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SUMMARY 

 
Chronic myeloid leukemia (CML), a malignant myeloproliferative disorder of 

hematopoietic system, is driven by the chromosomal translocation 

[t(9;22)(q34;q11)], yielding the Philadelphia chromosome and generating a 

fusion gene that encodes the Bcr-Abl protein, a constitutively active tyrosine 

kinase necessary and sufficient for the initiation, maintenance and progression 

of CML [Faderl S. et al., 1999]. Despite the great efficacy of the Bcr-Abl-specific 

inhibitor imatinib, which represents the gold-standard drug of choice for CML 

patients, resistance to this drug is recognized as a major problem in CML 

therapy failure [Bixby D. and Talpaz M., 2009]. In this context, this work 

focuses on the analysis of the protein kinase CK2, a ubiquitous, pleiotropic and 

constitutively active Ser/Thr kinase, composed of two catalytic (a and/or a’) 

and two regulatory (ß) subunits. CK2 is abnormally elevated in a wide variety 

of tumors, where it does not induce directly the cancer but it is critically 

required to create a cellular environment favourable to the development of 

neoplasia, mainly through its anti-apoptotic and pro-survival role [Ruzzene M. 

and Pinna L.A., 2010]. 

The goal of the research is to shed light on the role of the protein kinase CK2 in 

chronic myeloid leukemia oncogenic signaling, using two different CML cell 

lines, LAMA84 and KCL22, either sensitive (S) or resistant (R) to imatinib.  

In my laboratory it had been previously observed that resistant-LAMA84 CML 

cells, which are characterized by BCR-ABL1 gene amplification [Le Coutre P. et 

al., 2000], contain a two-fold higher amount of CK2a and CK2ß, but not 

CK2a’, subunits as compared to parental cells [Borgo C. et al., 2013]. 

Consistently, the quantification of the CK2 subunits demonstrates that CK2 

protein is expressed at very high levels compared to total cellular proteins in 

LAMA84 cells. Subcellular fractionation analysis shows that most CK2 is located 

in the cytoplasmic fraction of R-LAMA84 cells, where it co-localizes with Bcr-

Abl. CK2 and Bcr-Abl are members of the same multi-protein complex(es) only 

in R-LAMA84 cells, as demonstrated by their co-sedimentation in glycerol-

gradients and co-immunoprecipitation. Interestingly, while cell treatment with 
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imatinib does not affect the binding occurring between CK2 and Bcr-Abl, the 

CK2-specific inhibitor CX-4945 almost abrogates this interaction, suggesting 

that CK2 kinase activity plays a specific role in the binding.  

In spite of the CK2 up-regulation occurring in imatinib-resistant LAMA84 cells, 

we also demonstrate that imatinib-resistant KCL22 cells express similar protein-

level and activity of both CK2 and Bcr-Abl as compared to the sensitive 

counterpart. Moreover, CK2 co-immunoprecipitates with Bcr-Abl in both 

KCL22 cell variants. To assess whether CK2 might be a player in imatinib-

resistant KCL22 cells, we investigated the complex Bcr-Abl oncogenic network 

dedicating particular attention to MAPK and PI3K/Akt/mTOR pathways, which 

have been frequently demonstrated to be up-regulated in cancer cells [Saini K.S. 

et al., 2013]. We found that resistant KCL22 cells are characterized by a 

strikingly higher phosphorylation extent of ERK1/2 T202/Y204, as previously 

reported by Colavita I. et al. (2010), Akt S473 and ribosomal protein S6 (rpS6) 

S240/4-235/6 as compared to sensitive cells. In R-KCL22 cells, the treatment 

with high concentrations of imatinib causes a substantial inhibition of ERK1/2 

and Akt S473 phosphorylation, while, unexpectedly, it only partially affects the 

phosphorylation of rpS6, the common downstream effector of MAPK and 

PI3K/Akt/mTOR pathways. Interestingly, rpS6 phosphorylation is almost 

abrogated by CK2 down-regulation, as judged by cell treatment with CX-4945, 

which does not affect ERK1/2 and Akt activities, and by CK2 knocking down by 

siRNA. Consistent with the down-regulation of rpS6, protein involved in 

translation initiation, the treatment of R-KCL22 cells with CX-4945 reduces the 

protein synthesis efficacy of about 50% as compared to the control. 

To further assess the contribution of CK2 to chronic myeloid leukemia, the 

effect of CK2-inhibition on cell viability was examined. CX-4945 significantly 

reduces the cell viability and induces apoptosis in both LAMA84 and KCL22 

cell lines, either sensitive or resistant to imatinib. However, CX-4945 

concentrations required to induce apoptosis in imatinib-resistant cells are lower 

than those effective in sensitive cells, suggesting that resistant cells become 

more dependent on CK2 for their survival. Interestingly, CX-4945 added in 

combination with imatinib promotes a synergistic reduction of cell viability in 

imatinib-resistant CML cell variant, partially rescuing the response to imatinib. 
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In resistant KCL22 cells, we also show that CK2-inhibition sensitizes leukemic 

cells to the anticancer compounds U0126, an inhibitor of MAPK pathway, and 

rapamycin, the specific inhibitor of mTORC1 complex. Interestingly, the 

ternary association of CX-4945 with imatinib and U0126 represents the best 

effective combination of drugs to reduce the viability of R-KCL22 cells. 

