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Riassunto

In questa tesi, studiamo la dipendenza degli autovalori di operatori dif-
ferenziali ellittici da perturbazioni del dominio nello spazio N-dimensionale.
In particolare, proviamo risultati di analiticita degli autovalori di operatori
poliarmonici e sistemi ellittici di equazioni alle derivate parziali del secon-
do ordine, e li applichiamo a problemi di ottimizzazione di forma; d’altro
canto, otteniamo anche stime di stabilita spettrale per sistemi ellittici ge-
nerali di equazioni alle derivate parziali di ordine superiore. Per dimostrare
I’analiticita usiamo una tecnica generale sviluppata da Lamberti e Lanza
de Cristoforis, e otteniamo delle formule alla Hadamard che ci permettono
di fornire una caratterizzazione dei domini critici sotto il vincolo di volu-
me. Per quanto riguarda le stime di stabilita degli autovalori, dimostriamo
risultati di lipschitzianita rispetto alla distanza d’atlante, alla distanza di
Hausdorff e alla misura di Lebesgue, adattando gli argomenti utilizzati da
Burenkov e Lamberti per operatori ellittici al caso di sistemi ellittici generali
di equazioni alle derivate parziali.

La tesi ¢ organizzata come segue. Il Capitolo 1 ¢ dedicato ad alcuni
preliminari. Nel Capitolo 2 consideriamo 'operatore biarmonico con diverse
condizioni al contorno, ovvero di Dirichlet, di Neumann, intermedie e di
Steklov. Per tutti questi casi mostriamo la dipendenza analitica degli auto-
valori dal dominio e calcoliamo formule alla Hadamard, che vengono usate
per formire una caratterizzazione dei domini critici per le funzioni elementari
simmetriche degli autovalori sotto il vincolo di volume; a seguire proviamo
che le palle sono domini critici per tali funzioni degli autovalori di tutti
questi problemi sotto il vincolo di volume. Riguardo al problema di Steklov,
mostriamo anche che la palla ¢ un massimizzatore del tono fondamentale
tra tutti gli aperti limitati di misura fissata. Nel Capitolo 3 consideriamo
il problema agli autovalori con condizioni di Dirichlet per gli operatori po-
liarmonici. Come nel Capitolo 2, dimostriamo ’analiticita delle funzioni
elementari simmetriche degli autovalori fornendo formule alla Hadamard, e
diamo una caratterizzazione dei domini critici sotto il vincolo di volume; a
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seguire mostriamo che per tutti gli operatori poliarmonici la palla ¢ un do-
minio critico. 11 Capitolo 4 e dedicato alle stime di stabilita degli autovalori
dei sistemi ellittici di equazioni alle derivate parziali con condizioni al bordo
di Dirichlet e di Neumann. Adattando gli argomenti usati da Burenkov e
Lamberti per operatori ellittici siamo in grado di provare stime con la di-
stanza d’atlante, con la deviazione inferiore di Hausdorff-Pompeiu e con la
misura di Lebesgue. Nel Capitolo 5 dimostriamo analiticita, formule alla
Hadamard e condizioni di criticita per sistemi ellittici del secondo ordine
con condizioni al bordo di Dirichlet e di Neumann. Mostriamo anche che,
se il sistema & invariante per rotazioni, allora le palle sono domini critici
sotto il vincolo di volume. Infine, nel Capitolo 6 consideriamo il proble-
ma di Reissner-Mindlin per la vibrazione di una piastra incastrata. Prima
dimostriamo stime simili a quelle del Capitolo 4, che non dipendono dallo
spessore della piastra; poi dimostriamo ’analiticita e formule alla Hadamard
per le funzioni elementari simmetriche degli autovalori, che vengono usate
per fornire una caratterizzazione di criticita; a seguire, dopo aver provato
che il sistema di Reissner-Mindlin ¢ invariante per rotazioni, mostriamo che
le palle sono domini critici sotto il vincolo di volume.



Abstract

In this thesis, we study the dependence of the eigenvalues of elliptic par-
tial differential operators upon domain perturbations in the N-dimensional
space. Namely, we prove analyticity results for the eigenvalues of poly-
harmonic operators and elliptic systems of second order partial differential
equations, and we apply them to certain shape optimization problems. On
the other hand, we also prove spectral stability estimates for general elliptic
systems of partial differential equations of higher order. In order to prove
analyticity, we use a general technique developed by Lamberti and Lanza de
Cristoforis, and we obtain Hadamard-type formulas which are used to pro-
vide a characterization of critical domains under volume constraint. As for
stability estimates of the eigenvalues, we prove indeed Lipschitz continuity
results with respect to the atlas distance, the Hausdorfl distance and the
Lebesgue measure. We adapt the arguments used by Burenkov and Lam-
berti for elliptic operators to the case of general elliptic systems of partial
differential equations.

The thesis is organized as follows. Chapter 1 is dedicated to some pre-
liminaries. In Chapter 2 we consider the biharmonic operator under dif-
ferent boundary conditions, namely Dirichlet, Neumann, intermediate and
Steklov. For all these cases we show analytic dependence of the eigenvalues
upon the domain and compute Hadamard-type formulas, which will be used
to provide a characterization of critical domains for the elementary sym-
metric functions of the eigenvalues under volume constraint. Then we prove
that balls are critical domains for such functions of the eigenvalues of all
these problems under volume constraint. Regarding the Steklov problem,
we also prove that the ball is a maximizer of the fundamental tone among all
bounded open sets of given measure. In Chapter 3 we consider the Dirichlet
eigenvalue problem for general polyharmonic operators. As in Chapter 2, we
prove analyticity of the elementary symmetric functions of the eigenvalues
providing Hadamard-type formulas, and we give a characterization of critical
domains under volume constraint. Then we show that for all the polyhar-
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monic operators the ball is a critical domain. Chapter 4 is devoted to the
stability estimates of the eigenvalues of elliptic systems of partial differen-
tial equations with Dirichlet and Neumann boundary conditions. Adapting
the arguments used by Burenkov and Lamberti for elliptic operators, we
can prove estimates via the atlas distance, the lower Hausdorff-Pompeiu
deviation and the Lebesgue measure. In Chapter 5 we prove analyticity,
Hadamard-type formulas and criticality conditions for second order elliptic
systems under Dirichlet and Neumann boundary conditions. We also show
that, if the system is rotation invariant, then balls are critical domains under
volume constraint. Finally, in Chapter 6 we consider the Reissner-Mindlin
problem for the vibration of a clamped plate. We first prove estimates sim-
ilar to those of Chapter 4, which are independent of the thickness of the
plate. Then we prove analyticity and Hadamard-type formulas for the ele-
mentary symmetric functions of the eigenvalues, which are used to provide a
characterization of criticality. Then, after proving that the Reissner-Mindlin
system is rotation invariant, we show that balls are critical domains under
volume constraint.



Introduction

The study of polyharmonic operators started long ago. It was already
known at the beginning of the nineteenth century that the study of the
bending of a clamped plate leads to the following problem

A%y = f, in Q, (1)
U= % =0, on 09,

where 2 C R? represents the midplane of the plate, and f represents the
applied load (see e.g., [74, §223] for historical information). Problem (1)
clearly resembles the well known Poisson problem for the Laplace operator

—Au=f, in €,
u =0, on 0f2,

which is instead related to the study of the deformation of a fixed membrane
of shape  C R2. The similarity between these two problems naturally leads
to the study of more general equations involving the polyharmonic operators
(—=A)", n € N under different types of boundary conditions. After the
innovative papers of Almansi [10, 11] and the book of Nicolesco [71], the
interest for polyharmonic operators has developed, so that several papers
and books on the subject appeared. Among the most relevant works of the
last decades on polyharmonic operators, we mention the partial solution of
the celebrated Rayleigh’s conjecture for the clamped plate [12, 70], and a
book [51] devoted to an extensive study of boundary value problems for such
operators.

In this thesis we are mainly interested in eigenvalue problems, which in
the case of the biharmonic operator subject to Dirichlet boundary conditions
can be written as

A%y = \u, in Q, 5
{u:gg:(), on 0f2. (2)



x Introduction

We also consider the eigenvalue problem for the biharmonic operator with
other boundary conditions, such as Neumann boundary conditions

A2y = \u, in Q, (3)
% = % +divoa(v - D*u) =0, on 0%,

and intermediate boundary conditions

A%y = \u, in £,
{ =24 = 09 )
u=7%57 =0, on JfL

We remark that problems (2), (3), and (4) are related to the study of the
vibrations of an elastic plate which is clamped, free, and hinged, respectively.

As for higher order operators, we consider the following eigenvalue prob-
lem

(—A)"u = A\(—A)"u, in Q,
_ Ou __ _onTly 90 (5)
U=, == gm=1 =0, ond}

for any n,m non-negative integers with n > m. We observe that, for n =
1,m = 0, problem (5) gives the Helmholtz problem, i.e., the eigenvalue
problem for the Dirichlet Laplacian, while for n = 2, m = 0 it gives problem
(1). Moreover, for n =2, m = 1, problem (5) gives the well known buckling
problem for the plate.

We note that, in the case of a clamped plate, problem (2) arises within
the so-called Kirchhoff-Love model. If we consider instead the Reissner-
Mindlin model, we get the following system of partial differential equations

AL — mHedivE — Bk (TVw — ) = 408, in Q,
f’%k(Aw —divh) = \w, in Q, (6)
=0, w=0, on 0f),

where © C R? represents the midplane of the plate, and ¢ is the thickness.
Here w is the transverse displacement of the midplane, 8 = (81, f2) the fiber
rotation, A\t? the vibration frequency, p1 and o are the Lamé constants and
k > 01is a correction factor. This problem has been studied as an alternative
to problem (2) because it is of the second order, and therefore easier to
treat numerically using finite element methods (see e.g., [20]). However, as
pointed out for instance in [21], when the parameter ¢ is very small the finite
element method leads to poor results, and this is known as shear locking
phenomenon.

We also remark that problems (2) and (6) are strictly related. In fact,
as is proved in [47], we have that the eigenvalues A, :[€2] of (6) converge to
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the eigenvalues A, o[€2] of problem

2pitpe A2, :
oo Afw = Aw, in £, (7)
w=Vw=0 on 0f),

ast — 0.
Problem (6) motivates our interest to even more general eigenvalue prob-
lems for systems of partial differential equations of the type

Z Z \BlpﬁAwDa i) =Auj, j=1,...,m,

e, BI<l =1

subject to Dirichlet or Neumann boundary conditions.

In this thesis, we study the dependence of the eigenvalues of elliptic par-
tial differential operators upon domain perturbations in the N-dimensional
space, with special attention to the above mentioned eigenvalue problems.
The study of domain perturbation problems for partial differential opera-
tors represents a vast area of investigation which provides a large variety
of results. One of the fundamental problems concerns the study of the
qualitative behavior of the eigenvalues when the domain is perturbed and
the corresponding results give information such as continuity, differentia-
bility and even analyticity. This problem is also closely related to shape
optimization problems where typically one has to identify the shape of the
domain which minimizes or maximizes certain functionals of the eigenval-
ues when the domain is subject to suitable constraints, such as volume or
perimeter constraint. Another important problem concerns the quantita-
tive analysis of the variation of the eigenvalues, aiming at estimates for
the deviation of the eigenvalues expressed in terms of certain measures of
vicinity of sets, such as the Hausdorff distance. We refer to the extensive
monographs [13, 23, 55, 56, 59, 75, 76] and to the survey papers [40, 54]
for an introduction to this subject. We also refer to the recent works
(2, 3, 4, 5, 6, 42, 43, 63, 64, 68] for qualitative results on domain pertur-
bation problems, and to [7, 14, 15, 16, 35, 36, 37, 38, 39, 41, 65, 66] for
quantitative estimates.

In this thesis, we face both problems. Namely, we prove analyticity re-
sults for the dependence of the eigenvalues of polyharmonic operators and
elliptic systems of second order partial differential equations, and we ap-
ply them to certain shape optimization problems. On the other hand, we
also prove spectral stability estimates for general elliptic systems of partial
differential equations of higher order.
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In order to prove analyticity, we use the general technique developed
by Lamberti and Lanza de Cristoforis in [64] for compact selfadjoint op-
erators in Hilbert space. We remark that in general one cannot expect to
prove analytic dependence of the eigenvalues themselves upon the domain,
when the eigenvalues are not simple. This is due to well known bifurca-
tion phenomena of eigenvalues splitting from a multiple eigenvalue. Note
that this is not in contrast with either the continuity results of e.g., [38],
or the celebrated Rellich-Nagy Theorem [75, Theorem 1] which deals with
families of operators parametrized by one real variable. Hence, in order to
avoid such a situation, in the case of multiple eigenvalues we consider the
elementary symmetric functions of the eigenvalues. The use of these func-
tions has the effect of bypassing the splitting phenomenon, in fact we can
prove that they are real analytic. Then we compute the shape derivatives,
getting Hadamard-type formulas for the elementary symmetric functions of
the eigenvalues. Note that such formulas were already obtained by Lam-
berti and Lanza de Cristoforis for the Dirichlet Laplacian in [64], and for
the Neumann Laplacian in [68].

Then we address the problem of isovolumetric perturbation. This is
related to the problem of shape optimization for the eigenvalues under vol-
ume constraint, in the spirit of Rayleigh’s conjecture. We recall that Lord
Rayleigh in [74] formulated the conjecture that, among all open sets of finite
fixed area, the ball is the minimizer of the fundamental tones of the fixed
membrane and of the clamped plate, i.e.,

A(B) < Ai(9), (8)

where B is a ball having the same measure of 2 and A; is the lowest positive
eigenvalue of the Laplace operator and of the biharmonic operator respec-
tively, with Dirichlet boundary conditions. Inequality (8) for the Dirichlet
Laplacian in R with IV > 2 has been proved by Faber [48] and Krahn [60]
via Schwartz rearrangement techniques in the twenties of the last century,
while the analogue for problem (2) has shown to be a much more difficult
task. In fact, it has been proved only twenty years ago by Nadirashvili
[70] and Ashbaugh and Benguria [12], and only up to three dimensions, the
general case remaining an open problem (see also [78]).

Regarding the Laplace operator, there is a number of results available
in the literature showing that the ball is an extremizer, i.e., either a min-
imizer (for Dirichlet and Robin boundary conditions) or a maximizer (for
Neumann and Steklov boundary conditions) of the first positive eigenvalue
(we refer to [55] for an extensive discussion of the subject). In particular,
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those results show that the ball is a critical domain under volume constraint
for the fundamental tone. Using Lagrange Multipliers Theorem and our
Hadamard-type formulas, we provide a characterization of critical domains,
which is valid for any elementary symmetric function of the eigenvalues.
Then we show that, for polyharmonic operators and other rotation invari-
ant operators, the ball is a critical domain for all the symmetric functions
of the eigenvalues under volume constraint. Note that our criticality result
does not say whether the ball is an extremizer or not, since criticality is a
more general property. However, if we consider the following Steklov-type
problem

A%u—1Au =0, in Q,

% =0, on 0, 9)
Au : 2

7-% — 881/ — divga(v - D*u)sq = Au, on 09,

we can actually prove that the ball is a maximizer of the first positive eigen-
value among all bounded open sets of given volume, for any constant 7 > 0.
We do it by following the approach of [79] (see also [22]). Note that prob-
lem (9) arises in the study of the vibrations of a free plate whose mass is
concentrated at the boundary, and therefore is a natural generalization to
the biharmonic operator of the classical Steklov problem

Ay =0, in ),
% = A\u, on Jf,

which is related to the study of the vibrations of a free membrane whose
mass is concentrated at the boundary (see [77] for the physical derivation
of the problem). The results concerning problem (9) have been obtained
in collaboration with Luigi Provenzano (see also [31, 32, 73]). Note that
problem (9) should not be confused with another important Steklov-type
problem already discussed in the literature, namely

A2y =0, inQ,
u =0, on 092, (10)
Au = /\g—g, on 0f2,

which has a rather different nature. In fact, for the first postitive eigenvalue
of problem (10) the minimization is the interesting problem (rather than
maximization), and explicit examples show that, surprisingly, the ball is not
a minimizer (see e.g., [24, 25] and the references therein).

As for stability estimates of the eigenvalues, we prove indeed Lipschitz
continuity results with respect to the atlas distance, the Hausdorff distance
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and the Lebesgue measure. We adapt the arguments used by Burenkov and
Lamberti for elliptic operators (see [38, 39]) to the case of general elliptic
systems of partial differential equations. Then we consider the special case
of the Reissner-Mindlin eigenvalue system (6). Note that, as the parameter
t goes to zero, the coefficients of the problem diverge, possibly spoiling
stability estimates for small values of ¢. This can be explained with the
above mentioned shear locking phenomenon. However, we know that the
eigenvalues of problem (6) converge to those of problem (7) as t — 0, for
which we already have stability estimates. Nevertheless, using a particular
pull-back operator we can prove stability estimates for the eigenvalues of
problem (6) which are indepentent of ¢.

The thesis is organized as follows. Chapter 1 is dedicated to some pre-
liminaries. In Chapter 2 we consider the biharmonic operator under dif-
ferent boundary conditions, namely Dirichlet, Neumann, intermediate and
Steklov. For all these cases we show analyticity results in the spirit of [64]
and compute Hadamard-type formulas, which will be used to provide a char-
acterization of critical domains for the elementary symmetric functions of
the eigenvalues under volume constraint. Then we prove that balls are criti-
cal domains for such functions of the eigenvalues of all these problems under
volume constraint. Regarding the Steklov problem (9), we also prove that
the ball is a maximizer of the fundamental tone among all bounded open
sets of given measure. In Chapter 3 we consider the Dirichlet eigenvalue
problem for general polyharmonic operators. As in Chapter 2, we prove
analyticity of the elementary symmetric functions of the eigenvalues pro-
viding Hadamard-type formulas, and we give a characterization of critical
domains under volume constraint. Then we show that for all the polyhar-
monic operators the ball is a critical domain. Chapter 4 is devoted to the
stability estimates of the eigenvalues of elliptic systems of partial differential
equations with Dirichlet and Neumann boundary conditions. Adapting the
arguments used in [38, 39] we can prove estimates via the atlas distance, the
lower Hausdorff-Pompeiu deviation and the Lebesgue measure. In Chapter
5 we prove analyticity, Hadamard-type formulas and criticality conditions
for second order elliptic systems under Dirichlet and Neumann boundary
conditions. We also show that, if the system is rotation invariant, then balls
are critical domains under volume constraint. Finally, in Chapter 6 we con-
sider the Reissner-Mindlin problem for the vibration of a clamped plate. We
first prove estimates similar to those of Chapter 4, which are independent of
the thickness of the plate. Then we prove analyticity and Hadamard-type
formulas for the elementary symmetric functions of the eigenvalues, which
are used to provide a characterization of criticality. Then, after proving
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that the Reissner-Mindlin system is rotation invariant, we show that balls
are critical domains under volume constraint.

Part of the results in this thesis have been published or accepted for
publication. The discussion for the hinged plate problem in Chapter 2 has
been partially published in [28]. The discussion in Chapter 3 has been
published in [27]. The discussion in Chapter 6 has been published in [29].
A survey paper on Hadamard-type formulas and critical domains for the
problems considered in this thesis has been accepted for publication in [30].
Moreover, the discussion in Chapter 5 has been submitted as the paper
[26]. The discussion on the Neumann problem and on the Steklov problem
contained in Chapter 2 is part of the submitted papers [31, 32].
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Chapter 1

Preliminaries

In this chapter we introduce some basic results which will be used in the
sequel, and we set the notation.

1.1 The atlas class and the atlas distance

We denote by N the set of all positive integers, and by Ny the set NU{0}.

Let N € N. In the sequel, we shall always assume N > 2. For any set V in
RM and 6 > 0 we denote by Vs the set {x € V : d(x,0V) > 6}. We shall
also denote by V? the set {z € RY : d(x,V) < 6}. Here d(z,A) denotes
the Euclidean distance from = to a set A. We recall the following definition
from [38], where by cuboid we mean a set which is the isometric image of a
set of the form TIY ,]a;, by|.
Definition 1.1. Let p > 0, 5,5’ € N, s’ < s and {V;}i_; be a family of
bounded open cuboids and {rj}‘;zl be a family of isometries in RY. We say
that that A = (p, s, s, {Vj}j:l, {rj}j-zl) is an atlas in RN with the parame-
ters p,s, s, {Vitizi Aoy, briefly an atlas in RN,

We denote by C(A) the family of all open sets Q in RY satisfying the
following properties:

(i) € U (1), and (V;), 10 # 0

(ii) V;NOQ#D for j=1,...8, V;NOQ =0 for s < j <s;
(i1i) for j =1,...,s

Tj(Vj) = {23‘ S RN - ai; < x; < bij, 1= 1,....,N},

and
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ri(QNV) ={z eRY : ay; < zy < g;(T), T € W;},

where T = (z1,...,xn-1), W; ={Z € RN-L . ajj <x <bj,i=1,...,N—-1}
and g; is a continuous function defined on W; (it is meant that if ' < j <'s
then g;(z) = by for all T € W;); moreover for j =1,...,s

anj + p < g;(Z) < bnj — p,

for all z € W ;.

We say that an open set Q in RN is an open set with a continuous
boundary if Q2 is of class C(A) for some atlas A.

Let w : [0,00[— [0,00] be a modulus of continuity, i.e., a continuous
non-decreasing function such that w(0) = 0 and, for some k > 0, w(t) > kt
for all0 <t <1. Let M > 0. We denote by Cf/[(')(A) the family of all open
sets Q0 in RN belonging to C(A) and such that all the functions g; in (i4i)
satisfy the condition

19;(2) = 9;()| < Mw(|lz — ),

for all T,y € Wj. We also say that an open set is of class C*“C) if there
exists an atlas A and M > 0 such that Q € CR}(')(A).
Letl € N,M > 0. We say that an open set ) is of class C};(A), Cﬁ\’/[l (A)
if Q is of class C(A) and all the functions g; in (iii) are of class C' (W)
with
9ilagry = Do 1Dl e,y < M,

1<]al<l
D%gi(x) — D%g;(y
’gj|cl’1(Wj) = ‘g]|cl(W]) + Z Sug ‘ g](‘_) _‘ g](y)‘ S M
|| =l z,yeW; r=y
T#y

respectively".
We say that an open set Q in RN is an open set of class C*, Cb1 if Q is
of class Ch,(A), Cﬁ\’/[l (A) respectively, for some atlas A and some M > 0.

The family of open sets of class C'(A) can be thought as a metric space
endowed with the so-called Atlas Distance. We recall the definition intro-
duced in [38].

'Note that as customary ||g;llctr,) = l9illzew,) + |9ilaqw,) and lgjllciigr,) =

lgillzoe (wy) +1951et1 w,)-
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Definition 1.2. Let A= (p,s,s',{V;};_1,{rj};=1) be an atlas in RN, For
all 21,89 € C(A) we define the atlas distance d 4 by

da(Q1,Q2) = max sup  [g1;(Z) — g2;(2)], (1.1)
I=hes (an)er; (V)

where g1, g2; are the functions describing the boundaries of {11,€s respec-
tively, as in Definition 1.1 (iii).
Moreover, if Q € C(A) we set

dj(x,09) = |g;((rj(z))) = (rj(z))nl, (1.2)
forallj=1,...,s and x € V;, where g; is as in Definition 1.1.

Let A = (p,s,s',{V;}5_1,{r;};=1) be an atlas in RN, For all z € V' =
Uj-’zlvj we set J'(z) ={j € {1,...,s'}: 2 € V;}. Let Q € C(A). Then we
set

da(x,00) = max d;(x,00),
A( ) e (z) J( )
for all € V', where d;(z,99) is defined in (1.2). Observe that if Q € C(A)
then 9 C V. Therefore if 1,Q9 € C(A) then

da(1,82) = sup da(x,002) = sup da(z,08).
€N €002

For all € > 0 we set
Qea=0\{z eV da(z,00) < e},
QA=QU{z eV dug(z,0Q) < €}
We recall the following lemma from [38].

Lemma 1.3. Let A be an atlas in RN and € > 0. If Q1 and Qs are two
open sets in C(A) satisfying the inclusion

(Q)ea C Qo C (21)4, (1.3)

or
(Qa)ea C U C (Q2)A, (1.4)

then
da(Q1,89) <e. (1.5)
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The atlas distance depends on the chosen atlas but has the advantage
of being easily computable. Moreover, we observe that it can be controlled
via the Hausdorf distance. Indeed, we have the following theorem where,
for the sake of completeness, we collect also other relevant properties of the
atlas distance proved in [38].

Given two sets A, B in RY the lower Hausdorff-Pompeiu deviation of A
from B is defined in [38] by

dup(A, B) = min {sup d(z, B), sup d(z, A)} .
€A zeB

Note that the standard Hausdorff-Pompeiu distance of A and B is

d"P (A, B) = max {Sup d(z, B), sup d(x,A)} .
z€A z€B

Theorem 1.4. Let A = (p,s,s’,{Vj}jzl,{rj}j:l) be an a~tlas, w a mod-
ulus of continuity as in Definition 1.1 and M > 0. Let A = (p/2, s,5,
{(Vi)ps2ti=1, {rj};=1)- Then the following statements hold:

(i) (C(A),dA) is a complete metric space;
(i1) CJU\J/[(')(A) is a compact subset of C'(A);
(iii) There exists ¢ > 0 depending only on N, A, w, M such that
AP (00, 00) < d5(Q, Q) < cw(dyp(00,00)),  (1.6)
for all Q1,9 € C¥1)(A).
We also recall the following lemma from [38].

Lemma 1.5. If Q1 and Q9 are two open sets satisfying the inclusions

(Q1)e C Q2 C ()° (1.7)

(Q2)e € C (), (1.8)
then

dyp(092,00) < e. (1.9)

Observe that if ; and Q9 are two open sets satisfying inclusion (1.7)
then it may happen that they do not satisfy inclusion (1.8), and

sup d(z,082) > €.
€I

We refer to [38, Appendix] for some counterexamples.
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1.2 Sobolev spaces and elliptic operators

Let N,l € N, 1 < p < 0o and Q be an open set in RY. We denote by
WHP(Q) the Sobolev space of real-valued functions in LP(§2), which have all
distributional derivatives up to order [ in LP(Q2), endowed with the norm

lullwio) = Y ID%ul| o). (1.10)

o<l

We denote by Wé’p () the closure in W'P(Q) of the space of the C-
functions with compact support in €. We shall also use the notation H'(f),
HL(Q) for the spaces W2(9Q), Wé’Z(Q) respectively.

Let m € N. We endow the product space W'P(9)™ with the norm

m
ullyra@ym = Y lujllne ), (1.11)
j=1

where by u; we mean the j-th component of the vector-valued function w.
We have the following result.

Lemma 1.6. Let Q be an open set in RV, 1 < p < co. Let V(Q) be a
subspace of WHP(Q) such that the embedding V (Q) € WI=LP(Q) is compact.
Then there exists ¢ > 0 such that

lellwro ey < c(nuumm s HDaulle@), (1.12)

|a|=l
for allu e V(Q).

Proof. The case p = 2 can be found in [38, Lemma 2.2]. The general case
can be treated in the same way. O

We have the following Gagliardo-Nirenberg-type inequality for interme-
diate derivatives of vector-valued functions (see also [18, 33]).

Theorem 1.7. Let Q be a bounded open set of RN of class C'. Let 1 <
p1,p2 < 00, I,r € Ng with 0 < r <l and let 7 < 0 < 1. Suppose that if
l<pa<ooand @ =1, thenl —r — p% is not a mon-negative integer. Let
1 <p < oo be such that

N N N
—r:(1—9)+9<—l>.
b b1 b2
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Let m € N. Then, for any u € LP*(Q)™ U W'P2(Q)™, there exists C =
C(N,p1,p2,1,7,0) such that

S D% ull gy < Crlfull ks oyl [l Gyt -

|a|=r

Proof. For the case m = 1 we refer to [50, 72]. As for the general case, we
have

0
> D%l zoa) < Cllul Loty 1Sy )

laf=r
for all j =1,...,m, where C' > 0 is independent of u = (uy,...,u). Using
the fact that, if ay,...,a,m > 0 and ¢ > 0, then

t
m m

13 .
E a; <m g a; | ,
J=1

summing on j we get

> D% ullooyn < €Y (sl id oy 16y )
j=1

laf=r

m m
0
Z ’uJHLm () Z Huj|’W17P2(Q)
Jj=1 Jj=1

< CmQHUHLm Q)mHunl P2(Q)m

O

Let V(Q) be a closed subspace of W»2() containing Wé’Q(Q), and m €
N. We consider the following eigenvalue problem

/ Z Z A” D"‘ulD'ijde’— )\/ u - vdx, (1.13)
lal,|B<14,j=1
for all functions v € V(2)™, in the unknowns u € V()™ (the eigenfunc-
tions) and A € R (the eigenvalues), where for all «, 8 € N}V with |af, |3] <1
and for all 7,57 € N with ¢,7 < m, the coefficients Agﬁ are bounded mea-
surable real-valued functions defined on 2. Here and in the sequel we shall
denote by u - ¢ the standard scalar product in R™. We set

(u,v) / Z Z A” DauzDﬁv]da:

lal |8t 6,j=1
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and Qq(u) = Qq(u,u), for all u,v € WH2(Q)™.
We make the following assumptions on the coefficients.

e Symmetry: for all o, 8 € N} with |a/,|3| <1 and for all i,j € N with

Ljsm, o
AZB = Aga (1.14)
e Positivity: for any u € VVlloi(Q)m,
m ..
Z E AgﬂDo‘uiDﬁuj >0, a.e.in Q. (1.15)
|al,|B|<ti,j=1

e Coercivity: there exist two constants a,b > 0 such that, for all u €
Wi
allulyiagy < Qo) + bllul (g, (1.16)

Remark 1.8. We note that conditions (1.14)-(1.16) are not very restric-
tive. For instance, the biharmonic operator considered in Chapter 2 and
the polyharmonic operators Pno considered in Chapter 3 satisfy conditions
(1.14)-(1.16). Also the Lamé system —A — kNVdiv (under Dirichlet or Neu-
mann boundary conditions) for any k > 1 — % and the Reissner-Mindlin
problem (6.1) are in this class of operators.

