, the Zel’dovich approximation [71] by the dotted ones
and the analytic approximation (for an Einsten-de Sitter model) by the dashed lines. Ri g ht : from Rossi et al.
2011 [54] - the solid line show the numerical solution of equation 2.27, while the dashed-dotted ones show the
analytic approximation; in this case ±0=1.6753 instead of 2.

Figure 2.7: Dependence of barrier height on mass for collapse along one, two or three axes (bottom to top) at
z = 0, for p = 0 and e = (æ/±)/

p
5 (Shen et al. 2006 [57]).
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Figure 2.8: Lagrangian overdensities of protohaloes plotted as a function of the ellipticity (left) and overdensity
(right) of the surrounding tidal field. Le f t : the authors plot the linear overdensity (extrapolated to z = 0),
as a function of ellipticity. The cloud of points shows the distribution of all the haloes with more than 500
particles (FOF), identified at redshifts z=0, 1, 2, 3; the points are colour-coded with respect to formation time
(t50/ti d ). The heavier and bigger symbols show the median values for five bins in ∫, for all haloes (gray) or
only for recently formed ones (red). The solid lines corresponds to the collapse threshold predicted by Bond
& Myers 1996 [9], while the horizontal dashed lines indicates ±i = 1.686. Ri g ht : mss dependence of the initial
overdensity. The colour code is the same of the left panel, while here different symbols represent the median
values for haloes identified at each redshift.

the authors plot the linear overdensity (extrapolated to z = 0), as a function of ellipticity. the cloud of
points shows the distribution of all the haloes with more than 500 particles (FOF), identified at red-
shifts z=0, 1, 2, 3. The heavier and bigger points show the median values for five bins in ∫. The solid
lines corresponds to the collapse threshold predicted by Bond & Myers 1996 [9]. The agreement be-
tween the theoretical model and the simulations is remarkable, even if there is still large scatter both
in ± anf e. The points are colour-coded with respect to formation time (t50/ti de ) and it is interesting to
note that the majority of recently collapsed objects (both the red dots and the big red points) lie below
the theoretical prediction, even if they are expected to trace the solid lines better than haloes which
formed earlier. Finally, the right panel of Figure 2.8, shows the mass dependence of the initial over-
density: as expected and as found in other works, the median overdensity decreases with increasing
mass, even if the scatter is still considerable.

To partially reduce the scatter and design a more realistic model, in these two works the authors
include many effects into the theoretical formulation of the EC model, such as initial triaxiality, the ef-
fect of the external field and of the formation time. They consider an uniform density perturbation in
an otherwise unperturbed Friedmann-Robertson-Walker background whose energy content is dom-
inated by the matter density Ωm and a cosmological constant, §. They model the perturbation as a
homogeneous ellipsoid with semi-axes of physical length ri (i = 1,2,3) and density contrast ±: thus,
the initial protohaloes have a triaxial shape given by the ri s and is not a sphere. In this framework,
the axis lengths will obey the following equation of motion:

r̈i
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= §c2

3
°4ºGΩb
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±+∏ext

i

∂
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as in equation 2.27. They assume that external tides are dominated by large-scale structure and ap-
proximate their evolution ac- cording to linear theory, i.e. ∏ext (t ) '∏ext D(t ). The perturbation there-
fore remains homogeneous at all times and satisfies

1+±= q1q2q3

r1r2r3
(1+ z)3, (2.36)

where the qi s denote the initial comoving principal axis lengths of the ellipsoid. In Figure 2.9 we
can see the resulting evolution of the axis lengths for collapsing ellipsoids, when the initial shape
varies; the numerical calculations start at t0 = 0.250 Myr and assume always the same initial density
contrast ±. Comparing these curves with the ones in Figure 2.5 , we see how relaxing the assumption
of spherical symmetry substantially changes the collapse times of each axis: the left panels assume
an initial triaxiality with axial ratios q2/q1 = q3/q2 = 0.8 and this is enough to perturb the collapse
order and the general form of the curves. What it is clear at first sight is that an initial triaxiality allows
a greater variety of evolution patterns: the axis ordering may change in time and this could give an
interpretation to the misalignments between the initial and final axes. As we wil see in Chapter 6,
when examining the axis evolution of individual haloes, we found that they do not follow a fixed
pattern and that the three axes may cross and reorder: a future comparison between our numerical
results and the prediction of Ludlow, Borzyszkowski and Porciani [36, 10] will be important to test
their validity.
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Figure 2.9: Evolution of the axis lengths for collapsing ellipsoids, expressed in units of the initial intermediate
axis length, q2. Left panels assume the initial overdensity is a uniform sphere, as in the model of Bond & Myers
1996 [9]; right-hand panels adopt an initially triaxial overdensity with axis ratios q2/q1 = q3/q2 = 0.8. Top
panels assume negligible tidal forces. Lower panels have a (total) tidal field ellipticity of e = 0.2, and show
results for three different prolaticities. Note that relaxing the assumption of spherical symmetry substantially
changes the collapse times of each axis (from Ludlow et al. 2014 [36]).





Cosmological simulations 3
In this chapter we will describe the state of the art of cosmological simulations in general and the data
used in this work. We used data from the GIF2 simulation [20] and the Millennium XXL simulation
[3]; then, we run our own set of cosmological simulations, called Le SBARBINE simulations, which
will be described in detail in section 3.4.

3.1 State of the art

Cosmological simulations constitute the natural tool to study structure formation. Analytical models
are able to describe it up to a certain level, but the equations cannot be fully solved in the non-linear
regime. Thanks to new technologies and the increase of computational resources, simulations have
developed to an unprecedented level in the last years, becoming larger, faster to run and better re-
solved. Moreover, more physics has been included in the codes, providing a more and more precise
reproduction of the real Universe.

GADGET

GADGET, in its first [62] and second [61] versions, is one of the most common codes to run cosmo-
logical simulations. Designed and developed by Volker Springel, it can be use to adress many astro-
physical and cosmological problems, ranging from merging galaxies to the evolution of large scale
structures.

It describes the dynamics of a collisionless component (dark matter or stars in galaxies) and of an
ideal gas (baryons - mostly hydrogen and helium):

1. the non-interacting dark matter is described by the collisionless Boltzmann equation coupled to
the Poisson equation, in an expanding background universe; the problem is multi-dimensional
and so the equations are solved with the N -body method, where phase-space density is sampled
with a finite number N of tracer particles. Their dynamic is described by the Hamiltonian:

H =
X

i

p2
i

2mi a(t )2 + 1
2

X

i j
mi m j¡(xi °x j )a(t ) (3.1)

where xi are the comoving coordinate vectors, and the corresponding momenta are given by
pi = a2mi ẋi . The gravitational force is computed with a TreePM method, where the tree is used
for short-range gravitational forces only, while long-range forces are computed with a FFT-based
particle-mesh (PM) scheme.

2. fluids are represented by means of Smoothed Particles Hydrodynamics (SPH): a set of discrete
tracer particles describes the state of a fluid, while continuous fluid quantities are defined by an

53
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Figure 3.1: Snapshots from the Millennium Simulation (Springel, 2005), created with 21633 particles in a box
of 500M pch°1. On top we see the dark matter distribution at z=18.3; a big region on the left and a smaller
enlarged region on the right. Below we can see the same, but for z = 0. It is clear that, as time goes by, more and
more structure are formed and the web of filaments and pancakes develops.

name year N box[Mpc/h] zi mp [MØ/h] soft[kpc/h] ≠m ≠§ h æ8

GIF2 2004 4003 110 49 1.73£109 7 0.3 0.7 0.7 0.9
Mill 2005 21633 500 127 8.6£108 5 0.25 0.75 0.73 0.9

Mill-II 2009 21633 100 127 6.89£106 1 0.25 0.75 0.73 0.9
MXXL 2012 67203 3100 63 8.46£109 13.7 0.25 0.75 0.73 0.9

Bolshoi 2010 20483 250 80 1.35£108 1 0.27 0.73 0.7 0.82

Table 3.1: Features of some of the main simulations used in the field. The GIF2 [20] Millennium Simulation
[61], the Millennium II [11], Bolshoi simulation [29] and the the Millennium XXL [3] .

interpolation technique. The equations of motion for the SPH particles are given by
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Moreover, a number of further physical processed have been implemented in GADGET-2, as ra-
diative cooling/heating by photoionisation, star formation and associated feedback, galactic winds
and metal enrichment.

Many cosmological simulations have been run using versions of GADGET, as the Millennium Sim-
ulation [61] (Figure 3.1), the Millennium II [11] and the Millennium XXL [3]. The features of the main
simulations used in the field are listed in Table 3.1.
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A simulated “real” universe

Several generations of publicly available models based on the Millennium Simulation have produced
ever closer matches to the observed galaxy population and have been widely used by the community.
This success reflects the fact that simulations of this kind make it possible to construct mock surveys
where the simulated galaxy population is "observed" with a virtual telescope to produce a sample in
which galaxy properties and the large-scale structure can be compared directly with those observed
in real surveys. Such comparisons can be used to test the effectiveness of observational procedures
for identifying galaxy groups and clusters and for measuring their masses. In Figure 3.2 [19] we see a
proof of the accuracy of simulations: the mock catalogues constructed from the Millennium Simula-
tion look amazingly similar to the real catalogues derived from galaxy surveys.

3.2 The GIF2 simulation

The GIF2 Simulation [20], run by Gao et al. (2004), adopts a §CDM cosmological model with ≠m =
0.3, ≠§ = 0.7, æ8 = 0.9 and h = 0.7. It follows 4003 particles in a periodic cube of side 110h°1 Mpc
from an initial redshift z = 49 to the present time; it contains only dark matter particles. The asso-
ciated change in the linear theory growth factor is D+(z = 0)/D+(z = 49) = 38.993 and the individual
particle mass 1.73£109h°1 MØ. Initial conditions were produced by imposing perturbations on an
initially uniform state represented by a glass distribution of particles [69]; based on the Zel’dovich
approximation [71], a Gaussian random field is set up by perturbing the positions of the particles
and assigning them velocities according to the growing model solution of linear theory. The criti-
cal value of the linear theory overdensity that is required for spherical collapse at the present time is
±c = 1.6755. In order to save computational time, the simulation was performed in two steps: until z
= 2.2, with the parallel SHMEM version of HYDRA and then completed with GADGET [62], which has
better performance in the heavily clustered regime.

Our group has access to all the 53 snapshots of the simulation: thus, we could directly analyse the
data, running all the post-processing described in the following sections.

3.3 The Millennium XXL simulation

With a box side of 3 Gpch°1 (4.1 Gpc), the Millennium XXL simulation (Angulo et al. 2012 [3]) was
especially tailored to study massive haloes which can be only found in very large volumes, because of
their nature of extremely rare objects and due to the dampening of large fluctuation modes in smaller
boxes. It was produced with an optimised version of P-GADGET3, which improves the scalability and
memory efficiency of the code considerably and it is very efficient for dark-matter-only simulations.
The 67203 º 3£1011 dark matter particles have a mass of 6.174£109 MØh°1; the Plummer-equivalent
softening length is ≤ = 13.7 kpc. For reasons of consistency with the previous Millennium runs, the
adopted §CDM cosmology is the WMAP one: total matter density ≠m = 0.25, baryons density ≠b =
0.045, cosmological constant ≠§ = 0.75, power spectrum normalisation æ8 = 0.9 and dimensionless
Hubble parameter h = 0.73.

The simulation resolves large-scale structure with an unprecedented combination of volume and
detail. The enormous statistical power of the simulation is hinted at in Figure 3.3, which shows the
projected density field on very large scales and for the largest cluster found at z=0.

We used this simulation to study in detail the shapes of galaxy-cluster-size haloes, as will be ex-
plained in Chapter 7. Two snapshots (redshift 0 and 1) have been transferred to the servers at LAM
(Laboratoire d’Astrophysique de Marseille), where Mario Bonamigo run the main analyses on the
data.
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Figure 3.2: A proof of the accuracy of simulations: the galaxy distribution in redshift surveys and in mock cat-
alogues constructed from the Millennium Simulation. The small slice at the top shows the CfA2 “Great Wall” ,
with the Coma cluster at the centre. Drawn to the same scale is a small section of the SDSS, with the even larger
“Sloan Great Wall” . The cone on the left shows one half of the 2-degree galaxy redshift survey (the 2dFGRS) .
The cones at the bottom and on the right correspond to mock galaxy surveys with similar geometries and mag-
nitude limits constructed by applying semi-analytic galaxy formation simulation methods to the halo/subhalo
assembly trees of the Millennium Simulation. From Frenk & White 2012 [19].
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Figure 3.3: The mass density field in the Millennium-XXL focusing on the most massive halo present in the
simulation at z=0. Each inset zooms by a factor of 8 from the previous one; the side-length varies from 4.1 Gpc
down to 8.1 Mpc. All these images are projections of a thin slice through the simulation of thickness 8 Mpc.

3.4 Le SBARBINE simulations

In 2013 we decided to update our database with some new simulations: we run a set of 6 cosmological
simulations, using the publicly available code GADGET-2 [61]; the simulations were completed in
2014. Their main features are listed in Table 6.1 and will be described in the following sections. We
chose to use the latest cosmology from Planck [47]: ≠m = 0.30711, ≠§ = 0.69289, ≠b = 0.04825, h0 =
0.6777.

All the runs were made with 1 billion (10243) particles and the six simulations are named in alpha-
betical order, with increasing box sizes. On the whole, they contain more than 22 millions of haloes,
which reduce to 250000 if we consider only haloes with more than 1000 particles. The SBARBINE
simulations constitute an ideal set to study halo properties for a multiplicity of reasons:

1. a good spatial and mass resolution is granted by varying the box and the particle mass accord-
ingly to each other: in this way, dark matter haloes of all masses will be formed by many parti-
cles, reducing the risk of resolution effect;

2. these simulations provide a large statistic, but are not too heavy to analise as some other recent
simulations (as the Millennium XXL [2]) - each simulation weights 1.8 Tb and each of the 55
snapshots around 33 Gb;

3. since the mass range of each simulation overlaps with the one of the tow “neighbours”, we can
again check for and take into account resolution effects.



58 ELLIPSOIDAL COLLAPSE OF DARK MATTER HALOES

name box [Mpc h°1] zi mp [MØh°1] soft [kpc h°1] Nh°tot (z = 0) Nh>1000(z = 0)
Ada 62.5 124 1.94£107 1.5 2264847 36561
Bice 125 99 1.55£108 3 2750411 44883
Cloe 250 99 1.24£109 6 3300880 54467
Dora 500 99 9.92£109 12 3997898 58237

Emma 1000 99 7.94£1010 24 4739379 38636
Flora 2000 99 6.35£1011 48 5046663 5298

Table 3.2: Main features of the simulations. The last two columns report the total number of SO haloes with
more than 10 and 1000 particles, at redshift z = 0.

Initial conditions

The initial power spectrum for all the simulations was generated with the public software CAMB [33].
Apart from the main cosmological parameters, CAMB allows also to add some extra-features, as the
primordial BAO. The resulting power spectrum can be seen in Figure 3.4, where is represented by the
gray lines: the BAO are visible at the left tail of the lines. The initial conditions has been build with the
public code N-GenIC, which requires as input parameters:

i) the initial P (k)
ii) a g l ass file with positions

iii) the desired features of the simulation (number of particles, cosmological parameters, ...)
iv) a random number used to generate the Initial particle positions from the g l ass file.

Figure 3.4: Initial power spectrum. Different colours show the
results of two tests, done for 5123 particles in a box of 100
Mpch.°1, at redshift 49 and 99. The gray line is the initial power
spectrum obtained with CAMB, which was used for all the sim-
ulations.

A g l ass distribution of particles can be ob-
tained using a special option of the publicly avail-
able GADGET-2 code [61]: a random distribution of
particles evolves with the sign of Newton’s constant
changed, until it reaches equilibrium. This kind of
distribution is random and does not introduce any
preferred scale into the simulation, since the parti-
cles are not disposed on a lattice. We used a g l ass
file of 1283 particles: then, in order to reach the de-
sired number of particles, N-GenIC replicates the
glass file and perturbes is with random displace-
ments which depend on the input random num-
ber. This allows the user to reproduce the initial
conditions of a simulation from a given g l ass file,
once known the random number. For each simula-
tion, we chose a different random number to avoid
the presence of recurrent features.

In Figure 3.4, we show the measured initial
power spectrum of two test runs, done with 5123

particles in a box ok 100 Mpch°1; we produced ini-
tial conditions for the same simulation at two dif-
ferent redshifts, to see if the initial time affects the
noise level in the power spectrum. Given that no
particular effect can be seen, we chose z = 99 as
initial redshift for our simulations (apart from Ad a
which, due to its very small box, started from z = 124). This is supported also by the plots in Figure
3.5 where we show the z = 0 mass function of the two simulations and the density profiles of the most
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Figure 3.5: Le f t : final halo mass function of the two test (corresponding points are shifted of a small amount
to allow to see them both); the Sheth & Tormen 1999 [60] mass function is represented in gray. Ri g ht : final
density profiles of the most massive haloes; the color scheme is the same of the left panel. It is clear that there
is no significant difference between the results of the two tests.

massive haloes of the two tests: it is clear that in this case the difference in initial redshift does not
affect the final result.

Setting and tests

The six simulations have increasing box dimensions (doubled each time), in order to maintain a good
resolution at any scale and to have a satisfying statistic at all masses: from 62.5 to 2000 Mpc. Since the
total number of particles is always 10243, increasing the box dimension makes also the particle mass
grow: from 1.94 107MØh°1 to 6.35 1011MØh°1.

Before running the simulations, we studied the properties of the main previous works in the field
(Table 3.1) with the aim of choosing the best set of parameters and check the dependences between
initial redshift, mass and spatial resolution. In the left panel of Figure 3.6 we see the initial redshift of
some of the most recent simulations as a function of their mass resolution. We notice no regularity
in the choice of zi n , since for example the Millennium-I and II runs have very different mass and
spatial resolutions, but started at the same redshift for consistence. Thus, following the results of
our tests (see the previous section) we chose z = 99 as a starting redshift for all our simulations, save
from “Ada” which starts at z = 124 due to its very small scale and so to the possibility of stronger non-
linear effects. In the right panel we seen the spatial resolution (or so f teni ng ) as a function of the
mass resolution: we show our simulations ( red dots) among the ones of the previous plot. The two
resolutions have a linear dependence, shown by the gray dashed line. The SBARBINE simulation are
coherent with the most important recent simulations, as the Millennium runs.

Before the final set of simulations, we ran a few smaller tests to check the code performances. The
last one of these was “Baby”, a cosmological simulation with 5123 particles in 100 Mpch°1 and 5 kpc
of softening, which has been used in [14]. The tests confirmed the expectations regarding the velocity
and memory occupation of the code, as can be derived by the GADGET-2 user manual.

The initial power spectra of the simulations are shown in the left panel of Figure 3.7, where the
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Figure 3.6: Le f t : Relation between the mass resolution and the initial redshift of some of the most recent
simulations. Ri g ht : Relation between the mass resolution and the spatial resolution (softening); the six red
dots show the feature of the SBARBINE simulations.

n snap z
0 99
1 50
2 35
3 20
4 18.81
5 17.68
6 16.62
7 15.62
8 14.67
9 13.78

10 12.94
11 12.15
12 11.4
13 10.69

n snap z
14 10.03
15 9.401
16 8.81
17 8.252
18 7.726
19 7.23
20 6.762
21 6.32
22 5.904
23 5.511
24 5.141
25 4.792
26 4.463
27 4.152

n snap z
28 3.859
29 3.583
30 3.322
31 3.076
32 2.844
33 2.626
34 2.42
35 2.225
36 2.042
37 1.869
38 1.706
39 1.552
40 1.407
41 1.27

n snap z
42 1.141
43 1.019
44 0.9041
45 0.7959
46 0.6937
47 0.5974
48 0.5066
49 0.4209
50 0.3401
51 0.2639
52 0.192
53 0.1242
54 0.0603
55 0

Table 3.3: List of the simulation snapshots and corresponding redshifts. Apart from the first 4 snapshots, the
outputs are logarithmically spaced in redshift.

two black dashed lines show the input linear power spectrum at z = 99 and z = 124. It is easy to see
how, increasing the box dimension, one gets more modes on large scales (small ks) and less on small
scales (large ks).