Taken together, our results identify CK2 as a pivotal player in CML imatinib-

resistance and suggest that CK2 inhibitors might represent promising drugs for 

combined strategies to overcome CML imatinib-resistance.        
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RIASSUNTO 
 

La leucemia mieloide cronica (LMC), una malattia mieloproliferativa maligna 

del sistema ematopoietico, è determinata dalla traslocazione cromosomica             

[t(9; 22)(q34, q11)], che causa la formazione del cromosoma Philadelphia e del 

gene di fusione BCR-ABL1. Tale gene codifica per la proteina Bcr-Abl, una 

tirosin chinasi costitutivamente attiva, necessaria e sufficiente per l’insorgere, il 

mantenimento e la progressione della patologia [Faderl S. et al., 1999]. 

Nonostante la grande efficacia dell’imatinib, inibitore specifico di Bcr-Abl, che 

rappresenta il farmaco d’elezione per il trattamento dei pazienti affetti da LMC, 

la resistenza a questo farmaco è riconosciuta come uno dei maggiori problemi 

del fallimento chemioterapico [Bixby D. and Talpaz M., 2009]. In questo 

contesto, il lavoro della mia tesi è stato rivolto allo studio della protein chinasi 

CK2, una serin/treonin chinasi ubiquitaria, pleiotropica e costitutivamente 

attiva, composta da due subunità catalitiche (a e/o a’) e due regolatorie (ß). Il 

livello proteico di CK2 è anormalmente elevato in un ampio numero di tumori, 

in cui tuttavia la chinasi non è mai riconosciuta come la causa che scatena la 

patologia ma risulta essere criticamente necessaria per l’instaurarsi di un 

ambiente cellulare favorevole allo sviluppo della neoplasia, principalmente 

grazie al suo ruolo anti-apoptotico e pro-sopravvivenza [Ruzzene M. and Pinna 

L.A., 2010]. 

L’obiettivo della ricerca è quello di far luce sul ruolo svolto dalla protein chinasi 

CK2 nelle vie oncogeniche di segnale che caratterizzano la LMC, utilizzando le 

due linee cellulari LAMA84 e KCL22, sia sensibili (S) che resistenti (R) 

all’imatinib.   

Nel mio laboratorio era stato precedentemente osservato che le cellule LAMA84 

resistenti all’imatinib, caratterizzate dell’amplificazione del gene BCR-ABL1 [Le 

Coutre P. et al., 2000], contengono una quantità proteica delle subunità CK2a e 

CK2ß, ma non CK2a’, circa due volte superiore rispetto alle cellule sensibili 

all’imatinib [Borgo C. et al., 2013]. In accordo con questo risultato, la 

quantificazione proteica delle subunità di CK2 dimostra che il livello della 

chinasi è marcatamente elevato nelle cellule LAMA84 rispetto alle proteine 
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totali. L’analisi del frazionamento subcellulare mostra che la maggior parte di 

CK2 si trova nella frazione citoplasmatica delle cellule R-LAMA84, dove co-

localizza con Bcr-Abl. CK2 e Bcr-Abl sono membri dello stesso complesso multi-

proteico ed interagiscono tra loro solo nelle cellule LAMA84 resistenti 

all’imatinib, come dimostrato dagli esperimenti di co-sedimentazione in 

gradienti di glicerolo e di co-immunoprecipitazione. È interessante notare che, 

mentre il trattamento cellulare con imatinib non influenza l’interazione tra 

CK2 e Bcr-Abl, il CX-4945, uno specifico inibitore di CK2, abolisce quasi 

interamente questo legame, suggerendo che l’attività chinasica di CK2 svolga 

un ruolo specifico nel legame tra le due proteine.  

Diversamente da quanto descritto nelle cellule LAMA84, le cellule KCL22 

resistenti all’imatinib esprimono un livello proteico, ed un’attività chinasica, sia 

di CK2 che di Bcr-Abl, simile in cellule sensibili e resistenti all’imatinib. CK2 

risulta inoltre interagire con Bcr-Abl in entrambe le varianti cellulari di KCL22.  

Per valutare se CK2 potesse avere un ruolo nella resistenza all’imatinib anche 

nelle cellule KCL22, abbiamo studiato la complessa rete oncogenica regolata da 

Bcr-Abl, dedicando particolare attenzione alle seguenti due vie di trasduzione 

del segnale: MAPK e PI3K/Akt/mTOR, spesso iperattivate nelle cellule tumorali 

[Saini K.S. et al., 2013]. E’ stato trovato che, rispetto alle cellule sensibili, le 

cellule KCL22 resistenti all’imatinib sono caratterizzate da un più elevato grado 

di fosforilazione delle seguenti proteine nei loro siti regolatori: ERK1/2 

(T202/Y204), come precedentemente riportato da Colavita I. et al. (2010), Akt 

(S473) e rpS6 (S240/4-235/6). Nelle cellule R-KCL22, il trattamento con alte 

concentrazioni di imatinib riesce ad inibire drasticamente la fosforilazione di 

ERK1/2 (T202/Y204) e Akt S473, mentre, inaspettatamente, diminuisce solo in 

parte la fosforilazione di rpS6, l’effettore comune a valle delle vie di segnale 

MAPK e PI3K/Akt/mTOR. È interessante notare che la fosforilazione di rpS6 è 

invece praticamente abolita dall’inibizione dell’attività catalitica di CK2. Tale 

risultato è dimostrato sia dal trattamento cellulare con CX-4945, il quale non 

altera nè il grado di fosforilazione di ERK1/2 né quello di Akt S473, che dal 

silenziamento genico tramite interferenza dell’mRNA di CK2. In parallelo al 

diminuito grado di fosforilazione di rpS6, proteina coinvolta nella fase 

dell’inizio della traduzione, il trattamento delle cellule R-KCL22 con CX-4945 
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riduce l’efficacia della sintesi proteica cellulare di circa il 50% rispetto al 

controllo. 