If the embedding V(Q) C L?(Q) is compact, then the eigenvalues of
equation (1.13) coincide with the eigenvalues of a suitable operator Hy (q)
canonically associated with the restriction of the quadratic form Qq to V(12).
In fact, we have the following theorem.

Theorem 1.9. Let Q be an open set in RN. Let,m € N, a,b >0 and, for
all a, B € NY with |al,|B| <1 and for all i,j € Ng with i,j < m, let Agﬂ be
bounded measurable real-valued functions defined on ), satisfying conditions
(1.14)-(1.16).

Let V(Q) be a closed subspace of WH2(Q) containing Wé’Q(Q) and such
that the embedding V () C L*(Q) is compact.

Then there exists a non-negative selfadjoint linear operator Hy(qy on

L2(Q)™ with compact resolvent, such that Dom(H‘l/(?z)) =V(Q)™ and

< H‘l//(?z)u, H‘l//(?z)v >r2m= Qa(u,v),
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for all u,v € V(Q)™. Moreover, the eigenvalues of equation (1.13) coincide
with the eigenvalues A\n[Hy ()] of Hy o) and

An[Hy ()] =  inf supM. (1.17)

2
LIV (Q)™ U m

Proof. The proof is similar to that of [38, Theorem 2.8], and is based on the
variational characterization of the spectrum (see e.g., [44, Chapter 4]). O

Definition 1.10. Let Q be an open set in RNV, Let I,m € N, a,b > 0 and,
for all o, € NY with |al,|8] < 1 and for all 3,5 € N with i,j < m, let
A, be bounded measurable real-valued functions defined on Q, satisfying
conditions (1.14)-(1.16).

If the embedding Wé’Q(Q) C L*(Q) is compact, we set

An [0 = An[Hypiz |

If the embedding Wh2(Q) C L%(Q) is compact, we set
AN = A [Hyprz o).

The numbers A, p[Q], A N[ are called the Dirichlet eigenvalues, Neu-
mann eigenvalues respectively, of operator (3.1).

When we refer to both Dirichlet and Neumann boundary conditions we
write just A,[Q] instead of A\, p[Q2] and A, Ar[©].

We note that, for an open set Q of class C(A) (see Definition 1.1),
inequality (1.12) holds for all u € W»2(Q) with a constant ¢ depending
only on A. More precisely, we denote by Dq the best constant for which
inequality (1.12) is satisfied for V(Q2) = Wé’Q(Q). We denote by N the best
constant for which inequality (1.12) is satisfied for V(Q) = W%(Q). Then
we have the following (for a proof we refer to [33, Theorem 6, p. 160]).

Lemma 1.11. Let A be an atlas in RN, m € N. There exists ¢ > 0
depending only on N, A and m such that

1 <Dg<Ng<cg,

for all open sets Q2 € C(A).
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Lemma 1.12. Let A be an atlas in RY. Let I,m € N, L,a,b > 0 and,
for all o, B € Név with |, [B8] < I and for all i,j € N with i,j < m, let
Agﬁ € L>®(U;_, Vi) satisfy HAQBHL“(Uzleh) < L and conditions (1.14)-
(1.16) for any 2 € C(A).
Then for each n € N there exists Ay, > 0 depending only on n, N, A,l,m
and L such that
An,/\f[Q] < )\n,D [Q] < Ap,

for all open sets Q2 € C(A).

Proof. The proof is similar to that of [38, Lemma 3.4]. O

1.3 Domain perturbations and pull-back of oper-
ators

Let © be a bounded open set in RY of class C'. We shall consider
problems of the type of (1.13) in a family of open sets parameterized by
suitable diffeomorphisms ¢ defined on 2. Namely, we set

Ab = {qﬁe CLHQ;RYY . inf [p(z1) — d(z2)] >0}

r1,r2E€S |fL'1 —.T2|
T1F#T2

where C}(£2;RY) denotes the space of all functions from 2 to RY of class
C', with bounded derivatives up to order I. Note that if ¢ € .Aé] then ¢ is
injective, Lipschitz continuous and infq [detV¢| > 0. Moreover, ¢(f2) is a
bounded open set and the inverse map ¢(~1) belongs to Al¢>(ﬂ)'

Let V() be a closed subspace of W2(Q) containing Wé’2(Q). We ob-
serve that, if the embedding &g : V(Q) C L?(2) is compact, then also the
embedding Eyq) : V(6(Q)) C L*(¢(£2)) is compact, for any ¢ € AL, Here
and in the sequel, we denote by V(¢(€2)) the space of all functions u such
that uo ¢ € V(Q). In fact, the map i, from WH2(p(€2)) to WH2(Q2) which
takes u € WH%(p(Q)) to u o ¢ is a linear homeomorphism, and i;l = ig-1.
Therefore

Eo() =g 0 Eq iy,
hence £4(q) is compact.

Thanks to these observations, it is natural to consider problem (1.13) on
¢(Q) and study the dependence of \,[¢(Q2)] on ¢ € AL. We shall endow the
space C!(€Q2;RY) with its usual norm HfHC})(Q RN) = SUP||<i, cco | D f(2)]-
Note that .AZQ is an open set in C’é(Q;RN), see [64, Lemma 3.11]. Thus, it
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makes sense to study differentiability and analyticity properties of the maps
¢+ A [6(Q)] defined for ¢ € AL. For simplicity, we write \,[¢] instead of
An[0(2)]. To do so, we shall consider problem (1.13) on ¢(£2) and pull it
back to €.

Let V(Q) be a closed subspace of W52(€2) containing Wé’z(Q), m € N.
Let T be an operator from V (¢(Q2))™ to its dual, for any ¢ € AL,. We recall
that the pull-back of T is defined by

TyluM[u®] = Tu® 0 ¢~ [u® 0 1], VuV,u® e V(™. (1.18)

Using the pull-back of operators as defined by (1.18), we will be able to
study differentiability and analyticity properties of the eigenvalues.

Since bifurcation phenomena may occur when dealing with multiple
eigenvalues, we shall consider the elementary symmentric functions of the
eigenvalues of (1.13) (or other operators). To do so, as in [64], we fix a finite
set of indexes F' C N and we consider those maps ¢ € .AZQ for which the
eigenvalues with index in F' do not coincide with eigenvalues with index not
in F'; namely, we set

AF,Q:{qﬁeAlQ: Anld] % A6, VneF,keN\F}.

It is also convenient to consider those maps ¢ € Apgq such that all the
eigenvalues with index in F' coincide and set

Ora={p € Ara: A\, [0] = Ay[0], Vni,n2 € F}.

For ¢ € Arq, the elementary symmetric functions of the eigenvalues
with index in F' are defined by

AF,S[¢]: Z )\nl[gﬁ])\ns[d)]’ 5:17""|F|'

N1y...,NsEF
ny<---<ns
When the meaning will be clear from the context, we shall use the nota-
tion Arq, Ofq, Ary, for all the problems we consider in the sequel without
any additional specification.



Chapter 2

Biharmonic operator and
plate problems

In this chapter we discuss the eigenvalue problem for the biharmonic
operator A? subject to different types of boundary conditions. This operator
is related to the study of the bending of a plate via the Kirchhoff-Love model;
we refer to [51, 74] for the physical derivation of the problem (see also [42]).
In particular, the problem of a vibrating plate leads to the equation

A%y — TAu = I, (2.1)

on a bounded open set € in R%. Here 7 is a non-negative constant related
to the lateral tension of the plate.

Since the dimension does not play any relevant role in our discussion, we
consider from the beginning bounded open sets in RY. The weak formulation
of problem (2.1) is

/ (1 —a)D?*u: D*p + aAulp + 7Vu - Vipdr = )\/ updz, (2.2)
Q Q

for any ¢ € C°(Q2), where « is a parameter depending on the material,
typically 0 < o < 1. However, for some particular material, the parameter
a happens to be negative (cf. [51, §1.1.2]). We note that, thanks to the
inequality

ID2u? > %(Au)a Vu € H2(Q),

the quadratic form associated with problem (2.2) turns out to be positive
for —ﬁ <a<l.
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As we have said, we shall consider equation (2.1) subject to different
boundary conditions. These conditions obviously depend on the choice of
the energy space V(2) in which we study the problem (2.2). If we choose
V(Q) = H3(Q) as the energy space, we have Dirichlet boundary conditions

ou
= — =0o0n0Q
U= on 012,

v

which are related to a clamped plate. Note that in this case the problem
does not depend on the parameter a. The choice of V(Q) = H?(Q) as the
energy space leads to Neumann boundary conditions
0%u ou 0Au
1—a)— Au=17— —
( a)al/Q adu Tov T~ ow
which are related to a free plate. Here divyg is the tangential divergence
operator and, for any vector field f, fao = f — (f - v)v is the tangential
component of f.

Since the problem is of the fourth order, we also have the possibility of
choosing the energy space V(Q) = H2(Q)N H} (), which gives the so-called
intermediate boundary conditions

82
u= (l—a)a—;;ﬂ—aAu:Oon 09,
which are related to a hinged plate.

We remark that the operator P defined by the left-hand side of (2.2) (cf.
(2.6)) satisfies conditions (1.14)-(1.16), and therefore Theorem 1.9 applies
to all these problems.

We shall also consider the so-called Steklov boundary value problem for
the biharmonic operator, namely

— (1 — a)divoa(v - D*u)sq = 0 on 99,

/ (1 —a)D?u: D*p + aAulp + 7Vu - Vipdr = )\/ updo, (2.3)
Q o0

with u, ¢ € H%(Q), which is related to the vibration of a plate whose mass
is concentrated at the boundary. This problem is a generalization of the
classical Steklov problem (see [77]), and we refer to [31, 73] for the physical
derivation of the problem.

2.1 Dirichlet boundary conditions (clamped plates)

Let —ﬁ < «a < 1, 7 > 0. The Dirichlet problem for the biharmonic
operator reads
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2, _ -
{Au TAu = Au, in Q, (2.4)

u:%zo, on 012,

where Q is a bounded domain in RY of class C! and v is the outer unit nor-
mal. We observe that the eigenvalues of problem (2.4) are strictly positive.
We consider on HZ(2) the bilinear form

<u,v>= /(1 — a)D*u : D*v + aAulAv + 7Vu - Vudz, (2.5)
Q

for any u,v € HZ(£2). One can prove that the bilinear form (2.5) defines on
HZ(9) a scalar product whose induced norm is equivalent to the standard
one defined by (1.10). In this section we shall consider the space H3(Q)
endowed with the scalar product (2.5).

We consider the operator P from HZ(Q) to its dual defined by

Plu][v] = / (1 —a)D*u: D*v 4 aAulv + 7Vu - Vudz, (2.6)
Q

for any u,v € HZ(). The operator P is easily seen to be a linear home-
omorphism of HZ(2) onto its dual. We also denote by J the continuous
embedding of HZ(f) into its dual, defined by

Ju][v] = /quda:, Yu,v € H3 ().

Note that problem (2.4) can be written in the following weak formulation
Plu][v] = AT [u][v], Vv € Hj (). (2.7)

We define the operator T := P(=Y o 7 from HZ() to itself. We have the
following

Lemma 2.1. Let —ﬁ < a <1l 72>0. Let Q be a bounded domain

in RN of class C'. The operator T is a non-negative compact selfadjoint
operator in the Hilbert space Hg(Q) Its spectrum is discrete and consists of
a decreasing sequence of positive eigenvalues of finite multiplicity converging
to zero. Moreover, the equation Tu = pu is satisfied for some u € HZ(1),
p > 0 if and only if equation (2.2) is satisfied with 0 # X\ = p~! for any
p € H3 ().

Proof. For the selfadjointness, it suffices to observe that

< Tu,v >=< P71 o Ju,v >= P[P™! o Ju][v] = J[u][v],

for any u,v € H3(2). For the compactness, just observe that the operator 7
is compact. The remaining statements can be deduced by Theorem 1.9. [J
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2.1.1 Analyticity results

Let Q be a bounded open set in RN of class C'. We shall consider
problem (2.4) in ¢(Q) for any ¢ € A2 and study the dependence of \;[¢(€2)]
on ¢.

The main result of this section is the following analogue for the bihar-
monic operator of [64, Theorem 3.38] concerning the Dirichlet Laplacian.

Theorem 2.2. Let — 1 <a<l, 7>0. Let Q be a bounded open set

in RN of class C' and F be a finite set in N. The set Apgq is open in A3
and the real-valued maps which take ¢ € Arq to Aps[¢| are real-analytic
on Apq for all s = 1,...,|F|. Moreover, if ¢ € Opq is such that the
eigenvalues \j[@] assume the common value Ap[¢] for all j € F, and gzﬁ( )
is of class C’4 then the Frechét differential of the map Ap s at the point ¢ is
delivered by the formula

|F|

dly—g(Ars) Y] = —AE[ <F| 1) Z/ (?f;)zc-uda, (2.8)

for ally € CQ(Q RN), where ¢ = o o ¢V and {vitier is an orthonormal
basis in HZ((S2)) (with respect to the scalar product (2.5)) of the eigenspace
associated with Ap[¢].

In order to prove Theorem 2.2 we consider equation (2.7) in ¢(Q2) and
pull it back to 2. We note that

P=(1—-a)H?*+aA? - 1A,

where the operators H2, A2, A are defined by

H?[u][v] = /QDQU : D*vdz,

2 = ulAvdx
A[u][v}—/QAAd,

and

Alu]v] = / Vu - Vudz,
Q
for all u,v € H?(Q2). We consider the equation

P[] = AT ][], Vv € Hi(p(R), (2.9)
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in the unknowns v € H3(¢(2)), A €]0, oo[. Recall that the pull-back to € of
the operator H? on ¢(f2) is defined by

12ulle] = | (Do ot=): Do o)) o glderVolda,
for all u, € H%(Q), and similarly for A2, As. We have
Py = (1—a)HZ +aA} —TA,.
We will denote by Hg’ 4(§2) the space HZ(9) endowed with the form
< u,v >g= Pylul[v], Yu,v € H3(Q).
We also recall that

Tslul[w] = /Quw]dethﬁdx, Yu,w € HX(Q).

Note that the map from H?(Q) to H?(4(Q)) which maps u to wo () for all
u € H?(f) is a linear homeomorphism. Hence, equation (2.7) is equivalent
to

Pylulle] = ATslullel, ¥ o € H4(),

where u = v o ¢. It turns out that the operator T' defined in Lemma 2.1
with € replaced by ¢(€2) is unitarily equivalent to the operator Ty defined
on H027 () by

Ty:= P o Ty (2.10)

Thus we can prove the following lemma where £(HZ(f2)) denotes the
space of linear bounded operators from HZ(Q) to itself and and Bs(HZ(12))
denotes the space of bilinear forms on H3(f2) (both spaces are equipped with
their usual norms).

Lemma 2.3. Let —ﬁ <a<1,7>0. Let Q be a bounded open set in RN
of class C*. The operator Ty defined in (2.10) is non-negative selfadjoint
and compact on the Hilbert space Hg#)(Q). The equation (2.9) is satisfied for
some v € H3(¢(Q)) if and only if the equation Tyu = pu is satisfied with u =
vo¢ and = A", Moreover, the map from A% to L(H3(Q)) x Bs(HZ(2))
which takes ¢ € A% to (T, < -, >4) is real-analytic.
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Proof. Since the operator Ty is unitarily equivalent to the operator T', the
first part of the lemma immediately follows by Lemma 2.1. In order to
prove the real-analytic dependence of Tj; upon ¢, we note that by standard
calculus

N

ou adm'

r,s=1 ..
ij

for all u € H%(S2), where Hyu is the classical pull-back of the Hessian matrix

D?u, and o = (V)™ (cf. [28, p. 240]). Moreover

N
0%u ou 0oy
Agu = Z (Mﬁrigsi + ({maxSUSi) )
r,s,i=1
for all u € H?(€2), where A, is the classical pull-back of the Laplace operator
A (see also [64, Proposition 3.1]), and

Veu = Vu- o,

for all u € HY(Q), where V, is the classical pull-back of the gradient V.
By formula (2.11), it follows that the map from A2 x H%(2) to L2(Q)N?
which takes (¢, u) € A% to Hyu is real-analytic, and similarly for Agu, Vsu.
Thus also the map from A% x H2(Q) to L*(Q) which takes (¢, u) € A3 to Psu
is real-analytic since it is composition of real-analytic maps. This implies
the real-analytic dependence of Ty and < -,- >4 upon ¢. ]

Proof of Theorem 2.2. We denote by 11;[¢], j € N, the eigenvalues of T,. By
Lemma 2.3, p;[¢] = /\j_l[¢] for all j € N, hence the set Apgq coincides with
the set {¢ € A2 : p;[d] # wldl, Vi € F, 1 € N\ F}. By Lemma 2.3, Ty
is selfadjoint with respect to the scalar product < -,- >4 and both T} and
< -,- >4 depend real-analytically on ¢. Thus, by applying [64, Thm. 2.30],
it follows that Apq is an open set in CZ(€2;RY) and the functions which
take ¢ € Apq to

MF,S[¢] = Z gy [¢] Tt Mg [qb]

J1oends€F
J1<-<Js
are real-analytic for all s = 1,...,|F|. Since
Mg, p|—n[¢]
Apslo] = EIFIZhIP]

Mg (9]
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for all s = 1,...,|F|, where Mpgol¢] = 1, it follows that Ap,[¢] depends
real-analytically on ¢ € Arq (see also [64, Theorem 3.21]).

It remains to prove formula (2.8). Let ¢ € Opq, Ar[@] and {v;}icr be as
in the statement. We set u; = v; o q~5 for all [ € F' and we note that {u;}ep
is an orthonormal basis in Hg’ (;E(Q) for the eigenspace corresponding to the

eigenvalue A'[¢] of the operator T3. By [64, Thm. 2.30], it follows that
1-s77 |F| -1
dlg—gTrsle] = X017 ) D < dly—gTol)lw],w >;
leF

for all ¢ € CZ (2;RY). Note that by standard regularity theory (see e.g.,

[51, Thm. 2.20]) v; € H4(¢(2)) for all [ € F.
We have

< dly—gTs[V[w], w > 5= d| ,_ 3T [¥][w][w]
— AR [0)d] 4 g Pol][wa] [r].

Moreover, by standard calculus,

[(d| og (det Vo) M) o J)(*U] detVo() = div (¢ o &PU) . (212)

and therefore

A /&(m vRdivedy. (2.13)

Using Lemmas 2.4, 2.5 and 2.6 below, and the fact that v; = |[Vu;| = 0 on
0¢(£2) we obtain

d g 5 P [10] [wa] [}

= /~ ((1 — a)|D2vl\2 + a(Avl)Q) ¢-vdo — )\F[QZ;] ) V(vlz) - pdy
26(Q) ()

32111 2 ~ 2
/am(ayg) ¢ vdo — Al /&(mvwn pdy

To conclude, just observe that

/~ V(vf) - Cdy = /~ V3¢ - vdo — / viEdivedy. (2.14)
B(Q) () P(Q)

O]
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Lemma 2.4. Let Q be a bounded domain in RN of class C', and let qg €
A2 be such that d(Q) is of class C*. Let ui,up € H2(Q) be such that
v =u0¢  vg=ug0p ! € HY(P(Q)). Then
o sHElmllu) = [ (DPors DPun)C - vio
()

+ /8(2;(9) <diVaq~5(Q)<1/ . DQUI)(')J)(Q)VUQ —i—diva(z;( )(1/ D2U2) 03 )VU1> - (do

‘i‘/~ (aaAU1 V'UQ 8§U2 V1)1> -CdU—/ (A2U1V1)2 + AZ'I)vil) ~Cd0
9p(<2) v ?(22)

820, 820, a¢
_/&5@)<au2v 2+ 5 “ 2V 1> 52 do

821}1 0 821}2 8
— — - (d 2.1

for all ) € CZ(LRY), where ¢ = op~t.
Proof. We have

d| y_ g H3 [0 [un)us)
= [ (dly D067 0 9w : (D(uz0671) 0 6] det Dilda
+ [ (D067 0d) : (d],_5DPuz 0 67 0 )] det Dda
+ [P 0870 ) s (Duzo 670 )dl,_g|det Dol[uld,  (2.16)
Q
and we note that, by (2.12), the last summand in (2.16) equals
[ (D2v1 : D2v2) div(dy.
»(Q)

By standard calculus we have (see [28, formula (2.15)])

DQ(UO¢_1) O(]s _ (qu) tDQ i au (90;“ '
N 6:Bk 6:Bl L ’
2,J

,

where o = (V¢)~!. This yields the following formula

N
0
d|,_5(D*(wod™)od)[¢]od™! :_D%VC—V(tD?U—Tl 8; Gy (2.17)
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where ¢ =1 o0¢~! and v = uo¢~!. By rewriting formula (2.17) componen-
twise we get

(dly=p(D*@os o)Wl 067")
_—ZN:< Po 0G , v 06 PG 81))
AyiOyr y; 3yj8yr dy;  OyiOy; Oyr )

Now we use Einstein notation, dropping all the summation symbols. The
first summand of the right-hand side of (2.16) equals

_/ < 82’01 8@ 82111 8CT+ 82C7n 81)1) 82’02
@) \9Yi0y, dy; ~ 0y;0y, dy; ~ 0y;0y; Ay, ) 0y, y;

dy.  (2.18)

In order to compute (2.18), integrating by parts, we have
821)1 a(r 821}2 81}1 8Cr 821)2
dy = Uy do
5(02) 9YiOyr 9y; Oy;i0y; 5) Oyi Oy 0y;0y;

_/ Ovy 0dive 0%vy d _/ Ovy 0G0y y
s Oyi Oy; 0y;0y; 3() Oyi Oy; 0y;0y;0yy

61)1 8@ 62’1)2 8’[)1 BCT 831)2
= _ VTidO' . dy
26(0) OYi Oy;  Oyi0y; 3(0) Oyi 0y; 0y;0y;0yy,

_/ aUld v{—F>— vy ydo+/ D?vy : D*vodivCdy
od@) Oy Oyidy; L

+/~ div¢Vuy - VAuvady,
?(Q)

and
/ 81)1 82@« 821)2 / 81)1 8@« 822)2
) dy= [ vj do
3(Q) Oyr 0yiOy; Oy;0y; 24() Oyr Oyi * Oy;0y;
/ 8201 6(1" 821}2 / (9’1)1 6(1" 8Av2
- [ dy — [ dy
3 9Yr0y; 0y; Oy y; 3(@) Oyr Oyi Oy;
o / 8’01 8Cr 62212 do — / 8111 OQ 8AU2
p(2) Q)

»
dyy Oy; 7 Oy;0y; Q) Oyr Oyi Oy;

_/ %8@ 0%vy da+/ %Bdivg 9%vy y
@) Oyj Oy Dyidy; ) 9y; Oyi Oyi0y;

+/ %8@ vy y
&) 9yj Oy OyiO0y;0yy
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/ Ovy 8@1/‘ 0?vy . _/ 0v1 0, 0Avg
@) Oyr Oyi 7 Dyidy; 3(©) 9yr Oyi Oy,
/ 8’1)1 8@ (921)2 / 61)1 86« 83’1}2
0 e, T g [ S0Ge T,
06(Q) 0y; Oyi ~ Oyi0y; 3(0) Oyj Oy; Oyi0y;0yy,
920
+/ %dlvg‘ vido — / D?v; : D?vydivCdy
0d(2) 0Yj 3yz3yg
— /~ Vv - VAwvadiv(dy.
»(2)

It follows that

dl,_sH3[W)ullug] = — [ D?vy: D*updividy
5@

/ <6U1 622}2 82}2 821}1 >8Cr
- + vydo
a6 \ OYi Oyidy; ~ Oy; 0y;0y; ) Jy;
+/ <5v133v2+5v2@3vl> % 4,
5@ \ Oyi Oy;Oy;0y, — Oy; Oy;idy;0y, ) y;
2 2
+ / ) <(%1 07z | Ovy O7un >1/jdiVCdo
()

Oyi 0y;i0y; ~ Oy; 0y;0y;
— / (Vuy - VAvg + Vg - VAwy) div(dy
()
/ <(91)1 82’02 8’02 82’01 > 8@
- — + o2 =" o
od() \Oyr Oyidy; — Oy, Oyidy; )~ Dy

(91)1 8A’U2 8’02 8A’Ul 6@
+ / < + > d 2.19
s \Oyr Oyi ~ Oyr Oyi ) Oy y (219)

We now recall that, since d¢(9Q) is of class C*, we have

divg = divyg0)C + gg v on (),
and 52
f f -

for any function f smooth enough in a nelghborhood of dp(Q) (see also [46,
§8.5]). Moreover, since v = Vb, where b is the distance from the boundary
defined in an appropriate tubular neighborhood of the boundary, then Vv =
(Vv)t and 9% = 0, from which it follows that

Vs = Vas¥) on 96(9). (2.20)
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We will use these identities throughout all the following computations.
We get that the sixth summand in the right-hand side of (2.19) equals

8’1)1 B’UQ
— /aqg(g) (&UT (v- D27}2)a¢§(§2) + @(V . DQUl}&J)(Q)) . Va&(g)grda

_/ Ovy H%vy n Ovy 0?01\ O¢, do
o6() \Oyr V2~ Oy, Ov? ) Ov

81)1) 2
= Voo [ o2 ) (v Do),
/aé(Q)( o0 ((9.% ( 2)aéte)

+ / (divan(Q)(V . D2v1)aq;(Q)Vv2 + di"a&(g)(’/ . DQW)@&(Q)VUl) - Cdo
26(2)
/ (81}1 0%vg vy 821;1> bl
o ~ a,, 9.2 + A a2 —do
o6 \Oyr Ov2 Oy, Ov? ) Ov
2 2 2 2
:/ ( O _Own | O Our >Vj<rd0
06() \OYi0y, Oyidy; ~ 0yidy, Oy;dy;
+ /~ (lea(Z)(Q)(V . D2v1)a¢;(Q)V1}2 + dlquE(Q) (y . DZU?)B(E)(Q)VQ”) - Cdo
9p(2)
/ <8U1 vy | Ouy 8201) ¢,
- ~ 9 + 2 dU
oa(0) \Oyr Ov? Oy, Ov* ) Ov
82'Ul 0 621)2 0
B 902 ou a3 A Cdo. (2.21
/aé(sz) <3V2 o 2T g 8uvm> (o (2:21)

The seventh summand in the right-hand side of (2.19) equals

A A
/~ (8 V1 Vg + OAvy Vv1> .Cdg_/ (A0 Vg + A%, V) - Cdy
05(9) ov v »(Q)

821}1 8A’U2 62’02 8A1)1
- /: + Cv"dy
3@ \Ovidyr Oy;  0y;0y, Oy,

= / ) <8A“1VUQ+ M”vm).gdo— / (A%0 Vv + A%V ) -(do
3¢(Q) 61/ aV ¢(Q)

— /~ (V’Ul -VAvy + Vg - VAvl) ¢ -vdo
09(%2)

81)1 82AU2 81)2 82A1)1 )
+ + rd
/QS(Q) (3% 0yi0y,  dyi 0y;0y, rely
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o,
P(Q)

(Vuy - VAvg + Vg - VA ) div(dy.