3.5 Post processing: halo identification algorithms

In this section we present the most common algorithms for the identification of dark matter haloes in
simulations - FoF (Friends-of-Friends) and SO (Spherical Overdensity) - and their main advantages
and disadvantages.
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Figure 3.7: Le f t : Initial power spectrum: each colour represent one simulation, while the two black dashed
lines show the input linear power spectrum at z=99 and 124. Ri g ht : Final mass function: different colours
represent different simulations, while the black dashed line shows the theoretical prediction calculated as in
[58]

Friends-of-friends

The friends-of-friends method (hereafter FoF) or percolation is a statistical method to define struc-
tures bounded by isodensity surfaces. It defines groups by linking together all pairs of particles
with separation less than a certain values bΩ̄ = bn°1/3, Ω̄ being the mean particle density and b the
linking length. This defines groups bounded approximately by a surface of constant local density
Ω/Ω̄ ª 3/(2ºb3). Around each point, it traces a sphere of radius r = bn°1/3 and we group together all
the objects whose spheres intersect. Having N points, for b << 1 there are now N groups containing
only one point; as b grows, the number of groups decreases and the number of points for each group
increases. Thus, the linking length b defines the density threshold. This should correspond to the
critical value predicted by the theory: for the spherical collapse model we know ±' 178. It has been
argued that b = 0.2 is a good choice: it corresponds to Ω/Ω̄ ª 60 and so, for a spherical halo with a
density profile Ω(r ) / r°2, to a mean overdensity < Ω > /Ω̄ ª 180, which is very close to the theoretical
value.

This algorithm is simple, fast and has an important advantage: it does not make any assump-
tion about the geometry of the groups. However it may happen that some of the selected groups are
formed by two or more dense objects linked by low-density bridges of particles. This is a problem of
the method, because these groups seem rather unphysical.

Spherical overdensity criterion

Another common choice is the spherical overdensity criterion (hereafter SO), which grows spherical
shells around the center of mass and defines the radius of the halo taking the distance at which the
overdensity first crosses a critical value. For each snapshot of the simulation the local dark matter
density at the position of each particle Ωi is estimated: our code (Denhf) which identify haloes in
simulations takes the distance to the tenth closest neighbour of each particle, and assumes Ωi /
(di ,10)°3. Then the particles are sorted in density and the densest particle is chosen as the center of
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the first halo. Around this center, spherical shells of matter are grown. The growth is stopped, and so
we reach the boundary of the halo, when the overdensity first crosses the critical value (for example
±vi r (z = 0) = 323.7). All the particles within this radius belong to the same halo and can be used to
compute its virial properties; the particles within the virial radius are removed from the list of possible
choices for the subsequent idenfitications. The center of the second halo will be the second densest
particle. The process continues until all the possible haloes have been identified and their properties
computed; a particle index for each halo was also generated, in order be able to identify its particles
at any redshift and thus to study the history of the haloes. It is also possible to create SO groups,
after all haloes have been identified: any group that lie inside larger groups is merged together with
the lardeer group. This method avoids the problem of the unphysical FOF groups, producing groups
concentrated around a single center. Thus, it is more physical, but on the other hand it is also more
complicated and so more time-consuming.

3.6 Padova’s post-processing

Spherical overdensity: Denhf

The first step of our post-processing pipeline is running a SO halo finder (Denhf) - developed by
Giuseppe Tormen - on all the snapshots of the simulations, listed in Table 3.3. We identified all haloes
formed by more than 10 particles and saved catalogues containing their properties (mass, position,
virial radius and so on) and the list of particles belonging to each halo. The virial overdensity ±vi r ,
used to define the halo boundaries, changes in time, proportionally to z. In the right panel of Figure
3.7 we show the present-day halo mass function for haloes with more than 200 particles: different
colours represent different simulations, while the black dashed line shows the theoretical prediction
which best fits the data, calculated as in [58].

A new halo finder: Ellipsoidal Overdensity

All the methods described so far are computationally convenient and widely tested, but they do not
focus on halo shapes, which are the main interest of our work. As an advantage, the FoF algorithm
does not impose a fixed shape to the haloes; on the other hand, this complete freedom makes it more
complicated to assign geometricall properties to a halo. The SO algorithm identifies all objects as
spheres, not giving a realistic view of structure formation.

A more recent and far less commonly used option is to define haloes as triaxial ellipsoids, as we
do in the present work. Specifically, we will define haloes as triaxial structures with mean overdensity
± = ±vi r . Although computationally more costly, this method tries to retain the advantages of both
previous ones: a theoretically motivated virial overdensity value and a more realistic description of
the actual halo shape. This description is more consistent with the EC model, which naturally predicts
triaxial rather than spherical haloes. Even if the SO algorithm has been proven to work very well in
identifying haloes and it has also been shown that spherical haloes can be used to estimate the halo
mass function and other properties quite precisely, it is also true that it is more realistic to describe
haloes as triaxial ellipsoids, as within the context of the Ellipsoidal Collapse model ([70], [9], [59]). This
is motivated by the fact that haloes are not isolated systems and that the surrounding gravitational
field influences them during their collapse and formation phases; moreover during their hierarchical
growth they experience different merging. All these effects stretch and modify the halo shape.

Thus, an ellipsoidal halo finder is particularly useful when one wants to study halo shapes, which
are obviously more sensible than any other properties to the way in which haloes are identified.

We proceed describing our algorithm in detail. The volume V of a triaxial ellipsoid is defined by
V = (4º/3)abc, with a,b, and c the longest, intermediate and shortest axis, respectively. In order
to find the ellipsoidal shape which best fits a given halo, we first run an SO algorithm on the full
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simulation and find for each halo its virial radius RV , enclosing an average overdensity ±vi r [64, 23].
We then calculate the mass tensor MÆØ defined by the NV particles found inside RV as:

MÆØ =
1

NV

NVX

i=1
ri ,Æri ,Ø (3.3)

where ri is the position vector of the i th particle and Æ and Ø are the tensor indices. Note that, even
if the halo distribution can be recovered from both, this is different from the inertia tensor which is
defined as:

IÆØ =
NX

i=1
mi (r2

i ±ÆØ° ri ,Æri ,Ø). (3.4)

As explained in [6], much of the literature confuses the two tensors and uses both interchangeably to
describe the mass distribution.

The mass tensor so found will not be isotropic even for particles within a sphere if the particle dis-
tribution inside RV is not isotropic. Therefore, by diagonalizing MÆØ we will obtain eigenvalues and
eigenvectors which give an initial guess for the true shape and orientation of the virialized structure:
the axes of the best fitting ellipsoid are defined as the square roots of the mass tensor eigenvalues. We
then modify the list of particles which make up the halo by performing a sort of Ellipsoidal Overden-
sity criterion: for each particle selected in the previous step, we calculate its ellipsoidal distance from
the center as

r 3
E = ¢x2

l 2
1

+ ¢y2

l 2
2

+ ¢z2

l 2
3

, (3.5)

where l 2
1 , l 2

2 and l 2
3 are the eigenvalues of the mass tensor calculated at the previous step. (The eigen-

values of the inertia tensor would be l 2
2 + l 2

3 , l 2
1 + l 2

3 and l 2
1 + l 2

2 .) Sorting the particles by ellipsoidal
distance from the center of the halo, we build up an ellipsoid which encloses an average overdensity
±vi r . We believe that using the overdensity to select the halo particles is more precise and consistent
than requiring the volume of the ellipsoid equal that of the original SO sphere, or requiring the longest
axis equal that of the initial sphere [67, 1, 56]. This also allows a more direct comparison with theo-
retical models. We recalculate the mass tensor for this new particle distribution, and obtain a new set
of eigenvectors, which improve the previous description of the halo shape. We iterate this calculation
until the algorithm converges to a set of eigenvectors to better than one percent in the axial ratios. We
ran the EO finder on all the snapshots of the simulations, thus generating halo catalogues parallel to
the spherical ones.

Protohaloes from the IC to the final time

With the algorithms described so far, we are able to identify spherical and ellipsoidal dark matter
haloes at any snapshot of the simulations. Another interesting topic, is the evolution of protohaloes,
meaning the evolutions of the original patches that led to the formation of haloes. To do this, instead
of identifying from scratch dark matter haloes, we followed the particles of the final virialized haloes
back in time. We analysed their distribution at any snapshot and found the best fitting ellipsoid (us-
ing the mass tensor) which describes them: in this way we neglect all the other particles that may
have passed through the region, and keep only those which build up the final halo. The method is
conceptually the same of the EO finder: the only difference is that here the iterations are used to find
the best fitting ellipsoid always on the same set of particles, while the EO finder also refines the par-
ticle selection at each step. This allows a direct comparison with analytical models of gravitational
collapse, which often do not consider the accretion process.

For each protohalo in the IC we then calculate the elements of the deformation tensor, defined at
each position q as the second derivatives of the gravitational potential ©. This, in the the Zel’dovich
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approximation [71] is equivalent to the evaluation of the first derivatives of the initial displacement:

ªi j (q) =° @2©

@xi@x j
(q) =°@™

@x
. (3.6)

These were calculated from the initial displacement grid and differentiated with respect to the spatial
coordinates. A visual representation of the initial displacement field is given in Figure 3.8: a small line
is drawn at every grid point, oriented as the corresponding displacement. This allows to see the over-
dense and underdense regions and the general flow of matter at the initial conditions. Specifically,
for each halo we flagged the grid points occupied by particles and calculated the deformation tensor
as:

ªi j =
1

VL

Z

VL

ªi j (q)d 3x = 1
NG

NGX

k=1
ªi j (k) (3.7)

where NG is the sum of all the grid cells contained within the Lagrangian volume of the halo: i.e.,
those actually occupied by halo particles and those left empty, but still located inside the halo (with
at least four neighbour cells occupied by particles). These last must be considered since the total
potential field acting on the halo is affected by their contribution. Thus, we used an algorithm to
select the correct set of empty cells and added their contribution to the deformation tensor of the
halo. This results in a small change to the original value, which refines the one obtained using the
particle grid points only. Since the shape of the protohalo regions is not symmetric nor regular, we
could not choose a characteristic radius and use it to smooth the distribution in Fourier space (and
calculate the value od the deformation tensor from it), since we need to maintain spatial resolution
at each point.
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Figure 3.8: Representation of the initial displacement field: the plot is made from a piece of the GIF2 initial
field. A small line in drawn at every grid point, oriented as the displacement of the corresponding grid point,
to mark underdense and overdense regions.





The need for triaxiality in

simulations and observations 4
4.1 The need for precise models for observations: galaxy clusters

Galaxy clusters are the most massive virialized structures in the universe and - following hierarchical
clustering - also the last forming ones; almost 80% of their mass is attributed to dark matter, while the
rest to baryons. Clusters of galaxies are considered one of the most important cosmological probes;
they are still commonly modeled as spherical objects, even if the standard spherical modelling of the
dark matter and the intracluster medium is only a rough approximation. Indeed, it is well established
both theoretically and observationally that galaxy clusters are much better approximated as triaxial
objects, even if the asphericity of galaxy clusters is still in its infancy: for this reason they constitute
the perfect example of why we need to take into account triaxiality in cosmology.

Apart from the fact that haloes in simulations are found to be triaxial, there are many observa-
tional evidences for clusters not being spherical objects, since various probes are not well described
by circular projections: optical observations (left panel of Figure 4.1), the density maps (right panel
of Figure 4.1) and the distribution of galaxies, X-ray and surface brightness maps, Sunyaev Zel’dovich
signal (Figure 4.2), strong and weak gravitational lensing.

In particular, strong lensing clusters are thought to constitute a biased population of triaxial haloes:
their major axis is preferentially aligned with the line of sight, boosting the lensing efficiency. This
orientation bias is due to the fact that, when haloes are oriented along the line of sight, a higher (pro-
jected) mass can produce the lensing effect, which then results stronger and easily visible to us: the
bias seems to depend on cluster redshift, being stronger at those redshift that are least favourable for
strong lensing.

This shows us the importance of a correct triaxial modelling of galaxy clusters: using spheres may
lead to an underestimate of the halo mass, which then would not match the observed lensing effect.

The Abell 1689 puzzle

We report the findings of Limousin et al 2012 [34] on Abell 1689 (shown in Figure 4.1), to illustrate
the difference between spherical and triaxial modelling. Abell 1689 is a massive galaxy cluster at
redshift 0.18, with a very large Einstein radius and which have been extensively studied at different
wavelengths. It appears as a complex structure, but still the main mass clumps seems to be dominant
in the mass budget: all strong lensing studies find the mass centre to coincide with the brightest
cluster galaxy, which also coincide with the peak of X-ray emission.

The cluster has been analysed assuming spherical symmetry, but it was shown to be problematic
in two ways:

67
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Figure 4.1: Abell 1689 (Limousin et al. 2007 [35])Le f t : Color image from F475W, F625W, and F775W ob-
servations; north is up, east is to the left. The size of the field of view is 160

00 £ 160
00

, corresponding to
485 kpc£485 kpc. Ri g ht : R-band image; The red contours show where the projected mass density equals
(1.6,2.4,4.0)£ 1010MØar csec2. The green point shows where the peak of the mass map is found. The blue
circle shows the location of the main dark matter clump

Figure 4.2: Abell 1835; from left to right we show the deconvolved SZ image of the cluster and the processed
image of the cluster
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• the lensing analyses yield very high concentration parameters, in contrast with the theoretical
expectations from§CDM - even if there is a large variance between various works;

• the 2D mass derived from X-ray data is only half of the one derived from strong lensing, on
which all the studies agree.

Figure 4.3: Abell 1689: 2D mass enclosed within a circular
aperture of radius R from lensing data (points with error bars),
from an X-ray only analysis under the assumption of spheri-
cal geometry (solid line with the 1ÏČ error grey shaded region),
and from a joint X-ray+lensing analysis taking into account the
3D geometry (dot-dashed line with the 1ÏČ error cray shaded
region). In this latter case, we see that both estimates agree
with each other. [41, 34]

A possible way to reconcile the two mass mea-
surements could be a triaxial mass model: it has al-
ready been found [45], considering triaxiality, that
weak lensing measurements are indeed compati-
ble with§CDM if the cluster represents a rare pop-
ulation. Morandi et al. 2011 [41] presented a deter-
minations of intrinsic shapes and physical param-
eters of both dark matter and intracluster medium,
by combining X-ray and strong lensing data. They
showed that the halo of Abell 1689 could be elon-
gated along the line of sight (an assumption justi-
fied by the “orientation bias”), with a minor/major
axial ratio equal to 0.42±0.02. Then, another anal-
ysis by the same group [38] confirmed the possibil-
ity of a triaxial halo by jointly analysing also weak
lensing data and accounting for the non-thermal
pressure of the IC gas.

Limousin et al. 2012 [34] extended the anal-
ysis, by allowing the DM and ICM ellipsoids to
have an arbitrary orientation: the results indicate
that Abell 1689 is indeed a triaxial galaxy cluster.
The DM axial ratios are 0.56±0.07 and 0.75±0.08,
the concentration c200 = 5.27 ± 0.46 and the ma-
jor axis is inclined with respect to the line of sight
of µ = 27.3 ± 7.1 deg. Both the model proposed
by Morandi et al 2011 [38] and this extension are
able to solve the X-ray/lensing mass discrepancy:
in Figure 4.3 we show the comparison between the

2D masses inferred using spherical and triaxial models.
Moreover, also the inner slope of the density profiles depends on the adopted geometry: a stan-

dard spherical modelling leads to 1.15±0.04, while a triaxial one yields 0.92±0.07. So far, four clusters
has been studied with a triaxial modelling and their main features are listed in Figure 4.4. As we have
seen, the parameters obtained with a triaxial modelling may significantly vary with respect to the
ones obtained before.

4.2 Halo triaxiality in previous works

As we have already discussed, the collapse of overdensities in the cosmic density field is aspherical
and so there is no reason to expect the resulting final haloes to be spherical. In the last few years,
many works started to analyse halo triaxiality, identifying the best fitting ellipsoids in different ways:
for example, it can be selected to have the same volume or mass of the spherical overdensity halo.
This choice guarantees a fast convergence, but does not allow a free identification of the ellipsoid, as
on the contrary our code does. Nevertheless, our results are compatible with those of previous works,
which are summarised in this section.
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Figure 4.4: Best-fit model parameters for the four clusters for which a full triaxial modelling exists. Error bars
correspond to 1ÏČ confidence level. [41, 34]

Already in 1992, Warren et al. [67] studied the shapes of isodensity surfaces inside haloes. As later
shown by Jing & Suto (2002) [27], halo isodensity surfaces are well described by ellipsoids, each char-
acterised by the lengths of its axes (a ∑ b ∑ c). These axes can be used to specify some dimensionless
shape parameters: the axial ratios

s = a
c

q = b
c

p = a
b

; (4.1)

these can be then combines to give the triaxiality parameter

T = c2 °b2

c2 °a2 = 1°q2

1° s2 . (4.2)

An ellipsoid is considered oblate if 0 < T < 1/3, triaxial if 1/3 < T < 2/3, and prolate if 2/3 < T < 1.
In general, haloes do exhibit a rich variety of shapes, with a preference for prolateness over oblate-
ness. Despite the natural difference between haloes, due to their personal merging history, systematic
relations between the axial ratios and the threshold density Ωs can be noticed:

1. shape-mass : haloes of cluster mass generally have smaller axial ratios than those of galactic
mass, implying that the galactic mass haloes are rounder on average; this can be found in the
left panel of Figure 4.7, where the three histograms slightly differ: the green one, corresponding
to higher mass values, is located at smaller axial ratios. In particular, haloes that experienced a
recent major merger have a tendency to be close to prolate, with the major axis reflecting the
direction along which the last merger event occurred. Simulations suggest that the shape of a
halo is tightly correlated with its merger history, with haloes that assembled earlier being more
spherical. This implies - as already found - that less massive haloes (which form earlier in a
hierarchical clustering scenario) are, in general, rounder, while more massive haloes tend to be
less spherical and more prolate (probably because they are involved in more merging events).
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Figure 4.5: Shape as a function of radius, by means of the axial ratio < s > for different mass bins - represented
by different colours (from Allgood et al. 2006 [1]).

2. shape-radius: the axial ratios decrease with increasing density, meaning that the isodensity
surface becomes more elongated in the central region of the halo. Thus, the triaxiality of dark
matter haloes changes at different distances from the center [67, 1, 66] and haloes tend to be
rounder in the outer parts and more elongated in the center: this happens because the outer re-
gions are more influenced by the surrounding field and by gravitational interactions with other
objects, while the cores - being more “protected” - maintain their original shapes.

3. shape-time: as predicted by the EC model, massive haloes are formed from almost spherical
initial patches, while small protohaloes in the IC are generally more triaxial. At the final time
the situation is reversed, as it is described in point 1: massive haloes are more triaxial since they
formed recently and small haloes tend to be spherical. Thus, one must pay attention to do not
mix the two situations, since from the IC to the present time the tendency is reversed.

Figure 4.5 shows the measurements of Allgood et al. 2006 [1], summarising both the dependence on
mass and radius. Similar findings may be found in Bailin & Steinmetz 2005 [4], Muñoz-Cuartas et al.
2011 [42] and Vera-Ciro et al. 2011 [66].