Per valutare ulteriormente il contributo di CK2 nella leucemia mieloide cronica, 

è stato esaminato l’effetto dell’inibizione dell’attività chinasica di CK2 sulla 

vitalità cellulare. Il trattamento cellulare con CX-4945 riduce in modo 

significativo la vitalità delle cellule e induce apoptosi in entrambe le linee 

cellulari LAMA84 e KCL22, sia nella variante sensibile che in quella resistente 

all’imatinib. Tuttavia, le concentrazioni di CX-4945 necessarie per indurre 

apoptosi nelle cellule resistenti sono inferiori rispetto a quelle efficaci nelle 

cellule sensibili, suggerendo come le cellule resistenti siano maggiormente 

dipendenti da CK2 per la loro sopravvivenza. È inoltre interessante notare che, 

il trattamento combinato di CX-4945 con imatinib promuove un effetto 

sinergico sulla riduzione della vitalità delle cellule resistenti all’imatinib in 

entrambe le linee cellulari di LMC, ripristinando parzialmente l’effetto 

dell’imatinib. Nelle cellule R-KCL22, è stato anche dimostrato che l’inibizione di 

CK2 rende le cellule leucemiche sensibili all’azione di altri composti come 

l’U0126, un inibitore della via di segnale MAPK, e la rapamicina, inibitore 

specifico del complesso mTORC1. L’associazione ternaria di CX-4945, imatinib 

e U0126 rappresenta la migliore associazione sinergica capace di ridurre la 

vitalità delle cellule R-KCL22. 

Nel loro insieme, i nostri risultati mettono in luce come CK2 svolga un ruolo da 

protagonista nelle cellule LMC resistenti all’imatinib e suggeriscono come la 

chinasi possa rappresentare un promettente bersaglio per lo studio di strategie 

farmacologiche combinate per il trattamento della LMC nei pazienti resistenti 

all’imatinib.  
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ABBREVIATIONS 
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Ala   Alanine  A 
 
Arg  Arginine   R 
 
Asn   Asparagine   N 
 
Asp   Aspartic Acid  D 
 
Cys   Cysteine  C 
 
Gln   Glutamine   Q 
 
Glu   Glutamic acid E 
 
Gly   Glycine   G 
 
His   Histidine   H 
 
Ile   Isoleucine  I 
 
Leu  Leucine  L 
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Met   Methionine  M 
 
Phe   Phenylalanine  F 
 
Pro   Proline   P 
 
Ser   Serine   S 
 
Thr   Threonine   T 
 
Trp   Tryptophan   W 
 
Tyr   Tyrosine   Y 
 
Val   Valine    V 
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1. CHRONIC MYELOID LEUKEMIA 

 

Chronic myeloid leukemia (CML) is a malignant myeloproliferative disorder of 

hematopoietic system characterized by a clonal expansion of primitive 

pluripotent stem cells that causes a greatly increase in the number of 

circulating granulocytes, even if monocytic, megakaryocitic, erithroid, B-

lymphoid and occasionally T-lymphoid lineages could be affected [Faderl S. et 

al. 1999; Chen Y. et al. 2010]. 

 

 

1.1 - CLINICAL FEATURES 

 

The disease represents about 15% of all adult leukemias with an annual 

incidence of 1-1.5 cases per 100,000 people. It is more frequent in male respect 

to female (1,3:1) with a median age at diagnosis of 45-55 years [Rumjanek 

V.M. et al., 2013]. Based on clinical features, CML presents a tri-phasical 

clinical course: an initial benign chronic phase (CP) progresses into an 

accelerated (AP) and then blastic phase (BP) (see Fig.I). In 90% of cases CML is 

diagnosed in CP through routine blood testing; up to half of patients are 

asymptomatic but common symptoms are anorexia, fatigue, weight loss, 

bleeding, anemia, leukocytosis and thrombocytosis. At this stage physiological 

hematopoiesis coexists together with the leukemic clone, granulocytes are 

increased 10- to 100-fold in the blood but their differentiation and function is 

apparently still not altered. Over about 4-6 years, due to molecular 

abnormalities accumulation (secondary chromosomal changes), epigenetic 

alterations and genetic instability (alteration of different gene such as loss of 

p53 functions, RB1 rearrangement, c-Myc amplification), the disorder proceeds 

into BP, that is clinically similar to an acute leukemia. This aggressive and fatal 

phase starts when more than 30% immature blasts appear in bone marrow or 

peripheral blood; myeloid progenitor cells develop at different stages of 

maturation and are released prematurely in peripheral blood [Pasternak G. et 

al., 1998].  
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Figure I. Evolution of leukemic clone in CML progression. The hematopoietic stem cells (HSCs), which 

are characterized by self-renewal capacity and multi-lineage potential, give rise to all differentiated, 

mature blood cells through successive stages. The production of BCR-ABL1 gene in the HSC 

compartment is sufficient to induce a clonal expansion resulting in a greatly increase of mature 

granulocytes (chronic phase). Additional mutations and epigenetic alterations lead to accumulation of 

immature blasts (blast crisis). (HSC, hematopoietic stem cell; CMP, common myeloid progenitor; GMP, 

granulocyte-macrophage progenitor; Gr, granulocyte; Mac, macrophage)[Stuart S.A. et al.,  2009]. 