The second summand in the right-hand side of (2.19) equals

- /~ V(Vvy - Vo)V (G ) vpdo
99()

= — AV Vi - Vug)V 42 Cvpdo
/%(Q) 03 (VU1 - V12) V50 (Gr)

G,
— — (Vv - Vuy) —=v,do.
/3&(9) 81/( ! 2) 81/

0

The third summand in the right-hand side of (2.19) equals

83112

/ <8U1 Ova
26(Q) \ 0Yi 0y;0y;0y;

83111 )
—— | vi(do
0y 0y;0y;0yy i

_/ (8@1 82AU2 n
3 \ 9Yi 0y;0yy

2
87}2 (9 AU1> Crdy

Oy; 0y; Oy
_/ ( vy Py vy Puy >Cd
3 \OyiOy; OyiOy;0y, — Oyidy; yidy;0y, ) ™ Y
ovy 83?}2 Ovg 837)1 )
= — e+ ———— | vj(do
/an(Q) (3% AyiOy;0yr ~ Oy; 0y;0y;0y, i

_/ (8’01 82A2}2 +
3 \ 9yi 0y;0y,

8’1)2 62Avl
rd
y; ayiayr> Grely

(2.22)

(2.23)

— /~ D%y : D*vy( - vdo +/ D%, : D*vydivCdy. (2.24)
(%) #(%2)

From (2.19)-(2.24), it follows that

d]qb:q;HiW][“l][W] == /aé(ﬂ)
0

G,
— — (Vv - Vo) —=v,do +
/3&(9) al/< ! 2) ov

Vaq;(m (Vg - VUQ)Vaé(Q) (¢ )vrdo

0
— (Vv - Vug)div(do
/ais(m A

- /a&(ﬂ) (divage (v - D201z Vo + div g0 (v - D) g0 Vo ) - Cdo

821)1 821)2

821)2 821)1

+
/aqS(sz) <ayiayr yi0y;

0Yy; 0y, 0y;0y;

) viGrdo
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81)1 831)2 81)2 837}1 )
+ / < + =) vi(do
ad(Q) \ 0Yi 0y;0y;0y, — Oy; 0y;0y;0y, 3

- /~ D?vy : D*vy( - vdo — /~ (Vur - VAvg + Vg - VA ) ¢ - vdo
96(Q) ()

A A
—i—/~ <88 Ui VUQ + 88 b2 VQ}1> -CdU—/~ (A201Vv2 + szgvvl) 'CdU
95(Q) v v #()

62’1)1 821)2 8(
- /a<z3(m ( o 2 Wl) o

82111 8 82’02 8
_ . 227 .cd
/aqg(ﬂ) (81/2 8uvv2 o 81/vv1> Gdo,

and therefore

s H2 [ [a] = — /8 -

0
+/ —(Vvy - Vug)div,y s o (do
96(Q) 8V( AT

vad“)(ﬂ) (Vvl . va)vadg(ﬂ) (CT)VTdU

+ /8(5(9) (divaé(Q)(V . D2v1)a¢~)(Q)Vv2 + divad“)(Q)(V . D2v2)aé(Q)V01> - Qdo

0Awv; 0Awvy ) / 0 ( 0 )
+ Vv + ——=Vu; | -(do+ — Vuy - Vug) | (-do
/aczB(Q) ( ov T v ad() OV 3yr( 1 Ver)

— /~ D*vy : D*vy( - vdo — /~ (Vvy - VAvg + Vg - VA )( - vdo
(%) ()

- /~ (A2U1Vv2 + A%th}l) -(do
o(%2)

827)1 82’02 6(
- /a&(m ( T Wl) o
9%vy O 9%vy O
- S g2e Cdo. (2.2
/6(;;(9) <8V2 81/vv2 * ov? 8uvvl) (o (2.25)

The first summand on the right-hand side of (2.25) equals

Ayzon(Vor - Vo) - vdo
/aq%m) oiay (Vo1 V)

+/ Voo (Vo - Vo) - (V7,000 )(rdo,
iy 03 (VoL Vo) (Vogaye)
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while the fifth one equals

2
/ 0 5 (Vo1 - Vug)(- l/da—{—/~ <0 < 0 (Vuy - Vv2)>> (rdo
od(Q) OV 06(9) \OV \9yr 96()

0? 0
= Vuy - Vug)( - Vda+/ V1 ( Vo - Vo ) -(do
/ 930 )(9 2( 1 2) BJ)(Q) () 81/( 1 2)

— Vozon (Vg - Vog) - (V VT)CTCZO'
/%(Q) 25(0) ) (Vaga

where in the last term we have used equality (2.20). Using the fact that

0 0
div, - — (Vo1 - Vo -C) do = / Vi - Vug)( - vdo,
/aq"sm) o0 <0’/( Levee) oy oY)

where K denotes the mean curvature of dp(Q) (see [46, §8.5]), we finally
obtain

d|,_-H*[Y][u][u :/ Az (Vg - Voo )( - vdo
| p=gHo [V][u][uz] . od@) (Vv - Vo)
+/ 8 — (V1 - Vug)( - Vd0+/ 0" (Vuy - Vug)( - vdo
1 Voo 2
sy OV o) O
— /~ D*vy : D*vo( - vdo — /~ (Vuy - VAvg + Vg - VA )( - vdo
() 99(Q)
+/ divaz oy (1 - D?01) 47,00 Vg + div (nu - D? Ug) Vi) - (do
a&m)( o) Joge) 25(9) o3y V1)

+ / ] (m”lwg 8AU2V01>-CdU
86(Q) ov 19}

- | (A2U1VU2 + A2v2Vvl) -(do
#(2)

821}1 827)2 8C
- /a<;3(9> (WWQ ! 32%1) o
827)1 0 (9 V9 0
— _ .Cd
/q;( )<6u26uv 2% 52 av W1> Gdo
:/~ A(Vuy - Vp)( - uda—/~ D*vy : D*vy( - vdo
09(2) Ap(Q)

— /‘~ (V'I}l - VAvy + Vg - VAUl)C -vdo
09(2)
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" /aa;(m (v (v - D01) g0 Ve + vy (v - Dv2)gyey Vn ) - Cdo

+/~ <8AU1V’02 el 2vm> - Cdo
03(%)

ov ov
— / (A21}1V1}2 + AQUZV’UI) - Cdo
()

821)1 6 V2 > 6C
— —Vuvo+ —Vvu —do
82’1}1 0 8 V2 0
_/aqu <6v a2t o Wl) e
Using the equality

A(V’Ul . VUQ) = VAuv; - Vug + Vuy - VAvg + 2D2'U1 : D2’U2
we finally get formula (2.15). O

Lemma 2.5. Let Q be a bounded domain in RN of class Ct, and let ¢ €
A% be such that (Q) is of class C2. Let uj,uy € H?(Q) be such that
vl—ulo¢ vy =ug o ¢t € HYH(Q)). Then

dlyg3lfulue] = [ gy BrndaC v

0A 0A
4‘/~ < P U1 Vg + Y b2 V?}1> -Cdo’—/ (A2U1V’U2 + AQ'I}vil) -Cdo
99(2) v #()

— / (Av; Vg + AvaVoy) - %da
93(%2) I

0 0
— Avi—Vuy + Avg—Vo > -(do, (2.26
/ . (v Ver + A v, (2.26)

for all ¢ € CZ(RY), where ¢ =1 o ot
Proof. We have

= [l 067 0 (A0 5 o 8) det Do
+ [ (@06 0 d)ldl,_sA(w 0671) 0 6)0l|det Do

+ /Q (Alur 0§ 1) 0 ) (Aluz 0 1) 0 @)l ,_y| det Do|[¥)da, (2.27)
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and we note that, by (2.12), the last summand in (2.27) equals

/ Avy Avodivdy.
()

We have

/55(9)

821)1 8@
0y, Oys 0ys

Avgdy = /~
06()
- /QB(Q) ys Oys
_/ ovy aCT
04() 9Ys 0ys
Ou
1%

Ovy 0div(
&r,,
- /&%(ﬂ) 9

and

/<5(ﬂ)

vy

AlsAvady = / Oun
ys

04(02) OYs
82’01 8@“5
- Av
/<Z>(Q) OyiOys Oy;
_/ vy a(s
o6(Q) Oys Ov
[ i,
od@) Oyi Oyi
_l’_
/(ZB(Q) Oyi Oy Oys
_ / 81}1 8C5 8Av2
3(2) OYs Oy Oy;
. / v, 8Cs DAV
#(2)

Ov1 OCs DAy
0y; Oy; Oys

— /~ Avy Avadiv(dy — /~ Vv - VAwvediv(dy.
»(9) »(Q)

Avody — /~
»(2)

Avodo —/
? 3(@) 9ys Oys Oy,

Avydiv(do + /~ Av Avediv(dy
?(Q)

Avodo +/
? 3@ 9Yi Oy

dy = /~
99(Q)

Ovy O,
Oys ys

v Avado

8211 OCT 8A’U2
0ys Oys Oy
8@1 8C,« aA’Ug

—i—/~ Vuy - VAvediv(dy, (2.28)
o(Q)

9

8V A'UQdO'

dur OCs A,

X /qB(Q) Dys Oyi Oy; Y

81}1 8CS 8Av2

Avodo —/ d
2 3(@) Oys Oyi Oy; Y

(%1 adiVC

Avody

vy OCs
dys Ov

/ ovy 8Cs
Y 0d() Vi 0Yi

/|
99(%2)

Avodo

vsAvodo

Ot N podivedo
ov

(2.29)
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Using (2.27)—(2.29) we get
ovy Ovg ¢,
dl, A2 [ur][u :/ ( Avy + > —vpdo
gl == [ (G 2o ) o

+/ <8U1 8A’U2 + 0’02 6A1)1> 8@«

o) \0ys Oyr  Oys Oy, Bya

+ /~ <81}1AU2 + (%QAUl) div(do
3p(Q) ov 0

— [ AviAvediv{dy — /~ (Vuy - VAvg + Vg - VA ) div{dy
#(%2)

#(2)
_/ (8U1AU2—|— 81}2A > 8<s
06(2) \ 9Ys Jys 31/

8’1)1 6A’U2 8’1)2 6Av1> 8Cs
+ / < + dy. (2.30
s \Oys Oyi  Oys Oyi ) Oy (2:30)

The last summand in the right-hand side of (2.30) equals

OA 0A
/~ ( il Vg + 2 Vm) -Cda—[ (A2v1Vv2 + AQUQV'Ul) -Cdy
2(Q) ()

ov ov

821)1 aAUQ 82’02 6Av1
- . + Csdy
3@ \Ovidys Oyi  0yidys Oy

A A
:/ <8 RV 9 “2vvl>.gdg_/ (A%01 Vg + A%,V ) -(dy

— /~ (Vuy - VAvg + Vg - VAvy) ¢ - vdo
()

+ [ (VUl - VAvs + Vg - VA’Ul) div(dy
3(©2)

2 2
+/ <8U1 8 A'UQ T 61}2 8 Avl) Csdy,
*(2)

0y; 0y;0ys  0y; 0y;0ys

while the second one equals

/~ (aleA vy + aVAm) - Cdo
96(9) ov 0

37}1 82AU2 81)2 82AU1
- /~ + Grdy
#(Q) Oys 0yr0ys  Oys 0y, 0ys

- /~ Aleng‘Vala%—/~ Avy Avadiv(dy.
06(Q) #(©2)



28 2. Biharmonic operator and plate problems

Hence we have

d’¢=$Agﬁ[w] [u1][ug] = _/

i (81}1 Avg + Ova A’U1> %V,«da
06(R)

dys ° " By, 0ys

+/~ (MVAUQ + awVAm) ¢do
8(]5((2) aV al/

+/~ (alevQ + %Av1> divCdo
Ap() ov ov

_ /~ A’UlA'UQC -vdo — /~ <8U1 AUQ + aUQ AUl) 8CS do
95(2) 26(Q) \0Ys ys v

+ /~ <8AU1 Vg + 0Av2 V’U1> -(do
99(92)

ov ov

— /&(Q) (A21)1Vv2 + A2v2VU1) - Cdy

- /~ (Vouy - VAvg + Vg - VA ) (- vdo  (2.31)
9¢()

The first summand in (2.31) equals

— /~ <<9111sz + 802A111> G vydo
6(2)

61/ ay 31/
i /&%m) Wam)m Vag)Av2 + Voga)v2- Va&(n)ml) ¢-vdo
+/ Avi ALz V2 + AvaA Lz 01 ) € - vdo
a&(m( 106072 2205(2) 1)

—|—/ A1V 702 + A1V o1 ) - (Vo1 00V )Crdo,
aJ)(Q)( WVasay2 + A0 Vasan) - (Vo)

while the second one equals

81}1 8A1)2 81)2 8AU1
/(9(2)(9) (8V ov + E ov )C.Vda

n / K <8U1Av2 + %Avl) ¢ vdo
AP(Q) 81/ 81/

ovy 0y > .
— —Avg + —Av | divy;, o (do
/‘BQE(Q) < ov 2 ov ! 99(2)

Ovg vy
- AV -0 22 4 A, -0 S0 L cd
A&(Q) < v1V8¢(Q) o + Wv:%(fl) aV) C ag,
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where K denotes the mean curvature of d¢(Q). Therefore the first three
terms in the right-hand side of (2.31) equal

/~ (Vuy - VAvy + Vg - VAvy) ¢ - vdo
08(Q2)
2, 2
—Q/N AU1A1)2C~Vda—/~ (Ama 5 +Av 2a U21>C‘Vd0
06(2) 9$(Q) ov ov
—|-/ AV o002 + AV o1 ) - (Vi 000 )Crdo
- (A1 V50702 + A0 V50101) - (Vazeayt)

81}2 (%1)
— A1V + A2V (do. (2.32
/a&(n) ( M) gy 2700 (2:52)

Now note that summing the third and the fifth terms in (2.32) and using
(2.20) we get

—/~ (Avlva“JrA 2v8> Cdo
06(2) 9

= —/~ (Avl 0 Vg + Avg— 0 Vv1> -(do
96(2) v v

_ /(%;(Q) (Avlvaq;(mvg + Avgvaé(mvl) (v&i) Vr)CrdO' (2,33)

Using (2.31), (2.32) and (2.33), we finally get formula (2.26). O

Lemma 2.6. Let ) be a bounded domam in RN of class C', and let ¢ € A3
Let uy,us € H2(Q) and let vi = uy o qﬁ ,V9 = Uy O ¢ L Then

5 A ] ] = — /(9 gy 01T v

+ /~ (avlv Vg + Ova VUI) -(do — /~ (Av1 Vv + AvaVuy) - (do,
9() ov v #(92)
(2.34)

for all ¢ € CZ(QRYN), where { = od~t.
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Proof. We have

=~ [ @l ¥u o 67 0 )] - (Viua.671) 0 ) det Dl
= [ (V067 0.0) - (dly_gVuz 0 67 o )] det. D
- [V 08 0d): (Va0 0 d)dl,_gldet Douids, (2:35)
and we note that, by (2.12), the last summand in (2.35) equals
- /¢> o Vor - Voadiv(dy.

Using the fact that

ov 0¢,
(dlgep(Vuo 6™ 0 @) 067!) = Z 0
where v =u o (Z)_l, and
(91}1 8@ 82}2 / 61)2
dy = —Vu; - (do — AvyVoy - (dy
[ @) OYr Oyi Iy ooy W o
Ovs 0%y / Ovy
— —— (o dy = —Vuvy - {do — AvoVuy - (d
/&;(Q) 0 6yi8er Y i) O 1°¢ . 2 V1 - (dy
8@1 821)2
— | Vu-Vu(-vdo + Vvl Vuodiv(dy,
06(2) 3@ 9Yi 8%8%
we easily get formula (2.34). O

2.1.2 Isovolumetric perturbations

We consider the following extremum problems for the symmetric func-
tions of the eigenvalues

; Ap Arg|o], 2.36
V[¢I}Iilcltl)nst F [d)] or V[Qf}nzagén“ F [d)] ( )

where V[¢] denotes the N-dimensional Lebesgue measure of ¢({2). Note that
if ¢ € A3 is a minimizer or maximizer in (2.36) then ¢ is a critical domain
transformation for the map ¢ — Ap (@] subject to volume constraint, i.e.,

Ker d|¢:q;V C Ker d|¢:q§AF,s, (2.37)
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where V is the real valued function defined on A% which takes ¢ € A% to

Vigl.

The following theorem provides a characterization of all critical domain
transformations ¢. We refer to [67] for the case of the Dirichlet and Neumann
Laplacians.

Theorem 2.7. Let —ﬁ <a<l1l,7>0. Let Q be a bounded domain in

RY of class C*. Let F be a non-empty finite subset of N. Let qg € Opgq be
such that 9¢(Q) € C* and \j[¢] = Ap[@] for all j € F. Fors =1,...,|F|,
the function g?) is a critical point for Ap s with volume constrain if and only if
there exists an orthonormal basis vy, ... ,v|p| of the eigenspace corresponding
to the eigenvalue Ap[@] of problem (2.7) in H3($(Q)) (with respect to the
scalar product (2.5)), and a constant ¢ € R such that

||

> <862Z’>2 =, (2.38)

=1
almost everywhere in dH(Q).

Proof. Note that V[¢] = [, |detV¢|dz, hence by formula (2.12) it follows
that

gVl = [ RGN (2.39)

for all ¢ € C2(2;RY). The proof of (2.38) follows immediately by formulas
(2.8) and (2.39), and by observing that condition (2.37) is satisfied if and
only if there exists ¢ € R (a Lagrange multiplier) such that

d‘qﬁ:q;Ath = Cd|¢:q§v.

Then, we are led to the following

Theorem 2.8. Let —ﬁ <a<1,7>0. Let B be a ball in RN centered
at zero, and let \ be an eigenvalue of problem (2.7) in B. Let F be the subset
of N of all j such that the j-th eigenvalue of problem (2.7) in B coincides
with A. Let vy, ..., v g be an orthonormal basis of the eigenspace associated
with the eigenvalue A, where the orthonormality is taken with respect to the
scalar product in H3(B). Then

|F| |£| |F| |F

D DIVl 3 18wl ) 1Dl
j=1 j=1 j=1 j=1
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are radial functions.

Proof. Let On(R) denote the group of orthogonal linear transformations in
RY. Since the Laplace operator is invariant under rotations, then vy o A,
where A € On(R), is still an eigenfunction with eigenvalue A; moreover,

{vjoA:j =1,...,|F|} is another orthonormal basis for the eigenspace
associate with A. Since both {v; : j = 1,...,|F|} and {vj 0 A : j =
1,...,|F|} are orthonormal bases, then there exists R[A] € On(R) with
matrix (Ri;[A]); j—1,.F| such that
|F|
v = Ry[Auo A. (2.40)
=1
This implies that
|| |F|
Z vy = Z o A)?,
7=1

from which we get that Z
and (2.40), we get

=1 V5 2 is radial. Moreover, using standard calculus

| £ |7 |F|
Z\V%F > Rin[AlR;,[A] (Vuy, 0 A) - (Vuy, 0 A) Z!VWOA\Z

I1,la=1

Similarly,
|7 |7

> AP =" |Avj0 AP
j=1 j=1

On the other hand,

DQUj-Dz’Uj

|F|

Z Ry, [A]Rj1,[A]At - (D?*v, 0 A) - A- A (D?up, 0 A) - A

l1,lo=1
|F|
= Y Rj,[AIR;,[AJA" - (D?v;, 0 A) - (D?vy, 0 A) - A,
l1,l2=1

therefore

||
|D?0;* = te(D?v; - D*v;) = Y Ry, [A|Rj,[A](D?vy, 0 A) : (Dvy, 0 A),
l1,l2=1
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from which we get

|F| |F|

> DM =Y |D%;0 AP,
j=1

j=1
O

Remark 2.9. We observe that in the proof of Theorem 2.8 we have never
used the fact that the operator P is acting on H3(B), but only its rotation
mwvariance. In fact, the same arguments allow to prove similar results also

for problems (2.41), (2.46) and (2.62).

2 2
D20 = (a0 = (53)

Observing that

ov?
on A¢(Q) for any I, we get the following

Corollary 2.10. Let —ﬁ <a<l1l,7>0. Let Q be a bounded domain
in RY of class C1. Let ¢ € Af) be such that qE(Q) is a ball. Let \ be an
eigenvalue of problem (2.7) in ¢(2), and let I be the set of j € N such that

Ajlol = X. Then Aps has a critical point at ¢ with volume constraint, for
alls=1,...,|F|.

2.2 Neumann boundary conditions (free plates)

Let —ﬁ < a < 1land 7 > 0. The Neumann problem for the bihar-
monic operator reads

A%y — TAu = \u, in Q,
<1 — ) 88 5+ alu =0, on 09, (2.41)
Tal/ ayu — (1 — a)divga(v - D*u)sq =0, on 09,

where Q is a bounded domain (i.e., a bounded connected open set) in RY of
class C! and v is the outer unit normal to 992. We refer to [42] for the phys-
ical derivation of problem (2.41). Note that we need € to be at least of class
C? for the classical formulation to make sense, since we need the normal
v to be differentiable, as can be easily seen from the boundary conditions;
however, we shall interpret problem (2.41) in the weak sense of (2.2), in
the energy space V(Q) = H?(2). Note also that, differently from Dirichlet
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boundary conditions, in this case the partial differential operator associated
with problem (2.41) has a is a nontrivial kernel. In fact, if 7 > 0, it is easy
to see that the kernel is one dimensional and is given by the constants. On
the other hand, when 7 = 0 the kernel enlarges including all the coordinate
functions z;, ¢ = 1,..., N. Since we shall use suitable projections in order to
get rid of the kernel, for the sake of simplicity in this section we will consider
only the case 7 > 0, but the same arguments allow to treat the case 7 =0
as well.

We set

H*(Q) = {u c H*(Q) : /Qudw = 0} :

We consider on H?(f2) the bilinear form (2.5) for any u,v € H?(Q). One
can prove that it defines on H?°(Q) a scalar product whose induced norm
is equivalent to the standard one defined by (1.10). We shall consider the
space H>(Q) endowed with the scalar product (2.5). We denote by 7 the
map from H?(Q) to H*%(Q) defined by

fQ udx
Q7

mlu] =

for all u € H%(Q), where || denotes the Lebesgue measure of Q. We denote
by 7 the map from H?(Q)/R onto H*°(Q) defined by the equality 7 = 7fop,
where p is the canonical projection of H2(£) onto H?(£2)/R.

We consider the operator P defined by (2.6) as a map from H?%(Q)
to its dual. Note that, thanks to the Poincaré-Wirtinger Inequality, the
norm induced from the quadratic form associated with the operator P is
equivalent to the standard one of H*%(2) (as a closed subspace of H%(Q)),
and therefore it turns out that P is a linear homeomorphism of H2°(£2) onto
its dual.

We denote by J the continuous embedding of H?(f2) into its dual, de-
fined by

Julv] := / uvdz, Yu,v € H*(Q).
Q
Note that problem (2.41) can be written in the following weak formulation
Plu)[v] = AT [u][v], Yo € H*°(Q). (2.42)

We define the operator T := (7#)(=D o P(-D o 7 ozt from H?(Q)/R to itself.
We have the following result, whose proof is analogous to that of Lemma
2.1.
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Lemma 2.11. Let _lel <a<1,7>0. Let Q be a bounded domain in RV
of class C*. The operator T is a non-negative compact selfadjoint operator
in the Hilbert space H*(Q)/R. Its spectrum is discrete and consists of a
decreasing sequence of positive eigenvalues of finite multiplicity converging
to zero. Moreover, the equation Tu = pu is satisfied for some u € H?0(Q),
p > 0 if and only if equation (2.2) is satisfied with 0 # X\ = p~! for any
o € H>9(Q).

We observe that the whole spectrum of problem (2.41) is given by the
non-decreasing sequence {A;[Q]};en, where A\1[Q2] = 0 and the other eigen-
values are given by Lemma 2.11 (if 7 = 0, then A\;[Q] = - -+ = Ay 41[Q] = 0).

2.2.1 Analyticity results

Let ©Q be a bounded open set in RY of class C'. We shall consider
problem (2.41) in ¢(92) for any ¢ € A2 and study the dependence of \;[¢(£2)]
on ¢.

The main result of this section is the following analogue for the bihar-
monic operator of the results [68, Theorems 2.2 and 2.5] concerning the
Neumann Laplacian.

Theorem 2.12. Let —ﬁ <a<l1l 7>0. Let Q be a bounded domain
in RN of class C' and F be a finite set in N. The set Arq is open in
C2(S;RYN) and the real-valued maps which take ¢ € Apgq to Aps[¢] are
real-analytic on Apgq for all s =1,...,|F|. Moreover, if ¢ € OFq is such
that the eigenvalues \;[] assume the common value A\p[] for all j € F,
and qB(Q) is of class C* then the Frechét differential of the map Ars at the

point ¢ is delivered by the formula

||

tstarat = 6T Y

=1

/~ (Arv}f — 7|V 2 = (1 — )| D*v|* — a(Av)?) ¢ - vdo, (2.43)
99(92)

forally € (Zg(Q; RY), where ¢ = 1o~V and {vi}ieF is an orthonormal ba-
sis in H*0(p(Q)) (with respect to the scalar product (2.5)) of the eigenspace
associated with Ap|@].

As we have done for Theorem 2.2, in order to prove Theorem 2.12 we
consider equation (2.42) on ¢(Q2) and pull it back to Q. Namely, we consider
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the equation

P][y] = AT W][¥], Vo € H**(6(Q)), (2.44)
in the unknowns v € H?%(¢(Q

), A €]0,00[. We consider the operator P
as an operator acting from Hi’o( )

to its dual, where

H;°(Q) = {u e H2(Q) : /Qu|detv¢\dx = 0} .
We will endow the space H;’O(Q) with the form
< u,v >p= Pylulv], Yu,v € Hi’O(Q).
Moreover, we denote by 7, the map from H2(Q2) to Hi’o (Q) defined by

Jo uldetVo|dz

molu] = Joy [detV glda

and by 7T2> the map from H?(Q2)/R onto H;’O(Q) defined by the equality
Ty = 7133 o p. Note that the map from H?(Q) to H2(4(£2)) which maps u to

uwo ¢V for all u € H?(Q) is a linear homeomorphism. We also recall that
Tglul[w] = / uw|detVe|dz, Yu,w € H*(Q).
Q

Hence, equation (2.42) is equivalent to

Pylullp] = \Tslulle], ¥ @ € H ()
where u = v o ¢. It turns out that the operator T defined in Lemma 2.11
with © replaced by ¢(€) is unitarily equivalent to the operator Ty defined
on H;’O(Q)/]R by

Ty = () Vo PV o Jyoionh (2.45)

Thus we have the following lemma, whose proof is analogous to that of
Lemma 2.3.

Lemma 2.13. Let —— < a <1, 7> 0. Let Q be a bounded domain in
RY of class C*. The opemtor Ty defined in (2.45) is non-negative selfadjoint
and compact on the Hilbert space H;’O (Q)/R. The equation (2.44) is satisfied
for some v € H?>9(¢4(Q)) if and only if the equation Tyu = pu is satisfied
with u = v o ¢ and u = A~t. Moreover, the map from A% to L(H?*°(Q)) x
Bs(H*°(Q)) which takes ¢ € A2 to (Ty,< -, >4) is real-analytic.
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Proof of Theorem 2.12. First of all, we note that by standard regularity
theory (see e.g., [51, Thm. 2.20]) v; € H*(¢(Q)) for all I € F. We observe
that the proof is very similar to that of Teorem 2.2. It only remains to
compute

< d]y_gTo[¥][w], w >5= d| ,_ 5T © me[][wi][m 5 (w)]
= A [0d] 4P o ma[th][ur] [ (ur)].
By (2.12) we have
s Jpom wy||mr(ug)| = vidiv
s molilfulimsu)) = [ ofdiscay

see also (2.13). Using Lemmas 2.4, 2.5 and 2.6 we obtain

d| 4= 5P © mg W] ] [ 5 (wr)]

:/~ ((1fa)|D2vl\2+oz(Avl)2+T|Vvl|2)c-uda
(%)
~wld) [ V0 - cd.
#(%2)

Using formula (2.14) we get formula (2.43). O

2.2.2 Isovolumetric perturbations

As in the previous section, we consider the following extremum problems
for the symmetric functions of the eigenvalues

i Aps Aps|o],
pidpin Arsle] or o max Agsld)

where V[¢] denotes the N-dimensional Lebesgue measure of ¢(£2). We have
the following result, whose proof is analogous to that of Theorem 2.7.

Theorem 2.14. Let —ﬁ <a<l1l, 7>0. Let Q be a bounded domain in
RN of class C*. Let F be a non-empty finite subset of N. Let q~5 € Opgq be
such that 9¢(Q) € C* and \j[¢] = Ap[@] for all j € F. Fors =1,...,|F|,
the function ¢ is a critical point for AFp s with volume constraint if and only if
there exists an orthonormal basis vy, ... ,vp| of the eigenspace corresponding



38 2. Biharmonic operator and plate problems

to the eigenvalue Ap[@] of problem (2.42) in H*O($(Q)) (with respect to the
scalar product (2.5)), and a constant ¢ € R such that

|F|
Z ()\FUlQ — 7|V |? = (1 — )| D?*y|* - a(Avl)Q) =c,
=1

almost everywhere in dp().

Using Theorem 2.8 and Remark 2.9 we easily get the following

Corollary 2.15. Let _% <a<l1l,7>0. Let Q be a bounded domain

-1
in RN of class C1. Let ¢ € A} “be such that ¢(2) is a ball. Let A be an
eigenvalue of problem (2.42) in ¢(2), and let F be the set of j € N such
that A\j[¢] = X. Then Apg has a critical point at ¢ with volume constraint,

foralls=1,...,|F|.

2.3 Intermediate boundary conditions (hinged pla-
tes)

Let —ﬁ < a < 1, 7 > 0. The intermediate boundary value problem
for the biharmonic operator reads

A%y — TAu = M, in Q,
(1-a)2% 4 aAu=0, ondQ, (2.46)
u =0, on 01},

where Q is a bounded open set in RY of class C'. Note that in this case,
as for Dirichlet boundary conditions, the kernel is trivial, so the eigenvalues
are strictly positive.

Remark 2.16. We observe that the limiting case o« = 1 gives the so-called
Navier problem
A%u — 7Au = \u, in Q,
{u:Au:O, on 0.