The shape-density (radius) relation is described by a power-law in Jing & Suto 2002 [27]:

s = a
c
= 0.56

µ
Ωs/Ωc

2500

∂°0.052

q = b
c
= 0.71

µ
Ωs/Ωc

2500

∂°0.040

. (4.3)

where they always refer to the surface with Ωs/Ωc = 2500. Galactic mass haloes should be denser
than cluster mass haloes, implying larger values of the axial ratios; contemporary, within each halo,
as density decreases moving outward, the axial ratios increase. This is confirmed by another relation,
which shows a systematic dependence of s on the mass: the ratio is slightly larger for less massive
haloes, and also decreases at higher redshift. The resulting law is:
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c

¥

sc
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(4.4)
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Figure 4.6: Example of projected particle distribution for four haloes used by Jing & Suto. The bottom panel
shows the triaxial fit to five different isodensity surfaces that can be seen above. (Jing & Suto, 2002, [27])

where M? is the characteristic halo mass. The scaled axial ratio rac show a fairly universal distribution
independent of mass and epoch, as we can see in Figure 4.7 and 4.8. Allgood et al. (2006) extended
this relation using numerical simulations, combining the mass and redshift dependence of < s >:

< s > (M , z) = (0.54±0.03)
∑

M
M?(z)

∏°0.050±0.003

. (4.5)

Another useful equation is the universal probability distribution function of rac , which turns out
to be well fitted to the following Gaussian:

p(rac )drac =
1

p
(2º)æs

exp
µ
° (rac °0.54)2

2æ2
s

∂
drac (4.6)
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Figure 4.7: The distribution of the axis ratio a/c of the halos in the cosmological simulations of the LCDM
model before (left) and after (right) the scaling described in the text. (Jing & Suto, 2002, [27])

with æs = 0.113. This allows us to predict the distribution of the axial ratio and so, in some way, of the
halo shapes. We can decompose the joint probability function in terms of the conditional distribution
and compute the probability of p, given s:

P (p|s) = 3
2(1° s̃)

∑
1°

µ
2p °1° s̃

1° s̃

∂2∏
(4.7)

with s̃ = max[s,0.55] (Jing and Suto, 2002, [27]; Allgood et al., 2006, [1]).
Some works studied also the alignment of the ellipsoidal shells within each halo [4, 66]. The au-

thors agree on the fact that shapes measured at different radii tend to be aligned with each other.
Bailin & Steinmetz 2005 [4] found a good internal alignment (cos ' 0.9), becoming stronger for mas-
sive haloes. Vera-Ciro et al. 2011 [66] analysed the Aquarius haloes, considering the smooth main halo
without substructures, finding perfect alignment between different shells. This suggests that, while
the overall shape and orientation of an halo is the same at al radii, the presence of substructures alters
the symmetry and leads to more complicated behaviours.

4.3 Results from our Ellipsoidal Halo Finder ar z = 0

The comparison between theoretical models and N -body simulations is a non-trivial problem, pri-
marily because there is still no unanimous agreement about how to define a gravitationally bound
object, i.e. of what a non-spherical dark matter halo is: the distribution of halo shapes measured
from simulations depends critically on the halo definition. In this section we adress this problem,
comparing spherical and ellipsoidal haloes, to show how the identification algorithm influences the
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Figure 4.8: The conditional distribution of the axis ratio a/b of the halos in the cosmological simulations of the
LCDM model for a given range of a/c. (Jing & Suto, 2002, [27])

results. We consider the Ellipsoidal Overdensity algorithm more suitable to study halo shapes, since
it allows a variety of shapes and so a more realistic picture of large scale structure. For these reasons,
the results presented in the next chapters have been obtained using mainly ellipsoidal haloes.

Figure 4.9 illustrates the difference between a spherical halo and its triaxial counterpart, as identi-
fied by our post-processing pipeline described in Chapter 3: black dots show the projected distribu-
tions of halo particles inside the final ellipsoid, while the red dashed circle indicates the virial radius
RV of the SO halo. The shape is obviously more elongated when measured inside an ellipsoidal vol-
ume (in this case particularly in the y-z plane), follows the natural orientation of the halo and its iso-
density contours more accurately than does the SO halo: it is clear that the SO identification would
add particles in the direction of the smallest axis and cut off the edges along the longest axis. We
expect, therefore, an increase in virial mass M : this is true for the test halo of Figure 4.9 and also in
general for the whole halo sample.

Difference in mass

In Figure 4.10 we plot, for the ellipsoidal haloes (thus obtained with the EO halo finder), the halo mass
function of the GIF2, B aby and F lor a simulations at four different z. The solid and dashed curves
represent, respectively, the theoretical prediction for the GIF2 and Planck cosmology given as the
Sheth & Tormen 1999 [60] mass function. In the lower panel, we show the relative residual between
the mass functions obtained with the EO and SO finders at z = 0 - the behaviour at the other redshift
is consistent with this one. Since the ellipsoidal and the spherical masses are positively biased with
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Figure 4.9: An example of the difference between a spherical halo and his triaxial counterpart: black dots show
the projected distributions of halo particles inside the final ellipsoid, while the red dashed circle indicates the
virial radius RV .
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Figure 4.10: Halo mass function of the three simulations at four different z, obtained with the EO halo finder.
Different data points and colours show the results for the three different simulations, and the error bars repre-
sent the Poisson uncertainty. The solid and dashed curves represent, respectively, the theoretical prediction for
the GIF2 and Planck cosmology given by [60] mass function (ST99). The lower panel show the relative residuals
between the halo abundance obtained with the EO and the SO finder for the three simulations at z = 0.

respect to each other of some percents, this results in a bias in the the halo abundance that can reach
10°30%. The bias increases with halo mass due to the fact that massive haloes are intrinsically more
elongated and so their shapes are captured much better by an ellipsoid than by a sphere.

Notice that our new method indeed gives a different estimate of the mass: the ellipsoidal mass is
clearly larger than the spherical one, as ellipsoids indeed trace the isodensity surfaces more precisely,
and so include more particles. A detailed analysis of the best fitting mass function for the two mass
definitions will be adressed in Chapter 7.

Difference in final shape

We now study the influence on halo shapes. Figure 4.11 shows the fractional difference in the axial
ratios c/a and b/a (with a ∏ b ∏ c the three eigenvalues of the mass tensor), as a function of the
spherical axial ratios using the fractional differences

¢(c/a)
(c/a)S

= (c/a)E ° (c/a)S

(c/a)S
(4.8)
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Figure 4.11: The difference in the final axial ratios c/a and b/a (a ∑ b ∑ c), as a function of the spherical ones.
The orange shaded region lies between the first and third quartiles; red points show the median. The relative
difference is generally negative, indicating that fitting ellipsoids yields more elliptical and prolate shapes than
fitting spheres.

and similarly for b/a. Ellipsoidal haloes are obviously more elongated, and this means that it is always
¢(c/a)/(c/a),¢(b/a)/(b/a) ∑ 1 . When the axial ratio approaches 1, then haloes are almost spherical,
so the ellipsoidal method correctly returns a spherical shape for the rounder objects. The difference
increases as (c/a)S and (b/a)S decrease: in particular, ellipsoidal-based shapes become more prolate,
since the shortest axis changes more than the others, as can be seen by comparing the two panels of
Figure 4.12. This agrees with the recognised preference for prolate halo shapes in previous works.

In Figure 4.12 we show the differential and cumulative distributions for both c/a and b/a: the
distribution obtained using final spheres is represented by the solid line, while the dashed line is for
ellipsoids. There are more objects with small c/a when fitting ellipsoids, and the median is shifted to
smaller values. This is also true for the b/a distribution, although the differences are smaller, implying
a preference for more prolate shapes. This confirms what we already noticed in Figure 4.11. A similar
result was obtained by Warren et al. 1992 [67], who compared the axial ratios of a spherical and an
ellipsoidal halo, finding a change in the axial ratios in the direction of more ellipsoidal shapes.

Our analyses also confirm the general opinion that, on average, there is also a systematic depen-
dence of shape on radius: haloes are more elongated closer to the center, and more spherical in the
outskirts [1, 27, 67]. In addition, more massive haloes have a steeper gradient in axial ratios than lower
mass haloes: this happens because the more massive haloes are less influenced by their environment.
Since our findings agree with those of the previous works described in Section 5.2 [27, 4, 1, 42], we do
not show our plots here.

4.4 Summary

As discussed in this chapter, the “true” shape of dark matter haloes is still an intriguing subject, far
from being fully understood. In the era of precision cosmology, observational studies need more and
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Figure 4.12: Cumulative and differential distribution of axial ratios c/a and b/a at the shape corresponding to
the virial overdensity, from corresponding to a fitting ellipsoidal (dashed) and spherical (solid) volume: in both
cases the enclosed mass distribution is not isotropic and so we are able to calculate the axial ratios. Haloes iden-
tified with the EO criterion have a smaller median value, with significantly more objects at small b/a and/or
c/a. This difference is more significant for c/a, meaning that haloes become more prolate when fit with ellip-
soids.

more precise estimates from theory and simulations; thus, even if the shape of haloes is not a first-
order effect from a statistical point of view, we need to study it in more detail.

Moreover, we showed that the importance of finding the best halo identification algorithm. While
its effect on the halo mass is present but not determinant, the distribution of halo shapes changes
significantly: if one wants to adress the problem of halo shapes, then these must be calculated accu-
rately.



Protohalo evolution in the

ellipsoidal collapse model

framework 5
As previously explained, the EC model predicts that the whole evolution of an halo can be determined
by its initial properties, thus by the properties of the corresponding protohalo. Modelling the shape
of initial protohaloes and that of the potential fields which surrounds them can shed light on the
whole process of structure formation. In this chapter we will present an analysis of the protohalo
shapes in the initial conditions and of their evolution in time; part of the results have been published
in Despali, Tormen and Sheth 2013 [15]. Dark matter haloes are modelled as triaxial ellipsoids and
have been identified in the GIF2 [20] and le SBARBINE (used only in section 5.2) simulations using
the Ellipsoidal Halo Finder described in Section 3.6.

5.1 Does only potential matter? The importance of ICs.

Although the EC model [9] does not require it, all implementations of it assume that the mass dis-
tribution of a proto-halo is initially spherical. In this case, the evolution of the shape is determined
by just three numbers (e,p,±) which are specific combinations of the three eigenvalues of the initial
3£3 deformation tensor centered on the center of mass of the proto-halo. Because the shape of the
object is determined by the initial deformation tensor, the mass and deformation tensors are per-
fectly aligned by definition. Measurements in simulations have shown that this vast simplification
is actually a rather good approximation [50], as was argued in Chapter 2 (Figure 2.3). This means
that tidal torques, induced by the misalignment between these tensors, are subdominant. Therefore,
in this model, the proto-halo shrinks (in comoving coordinates) fastest along the axis correspond-
ing to the direction of maximum compression, forming a pancake; this is followed by collapse along
the second and then finally along the axis of least compression eventually resulting in a virialized
object. I.e., the three axes collapse at different times, which depend on the local shape of the defor-
mation tensor, but because the initial shape of the mass tensor was spherical, the ordering of the axis
lengths is monotonic in time, and collapse times are determined by the initial compression factors:
larger compression factor means earlier collapse. A final assumption of the model is that virialization
corresponds to collapse along all three axes. Since the first axis to collapse and freeze-out from the
expansion of the background Universe will have done so when the universe was denser, this first axis
to collapse will also be the shortest axis of the virialized object, and the third will be longest. I.e., the
shortest axis at virialization will be aligned with the direction of initial maximum compression, and
vice versa. This is confirmed by measurements in simulations - as we will detail in this chapter - even
if already Porciani et al. 2002 [50] found something unpredicted at the initial conditions: the direc-
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tion of maximum compression is not aligned with the shortest axis of the protohalo, as it should be
according to theory, but with its longest axis. This means that the halo may evolve through a serie of
different ellipsoids and not just shrink maintaining the same shape and orientation.

The three numbers which determine the evolution in this model are the initial density contrast ±i

(the only number that matters for the spherical evolution model), and the ellipticity and prolateness
parameters e and p of the deformation tensor (i.e. not the mass tensor) - as defined in Equation 2.14.
Note that non-spherical effects always make ±ec (e, p) > ±sc ' 1.686; Sheth et al. 2001 [58] also showed
that, in a Gaussian random fluctuation field, ±,e, p can vary from one position to another, with the
consequence that even at fixed mass, ±ec can vary from one protohalo to another. They then used
the statistics of Gaussian fields to argue that, on average, ±ec will be close to ±sc at large masses, but
it will increase as mass decreases. They showed that this mass dependence of ±ec was indeed evident
in their simulations, and so it is now commonly assumed that the EC model describes some of the
physics which is relevant to the triaxial shapes of virialized haloes in simulations. In what follows, we
test this in slightly more detail by checking if the dependence on e and p is as predicted.

What if the initial shape is not spherical?

We already know that there is one respect in which the EC model fails. This is because the model pre-
dicts that the large protohalo patches which collapse to form massive haloes should be more spher-
ical. Therefore, the shape at virialization should also be more spherical [55]. But we showed that in
simulations, in fact, the most massive virialized haloes can be quite triaxial [27, 1] and that they are on
average more elongated than low mass haloes. This raises the question of whether the EC model has
failed to identify the correct shapes in the initial conditions, or if its approximation of the evolution is
incorrect. We will adress this problem in the next Sections.

For example, the next simplest model would begin with proto-haloes with triaxial rather than
spherical mass distributions (as for example in [36, 10], but will keep the assumption that the mass
and deformation tensors are perfectly aligned. In this case, the evolution of the shape, and hence the
time required to collapse and virialize depends on ±,e, p as well as on the initial axis lengths (i.e., the
square-roots of the eigenvalues of the mass tensor), and on whether or not the direction of maximum
compression is oriented along the initially longest or the shortest axis. This correlation between the
directions of the longest initial axis and the largest compression factor is indeed seen in simulations
[50], in the sense that cosµ11 ª 1 where µ11 is the angle between these two vectors.

In fact, despite the theoretical simplicity of these ‘perfect’ alignment models , the evolution of the
shape can appear to be more complex because, e.g., if the axis that was longest initially also had the
largest compression factor, then it may eventually become shorter than what was initially the second
longest axis. So one might ask, even though the shortest axis initially may not be the shortest finally,
is it still true that the shortest axis at virialization tends to be aligned with the direction of initial
maximum compression (and vice versa)? If it does, then this would still be in agreement with an EC
model for the evolution, only applied to a non-spherical initial mass distribution.

The Zel’dovich approximation [71], provides an easy way to see the qualitative features discussed
above. In this case, the eigenvalues are assumed to evolve as ∏ j (t ) = ∏ j (ti )D(t )/D(ti ), where D(t )
is the linear theory growth factor at time t . This means that the comoving axis lengths evolve inde-
pendently of one another, as R j (t ) = R j (ti )[1°∏ j (t )]. Notice that in this approximation a positive
eigenvalue implies contraction, whereas a negative eigenvalue implies expansion.

The nonlinear density is the ratio of the mass of the proto-halo to its volume. Mass conservation
means that it satisfies

1+±(t ) = M
Ω̄V (t )

= 1
Q3

j=1 1°∏ j (t )
. (5.1)
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Notice that this expression applies even if the R j (ti ) are not equal; it reduces to ±i =
P3

j=1∏ j for very
small values of ∏i .

In this approximation the collapse of axis j corresponds to the time when 1°∏ j (t ) = 0. When the
R j (ti ) are all equal, then the order of the axis lengths R j at any given time is determined completely
by the ordering of the ∏ j at the initial time. But if they are not equal, then, although the order of the
time to complete collapse is still determined by the order of the ∏ j , the axis lengths at some time
prior to complete collapse may not. E.g., if R j > Rk and ∏ j >∏k then R j must collapse before Rk , so at
some point it must become smaller than Rk . Notice that, despite this reordering of the axis lengths,
the three fundamental directions of the principal axes of the mass tensor will not have changed. Of
course, this means that if one studies the direction in which ‘the longest axis’ points, then this direc-
tion may change suddenly (e.g., at the time when it stops being the longest).

Although Shen et al. 2006[57] provide a simple approximation to the evolution predicted by the EC
model when the initial shape is not a sphere, which can be thought of as a simple physically motivated
modification to the Zel’dovich approximation, a complete understanding of these and related aspects
of the EC model is still missing. Recently, Ludlow, Borzyszkowski and Porciani [36, 10] proposed a new
extension to the EC model, which include initial triaxiality and the effects of the surrounding potential
field, confirming part of the results presented in this Chapter.

5.2 Protohaloes at the IC: what defines them?

Since the properties of the initial fiels are so important in the EC model framework, in this Section we
will try to understand what defines the protohaloes. The results of this chapter were obtained using
the 6 simulations of our new set, Le SBARBINE simulations. Dark matter protohaloes are supposed
to be located near the density peaks of the initial field, since they constitute the seeds of present-day
haloes. If this is true, there should be a difference - for example - in the initial velocities between the
particles that form the final virialized halo and those who remain unbound in the field or form other
objects.

With this aim, we studied both the mass and velocity fields within and around protohalo centers
(out to 3rLag ), to understand how haloes are built up from the initial field.

Particle positions

Protohaloes are commonly identified by tracing the halo particles back to the initial conditions; nev-
ertheless, there may be particles which are located in the protohalo regions and its surrounding, but
do not go into the final halo. In the top panels of Figure 5.2 we show the median percentage of proto-
halo particles with respect to the total number of particles in the region, as a function of the distance
from the center, rescaled by the Lagrangian radius. The Lagrangian radius of a halo gives an estimate
of the dimension of the protohalo and is defined as:

rl ag =
µ

3Mvi r

4ºΩc≠m0

∂1/3

. (5.2)

The top-left panel shows the values obtained in 30 spherical shells around the center, each one of
width 0.1§ rLag , while the top-right panel shows the results for 30 ellipsoidal shells; different colours
indicate different mass bins. To define the ellipsoidal shells, we first found the best fitting ellipsoid
for the whole protohalo using the mass tensor: the method is conceptually the same of the EO finder
described in Chapter 3; the only difference is that here the iterations are used to find the best fitting
ellipsoid always on the same set of particles - since we are studying the IC position of the particles
belonging to the virialized halo, while the EO finder also refines the particle selection at each step.
Then, each ellipsoidal shell has the same shape (i.e. axial ratios) of the overall ellipsoid and is rescaled
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Figure 5.1: Top: As a function of the distance from the protohalo center, we show the percentage of protohalo
particles with respect to the total number of particles in the region. The curves correspond for the results in 30
shells around the center, each one of width 0.1§rLag ; the colours show different mass bins. Le f t : these curves
have been obtained using SO haloes and spherical shells around the center of the protohalo. Ri g ht : in this
case we used EO haloes and ellipsoidal shells, all with the same shape and orientation, which correspond to the
ones of the best-fitting ellipsoid for all the protohaloes. Note that, due to the higher precision of the ellipsoidal
description, the curves almost superpose to each other up to 1.5rLag . Bot tom: Cumulative versions of the top
plots. Using ellipsoidal final haloes and ellipsoidal shells around the center, we find that all the curves become
similar.
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Figure 5.2: Visual 3D representation of the different effect of spherical (l e f t ) and ellipsoidal (r i g ht ) shells,
for one halo of our simulations. In both panels, the gray empty circles represent the particles of the whole
protohalo; using different colours, we highlight tha particles belonging to some shells at a growing distance
from the center. We see that ellipsoidal shells - elongated in the same direction of the halo - trace the true
protohalo shape much better than the spherical ones.

to enclose the same volume of the corresponding spherical one; knowing ar1 = b/a and ar2 = c/a
(a ∏ b ∏ c), this is equivalent to require that:

a = r
µ

1
ar1ar2

∂1/3

. (5.3)

Note that, due to the higher precision of the ellipsoidal shapes, the curves in the top-right panel
perfectly superposed to each other out to 1.5rLag , while this is not the case for spherical shells. Even
if the difference is not dramatic, it confirms the greater accuracy of the triaxial description: in Figure
5.2, we see a 3D representation of the different effect of spherical (le f t ) and ellipsoidal (r i g ht ) shells,
for one test halo of our simulations. In both panels, the gray empty circles represent the particles of
the whole protohalo; using different colours, we highlight tha particles belonging to some shells at a
growing distance from the center. We see that ellipsoidal shells - elongated in the same direction of
the halo - trace the true protohalo shape much better than the spherical ones. For example, there are
no violet and black dots in the left panel, since those particles are included in an inner spherical shell.