 

 

 

1.2 - CYTOGENETIC HALLMARK 
 

CML is the best known leukemia at molecular level: its cytogenetic hallmark is 

the Philadelphia chromosome (Ph) that characterizes all hematopoietic cell 

lineages of about 90% of patients. For the first time, in 1960, Nowell and 

Hungerford correlated the leukemia with a specific karyotype abnormality, 

later shown arising from the reciprocal translocation [t(9;22)(q34;q11)] 

[Rowley J.D. et al., 1973] (see Fig.II), in which the cellular proto-oncogene       

c-ABL moves from chromosome 9 [Bartram C.R. et al., 1983] to the BCR 

(breakpoint cluster region) on chromosome 22 [Groffen J. et al., 1984], thus 

yielding a shortened chromosome 22. The resulting fusion gene, BCR-ABL1, is 

an oncogene that codes for the tyrosine kinase Bcr-Abl, which is endowed with 

constitutive activity. Bcr-Abl protein production is necessary and sufficient for 



5 

 

the initiation, maintenance and progression of CML phenotype, since the 

retroviral insertion of a human BCR-ABL1 gene into murine hematopoietic stem 

cells causes CML-like disease in mice  [Daley G.Q. et al., 1990]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. Scheme of the reciprocal translocation yielding Ph chromosome. Ph chromosome is a 

shortened chromosome 22 (22q-), which originates from the reciprocal translocation between the long 

arms of chromosomes 9 and 22 [Druker B.J., 2008]. 

 

About 5-10% of CML patients are characterized by the absence of the 

Philadelphia chromosome (Ph–) as judged by cytogenetic analysis. However, at 

molecular level, the BCR-ABL1 fusion gene is detectable. These patients present 

a clinical course and respond to therapy similarly to Ph+ cases [Bartman C.R. et 

al., 1983]. At variance, a residual subset of patients are both Ph chromosome 

and BCR-ABL1 negative but they represent a separate leukemic entity.  

The hybrid gene is not restricted to CML, it is also present in 5% of childhood, 

25% of ALL (acute lympohoblastic leukemia) and few cases of AML (acute 

myeloid leukemia) [Kurzrock R. et al., 2003]. 
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1.3 - MOLECULAR BASIS OF THE PHILADELPHIA CHROMOSOME  

 

As above mentioned, BCR-ABL1 fusion gene, arisen from the reciprocal 

exchange of DNA between the long arms of chromosome 9 and 22 [Kurzrock R. 

et al., 2003], is sufficient to drive the malignant transformation of cells, thereby 

it represents the molecular fingerprint of CML.  

 

1.3.1. c -ABL gene and its protein product 

The proto-oncogene c-ABL is the human homologue of the viral ABL 

transforming gene carried by the Abelson murine leukemia virus (A-MuLV). It  

is a large gene, phylogenetically highly conserved, situated in the band 9q34 

and made up of 12 exons and different introns. Based on an alternative splicing 

of the first exon (1a or 1b), the gene gives rise to two mRNAs which encode two 

similar proteins, with a MW of 145 kDa, belonging to the family of non-

receptor tyrosine protein kinases [Pasternak G. et al., 1998]. At its N-terminal 

domain, c-Abl contains (see Fig.III) a myristoylation sequence (only in Abl-1b), 

which connects the protein to the inner surface of the plasma membrane [Van 

Etten R.A., 1999]. Toward the N-terminus, c-Abl presents three Src-homology 

domains (SH1, SH2 and SH3). SH2 and SH3 domains allow the binding to 

protein ligands with phospho-tyrosine sites and proline motifs, respectively. 

SH1 carries the catalytic tyrosine kinase activity and plays a key role in the 

induction of CML. Its activity must be tightly controlled in cells. Auto-inhibition 

effect is achieved by intricate intra-molecular interactions of N-terminal 

sequences including the myristolyl group, the SH2 and SH3 domains, and the 

Cap region. Deletion of N-terminus results in aberrant constitutive enzymatic 

activity. In the central area are present three proline-rich binding sites (PxxP) 

capable of binding to adaptor proteins. The C-terminal segment shows three 

nuclear localization signals (NLSs) and one nuclear export signal, (NES) which 

are responsible for the different subcellular localizations of the protein. c-Abl 

physiologically shuttles between the nuclear and the cytoplasmic compartments 

in response to physiological stimuli. Moreover, C-terminus contains three DNA-
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binding site as well G-(globular) and F-(filamentous) actin binding domains 

[Kurzrock R. et al., 2003]. Normally c-Abl acts in the regulation of cell cycle 

[Sawyers C.L. et al., 1994], in genotoxicity [Wang J.Y., 1998] and in cell 

motility [Hantschel O. and Superti-Furga G.., 2004]. 