Note also that, if Q is either of class C? or convez, it is possible to prove
coercivity of the associated operator, hence Theorem 1.9 applies. However,
if Q is neither of class C? nor convex, coercivity does not hold in general
(see e.g., [51] and the references therein).
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We set V(Q) = H?(Q) N HE(Q) endowed with the form (2.5), for any
u,v € V(). We observe that, thanks to the Poincaré inequality, such a form
is indeed a scalar product in V() equivalent to the standard one. Then
it is easy to see that the operator P defined in (2.6), for any u,v € V(Q),
is a linear homeomorphism from V() to its dual. We denote by J the
continuous embedding of V(2) to its dual defined by

Jul[v] = /quda:, Yu,v € V().

Note that problem (2.46) can be written in the following weak formulation
Plu][v] = AT [u][v], Vv € V(Q).

We define the operator T = P~! o J from V(Q) to itself. We have the
following result, whose proof is analogous to that of Lemma 2.1.

Lemma 2.17. Let —ﬁ <a <1l 7 >0. Let Q be a bounded open
set in RN of class C*. The operator T is a non-negative selfadjoint compact
operator in the Hilbert space V(). Its spectrum is discrete and consists of a
decreasing sequence of positive eigenvalues of finite multiplicity converging to
zero. Moreover, the equation Tu = pu is satisfied for some u € V(Q), u >0
if and only if equation (2.2) is satisfied with A\ = p~1 for any ¢ € V(Q).

2.3.1 Analyticity results

Let ©Q be a bounded open set in RY of class C'. We shall consider
problem (2.46) in ¢(Q2) for any ¢ € A2 and study the dependence of \;[¢(£2)]
on ¢.

The main result of this section is the following theorem (see also Theo-
rems 2.2 and 2.12).

Theorem 2.18. Let —ﬁ <a <1, 72>0. Let Q be a bounded open

set in RN of class C! and F be a finite set in N. The set Argq is open
in CZ(Q;RY) and the real-valued maps which take ¢ € Apq to Apsle] are
real-analytic on Apq for all s = 1,...|F|. Moreover, if ¢ € Opq is such

that the eigenvalues \j[¢] assume the common value Ap[¢] for all j € F,
and () is of class C* then the Frechét differential of the map Aps at the
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pomté 1s delivered by the formula

|F|

dly_g(Ars)] = Al ('F '_‘11)2 / (1= )| D22 + a(An)?

8?)1 BAUZ
81/ ov

+ 2(1 - a)%di\’a&( )(V D? Ul) -7 <ZZZ> ) ¢ - vdo, (247)

for all ¢ € Qg(Q;RN), where ¢ = o ¢V, and {vihier is an orthonormal
basis in V(4(2)) of the eigenspace associated with Ap[d].
Moreover, in the case o = 0,7 = 0 we also have

s ‘F’ -1
dly-sheali) =308 (5
81)[ 2 2 2 8'[}[ 8 Ul

Z/@*(g) <2Aa¢§(g) <8y) — |D%ui —i—2a—7a ¢-vdo, (2.48)
for all ¢ € C’g(Q; RY), where A3¢~>(Q) denotes the Laplace-Beltrami operator
on 96(Q).
Proof. Note that by standard regularity theory (see e.g., [51, Thm. 2.20])
v € H*(p(Q)) for all [ € F.

The first part of the theorem can be proved by adapting that of Theorem

2.2 and using Lemmas 2.4, 2.5 and 2.6. In order to prove formula (2.48), we
have to show that, in the case « = 0, 7 = 0 we have

Ovy Ovg
d| g s H3 W] [un][uz] = 2 /8&(9) Bage) < v v ) Qv
Ovy DBy Oug D3y
- D?vy : D? d o v
/<9$(Q) v VJ+/()<3V 07 " ov B ¢ vdo

+ Ar[d] /43(9) vivadiv(dy. (2.49)

We recall that the eigenfunctions v; satisfy the boundary conditions v; =
2 ~ ~
9% — 0 on 09(Q?), in particular Vo, = 8—1:,% on 0¢(Q2), for all [ € F.

oz
Therefore, we can rewrite (2.19) in the following form
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(8’01 8A1)2 81)2 6A1)1> 8Qd

12 _ oavz
Ay gl L] ua] / Oy Oy Oy Oy ) Oy Y

3(©)
+ [ <8v133v2 4 81)2831)1> % 4
s \Oy; 0y;0y;0y, ~ Oy; Oy0y;0y, ) Iy

Ovy 0 vy 0
—2 / ) <Ul - Vo + me) -V pvpdo — / D?vy : D*vydivCdy
8¢(Q) ov Ov ov Ov ¢(Q)

- / (Vv - VAvg + Vg - VA )div(dy. (2.50)
P(Q)

The first summand in (2.50) equals

Ovy OAvy  Ovg OAY;
/8q7>(Q) <6u ov + E ov >< vdo

0®vy 0Avy 0%y 8Avl> / ,
_ + rdy— A205 Vo1 +A20 Vs ) Cd
/¢3(9) <8yi8yr dy; | Oy;0yr Oy Grdy é(ﬂ)( 2V L\ Vg)Cdy

B Ovi 0Avy  Ovg DAV,
_/&5(9) <8V ov + ov Ov )C‘Vda

0%v; 0Awy 0%vy 8Av1) ~/
- + rdy + X v1vadiv(d
/<;3(Q) (3%3% dyi  0yi0y, 0Oy rdy + Ar¢] s dy

81)1 aAvg avg E)Avl) It / .
— - 4+ —= -vdo + )\ v1vodiv(d
/aqg(ﬂ) <8V ov ov v ¢ rl9] ER) 102divedy

— /~ (Vo - VAvg + Vg - VA )( - vdo
99(92)

82A01 (%2 82A1)2 81)1)
- / ( — + ) ¢d
3@ \Oyrdy; Oyi ~ Oyrdy; Oy; Y

+ / (Vv - VAvg + Vg - VA )div(dy. (2.51)
?($2)
The second summand in (2.50) equals
vy 831)2 vy 83Ul )
gn_9dv2 929U ) s
/aqé(sz) (3% 0y;0y;0yr ~ Oy; 0y;0y;0y, ¢

81)1 82AU2 81)2 82AU1
o + Crdy
3@ \0y; 0y;0y, ~ Oy; Oy;0y:
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_/ < 82’01 83’02 T 82’02 831)1 ) C dy
3@ \0yidy; dyidy;dy, — Oyidy; Oyidy;dy. ) "
3 3
:/ <8”18 vz Oy Ofui ) viydo
o6() \0y; 0y;0y;0y, ~ dy; 0y;0y;0yy

8111 OQAUQ 8112 82Avl
— | (a2t oy
3 \0y; 9y;0y, — Oy; 0y;0ys

D?v; : D*uy( - vdo.  (2.52)

+ D?vy : D*vadivCdy — /
99(92)

$(Q)
By combining (2.50)-(2.52), we get that

8’01 83’02 81}2 83’01
d| . -H?[][u][u :/ ( + —= vivi(.do
— 2/ <6Ul(lj . D2U2) + %(V . D2U1)> : vCrVrdU
oa(0) \ O v

- /~ D*vy : D*vy( - vdo + )\F[g?)]/~ vivediv{dy. (2.53)
26(Q) #(%2)

Now we claim that

v ~
v- D%y, = va&(ﬂ)ai;n on 0¢(£2), (2.54)
for all m € F', where V, 4(q) denotes the tangential gradient to dp(Q). Here
and in the sequel it is understood that the normal vector field v is extended

to a neighborhood of d¢(£) as a unitary vector field. We have

vy,

va&(ﬂ)ﬁ = Vi) (Vom - v) = V(Vug - v) = (V(Vom - v) - v)v

Clearly,

O%v, v, Ov; A%u, 1 Ovy, O(v4)? A%v,,
V(Vuy,-v)); = vi+ — = Vi+ = = Vi,
M s Oyidy; ' Oy dy;  Oyidy; 2 v By;  Oyidy;

on 9¢(Q). Thus

v,
ov?

v,
Vi) gy,

v=v-D%y,

(2.55)

:V-Dz’l)m—(l/-D2’l)m-l/)l/:Z/-D2Um—

and (2.54) is proved. Now we note that
V(-v)=vV§+ (V. hence 1,V( =V((-v)—Vu(. (2.56)
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By observing that |v|? = 1 implies that v, Vv, = 0, by (2.54) and (2.56) we
get
avl

81}1 61)2 82}1 8’02

S (v Do) VG = S0V 5500 22 -V (C ) = S Vggay 5 - Vi
aUl 8’02 8,01 a
= Gy Vo g, Voue(€ 1) = Gy Vosm g, T Gor + Coia,)
avl a a'Ul 81]2

=5, Voi g, Voao) (S ¥ = 5 Va5, VVilad@)r

where { = (, + CBqE(Q)’ ¢, is the normal component of ¢ and C&Z;(Q) the
tangential one. Hence the second integral in (2.53) equals

81}1 8’1)2
2 5o | o5 ) Velas

61)1 8@2
- Voay \ 5, a, | Voaw) s v)do. (257
/3<Z3(Q) 9¢(Q) <61/ 8;/) V8¢(Q)(C v)do. ( )
Now we consider the first integral in (2.53), and we recall that

%I/'V' =0, on 96(Q) (2.58)
dyidy; 7 ' '

By differentiating (2.58) with respect to any tangential direction ¢ to d¢ ()
we obtain

Pu, it 42 d%v,, Ov; , 0
aylayja r e aylayj Yy 7 ’
hence
83’[)m 82Um 8Vi
T (€ )t = 2 (¢ )ty 2.
0yi0y;0y. viC -1t Dyidy; Oy, (¢ 1)t (2.59)

By taking in (2.59) vectors t belonging to a basis of the tangent hyperplane
to 0¢(2) and using (2.55), we easily get

v
—— vy = —2(v- D*vp) - Vi
8y18y]8yr J d¢(Q)77‘ ( ) 0p(Q),r

Ovm
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Thus

dvi vy / o vy
9 Ovdv.ou. i rdO’ = —— 7 ViVi(QurtGy do
/&5(9) v 8yiayj8yr 3G 03 o ﬁyiﬁyjayr ](<7 quﬁ(ﬂ)ﬂ“)
ovi vy / dur vy
= — v - vdo + = 2 il Tda
/aism) o Dydy,0y, 25() OV Oyi0y;0y, 1%05(c),

oy Ovy
= = C-uda—2/ ——Vosana— VUi 40
/aq;(m ov o3 0d() O 99(2) 9y p(Q),

Hence the first integral in (2.53) is equal to
8111 331)2 81}2 831)1
et} = -vd
/8(2)(9) <8I/ ov3 + ov o3 C vao
81}1 87)2)
—2/ Vs < “VrCyz) »do- (2.60
s 29 \ 3y By o(), 4 (2:60)

Finally, by (2.57), (2.60) and by the tangential Green formula (see [46,
§ 5.5]), we get that the right-hand side of (2.53) equals

ovy Pvy vy 331}1) 2 2
e R W] <~ydo'—/ D*v1 : D*v9( - vdo
/&5(9) <81/ o3 v o3 96(%) ' ?
81)1 (9112 It .
_2/ V.- <>V~ C-v)do+ A (b/ v1vediv{dy
vy 290 oy ay ) VoS VAT AL [ e

3 3
:/~ <8v1302+av26 U1>C~Vd0'—/ D2v1:D202<'Vd0
09(%)

E 81/3 E 8v3 8({5(9)

. 8’01 802
+ A qb/ vvd1v§dy+2/ A~ ()C-I/do’.
U f oae) YW\ ov o

This proves formula (2.49). O

We observe that formula (2.47) and formula (2.48) are actually equiva-
lent. In fact, we can get a more general result. We first observe that (2.54)

is valid for any function f € V(¢(Q2)). Hence, we get

avl . 2
A&Z’(Q)@ = le&Zu(Q)(V - D*uy),

and therefore

o |2

avl 2 avl .
) <c’)u> = 25, diVagi0) (v - D*0) +2 V50,5

ov
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On the other hand,

AaqE(Q) % :A8$(Q)|vvl’ :A|V'U[‘ — ﬁ|V'U[’ —Ka\Vv”

2
=2V, - VA + 2| D%y * = 2 |v - D%,}Q — 2V - §2Vv — 2KV - gvul
1%
8’[)1 aAvl 2 2 81)[ 8 (s avl 821}1
=2 21D%*v)|? =2 |v- D%y  — 2= 2 — 2Kk —~
o av 2 v Dl 2505 o o2

where K denotes the mean curvature on d¢(f2). By observing that

2
(%l

2
’Va‘q}(n)ay =|v-D?ul",

we have finally proved the following

Theorem 2.19. Under the same assumptions of Theorem 2.18, formula
(2.47) is equivalent to the following

|F|

|F‘—1 / 61}[8A’Ul
Ap s = a(A 20—
dly-yaraiel =303 () > [y (et #2055

ov ov; O3v
+2(1 — ) Aps0) (a;f) +2(1— )a—la—; —2(1 — )| D%y ?

2 2
+2K(1 — a)%% -7 <gz:> ) ¢ -vdo,

for all ¢ € Qg(Q;RN), where ¢ = o ¢V, and {vitier is an orthonormal
basis in V(4(2)) of the eigenspace associated with \p[d].

2.3.2 Isovolumetric perturbations

As we have done in the previous sections, we consider the following
extremum problems for the symmetric functions of the eigenvalues

in  Aps Ars[9],
V[¢I]Iilcltl)nst B (9] or V[¢I>]n:85(§nst B [¢]

where V[¢] denotes the N-dimensional Lebesgue measure of ¢(§2). We have
the following result, whose proof is analogous to that of Theorem 2.7.
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Theorem 2.20. Let —% <a<l1l, 7>0. Let Q be a bounded domain in

—1
RN of class C*. Let F be a non-empty finite subset of N. Let ¢ € Orqn be
such that dp(Q) € C* and \j[p] = Ap[@] for all j € F. For s =1,...,|F|,
the functionqz; is a critical point for Ap s with volume constraint if and only if
there exists an orthonormal basis vy, ..., v\ | of the eigenspace corresponding

to the eigenvalue Ap[@] of problem (2.46) in V(4(Q)), and a constant ¢ € R
such that

|F|

Ov; OAw
E 2,12 2 l l
- <(1 —a)|D 'Ul‘ +a(A'Ul) +2E a]/

oy, o 2
+2(1 — a>$divad~>(9)(y -D%y) — 7 (31/) ) =c,

almost everywhere in 8&(9), or equivalently
||

Ov; 0Av
2 v 0Avy,
lg_l <a(Avl) + 2« 5 9

ov\ 2 ov; O3v
+2(1 = a)Ayg0 ((91/’) +2(1 - O‘)aT/laT; —2(1 — )| D%y ?

2 2
F2R(1 - a)%% —r @2’) > —c, (2:61)

almost everywhere in dH(LY).
Then we can prove the following

Theorem 2.21. Let the same assumptions of Theorem 2.18 hold. If ¢(Q)
is a ball then condition (2.61) is satisfied.

Proof. Without loss of generality, let us assume that QNS(Q) is a ball B of ra-
dius R centered at zero. By Theorem 2.8 and Remark 2.9, we have that that
Ser iy Yer IVul?, Yep(Av)? and Y, p |D*v]? are radial functions.

In particular we get that ), n ’%P

A oy 2

leF

is constant on 0B, hence

The function

i ) 2u\> v 03, &,
wzvl—z<6<w> 8 o T2 |

leF leF
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where r is the radial coordinate, is clearly radial, and using the fact that

%QJQZ = —%5 Ay on 9B for any | € F, we obtain that
87}1 63’01
— —— is constant on 0B.
ov Ov3
leF

Moreover, the function

0 9 0
o Z V| = ZV’U[ . EVU;,

leF IeF
is radial, hence
o, 0% .
E —l—; is constant on 0B.
P ov Ov

Finally, note that

A =Y (2AF[q3]v? +2(Aw)? + 4| D%0|? + 6V, - VAvl)
leF leF
is radial, thus
% OAv;
dv Ov

leF

is constant on 9B.

This concludes the proof. ]

2.4 Steklov boundary conditions

Let —ﬁ < a < 1, 7 > 0. The Steklov problem for the biharmonic
operator reads

A%y —17Au =0, in Q,
(1—a)5% +aldu =0, on 99, (2.62)
T — 800 _ (1 — a)divaq(v - D?u)pg = Au, on 9%,

where Q is a bounded domain in RY of class C! and v is the outer unit
normal to 92. We refer to [31] for the physical derivation of problem (2.62).
Note that, as for the Neumann problem, we need 2 to be at least of class C?
for the classical formulation to make sense, since we need the normal v to be
differentiable, as can easily be seen from the boundary conditions; however,
we shall interpret problem (2.62) in the weak sense of (2.3). Note also that
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the kernel is the same of the Neumann problem. In fact, if 7 > 0, it is easy
to see that the kernel is one dimensional and is given by the constants. On
the other hand, when 7 = 0 the kernel enlarges including all the coordinate
functions z;,7 = 1,..., N. Since we shall use suitable projections in order to
get rid of the kernels, for the sake of simplicity in the sequel we will consider
only the case 7 > 0, but the same arguments allow to treat the case 7 = 0
as well.

We set
HY(Q) = {u € H*(Q): / udo = O} ,
o0

and we endow this space with the form defined in (2.5). One can prove that
the bilinear form (2.5) defines on H?%()) a scalar product whose induced
norm is equivalent to the standard one. We denote by 7 the map of H 2(Q)
to H?9(Q) defined by

. Joq udo

W[U] - o ‘89’ )

for all u € H2(2), where by |0Q| we mean the N — 1 dimensional measure
of 9. We denote by #f the map of H*(Q)/R onto H*(Q) defined by
the equality © = 7 o p, where p is the canonical projection of H?(Q) onto
H?(Q2)/R. The operator P defined in (2.6) considered as an operator acting
from H*9(Q) to its dualis a linear homeomorphism.

We denote by J the continuous embedding of H?(Q) into its dual defined
by

J[u][v] ::/ uvdo, Yu,v € H*(Q).
o0
Note that problem (2.62) can be written in the following weak form
Plu)[v] = AT [u][v], Vv € H*(Q). (2.63)

We define the operator T := (74)(=V o PCD o T o7t from H2(Q)/R to itself.
We have the following result (see also Lemma 2.11).

Lemma 2.22. Let —ﬁ <a<1,7>0. Let Q be a bounded domain in RN
of class C'. The operator T is a non-negative compact selfadjoint operator
in the Hilbert space H?(Q)/R. Its spectrum is discrete and consists of a
decreasing sequence of positive eigenvalues of finite multiplicity converging
to zero. Moreover, the equation Tu = pu is satisfied for some u € ﬁz’O(Q),
w > 0 if and only if equation (2.2) is satisfied with 0 # X\ = p~' for any
0 € H*0(Q).
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We observe that, as for the Neumann problem, the whole spectrum of
problem (2.62) is given by the non-decreasing sequence {\;[€2]};cn, where
A1[2] = 0 and the other eigenvalues are given by Lemma 2.22 (if 7 = 0, then
AM[Q] =+ = An41[Q] = 0). We have the following result (cf. Theorem 1.9).

Theorem 2.23. Let —ﬁ <a<l1l 7>0. Let Q be a bounded open
set in RN of class C'. The eigenvalues of problem (2.62) are non-negative,
have finite multiplicity and can be represented as a non-decreasing divergent
sequence \;j[Q], j € N where each eigenvalue is repeated according to its
multiplicity. Moreover,

Aj[Q] = min  max Rlul,

ECH?(Q) uel
dimE=j u#0

for all j € N, where Rlu] is the Rayleigh quotient defined by
Jo(1 = a)|D?*u* + a|Aul* + T]Vu|2dx
Joq lul?do

As can be inferred, the Steklov problem (2.62) and the Neumann problem
(2.41) share several spectral properties. In fact, they are strictly related.
Consider the following problem

Rlu] =

(2.64)

A%y — TAu = Apeu, in §,
(1 — a)aa 5+ alAu =0, on 092, (2.65)
K (1 — a)divga(v - D*u)gq =0, on 99,

T 81/
where

pe(x) = 02— "t herwise. (2.66)

{e, if z € Q,,
[\

Here p. plays the role of a mass density. The weak formulation of problem
(2.65) reads

/ (1 — a)D*u: D*v + aAulv + 7Vu - Vodr = )\/ uvpede,
Q Q

for any v € H%($2). We have the following

Theorem 2.24. Let — 1 <a<1l,7>0. Let Q be a bounded domain in
RN of class C?. Let p. be defined as (2.66). Let \j(p:) be the eigenvalues
of problem (2.65) on ) for all j € N. Let \j, j € N denote the eigenvalues
of problem (2.62). Then lim._,o A\;j(ps) = A; for all j € N.
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Proof. For a proof, we refer to [31], where the authors discuss the case & = 0
only (see also [32, 69, 73]). However, the argument can be easily adapted to
the general case. O

Roughly speaking, we may think of the Steklov problem (2.62) as a
limiting Neumann problem where the mass is concentrated at the boundary.

2.4.1 Analyticity results

Let © be a bounded open set in R of class C!, and let Trq be the trace
operator from H?(Q) to L?(09). Tt is well known that Trq is a compact
map. We note that any ¢ € .A?] is in particular Lipschitz continuous in
Q) together with its gradient, and since Q is of class C!, it follows that
¢ € CH1(Q), in the sense that there exists ¢ = £(¢) such that ¢ € C11(Q9).
Thus ¢(2) is of class C', so a trace operator Try(q) is well defined and
compact. Moreover, since the map iy from H?(¢(2)) to H*(Q) which takes
u € H?(¢(Q)) to uo ¢ is a linear homeomorphism, and i;l =41, we have
that Trgq) = ig o Trg o ig-1. Therefore, it is natural to consider problem
(2.62) in ¢(Q) for any ¢ € A% and study the dipendence of A\;[¢(2)] on ¢,
as we have done in the previous sections.

The main result of this section is the following

Theorem 2.25. Let —ﬁ <a <1, 7>0. Let Q be a bounded open
set in RN of class C' and F be a finite set in N. The set Arq is open
in CZ(SLRYN) and the real-valued maps which take ¢ € Apq to Aps[¢] are
real-analytic on Apq for all s = 1,...,|F|. Moreover, if ¢ € OFrq is such
that the eigenvalues \; [QE] assume the common value )\F[g?)] forall j € F,
and <Z>(Q) is of class C* then the Frechét differential of the map Aps at the
pointqg 1s delivered by the formula

|F|

dly-sarlel = @117 3

s—1
=1

2
/~ <>\FK’UZQ + )\Fﬁ(vl) —7|Vu |2 = (1 — a)|D?*y)? - a(Avl)2> (-vdo,
25(9) v

forally € Qz(Q; RN, where ¢ = o™V and {vi}ieF is an orthonormal ba-
sis in H*?(p(Q)) (with respect to the scalar product (2.5)) of the eigenspace
associated with Ap|@].
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In order to prove Theorem 2.25 we consider equation (2.63) on ¢(2) and
pull it back to 2. Namely, we consider the equation

Pl][¢] = AT [][¥], Vo € H*(6(%)), (2.67)

in the unknowns v € H>%(4(12)), X €]0,00[. We consider P, as an operator
acting from Iffi’o(Q) to its dual, where

Q) = {u e H2(Q) : /39 uly (Vo) L||detVe|do = o} :
We will endow the space PNI;’O(Q) with the form
< u,v >¢= Pylulv], Yu,v € ﬁ;’O(Q).
Moreover, we denote by 7, the map from H?(2) to f[i’o(Q) defined by

S ulv(V0) etV ldo
oo [V(V@)~1[|detVo|do

Tglu] =

and by ﬁi the map from H?(2)/R onto ﬁ;’O(Q) defined by the equality

Ty = 7?35 o p. We also recall that

Tplu][w] = /BQ uw|v(Ve) ™| |detVo|do, Yu,w € H*(Q).

Hence, equation (2.67) is equivalent to
Pylulle] = \Tslulle), ¥ o € H ()

where u = v o ¢. It turns out that the operator 1" defined in Lemma 2.22
with § replaced by ¢(€2) is unitarily equivalent to the operator Ty defined
on IEI;’O(Q)/R by

Ty = (fri)(fl) o qufl) 0Jyo0 fri (2.68)

Thus we have the following lemma, whose proof is analogous to that of
Lemma 2.3.

Lemma 2.26. Let _N£1 < a <1l 7 >0. Let Q be a bounded open
set in RN of class C'. The operator Ty defined in (2.68) is non-negative
selfadjoint and compact on the Hilbert space H*(Q)/R. The equation (2.67)
is satisfied for some v € H*Y($(Q)) if and only if the equation Tyu = pu
is satisfied with u = vo ¢ and p = X\~'. Moreover, the map from A?) to
LIH?2(Q)) x Bs(H?°(Q)) which takes ¢ € A2 to (Ty, < -,- >4) is real-
analytic.
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Proof of Theorem 2.25. First of all, we note that by standard regularity
theory (see e.g., [51, Thm. 2.20]) v; € H*(¢()) for all | € F. We observe
that the proof is very similar to that of Teorem 2.12. It only remains to
compute

< dly_sTololful w > 5= dl,_3Ts o sl [ud (75 ()]
~ AFM(Bldl Py o Frglut] ]y ().

By [62, Lemma 3.3] we have

dl_ 5T o Tl 5 ()]

2
:/~ <KUZZ—|—8<1}l)>§-ud0—/~ V(v}) - (do.
9H(2) v 96(2)

Using Lemmas 2.4, 2.5 and 2.6 we obtain

|, 5P © 7ot ] 7 5(us)]

= /~ ((1 — )| D?*v > + a(Av)? + 7'|Vvl\2) ¢ vdo
09(%)

) / V() - pdo
04(Q)

This concludes the proof. O

2.4.2 Isovolumetric perturbations

As we have done in the previous sections, we consider the following
extremum problems for the symmetric functions of the eigenvalues

. A S A s )
V[d)I]Iich(l)nst F [¢] o V[(if]n:agénst i [¢]

where V[¢] denotes the N-dimensional Lebesgue measure of ¢(£2). We have
the following result, whose proof is analogous to that of Theorem 2.7.

Theorem 2.27. Let —ﬁ <a<l1l, 7>0. Let Q be a bounded domain in
RN of class C'. Let F' be a non-empty finite subset of N. Let gz; € Opq be
such that 0¢(Q) € C* and \j[¢] = Ap[@] for all j € F. For s =1,...,|F|,
the function ¢ is a critical point for A g s with volume constraint if and only if
there exists an orthonormal basis vi,. .., v\ | of the eigenspace corresponding
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to the eigenvalue Ap[@] of problem (2.63) in H*0(¢(Q)) (with respect to the
scalar product (2.5)), and a constant ¢ € R such that

|7 o(v?)
2 (AFK“? +Ap = = 7 Vul = (1= )| D2 - a(AvnQ) =,
=1

almost everywhere in dp(Q).
Using Theorem 2.8 and Remark 2.9, we easily get the following

Corollary 2.28. Let —ﬁ <a<l1l,7>0. Let Q be a bounded domain

in RN of class C'. Let ¢ € A2 be such that H(Q) is a ball. Let X be an
eigenvalue of problem (2.63) in ¢(Y), and let F be the set of j € N such
that A; [gz;] = X. Then AFps has a critical point at qg with volume constraint,
foralls=1,...,|F|.

2.4.3 An isoperimetric inequality for the fundamental tone

In the previous section we have shown that the ball is a critical point for
all the elementary symmetric functions of the eigenvalues of problem (2.62).
In this section we prove that, if « = 0 and 7 > 0, the ball is actually a
maximizer for the fundamental tone, that is

A2(02) < Ao (027), (2.69)

where Q* is a ball such that |Q2| = |2*]. We recall that inequality (2.69) has
been proved for the Neumann problem (2.41) in [42], with « = 0 and 7 > 0.

In the rest of this section we shall consider only the case o = 0, and we
shall think of 7 as a fixed positive constant.

Eigenvalues and eigenfunctions on the ball

We characterize the eigenvalues and the eigenfunctions of (2.62) when
Q) = B is the unit ball in RY centered at the origin. It is convenient to
use spherical coordinates (r,6), where § = (61, ...,60n_1). The corresponding
trasformation of coordinates is

xy = rcos(f),
xe = rsin(f)cos(f2),
xy_1 = rsin(f1)sin(fy)---sin(Oy_2)cos(On_1),

xy = rsin(fy)sin(fy)---sin(fy_2)sin(fy_1),
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with 601,....,0n_2 € [0,7], On—1 € [0,27[ (here it is understood that 6; €
[0,27[ if N = 2).
The boundary conditions of (2.62) in this case are written as

8%u _
o),y = O
ou 1 ou u OAu _
Tor — TTAS(W - ?) =% ey = Mo

where Ag is the angular part of the Laplacian. It is well known that the
eigenfunctions can be written as a product of a radial part and an angular
part (see [42] for details). The radial part is given in terms of ultraspheri-
cal modified Bessel functions and powertype functions. The ultraspherical
modified Bessel functions i;(z) and k;(z) are defined as follows

. _N
in(2) = 21 F Iy, (2),

— J1-F
ki(z) =22 K%_H_z('z%
for | € N, where I,(z) and K,(z) are the modified Bessel functions of first
and second kind respectively. We recall that i;(z) and all its derivatives are

positive on |0, +oo[ (see [1, §9.6]). We recall that the Bessel functions J,
and NV, solve the Bessel equation

2y (2) + 21/ (2) + (22 = v*)y(2) = 0,

while the modified Bessel functions I, and K, solve the modified Bessel
equation

29" (2) 4+ 2/ (2) + (22 + v*)y(2) = 0.
We have the following
Theorem 2.29. Let Q be the unit ball in RN centered at the origin. Any

eigenfunction u; of problem (2.62) is of the form w(r,0) = R;(r)Y;(0) where
Yi(0) is a spherical harmonic of some orderl € N and

RZ(T) = Aﬂ"l + Blil(\/’ii?”),

where A; and B are suitable constants such that
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Moreover, the eigenvalue Ay associated with the eigenfunction u; is delivered
by formula

Aoy = z((l — Dl (V7) + n';’(ﬁ))_l [3(5 DI+ N — 2)ii(v7)
— (= D)VT(N =1+ 2Nl +2(l - 2)l + 7)i;(v/7)
+7((l=1)(1+2N = 3) +7)i] (V/T)

+ (U= DrVTi VT, (270)
for any l € N.