From Figure 5.2 it is easy to see all the particles located at the very center of the protohalo are also
part of the final virialized region: 100% of the particles inside ' 0.4rl ag are part of he virialized halo,
while the percentage decreases going outwards. Even within the initial Lagrangian radius, there are
particles which “escape” from the final halo. The two bottom panels of Figure 5.2 show the cumulative
version of the two top panels.

At this point, it is worth looking at one individual protohalo, which gives a more realistic picture
of the process: Figure 5.3 shows the particle distribution in the region surrounding one protohalo of
our simulation, at the IC (top ° le f t ) and at the present time (top ° r i g ht ). In this case we decided
to show only the particles that are in the protohalo region, but that are not part of the final halo-
thus we exclude all the protohalo particles. Different colours show particles in ellipsoidal shells at
different distances from the protohalo center: green - inside rLag , blue - rLag < d < 1.5rLag , red -
1.5rLag < d < 2rLag , orange - 2rLag < d < 3rLag . The color-code is the same in both panels and a
particles maintain the same colour in both: the particles in the top ° r i g ht panel are still coloured
according to initial distance from the center. The two bottom panels show the distribution of the
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final distances from the halo center in units of rLag and of the final virial radius rvi r . The distance
ranking is somehow maintained through the whole evolution: the green particles surround the final
halo and will be probably accreted in the near future: they are located along the filaments and so are
the next ones falling to the halo. The orange and red particles are instead scattered in the field. Figure
5.4 shows an enlargement of the central region of Figure 5.3, this time including the halo particles (at
z = 0) in black. We examined other test haloes individually, finding the same results and so we believe
that this halo can reasonably represent the average behaviour.

The velocity field

Thus, those particles which build the final virialized halo have something “special” already in the
initial field: this is confirmed also by looking at the velocity field around protohaloes. In Figure 5.5
we show the distribution of infall velocity both for the particles of our test halo - the same of Figure
5.3 and for the field particles. The infall velocity of a particle, with respect to the center of mass of the
protohalo, is defined as:

vi n f =
(v xp ° v xC M )§ (xp °xC M )

d
+

(v yp ° v yC M )§ (yp ° yC M )

d
+

(v zp ° v zC M )§ (zp ° zC M )

d
, (5.4)

where d = |rp ° rC M | is the distance of the particles from the protohalo center of mass. Thus, vi n f

is negative if a particle is moving toward the center of mass, and positive in the opposite situation.
In the left panel of Figure 5.5, the velocity distribution of halo particles is represented by the black
histogram, while the other histograms are color-coded as in the previous Figures (see Fig. 5.3). All
the particles which belong to the protohaloes are already infalling toward the center of the halo: none
of them has a positive velocity. This is true also for the field particles located inside one Lagrangian
radius (green), which reinforces our hypothesis that they will be the next particles accreted by the
haloes. The other coloured histograms have higher means and start to show a tail at positive values.
Given the high mass of the test halo (Mvi r = 1.9 1015MØ/h), the attraction due to its potential well is
still strong far from the center. However, as shown by Figure 5.5, the orderin in mean infall velocities
holds for all masses, even if with a smaller gradient.

The right panel of Figure 5.5 shows the median values of infall velocities as a function of distance
from the center, for the same mass bins of Figure 5.2 and the same four shells of Figure 5.3. The
triangles represent the median infall IC velocity of the protohalo particles, for haloes of different mass
bins (plotted at x=0.8 for convenience). The squared points show instead the median IC velocity of the
particles which do not belong to the final halo, but which are located near the initial protohalo. This
plot gives us a more general picture, clearly showing that there is a selection effect which determines
which are the particles of the virialized object: the median infall velocities of the halo particles are
systematically lower than the ones of the field particles, for the same mass bin.

A comparison with linear theory

Colberg et al. 2000 [12] derived an accurate approximation of the linear predictions for the peculiar
velocity field. According to linear theory the peculiar velocity evolves as

v / aḊ , (5.5)

where a(t ) is obtained from the Friedmann equation
µ

ȧ
a

∂2

=≠0a°3 + (1°≠0 °§0)a°2 +§0 (5.6)

and D(t ) is the growth factor for linear density perturbations. A number of accurate approximate
forms are known for the relations between D and a, which can be used to rewrite the equation in a
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Figure 5.3: Evolution in time of the particle distribution in the region surrounding one protohalo of our sim-
ulation, excluding the protohalo particles. Different colours show particles in ellipsoidal shells at different
distances from the protohalo center: green - inside rLag , blue - rLag < d < 1.5rLag , red - 1.5rLag < d < 2rLag ,
orange - 2rLag < d < 3rLag . Top le f t : 2D projection of the IC particles in the region surrounding the proto-
halo; Top r i g ht : 2D projection of the positions of the same particles at z = 0. Bot tom l e f t : distribution of the
final distances from the halo center, rescaled by the IC Lagrangian radius; Bot tom r i g ht : same distribution,
but with values rescaled by the final virial radius; this last plot makes more clear that none of these particles is
going into the final halo.
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Figure 5.4: Enlargement of the central region of the top right panel of Figure 5.3. The color code is the same of
the previous Figure and the black points show the particles of the final halo.

more convenient form. The resulting form for the growth of peculiar velocities is:

v / f (a)g (a)a2
q
≠0a°3 + (1°≠0 °§0)a°2 +§0, (5.7)

where

•

f (a) = dD
d a

a
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•

≠(a) = ≠0

a +≠0(1°a)+§0(a3 °a)
(5.10)

•

§(a) = §0a3

a +≠0(1°a)+§0(a3 °a)
. (5.11)

For an Einstein-de Sitter universe, this approximation reduces to v /
p

a.



Protohalo evolution in the ellipsoidal collapse model framework 87

Figure 5.5: Le f t : The black histogram shows the distribution of the initial infall velocities of the particles of
the final halo. The coloured histogram (with the sam colour code of Figure 5.3) show the same distribution
for the field particles which will not be a part of the final halo, divided in four shells. We see that the median
value of the distribution increases while going farther from the protohalo center and that at large distances
the particles also have positive velocities. Ri g ht : Infall velocities of the halo particles and of the particles
belonging to the surrounding region. The triangles represent the median infall IC velocity of the particles of
the final halo, for haloes of different mass bins (plotted at x=0.8 for convenience). The squared points show the
median IC velocity of the particles which do NOT belong to the final halo, but which are located near the initial
protohalo. The median is measured in 4 shells, which are d < rLag , rLag < d < 1.5rLag ,1.5rLag < d < 2rLag and
2rLag < d < 3rLag .

The linear predictions for the initial (z = 99) and final (z = 99) snapshots of le SBARBINE simula-
tions are, respectively 0.3853 and 0.05542; thus

v0

v99
' 6.952. (5.12)

In Figure 5.6, we compare the actual ratio measured in simulations with the one predicted by
linear theory, for the velocity of halo centers. The red squared points stand for the median values of
the distribution and the red solid lines for the quartiles. The solid horizontal line shows the linear
prediction for the evolution of velocities, the dotted line the median of the whole distribution and
the dashed line the mean. We find a qualitative agreement between the linear prediction and out
measurements, even if - due to the non-linearity of structure formation - the measured ratio is on
average a bit higher and differs significantly from linear theory in the case on massive haloes.

5.3 The properties of the initial density and potential fields

As already seen in the previous Section, the protohalo regions are defined by tracing all halo particles,
identified at z = 0, back to their unperturbed (Lagrangian) positions. For each protohalo patch we
calculated both the mass tensor and the deformation tensor which descrive, respectively, the physi-
cal shape of the protohalo and the potential field within/around the protohalo. The computational
methods are described in detail in Section 3.6, as part of our post processing pipeline. All the results
of the following Sections of this Chapter make use of the GIF2 simulations only.
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Figure 5.6: Velocity evolution of the center of mass of ellip-
soidal haloes. We plot the ratio of the final (z=0) and ini-
tial (z=99) velocities as a function of the virial mass. The red
squared points stand for the median values of the distribution
and the red solid lines for the quartiles. The solid horizontal
line shows the linear prediction for the evolution of velocities,
the dotted line the median of the whole distribution and the
dashed line the mean.

Recall that the mass tensor MÆØ is defined by
the NV particles found inside RV as:

MÆØ =
1

NV

NVX

i=1
ri ,Æri ,Ø (5.13)

where ri is the position vector of the i th particle
andÆ andØ are the tensor indices. Note that, in the
simplest EC model, the initial mass distribution is
spherical, so the mass tensor at any later time is de-
termined completely by the initial tidal tensor de-
fined by its constituent particles.

The left panel of Figure 5.7 shows that the pro-
tohaloes are indeed not spherical: the axis ratios
as determined from the square-roots of the ini-
tial mass tensor only approach unity for the most
massive haloes. This is due to the fact that the
higher potential of massive haloes attracts parti-
cles more uniformly from the surroundings, orig-
inating more spherical patches in the IC. Note also
that, even if massive haloes are more spherical at
the IC, they become very triaxial at virialization, as
shown by the axial ratio distributions of Figure 4.5
(while the opposite change is seen for less massive
haloes).

For each protohalo we then calculate the ele-
ments of the deformation tensor, defined at each
position q as the second derivatives of the gravita-
tional potential ©. This, in the the Zel’dovich ap-
proximation [71] is equivalent to the evaluation of the first derivatives of the initial displacement:

ªi j (q) =° @2©

@xi@x j
(q) =°@™

@x
. (5.14)

These were calculated from the initial displacement grid and differentiated with respect to the spatial
coordinates, using the procedure described in Section 3.6. Specifically, for each halo we flagged the
grid points occupied by particles and calculated the deformation tensor as:

ªi j =
1

VL

Z

VL

ªi j (q)d 3x = 1
NG

NGX

k=1
ªi j (k) (5.15)

where NG is the sum of all the grid cells contained within the Lagrangian volume of the halo: i.e.,
those actually occupied by halo particles and those left empty, but still located inside the halo (with
at least four neighbour cells occupied by particles).

While doing this, we also studied the profiles of haloes in the initial conditions. Since the particles
belonging to each halo are selected at the present time, they do not necessarily form a single simply
connected lump in the initial conditions. We found that haloes are indeed more fragmented in the
initial conditions, but in most cases the mass of the main lump is more than 90% of the total mass of
the halo. Thus in this case, to calculate the initial properties, we decided to use the particles contained
in the main lump, and to exclude from our sample those haloes for which less than 90% of the mass
is in the main lump. In some rare cases, this fraction can be as small as 50% of the mass: these haloes
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Figure 5.7: Le f t : Axis ratios calculated from the square root of the mass tensor eigenvalues of the protohaloes at
the initial time. Ri g ht : The eigenvalues of the deformation tensor for the ellipsoidal proto-haloes, as a function
of mass (which has been scaled to ∫). The median of each distribution is shown in red, while the orange shaded
region lies between the first and the third quartiles. Note that, while the first two eigenvalues are positive,
the third one is almost always negative, especially at low mass, indicating that haloes are not contracting with
the same strength along all the three directions and that the potential along the third axis may slow down the
contraction in that direction.

probably formed through a recent merging process or have undergone some transformations in time,
so they do not correspond to a sufficiently compact region in the initial conditions. They are only 8%
of the total sample: removing them does not affect the mean behaviour, but it does reduce the scatter
around this mean. Summing up, here NG is the sum of all the cells (full and empty) contained in the
main lump of the each halo.

Non-positivity of the initial eigenvalues

The right panel of Figure 5.7 shows the distribution of the eigenvalues of the deformation tensor (∏i )
as a function of halo mass, which we express in scaled units ∫ = ±sc /æ(M). Recall that æ2(M) repre-
sents the variance in the initial density fluctuation field when smoothed on scale R = (3M/4ºΩ̄)1/3.
The ∏i s are rescaled to z = 0 to allow an easier comparison with the distribution of ±i shown in Figure
5.8: the “true” values are multiplied by the linear growth factor D+(z = 0)/D+(z = 49) = 38.993 and
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so become comparable with the reference for the Spherical Collapse model (±i ' 1.686). In principle,
this expression assumes a spherically symmetric filter. Although [32] provide the relevant expression
for non-spherical filters, and note that it only makes a small difference, our main purpose here is to
rescale the mass variable, so using the spherical expression is appropriate. In these units and for the
cosmology adopted in the GIF2 simulation, ∫ = 1 corresponds to a mass M§ is 8.956£ 1012MØh°1.
Later on, we will study halo properties for broader bins in mass; Table 5.1 shows the correspondence
between these mass bins and ∫.

∫ mass n
0.53 M?/16 6607
0.67 M?/4 3890
0.84 M? 1061
1.06 2°4M? 348
1.33 8°16M? 109

Table 5.1: Correspondence between mass
bins and ∫; M§ is 8.956£1012MØh°1. The
third column shows the number of haloes
in each bin.

The right panel of Figure 5.7 shows that while the first and
the second eigenvalues are mostly positive, the third one is
negative for the majority of the haloes, especially at lower
masses. This indicates that, on average, protohaloes in the
initial conditions are not contracting with the same strength
along all their axes, and that, in the direction of ∏3 the po-
tential may act slowing down the contraction or even caus-
ing an expansion. More precisely, only 30% show ∏1,2,3 ∏ 0,
while 70% have ∏3 ∑ 0 and ∏1,2 ∏ 0. A small fraction (< 1%) of
haloes behave very differently from these two categories.

We found that, as for the mass, the two identification
schemes (SO and EO finders) yield very similar results also
for the potential field: although there are haloes (especially at

low mass) with significant differences, even larger than 40%, the median of the distributions remains
around zero. The variance is larger in the case of ∏3, and, of course for lower masses. This shows
that the spherical overdensity criterion traces the potential (and so the mass) quite well and that the
best fitting ellipsoid is useful mainly for the description of the geometrical shape of the haloes and its
evolution. The greater discrepancy for the values of ∏3, which is the one showing an unexpected be-
haviour, suggests that our new procedure provides a more realistic description of the halo structure.

Protohalo overdensities: the trace of the initial deformation tensor

In the EC model, the fundamental quantities which influence the evolution are not the eigenvalues of
the deformation tensor themselves, but their combinations (±,e, p) - defined by Equation 2.14. The
most important of these is the overdensity ±, which is the trace of the deformation tensor.

The left panel of Figure 5.8 shows the distribution of ± as a function of halo mass, here scaled to
∫. For ease of comparison with equation 2.15, the overdensity within the initial proto-halo has been
rescaled to the present time, as was done for the eigenvalues∏i . It is clear that the initial overdensity is
a decreasing function of mass, in qualitative agreement with previous works [58, 53, 18], and with the
prediction which comes from combining the EC model with the statistics of Gaussian random fields
[58]. The required overdensity for collapse is higher for low mass haloes which must be able to hold
themselves together against tidal effects. Although the overdensity values can be substantially higher
than the critical value associated with the SC model, especially at small masses, they are almost never
smaller. This represents a nontrivial success of the EC model.

Nevertheless, qualitative success does not guarantee quantitative agreement. In the EC model,
the initial density of protohalo regions depends on the shape parameters e and p (equation 2.15). A
simple estimate of the mass dependence comes from replacing e± and p± in equation (2.15) with a
naive estimate of their mean values. If averaged over all possible positions in a Gaussian field, this
gives æ/

p
5 and zero as characteristic values of e± and p±, making ±/±sc = 1+Ø∫°2∞ = 1+0.25æ1.2.

The median values shown in the left panel of Figure 5.8 are smaller than this most naive prediction.
Most of the mass dependence in Figure 5.8 is removed by rescaling to ¢h ¥ (±/±sc ° 1)/æ. The

right panel of Figure 5.8 shows that, in these scaled units, the mean and rms values are approximately
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Figure 5.8: Le f t : Distribution of the initial overdensity as a function of halo mass (here scaled to ∫). The
overdensity is expressed in units of the critical value in the SC model, for ease of comparison with the EC
prediction that it should always be greater than ±sc , and increasingly so at small masses. Ri g ht : Same as
previous figure, except that now the initial overdensity has been scaled to ¢h , in terms of which most of the
mass dependence has been removed.

Figure 5.9: Distribution of the initial ellipticity and prolateness of the haloes as a halo mass (here scaled to ∫). e
and p have been scaled by ±/æ for more direct comparison with the EC prediction that e±/æ and p±/æ should
be independent of protohalo mass.
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Figure 5.10: Cumulative distribution of initial ellipticity, prolateness and overdensity, for five different mass
bins indicated by colours and line types; the bins have the same width in log(∫). They clearly show that ellip-
ticity is a decreasing function of mass, as is the overdensity. In contrast, prolateness is almost the same, on
average, for all mass bins. The gray dashed line is drawn to help identify the median values in the cumulative
distributions.

0.2 and 0.12. These values are smaller than those reported by [53] (0.48/±c = 0.28 and 0.3/±c = 0.18).
Some of this is due to the fact that we use the actual particle distribution in the initial conditions to
determine (±,e, p), rather than assuming the initial shape was spherical. In addition, we use EO rather
than SO derived quantities. We believe these differences matter, since the shape of the distribution is
expected to encode information about the quantities in the initial conditions which determine halo
formation.

Ellipticity and prolateness of the deformation tensor

In the EC model, the fundamental quantities which influence the evolution are not the∏ j themselves,
but the combinations ±,e, p. Since we have already discussed ±, we now turn to a study of e and p in
our protohaloes. Recall that, if the shape is caused entirely by the deformation tensor, then a prolate
mass configuration corresponds to p < 0 and an oblate one to p > 0. (This classification differs from
the one given by the geometrical mass distribution, in which a physically prolate/oblate halo has
p > 0/p < 0.)

The distributions of ellipticity and prolateness are shown in the two panels of Figure 5.9 as a func-
tion of halo mass (always represented by ∫). Recall that the combination of the EC model with Gaus-
sian field statistics means that lower mass haloes should, on average, have larger values of e with a
larger rms around this mean, while the most naive averaging procedure suggests that e±/æ should
have mean º 1/

p
5 = 0.447 and rms 0.14 independent of mass. The lack of mass dependence in the

mean and rms values is in good agreement with our measurements, although their actual values, 0.4
and 0.13, are slightly smaller than predicted. Similarly, p±/æ has mean zero as predicted, but the
measured rms of 0.15 is smaller than the predicted value of 0.22.