 

1.3.2. BCR gene and its protein product 

BCR gene is mapped to 22q11.23 and can be translated into two proteins that 

vary in size (130000 and 160000 kDa of MW) because of an alternative 

splicing [Laurent E. et al., 2000]. Like Abl, Bcr protein is ubiquitously expressed 

and localized in both nucleus and cytoplasm [Wetzler M. et al., 1993]. At its N-

terminal domain (see Fig.III), Bcr has a coiled-coil oligomerization domain, two 

cyclic adenosine monophosphate kinase homologous domains and a 

catalytically active S/T kinase domain. At the center of the protein there is a 

specific guanine nucleotide exchange factor (GEF). The C-terminus presents a 

Rac-specific GTP-ase activating protein (RacGAP) domain and a putative 

calcium-dependent lipid binding site [Olabisi O.O. et al., 2006]. 

Autophosphorylated Y177 residue exerts a crucial role for the binding to Grb2, 

the activatory upstream protein of multiple signaling pathways, as detailed in 

section 1.4. Bcr affects signal transduction, although its native functions and its 

role in hematopoiesis remain not yet clear. BCR knockout mice have a normal 

reproduction and viability [Pasternak G. et al., 1998]. 

 

1.3.3. BCR-ABL1 fusion gene and its protein product 

Depending on the specific site of breakpoint in the translocation, BCR-ABL1 

fusion gene can be translate into several forms of Bcr-Abl protein with different 

molecular weights (see Fig.III). In CML patients the most common breakpoint 

occurs in the so-called major BCR (M-BCR) between exon 13 and 14 or 14 and 

15 [De Breakeleer M. et al., 1986], which binds to exon 2 of ABL1 gene. As 

transcriptional result, the p210 Bcr-Abl chimeric protein is originated. 

However, BCR-ABL1 oncogene is not confined to CML. When the breakpoint 

happens in the minor BCR (m-BCR) or in the micro-BCR (µ-BCR) the fusion 
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gene encodes the p190 and p230 proteins [Groffen J. et al., 1984; Fainstein E. et 

al., 1987; Saglio G. et al., 1990], respectively. p190 is responsible for adult 

acute lymphoblastic leukemia (ALL), p230 for the chronic neutrophil leukemia 

(CNL). In summary, while Abl portion is almost invariably constant and 

achieves the transforming principle, Bcr sequence varies in size and dictates the 

phenotype of leukemia.  

p210 Bcr-Abl protein is composed of N-terminus sequences of Bcr fused to C-

terminal motifs of Abl. Bcr-Abl is endowed with constitutively elevated levels of 

tyrosine kinase activity, which is located within Abl and is considered the 

critical factor for leukemogenesis. Bcr components are simultaneously required 

for the oncogenic transformation. The oligomerization domain and the 

autophosphorylated Y177 site of Bcr are essential to determinate the aberrant 

catalytic activity of Abl since their loss reduces dramatically the transforming 

potential of Bcr-Abl [Olabisi O.O. et al. 2006]. The extent of kinase activity 

correlates with the degree of induced transforming activity [Lugo T.G. et al., 

1990]. Because of the deletion of Abl C-terminal moiety containing nuclear 

localizing signals, Bcr-Abl is exclusively localized in the cell cytoplasm where it 

probably interacts with the majority of proteins involved in transforming 

activities and in oncogenic pathways [Cilloni D. and Saglio G., 2012]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III. Bcr and Abl proteins and the aberrant Bcr-Abl protein isoforms. Representation of the 

functional sites of Bcr (upper panel, left) and c-Abl (upper panel, right) proteins. At the bottom of the 

Figure, schematic representation of different Bcr-Abl fusion proteins [From Kurzrock et al., 2003]. 
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1.4 - BCR-ABL ONCOGENIC SIGNALING 

Bcr-Abl expression influences a complex network of survival signalings leading 

to enhanced proliferation, decreased apoptosis and reduced cell adhesion, 

which are responsible for the malignant transformation (see Fig.IV). Among the 

various pathways addressed by Bcr-Abl protein the Ras/MAPK, 

PI3K/Akt/mTOR and JAK/STAT cascades are the most important implicated in 

leukemogenesis. They present many cross connections with multiple points of 

convergence such as the perturbation of one affects the others [Rumpold H. and 

Webersinke G., 2011]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV. Schematic representation of Bcr-Abl-induced signaling pathways in CML. Bcr-Abl 

expression leads to the activation of nuclear and cytoplasmic signal transduction pathways that 

influence cell survival of hematopoietic cells [Zaharieva M.M. et al., 2013].  

 

 

1.4.1. CrkL 

 

The main substrate for the Bcr-Abl kinase is represented by the adaptor protein 

CrkL, which is involved in the regulation of cell motility [Uemura N. and 

Griffin J.D., 1999]. The Bcr-Abl catalyzed phosphorylation of CrkL Y207 is 

related to the development of leukemia since the protein was found to be 

phosphorylated in tissues of BCR-ABL1 transgenic mice but not in normal mice. 

CrkL acts as a linker between the oncokinase and its downstream targets [De 
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Jong R. et al., 1997]. In CML cells, CrkL recruits paxillin to Bcr-Abl protein 

sustaining, with other proteins, the deficient cell adhesion to stroma cells and 

extracellular matrix [Salgia R. et al., 1995]. This molecular event could explain 

the clinically premature release of progenitors cells from the bone marrow 

[Kurzrock R. et al., 2003]. Moreover, CrkL allows the binding between Bcr-Abl 

and c-CBL, a molecular complex able to activate aberrant signaling, as 

described below in detail.  