Proof. Solutions of problem (2.62) in the unit ball are smooth (see e.g., [51,
Theorem 2.20]). We consider two cases: Au = 0 and Au # 0.
Let u be such that Au = 0. The Laplacian can be written in spherical

coordinates as
N-—-1

1
A=0y+—0 +5As.
T T

Separating variables so that u = R(r)Y (f) we obtain the equations

N—-1 I+ N -2
R”+ R/_(+2 )

R=0 2.7
r r ( )

and

AgY = —Il(l+ N —2)Y. (2.72)
The solutions of equation (2.71) are given by R(r) = ar! + br2=N=lif | >
0,N > 2, and by R(r) = a + blog(r) if { = 0, N = 2. Since the solutions
cannot blow up at r = 0, we must impose b = 0. The solutions of the second
equation are the spherical harmonics of order . Then u can be written as

u(r,0) = alrlYl(é)

for some [ € N.
Let us consider now the case Au # 0. We set v = Au and solve the
equation
Av = 1.

By writing v = R(r)Y () we obtain that R solves the equation

N-1 I+ N -2
R”+ . R/_(+2 )

" R =1R, (2.73)

while Y solves equation (2.72). Equation (2.73) is the modified ultraspher-
ical Bessel equation that is solved by the modified ultraspherical Bessel
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functions of first and second kind i;(v/7r) and ki(y/7r). Since the solu-
tions cannot blow up at r = 0, we must choose only ;(z) since k;(z) has a
singularity at z = 0. Then

v(r, ) = by, (V7)1 (6)

for some [y € N. Now v = % = Au, that is A(v/7 — u) = 0. This means
that

u(r,0) = "2, (V7)Y (6) — 1,12, (0) (2.74)

for some [ € N.
Now we prove that the indexes /; and [ in (2.74) must coincide. This
can be shown by imposing the boundary condition g%‘l = 0, which can

be written as
bhl;’l(\ﬁ)Yll (0) — Cl2l2(l2 — l)YZQ (9) =0. (2.75)

If the two indexes do not agree, the coefficients of Y;,,7 = 1,2 must vanish
since spherical harmonics with different indexes are linearly independent on
9. Since i} (y/T) > 0, this implies b, = 0 and therefore Iy = 0 or Iy = 1.
Then we have

w(r §) = (Alrl + Bm(ﬁr))Yl(Q), (2.76)

with suitable constants A;, B;. In the case [ # 0, 1, again from the boundary
condition (2.75) we have

I(l—1)A;+ Ti;,(\ﬁ)Bl =0, (2.77)

then B; = %Al. Note that the formula holds also in the case [ = 0,1
!
since these indexes correspond to B; = 0.

Finally, let us consider the boundary condition

o

ou 1 (8u U) B 0Au

R —
a’r |r:1

5, ~ als = _,. (2.78)

Using in (2.78) the representation of u; provided by formula (2.76), we get
[( (- DI+ N —2) +T))Al + (— (311 + N = 2) + A)ir(v/7)
—VT((N—1—=2N1l—2(1 = 2)l — 7)iy(\/7) + (N = 1)v/7i] (V7)

+ i (V7)) ) B [Yi0) = A (A + Biia(V7) Yi(0).
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Using equality (2.77) we get that u; given by (2.76) is an eigenfunction of
(2.62) on the unit ball. Moreover, as a consequence, we also get formula
(2.70) for the associated eigenvalue. This concludes the proof. O

We are ready to state and prove the following theorem concerning the
first positive eigenvalue.

Theorem 2.30. Let Q be the unit ball in RY centered at the origin. The first
positive eigenvalue of (2.62) is Ay = Ay = 7. The corresponding eigenspace
is generated by the coordinate functions {x1,x2,...,ZN}.

Proof. By Theorem 2.29, 0 = Ay < 7 = A(;). We consider formula (2.70)
with [ = 2. We have

Moy = 2(ri5(V7) - 2@(@)‘1 [6Ni2(v7) = VTN = 14+ 7)i(v/7)
+ 72N — 1+ 7)if(V7) + TV/Tiy (VT) | (2.79)

In order to prove that Ay > 7, we use some well known recurrence relations
between ultraspherical Bessel functions (see [1, p. 376]),

HVT) = (V) i (V).

N
1D = Dm0 i)
(7 = Wu(ﬁw“”*”u+l<ﬁ>+2(lﬁ2)mz<ﬁ>
+ip43(V/T).

Using these relations in (2.79), we obtain an equivalent formula for A@2)»

Aoy = 2(5v7is(VT) + mia(VT)) o (0N — 2+ 27)in(v7)
+ (2 = 10N + (7 + 10N)/T — 27 + 57/7)i3(+/7)
(8 + 2N + 7)ia (V) + 7v/Tis (V7).

By well known properties of the functions I, (see [1, §9]), it follows that
1y > 4;41 for all I € N. This implies

(10N — 24 27)is(v/T) + (2 = 10N + (7 + 10N)y/T — 27 + 57/7)iz(\/T)
(8 + 2N + 7)ia (VF) + V75 (VF) 2 (57Tis(v7) + 7ia(V7)),
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then
)\(2) >2r>T1= )\(1)
Now it remains to prove that A(;) is an increasing function of [ for [ > 2.
We adapt the method used in [42, Theorem 3]. We claim that for any smooth
radial function R(r) the Rayleigh quotient

_ JpIDX(R()Yi(0))? + 7|V (R(r)Yi(6))[*da

faB R(r)?Y;(0)2do
is an increasing function of [ for [ > 2. We consider the spherical harmonics
to be normalized with respect to the L?(0B) scalar product. In particular,

we have that the denominator D[R(r)Y;(0)] of Q(R(r)Y;(#)) is R*(1). For
the numerator N[R(r)Y;(6)] of the Rayleigh quotient we have

Q(R(r)Y1(0))

Lok 2 k(k—N-1/2 kR?
:/ <T4<7’R/—§R) + ( o /)RQ—&-T:E Nl
0

b [ (@ ) e,

where k = [(l + N — 2). The above expression is increasing in k for k >
N +1/2 and since k is an increasing function of [, we easily get that each
term involving [ is an increasing function of [ for [ > 2. Thus the claim
above is proved.

For each [ € N,

) fB |D2u|? + 7|Vu|?dx

inf 5 ,
Jop u?do

where the infimum is taken among all functions u that are L?(0B)-orthogon-

al to the first m — 1 eigenfunctions u; and m € N is such that Ay = Ay,

is the m—th eigenvalue of problem (2.62). The eigenfunctions u; are of the
form w; = R;(r)Y;(0), and u; realizes the infimum in (2.80). Then

Ay = QR(r)Yi(0)) < QRi11(r)Yi(0)) < Q(Rig1(r)Yi41(0)) = A1),

where the first inequality follows from the fact that R;1(r)Y;(6) is also
orthogonal with respect to the L?(9B) scalar product to the first m — 1
eigenfunctions R;(r)Y;(0) for i = 1,...m — 1, and then it is a suitable trial
function in (2.80). The second inequality follows from the fact that the
quotient Q(R(r)Y;(0)) is an increasing function of [, for [ > 2. This concludes
the proof. O

)‘(l) = inf Q(u) = (280)
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The isoperimetric inequality

In this section we prove the isoperimetric inequality (2.69). Throughout
this section € is a bounded domain of class C'.
We recall the following lemma from [19].

Lemma 2.31. Let Q be an open set and let f be a continuous, non-negative,
non-decreasing function defined on [0,+00). Let us assume that the function

tes (FEVN) — £(0)) /M) (2.81)

1s convex. Then

| st = [ flalyio

where 0 is the ball centered at zero with the same measure as €).

We observe that (2.81) is satisfied for functions of the type t¥, with p > 1.
We need a characterization of the inverse of the eigenvalues of (2.62).

Lemma 2.32. Let Q be a bounded domain of class C* in RN. Then the
eigenvalues of problem (2.62) on Q0 satisfy,

BN { k+N
Z = max Z / vlzda}, (2.82)
Wt MY I=k+17 0%

where the mazimum is taken over the families {vl}fik]il in H*(Q) satis-
fying fQ D?v; : D2vj + 7Vv; - Vojde = 0;;, and fag viujdo = 0 for all
it=k+1,...k+ N and j = 1,2,....k, where ui,us,...,ur are the first k
eigenfunctions of problem (2.62).

For a proof of this result we refer to [57] (see also [13]). Now we are
ready to prove the isoperimetric inequality.

Theorem 2.33. Among all bounded domains of class C* with fived measure,
the ball mazimizes the first non-negative eigenvalue of problem (2.62), that
is A2(Q2) < Xo(2%), where X2(2) has been defined in (2.64) and Q* is a ball
with the same measure as €.

Proof. Let Q be a bounded domain of class C' in RY with the same measure
as the unit ball B. We consider in (2.82) 1 = 2, ..., N+1 and v; = (7|Q])~ /2
as trial functions. The trial functions must have zero integral mean over
0f). This can be obtained by a change of coordinates x = y — ﬁ J 9 ydo.
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Moreover, the functions v; satisfy the normalization condition of Lemma
2.32. Then v; are suitable trial functions to test in formula (2.82). We get

N+

[y

1 1 )
> — z|“do.
A(2) T T BQ‘ |

(]

1=2
We use Lemma 2.31 with f() = t2. This yields

N+

—_

1 1 ,. NB| N 1
> z|?do = ——+ = — =
@ 2 76 T = T =T =2

(]

=2

This concludes the proof in the case 2 has the same measure as the unit
ball. The proof for general finite values of || relies on the well known
scaling properties of the eigenvalues. Namely, for all o > 0, if we write an
eigenvalue of problem (2.62) as \(7,(2), we have

M7, Q) = oA a727,a0).

This is easy to prove by looking at the variational characterization of (7, §2)
and A(a~27,a0) and performing a change of variable z + x/a in the
Rayleigh quotient (2.64). This last observation concludes the proof of the
theorem. O



Chapter 3

The Dirichlet problem for
the polyharmonic operators

In this chapter we consider the following eigenvalue problem

(—A)'u=A=A)", i
P - (3.1)
u = % — e e . = gy”_ll’l p— 07 on aQ,

where n,m € Ny with 0 < m < n, Q is a bounded open set in RV of
class C' and v denotes the outer unit normal to 9. The case m = 0
corresponds to the well known eigenvalue problem for the polyharmonic
operator (—A)™ subject to Dirichlet boundary conditions, while the case
m > 0 represents a buckling-type problem. These cases include important
problems in linear elasticity. For instance, for N = 2, Pjq arises in the study
of a vibrating membrane stretched in a fixed frame, Py corresponds to the
case of a vibrating clamped plate and Ps; is related to plate buckling.

We consider the weak formulation of problem (3.1). To do so, for any
m € Ny with 0 < m < n, we consider the polyharmonic operator A™ as
the operator from H{ (1) to its dual which takes any u € H['() to the
functional A™[u] defined by

A [u][¢] = /Q ANSulipdr, Vo e H}(Q),

if m = 2s and

8] = - [ V(A% V(A%)da, Vg € H(O),
Q



62 3. The Dirichlet problem for the polyharmonic operators

if m = 2s+ 1, where s € Ny. Thus, the weak formulation of the classic
problem (3.1) reads

(=A)"[ullp] = A(=A)"[ul[#], Ve € Hy(2). (3-2)

By the Poincaré inequality, it follows that the quadratic form defined
by (—A)"[u][u] for all u € H () is coercive in Hg(2), hence the operator
(—A)™ is a linear homeomorphism from H{ () onto (HJ(€2))". Thus equa-
tion (3.2) is equivalent to the equation (—A)~" o (—A)™[u] = A~'u, where
(—A)~™ denotes the inverse of (—A)™. It is convenient to endow the space
H{ () with the scalar product defined by

< Up, Uz >p= (—A)"[ul][ug], (33)

for all uy, ug € HJ(€2). The norm induced by this scalar product is equivalent
to the standard norm (1.10). In this chapter, unless otherwise indicated, we
shall think of HJ(€2) as a Hilbert space equipped with the scalar product
(3.3). This allows to give a straightforward proof of the following

Lemma 3.1. Let Q be a bounded open set in RN of class C* and m,n € Ny
with 0 < m < n. The operator Sq = (—A)™" o (=A)™ is a non-negative
selfadjoint compact operator in the Hilbert space HY(Y). The spectrum of
Sq is discrete and consists of a decreasing sequence of positive eigenvalues
of finite multiplicity converging to zero. Moreover, the equation Squ = pu s
satisfied for some u € HJ(2), p > 0 if and only if equation (3.2) is satisfied
with A = pt.

Proof. The equality < Squi,uz >n= (—A)™[ui][ug], for all ui,us € HJ()
and the symmetry of the operator (—A)™ implies that S is a selfadjoint
operator. Since 2 is bounded and m < n, the space Hj(f2) is compactly
embedded into HJ"(§2). This implies that the operator (—A)™ is a compact
operator from the space H'(2) to its dual. The rest of the proof is trivial.

O

By Lemma 3.1 and standard spectral theory we deduce the following
variational characterization of the eigenvalues of problem (3.1) (see also
Theorems 1.9, 2.64).

Corollary 3.2. Let Q be a bounded open set in RN of class C* and m,n € N
with 0 < m < n. The eigenvalues of problem (3.2) are positive, have finite
multiplicity and can be represented as a non-decreasing divergent sequence



3.1. Analyticity results 63

A€, j € N where each eigenvalue is repeated according to its multiplicity.
Moreover,
M(Q = NV = R
Y J [ ECHIIII’?(Q) er nml1],
dimE=j u#0

for all j € N, where Ry [u] is the Rayleigh quotient defined by

Jo 1A u|?dz .

W, 1fn:27“, m:25,

Jo 1A u|?dz .

W, 1fn=27“, m:25+1,

an[u] N Jo IVATu|?dx

W, 1fn:27“+1, m:25,
VAT u|?dx .

%, lfn:27‘+1, m:25+1

Clearly, the eigenvalues )\?m[Q] depend on n, m. However, for the sake
of simplicity, we shall write A;[Q] instead of A}""'[Q].

3.1 Analyticity results

The main result of this section is the following generalization to poly-
harmonic operators on smooth domains of the results in [64, §3] concerning
the Dirichlet Laplacian (see also Theorem 2.2).

Theorem 3.3. Let Q be a bounded open set in RN of class C', n,m € Ny
with 0 < m < n, and F be a finite set in N. The set Apq is open in
Cr(Q;RY) and the real-valued maps which take ¢ € Argq to Aps[¢] are
real-analytic on Apq for all s =1,...,|F|. Moreover, if ¢ € OFq is such
that the eigenvalues \; [¢] assume the common value \p[¢] for all j € F,
and gZ)(Q) is of class C*™ then the Frechét differential of the map Afps at the
point gg is delivered by the formula

|F|

_ mn 2
Al Apalt] = ~ X513 ('F | 1)2 /%(Q @f’l) (vdo,  (3.4)

for all ¢ € CEL(Q;]RN), where ¢ = o ¢V and {v;}iep is an orthonormal
basis in Hy (¢(€2)) (with respect to the scalar product (5.3)) of the eigenspace
associated with Ap[¢].

Note that formula (3.4) is a generalization of the celebrated Hadamard
formula. We refer to [53] for a recent paper on this topic.
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In order to prove Theorem 3.3 we consider equation (3.2) on ¢(£2) and
pull it back to 2. Namely, we consider the equation

(=2)" ][] = AM=A)"][¥], V¢ € Hy(o()), (3.5)

in the unknowns v € H{(¢(€2)), A €]0,00[. Recall that the pull-back to 2
of the classic Laplace operator on ¢(£2) is defined by

Agu = (A(uo ™)) o

for all u € I/Vlicl(Q), ¢ € A%. The operator Ay is in fact the Laplace-
Beltrami operator associated with the change of variables defined by ¢.
Note that

Su= (A% (uo o)) o ¢

for all u € W2$’1(Q), ¢ € A%. For any 0 < m < n, the operator A7 can be

loc
considered as the operator acting from Hg(2) to its dual, which takes any

u € Hi(2) to the functional Af[u] defined by
APl = A™uo ¢ V][po gt
for all ¢ € HJ(€2). More precisely, if m = 2s, s € Ny then
A?f [u][p] = /QAZUAZcp|detV¢|dm, (3.6)
for all o € H}(Q). If m =25+ 1, s € Ny then
—AZHu)lp] = /Q V(Aju) (Vo) 1 (Vo) 'V (A%p)|detVeldz,  (3.7)

for all o € HP(2), where (V¢)~! denotes the inverse of the Jacobian ma-
trix of ¢ and (V¢)~! the transpose of (V¢)~!. Note that the map from
HJ(Q) to HY (¢(Q)) which maps u to uo ¢=1 for all u € HF(R) is a linear
homeomorphism. Hence, equation (3.5) is equivalent to

(—=8¢)" [ull] = A(=Ag)"[ull¢], ¥ ¢ € Hy()

where u = vo¢. It is also natural to pull-back the scalar product of H{(¢(€2))
to by setting

<UL, U2 >pp=< UL 0 ¢(_1), Ug © ¢(_1) >n



3.1. Analyticity results 65

for all uy,us € H(S2), where < -,- >, is the scalar product in H(¢(2))
defined by (3.3). By H 4(£2) we denote the Hilbert space H(f2) endowed
with the scalar product < -+ >p 4. It turns out that the operator Syq)
defined in Lemma 3.1 is unitarily equivalent to the operator T} defined on

H&¢(Q) by
Ty = (=Ag) "o (=Ag)™. (3.8)

Thus we have the following lemma, whose proof is analogous to that of
Lemma 2.3.

Lemma 3.4. Let Q be a bounded open set in RN of class C', n,m € Ny,
0 <m < n. The operator Ty defined in (3.8) is non-negative selfadjoint and
compact on the Hilbert space H&¢(Q). Equation (3.5) is satisfied for some
v € HY (¢(Q)) if and only if the equation Tyu = pu is satisfied with w = vo¢
and p = A~1. Moreover, the map from A to L(HF(S)) x Bs(HF(SY)) which
takes ¢ € AG to (Ty, < -, - >n,4) is real-analytic.

Proof of Theorem 3.3. First of all, we note that by standard regularity
theory (see e.g., [8, Thm. 9.8)) v; € H2"($(Q)) for all [ € F. We observe
that the proof is very similar to that of Teorem 2.2. It only remains to
compute

<d|y_gTs[V][w],w >, 5 -

By standard calculus and Theorem 3.8 below we have

<d|y_Ts[Y][w],w >, 5
= (dlg_g(=20)" [D [l [ta] = AR [@)(dly_5(—Ag)" [8]) [ur] [

m 2
=—/~ <a :f) C-vda—2/~ (=AY, - Cdo
a6() \ v p(Q)
- 9w\ 2 ~
+)\;1[¢] /~ <8 1:5) ¢ -vdo + 2)\;1[¢] /~ (=AY Vv, - Cdo
99() v 06(Q2)

A7 19) (an”’>2< v
= . 0’7
P Jagy \ovm

where we have set ( =1 o (;3(_1). This concludes the proof. g
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3.2 Isovolumetric perturbations

As we have done in the previous chapter, we consider the following ex-
tremum problems for the symmetric functions of the eigenvalues
min A or max A
V[¢]=const F7S[¢] V[¢]=const F7S[¢],

where V[¢] denotes the N-dimensional Lebesgue measure of ¢(§2). We have
the following result, whose proof is analogous to that of Theorem 2.7.

Theorem 3.5. Let Q be a bounded open set in RN of class C*, n,m € Ny
with 0 < m < n, and I be a finite subset of N. Assume thalt ¢ € Opq
is such that ¢(S2) is of class C?" and that the eigenvalues \j[¢] have the

common value Ap[¢] for all j € F. Let {vi}ier be an orthornormal basis
in HY (¢(2)) of the eigenspace corresponding to Ap[¢]. Then ¢ is a critical

domain transformation for any of the functions App, h = 1,...,|F|, with
volume constraint if and only if there exists ¢ € R such that
"y 2 ~
Z Gon| =C on 06(Q) . (3.9)

leF

Finally, we can prove the following

Theorem 3.6. Let the same assumptions of Theorem 3.5 hold. If QZE(Q) is
a ball then condition (3.9) is satisfied.

Proof. Without any loss of generality, we assume that (;NS(Q) is a ball with
radius R centered at zero. By the rotation invariance of the Laplace oper-
ator, {v; o A};cp is an orthonormal basis of the eigenspace corresponding
to Ap[@] for all A € On(R) where On(R) denotes the group of orthogonal
linear transformations in R™. Since both {v;};cr and {v; o A}cr are or-

thonormal bases of the same space, it follows that ZEI vl2 0cA= ZEI vf ,

for all A € O,(R). Thus El v? is a radial function. By differentiating
with respect to the radial coordinate r, by Leibniz’s formula and by recall-
ing that all derivatives up to order n — 1 of the eigenfunctions vanish at the

boundary of (5((2), we obtain that

82”1)12 B i 2n v 92k, _(2n o™, 2
orn | _p prd k ork orn=k || o\ n orm —R

(3.10)

2n,,2
Since ) ;. p 887,7;2 is a radial function, then by formula (3.10) we conclude
that z:lelp(%)2 is constant on 9¢(€2). O
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3.3 A formula for the Frechét differential of the
‘poly-Laplace-Beltrami’ operator

In this section we prove Theorem 3.8 which has its own interest since it
provides an explicit formula for the Frechét differential with respect to ¢ of
the weak ‘poly-Laplace-Beltrami’ operator A} defined by (3.6), (3.7). That
formula has been used in the proof of (3.4).

Lemma 3.7. Let Q2 be a bounded open set in ]RN~ of class C', s € N,
uy € PQ(Q), ug € HZ(Q). Let ¢ € A¥ and v = oY, i = 1,2. Assume
that $(Q) is of class C1 and that vy € H*(¢(Q)), va € H*($(Q)). Then

/ urd|,_ g A% [¢)ug|det V| da
Q
= / (11 VA vy — A%v1 V) - (dy — /~ (v1A%v9)( - vdo, (3.11)
$(Q) 96(2)
for all 4 € OF5(;RY), where ¢ = p o g1

Proof. First, we recall the following formula from [63, Lemma 3.42] which
holds for any u € H?(Q):

82uo¢> )) O¢; N (uoqb(l)
d|, A U = -2 S 7A
(3.12)
We also observe that
s—1
d|,_3A5] = th A% o (d]y_gAslv]) o AL, (3.13)
k=0
h+k=s—1

By formulas (3.12) and (3.13), by changing variables in integrals and
integrating by parts, we obtain

/Q u1d|¢:¢~)A;[¢]u2|detV¢~>|daz

02Akv2 (9{ 6Ak02
= - Al J A | d
Z / U1 Z 6%3% 8% par 0yj Cj Y

h,k=0
h—i—k s—1
h k . .
- 5 [ [ (G ) w
h k=0 ig=1 Yi y] Yi Yj

h+k31



68 3. The Dirichlet problem for the polyharmonic operators

s—1
- > / (Ahy AR Lyy 4 VAP VAR, dive dy,  (3.14)
Pyt ()
h+k=so—1

see also [63, Formula (3.45)]. Moreover, integrating by parts yields

h k . .
/ OA" v OA vy (GCJ i ‘9@) dy = _/~ Al AFH ¢ - vdo

+ / Ay VAR - Cdy + | Aloy AR lugdivedy
#(2) #(€2)
+ / VA" - VAFpdivedy — [ AP VAFu, - Cdy. (3.15)
#(82) #(€2)
By observing that the first summand in the right-hand side of (3.15)

vanish if £ < s—1, and by combining (3.14) and (3.15), we obtain a telescopic
sum and we deduce the validity of (3.11). O

Theorem 3.8. Let ) be a bounded open set in RN of class C1, n €N,
uy,ug € HY (). Let ¢ € A and v; = u; 0=V i =1,2. Assume that 4(Q)
is of class C' and that vi,ve € H*"(¢(2)). Then

(@l ] = — [ SO

—/~ (—=A) "1 Vvg + (—A) "0 V1) - (dy, (3.16)
()

for ally € C’Z}(Q;RN), where ( =1 o &(—1) ]

¢ -vdo

Proof. First, we consider the case where n is an even number of the form
n = 2s with s € Ny. By formula (3.6) and standard calculus we have

A2 (][ ][z] = /Q A3 W Adus| det Dld
- /Q ASurd] ,_sAG[Y]us| det Do|dx
+/QA2~SU1A‘;;u2d|¢q;|detD¢|[z/1]dx. (3.17)
Moreover, by (2.12) we have

/Q Ayl gl det Dolllde = [ AH ATl (319)
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Formula (3.16) easily follows by combining formulas (3.11), (3.17), (3.18),
by integrating by parts and by observing that A%v; = % on 0¢(£2) since
vi € Hg*(¢(9)).

Now, we consider the case where n is an odd number of the form n =
2s + 1 with s € Ny. By formula (3.7) and standard calculus we have

dl,_ AT Yl ug]ug) = | VA5 (VE + VIOV A vady
P=0" ¢ 3(9)

— / VA 11 VA vodiv(dy — VASu, V <(d|¢:¢3A25[¢]U2) o ¢;(—U> dy
()

()
— [ V(A5 ur) 0 V) VA wady. (3.19)
[ ¥ (it )

Moreover, integrating by parts yields

[ VA0 (V¢ 4 VIOV ASvady
o(Q)

N / (agh N DNy DCr, DA, aAs@)
= S 4+ 2k d
o e \Oyk Oyn Oyk Oyn Oyn Oy
:2/ aAvlaAvgg‘Vda
a&(g) aV 81/
N
2 ASv; DA A, O2A
X [ (Gt SO G Y ay
o @) \Oyndyr Oy oy ;i
< / (a?mm ONSvy DA%, 2Au, C) "
by ) B() dy;  Oyk BT Oy oynoyr, "
= / 047 v 94 vgg -vdo +/ VA0 VA% vadiv{dy
os) Ov v H(Q)

—/~ (Ao VA + ATy VA®y) - (dy.
()

By integrating by parts, changing variables in integrals and using formula
(3.11), we obtain

/¢~>(Q) VA0,V <(d‘¢=q§Af¢W]uj) o gZE(*I)) dy

- _ /Q A‘;Huid] o= A5 [Y]u;|detV | da
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= —/ (AT, VASy; — ATy, Vu;) - Cdy - (3.20)
$(%2)

for all 4,j € {1,2}. Finally, formula (3.16) easily follows by combining for-

mulas (3.19):(3.20) and by observing that aAalsf”’ = 825:215”" on dp(Q) since

v; € HEHH(Q)). O




Chapter 4

Quantitative estimates for
systems of partial differential
equations

In this chapter we consider the eigenvalue problem (1.13) and prove
quantitative estimates for the eigenvalues. In particular, we show that the
arguments used in [38, 39] can be easily adapted to the general case of
systems of partial differential equations.

Note that the classical formulation of problem (1.13) is

Z Z \BIDﬁ AU D"‘uz) =Muj, j=1,...,m,

o], B|<1 =1

with suitable homogeneous boundary conditions depending on the choice of
the space V(Q) c WH2(Q).

We recall that problem (1.13) includes several important problems in
linear elasticity, e.g., the Lamé system (5.3), and more generally problem
(5.1) discussed in Chapter 5. Also the Reissner-Mindlin system (6.1) is a
special case of problem (1.13). Clearly, also scalar problems are included: in
fact, this is the case m = 1. Therefore, problem (2.2) discussed in Chapter
2 and problem P, (3.1) can be considered as well.

In this chapter, we shall think the coefficients Agﬁ as fixed and satisfying
some or all the conditions (1.14)-(1.16). Moreover, we shall consider prob-
lem (1.13) under Dirichlet and Neumann boundary conditions only, i.e., the
space V() will be either Wé’Q(Q) or WH2(Q). In particular, by ¢, p[],
on N[] we shall denote an orthonormal sequence of eigenfunctions associ-
ated with A\, p[Q], Ay A[Q] respectively. We shall also denote by HWé,z @
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Hyyi2(q) respectively the corresponding operators. When no distinction be-
tween the Dirichlet and the Neumann case is required and we refer to both
problems, we shall simply write A,[2], ¢, [?], Hq to indicate the eigenvalues
and the corresponding eigenfunctions and operators.