Inserting these values to obtain the EC prediction for the typical overdensity of protohaloes yields
±/±sc = 1+Ø (4/5)∞∫°2∞ = 1+0.22æ1.2. Comparison with the bottom panel of Figure 5.9 shows that
this is about 10% higher that what we see. Our measurements indicate that ±/±sc °1 º 0.2æ, with an
rms scatter around this mean of 0.12æ (also see Figure 5.8).
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Before moving on, note that e± ¥ (∏1 °∏3)/2, so, on average, ∏1 °∏3 ª 0.8æ. In addition, p = 0
implies ∏1 +∏3 = 2±/3 or ∏1 °∏2 =∏2 °∏3. While this latter is interesting itself, it is also worth noting
that the mean values we see imply mean values of ∏1 = ±/3+0.4æ, ∏2 = ±/3 and ∏3 = ±/3°0.4æ. This
shows that the mean value of ∏3 will be less than zero once æ exceeds 5±/6. Inserting the mean trend
(±/±c °1) ª 0.2æ implies æ ∏ (5±c /6)(1+0.2æ) or æ ∏ (5±c /6)/(1°±c /6). So, a significant fraction of
haloes with ∫¥ ±c /æ∑ (6°±c )/5 ª 13/15, will tend to have ∏3 < 0 (as shown in Figure 5.7).

Finally, Figure 5.10 shows the cumulative distributions of the three initial parameters, as a function
of halo mass: the haloes were divided into five mass bins, described in Table 5.1. This confirms that,
on average, both the initial overdensity ± and initial ellipticity e are larger at small mass, while the
initial prolateness p is distributed around a mean value of zero.

We believe we have demonstrated that the combination of the EC model with the statistics of the
Gaussian potential field works reasonably well. Because the potentials of the most massive proto-
haloes are indeed more spherical, whereas the shapes of the most massive virialized haloes are less
spherical ([1]; [56]), we conclude that we have a puzzle. Either the EC model is incorrect in its de-
scription of the evolution, or the proto-haloes are non-spherical even initially, and this influences the
final shapes.

5.4 Evolution of halo shapes

The simplest EC model assumes that haloes evolve and collapse through a series of homologous
triaxial configurations [70]: the directions of the three axes of the ellipsoid do not change, and they
are determined by the initial deformation tensor. Therefore, the mass tensor is perfectly correlated
with the initial (Lagrangian space) tidal tensor. But, as discussed in the previous sections, shapes are
not spherical initially. This raises the question of whether or not the EC assumption that the directions
of the principal axes of the mass and deformation are aligned is justified.

Initial alignment of the mass and deformation tensors

To quantify the correlation between the mass and deformation tensors, we study the distribution of
µi j = |cos( d∏i ł j )|, the cosine of the angle between axis i and j of the initial deformation and mass
tensors. Recall that the mass and deformation tensor eigenvalues are ordered, as in the previous
Sections, as 1 ∏ 2 ∏ 3; we use li for the three axes calculated from the mass tensor (here we prefer
to call them li instead of a,b,c, for uniformity of notation with the ∏i s). The directions are said to
be correlated if they are well-aligned (µi j ' 1), while they are anti cor r el ated in the opposite case
(µi j ' 0): the maximum misalignment happens when the two vectors (representing the semi-axes
of the ellipsoid) are perpendicular to each other, while they are considered aligned when cos( d∏i ł j ) '
1,°1, since a misalignment of more than 90 degrees corresponds in fact to an alignment on the other
side.

Previous measurements in simulations (Porciani et al. 2002 [50]) have shown that while this cor-
relation is indeed very good, the two tensors are not perfectly correlated. The left panel of Figure 5.11
confirms this. For our protohaloes, the longest axis of the mass tensor l1 is very well-aligned with∏1 of
the deformation tensor, which corresponds to the direction of maximum compression; similarly the
shortest mass tensor axis l3 is aligned with the direction of minimum compression ∏3. To quantify
this, the median values of the distributions in Figure 5.11 are:

p[cos(µi j )] =

0

@
0.898 0.396 0.081
0.406 0.853 0.109
0.070 0.120 0.985

1

A . (5.16)
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Figure 5.11: Le f t : alignment between the principal axes of the initial mass tensor and the initial deformation
tensor. Ri g ht : alignment between the principal axes of the initial deformation tensor and the final mass tensor.

Thus, it is no longer obvious that the halo will turnaround first along the direction of its initial
minor mass axis, then along the second and finally along the major mass axis, as it would be predicted
by the model. Rather, the differences in the turnaround (or collapse) times of the three axes may be
smaller than they were for the case of collapse from a sphere. Moreover, it is probable that the first axis
to reach turnaround will be the major mass axis l1, since it is aligned with the direction of maximun
compression.

Alignment of the final mass tensor with the initial deformation tensors

Therefore, it is also interesting to study the alignment between the initial and final axes to check how
the evolution affects the axis orientation. At the initial time, both the mass and the deformation tensor
can be used to approximate protohaloes, while the final orientation and dimension of the haloes can
be described only by the mass distribution (since the [71] approximation used to calculate the ∏i can
be applied only at the initial time). Hence, the right panel of Figure 5.11 compares the alignments
between the principal axes of the final mass tensor with that of the initial deformation tensor.

For this particular analysis we only chose haloes with more than 1000 particles in the GIF2 sim-
ulation - so as to ensure accurate determination of the mass eigenvectors - and haloes with smooth
evolution and mass accretion history. This last condition arises because we have found that a sig-
nificant fraction of haloes presents an irregular evolution history, probably due to the occourence of
important merging events, which of course influence the final orientation of the halo. We identified
these using an objective automated algorithm, which searches for irregularities in the evolution of the
amplitudes of the axes of the best fitting ellipsoid. We exclude them from the sample for this specific
case, because their final properties could be influenced by the merging history more than by the ini-
tial distribution, unlike regular haloes. Thus, they constitute a different population which should be
studied separately. An example of such an halo is shown in Figure 5.16: a quick comparison with the
haloes of the other similar Figures is enough to note some irregularities in its evolution. First of all,
the protohalo at the IC is formed by two big clumps, with the top-left one falling onto the other (even
though irregular, this halo was not excluded by our initial selection since the two clumps are already
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connected to each other); moreover, during its evolution the three axis lengths cross many times and
the final orientation of the halo is not well correlated with the initial one, as for other haloes.

Returning to Figure 5.11, it is clear that at the final time the axes of the two tensors are not so
well-aligned as in the initial conditions: the top-right box, for cos(µ13) = cos( É∏I 1łF 3), shows that the
final shortest axis of the mass tensor seems to be aligned with the direction of initial maximum com-
pression ∏1. The bottom right panel shows that it is almost anticorrelated with the direction of initial
minimum compression. This sort of inversion occurs also in the case of the first axes: the bottom-left
box shows that the final longest mass axis lF 1 is better aligned with ∏3 than with ∏1 (top-left box).

The tendency shown in the left panel of Figure 5.11 is thus completely reversed. Now, the median
values of the (cosines of the) alignment angles are:

p[cos(µi j )] =

0

@
0.310 0.360 0.779
0.463 0.613 0.365
0.677 0.497 0.300

1

A (5.17)

confirming that whereas before the 11 and 33 correlations were strongest, now it is the 13 and 31
correlations which are strongest.

The left panel of Figure 5.12 shows how this behaviour depends on halo mass, plotting the same
distributions of Figure 5.11 (but here cumulative and not differential) for haloes of three mass bins:
black (solid), blue (dot - long dash) and red (short dash) curves show results for mass bins centered
on M?, M?/16 and 8°16M?. Clearly, the evolution pattern that we have suggested is strongest for the
most massive haloes. We also checked the alignment between the initial and final axes of the mass
tensor, but we do not present the result here since the correlations are weaker and only the behaviour
of the shortest axis is well defined: this seems to indicate that the potential field is a better tracer of the
initial shape, since it shows what will be the evolution tendency more than the actual initial position
of particles.

Evolution of the alignment

To study more closely if and when the axes invert, the right panel of Figure 5.12 shows the evolution
of the misalignment between the major axis of initial deformation tensor ∏I 1 and the shortest axis
of the mass tensor l3 (i.e., the strongest alignment shown in the matrix 5.17) calculated at each time
step of the simulation and for all the haloes of our selection. The points show the median value of the
cosine of the angle between the principal axes of the two tensors at each time and the dashed lines the
first and third quartiles of the distribution. At high redshift the two axes are almost perpendicular to
each other: the median misalignment is cos(µ) ' 0.12 ' 83± ; on the contrary by z = 0 they are almost
perfectly aligned. I.e., the halo collapses in the direction of maximum compression and, by the end,
the shortest axis of the halo lies in this direction (which is almost perpendicular to the direction of
the initial shortest axis). There is, in fact, an intermediate period of rapid misalignment, followed by
a stable period at late times. Note that the best alignment happens some time before z = 0, probably
because it corresponds to the mean formation time. While the right panel of Figure 5.12 shows the
median behaviour, some examples of the evolution of individual haloes can be found in Figures 5.13,
5.14, 5.15,5.16 and 5.17 - which will be described in detail in the next Section.

We believe that this inversion in direction is rather generic to the collapse process, but there are a
number of ways in which this can happen:

1. if the mass and deformation tensors are perfectly aligned, then this is just a consequence of the
compression due to the tidal field. I.e., early-on, the protohalo contracts most rapidly along
the direction of ∏1, while contracting more slowly along the direction of ∏3. Eventually, the
protohalo collapses first along the direction of ∏1, then along ∏2 and finally along ∏3; the result-
ing mass distribution ends up being more compressed along the direction of maximum initial
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Figure 5.12: Le f t : Same distributions as in Figure 5.11, but in cumulative rather than differential form; haloes
are now split according to their mass: M?/16 in blue (dot - long dash), M? in black (solid) and 8°16Mst ar in red
(short dash). The alignments or misalignments are enhanced at higher masses. Ri g ht : Misalignment between
the longest axis of initial deformation tensor and the the shortest axis of the mass tensor of the haloes at as a
function of time, represented by log(a): the points represent the median values at each time and the dashed
lines the first and third quartiles of the distribution.

compression, ∏1, and more elongated in the direction of initial minimum compression ∏3. As a
result, the longest axis of the mass tensor of the final object, which is perpendicular to the short-
est axis, ends up being perpendicular to its initial direction, even though there is no rotation. In
this case, there should be a time during the evolution when the axis lengths are equal.

2. If the mass and deformation tensors are not well-aligned initially, then the object may rotate.
For example, if the second axes are well-aligned but the first and third are not, then the object
may rotate about the second axis. This rotation will be most effective if the sum of the first and
third deformation vectors is perpendicular to the sum of the first and third mass vectors. I.e.,
rotation will be most efficient if ∏1 and ∏3 have opposite signs. Once the axes are aligned, the
rotation stops. In this case, the exchange of direction of the axes need not be accompanied by
an exchange of lengths. Note that although we showed that µ11 ª 1, suggesting that the initial
misalignments are small, µ11 = 0.9 still allows misalignments as large as 20±. Since the rota-
tion depend on the cross- rather than dot-product of the two vectors, rotation might be more
common than one might have concluded on the basis of the statement that µ11 ª 1.

3. Finally, there could be an intermediate case: it may be that the halo does not actually rotate,
in the sense of having an overall angular momentum: rather, as the particle distribution is
squeezed by different amounts in different directions, the relative lengths of the mass axes
change, the particle distribution deforms (maybe not exactly along the directions of the ∏i s due
to the initial misalignment between the two tensors) and so the direction in which the longest
axis points can evolve.

We looked at the evolution of many haloes in 3D, using animations which cannot be - obviously
- printed here. Figure 5.17 shows some snapshot of one of these 3D animations: by looking at them,
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it seems clear that haloes do not show an overall rotation - ruling out hypothesis 2. We think that the
best choice would be a combination of hypothesis 1 and 3: surely the initial compression factors have
a major effect, but the deformation also induces peculiar motions in the particle distribution.

In summary: the major axis of a protohalo is initially aligned with the direction of maximal com-
pression [50, in agreement with]. For a few haloes, the compression is sufficiently large that this
longest axis ends up being the first one to turnaround and collapse, and so it becomes the shortest
axis. Whether or not the axis lengths invert, for most haloes, the axis directions do: the shortest axis
of the final object ends up being well-aligned with the initial direction of maximal compression. As
will be argued from the examples in the next section, haloes show a general behaviour, but they differ
in the details of the evolution: further analyses are needed to provide a more complete description of
the process.

5.5 Evolution of the particle distribution

We described the mean behaviour of the halo population, which is indeed representative of individual
haloes. To illustrate this, we show how the shape and orientation of the particle distribution in a
few test haloes evolves in time. We followed the change in axis lengths snapshot by snapshot, but
since the best fitting ellipsoid is calculated independently at each time step, we had to decide how to
associate each axis with its corresponding “self” at the next step: at each time step we calculated the
angles between the axes and the axes at the previous time step, and then associated the couples of
axes which align the most. In this way, the axis system of the halo is allowed to rotate and follow the
modifications in shape.

In Figures 5.13, 5.14 and 5.15 we show the 2D projections of the particle distributions with respect
to a fixed coordinate system; the axes are rescaled so that the halo maintains almost the same dimen-
sion in each plot, to concentrate on the evolution of its shape. In addition, in the bottom-left panel
we show how the (square-roots of the) eigenvalues of the mass tensor evolve. These are the lengths
of the principal axes of the object; if two of these cross, then this signals that the compression due
to the deformation tensor has managed to change the relative axis lengths. This information about
how the size of the object changes gives no insight into the spatial orientation of the object. To see
if the principal axes of the mass tensor change direction - from the combined effects of compression
and rotation - we also show how the angle between the mass tensor axis li and the initial deformation
tensor axis ∏i evolves.

Figures 5.13 and 5.15 show the evolution of haloes of mass M§and 16M§ respectively. Despite the
order of magnitude difference in mass, both objects evolve rather similarly. In both cases, the initial
particle distribution is rather non-spherical, after which gravitational collapse occurs along the pre-
ferred directions as discussed in the main text, creating a pancake; the directions of the three princi-
pal axes of the best-fitting ellipsoid change with time; there is an axis inversion feature, such that the
longest and shortest axes exchange directions. Notice that the evolution is not identical, even though
the values of ± ª 2, e ª 0.2 and p ª 0 are approximately the same. This shows that the initial defor-
mation tensor does not uniquely determine the evolution – the initial shape also matters, as does the
degree of initial misalignment. For these haloes, b/a and c/a were (0.94,0.59) and (0.91,0.72), respec-
tively, and although the initial alignments are all within 10± for the first object, they are much worse
for the second.

In more detail, the top panels show the projected particle distribution at nine time steps between
z = 49 and z = 0. Red, magenta and yellow show the longest, intermediate and shortest axes of the
mass tensor. Projecting from three to two dimensions means that the relative lengths are not always
obvious in such a plot, so the bottom left panels show how the lengths of the three mass axes evolve.
Red, blue and black curves show the evolution of the longest, intermediate and shortest axes, in units
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of

rLi = (l1i l2i l3i )1/3. (5.18)

In some cases the axis which was initially the longest may become the second longest; this sort of
length-inversion occurs in only a few of our haloes (which were excluded from the analysis regarding
the axes alignments, to have a more homogeneous sample): an example is given in Figure 5.16. Halo
6 has been discarded from our analysis since it is clearly disturbed: its initial patch is formed by
two near lumps, with the smaller one fallin on the other. This modifies the whole evolution, as can
be noted by the irregularities in the two bottom plots and from the fact that the longest axis (in red)
remains always in the same direction (the same of the infall). The time at which the axes lengths cross
does not necessarily coincide with the time when the long axis starts becoming better aligned with
the direction of minimum initial compression; squares connected by dashed lines show the moment
when the exchange in direction occurs.

The bottom right panels illustrate the evolution of the alignment angle in more detail. They show
the angle between the mass axes and the direction of the corresponding initial deformation axis. Red,
blue and black show the longest, middle and shortest axes ( Ål1∏i 1, Ål2∏i 2 and Ål3∏i 3, respectively). Thus,
Figure 5.13 shows that halo 252 appears to rotate about its shortest axis initially; by the time the other
two axes have exchanged directions, they have also reached turnaround. Thereafter, the object rotates
about its longest axis, until the other two have approximately exchanged directions. The net result is
that the longest and shortest axes have exchanged directions. In contrast, the more massive halo 14
shown in Figure 5.15 is slightly simpler. The initial misalignment in this case was larger, but its second
axis soon aligns with the intermediate axis of the initial deformation tensor, after which the object
appears to rotate about this second axis until the first and third axes have exchanged directions.

Figure 5.14 shows another example of evolution: the initial parameters are again similar to the
ones of the two previous haloes, but in this case ∏3 < 0. We see that the evolution follows a similar
pattern, even if the evolution is more rapid at the beginning and the change in direction happens
more than once, involving also the medium axis. However, at the end even this halo has a stronger
misalignment for the shortest and longest axes, while the medium returns back towards its initial
direction. In all three cases, the misalignment angles are tens of degrees. This is in apparent contra-
diction with our finding in the main text that µ11 ª 1, which suggested perfect alignment. However,
note that cos20± = 0.93 which is very close to unity.

Finally, in Figure 5.17 we show some stages of the evolution of a protohalo in 3D, hoping that this
could further clarify our conclusions; the particle distribution is shown on the left, while the best
fitting ellipsoid on the right.

5.6 Summary

In this Chapter we presented an analysis of the properties of protohaloes in the Initial Conditions and
of the influence of such properties on the whole history of haloes.

We first tried to understand what defines protohaloes, since they are supposed to correspond to
special regions (density peaks) in the initial field: these are usually found in simulations by tracing
the halo particles back in time to the IC. Thus, the region which will then form the virialized halo
is a shapeless clump of particles. Nevertheless we found that those particles possess some special
properties that distinguish them from the surrounding ones: for example, all the halo particles are
already infalling toward the halo center, while the surrounding particles show a broader distribution.

In the EC model, the properties of the initial field are usually expressed not in terms of the three
eigenvalue of the deformation tensor ∏i but using the trace, and the shape parameters e and p. We
plotted their distributions, finding that:
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• for most protohaloes the eigenvalues of the deformation tensor do not have the same sign; the
fraction of protohaloes for which this is true increases at low masses;

• at fixed mass, protohaloes have a range of initial overdensities; these are almost always larger
than the critical overdensity associated with spherical collapse; the mean overdensity increases
as mass decreases, scaling approximately as ±c (1+0.2æ), and the rms distribution around this
mean is 0.2æ (it is broader for lower mass haloes);

• the median ellipticity e of the deformation tensor decreases as mass increases: the distribution
of e±/æ is approximately independent of halo mass, having mean ª 0.4 and rms 0.14;

• the median prolateness of p±/æ' 0 with rms 0.15;

• the mass tensors are increasingly non-spherical as protohalo mass decreases.

The middle three findings are in good qualitative agreement with the triaxial collapse model in which
low mass haloes need a higher initial overdensity so as to collapse by the present time, because they
tend to be less spherical.

The final part of this work aimed at understanding how the initial potential field interacts with
haloes and influences their evolution, since the initial properties are the dominant ingredient in the
EC model. Thus, we studied the cross-talk between the mass tensor and the deformation tensor: the
first gives an estimate of the particle distribution of haloes and so of their actual shape and orienta-
tion, while the second (calculated only at the initial time) describes the potential field. We showed
that:

• At the initial time, the principal axes of the two tensors are very well-aligned; the longest axis of
the mass tensor (l1) is aligned with the direction of maximum compression ∏1, l2 is aligned with
∏2, and l3 with ∏3. However, although cos of the misalignment angle is ª 1, the angle itself can
still be of order tens of degrees.

• At the final time (z = 0) the alignment between the axes is reversed, as a consequence of the
collapse process and the associated deformation of the particle distribution.