 

 

1.4.2.  Mitogen-activated protein kinase (MAPK) pathway 

 

The mitogen-activated protein kinase pathway is physiologically stimulated by 

mitogens, cytokines or growth factors and can be activated pathologically by 

Bcr-Abl expression [Cilloni D. and Saglio G., 2012; Ahmed W. and Van Etten 

R.A., 2013] (see Fig.V). Autophosphorylation of Y177 within Bcr sequence 

represents a key event absolutely required for leukemogenesis. It acts as a 

docking site for the Grb2 adapter protein, which couples to Sos protein (son of 

sevenless) stabilizing the active GTP-bound state of Ras and activating the 

scaffold protein Gab2 [Deininger M.W.N. et al., 2000]. Ras triggers a sequential 

activation of a series of protein kinases. First, it stimulates the recruitment of 

Raf to the plasma membrane, where it phosphorylates MEK. MEK 

phosphorylates, in turn, its predominant downstream target ERK1/2 that can 

enter into the nucleus and directly activates a plethora of transcription factors 

such as c-Myc and Elk1. Cytoplasmic ERK1/2 is able to phosphorylate and 

activate RSK, that, on one hand, regulates ribosome biogenesis, protein 

synthesis, cell size and cell cycle proliferation via 40S ribosomal protein S6 

(rpS6) phosphorylation, and on the other hand, causes the activation of the 

transcription factor CREB [Steelman L.S. et al., 2004].  

MAPK cascade normally regulates gene expression, cell cycle, cell growth, 

differentiation and apoptosis. Its perturbation leads to enhanced cell 

proliferation and reduced programmed cell death. This pathway has been 

reported to be hyper-activated in many type of tumors including acute 
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myelogenous leukemia, acute lymphocytic leukemia, breast and prostatic 

cancers where some components, such as Ras, Raf, MEK and ERK, are mutated 

or aberrantly expressed [Steelman L.S. et al., 2004]. The role of MAPK pathway 

in the deregulated cell proliferation and also in the drug resistance of 

hematopoietic cells has been well evidenced [McCubrey J.A. et al., 2007].  

MAPK cascade is also able to interact with other signal transduction pathways 

including the PI3K/Akt/mTOR pathway, as demonstrated by the ability of both 

ERK1/2 and RSK to phosphorylate TSC2 (see below and Fig.V).   

 

 

1.4.3. PI3K/Akt/mTOR pathway      

  

PI3K/Akt/mTOR pathway (see Fig.V) is normally stimulated by growth factors 

and regulates cell survival. Wide evidence demonstrates that up-regulation of 

PI3K cascade is implicated in oncogenesis and drug resistance [McCubrey J.A. 

et al., 2007]. It has been demonstrated that in CML this pathway is activated by 

multiple mechanisms regulated by Bcr-Abl expression. The above described 

Grb2-Gab2-Sos complex or the binding of Bcr-Abl to CrkL and c-Cbl adaptor 

protein [Skorski T. et al., 1995; Hochhaus A. et al., 2002] activates PI3K, which 

converts phosphatidylinositol 4,5 diphosphate (PIP2) into phosphatidylinositol 

3,4,5 phosphate (PIP3) in the lipid rich plasma membrane. PIP3 acts as a 

docking site to recruit PDK1 and its mediator Akt to the membrane through the 

pleckstrin homology (PH) domain. This reaction can be reversed by the 

phosphatase PTEN, a tumor suppressor protein which removes phosphate from 

PIP3, preventing Akt activation. Mutations of PTEN occur in many human 

cancers [Steelman L.S. et al., 2004]. The serine-threonine protein kinase Akt 

becomes fully activated following the phosphorylation at T308 by PDK1 and at 

S473 by mTORC2. Akt can be further stimulated by the protein kinase CK2-

mediated phosphorylation of S129, which prevents the de-phosphorylation of 

Akt T308 maintaining the kinase in its active conformation [Di Maira G. et al., 

2005]. On one hand, activated Akt triggers the apoptotic machinery through 

the phosphorylation of a wide variety of substrates including Bad, GSK3ß, 

caspase 9, FOXO and Mdm2 [Cilloni D. and Saglio G., 2012]. On the other 
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hand, Akt promotes cell proliferation mainly inducing, directly or indirectly, 