4.1 Estimates via diffeomorphisms

Let © be an open set in R™Y, and let ¢ be a diffeomorphism of 2 into ¢().
In this section we provide a few estimates for the difference |A,[Q]—An[0(2)]],
which will be useful in the sequel.

We have the following lemma (cf. [38, Lemma 4.1]).

Lemma 4.1. Let Q be an open set in RY. Let I,m € N, By, By > 0 and ¢
be a diffeomorphism of Q onto ¢(Q) of class C' such that

‘mﬁgﬂD o(x)| < By, |detVe(x)| > Ba, (4.1)

for all x € Q. Let By > 0 and, for all o, B € NYY with |al,|8| <1 and for all
1,7 € N with i,5 < m, let AJ be measurable real valued functions defined
on QU ¢(Q) satisfying

max - [A7(2)] < Bs, 4.2
lad,I8I<t, i,j§m| op(®)| < Bs (4.2)

for almost all z € QU ¢(). Then there exists a positive constant ¢ =
¢(N,l,m, By, B, B3) such that

Qutsy (0 6 — Qa(w)| < cL(9 / S Duffdr,  (43)

la|<m
for all w € WH2(Q)™, where

L D¢ —1d)|| 700 Al] A” oo
(¢) = ‘m%H (¢ )IF? (Q)+\a|,\5|r£%, | 5l Lo (@)

Proof. By changing variables and using a known formula for high derivatives
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of composite functions (cf. e.g., [49, Formula B]), we have that

Qpy(wo ™) / > A DY(ui0 ) DP(uj0 ¢ )dy

) Jal,8]<t

1,j<m
/ Z (A” D% (u; ogb(’l))D”B(ujoqﬁ(’l))) o ¢|detVo|dx
|ex], | BI<
2,j<m
= [ X afes X DR (a6 a0 V) o older Voo
laf, |5|<l | <le|
hjsm €1<18l

= > Z/ 2 pon(0)pae(6)) 0 ¢ DMu; Do uj |det V| da,

lal,|BI<l |n|<|e
bism [€|<|B]

(4.4)

for all u € WH2(Q)™, where for all o, n with || < |a| <1, pay(¢~) denotes
a polynomial of degree |7| in derivatives of ¢(~1) of order between 1 and |a/,
with coefficients depending only on N, «, .

We recall that for each o with || <[ there exists a polynomial p,(¢) in
derivatives of ¢ of order between 1 and |«|, with coefficients depending only
on N, «, such that

Pa(9)

ag(-y g Pal®)
(DR 0= favgppr T

(4.5)

Using (4.4), in order to get inequality (4.3) it is enough to estimate the
expressions

(A7 pan(0 D )pae(0)) 0 ¢ |det V|
— (A7 Pan (6T )ppe (1)) 0 6 |det Ve,

where ¢ = Id. This can be done by means of the triangle inequality and by
observing that (4.5) implies that

(D¢ D)0 ¢ — (D) 0 ¢ !<C|§|ﬂg|xlllDﬁ(¢ )l o (0

for some C' = C(N, a, By, Bs). O



74 4. Quantitative estimates for systems of partial differential equations

We observe that, if condition (1.16) is satisfied in 2, and if ¢ is a diffeo-
morphism of £ onto ¢(£2) smooth enough, then condition (1.16) is satisfied
in ¢(Q2) as well. Note also that, if condition (1.16) is satisfied in  with
constants aj, by, and in ¢(2) with constants ag, by, then the condition is
satisfied in Q U ¢(Q2) with constants a = min{a1, a2}, b = max{by, b2 }.

Theorem 4.2. Let U be an open set in RY. Letl,m € N, By, By, Bs,a,b >
0. For all o, 3 € NI with |a|,|B8] <1 and for all 3,5 € N with 3,5 < m,
let AY, be measurable real-valued functions defined on U, and satisfying
conditions (1.14), (1.16), and (4.2) in U. Then the following statements
hold.

(i) There exists a positive constant ¢y = c¢1(N,l,m, By, B2, Bs,a,b) such
that, for all n € N, for all open sets Q C U for which the embedding
Wé’Q(Q) C L%(Q) is compact, and for all diffeomorphisms of £ onto
#(Q) of class C! satisfying ¢() C U and condition (4.1), if L(¢) <
(c1D3)!, we have

A, p[ = Anp[¢()]] < e1 DE(L + Anp[Q)L(9).

(i) There ezists a positive constant co = ca(N,l,m, By, By, B3, a,b) such
that, for alln € N, for all open sets Q C U for which (1.16) is satisfied,
and for which the embedding W2(Q) C L?(Q) is compact, and for all
diffeomorphisms of Q onto ¢(Q) of class C' satisfying ¢() C U and
condition (4.1), if L(¢) < (ca NE)™1, we have

M9 = A N[N < 2 NG(1 + A [ L ().

Proof. The proof can be done adapting that of [38, Theorem 4.8], and using
Lemma 4.1. 0

Applying Lemma 1.11 and Theorem 4.2, we get the following

Corollary 4.3. Let A= (p,s,s, {Vi}s_i,{rn}s_,) be an atlas in RN . Let
I,m €N, By,Bs,L,a,b >0 and, for all o, € Név with |af, |B] < 1 and for
alli,j € Nwithi,j <m, let Agﬁ € COL(U;_, V) satisfy HAgg”COvl(u;‘L:th) <
L and conditions (1.14)-(1.16) for any Q € C(A) with the same constants
a,b.

Then there exists a positive constant ¢ = ¢(N, A,l,m, By, Ba, L,a,b) such
that, for all n € N, for all open sets Q € C(A), and for all diffeomorphisms
of 2 onto ¢(2) of class C' satisfying ¢(Q) C US_, Vi, and condition (4.1), if
maxg<|a|<; [[D*(¢ — Id)|| 1o () < ¢!, we have

Mal62] = A 6] < 1+ Mn[9) max [ID°(6 1) | 1= o
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4.2 Estimates for Dirichlet eigenvalues via the at-
las distance

In general, even if two open sets (21 and )y are known to be diffeomor-
phic, it is not easy to construct a diffeomorphism ¢ such that ¢(£2;) = Q9 and
provide information on the measure of vicinity maxo<|q|<; [ D*(¢—1d)|| Lo ()
in terms of explicit geometric quantities. However, if 21, {25 belong to the
same class C'(A), then it is possible to construct a suitable diffecomorphism ¢
such that ¢(£21) C 22 and estimate the measure of vicinity via the atlas dis-
tance (1.1). Such a construction was first used in [34] and then implemented
in [38]. We briefly recall it.

Let A= (p, 8,8, {Vi}s_1,{rn};—;) be an atlas in RY and let {15,}5_, be
a partition of unity such that ¢y € C°(RN), supp ¢y, C (Vh)%p, 0<y,<1
and Y 3 Yp(xz) =1 for all z € U_,(V},),. For e > 0 we consider the
following transformation

S
de(x) =2 —€Y &Gun(x), weRV, (4.6)
h=1
where &, = 7"(_1)((0, ..., 1)). We recall the following technical lemma from

38).

Lemma 4.4. Let A= (p, 8,8, {Vi}5_1,{rn}s—,) be an atlas in RN . There
exist Ay, As, E > 0 depending only on N and A such that

o?}?ﬁéz”D (de = Id)]| oo vy < A, (4.7)
and such that 1
B <1—Ase <detVoe <1+ Age, (4.8)

for all 0 < e < E. Furthermore,

Pe(fh) C o

for all 0 < e < E, for all Q1,Q9 € C(A) such that Qo C Qy and
€
d_A(Ql,Qz) < g

Theorem 4.5. Let A be an atlas in RN. Let ,m € N, L,a,b > 0 and,
for all a, B € NY with |a|,|B8] <1 and for any i,j € N with i,j < m, let
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A;JB € CONU;_ V) satisfy \\Agﬁﬂco,l(Ui:IVh) < L and conditions (1.14)-
(1.16) for any Q2 € C(A) with the same constants a,b.

Then for any n € N there exist ¢y, €, > 0 depending only on n, N, A,l,
m, L,a,b such that

A D[] — A p[Q2]] < cnda(Q4,Q2), (4.9)
for all Q1,Q9 € C(A) satisfying d4(21,22) < €.
Proof. Let 0 < e < E where E > 01is as in Lemma 4.4, and let Q1, Qs € C(A)
be such that d4(21,Q2) < ¢/s. We set Q3 = Q1 N Q. Clearly, Q3 € C(A)
and d4(Qs,Q1), da(Q3,Q2) < ¢/s. By Lemma 4.4 applied to the couples of
open sets Q, 3 it follows that ¢ (k) C Q3, k = 1,2, where ¢, is defined

in (4.6). By the monotonicity of the eigenvalues with respect to inclusion it
follows that

)\n,D[Qk] < )\n,D[QS] < An,D[(Z)E(Qk)]a

for kK = 1,2. Using Lemma 1.12, Corollary 4.3, and Lemma 4.4, it follows
that there exist ¢,, €, > 0 such that

A, D[] — Anp[] < Anp[de ()] — A D[] < Ere,
for k=1,2,if 0 < € < €,. Hence

A D[] — A p[Q22]] < ﬁ%{)\n,D[Q?,] — A p[Q]} < Gpe.

By choosing € = 2sd 4(£21,22), we get that inequality (4.9) holds with ¢, =
2sép, if d4(21,Q2) < €, = €,/(25). O

Using Lemma 1.3 we get the following

Corollary 4.6. Under the same assumptions of Theorem 4.5, for anyn € N
there exist c,, €, > 0 depending only on n, N, A,l,m, L, a,b such that

[An, (1] — Anp[Q2]] < cne, (4.10)
for all 0 < e < €, and for all Q1,Q9 € C(A) satisfying (1.3) or (1.4).

Proof. Inequality (4.10) follows by inequality (1.5) and inequality (4.9). O
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4.3 Estimates for Neumann eigenvalues via the at-
las distance

Using the variational characterization (1.17), it is not difficult to see
that, if Q1 C Qq, then A, p[1] > A, p[22] for all n € N. This was used in
the proof of Theorem 4.5. Unfortunately, Neumann eigenvalues do not enjoy
monotonicity properties, and therefore we have to use different arguments.

We start by recalling the following definition from [38].

Definition 4.7. Let U be an open set in RN and p an isometry. We say
that U is a p-patch if there exist an open set Gy C RN™1 and functions
nu,Yu : Gy — R such that

p(U) = {(z,2n) € R : Yy (z) <any <nu(z), v €Gu}.
The thickness of the p-patch is defined by
Ry = inf (nu(Z) —Yu(2)).
zeGy
The thinness of the p-patch is defined by

Sy = sup (nu(z) — Yu(x)).

zeGy

If Qo € Q; and Qp \ Q2 is covered by a finite number of p-patches
contained in €, then we can estimate A, nr[Q22] — Ay Ar[€21] via the thickness
of the patches.

Lemma 4.8. Let I,m € N and Q; be an open set in RN such that the
embedding WH2(Q1) ¢ WL2(Qy) is compact. For all o, € N with
laf,18] <1, and for alli,j € N with i,j < m, let A, be bounded measurable
real-valued functions defined on 4, satisfying conditions (1.14)-(1.16) in
Q. Letc €N, R> 0.

Assume that Qp C Qy is such that the embedding Wh2(Qy) C L2(Qy) is
compact, that (1.16) is satisfied and that there exist isometries {pp}7_, and
two sets {Un}7_1, {Un}7_y of pn-patches Uy, and Uy, satisfying the following
properties

(a) Uy CU, C N, forallh=1,...,0;
(b) Gu, =Gpg,, n, =ng,, foralh=1,...,0;
(c) Ry, > R, forallh=1,...,0;
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(d) Ql \QQ - ngth.

Then there exists a positive constant d = d(N, 1, m, R) such that, for all
n €N,

AN [Q2] < A A [](1 +dy, , max Su,,),

=1,...,0

if maxp—1,.. , Sy, < d;l, where

dp = 20da™" (b+ A\ n[Q1]) - (4.11)

Proof. By (a) and (b) it follows that ¢ < 4y, for all b =1,...,0. Let
u € WH2(Q1)™. By (d) we have

/ lu?dy < Z/ lul2dy = / ]uoph \ dx. (4.12)
21\ Q2 b1 Un h=1"Pn(Un)

1YP

Let us set vjp = uj o pg_l). Clearly,

nuy, (%)
/ wop | Z / / oy (@, o) Pdeydz.  (4.13)
pn(Un) Gu, JYu, (%)

Since v;, € Wh2(pn(Uy)) it follows that for almost all Z € Gy, the
function v; 5 (7, ) belongs to the space WZ’Q(wgh (Z),ng, (%)). Moreover, by
(c) it follows that 71y (%) — ¢, (z) = R. Thus by [33, Theorem 2] there
exists d = d(m, R) such that

_ 2 7 = 2
[vjn(2, ") HLOO(wgh @)1, (@) <d (ij,h(fca ) \|L2(¢0h @), (7))

Ly 2
M(i‘, ) ) (4.14)

.

I
dry L2 (¢, (@)mg, ()
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Moreover, by inequality (4.14) and property (b) we have

m nuy, (%
Z/ / ]v]h T xN)| dxndT
j=1"Cv

¢Uh

m
<3 /G (00, () = 0, @03 @ Wy @, 00

1 2
8 Uj,h

1
O’y

S ~SUh Z(’Uj,h”%ﬂ(ph(ﬁh)) + ‘

< dSUh(HUH%Q(Ql) +> HDaUH%?(Ql)>, (4.15)

|a|=l

LQ(Ph(Uh)))

where d = d(N,l,m, R) is a positive constant.

We denote by L, [©] the linear subspace of W2(€2;)™ generated by the
ern[ul . enn[]. I u € Lp[h] and [luf/g2(q,) = 1 then by (4.12),
(4.13), and (4.15) we obtain

b
/ lul? < od max Sy, |~ + a_ngl(u)>
01\ h=1,...,0 a

< odhmax Su, (b + a_l)\m/\f[Ql]) .
a

=1,...,0

Let 712 be the restriction operator from €2 to €29. Clearly, 712 maps
Wh2(Q)™ to Wh2(Q)™. For all n € N and for all u € L[] with
lullz2(0,) = 1, we have

[ Tizula(q,) = / uf? / fu?
Q1 Q1\Q2

>1- adhmax Su, (b + a_lAn,N[Ql]) )
= a

and, thanks to condition (1.15),
QQQ (7-12u) < QQ1 (u) < /\n,N[Ql]

Therefore, using the terminology of [37], Ti2 is a transition operator from
Hyyi2(0,ym 10 Hypi2(q,)m with the measure of vicinity

(5(HW1,2(QI)m, le,Q(QZ)m) = hga“}.(g Suy,
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and the parameters a,, = oda™ (b + A\ [S]), by = 0. As a consequence,
by a variant of the general spectral stability theorem [37, Theorem 3.2] it
follows that

)\mj\/'[QQ] < )\n,N[QI] + 2(0%)\”7/\/[91] + bn)(S(HWl,z(Ql)m, HWZ,2(QQ)m),
if §(Hyyi2(q,ym, Hyr2(qpym) < (2a,,)~!. This concludes the proof. O

Lemma 4.9. Let A be an atlas in RYN. Let m € N, L,a,b > 0 and,
for all a, 3 € Név with ||, || < I and for all i,j € N with i,5 < m, let
Agﬁ € L>®(Up_, Vi) satisfy ||Alofg||L°°(u;:1vh) < L and conditions (1.14)-
(1.16) for any 2 € C(A) with the same constants a,b.

Then for any n € N there exist c,,, €, > 0 depending only onn, N, A, [, m,
L,a,b, such that

AN [Q2] < A n[S] + cnda(Q1,Q2),
for all Q1,Q9 € C(A) satisfying Qo C Q1 and d4(21,Q2) < €.

Proof. The proof can be done adapting that of [38, Lemma 6.11] and using
Lemma 4.8. O

Next we consider the case Q3 = ¢¢(€21), where ¢, is defined in (4.6). We
recall here [38, Lemma 6.13] which will be used in the sequel.

Lemma 4.10. Let A be an atlas in RN . Then there exist €y, A, R > 0 and
o € N depending only on N, A, and for each open set Q € C(A) and for
each 0 < € < ¢q there exist isometries {pp}7_, and sets {Un}7_,, {Un}7_,
of pn-patches Uy, Uy, satisfying conditions (a), (b), (¢), (d) in Lemma 4.8
with Q1 = Q and Qo = ¢(2) and such that maxp—;, . , Sy, < Ae.

Theorem 4.11. Let A be an atlas in RN. Let ,m € N, L,a,b > 0 and,
for all a, B € N with |al, |8 <l and for all i,j € N with 1,7 < m, let
Agﬁ € CUYU;_ Vi) satisfy ||Ag5||(10v1(u;:1Vh) < L and conditions (1.14)-
(1.16) for any Q € C(A) with the same constants a,b.

Then for any n € N there exist ¢,,, €, > 0 depending only onn, N, A, 1, m,
L,a,b such that

A A (1] = A A [Q2]] < cnda(Q1,90), (4.16)

for all 1,99 € C(A) satisfying do(1,Q2) < €.
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Proof. For the sake of simplicity, in this proof we will use ¢,, €, to denote
positive constants depending only on n, N, A,l,m, L,a,b, and their values
are not necessarily the same for all the inequalities below.

Let E > 0 be as in Lemma 4.4. Let 0 < € < E and 21,02 € C(A) be
such that d4(21,Q9) < e/s. We set Q3 = Q1 N Qy. Clearly, Q3 € C(A) and
da(§23,0),da(23,92) < 5;. By Lemma 4.4 applied to the couple of open
sets Q1, Q3 it follows that ¢(€21) C 3 hence

¢6(Q3) C ¢G(Ql) C Q3- (4.17)

Now we apply Lemma 4.10 to the set 2 = Q3. It follows that if 0 <
€ < € there exist rotations {ps}7_, and two sets {Up,}7_,, {Un}7_, of pu-
patches Uy, Uy, satisfying conditions (a), (b), (c), (d) in Lemma 4.8 with €3,
¢e(S23) replacing 4,2y respectively, and such that max,—; _, Sy, < Ae.
In particular,

3\ 6:() © Uf_, U, (4.18)

hence by (4.17), (4.18) it follows that
Q3 \ ¢6(Ql) C ngth.

Now we apply Lemma 4.8 to the couple of open sets Q3, ¢.(£21) by using
the sets of patches defined above. Since maxj—i ., Sy, < A€, by Lemma
4.8 it follows that if Ae < d,;! then

AN [0e(Q1)] < A [Q3](1 + dy Ae), (4.19)

where d,, is defined by (4.11). By Lemma 1.12 and inequality (4.19) it follows
that there exist ¢,, €, > 0 such that

A [@e()] < A ar[2s] + cpe (4.20)

if 0 < € < €. On the other hand, by Lemma 1.12, Corollary 4.3, and by
inequalities (4.7), (4.8) it follows that there exist ¢,, €, > 0 such that

An NP0 ]] = An Ar[]] < cne (4.21)

if 0 < € < €,. Thus by (4.20), (4.21) it follows that there exist ¢,, €, > 0
such that
A N[E1] < An n[Q3] 4 cne (4.22)

if 0 < € < €,. By Lemma 4.9 applied to the couple of open sets {2y, {3 it
follows that there exist ¢,, €, > 0 such that

AN [Q] < A (] + cpe (4.23)
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if 0 < € < €,. Thus, by (4.22), (4.23) it follows that
AN [Q1] = XN [Q5]] < cne (4.24)

if 0 < € < €,. It is clear that this whole discussion holds if we replace 2y
with 5. Therefore we obtain

[An v [Q2] = Aa N [Q3]] < cne (4.25)

if 0 < € < €,. By (4.24), (4.25) we finally deduce that for each n € N there
exist ¢y, €, > 0 such that

A (U] = A ar[Q2]] < cne,

for all 0 < € < ¢, and for all Q1,0 € C(A) satisfying d4(Q1,Q2) < e.
Finally, by arguing as in the last lines of the proof of Theorem 4.5 we deduce
the validity of (4.16). O

As for Dirichlet boundary conditions we have a version of Theorem 4.11
in terms of e-neighborhoods with respect to the atlas distance.

Corollary 4.12. Under the same assumptions of Theorem 4.11, for any
n € N there exist c,, €, > 0 depending only onn, N, A,l,m, L,a,b, such that

A A (] — A a[Q2]] < cne,

for all 0 < e < €, and for all Q1,Qe € C(A) satisfying (1.3) or (1.4).

4.4 Estimates via the lower Hausdorff-Pompeiu de-
viation

The atlas distance obviously depends on the choice of the atlas A. How-
ever, as shown in Theorem 1.4, it can be controlled by the lower Hausdorft-
Pompeiu deviation, and therefore by the Hausdorff distance. We have the
following

Theorem 4.13. Let A be an atlas in RN. Let ,m € N, L,M,a,b > 0.
Let w : [0,00[— [0,00] be a continuous non-decreasing function satisfying
w(0) = 0 and, for some k > 0, w(t) > kt for all 0 < t < 1. Moreover,
for all a, 3 € N with |al, |8] <l and for all i,j € N with 1,7 < m, let
Ads € COL (U5 _ Vi) satisfy [A7sllcoaws vy < L and conditions (1.14)-

(1.16) for any Q2 € Cﬂ')(A) with the same constants a,b.
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Then for any n € N there exist ¢, €, > 0 depending only onn, N, A,l,m,
L, M, a,b,w such that, for both Dirichlet and Neumann boundary conditions,
we have

An[0] = An[Q2]| < cnw(dap (0, 092)), (4.26)
for all Q1,99 € CJL'\J/I(')(A) satisfying dyp (021, 082) < €.

Proof. We recall that, if Q1,Q € C(A) then also Q1,02 € C(A) where
A = (p/2,5,8,{(Vi)pj2}i—1> {rn}tj—1)- Thus by inequalities (4.9), (4.16)

applied to Q1,9 as open sets in C(A) and by inequality (1.6) we obtain
inequality (4.26). O

Corollary 4.14. Under the same assumptions of Theorem 4.13, for each
n € N there exist c,,e, > 0 depending only on n, N, A,l,m,L, M,a,b,w
such that, for both Dirichlet and Neumann boundary conditions, we have

’)‘R[Ql] - An[QQH < an(e),

for all 0 < e < €, and for all Q1,Q € CJU\}(')(A) satisfying (1.7) or (1.8).

4.5 Estimates via the Lebesgue measure

In the previous sections we have shown continuity of Dirichlet and Neu-
mann eigenvalues with respect to the atlas distance and the lower Hausdorff-
Pompeiu deviation. In this section we prove estimates involving the Lebesgue
measure, under some additional assumption on the regularity of the eigen-
functions.

We recall the following result from [39], which will be used in the proof
of Theorem 4.16.

Theorem 4.15. Let A = (p,s,8,{Vi}i_1, {rn};_,) be an atlas in RV,
leN, M >0. Let Q1,99 € 05\7[1’1(/1). Foralll e N, 1 < p < co there exist
linear maps

Tp : WEP(Q1) = WEP(Q) and Ty : WP (Qq) — WHP(Qy),
with the following properties:
(i) there exists C1 > 0 depending only on A,l, M,p such that

I Tol, [ Tarll < Ch.
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(ii) there exists Cy > 0 depending only on A, and an open set Q3 C Q1N
such that
11\ Q3], |22\ Q3] < Ca|Q1 A Dy,

and such that
Tolul(z) = u(z),  Tn[vl(z) = v(z),
for all u € WEP(Q),0 € WHP(Qy), x € Q3.
If p = o0, there exist linear maps
Tp : WE(Q)) = W) and Ty : Whe(Q) — WH(Qy),
satisfying properties (i)-(ii), where Wéoo(Q) is the space of those functions
in W (Q) such that their zero-extension belongs to WH>(RN).

Theorem 4.16. Let A = (p,s,8,{Vi}5_1, {rn};_,) be an atlas in RV,
I,m € N, M,a,b > 0. For all o, € NY with |a|,|8] < I and for all
1,7 € N with i,7 < m, let Agﬁ be measurable real-valued functions defined
on Uj_, Vi, satisfying conditions (1.14)-(1.16) for any Q € 05\21’1(,4) with
the same constants a,b.

Let 2 <p<o0,0< M, <o for alln € N, and

X = {Q € (A ¢ l@n[Qllwoyn < Ma,¥n € N}.

Then for anyn € N there exists ¢, > 0 depending only onn, A, l,m, M, a,
b,p, My,..., M, such that

)\n[QQ] < /\n[Ql] + Cn|Ql A 92’17%, (4.27)
for all 4 € X, Qg € CL VN (A) such that | & Q| < ¢t .

Proof. Let Q1 € X and 2y € Cj\/;l’l(/l). To shorten our notation we set
on1 = pn[], for all n € N. We denote by £; the space of the finite
linear combinations of the eigenfunctions ¢, 1. Moreover, we define a linear
operator

T12 : £1 — DOIH(H;ZQQ)

by setting
Ti2[en1li = To(en1)i,

in the Dirichlet case, and

Ti2[eni1li = Ta(@n,1)i-
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in the Neumann case, for all n € N and for all 1 < i < m. Here Tp, T
are the operators provided by Theorem 4.15. Note that 179 is well-defined.
Indeed, by assumption £; ¢ W' (Qq)™, and in the Dirichlet case £ C

Wé’p (€1)™. Moreover, T1o takes values in Dom(]’jfgll/2 2) because in the Dirich-
let case Wé’p(Qg)m C WOZ’Z(QQ)’” = Dom(Hgll/Qz)7 and in the Neumann case
WhP(Qa)™ € WH2(0)™ = Dom(HY).

To prove (4.27) we apply the general spectral stability theorem [37, The-
orem 3.2]. We need to prove that Tj9 is a transition operator from Hg, to

Hq,. By Theorem 4.15, T12¢, = ¢y, on 23 where (23 is as in Theorem 4.15.
Thus

1/2 1/2
(Hgé T1290k,1,HQ/2 Ti2¢r1) L2(Q0)m = Q0 (T120k,1, Th2¢0r1)
= Qs (T12¢k,1, Ti20r1) + Qao\0s (T120k,1, T12¢0r1)

= Qs (Pr,1,0r1) + Qan\ay (Th2¢r,1, Th2¢r1)

= Qo (Pr,1,9r1) — Qa\os (k15 0r1) + Qas\as (T1200k,1, T120r1)

1/2 1/2
= (HQ/l sﬁk,l,HQ/l era)rz@m — Qanas (Pk1, ¢r1)

+Qa\0s (T120k,1, T12071), (4.28)

for all k,7 € N. By Holder’s inequality

_2
Qan\as (91, r1) < MM, |0\ Q5] 5, (4.29)

and by Theorem 4.15 we have

_2
Qao\0s (T120k,1, T120r1) < MM, |\ Qs 77, (4.30)

and
|21\ Q3] [Q2\ Q3] < |1 & Qo (4.31)

where ¢ > 0 depends only on A,l,m,M,a,b,p. Thus by (4.28)-(4.31) it
follows that

1/2 1/2 1/2 1/2
|(HQ/2 T1290k,1aHQ/2 Ti2¢r1) L2(Qg)m — (HQ/l wk,l,HQ/l ©r1)L2(,)m|
< G MM A QT (4.32)

and similarly

_2
[(Th20k,1, Tropr1) 12(00)m — (Pk,15Pr1) 12(00)m| < C2My My |Q1 A Q|77

)

(4.33)
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for all k,r € N, where ¢1, ¢ > 0 depend only on A,l, m, M, a,b, p.
By (4.32), (4.33) it follows that 772 is a transition operator from Hg,
to Hq, with parameters ax, = ¢iMM,, by, = ¢caMpM, and measure of
2
vicinity §(Ha,, Ha,) = |91 & Qa|' "7 (see [37, Definition 3.1]). Thus by [37,
Theorem 3.2] it follows that

AnQ2] < Al + (2anAn|[] + b)3(Ha, , Hoy,), (4.34)

if 6(Hq,, Ha,) < (2an)~", where a, = (3} ,—; a2 )2 =& S0 M2 b, =
(> kr=1 b? )2 = & 3°7_, M?. Furthermore, by Lemma 1.12 there exists
A, > 0 depending only on n, A, [, m,a,b such that

A[Q] < Ap (4.35)

for all Q € Czl’l(A). Thus, inequality (4.27) follows by combining (4.34)
and (4.35). O

It is well known that if Qp C Qp then A\, p[] < A, p[€22]. Thus by
Theorem 4.16 we immediately deduce the following corollary concerning
Dirichlet eigenvalues.

Corollary 4.17. Under the same assumptions of Theorem 4.16, for any n €
N there exists ¢, > 0 depending only on n, A, l,m,M, a,b,p, My,..., M,,
such that

1—2

A o[ ] < A p[2] < X p[] + cn|Q1\ Qo] 7,

for all Qo of class C’j\/_[l’l(.A) such that Qa C Q1 and |1\ Q| < ;L.

If we assume that both 7 and Q9 belong to X then it is possible to
swap 1 and s in (4.27). In this way we obtain a two-sided estimate for
both Dirichlet and Neumann eigenvalues without assuming that o C €27 as
in Corollary 4.17.