• The change in directions of the first and third axes are sometimes dominated by the different
compression factors, and others by what appears to be rotation, although it is still unclear if the
apparent rotation is actually an asymmetrical deformation of the particle distribution.
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Figure 5.13: Evolution of an object of mass M§. Top panels show the projected particle distribution at different
redshifts (as labeled); bottom left shows the evolution of the three mass axes; bottom right shows the evolution
of the angle between the mass tensor axes and the initial deformation tensor axes (the misalignment of the
longest axis is shown in red, the medium in blue and the shortest in black).
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Figure 5.14: Same as previous figure, but now for an object of mass 4M§. Notice in particular that in this case
∏3 < 0.
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Figure 5.15: Same as previous figure, but now for an object of mass 16M§.
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Figure 5.16: Same as previous figure, but now for an object which has been discarded from our selection: it is
clearly formed by two big lumps in the initial conditions, with the smaller one falling on the other. This also
result in an unusual axis evolution.
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Figure 5.17: Le f t : evolution of a test halo in 3D. Ri g ht : best fitting ellipsoid to the particle distribution.



Universal distributions for

the shape parameters 6
The interpretation of observations requires a comparison with the predictions coming from theory
and simulations [34]. For this reason, it is becoming more and more important to model the results
of simulations with as much detail as possible, even if this is computationally more expensive. In
particular, precise knowledge of the ellipticity and of the axial ratio distributions of galaxy cluster-
size halos is fundamental to compare with observational studies which combine different bands to
recover - for example - cluster masses [40, 39].

The aim of this chapter is to present an analysis of the shape of triaxial haloes, its evolution with
redshift and dependence on cosmology. In particular, we will analyse the distribution of the shape pa-
rameters (axial ratios, ellipticity and prolateness) as a function of halo mass and redshift; we will then
present some universal relations and fitting formulae which may be used to retrieve the typical shape
distribution at a certain time or for a certain mass bin - when a comparison with observations or a
prediction is needed. For this work, we used both the GIF2 simulation [20] and two simulations (Baby
and Flora) from LE SBARBINE simulations set, described in Chapter 3. This allowed us to compare
two different cosmological models and test the universality of our results. Part of these results hase
been published in Despali, Giocoli and Tormen 2014 [14]. The mean features of the three simulations
are summarised in Table 6.1.

Moreover, in Bonamigo et al. 2015 [7] we provided the first statistically significant predictions in
the unexplored mass range above 3£ 1014 MØh°1, using haloes from two redshifts (z = 0 and z =
1) of the Millennium XXL simulation [3]. The size of this cosmological dark matter only simulation
(4.1 Gpc) allows the formation of a statistically significant number of massive cluster scale haloes (º
500 with M> 2£ 1015 MØh°1, and 780 000 with M> 1014 MØh°1). Then we extended this investigation
to lower masses in order to look for universal predictions across nearly six orders of magnitude in
mass, from 1010 to almost 1016 MØh°1. For this purpose we use the SBARBINE simulations, allowing
to model haloes of masses starting from º 1010 MØh°1.

In this Chapter we will consider only ellipsoidal haloes, identified with our Ellipsoidal halo finder
(Section 3.6); Mario Bonamigo run an equivalent code on the Millennium XXL snapshots. Thus, all
the masses that we refer to are ellipsoidal masses.

≠m ≠§ H[km s°1] box [Mpc h°1] zi N mp [MØh°1] æ8

GIF2 0.3 0.7 70 110 49 4003 1.73£109 0.9
Baby 0.307 0.693 67.7 100 99 5123 6.36£108 0.829
Flora 0.307 0.693 67.7 2000 99 10243 6.35£1011 0.829

Table 6.1: Main features of the three simulations used in this work.

105
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Figure 6.1: Ellipticity and prolateness cumulative distributions. Each panel shows the distribution at five red-
shifts for a different mass bin, with increasing mass from left to right. The haloes of Baby and Flora are rep-
resented by the solid lines, while those of the GIF2 by the dotted lines. We notice that both ellipticity and
prolateness decrease to low redshift and also to lower masses.

6.1 Halo populations at different z

In this section we will describe how the halo ellipticity and prolateness change as a function of red-
shifts for different halo masses and how it is possible to obtain universal relations for the shape pa-
rameters.

Distributions of e and p at different times

In Figure 6.1 we show the ellipticity and the prolateness cumulative distributions: in each panel we
present the results for five different redshifts - z = 2,1.5,1, .5,0 - (or less at high masses) for a given
mass bin. The haloes of Baby and Flora are represented together - since they have the same cosmology
- by the solid lines, while those of the GIF2 by the dotted lines. Flora is determinant to have enough
data at M > 1014MØh°1: it contains around 150000 systems more massive than 1014 and 1390 still
more massive than 1015MØh°1. Looking at each panel it is clear how both ellipticity and prolateness
peak at higher values at high redshift; on the other hand, comparing the curves of the same colour
in the four panels, we see that, at any given redshift, the median of e and p increases with mass:
as already shown in other works using the axial ratios [1, 42], at the present time – and also at each
previous epoch – the most massive systems are also the least spherical. They are still in the formation
phase and so their shape is still be influenced by the direction of the last major merger or of the
material falling in through the filaments, making them more elongated. Smaller haloes, formed at
higher redshifts and typically more concentrated, lived for enough time to relax and lose memory of
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Figure 6.2: Medians and quartiles of the cumulative distributions of Figure 6.1 both for the ellipticity (left panel)
and the prolateness (right panel), for Baby and Flora as a function of redshift. Each set of point shows the
median relation for a different mass bin and the shaded regions the quartiles. The dashed lines represent the
linear fit to each set of points.

the directions of the different merging events experienced during their history. To stress these two
dependencies, in Figure 6.2, we show, as a function of z - only for Baby and Flora - the medians of
the ellipticity and of the prolateness distributions of Figure 6.1: each set of point shows the median
relation for a different mass bin and the shaded regions the quartiles; the dashed lines represent the
linear fit to each set of points.

In Figure 6.1, we observe also a slight dependence on cosmology, with Baby and Flora having an
higher average value for both e and p; this was expected since, in a universe with a lower value of æ8

(Baby+Flora), haloes tend to form later and so, when we look at them at a given time, they are still
more ellipsoidal than those which form with in an higher-æ8-universe (GIF2).

A universal rescaling for halo shape evolution

In Figure 6.3 we show how the ellipticity and prolateness distributions evolve in time for haloes of
different masses: in the top panel the median ellipticity is plotted against the halo mass for eleven
snapshots of each simulation (a part from Flora, we have a significant number of haloes only at six
snapshots). We can notice both a dependence on mass and on time as in Figure 6.1: first, looking
at each set of points independently, it is clear that more massive haloes are on average less spheri-
cal than the smaller ones. Then, looking at the whole plot, the median ellipticity decreases in time,
leading to a more spherical distribution at the present time. In the bottom panel, we show the same
results for prolateness. At all times haloes tend to be prolate (p > 0), even if this trend weakens at low
redshifts.

Since the virial mass is a cosmology and redshift-dependent definition, Press and Schechter (PS)
and extended-PS approaches [52, 8, 30] have shown that an universal generalisation of the mass func-
tion can be obtained by using the variable ∫(z). An analogous approach has also been used by [51]
to rescale the concentration for different cosmologies and various redshifts. Also in our case, using
∫ instead of the virial mass, allows to obtain an universal relation: in Figure 6.4 we show the same
points of Figure 6.3, but as a function of ∫ instead of mass. It is easy to see that the use on ∫ remove
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the dependence on both cosmology and time: this is due to the fact that æ(M) retains the informa-
tion of the mass and is higher for low masses, while ±c (z) changes in time, increasing at high z. The
combination of the three simulations allows us to span an order of magnitude in ∫ and we verify that,
in these unit, all the points move on the same median relation. The effect is the same also on the
prolateness and the axial ratios and so we believe that it is not worth showing all of them. Thus, in
Figure 6.5 we decided to average over all the points at all the eleven redshifts, for each one of the sim-
ulations: the coloured points show the medians for each simulation and the corresponding shaded
regions enclose the first and third quartile of each distribution. The black dashed line represents the
best fit to all the points, which can be written as:

e = 0.098+0.001
°0.001 lg(∫)+0.0940+0.0002

°0.0001

p = 0.079+0.003
°0.003 lg(∫)+0.025+0.001

°0.001.
(6.1)

The parameters and the errors were obtaining by fitting the distributions in both directions and then
taking the mean values. For e, the interquartile difference goes from 0.05 al low values of ∫ to 0.08 at
high ∫; for p it changes from 0.05 to 0.1. This reflects the fact that haloes at different redshifts populate
different regions due to their relative mass limits, but they remain around it.

In Figure 6.6 we show the same results for the axial ratios (∏3/∏1 and ∏2/∏1), which can be more
useful for the comparison with observations. Looking at the axial ratios we recognise the same trends
in the evolution of shapes that we noticed studying e and p. The best fit relations to all the data points
are:

∏3
∏1

=°0.282+0.003
°0.004 lg(∫)+0.567+0.001

°0.001

∏2
∏1

=°0.293+0.007
°0.005 lg(∫)+0.736+0.002

°0.002.
(6.2)

In this case the interquartile difference for∏3/∏1 goes from 0.17 at low ∫ to 0.19 at high ones; for∏2/∏1

it changes more, from 0.17 to 0.25.

e-p relation

As discussed in [5], [50] and [13], the definition of e and p, together with the range of the eigenvalues,
introduces a correlation between them at high ellipticities (which in particular it has been studied at
the initial conditions). In what follows, we present the same distribution but using the catalogues of
virialized haloes at each z. The ellipticity and prolateness of haloes still form a triangular region in
the e ° p plane and it is interesting that the median distribution almost does not change with time
(Figure 6.7): at high redshift, due to the limited mass resolution of the simulation, we have few haloes
in our mass range, but nevertheless they already form a triangle; moving to lower redshift we have
more and more haloes, which keep populating the triangle, but leave the median relation almost
unchanged. The data points in Figure 6.7 show the median distributions at eleven different redshifts,
represented by the different color points. The small gray dots show the whole distribution at z = 0, for
all the three simulations together. The points at z = 0 are fitted by the relation:

p = 0.01°0.7e +10.57e2 °19.1e3 . (6.3)

which is represented by the black dashed line; to fit the relation at the other snapshots it is enough to
introduce a the dependence on redshift of the order of (1+z)°0.05. The flat initial part, up to the fourth
median point, corresponds to haloes for which both relative differences between the axes ((∏1°∏3/∏1)
and (∏1 °∏2/∏1)) are less than 25%, while the linear growth at e ∏ 0.1 is represented by haloes with
(∏1 °∏3/∏1) greater than 50%. These two regions are marked in the figure by the dotted lines. This
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Figure 6.3: Ellipticity (top) and prolateness (bot tom) median distributions as a function of mass for 13 outputs
of both simulations: the three panels refer respectively to the GIF2, Baby and Flora simulations.

also confirms the tendency to prolateness already shown in other works: on average, the second axis
∏2 is not large enough to have p < 0. The slope of the linearly growing part is close to unity: assuming
to neglect ∏3 as a first approximation, both e and p depend primarily on ∏1, which is larger for high
values of e, but p is lowered a bit by the contribution of the second axis, as can be seen in Equation
2.14.

This quasi-universality of the e °p relation is useful to estimate the shape properties of the halo
population at a certain redshift and to create mock catalogues performing Monte Carlo realisations

How to use these universal relations

These linear (Equations 6.1 an 6.2) or parametric (Equation 6.3) fitting functions are universal, mean-
ing that they do not depend on redshift and cosmology. Apart from the conceptual grace of this def-
initions, they may be very useful to observers to extract predictions and prior: one can choose a pre-
ferred cosmological model and a mass range, then convert the mass into the universal variable ∫ and
pick up the corresponding (median) predicted shape. Just one relation can satisfy all the requests.
The next important step, which is discussed in the next Section, is to model the whole distribution of
shapes - not only the mean behaviour - and find appropriate fitting functions.
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Figure 6.4: Median Ellipticity as a function of ∫: we show the effect of rescaling the mass to the variable ∫: since
it contains the dependence on epoch and cosmology, all the ellipticity distributions of the previous Figure now
lie on the same relation. The color scheme is the same of Figure 6.3. The rescaling has also the same effect on
the prolateness and on the axial ratios.

Figure 6.5: Uni ver sal ellipticity and prolateness distribution. e and p are shown as a function of the variable
∫ = ±c /æ: this choice eliminates the dependence on epoch and, as we see, the distributions at all times lies
on same relation. The coloured points show the medians for each simulation and the corresponding shaded
coloured regions enclose the first and third quartile of each distribution; the black dashed line represents the
best fit to all the points.
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Figure 6.6: Uni ver sal axial ratio distributions. The color scheme is the same as in Figure 6.5

Figure 6.7: e-p distribution at eleven different redshifts, the same of Figure 6.3: the coloured points show the
medians at a certain redshift taken on all the data of the three simulations together. The black dashed curve
shows the fitting function to the points at z = 0. The gray dots represent the e °p distribution at z = 0 for all
the simulations; the dotted lines delimit the regions for which the relative difference between ∏1 and ∏3 is less
than 25% (in the triangle on the left) or more than 50% (in the region on the right).
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6.2 Axial ratios distributions: a parametrisation over six order of magnitude in mass

The results obtained so far can be further extended, by searching for universal functional forms to
describe the axial ratio distributions. In this Section we present an extension of the work of Jing &
Suto 2002 [27], who provided a first universal distribution for the axial ratios. They show a system-
atic dependence of s = c/a on the mass: the ratio is slightly larger for less massive haloes, and also
decreases at higher redshift. The resulting law is:

rca =
≥ c

a

¥

sc
=

≥ c
a

¥µ
Mvi r

M?

∂0.07(≠(z))0.7

(6.4)

where M? is the characteristic halo mass. The scaled axial ratio rca show a fairly universal distribution
independent of mass and epoch, as we can see in Figure 4.7. Allgood et al. (2006) extended this
relation using numerical simulations, combining the mass and redshift dependence of < s >:

< s > (M , z) = (0.54±0.03)
∑

M
M?(z)

∏°0.050±0.003

. (6.5)

The analysis of Jing & Suto [27] was based on simulations with 5123 particles in a 100 Mpch°1

box, which contained hardly any halo above 1014 MØh°1 and some higher resolution runs which
provided only 12 haloes with more than 106 particles. Thus, due to the low statistic, they were not
able to fully resolve the details of the distribution and therefore assumed a Gaussian distribution -
which gave a good fit. Recently, Schneider et al. 2012 [56] provided a fit all the masses with a single
beta distribution, although, even after a rescaling of s there is some residual mass dependence. The
mass range between 1012 MØh°1 and 1014 MØh°1 has been widely explored in all these works, while
only recently small haloes down to 1010 MØh°1 [42, 56] and some massive haloes of 1015 MØh°1 -
as for example in the previous Section - [14] have been included in this kind of analysis. So far, no
statistically significant predictions are available above 3£1014 h°1 MØ and we rely on extrapolations
from lower mass haloes when it comes to predict the shapes of massive galaxy clusters.

Thanks to the high statistic in the Millennium XXL simulation [3] (300 billion particles and a box
size of 3 Gpch°1) we are able to reconstruct the distributions with greater detail, even at large masses.
In this Section, we first use the Millennium XXL [3] haloes to specifically explore the range of cluster-
size haloes and then we extend our results over six order of magnitudes (from 1010MØ/h to 1016MØ/h)
using both the Millennium XXL and the SBARBINE simulations.

Halo selection

For the first analysis regarding the clusters mass range, we chose to use only a portion of the available
MXXL data [3], due to the huge number of haloes in the simulation (almost 68 millions at redshift 0):
for each logarithmic mass bin of size 0.2 (mass inside a spherical overdensity of 200≠cr i t ) we chose,
from the FoF catalogues, either 105 random objects or all, if the number of haloes is lower ( as for the
higher masses bins). The cut at low masses excludes haloes less massive than 1014.4 and 1014.0MØh°1

for redshifts 0 and 1 respectively. After the selection in the FoF catalogue, we have re-identified all
haloes using the Ellipsoidal Halo Finder.

To ensure a good resolution in the determination of shapes, we kept only haloes with more than
1000 particles in the ellipsoidal identification, both for the MXXL and Le SBARBINE simulations.

In this case, for our analysis we cleaned the halo catalogue from many unrelaxed systems, trying to
exclude the most irregular and asymmetrical ones, whose shape cannot be well captured by a single
ellipsoid (this must be kept in mind when comparing with the results of the previous Section). For
this purpose, we used a selection criterion commonly adopted to identify “relaxed” haloes: the offset
between centre of mass and the most bound particle of the halo, associated with the minimum of
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potential. This means that, if a significant number of massive substructures is present and perturbs
the whole halo distribution, there will be an offset between the centre of the ellipsoid and the centre
of mass. We decided to select only haloes for which the offset is less than 5 per cent of their virial
radius:

|x̄MBP ° x̄cm |
Rvi r

< 0.05. (6.6)

Table 6.2 shows the total number of haloes in each mass bin and the percentage of selected relaxed (or
regular) haloes. As expected, the number of perturbed haloes increases with the mass, due to more
massive haloes being assembled recently and so being more perturbed.
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Figure 6.8: Probability distribution functions – differential and
cumulative - of s = a/c. The distributions for the entire haloes
population is shown in grey (and with dashed lines), while the
red (solid) ones refer to the cleaned population.

Generally, “relaxed” haloes are selected using
both this and two other criteria: the amount of
mass in substructures and the ratio of kinetic to po-
tential energy as measurements of the dynamical
state of an halo. However, previous works[44] show
that the selection in the centre offset is respon-
sible for the majority of the rejected haloes: this
means that our selection is still able to eliminate
the most unrelaxed and irregular objects. Ludlow
et al. 2012 [37] used a similar selection (N200 > 5000
and spherically defined haloes) and found a differ-
ent results: the fraction of objects with an offset
less than 5 per cent is 0.536, while, combining all
the three relaxation criteria, the fraction of selected
haloes is 0.285. Thus, the choice of the criteria to
distinguish between relaxed and unrelaxed haloes
is still different in different works. Since we are in-
terested in the overall shape of haloes we decided
to use only the center offset as a selection crite-
rion, since it is able to exclude very irregular haloes

which could not be well fitted by an ellipsoid; we believe that adding the other two criteria would not
change our results more than a few percent. Moreover, our choice is motivated also by the fact that
we do not want to restrict out analysis to a very limited and regular sample, since our future plans
include a comparison with observational results, which are far from being homogeneous and regular.

In Figure 6.8 we show the effect of our halo selection on the axial ratio distribution: the distribu-
tions for the entire haloes population is shown in grey (and with dashed lines), while the red (solid)
ones refer to the cleaned population. Our selection eliminates the left bump of the distribution, due
to very disturbed haloes (which are modelled by an extremely prolate ellipsoid by our code), making
the overall shape more regular.

Results for cluster-size haloes: MXXL

The full shape of a triaxial halo is described by the two axial ratios s = c/a (minor to major) and
q = b/a (intermediate to major). Thus, modelling their distribution with functional forms would
allow to reconstruct the whole distribution of halo shapes.

The left panel of Figure 6.9 shows the logarithm of the first axis ratio versus ∫ for the selected
haloes; medians of log(s) for the two redshifts are shown in red squares and blue circles. This Figure
shows the same result of Figure 6.6, but in a different mass range. The idea of providing results that
are independent of the redshift and valid for different cosmologies was already in the original [27]
paper, as the mass was given in units of M§, but the use of ∫ is more general and gives a more direct
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z = 0 z = 1
log(M)[MØh°1] Nh Nr el /Nh Nh Nr el /Nh

14.0 - 14.2 57759 58.56 % 30823 41.19 %
14.2 - 14.4 56083 56.61 % 13271 39.11 %
14.4 - 14.6 42951 53.52 % 3914 38.24 %
14.6 - 14.8 20715 50.60 % 919 39.39 %
14.8 - 15.0 7823 48.50 % 134 36.81 %
15.0 - 15.2 2305 46.46 % 6 19.35 %
15.2 - 15.4 523 45.84 %
15.4 - 15.6 84 46.15 %

Table 6.2: Number of haloes in each logarithmic mass bin ( in log(M/MØh) ) and percentage of relaxed haloes
for redshifts z = 0 and z = 1.

connection to the theory of structure formation. As a result, we can safely treat the two datasets as a
single population, shown by the box and whiskers plot for a given ∫ bin (horizontal error bars). This
plot confirms the previously mentioned trend: more massive haloes (higher ∫) are more aspherical -
even in this restricted mass bin.