the mammalian target of rapamycin (mTOR) activation. mTOR is a S/T kinase 

present in two distinct complexes, mTORC1 and mTORC2, which differ in 

composition, substrate specificities, physiological functions and sensitivity to 

the potent macrolide-derived inhibitor rapamycin. mTORC1, sensitive to 

rapamycin, regulates positively ribosomal biogenesis and the 

initiation/progression of protein synthesis. It consists of mTOR, raptor, which 

acts as a scaffold for recruiting mTORC1 substrates, mLST8, a positive regulator 

of mTOR kinase activity and two negative regulators, named PRAS40 and 

deptor. mTORC2, insensitive to rapamycin, has a key role in cell survival and 

actin cytoskeleton organization by phosphorylating several substrates including 

Akt S473, SGK1 S422 and PKCa S657. mTORC1 can be directly activated by 

Akt through PRAS40 T246 phosphorylation or indirectly through TSC2/Rheb 

axis. mTORC1 downstream substrates are S6K and 4E-BP1. Full activation of 

S6K requires dual phosphorylation at T389 by mTORC1 and then at T229 by 

PDK1, which occurs in a manner independent on PIP3 binding. Targets of S6K 

are rpS6, eIF4B and eEF2K. In particular, rpS6, activated by the sequential 

phosphorylation of S235/236 and S240/244 catalyzed by S6K and RSK (MAPK 

pathways), regulates protein synthesis and cell size via unclear mechanisms 

[Foster K.G. and Fingar D.C., 2010; Magnuson B. et al., 2012]. 4E-BP1 

phosphorylation on multiple sites (T37-48, T70, S65) catalyzed by mTORC1 

induces its dissociation from eIF4E and allows eIF4A and eIF4G to assemble to 

eIF4E initiating mRNA translation [Populo H. et al., 2012]. Mutations of mTOR 

gene and hyper-activation of mTOR signaling have been reported in many 

kinds of tumors [Populo H. et al., 2012]. In addition, the up-regulation of 

mTORC1 activity mediated by Bcr-Abl protein counteracts autophagy [Cilloni 

D. and Saglio G., 2012], a highly conserved homeostatic process that plays an 

important role in tumor development and progression [Chen P. et al., 2013].   

In summary, PI3K/Akt/mTOR pathway stimulates cell growth and 

proliferation, favors protein synthesis and blocks autophagy process. 



13 

 

 

Figure V. Overview of the MAPK and PI3K/Akt/mTOR signaling pathways activated by Bcr-Abl 

oncoprotein. Schematic representation of MAPK and PI3K/Akt/mTOR cascades and their interactions 

that result in the regulation of protein synthesis. Proteins in white ovals are positive regulators while 

molecules in black ovals are negative regulators [adapted from Martelli A.M. et al., 2011]. 

 

 

1.4.4. JAK-STAT pathway 

 

Among the multiple signalings initiated by Bcr-Abl it worth mentioning the 

JAK-STAT cascade, which is associated with cytokine and growth factor 

receptors. In normal cells the large family of Janus kinases (JAK) activates the 

signal transducer and transcription activator proteins (STATs) after stimulation 

of cytokine receptors, regulating the transcription of genes involved in cell 

growth control. In CML, STATs are directly activated by Bcr-Abl in a JAK-

independent manner. The function of JAK kinases in the pathogenesis of CML is 

still not understood, however, they are interacting with and activated by Bcr-
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Abl, thus stimulating the Src kinase Lyn [Ahmed W. and Van Etten R.A., 2013]. 

STAT1 and STAT5 have been reported to be up-regulated in Bcr-Abl positive cell 

lines and in primary cells from CML patients inducing cytokine independence. 

In CML, activated STAT5 regulates mainly the transcriptional activation of the 

anti-apoptotic protein Bcl-xL and the related cell survival induction [Deininger 

M.W. et al., 2000; Cilloni D. and Saglio G., 2012].  

 

 

1.4.5. Src family kinases 

 

One of the numerous signal transduction pathways perturbed in CML is 

represented by the non-receptor kinases belonging to the Src-family, which 

affect cell growth, differentiation and survival. Src proteins exert a key role in 

both development and progression of CML and in the mechanisms of resistance 

induced by pharmacological CML treatment. In particular, Hck, Lyn and Fgr 

have been reported to be overexpressed and/or hyper-activated by Bcr-Abl in 

myeloid cells. In turn, Hck, Lyn and Fyn are able to phosphorylate Abl creating 

a complex bilateral regulation. Finally, highly activation of Lyn and Hck is 

observed in drug-resistant CML patients [Rumpold H. and Webersinke G., 

2011].  

 

 

 

Taken together, the described signaling pathways induce enhanced cell 

proliferation, altered cell adhesion and reduced apoptosis leading to the 

expansion of the leukemic clone. 
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1.5 - CML THERAPEUTIC APPROCHES 

 

The CML therapeutic history has been deeply replaced since the first attempts 

with arsenicals (1856). Over many years, CML treatment was only palliative 

and did not improve the survival of patients. The chemicals used, busulfan 

(1950s) and then hydroxyurea (1970s), induced a partial hematological 

remission without a cytogenetic response. Allogenetic stem cell transplantation 

represented the therapeutic suitable alternative. However, age-limitation, 

donor-restriction, potentially complication as graft-versus-host disease and 

infections limited its applications. In the 1980s the introduction of interferon-a 

achieved, for the first time, complete hematological (50-80% of cases) and 

cytogenetic responses (30% of cases) in CP patients. [Faderl S. et al., 1999].     

More than 10 years ago Bcr-Abl protein expression has been established as the 

crucial event in leukemogenesis, and since then a profound improvement in 

CML therapy occurred. In the late 1990s, therapy management has been 

revolutionized by the introduction of imatinib mesylate (Glivec®) [Baccarani M. 

et al., 2006]. To date it represents the gold-standard therapy of choice for CML 

patients in all the disease phases; in fact it is able to induce a complete 

hematologic (96%) and cytogenetic remission (70-90%) with minimal toxicity. 