Corollary 4.18. Under the same assumptions of Theorem 4.16, for any n €
N there exists ¢, > 0 depending only on n, A,l,m,M,a,b, p, M1,..., M,,
such that )

Anl Q1] = An[Q2]] < €| A Qo' 5,

for all Q1,90 € X such that |1 A Qa| < ¢t

If Q is an open set with sufficiently smooth boundary then Q € X with
p = o0.
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Lemma 4.19. Let A= (p, 8,8, {Va}i_1, {rn};_,) be an atlas in RN, I,m €
N, B,M,a,b> 0. Foralla, 8 € Név with |al, |B] < 1 and for alli,j € N with
i,7 <m, let Agﬁ € CYU;_, Vi) satisfy HA;][%HCZ(W) < B, and conditions
(1.14)-(1.16) for any Q € C2(A) with the same constants a, b.

Then ©,[Q] € W2=1°(Q) and there exists C > 0 depending only on
A,l,m,B, M, a,b such that

Nk
len[Qllwro @ym < C(1+ Ap[Q]) 2 (4.36)

forallk=0,...,2l —1 and Q € C3L(A).

Proof. 1t is well known that under our regularity assumptions Dom(Hg) C
W2L2(Q)™ (see e.g., [9, Section 10]). Moreover, since the coefficients Agﬂ are

of class C! and we impose either Dirichlet or Neumann boundary conditions,
we can resort to the general setting of [9)].

Thus, by [9, Subsection 10.3] it follows that if uw € Dom(Hgq) and Hou €
LP(Q)™ for some p > 1 then u € W2HP(Q)™ and

[ullweesym < c(l[HoullLo@ym + |lullze@)m ),

where c¢ is a positive constant. In particular, if u is an eigenfunction corre-
sponding to an eigenvalue A and u € LP(Q2)™ then

[ullw2p@ym < e(1+ A)||ullLo@ym- (4.37)

By the a priori estimate (4.37) and a bootstrap argument one can finally
prove estimate (4.36). See for instance [37, Theorem 5.1], where in the proof
one has to replace [37, formula (5.5)] by (4.37) (note that [37, formulas (5.6)
and (5.7)] remain valid in the vectorial case thanks to Theorem 1.7). O

By Corollary 4.18 and Lemma 4.19 we immediately deduce the validity
of the following

Corollary 4.20. Under the same assumptions of Lemma 4.19, for alln € N
there exists ¢, > 0 depending only on n, A,l,m, B, M,a,b such that

[Anl€] = An[Q2]] < cnlf A Q2

for all Q1,Qs € C2L(A) satisfying |1 A& Qa| < ¢t
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Chapter 5

Elliptic systems of partial
differential equations

Let Q be a bounded domain in RV of class C', m € N. In this chapter
we discuss the eigenvalue problem for elliptic systems of second order partial
differential equations subject to boundary conditions of Dirichlet and Neu-
mann type. More precisely, we consider the following eigenvalue problem

Noo& L o 0p;
/ Z Z agﬂa—a—de = )\/ u - dx, (5.1)
@ B=14,j=1 Lo OFp Q
for any ¢ € V(2)™, in the unknowns u € V(2)™ (the eigenfunction), A € R
(the eigenvalue). Here V() denotes either H}(f2) (for Dirichlet boundary
conditions) or H!'(Q) (for Neumann boundary conditions). Moreover, we

shall assume that o/, € R are constant coefficients satisfying condition

of
(1.14) and the so-called Legendre-Hadamard condition, namely
N m B
> alslilnang = 0P, VEER™ e RN, (5.2)
a,8=114,j=1

for some 6 > 0. We note that condition (5.2) is weaker than the so-called
Legendre condition, namely

N m
S ST e > o, ve e RN,
a,ﬁ:lz,g:l

for some # > 0. However, condition (5.2) is sufficient in order to prove
coercivity of the bilinear form associated with problem (5.1), in particular
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condition (5.2) implies conditions (1.15), (1.16). Therefore, Theorem 1.9
applies to problem (5.1).

We remark that problem (5.1) includes some important problems in lin-
ear elasticity. For instance, the Lamé eigenvalue problem

/ (Vu+ V') : (Vo + Vi) + kdivudive) do = )\/ u-pdr, (5.3)
) Q

with k €]1 — £, +oc] for any ¢ € V()" corresponds to the choice agﬁ =
2(0ij0a + 0iglja) + kbiadjs, where §;; is the Kronecher delta. We refer
to [61] for a detailed discussion on problem (5.3). Note that, in the case
of Dirichlet boundary conditions (i.e., V(Q) = H}(f)), thanks to an inte-
gration by parts, problem (5.3) can also be associated with the coefficients
agﬁ = 0;j008 + kdind;g, and in this case it is easy to see that, in order to get
inequality (5.2), the constant k can be chosen to be non-negative, namely
k > 0 (cf. e.g., [58]). We also observe that problem (5.3) is very similar
to the Reissner-Mindlin system (6.1), which arises in the study of the vi-
brations of a clamped plate. However, since problem (6.1) presents lower
order terms, it is not included in the discussion of the present chapter (see
Chapter 6).

5.1 Dirichlet boundary conditions
In the sequel of this chapter we shall use Einstein notation, hence sum-

mation symbols will be dropped.
The classical formulation of the Dirichlet problem reads

T N .
_agﬁazagm =Myj, j=1,...,m, inQ, (5.4)
u =0, on 0f).

We consider on Hg(92)™ the bilinear form

i Ouy Ov;
_ ij OUi JUj
<u,v >= /an‘ﬂaxa axﬁdaz, (5.5)

for any u,v € HE(Q2)™. One can prove that the bilinear form (5.5) defines on
H} ()™ a scalar product whose induced norm is equivalent to the standard
one defined by (1.11). In this section we shall consider the space H{ ()™
endowed with the scalar product (5.5).
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We consider the operator S as a map from Hg ()™ to its dual defined

by
j Ou; Ovj
S[ul[v] = / e Gk (5.6)

for any u,v € H0 (©2)™. The operator S is easily seen to be a linear home-
omorphism of Ho (€)™ onto its dual. We also denote by J the continuous
embedding of H}(Q)™ into its dual, defined by

Jlul[v] == /Qu ~vdx, Yu,v € Hy(Q)™

Note that problem (5.4) can be written in the following weak formulation
Slu)[v] = AT [u][v], Yo € HY(Q)™. (5.7)

We define the operator T := S(=1) 0 7 from H}(Q)™ to itself. We have the
following result, whose proof is similar to that of Lemma 2.1.

Lemma 5.1. Let Q be a bounded domain in RY of class C'. The operator T
s a non-negative compact selfadjoint operator in the Hilbert space H&(Q)m
Its spectrum is discrete and consists of a decreasing sequence of positive
etgenvalues of finite multiplicity converging to zero. Moreover, the equation
Tu = pu is satisfied for some u € HY(Q)™, u > 0 if and only if equation
(5.1) is satisfied with 0 # X = p=! for any ¢ € H (Q)™

5.1.1 Analyticity results

Let Q be a bounded open set in RY of class C'. We shall consider
problem (5.4) in ¢(2) for any ¢ € A, and study the dependence of \;[¢(£2)]
on ¢.

The main result of this section is the following

Theorem 5.2. Let Q be a bounded domain in RN of class C* and F be a
finite set in N. The set Apq is open in .A%z and the real-valued maps which
take ¢ € Arq to Aps[@] are real-analytic on Apq for all s = 1,...,|F|.
Moreover, if ¢ € OFq is such that the eigenvalues \; [gzg] assume the common
value Ap[@] for all j € F, and $(Q) is of class C* then the Frechét differential
of the map Ar s at the point d; 1s delivered by the formula

|7 0]
F|-1 Vo
ly-yre)iv = 08 )Z L i ;yﬂc v,




92 5. Elliptic systems of partial differential equations

for all ) € Cl}(Q;ERN), where ¢ = v o oY and {vW}1cp is an orthonor-
mal basis in HE(p(Q2))™ (with respect to the scalar product (5.5)) of the
eigenspace associated with \p[d].

In order to prove Theorem 5.2 we consider equation (5.7) in ¢(Q2) and
pull it back to 2. Namely, we consider the equation

Slllv] = AT[I[], V¥ € Hy(o()™, (5-8)

in the unknowns v € H}(¢(2))™, A €]0,00[. We will denote by H&(z)(Q)m
the space Hg ()™ endowed with the form

< u,v >4= Sy[u[v], Yu,v € HF(Q)™.

Moreover, we recall that
Tglu][w] = / u - wldetVo|dr, Yu,w € HY(Q)™.
Q

Note that the map from H(Q)™ to H'(¢(€))™ which maps u to u o ¢(~1)
for all w € H'(Q)™ is a linear homeomorphism. Hence, equation (5.7) is
equivalent to

Solullp] = ATslulle], ¥ ¢ € Hgo()™,

where u = v o ¢. It turns out that the operator T defined in Lemma 5.1
with © replaced by ¢(Q) is unitarily equivalent to the operator Ty defined
on H} s()™ by

Ty = 55" 0 Ty, (5.9)

Thus we have the following lemma, whose proof is analogous to that of
Lemma 2.3. We recall that £(HJ(£)™) denotes the space of linear bounded
operators from H{(Q)™ to itself and and Bs(H}(€2)™) denotes the space of
bilinear forms on Hg ()™,

Lemma 5.3. Let Q be a bounded open set in RN of class C'. The operator
Ty defined in (5.9) is non-negative selfadjoint and compact on the Hilbert
space H&(ﬁ(ﬂ)m. The equation (5.8) is satisfied for some v € Hg(4(2))™ if
and only if the equation Tyu = pu is satisfied with u = v o ¢ and p = AL
Moreover, the map from A, to L(HJ(Q)™) x Bs(H}(Q)™) which takes ¢ €
Al to (Ty, < -, >4) is real-analytic.

Proof of Theorem 5.2. First of all, we note that by standard regularity
theory (see e.g., [9, Subsection 10.3]) v() € H?(H(Q))™ for all | € F. We
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observe that the proof is very similar to that of Theorem 2.2. It only remains
to compute

< dly_s Tl u® > 5= dl,_sTp)[u®]u®]
— ARl Sl [u O],

By formula (2.12) we have
s Tl ) = [ o0 vy,
¢(Q)
Using Lemma 5.4 below, and the fact that v®) = 0 on d¢(Q) we obtain

d) y—Ss [ [ [u]

:‘/ (3,200 0% )c vdo —pld) [ V(0®P) - cdy.
05 7 0ya Oys 3(2)

To conclude, just observe that

] V(\v(l>|2)-gdy:/~ ]v(l)\QC-udU—[ lw®2divedy.  (5.10)
() 9p(<2) 4(Q)

O
Lemma 5.4. Let Q be a bounded domain in RY of class Cl, and letqg € A}z
Let uM, u® e HI ()™ be such that v = u® 0 ¢=1 0@ = 4@ 0 ¢~ €

H2(4(Q))™. Then

() ayr 83/5

Grdo

+/ 1382()82()<d +/ Z]a()82()€d (511)
a rdo a, rdo, .
s P Oyr Oyalys s 7 Oyr Oyadys

for all 1 € CLQ;RYN), where ¢ =1 o ot



94 5. Elliptic systems of partial differential equations
Proof. We have

1) (2)
. e ov:;

. STl :_/ .0V 06 9

P (I 1 s "8 Byy Oya Oys Y

(2)

oD vl ac oo du
— a7 "dy + / a,—— 5 div¢dy. (5.12
/(;3(9) B Yo Oyr Oyg () ap Yo Oyg ( )

Now note that

1 1 (2 )
_ / aij 8”2( aCr avj dy = _/ z] Ve av( )Cr av
3@ 7 Oy Oya Oyp 06(Q) sy, 31/6

8 (1) 8211(-2) 52 ( ) 81)( )
+/: Gra—a— 3/""/ U Cr
#(2) #()

Gai 8yr 8ya8yﬁ Gap 8ya8yr
g (0 2 (1) 2 (2)
= _/an(Q) aggl/aa(;};r@?;;ﬁ do + /&( o aﬁaﬁyr C”aiaayg Yy
(1) 5y 1) 5,2
+/a¢3(9) gﬁaagja ;;B ¢ Vda_[;”s(g) Uﬂ a@@ja ;@jﬁ div(dy
1) 52,,2)
/as(m o ({Z};a C’fy;f? [ordy- (5:13)

If we use in (5.12) the last equality in (5.13), and the first equality in
(5.13) replacing i with j, a with 8 and v with v(?, thanks to property
(1.14) we get formula (5.11). O

5.1.2 Isovolumetric perturbations

As we have done in Chapters 2 and 3, we consider the following extremum
problems for the symmetric functions of the eigenvalues

i Aps Ap o],
pipin Apsle] or o max Arsld)

where V[¢] denotes the N-dimensional Lebesgue measure of ¢(§2). We have
the following result, whose proof is analogous to that of Theorem 2.7.

Theorem 5.5. Let Q be a bounded domain inNRN of class C*. Let F be
a non-empty finite subset of N. Assume that ¢ € Opq is such that ¢(£2)
is of class C? and that the eigenvalues \;j[¢] have the common value Ap[¢]
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forall j € F. For s = 1,...,|F|, the function ¢ is a critical point for
Ap s with volume constraint if and only if there exists an orthonormal basis
oW oUFD of the eigenspace corresponding to the eigenvalue Ar[@] of

problem (5.4) in HY(¢(Q))™, and a constant ¢ € R such that

|| ) 5,,0)

Qv O
a’,—t-—1 =g, 5.14
; af aya ayﬁ ( )

almost everywhere in dp(Q).

Now we introduce the following generalization of the notion of rotation
invariance for scalar operators.

Definition 5.6. The operator L formally defined by

18 said to be rotation invariant if there exists a group homomorphism
Z : ON(R) = Op(R),
(i.e., Z(AB) = Z(A)Z(B) for all A,B € On(R)) such that
L(Z(R)'uo R) = Z(R)"'L(u) o R,

for any R € On(R), and for any u € H?

loc

(RV)™.

Remark 5.7. We observe that, if aiajﬁ = 2(04j00p + 0ig0ja) + kbiadjp for
any constant k > 1 — % (which is the choice related to the Lamé system
(5.3)), then the operator L is easily seen to be rotation invariant, Z being
the identity map in On(R). Moreover, note that Definition 5.6 applies to

more general operators, such as the Reissner-Mindlin problem (6.1) (see
Lemma 6.14).

We have the following

Theorem 5.8. Let B be a ball in RN centered at zero, let S (defined in
(5.6)) be a rotation invariant operator and let X\ be an eigenvalue of S in
B. Let F be the set of all indexes j € N such that the j-th eigenvalue of
S in B coincides with X. Let v, ... v(FD) be an orthonormal basis of the
eigenspace associated with the eigenvalue X in H}(B)™ (with respect to the
scalar product (5.5)). Then there exists ¢ € R such that condition (5.14)
holds.
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Proof. Since S is rotation invariant, {(Z(R)'v;) o R : | = 1,...,|F|} is
another orthonormal basis for the eigenspace associated with A, where R €
On(R), and Z(R) is as in Definition 5.6. Since both {v®) : I = 1,...,|F|}
and {(Z(R)'v"W)o R : | = 1,...,|F|} are orthonormal bases, then there
exists A[R] € On(R) with matrix (Agp[R])gn=1,.F| such that

IF|
(Z(R)'v™)o R =" Ay[RpY. (5.15)
=1
Using (5.15) we get
|F| |F|
Z |,U(k: oR = Z| t (k OR|2
IFI |7 |7
= Z ZAM[R]U(Z) . ZAkh[R]'U(h)
k=1 \ =1 h=1
|7l |F) |F|
— Z Z A [R)Apn R (0® - ™)) = Z @2,
k=11,h=1 =1

and similarly,

|§F£ o avgk) avj(»k) DR 1] o avgl) 81)3(.1)
— \ 7 dya yp 8 Oyo Oy |

=1

This concludes the proof. ]

Thus we get the following

Corollary 5.9. Let Q be a domain in RN of class C'. Let S be a rotation
mvaritant operator. Let q?) € .Agz be such that <Z~>(Q) is a ball. Let \ be an
eigenvalue of problem (5.4) in ¢(2), and let F' be the set of j € N such that
Aj [55] = X. Then Ars has a critical point at & with volume constraint, for
alls=1,...,|F|.

5.2 Neumann boundary conditions

The classical formulation of the Neumann problem reads

Z 8 i ) . .
251/5 es=0,7=1,...,m, on 0,
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where € is a bounded domain in RY of class C' and v is the outer unit
normal to 0€2. Note that, differently from Dirichlet boundary conditions,
in this case there is a nontrivial kernel. It is easy to see that the kernel is
m-~dimensional and given by the constants.

We set
HY Q)™ .= {u c HY(Q)™ : / udr = 0} ,
Q

where by [, udz we mean the vector ([, uidz, ..., [ umdz). We consider on
H()™ the bilinear form (5.5) for any u,v € H'(£2)™. One can prove that
it defines on H19(Q)™ a scalar product whose induced norm is equivalent to
the standard one defined by (1.11). We shall consider the space H?(2)™
endowed with the scalar product (5.5). We denote by 7 the map of H(Q)™
to H0(Q)™ defined by

Jo udz

Q]

for all u € HY(Q)™, where |[Q| denotes the Lebesgue measure of Q. We
denote by 7 the map of H'(Q)™/R™ onto H"?(Q)™ defined by the equality
7 = 7t op, where p is the canonical projection of H'(€2)™ onto H' ()™ /R™.

We consider the operator S defined by (5.6) as a map from H0(Q)™ to
its dual. Note that, thanks to the Poincaré-Wirtinger Inequality, the norm
induced from the quadratic form associated with the operator .S is equivalent
to the standard one of H%?(Q)™ (as a closed subspace of H'(£2)™), and
therefore it turns out that S is a linear homeomorphism of H(£)™ onto
its dual.

We denote by J the continuous embedding of H!(Q)™ into its dual,
defined by

mu] =u

Jul[v] == / w - vdx, Yu,v € H' (Q)™.
Q
Note that problem (5.16) can be written in the following weak form
Slul[v] = AT [u][v], Yo € HYO(Q)™. (5.17)

We define the operator T := (7#)(=Y 0 S(-1) o 7 o 7 from H'(Q)™/R™ to
itself. We have the following result (see Lemma 2.1).

Lemma 5.10. Let Q be a bounded domain in RN of class C*. The oper-
ator T is a non-negative compact selfadjoint operator in the Hilbert space
HY(Q)™/R™. Its spectrum is discrete and consists of a decreasing sequence
of positive eigenvalues of finite multiplicity converging to zero. Moreover,
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the equation Tu = pu is satisfied for some u € HYO(Q)™, u > 0 if and only
if equation (5.16) is satisfied with 0 # X\ = u=' for any ¢ € H*°(Q)™.

We observe that the whole spectrum of problem (5.16) is given by the
non-decreasing sequence {\;[Q]}jen, where \[Q] = --- = A\, [Q] = 0 and
the other eigenvalues are given by Lemma 5.10.

5.2.1 Analyticity results

Let Q be a bounded open set in RN of class C'. We shall consider
problem (5.16) in ¢(£2) for any ¢ € A}, and study the dependence of A;[¢(€2)]
on ¢.

The main result of this section is the following

Theorem 5.11. Let Q be a bounded domain in RN of class C* and F be a
finite set in N. The set Apq is open in .Ab and the real-valued maps which
take ¢ € Arq to Aps[¢] are real-analytic on Apgq for all s = 1,...,|F|.
Moreover, zfqg € Orq is such that the eigenvalues \; [(;;] assume the common
value \p[@] for all j € F, and $(Q) is of class C? then the Frechét differential
of the map Ar s at the point g?) is delivered by the formula

|F|

dl,_5(Apo) Y] = —A5[d] (@__11) S
1=1

b @

AploW2 — g4 27 )¢ vdo, (5.18
/8{)(9) ( F‘ | af 83/01 ayﬁ ( )

for all ¢ € C,}(Q;RN), where ¢ = 1o ¢V and {vW}1cp is an orthonor-
mal basis in HYO(4(Q))™ (with respect to the scalar product (5.5)) of the
eigenspace associated with \p[@].

As we have done for Theorem 5.2, in order to prove Theorem 5.11 we
consider equation (5.16) on ¢(€2) and pull it back to 2. Namely, we consider
the equation

Sllv] = AT[][W], Vo e HO(o(Q)™, (5.19)

in the unknowns v € H9(¢(€2))™, A €]0,00[. We consider the operator S,
as an operator acting from H;’O(Q)m to its dual, where

Hy ()™ = {u e H'(Q)™ : /Qu|detv¢>]daz = o} :
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We will endow the space H;’O(Q)m with the form
<u,v >4= Sylul[v], Yu,v € H;’O(Q)m.

Moreover, we denote by 7, the map from H! ()™ to H;’O(Q)m defined
by
Jo uldetVo|dz

Jo |detVo|da
and by 7r2) the map from H'(Q)™/R™ onto H;)’O ()™ defined by the equality
Ty = 775) o p. Note that the map from H'(Q)™ to H'(¢(2))™ which maps u

to uo ¢(=Y for all u € H'(Q)™ is a linear homeomorphism. We also recall
that

Tglu] =

Ty [ul[w] = / u - w|detVoldr, Yu,w € H'(Q)™.
Q
Hence, equation (5.19) is equivalent to
Solulle] = ATslulle], Ve H Q)™

where u = v o ¢. It turns out that the operator T defined in Lemma 5.10
with § replaced by ¢(€) is unitarily equivalent to the operator Ty defined
on Hy’(Q)™/R™ by

Ty := (772))(_1) o Sé_l) o Jyo0 773) (5.20)

Thus we have the following lemma, whose proof is analogous to that of
Lemma 2.3.

Lemma 5.12. Let Q be a bounded domain in RN of class C*. The operator
Ty defined in (5.20) is non-negative selfadjoint and compact on the Hilbert
space H;’O(Q)m/Rm. Equation (5.19) is satisfied for some v € HO(p(2))™
if and only if the equation Tyu = pu is satisfied with u =vo ¢ and p = AL
Moreover, the map from Al to L(HYO(Q)™) x Bs(HYO(Q)™) which takes
¢ € Al to (Ty, < -, >4) is real-analytic.

Proof of Theorem 5.11. First of all, we note that by standard regularity
theory (see e.g., [9, Subsection 10.3]) v € H2($(Q))™ for all | € F. We
observe that the proof is very similar to that of Teorem 2.2. It only remains
to compute

< dly g To)[u®], u® > 5= d| ,_ 3T 0 e [1] ] [ 5 ()]
— XpH [B)dly_ 355 © mo W] [ulD)[m 4 (wV)].
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By formula (2.12) we have

dly_ 57 0 mol][u] 5 (u®)] = / (v ® Pdivedy.

o)
Using Lemma 5.4 we obtain

dl,_555 0 msl0]uV][m; ()]
(%(-l)

g 81}([) ~
= g ¢ vdo — \plo v (lo®)? - (dy.
Lo 3l [ S0P

Using formula (5.10) we get formula (5.18). O

5.2.2 Isovolumetric perturbations

As in the previous section, we consider the following extremum problems
for the symmetric functions of the eigenvalues

in  Ap, Apsldl,
s S Lo
where V[¢] denotes the N-dimensional Lebesgue measure of ¢(£2). We have
the following result, whose proof is analogous to that of Theorem 2.7.

Theorem 5.13. Let 2 be a bounded domain in RV, Let F' be a non-empty
finite subset of N. Assume that ¢ € Opgq is such that ¢(Q) is of class C?

and that the eigenvalues \; [g?)] have the common value )\F[gg)] forall j € F.
For s = 1,...,|F|, the function b is a critical point for Ap s with volume
constraint if and only if there exists an orthonormal basis vV, ... v(FD of
the eigenspace corresponding to the eigenvalue Ap[@] of problem (5.17) in
HYO(¢(Q))™ (with respect to the scalar product (5.5)), and a constant ¢ € R

such that
||

~ . 81}(” (%(-l)
12 __ 1 i J _
> (AFW g | =

=1

almost everywhere in dp(9Q).
Using the same arguments as in Theorem 5.8 we easily get the following

Theorem 5.14. Let Q be a domain in RN of class C. Let ¢ € AEZ be such
that ¢(Q2) is a ball. Let A be an eigenvalue of problem (5.16) in ¢(§2), and

let I be the set of j € N such that A\j[¢p] = A. Then Ap;s has a critical point
at ¢ with volume constraint, for all s =1,...,|F].



Chapter 6

The Reissner-Mindlin model
for the vibrations of a
clamped plate

Let Q be a bounded open set in RY with N > 2, and ¢, 1, 12, k > 0 be
fixed parameters. We consider the following eigenvalue problem
—MAR — 2 Gy — BE (v — g) = AL in Q,
— Lk (Aw — divf) = Iw, in Q, (6.1)
6=0, w=0, on 0,

in the unknowns (5, w) = (B1, ..., Bn,w) (the eigenvector) and A (the eigen-
value). According to the Reissner-Mindlin model for moderately thin plates,
for N = 2 system (6.1) describes the free vibration modes of an elastic
clamped plate Q x (—t/2,¢/2) with midplane Q and thickness t. In that
case u1 and po are the Lamé constants, k is the correction factor, w the
transverse displacement of the midplane, § = (1, 82) the fiber rotation and
At? the vibration frequency (see e.g., [21]).

The behavior of the solutions to Reissner-Mindlin systems as t — 0 is well
known. In particular, it is proved in [47] for N = 2 that A\, +[Q] = A\, 0[]
as t — 0, where Ay, o[€?] are the eigenvalues of the problem

2t A2y — \w, in
{ 12 ’ ’ (6.2)
w=Vw=0 on 0f).

Although N = 2 seems to be the case of main interest in applications,
our methods allow us to treat the general case without any restriction on
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the space dimension. Also, we set V(Q) = (H(Q))Y x H}(€2) and we denote
by (B,w) the generic element of V(Q), where 8 = (31,...,8n) € (H}(Q)N
and w € H}(Q).

6.1 The Reissner-Mindlin eigenvalue problem

For the sake of completeness, in this section we provide a physical jus-
tification for the study of problem (6.1) in the case N = 2. Assume the
plate to be of the form Q x (—t/2,t/2), where Q C R? is the midplane of the
plate and t denotes its thickness. We consider the displacement of a point
of coordinates (z1,z2,x3) at the time T' as

U(%% ZaT) = (Ul(xl,xg,xg,T),U2($1,$2,$3,T),U3($1,$2,$3,T)) .

The standard assumption in the theory of plates is that the displacement u

is of the form
uy (w1, 2,23, T) = —2361 (71,22, T),

u (1, w2, 23, T) = —x362(v1,22,T), (6.3)
uz(wy, x2,23, 1) = 2(21, 22, T).

Now we consider the strain tensor e(u) defined by

1 6uz 8Uj
=3 (G + 5.
for all 4,5 = 1,2, 3, and the shear tensor o(u) which is related to e(u) via
Hooke’s Law

o(u) = 2fe(u) + (2 Tre(u))L
Here [i1, fio are the Lamé constants

FE - Tk
20+m) MT Arma—zn)

fi1 =

where FE is the Young modulus and 7 is the Poisson ratio. The main hy-
potesis in the Reissner-Mindlin model is that the stress is planar, namely

os3(u) = 0.

(See also [21, §VIL.3]). Note that this in principle is contraddictory, since
by assumption e33(u) = 0. As a consequence, we assume a posteriori that

fa(e11(u) + e22(u))
21 + fi '

633(u) = —
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At this point we are able to write the elastic potential energy
1
U(u) = —/ e(u) : o(u)dV,
2 Jax(~t/2,t/2)
and, assuming the mass of the plate to be uniform, the kinetic energy
1
Ku) = = / w2dv,

2 Jax(—t/2,t/2)

where dV = dxidzrodrs is the volume element. If the external force is zero,

then the mechanical energy is preserved, i.e.,
d
ax (U(u) + K(u)) = 0.