We have looked for a linear relation between∫ and axis ratio in the log-log space: log(s) = f log(∫)+
g ; the green line in Figure 6.9 is a fit to the median values, with inclination f =°0.255±0.01 and in-
tercept g = 0.61±0.01. It is easy to invert this linear relation to obtain a power-law, following the work
of previous authors: s̃(M?) = 10g = 10log s° f log(∫) = s∫° f . The fit then yields to a scaled axis ratio of:

s̃ = s∫0.255; (6.7)

as ∫ takes care of any time and cosmology dependence, this rescaling is valid also for different red-
shifts and cosmologies. As Figure 6.9 shows, distributions of the rescaled axis ratios (coloured his-
tograms) are nearly indistinguishable from each other, meaning that we have eliminated all the de-
pendence on the mass, in contrast with the findings of Schneider et al. 2012 [56]. This rescaled distri-
bution of the minor to major axis ratio can be fitted by a log-normal:

p(x,µ,æ) = 1

x
p

2ºæ
exp

√

°
°
ln x °µ

¢2

2æ2

!

, (6.8)

which is the probability distribution function of a variable which is normally distributed in the loga-
rithmic space. The resulting parameters are:

µ=°0.49

æ= 0.20.
(6.9)

They can be converted to more familiar quantities, as the median and the standard deviation:

median = eµ = 0.61,

std =
q

(eæ2 °1)e2µ+æ2 = 0.13 .
(6.10)

Once modelled the first axial ratio s, we need to do the same with the second on q . There is a
correlation between s and a scaled version of q - q̃ = (q ° s)/(1° s) - and this helps to model the
distribution. The Left panel of Figure 6.11 shows the distributions: it is quite evident that q̃ strongly
depends on the first axial ratio, with higher values at higher s, which is in agreement with haloes
that tend to be prolate. Moreover the scatter is larger at higher s, though this is mostly due to the
rescaling which extends the allowed interval of q̃ . Given the large differences in the shapes of the
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Figure 6.9: Le f t : Distribution of s as function of peak height: the black boxes and whiskers represent the
quartiles and 1.5 the quartiles range of the combined distributions. The horizontal error shows the different
bins, while the green solid line is the linear fit to the medians. Red squares and blue circles are redshift 0 and 1
sub-samples. Ri g ht : Distribution of the scaled axial ratio s̃ for masses shown in Table 6.2. It can be easily seen
that the distributions at all masses are well represented by an unique fitting function.

distributions of q̃ at a given s, modelling them with a single functional form is not trivial. Therefore,
we decided to fit each single histogram with a different beta distribution, which has the following
analytical expression:

p(x,Æ,Ø) = 1
B(Æ,Ø)

xÆ°1(1°x)Ø°1 . (6.11)

This function has two shape parametersÆ and Ø; the factor 1/B(Æ,Ø) is a normalisation constant that
can be computed by requiring that the integral of the probability distribution function is equal to
unity. The solid curves in Figure 6.11 represent the resulting fitting functions.

Extending the mass range: all the simulations

The next step is to extend the recipes for dark matter halo shapes to lower masses, combining the
MXXL data with Le SBARBINE simulations: the overall mass range goes from 3£1010 MØh°1 to 6£
1015 MØh°1.

On left panel of figure 6.10, the logarithm of the minor to major axial ratio s is shown as a function
of the logarithm of ∫. As before, horizontal error bars represent the interval in ∫ and the box and
whiskers are the quartiles and 1.5 the quartiles range for the combined sample, while coloured points
are medians of individual catalogues. s shows a nearly linear dependence on log(∫), with a hint of
flattening at both high and low masses.

For each bin, we extracted the probability distribution function of log(s), shown in the right panel
of Fig. 6.10). The resulting curves exhibit an interesting pattern: high and low ∫ histograms are mir-
rored with respect to a central symmetric distribution which corresponds to ∫' 1.21 (M º M§). The
rescaling adopted for cluster-size haloes does not compensate this effect and so it is not able to re-
move entirely the mass dependence. Instead of using a different rescaling relation to obtain a single
pdf, we decided to fit each distribution and then we relate the resulting parameters to the binning
quantity. In order to keep the procedure simple we fit with a linear relation both µ and logØ:

µ(∫) =°0.322log∫+0.620

log
°
Ø(∫)

¢
= 0.560log∫+0.836. (6.12)
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Figure 6.11: Le f t : Distributions of scaled axial ratio q̃ for different values of s (histograms) and fitting function
resulting from the mode. Ri g ht : Axis ratio q as function of s for different masses, represented by the points of
different colours. Since there is no residual mass dependence in the conditional distribution, we get the same
result as in the MXXL with all the simulations, confirming that this relation is universal.

Using this fits we are now able to approximate the probability distribution function of the first
axial ratio with a Beta function with parametersÆ=Ø/(1/µ°1) andØ, over a range in mass of almost 6
orders of magnitudes. Moreover the use of ∫ allows us to extend these results to different cosmologies
and different redshifts.

Finally, as the right panel of Figure 6.11 shows, the relation between q and s at redshift z = 0 does
not depend on the mass: the curves of different colours represent different mass bins and still trace
the same relation. The fact that all the mass dependence is already inside s, allows us to use for p(q |s)
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Figure 6.12: Comparison between previous works (dashed lines) and the results of Bonamigo et al. 2015 (solid
lines) [7]. Red squares represent the data from both redshifts of the MXXL and the SBARBINE simulations,
converted to redshift z = 0 for the Millennium cosmology. The blue solid line is the model for clusters; the
green solid line is the fit for the entire mass interval. The dotted parts of the curves show the mass ranges
outside where the relations have been derived from.

the same functional form of cluster size haloes, independently of the mass we choose. The same
applies to different redshifts, with the relation between the two quantities being indistinguishable
from the one in Fig. 6.11. Moreover, this independence of the conditional distribution from both
mass and redshift is in agreement with the theoretical predictions from [54].

6.3 Comparing results from many works

In Figure 6.12 we compared our results with measurement of axis ratios from other authors. The
results obtained with the Millennium XXL and SBARBINE simulations are shown with red squares,
the median result form the analysis on cluster masses is the blue solid line and the green solid line is
from the combined datasets spanning six order of magnitudes. Results from other authors are shown
with dashed lines in the mass range where their analysis was carried out and with dotted lines when
extrapolated beyond it. As it can be seen, there is a general agreement in the dependence of s on the
mass, with more massive haloes being less spherical. Although there seems to be a scatter of about
15 per cent, this is due more to the differences in the method of measuring shapes (different finders,
radius, cleaning procedure, mass definition), than an error on the measurement. The most important
difference comes from the radius at which the shape is measured. Jing & Suto 2002 [27] (blue dashed
line) used particles of the isodensity surface corresponding to 2500±c , roughly at a radius of 0.3Rvir;
this analysis is different from all the following authors, as it reflects the shape of an ellipsoidal shell,
and not of all the mass inside the ellipsoid. Studying a larger mass interval, 6£1011 – 3£1014 MØh°1,
Allgood et al. 2006 [1] (yellow dashed line) derived axis ratios of particles distribution inside 0.3Rvir

diagonalizing the normalised mass tensor (weighted by the distance from the centre); because of this
their measure reflects the shape at a even closer radius. If we restrict the comparison to works that
used particles within the virial radius the agreement becomes much more strong. This is the case
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of the magenta dashed line [42], derived studying shapes with an ellipsoidal overdensity algorithm
similar to the one adopted in this work.

The other difference can arise from the cleaning of the sample; the green dashed line show our
prediction from Equation 7.2 [14], which is obtained from all haloes, regardless of their state of re-
laxation. As expected the values are lower, since unrelaxed haloes are typically irregular and so they
appear more elongated with lower axial ratios.

6.4 Merger Tree and Formation Redshift

From the halo catalogues, we built the merging history tree for all haloes in the simulations with more
than 200 particles: starting from each halo at redshift z = 0, we define its progenitors at the previous
output z = zi as all the haloes containing at least one particle of the z = 0 halo; we term as "main
progenitor" the halo that provided the largest mass contribution to the final one. Then we repeat
the same procedure, now starting from the main halo progenitor at the snapshot z = zi and going
backwards in time in this way from snapshot to snapshot, until all the particles are lost in the field
(i.e. the main halo progenitor possesses fewer than 10 particles). We stress that our approach to
follow the main halo progenitor back in time until it has fewer than 10 particles is in agreement with
previous works and theoretical models developed to interpret the halo mass growth history [65, 68,
21]. In Figure 6.13 we show the fit to the formation redshift proposed by [22] for the Baby and the
GIF2 cosmologies, given by the equation:

±c (z f ) = ±c (z0)+ w̄ f

q
S( f M)°S(M) , (6.13)

where z f is obtained by inverting the relation between ±c and z f . The parameters are

w̄ f =
q

2ln(Æ f +1) , (6.14)

and
Æ f =Æ0 exp(°2 f 3)/ f 0.707 (6.15)

whereÆ0 = 0.937 – corresponding dashed curves for the two cosmologies. The value ofÆ0 in this case
is different from the one computed by [22] by circa 15% because of the different halo sample con-
sidered. While [22] considered all bounds haloes that never exceed more than 10% their present-day
mass along their mass accretion history, in this work we consider all identified systems at the present
time. A higher value of Æ0 modifies the normalisation of the formation redshift-mass relation mainly
for large value of f in order to take into account the accretion histories of haloes characterised by ma-
jor merging events excluded by [22]. In each panel the data points represent the median formation
redshift z f at the time at which the main halo progenitor assembles a fraction f of its present-day
mass; the shaded regions of the corresponding colour enclose the first and the third quartiles. From
the figure we note that, since the cosmology adopted for Baby (and Flora) has a lower value of æ8, its
haloes have typically a lower formation redshift. Going from the top left panel to the bottom left one,
thus decreasing the value of f , the difference between the two simulations increases up to almost
25% for the redshift at which the main halo progenitor assemble a fraction f = 0.04 of its present-day
mass.

In Figure 6.14 we show the relation between the ellipticity of haloes at z = 0 and their generalised
formation redshifts. The points (squares for Baby and triangles fo the GIF2) show the medians of the
distribution at a fixed z f for the four definitions, as in Figure 6.13, while the coloured shaded regions
enclose the first and third quartile. We can see that, using any of the definitions of formation redshifts,
final ellipticity and z f anti-correlate: this is consistent with the behaviour already seen and discussed
in Figure 6.1. It is also interesting to notice that even if Baby and GIF2 simulations have been run with
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Figure 6.13: Formation redshift as a function of the halo mass. In the different panels we show the results
derived from four definition of formation redshift z f , defined as the moment at which the main halo progenitor
assembles a fraction f = 0.75, 0.5, 0.25, 0.04 of its mass. The data points show the median of the measurements
performed on the two simulations while the shaded regions enclose the first and third quartiles. The dashed
curves represent the predictions for the formation redshift mass relations, for the two cosmologies, using the
model by [22].



120 ELLIPSOIDAL COLLAPSE OF DARK MATTER HALOES

Figure 6.14: Relation between the ellipticity of haloes at z = 0 and the redshift at which haloes assemble dif-
ferent fraction of their mass. The points show the medians of the distribution for all the four definition of
z f , already seen in Figure 6.13, while the corresponding coloured shaded regions enclose the first and third
quartile. The squares show the results for Baby, while the triangles for the GIF2, as in the other figures.

different cosmological parameters, the relation e ° z f is similar once adopted the same formation
redshift definition.

6.5 Summary

The main result of the work presented in this chapter is the existence of universal distributions of
the shape parameters (e, p and the axial ratios), when rescaling the mass to the universal variable
∫= ±c /æ. It allows to eliminate the dependences on cosmology and epoch, moving the distributions
of all redshifts all on the same linear relations. Then we report and study other properties of halo
shapes, which can be summarised as follows:

• at fixed mass, halo shapes become more elongated at high redshifts; the behaviour is qualitative
the same for both cosmologies, with a slight difference in the median values due to the differ-
ence in formation times of haloes;

• haloes of similar mass possess larger ellipticity and prolateness at higher redshifts: on average e
and p from redshift z = 2 to the present time change of about 40°50%;

• at any given time, the more massive is an halo, the less spherical it is: this is due to the fact that
massive haloes still retain memory of their "original” shape, which has not been yet contam-
inated or rounded by other events and which is related to the direction of filaments or of the
last major merger; thus, at any given time, massive haloes show higher values both of e and p –
clearly the same trend is reflected in the axial ratios);

• another quasi-universal distribution is given by the relation between p and e, which remains on
average with a slight redshift dependence;
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• halo ellipticity is a decreasing function of the generalised formation redshifts z f – as the red-
shift when the main halo progenitor assembles a fraction f of its present-day mass, with no
particular dependence on cosmology: both GIF2 and Baby cosmology lie on the same relation;

• for clusters, the distribution of the rescaled minor to major axis ratio is well described by a log-
normal distribution, in contrast to previous extrapolations from lower masses that found a sim-
ple Gaussian fit;

• over the whole examined mass range, s can be approximated by a beta distribution that depends
only on the peak height ∫;

• the conditional intermediate to major axis ratio distribution p(q|s) can also be described by a
beta distribution that depends only on the first axis ratio and not on the mass, thus the same
approach can be used for both clusters and the whole mass range of haloes;

• overall, the probability distribution function of the shape of a dark matter halo is given by one
single parameter ∫, related to its mass, that incorporates the dependence on redshift and cos-
mology. This goes in support of methods that allows to change the cosmology of a numerical
simulation, as within good approximation most of halo properties depend only on ∫.

To conclude, halo triaxial properties show a dependence on cosmological parameters since related
to the halo assemble histories. In this chapter we have presented how ellipticity, prolateness and
axial ratios correlate with the universal variable ∫: in a way that these quantities are independent
on halo mass, redshift and background cosmology. We find our results useful to be implemented in
a Monte Carlo method to generate mock haloes with given triaxial properties, and in triaxial mass
reconstruction methods that require priors for the axial ratio distributions.





The universality of the halo

mass function: a systematic

analysis 7
There has always been considerable interest in the modelling of the mass function of collapsed dark
matter haloes (Press & Schechter 1974[52], Bond et al. 1991 [8], Lacey & Cole 1993 [30], Sheth &
Tormen 1999 [60] and 2001 [58], Jenkins et al. 2001 [26], Tinker et al. 2008 [63]). In all these models it
is implied that haloes are biased tracers of the underlying dark matter distribution and the predicted
shape of the mass function is generally in agreement with the results of numerical simulations. The
majority of theoretical predictions use the virial mass of haloes to model the halo mass function.
Nevertheless, other definitions of the halo mass - corresponding to different overdensity thresholds
- do exist and are used by both theoretical and observational works: for example the halo mass can
be defined using an overdensity of 200 times the background density Ωb or some multiples of the
critical density Ωc . This debate on the definition of the “true” halo mass may cause inconsistencies
between the theoretical model and the predictions from numerical simulations and observations. In
this Chapter we present a detailed analysis of how the identification of haloes at different overdensity
thresholds affects the halo mass function. Moreover, we show how the parameters of the halo mass
function varies due to the mass definition and some relations to convert from one mass definition to
the other.

7.1 The halo mass function - an overview

As it was already discussed in Chapters 1 and 2, the halo mass function has evolved through the years:
by far the most widely used analytic formulae for halo mass functions are based on extensions of the
theoretical framework first developed by Press & Schechter 1974 [52]; this then evolved to include the
excursion sets model [8] and the ellipsoidal collapse [60, 59].

In particular, the shape of the unconditional mass function is expected to depend on the initial
fluctuation distribution [52]; if the initial distribution is Gaussian with a scale-free spectrum, then the
mass function can be expressed in a universal form, independent of redshift and power spectrum.
For initially scale-free spectra

∫ f (∫) = m2 n(m, z)
Ω̄

dlog m
dlog∫

=
r

2
º
∫1/2 exp°∫/2 (7.1)

has a universal shape. Here ∫= (±c (z)/æ(m))2 and ±c =1.686. Since it was not obvious that the scaling
would hold for more general initial power spectra, Sheth & Tormen 1999 [60] tested the PS model on

123
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Figure 7.1: Unconditional halo mass functions from Sheth & Tormen 1999 [60]. Different points show from five
output times (filled triangles, open triangles, open squares, filled circles, open circles show results for z = 0,
z = 0.5, z = 1, z = 2 and z = 4) in the GIF simulations. The dotted curve shows the Press & Schechter prediction,
the dot-dashed curve shows the mass function associated with the Zel’dovich approximation, and the solid
curve shows the modified fitting function.

numerical simulations, finding some discrepancies both at high and low values of ∫, as can be seen
in Figure 7.1. A modification of the PS function that fits the data can be written as:

∫ f (∫) = A
µ
1+ 1

∫
0p

∂√
∫

0

2

!1/2
e°∫

0
/2

p
º

(7.2)

where ∫
0 = a∫, a = 0.707, p = 0.3 and A ' 0.322. Note that in principle the shape of ∫ f (∫) could

depend on the initial power spectrum, but from Figure 7.1 we see that the analytic form of the uncon-
ditional mass function is universal: the same function and parameters can be used to predict halo
abundance for different redshifts and cosmologies. This suggests that the dynamics of collapse is
sensitive o the value of ∫ and not to the mass scale itself.

As explained in Chapter 3, Sheth, Mo & Tormen 2001 [59] extended the excursion set derivation of
the PS formula by Bond et al. 1991 [8] to include the ellipsoidal collapse and showed that this produce
a mass function almost identical in shape to the last equation.
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Jenkins et al. 2001 [26] obtained another fitting formula for the mass function, expressed as a
function of æ:

f (M) = 0.315exp°| lnæ°1 +0.61|3.8, (7.3)

valid over the range °1.2 ∑ lnæ°1 ∑ 1.05. This formula is very close to the one proposed by Sheth
& Tormen 1999 [60] - Equation 7.2 - with a small difference in the high-mass tail. The fit can be
improved by adjusting the parameters (A, p, a) of Equation 7.2, obtaining a better constraint if all
three parameters are allowed to vary freely. Their results are based both on FoF and SO haloes, where
in the latter case the overdensity for§CDM was set to 324 (at z = 0).

A work by Tinker et al. 2008 [63] claimed the need for a recalibration of the mass function in the era
of precision cosmology, since the accuracy of previous fitting formulae is 10%-20% [26]. They used a
SO algorithm to identify haloes and chose many density thresholds ranging from 200Ωb to 3200Ωb . In
Figure 7.2 we can see the measured mass function at two different redshifts (z = 0 and z = 1.25), using
a density threshold of 200Ωb : it’s easy to see that, while the analytical model fits very well the data
points at z = 0, this is no longer true at z = 1.25 where the points lie 20% lower than the solid line.
The authors then tried the same procedures with other density thresholds, multiples of Ωb , finding an
offset with respect to the best fitting mass function: Figure 7.3 shows the residuals of the measured
mass functions with respect from the best-fitting analytical model at z = 0, the blue line represents
the Jenkins et al. 2001 [26] mass function - rescaled from 324 to the desired overdensity - and the red
dashed line the Sheth & Tormen 1999 [60] mass function.

This result has been used by Tinker et al. 2008 [63] to claim a non °uni ver sal i t y in redshift (or
cosmology) of the halo mass function. We find it a rushed conclusion: the universality of the halo
mass function has been widely tested for virial masses, but was not claimed for haloes identified at
other overdensity thresholds. In the following sections we will show a detailed analysis of how the
mass definition may influence the shape of the mass function and its universality.