Since
d

) = - /Q gy ST

G = | iidv,
di QO (—1/2,t/2)

then the equation of motion becomes

/ e(u) : o(u)dV = widV.
Qx(—t/2,t/2) Qx(—t/2,t/2)

By choosing @ = £ = (—z3m1, —x31m2,v) as an arbitrary admissible velocity
field, we obtain the variational equation

and

/ o(u):e(§)dV = uEdv. (6.4)
Qx(—t/2,t/2) Qx(—t/2,t/2)
Easy computations show that

o(u) :e(§) = 3 (1 =m)e(8) : e(n) + mdivedivn)

FE
+ m(w —0)-(Vv—n),

and therefore

/ () : £(€)dV
Ox(—t/2,t/2)

3
= %?E;ﬂ ; (1 —m)e(8) : e(n) + wdivédivn) dS
E
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where dS = dx1dxs is the area element. On the other hand

3 .o
/ twdV = t/ 0-ndS +t/ ZvdS. (6.6)
QOx(—t/2,/2) 12 Jq Q

By (6.4), (6.5) and (6.6) we obtain the following variational equation of
motion

2 FE
/ (1 —m)e() : e(n) + wdivédivn) dS
121 —72 Jq
TP /(v 0) - (V )dS v /é’ dS+t/ svdS.  (6.7)
z — . v — = — . zU . .
2(1+ 1) Jo 7 12 Jo " 0
We look for solutions of equation (6.7) of the type
O(z1, 22, T) = e “TB(x1,x2), 2(x1,20,T) = e “Tw(xy,x0). (6.8)

Substituting (6.8) in (6.7) we get
roE
121 —72 Jq

E/(Vw—ﬁ) (Vv —n)dS = w? (153/5 dS+t/wvdS>
2(1+7) Jq e =1 f, 0 o '

Putting A = w?t~2 and dividing by ¢ we obtain

(1 = m)e(B) : e(n) + mdivpdivny) dS

+1

2

a(B,n) 4+ Ct2 /Q(Vw —B)- (Vv —n)dx = )\/Q <wv + %B . 77) dz, (6.9)

where a(8,7) = ﬁ Jol(1=m)e(B) : e(n)+ndividivy]de and C = 2(%’;)
Note that here we have introduced a correction factor k (usually k = 5/6,
cf. [20, 21, 47]). By recalling Korn’s indentity

2/96(,6) ce(n)dr = /QVﬁ : Vnda:—l—/gdivﬂdivndm,

which holds for any 8,17 € V(Q2), and choosing

TE
1—72’

2(1+m)’
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problem (6.9) can be easily rewritten in the form

k
M / V8 : Vide 4+ HH2 / divadivndz + 2% [ (Vw—B)- (Vv —n)dz

12
2
= )\/Q (wv + %5 . 77) dzx. (6.10)

The formulation in (6.10) is somewhat more general since it allows other
choices of constants 1, o > 0 including the standard Lamé constants p; =
fi1, po = fiz as in e.g., [52]. We refer to [17] for further details.

Remark 6.1. The Kirchhoff-Love model assumes in addition that 0 = Vz
in (6.3). This assuption leads to problem (6.2).

As customary in Spectral Theory we interpret problem (6.10) as an eigen-
value problem for a non-negative selfadjoint operator in Hilbert space as
follows. For any fixed ¢ > 0, we denote by £7(£2) the space L?(Q) x L?(Q)
endowed with the scalar product

2
< (ﬁaw)a(nav) >t= /Q <’LUU+ %6 77) d.%',

for any (8,w), (n,v) € L2(2). Clearly, for each ¢ > 0 the norm induced by
such scalar product is equivalent to the standard L?-norm. We also denote
by R; the operator from V(2) to its dual defined by the left-hand side of
(6.10). Note that R; is coercive and it defines a scalar product on V(1)
which is equivalent to the standard one (in particular, Theorem 1.9 applies
to problem (6.10)). Indeed, we consider the space V(€2) endowed with the
following product

< (Byw), (n,v) >y()= Rl (B,w)][(n,v)].

We will denote by Qq+(8,w) = R:[(S,w)][(8,w)] the quadratic form asso-
ciated with the operator R, in V(€2). We define the following embedding of
V() into its dual

o) = [ (s £560) as

for any (5,w), (n,v) € V(). Therefore, problem (6.10) can be rewritten in
the following form

Re[(B, w)][(n, v)] = AZ(B, w)][(n,v)], Y(n,v) € V(Q). (6.11)

We have the following result (see also Lemma 2.1).
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Lemma 6.2. Let Q be a bounded open set in RN, t > 0. The operator T; =
Rt_l o Ji is a non-negative selfadjoint compact operator in the Hilbert space
V(Q). The spectrum of Ty is discrete and consists of a decreasing sequence
of positive eigenvalues of finite multiplicity converging to zero. Moreover,
the equation Ty (5, w) = p(B,w) is satisfied for some (B,w) € V(Q), p > 0 if
and only if equation (6.10) is satisfied with A = p~*.

6.2 Quantitative estimates

6.2.1 Estimates via diffeomorphisms

Given an open set © in RY with finite measure, we consider a diffeomor-
phism from € onto another open set ¢(€2) in RV and we prove a quantitative
stability estimate for [ A, +[¢(2)] — An [Q]] in terms of the measure of vicinity
d(¢) defined by

() = | Dhax sup |D*(¢(x) — ).

In order to obtain an estimate independent of ¢, we use the special transfor-
mation Cy from the space V(£2) onto V(¢(£2)) defined by

Cy(B,w) = (BV w) 0 oY, (6.12)

for all (w, 8) € V(Q). Here and in the sequel we denote by A~! the inverse
of a matrix A, as opposed to the inverse of a function f which is denoted
by f(=1); we shall also denote by A? the transpose of A.

It is clear that in order to guarantee that Cy is well-defined, it suffices
to assume that ¢ is a diffeomorphism of class C!, i.e., ¢ and its inverse
have Lipschitz continuous gradients. In fact, it is easy to prove the following
lemma that will be used in the sequel.

Lemma 6.3. Let Q be an open set in RY and let ¢ : Q — ¢(Q) be a
diffeomorphism of class C™' from Q onto an open set $(Q) in RYN. Assume
that

max sup |D%(z)| < oo, inf |[detVe(z)| > 0.
1<|e| <2 e zeQ

Then Cy is a linear homeomorphism from V() onto V(4(£2)).

Then we can prove the following
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Lemma 6.4. Let Q be an open set in RN with finite measure and let ¢ :
Q — ¢(Q) be a diffeomorphism of class C11 from Q onto an open set ¢(Q)
in RN, Assume that there exist My, My > 0 such that

max sup |D%(z)| < M1, inf [detV(z)| > M. (6.13)
1<]al<2 zeq reQ

Then there exists ¢ > 0 depending only on N, My, Ma, 1, u2 and |Q| such
that

|Q¢(Q),t(c¢(57 ’U))) - Qﬂ,t(67 w)‘ < CQQ,t(/Ba w)5(¢)7 (614)
for allt >0 and (B,w) € V(Q).

Proof. Let (B,w) € V(). To shorten our notation, we denote by Cél)(ﬁ)
the first entry of Cy (3, w), i.e., C’(g)l)(ﬁ) = (BV¢ 1) o=, We begin by esti-

mating f¢(Q) ]VCél)(B)\Qdy— Jo [V B]2dz. By means of a change of variables,
we get

| Ve @R = [ (9390 )T Plderolds. (6.15)
() Q

It is easy to see that in order to estimate f¢(ﬂ) ]VCél)(ﬁ)\Qdy — Jo |V B|2dz it

suffices to estimate [o(|(V(BVe™1))Ve~t? — |VS|?)|detVe|dz. We clearly
have that

/Q (VY6 Vo2 - |VBP)|detVe|da

< (| detVo| Lo @) [(V(BVS ™)) Vo™ = VBl 120
IV (BVS™))VS ™ 120 + VBl 2())- (6.16)

By the triangle inequality we get

I(V(BVe )V = VB2
<IVO @ IV(BVS™) = VBl 120y
Vo™ = Il oo @) IV Bl 120 (6.17)

and

IV(BVe™) = VBl < IV =1l VBI L2
+ V(YO D)o@ llBllrz@)-  (6.18)



108 6. The Reissner-Mindlin model for the vibrations of a clamped plate

Moreover

IIV(6V¢*1)\IL2(Q> < ’\Vﬁfl\\Lw(Q)Hv/@HLQ(Q) (6.19)
+ V(Yo )o@ IBllz2 ()

By standard calculus it follows that there exists a constant ¢ > 0 de-
pending only on N, M7, Ms such that

IV~ o) < ¢ (6.20)
and
IV~ = Il|(y IV(VE™))llLe() < cd(6). (6.21)

By using the Poincaré inequality [|B]|z2(q) < cl|VB| 12(q) with ¢ depend-
ing only on N and |Q|, and combining inequalities (6.15)-(6.21) we conclude
that

1
[ ive@ra - [ stas] <esto) [ 9stan o2
?(Q) Q Q
where the constant ¢; depends only on N, My, My and |Q|.
Similarly, one can also prove the existence of a constant co > 0 depending
only on N, My, My and || such that

v Cy! 2dy — ivB3)*da c 2dz. .
'A(Q)(dlvc¢ (8))"dy /Q(d B)2%dz| < 25(¢)/Q|vm d (6.23)

Finally, we estimate ffb(Q) |V (wo¢(~1) — Cél)(ﬂ)de — [o |[Vw — Bl d.
We note that

/ 1V (w o ¢D) — O (8) Py = / (Vo — §) - Vo PldetVelda
?(Q) Q
and that
/QH(w —8) VI [V — BP| de
< IV VN — Il ey /Q Vw - §2da.

It follows that there exists c3 > 0 depending only on N, M7, My such that

\ [ Vo s ) - @)y - [ [vu- g
»(Q) Q

< 035(¢>)/Q Vw — B|%dz.  (6.24)
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By combining inequalities (6.22), (6.23), (6.24), we deduce the validity of
(6.14). O

As in the case of elliptic systems of partial differential equations discussed
in Chapter 4, we can prove the following

Theorem 6.5. Let Q be an open set in R with finite measure and My, My >
0. Then there exists ¢ > 0 depending only on p1, po, My, Ma and || such
that

[Ant[0(2)] = Ang[Q]] < cAnt[Q6(6), (6.25)

for allt > 0 and for all diffeomorphisms ¢ of class CY' from Q2 onto an open
set #() in RN such that inequalities (6.13) are satisfied and 6(¢) < ¢~ L.

Proof. Let ¢ be a diffeomorphism of class C+! from €2 onto an open set ¢(Q2)
in RV, satisfying inequalities (6.13). Obviously we have

Qo@(Co(B.w))  Qa(Bw) | _ |Que(Cs(8,w)) — Qa(B,w)|

\|C¢(B,w))||[:2 () ||(57w))||ig(g) B ||C¢(ﬁ,w))||i?(¢(m)

Qa(B,w) |ICs(8, )12 ) — 108, 0)]12 g
1Co 30N o oien) II(B, ) oy

As in the proof of Lemma 6.4, one can prove the existence of a constant
¢ > 0 depending only on N, M7, My such that

|’C¢(/87w)H%%(¢(Q)) Z CH(/Buw)H%%(Q) (6.27)

(6.26)

and

HC¢<va)H%%(¢(Q)) - ”(57111)”%3(9) < c5(¢)|l(5,w)\|ig(g)7 (6-28)

see also Lemma 6.3. By combining inequalities (6.14) and (6.26)-(6.28) we
deduce that

QQ(va)

[EXTI
- Q) (Cy(B,w)) Qa(B,w)
B ||C¢(,8,w))||i?(¢(ﬂ)) ||(»3’w))||ig(9)

If 1 —cd(¢p) > 0, it is possible to apply the Min-Max Principle to deduce
(6.25) from (6.29) combined with Lemma 6.3. O

(1—cd(9))

< (1+ ¢d(¢)) (6.29)
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Remark 6.6. Since the weak formulation (6.10) involves only weak deriva-
tives of the first order, one may try to obtain stability estimates also under
weaker assumptions of ¢. For example, one may think of using bi-Lipschitz
domain transformations, i.e., maps ¢ of class CO' together with their in-
verses (cf. Chapter 4). In this case, one would replace the measure of vicinity
d(¢) by the natural weaker measure of vicinity

0(¢) = |V — I|| oo (-
In order to prove the corresponding estimate, in the proof of Theorem 6.5 one
should replace the operator Cy defined in (6.12) by the operator Cy defined
by
Co(B,w) = (Bo ™D, wogl),

for all (B,w) € V(). The definition of the operator Cy does not involve
V¢ and establishes a linear homeomorphism between V(2) and V(¢(R2)).
Unfortunately, the summand [o(Vw — B)- (Vv —n)dx in the quadratic form

(6.10) does not behave well under the transformation é¢ and this would lead
to an estimate depending on t. Namely, one would obtain the estimate

‘)‘n,t[(b(Q)] - /\n,t[Q” < *)‘n,t[Q]g(¢)a

where the presence of a better measure of vicinity 8(¢) 18 compensated by the
presence of the factor t2 which spoils the estimate for t close to zero.
6.2.2 Estimates via atlas and Hausdorff distance

Proceeding as in Chapter 4 we can prove the following

Theorem 6.7. Let A be an atlas in RY. Then there exists ¢ > 0 depending
only on A, u1, o such that

[Ant[Q1] = At [Q2]] < cmax{An t[Q], An t[Q2]}da(Q1, Q2), (6.30)
for alln € N, t > 0 and for all 1,90 € C(A) satisfying d4(1,2) < ¢ L.

Proof. Let E > 0 be as in Lemma 4.4 and let €, € C(A) be such that
da(Q1,Q) < €/s. Clearly Q1 N Qe € C(A) and d4(21 N N2, Q1),d4a(21 N
02,Q2) < €/s. Thus by Lemma 4.4 we have that ¢.(21), p(2) C 21 N
Q. By the monotonicity of the eigenvalues with respect to inclusion, we
immediately get

At (] < At [0 N Q2] < Ay t[de(€2)],
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for ¢ = 1,2. Moreover, by combining Theorem 6.5 and Lemma 4.4, we
deduce that there exists ¢ as in the statement such that

[ An,t[S] = At [Q1 0 Qa]| < [Ana[@0e($0)] — Ana[SU]] < eAny[Shile,  (6.31)

for i = 1,2, provided ¢ < ¢~!. Inequality (6.30) easily follows by choosing

€ =2sdA(,Q2) in (6.31). O

Remark 6.8. We note that by Theorem 1.4 and estimate (6.30), it imme-
diately follows that if w is a modulus of continuity as in Definition 1.1 then
there exist ¢ > 0 depending only on A, w, p1, e such that

|Ant (1] — Ant[Q2]] < cmax{ A, 1[Q1], At [Q2] Jw(dyp (091, 0822)), (6.32)

for alln € N, t > 0 and for all 21, € C;\J/[(')(A) satisfying the condition
dq.[fp(Ql,Qg) <c L

In several papers devoted to stability estimates for domain perturbation
problems, the vicinity of two domains is described by means of e-neighbor-
hoods of the boundaries defined by the Euclidean distance (see e.g., [34, 45]).
This can be done also in the case of the Reissner-Mindlin system. Indeed,
we have the following

Corollary 6.9. Let A be an atlas in RN, w a modulus of continuity as
in Definition 1.1 and M > 0. Then there exists ¢ > 0 depending only on
A, w, p1, po M such that

’)\n,t[Ql] - )‘n,t[QQH < CmaX{)‘n,t[Ql]a )‘n,t[QZ]}w(E)a (633)
foralln €N, t >0, € €]0,c [ and for all Q1,95 € C}'\J/[(')(A) satisfying (1.7)
or (1.8).

Proof. Note that if 1 and Q9 satisfy either (1.7) or (1.8), then they also
satisfy (1.9), which combined with inequality (6.32) allows to deduce (6.33).
O

6.3 Analyticity results

Let © be a bounded open set in RV of class C''. We shall consider prob-
lem (6.10) in ¢(2) for any ¢ € A{, and study the dependence of \;[¢(£2)]
on ¢.

The main result of this section is the following
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Theorem 6.10. Let Q be a bounded open set in RN of class C*, t > 0
and F a finite non-empty subset of N. The set Apq is open in Asll and the
real-valued maps which take ¢ € .AFQ to Aps[@] are real-analytic on Apgq
for all s = 1,...,|F|. Moreover, if b e OFrq is such that the eigenvalues
)\j7t[¢~$] assume the common value )\Rt[qb] for all j € F, and $(Q) is of class
C? then the Frechét differential of the map Aps at the point b is delivered
by the formula

|F|

b 0 ?
d,_ Arsld] = —X3,'[9) <|5|—1 )Z/a¢(ﬂ L

2
1+ pe (00 pik [ ow®
+ 19 (@u v| +— 2\ o ¢-vdo, (6.34)

for all ¢ € C’I}(Q;RN), where ¢ = ¢ o ¢V and { B8O w ) IF | is an
orthonormal basis in V(¢(Q)) for the eigenspace associated with )\F,t [4].

In order to prove Theorem 6.10 we consider equation (6.11) in ¢(£2) and
pull it back to 2. Namely, we consider the equation

Re[(B, w)][(n,v)] = AT (B, w)l[(n, v)], ¥ (n,v) € V((2)), (6.35)

in the unknowns (5, w) € V(¢(Q2)), A €]0, col.
We will denote by V,;(£2) the space V(€2) endowed with the form

< (Byw)(n,0) >1.9= Reg[(B,w)][(n, v)], Y(B,w), (n,v) € V().

Moreover, we recall that
2
u7t,¢[(ﬁ7w)”(77a U)] = /Q <1UU + %B : 77) |detV¢\dw, V(ﬂ,w), (777U) € V(Q)

Note that the map from V(Q) to V(¢(2)) which maps (3, w) to (Bos(~1), wo
#(=1) for all (8,w) € V(Q) is a linear homeomorphism. Hence, equation
(6.11) is equivalent to

Ry g[(0,w)][(0,@)] = ATr[(0, W][(0,5)], ¥ (6,4) € Vo(9),

where (0,u) = (8o ¢,w o ¢). It turns out that the operator T; defined in
Lemma 6.2 with Q replaced by ¢(€2) is unitarily equivalent to the operator
T}, defined on Vy(€2) by

Tis =R, 0 Ty (6.36)
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Thus we have the following lemma, whose proof is analogous to that of
Lemma 2.3.

Lemma 6.11. Let Q be a bounded open set in RN of class C*, t > 0.
The operator Ty 4 defined in (6.36) is non-negative selfadjoint and com-
pact on the Hilbert space Vg(€2). The equation (6.35) is satisfied for some
(B,w) € V(p(2)) if and only if the equation Ty 4(0,u) = p(8,u) is satisfied
with (0,u) = (B0 ¢,wo @) and p = \~L. Moreover, the map from A} to
LV()) x Bs(V(Q)) which takes ¢ € ALy to (Ty4,< -, >1.4) is real-analytic.

Proof of Theorem 6.10. First of all, we note that by standard regularity
theory (see [9, §10.3]), the eigenvectors (8%, wD) € H?(¢(Q))N+1, i =1,2.
We observe that the proof is very similar to that of Theorem 2.2. It only
remains to compute

<l T ol0]1(00, u )], (00, u®) >, ;
= d|y_3 T [¥][(0V, uD)][(0V, V)]

— A p[8)d] g Re o [0, )] [(6D, uD)).

By standard calculus in normed spaces we have

dly_5 T 01160, w00, uD)] = /(ﬁ

¢ _
o (!w<“\2 + 12|6<”|2> div¢dy,

see also (2.12). Using Lemma 6.12 below, we get formula (6.34). O

Lemma 6.12. Let Q be a bounded open set in RN and qg € -A%z be such
that ¢(Q) is of class C2. Let t > 0 and (8@, w®) € V(§(Q)), i = 1,2 be
etgenvectors associated with an eigenvalue A of the operator Ry in QE(Q) Let
(Q(i),u(i)) = (ﬂ(i) o, w® o q}), 1 =1,2. Then we have

oM 953

- 1 L@ @) @y = _HM .
g Rual OV u(O® u®) = =3 | T TG o
_u1+u2/ 0pY 082 .y tak owt) ow®
12 8(]3(9) ov ov 7 t2 6(;3((2) ov ov 7

_ 2
L3 wDw® + 50 8@ divedy, (6.37)
) 12

for all ¢ € CHLRY), where ¢ = 1o ¢ 1.
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Proof. Note that, in order to shorten our notation, in the sequel summation
symbols will be omitted. By standard calculus in normed space and changing

variables we get

0
], Reg[ILOD, u][(62), u2)] = /¢ N §y 5% divedy

m <65§” 28  op? aﬁ§”) %
+ dy
()

12 Oy, dy; Oy, Oy; | Oy

(1) (2)
ot pe B " o), 9B o)) 9
12 /qu) ( Ayr AVt yYr dvo Iy W

12
_mk [ 0w O (0@ )
2 S5 Oy Oy \ Oy :
ik owH 50 @ 3@ ay
2 S5\ Ovi ’ 83/7« Ay

(1) (2)
Lk o (5“}1 _ g >) (aw .y )divgdy. (6.38)

Lt e / div8Mdiva® div(dy
3(9)

t2 dyi ! Oyi

Now note that

/ agzgl)a/@l(z)agrdy:/ ap 35(2C .
s Oyr Oy; Oy; od() v Ov

85(2) 82,8.(1)
- AB® (v . ()d _/ i i ¢.d
3(Q) ( C)dy aQ) 9Y; 8yj8yrc Y
85(1) 62/3(2)

= — AB? (v . ¢ dy+/ i
3(92) ( ) 3@ 9Y; 3yj3yr

apt" op%)
+/ —Lrdivldy. (6.39
s Oy; Oy Cdy. (6:39)

Grdy

Note that here and in the sequel we also use the fact that if U is a
smooth open set and f € H?(U) N H} (U) then Vf = 1/ on OU; moreover,
if g € (HX(U)N H}(U))N then divg = 8 -von OU.

By (6.39) the sum of the first two integrals in the right-hand side of
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(6.38) equals

m 9pm ‘ FoJeie)
12 34}(9) 8u 81/

+i [ (88082 4 a5PV60) - cay,
12 /3@

Now we observe that

O (1)
/ 95, 8Crdivﬂ(2)dy: / 06 vdivB?¢ - vdo
3@ 9Yyr 0y o5(Q) OV

adivg® adiva® oV
- —F  divB@dy — / i¢.d
/J>(n> Ay ‘ Y s Ovi  Oyr ray

vg® o5W
= / adgﬁ, 8562 Crdy + / divaWdiva @ div¢dy
o) 9V Yr 3(Q)

L)
+ / divp 0 0T
() Oyr

Thus, the sum of third and the fourth integral in the right-hand side of
(6.38) is equal to

[ + pio adiva® 98 adive®@ oM
75 i + Grdy
5()

dy;  Oyr dy;  Oyr
_M1+M2/ 8ﬁ(1).y8ﬂ(2).yf-yd
12 8(73(9) aV aV a:

Now note that
(1) (2) (1) (2)
/ ow'" ¢,  ow B ﬁl@) dy = / ow'\ ow ¢ vdo
3@ Oyr Oyi \ Oy ad() Ov v
ow™ 9*w™m ow® 2
- - (B — divg®) ay - [ , AP
/¢3(Q) Yy ¢ ( ) Y 3() 3%‘3er Ay ! Y

)
— / Ow G (Aw<2> —diw(?)) dy + /

VD (Vw® — ) divedy

()

1) [ 52?2 (2)
+/ Quw? (7w OB 4y (6.40)
o 9yi \Ovidy, Oy,
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By using the second equality in (6.40), and the first equality in (6.40)
with (81, w®) replaced by (83, w®), we get that the sum of the last
three integrals in (6.38) is equal to

ik ow® gw®
- /.- 3 3 ¢ -vdo
() IV v

+’Lk  (Aw® — divBM)Vw® - ¢dy
()
+M (MA@ — divB®)Vw® - cdy
H)
(2)
mk ) (V@ — 3O \divedy + 1F [ Ow 95
+ B2 v
2. (2) 1) 92
utgk ~ i(gg% Cody = — u12k ~ ow't) ow ¢ vdo
Q) YiOyr t Jogy Ov v
+M (AW — divBM)Vw® - cdy
)
+ &f  (Aw® —divg®)vu® . ¢dy
= Ja@
k ow 85
+ % _ (8 - 51 /8 Cr
d(2) Yi

+M/ aw<2> 4@ 55(”(
2 Jooy \ Oy .

. k . . M2 .
_Hag) m;mw vA3) %(Vw@— 3y = 2 5

Using the fact that

12 12 ’
and .
—%(Aw(i) — divg®) = Aw®,
for i = 1,2, we get formula (6.37). O

6.4 Isovolumetric perturbations
As in the previous chapters, we consider the following extremum problem

for the symmetric functions of the eigenvalues

V[¢I]Iilcl<1)nst F’t[d)] or V[;}n:aé)énst F,t[¢]7
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where V[¢] denotes the N-dimensional Lebesgue measure of ¢(£2). we have
the following result, whose proof is analogous to that of Theorem 2.7.

Theorem 6.13. Let Q be a bounded open set in RN and t > 0. Let I be
a non-empty finite subset of N and s € {1,...,|F|}. Let ¢ € Oq[F)] be such
that qB(Q) is of class C2. Then ¢ is a critical point for Ap s with volume
constraint if and only if there exists an orthonormal basis (5(1), w(l)), e
(BUED w(EDY in V($(Q)) of the eigenspace associated with the eigenvalue
Ari[@] and there exists ¢ € R such that

i i+ po (080 ’ ik [ Ow® ’
+ 12 o 7 +t72 ov =c (641)

almost everywhere in dp(Q).

|F]

M1
2\ 5

apW
v

As in the case of the Laplace operator discussed in [67] and polyharmonic
operators considered in the previous chapters (see also [27, 28]), it turns out
that if (£2) is a ball then condition (6.41) is satisfied. In order to prove it,
we need the following lemma. Recall that § is thought as a row vector.

Lemma 6.14. The operator R, is rotation invariant (in the sense of Defi-
nition 5.6). In particular, let B be a ball in RN centered at zero, t > 0, and
let (B,w) be an eigenvector of Ry in B associated with an eigenvalue \. Let
A be an orthogonal linear transformation in RN and M the corresponding
matriz. Then also ((f o A)M,w o A) is an eigenvector of Rp; associated
with \.

Proof. First of all, we note that the rotation invariance of the Laplace op-
erator yields

A((Bo A)M) = ((AB) o A)M, and A(wo A) = (Aw) o A.
Moreover, by standard calculus we have
div((BoA)M) = Tr (MtV([i’ 0A)) =Tr (Mt((Vﬂ) o A)M) = (divp)oA,
where Tr denotes the trace of a matrix, and

Vdiv((Bo A)M) = V((divp) o A) = ((Vdivp) o A)M.
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By using the previous identities and the fact that (3, w) is a solution to
(6.1), we get

LA (B0 AYM) — L2 iy o A)) — 2F (v (w0 4) — (80 4) )

12 12 t?
= L (ag)0 M~ (9aivp) o )M~ (Tuw)o A (50 A) M
)\t2
(8o AM
and
ik

Eo (Awo A) — (div((8 0 A)M)) = ’“k(Aw divB) o A = Mwo A,

which show that ((8 o A)M,w o A) is an eigenvector of R; associated with
A O

We now prove the following

Theorem 6.15. Let B be a ball in RN centered at zero, t > 0, and \
be an eigenvalue of R;. Let F' be the subset of N of indexes j such that
Njt[B] = A Let (BD, w)y, L (BUED wFDY be an orthonormal basis in
V(B) of the eigenspace associated with X\. Then the functions

|F| |F|

18917 >
=1

=1

2R

»>

2R ||

SIS

=1 =1

ow® |?
ov

8"

apW
v Y

ov

I

(6.42)
where v(x) = x/|x| for all x € B\ {0}, are radial. In particular, there exists
¢ € R such that condition (6.41) holds.

Proof. Recall that On(R) denote the group of orthogonal linear trans-
formations in RV, and let A € Onx(R) be a transformation with associated
matrix M. By Lemma 6.14 it follows that {((8%¥) o A)M,w® o A) : | =

1,...,|F|} is another orthonormal basis of the eigenspace associated with
A. Since both {(8®,w®) : 1 = 1,... |F|} and {((BY o A)M,w® o A) :
I =1,...,|F|} are orthonormal bases, then there exists S[A] € O|(R) with

matrix (S;;[A]); j=1,..|F| such that

|F|

(B9 0 A)M,wl ZSJZ w®) (6.43)
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By (6.43) we deduce that
(BoA)M = S[A]p and wo A = S[Aw, (6.44)

where S denotes the [ x N-matrix, the rows of which are given by the row
vectors ), and w is the column vector the entries of which are given by
€)
w\9),
By the first equality in (6.44) we have (33%) o A = S[A]BB!S[A]!, hence
|7 |F|

Y 18Y 0 AP = Tr[(88") o A] = Tr [S[A]BB"S[A]'] = Tr [35'] Zw
=1

(6.45)
By the arbitrary choice of A we deduce by (6.45) that Z‘F‘ 1812 is a radial
function. Similarly, using the second equality in (6.44), one can prove that
Z|F| |wW|? is a radial function as well.
We now consider the other functions in (6.42). By differentiating in
the radial direction v the first equality in (6.44), we have that for every
j=1,...,land s=1,..., N,

N |F| N

a5, 355
Z n o AthMTSVk = Z Z Sjl axk V. (646)
rohk=1 1=1 k=1
Taking into account that Mv = v o A we deduce by (6.46) that
85 op
M = A4
(5oo4) b =slarg. (6.47)

By proceeding as in (6.45) we get that Zi‘l ag;l)

By multiplying both sides of (6.47) by v we also get

ap B op
<ay~y)oA—S[ ]61/ v,

is a radial function.

2
which implies that Z|F| )86 l(/l) I/‘ is a radial function. Similarly, one can
prove that the last function in (6.42) is radial. O

Combining all the results in this section we get the following

Theorem 6.16. Let Q be a bounded open set in R of class C, t > 0. Let
¢ € Ab be such that ¢(Q) is a ball. Let X be an eigenvalue of Ry in H()
and let F be the set of indexes j € N such that X\;+[¢(Q)] = . Then for all
s =1,...,|F| the elementary symmetric function Aps has a critical point
at <z~5 with volume constraint.
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