7.2 The dependence on the density threshold

Analysis

We used Padova’s spherical and ellipsoidal halo finders [14, 14, 7], described in Chapter 3, to identify
spherical and ellipsoidal haloes at six different density thresholds (in increasing order): 200Ωb , ±vi r

(already used in the previous analyses), 200Ωc , 500Ωc , 1000Ωc and 2000Ωc . Recall that Ωc (0) ' 2.77£
1011MØh°1M pc°1 and that the following relations hold (in a comoving cosmological box):

Ωb = Ωc (0)≠m(0), (7.4)

Ωc (z) = 3H 2

8ºG
= Ωc (0)≠m(0)

≠m(z)
. (7.5)

This has been done for all the snapshots, allowing us to study the evolution in time of the halo mass
function: for each simulation-snapshot-density-shape combination, we saved a catalogue contain-
ing all the information about the identified haloes. We limited the selection to haloes with at least
300 particles, to ensure a good resolution. For this reason, while the z = 0 catalogues of each simu-
lation contain many haloes, at higher redshift the simulations on larger scales start to loose haloes
and maintain only the high mass tail. As we will show in the next section, apart from studying the
universality of the halo mass function as a function of redshift, these catalogues will allow us to find a
way to convert from one mass to the other.

Using different density thresholds is equivalent to looking at inner or outer parts of each halo. As
an example, Figures 7.4 and 7.6 show the projected distribution of particles of two haloes (at z = 0),
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Figure 7.2: Halo mass functions from Tinker et al. 2008 [63]. We see the mass function measured at ¢= 200Ωb ,
at z = 0 (le f t ) and z = 1.25 (r i g ht ). The percentage residual to the best fitting theoretical model (represented
by the black solid line) are shown in the lower panels.

Figure 7.3: Residuals of the measured mass functions with respect from the best-fitting analytical model at
z = 0, from Tinker et al. 2008 [63] The blue line represents the Jenkins et al. 2001 [26] mass function - rescaled
from 324 to the desired overdensity - and the red dashed line the Sheth & Tormen 1999 [60] mass function.
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of virial masses M=5.322 1014MØh°1 and M=3.683 1012MØh°1. Different colours show the particles
selected at different density thresholds, superposed to each other from the outer to the inner one.
The circles show the corresponding radii, whose value - together with the masses - are listed in Tables
7.1 and 7.2. As we can see, despite of the mass difference, the mass-radius trend is very similar. The
same holds for the ellipsoidal identification, shown in Figures 7.5 and 7.7: here the colour code is the
same and the circles still represent the radii of the spherical identification. The chosen overdensities
are commonly used in different astrophysical situations; for example:

• 200Ωb is the virial overdensity derived from spherical collapse with§= 0: the exact value is 178,
but it is usually approximated to 200 for simplicity. It has also been used to define heuristically
the linking length of the FoF algorithm to b=0.2;

• ±vi r ' 324Ωb has been derived by Eke et al. 1996 [17], solving the spherical collapse for the case
(§ > 0;≠m +≠§ = 1). This value is correct of a standard (≠m = 0.3,≠§ = 0.7) cosmology. For
the Planck cosmology, ±vi r ' 319. The resulting overdensity is higher than the one obtained
without the cosmological constant: in a universe that is expanding faster due to §, haloes need
to be even denser to collapse;

• 200Ωc is commonly used to define galaxy cluster masses in observational studies; Ωc has the
advantage of being cosmology-independent, while Ωb is not : Ωb = Ωc≠m0. Moreover, it can
resemble the virial overdensity, even if it does not exactly correspond to it;

• 500r hoc is important for X-ray observations of galaxy clusters, since it defines a more central
(and so brighter) region: it has been chosen since, nowadays, the X-ray data are usually able to
trace the ICM out to this radius and it has been shown that inside a region of ' r500 randomized
galaxy and mass particle orbits dominate clearly over infalling material;

• the last more used value is 2500Ωc - again with X-ray data; in particular, the x-ray gas fractions
in the central regions of galaxy clusters, tend to a constant value around r2500. The majority of
our simulations were not resolved enough to define this very central region of the haloes with
enough particles, and so we chose to analyse them at 1000Ωc and 2000Ωc .
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Figure 7.4: Projected 2D distribution of the particles of halo 1 in “Dora”: the virial mass of the halo is M=5.322
1014MØh°1 and the virial radius r=1.670 Mpc. Different colours show the particles selected at the 6 density
thresholds, superposed to each other from the outer to the inner one; in particular, the virial halo is represented
in cyan. The circles show the corresponding radii, whose value - together with the masses - are listed in Table
7.1.
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Figure 7.5: Projected 2D distribution of the same halo of Figure 7.4, but for the ellipsoidal identification. The
circles show the radii of the corresponding spherical identification, whose value - together with the masses -
are listed in Table 7.1. Here we note the dazzling difference between the two identifications and we can note
that the virial radius (in cyan) is not completely filled even at a lower density. As in the previous Figure, the
colour scheme is black - 200Ωb , cyan - ±vi r , blue - 200Ωc , green - 500Ωb , yellow - 1000Ωb , red - 2000Ωb .

halo 1 (dora) Msph [MØh°1] Mel l [MØh°1] r [Mpc]
200Ωb 5.964 1014 6.275 1014 2.029
±vi r 5.322 1014 5.569 1014 1.670

200Ωc 4.264 1014 4.407 1014 1.224
500Ωc 2.965 1014 3.085 1014 0.799

1000Ωc 2.098 1014 2.255 1014 0.565
2000Ωc 1.294 1014 1.383 1014 0.382

Table 7.1: For each density threshold, we list the radii and the corresponding enclosed masses of halo 1 from
“Dora”, represented in Figure 7.4.
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Figure 7.6: Same as Figure 7.4, but for halo 48 from “Bice”. This halo is less massive than the previous one,
having a virial mass of M=3.683 1012MØh°1. Masses and radii of all the shells are listed in Table 7.2.

halo 48 (bice) Msph [MØh°1] Mel l [MØh°1] r [Mpc]
200Ωb 4.084 1012 4.196 1012 0.385
±vi r 3.683 1012 3.796 1012 0.318

200Ωc 3.170 1012 3.238 1012 0.239
500Ωc 2.379 1012 2.516 1012 0.160

1000Ωc 1.848 1012 1.913 1012 0.117
2000Ωc 1.411 1012 1.469 1012 0.085

Table 7.2: For each density threshold, we list the radii and the corresponding enclosed masses of halo 48 from
“Bice”, represented in Figure 7.6.

The uniqueness of the virial overdensity

In Figure 7.8 we show the evolution of the halo mass function of the spherical virial haloes, from
z = 0 to z = 5. Figure 7.10 show the same results for ellipsoidal virial haloes. The virial overdensity is
higher than 200Ωb (corresponding to ' 98Ωc ) and lower than all the other ones that we considered.
Different colours show data points from each one of the six simulations (green = Ada, cyan = Bice,
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Figure 7.7: Same as Figure 7.6, but for the ellipsoidal identification.

blue = Cloe, magenta = Dora, red = Emma, orange = Flora). The black solid line in all panels shows the
best fit to the z = 0 points, following the Sheth & Tormen mass function [60, 59]: the resulting set of
parameters is specified at the bottom of each Figure. The lower panels show the percentual residuals
from the best fit. It is easy to see that the mass function is actually universal for virial haloes, since
the residuals’ mean is around zero and the scatter remains within the limit of 10% at all redshifts. We
found the best fit parameters using a chi-squared method and weighting each point by the associated
poissonian error (represented by the error bars). We let the three parameters (A, a, p) vary freely;
alternatively, one could vary only (a, p) and then derive the normalisation A from p: this allows to
maintain the whole distribution normalised to 1. This last option is coherent with the assumption
that all the mass is contained in haloes, which in turns holds only for the virial overdensity. Thus,
we decided to use the three parameters estimation for all the overdensities, since haloes identified
at high density thresholds cannot contain all the mass. For comparison with other works, the results
obtained varying only two parameters for the virial overdensity are: a = 0.769, p = 0.292 and A = 0.330
- thus very similar to the adopted three-parameters fit.

Finally, once demonstrated the universality (within 10% scatter) of the virial halo mass function,
we found another set of fest-fit parameters by using the data at all the eight redshift together to obtain
the fit. Figure 7.9 shows the resulting curve, whose parameters are: a = 0.8065, p = 0.1814 and 0.3436.
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Figure 7.8: Halo mass function at eight redshifts, for all haloes with more than 300 virial particles in the Spheri-
cal Overdensity catalogues. The points belonging to each simulation are represented in different colours (from
Ada in green to Flora in orange). The black solid line in all panels shows the best fit to the z = 0 points, following
the Sheth & Tormen mass function [60, 59]; the parameters of the fit are given at the bottom. The lower panels
show the residuals from the best fit.

The universality is maintained and reinforced: the scatter both at high masses and high z is reduced,
allowing a better fit.

We then proceeded to study the mass functions for the other density thresholds, finding that they
vary with z, moving away from the present-day distribution. Figure 7.12 and Figure 7.13 show the
nass function of spherical haloes, identified respectively at 200Ωb and 200Ωc . Figure 7.12 reproduces
the result of Tinker et al. 2008 [63], shown in Figure 7.2: at high redshift, the z = 0 best fit overestimates
the real population of haloes identified at 200r hob . The opposite is true for the haloes of Figure 7.13,
whose abundance is underestimated by the z = 0 best fit relation. The present day mass functions
at all the other density thresholds (both for SO and EO haloes) are shown in Appendix B. Table 7.3
summarises the parameters of the z = 0 best fitting relations, which are also plotted in Figure 7.11 - as
a function of Ω/Ωc : the three parameters depend on density in a very regular way. We derived some
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Figure 7.9: The data points and the colour code are the same of Figure 7.8, while the best-fit relation is different:
we obtained it fitting all the points at all the eight redshifts together, as a proof of the universality of the halo
mass function for virial haloes. With respect to the previous fit, the scatter both at high masses and at high z is
a bit reduced
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Figure 7.10: Same as Figure 7.8, but for the haloes in the Ellipsoidal Overdensity catalogue.

simple fitting formulae for the z = 0 mass functions; for the case of SO haloes these are:

a = 1.9113°1.3927x +0.4116x2 ¬2 = 1.485£10°4,

p =°0.4647+0.5148x °0.0733x2 ¬2 = 1.5113£10°4, (7.6)

A = 0.5994°0.1346x ¬2 = 2.934£10°5,

where x = Ω/Ωc . For EO haloes we have analogous relations:

a = 1.7142°1.2174x +0.3563x2 ¬2 = 1.19£10°3,

p =°0.3647+0.4158x °0.0549x2 ¬2 = 2.653£10°4, (7.7)

A = 0.712°0.1636x ¬2 = 3.255£10°5.

These relations may be used as a general model to derive the predicted mass function at any over-
density.
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Figure 7.11: Best fit parameters of the z = 0 halo mass functions, as a function of Ω/Ωc . The results for spherical
haloes are represented in black, while those for ellipsoidal haloes in red. The blue crosses show the best fit
parameters obtained by Sheth & Tormen 1999 [60]. The dashed curves represent the best fit relations from
Equations 7.6 and 7.7.

Ω (SO) a p A
200Ωb 0.732 0.215 0.362
±vi r 0.776 0.278 0.331

200Ωc 0.891 0.334 0.286
500Ωc 1.143 0.387 0.235

1000Ωc 1.439 0.416 0.196
2000Ωc 1.801 0.439 0.157

Ω (EO) a p A
200Ωb 0.663 0.196 0.422
±vi r 0.715 0.258 0.387

200Ωc 0.813 0.301 0.332
500Ωc 1.017 0.351 0.269

1000Ωc 1.250 0.393 0.220
2000Ωc 1.590 0.411 0.175

Table 7.3: Parameters of the best-fitting mass function at z = 0, for the SO haloes on the left and the EO haloes
on the right.
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Figure 7.12: Same as Figure 7.8; in this case haloes has been identified using 200Ωb instead of ±vi r as density
threshold, which breaks the universality of the mass function at all redshifts.

7.3 A comparison between SO and EO halo identifications

Figure 7.14 shows the best fitting relations to the z = 0 mass functions for the SO haloes: different
colours represent different density thresholds. The ordering of the mass functions perfectly reflect
the increase in density from 200r hob to 2000Ωc : haloes identified at higher density will be enclosed
in smaller regions, with a lower mass. in the bottom panel we show the percentual difference between
our best fit for virial haloes and the mass function from Sheth & Tormen 1999 [60]: while their fit was
very accurate at low and intermediate masses, it overpredicts massive haloes; this is probably due to
a lack of high mass haloes in their simulations.

Figure 7.15 shows the same curves of the previous Figure, but for the case of EO haloes: this al-
lows us to analyse the effect of the identification method on the halo mass function. As has already
been discussed, ellipsoidal haloes are systematically more massive than spherical haloes, since the
ellipsoidal approximation is able to follow more precisely the isodensity curves.
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Figure 7.13: Same as Figure 7.8, but for haloes identified at 200Ωc ; the universality is again broken.

7.4 Matching haloes

The halo catalogues at various density threshold can be use to study the dependence of halo prop-
erties on density. Thus, we selected the virial haloes with more than 1000 particles and we checked
whether they had a corresponding halo at all the other densities: to do so, we used an algorithm that
find, in the other catalogues, the nearest haloes to the center of mass of the virial halo. We selected
only the virial haloes with a corresponding identification in all the other five catalogues: in this way
we can look at the same halo in different shells.

In the left panel of Figure 7.16 we show the halo mass (of the matching haloes) as a function of
density. Each colour represent a different bin in mass; squared points show the medians, while the
dashed lines mark the interquartile region. The halo mass decreases at higher densities (thus towards
the center of the halo) in a similar way for all the mass bins, even if the variation is bigger for high
mass haloes. The right panel shows the percentual variation in mass: while for low mass haloes the
mass contained in the inner shell (2000Ωc ) is still ' 60% of the virial mass, for high mass haloes it is
between 30% and 40%. This behaviour reflects the shape of the density profile, which is steeper for
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Figure 7.14: Halo mass function at the six different density thresholds for SO haloes. In the two bottom panels
we show: (i ) the percentual difference between our best fit for virial haloes and the mass function from Sheth
& Tormen 1999 [60]; (i i ) the all the mass functions and the virial one.
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Figure 7.15: Same as Figure 7.14, but for the EO haloes.

massive haloes, and the fact that low mass haloes are more concentrated. Figure 7.17 shows the same
results for the radius instead of the mass. The variation in radius between different shells is almost
the same for all the mass bin: this again shows that the differences in Figure 7.16 are due to different
concentrations.

7.5 Summary

In this Chapter we adressed the definition and the universality of the halo mass function, analysin in
detail its dependence on the halo identification. We found that:

• the effect of the halo identification on the halo mass function is very strong; all the mass func-
tions can be modelled with ST99-like fitting formulae;

• the halo mass function for virial haloes is indeed universal, so independent from z; our final
best fit parameters are a = 0.8065, p = 0.1814 and 0.3436;

• the best fit parameters exhibit a regular behaviour as a function of density (Ω/Ωc ), which can be
modelled with first or second order equations (Eq. 7.6 and 7.7). These relations may be used as
a general model, since they allow to predict the expected mass function at any density.

We plan to extend this analysis to all the other redshifts, modelling the dependence of the halo mass
function on z and Ω to find a general conversion method from the virial mass function to the other
ones. Moreover, we will use simulations with a different cosmology (and possibly with extreme val-
ues) to test again the independence from the assumed cosmological model.
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Figure 7.16: Le f t : halo mass as a function of density, from the matching haloes catalogues. Each colour rep-
resent a different bin in mass; squared points show the medians, while the dashed lines mark the interquartile
region. Ri g ht : percentual variation in mass as a function of density. This plot contains the same data of the
left panel, but rescaled to the value of the virial mass. The color scheme is the same of the left panel and the
squared points show the medians of the distribution.

Figure 7.17: Le f t : radius as a function of density. Ri g ht : percentual variation in radius as a function of density.
For both panels the colour scheme is the same of Figure 7.16



Useful formulae A
A.1 Calculation of the growth factor

The growing solution of perturbation theory can be approximated as:

±+ / D(z) / g (z)(1+ z)°1 (A.1)

where

g (z) ' 5
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≠m(z)
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Here again

≠m(z) = ≠m(0)(1+ z)3

E 2(z)
(A.3)
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. (A.5)

From the scale factor, we can also calculate f (≠) as:

f (≠m) =° d lnD(z)
d ln(1+ z)

'≠0.6
m . (A.6)

A.2 Calculation of ∫

For a virialized halo with mass M at redshift z for a given cosmological model the definition of ∫ is the
following:

∫¥ ±c (z)
æ(M)

, (A.7)

where ±c (z) is the critical overdensity of the spherical collapse model, the initial density required for
a fluctuation to collapse at redshift z. This in turn can be expressed as the collapse overdensity at
redshift z = 0 rescaled to a given time: ±c (z) = ±c /D(z), with D(z) being the linear growth rate of a
density fluctuation normalised to unity at z = 0 - thus the one just derived in the previous section.
The denominator æ(M), depends on the mass but not on redshift. It is the variance in the initial
density field smoothed on a linear scale R, which corresponds to the radius of a uniform sphere of
mass M .
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The collapse overdensity ±c has an extremely weak dependence on cosmology, that can be ex-
presse as in Kitayama & Suto [28]:

±c (z) º 3
20

(12º)2/3[1+0.0123lg≠(z)] º 1.686[≠m(tc )]0.0055 (A.8)

For realistic cosmologies this can be approximated to ±c º 1.686. Therefore, at z = 0 the collapse
overdensity is ±c and it increases with redshift, due to D(z).

The other quantity required, the variance æ2(M), is defined from the power spectrum as:

æ2(M) = 1
2º2

Z1

0
P (k)W̃ 2(kR)k2dk; (A.9)

where W̃ is the Fourier transform of a window function. Typically, W is a Top Hat (sphere) in the
coordinates space, so that its Fourier transform W̃ is:

W̃ (kR) = 3
sin(kR)°kR cos(kR)

(kR)3 ; (A.10)

with the radius R given by M = Ωb4º/3R3. The power spectrum P (k) of the density fluctuations is the
main input; given a set of cosmological parameters it can be computed from a software like CAMB
[33]. As it is function of initial conditions only, æ(M) needs to be computed only once for a given
cosmology: all the redshift dependence is inside D(z).
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Figure B.1: Same as Figure 7.10, but for EO haloes identified at 200Ωb
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Figure B.2: Same as Figure 7.10, but for EO haloes identified at 200Ωc
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Figure B.3: Same as Figure 7.8, but for SO haloes identified at 500Ωc .
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Figure B.4: Same as Figure B.3, but for EO haloes identified at 500Ωc ..
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Figure B.5: Same as Figure B.3, but for SO haloes identified at 1000Ωc .
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Figure B.6: Same as Figure B.4, but for EO haloes identified at 1000Ωc .
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Figure B.7: Same as Figure B.3, but for SO haloes identified at 2000Ωc .
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Figure B.8: Same as Figure B.4, but for EO haloes identified at 2000Ωc .
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6.9 Le f t : Distribution of s as function of peak height: the black boxes and whiskers represent
the quartiles and 1.5 the quartiles range of the combined distributions. The horizontal
error shows the different bins, while the green solid line is the linear fit to the medians. Red
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" I can see the bright green strip of grass beneath the wall, and the clear  
blue sky above the wall, and sunlight everywhere. Life is beautiful.  

Let the future generations cleanse it of all evil, oppression and violence,  
and enjoy it to the full. " (L.T.)
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