Imatinib, an orally bioavailable 2-phenylamino pyrimidine, is a strong and 

highly specific inhibitor of Bcr-Abl. In cell assay, its DC50 values (concentration 

inducing the 50% of cell death) are about 0.1 to 0.5 µM [Gambacorti-Passerini 

et al., 1997; Quintas-Cardama et al., 2009]. It acts as a competitive agent 

directed to the ATP binding pocket of the Abl kinase domain (see Fig.V). 

Interestingly, it only binds to the closed (inactive) conformation of Abl kinase 

domain stabilizing it and inhibiting, on one hand, its auto-phosphorylation and, 

on the other hand, the phosphorylation of its substrates (see Figure IV). As a 

consequence of the inhibition of Bcr-Abl catalytic activity, cell proliferation is 

abrogated and apoptosis is restored in CML cells [Aguilera D.G. and 

Tsimberidou A.M. 2009; Lamontanara A.J. et al., 2012].  
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Figure VI. Model illustrating the inhibition of Bcr-Abl kinase activity by imatinib. Under physiological 

conditions c-Abl binds ATP and transfers the terminal phosphate group from ATP to the substrate 

protein, resulting in activation of downstream pathways. Imatinib binds the ATP-binding site of Bcr-Abl 

preventing substrate phosphorylation and inhibiting downstream signalings. [Goldman L. and Ausiello 

D.A., 2008]. 

 

The finding that imatinib is active also on the receptor tyrosine kinases c-Kit 

and PDGFR, validated its administration in other diseases, including Bcr-Abl 

positive ALL [Druker B.J. et al., 2001], gastrointestinal stromal tumors [Joensuu 

H. et al., 2001] and chronic eosinophilic leukemia [Cools J. et al., 2004].  

In spite of the potent effect of imatinib, up to one-third of patients develop 

either intolerance or resistance to the drug, requiring alternative strategies of 

cure [Bixby D. and Talpaz M., 2009]. The emergence of imatinib-resistance has 

provided the opportunity for combined therapies and a second generation of 

multi-target kinase inhibitors of Bcr-Abl (TKIs) aimed at circumventing the 

resistance and restoring the response to the drug. These agents, including 

dasatinib (Sprycel®) and nilotinib (Tasigna®), are dual-specific Src and Abl 

inhibitors. Even if less selective, TKIs are more potent than imatinib and well 

tolerated. Treatment with TKIs is able to eradicate resistant clones, but its 

success has been mainly hampered by its ineffectiveness towards T315I Bcr-Abl 

mutant [Aguilera D.G. and Tsimberidou A.M., 2009]. The recently approved 

third generation TKI ponatinib was designed to bind Bcr-Abl with high 

specificity and potency, and its efficacy in T315I-positive patients is impressive 

[Lamontanara A.J. et al., 2012; Frankfurt O. and Licht J.D., 2013].   
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1.6 MECHANISMS OF IMATINIB-RESISTANCE 

 

Resistance to chemotherapy represents the major concern emerged in all types 

of cancers. Imatinib-resistance can be primary (innate), when patient has no 

response since initial treatment, or secondary (acquired) when patient initially 

responds to the drug but later relapses [Gorre M.E. et al., 2001]. Resistance to 

imatinib may arise from different mechanisms, which can be Bcr-Abl                 

-dependent (intrinsic) or -independent (extrinsic). Bcr-Abl dependent 

mechanisms of resistance occur when Bcr-Abl become hyper-activated due to 

BCR-ABL1 gene-amplification or point mutations. At variance, Bcr-Abl                

-independent mechanisms are associated with activation of alternative signaling 

pathways, CML stem cell quiescence, overexpression of the P-glycoprotein 

efflux pump or epigenetic modifications [Illmer T. et al., 2004; Bixby D. and 

Talpaz M., 2009].   

 

 

1.6.1. Bcr-Abl dependent mechanisms of resistance 

§ Point mutations 

The predominant mechanism of imatinib-resistance is represented by the 

occurrence of point mutations in BCR-ABL1 gene. In the majority of cases, point 

mutations lead to a single amino acid substitution in the Abl kinase domain. In 

particular, the single cytosine → thymine nucleotide exchange at position 944 

of ABL gene causes the substitution of threonine to isoleucine at position 315, 

the gatekeeper residue of Abl sequence. This point mutation is critical because 

it compromises the imatinib binding and confers resistance also to second 

generation TKIs [Bixby D. and Talpaz M., 2009]. Gly-rich loop and activation 

loop represent other hotspots for mutations occurrence. Mutations that lead to 

amino acid substitutions in the Gly-rich loop (G250E, Q252H and others) 

interfere with the flexibility of the loop preventing the establishment of the 

protein conformation required to bind imatinib. Amino acid substitution in the 

activation loop (H396P) makes the activation loop to adopt the active 
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conformation. Other mutations are also identified far from the imatinib binding 

site and outside of the kinase domain [Lamontanara A.J. et al., 2012]. 

§ BCR-ABL1 gene amplification 

In about 5-10% of cases, imatinib-resistance is caused by the genomic 

amplification of BCR-ABL1 fusion gene [Gadzicki D. et al., 2005]. The resulting 

overexpressed and hyper-activated Bcr-Abl protein decreases the imatinib 

sensitivity and increases the transforming potential. In has been described that 

imatinib-resistant CML LAMA84 cells contain more than 15 copies of the fusion 

gene and, in parallel, a 4- to 5-fold increase of protein level as compared to the 

sensitive counterpart. The duplication of BCR-ABL1 gene was identified also in 

cells obtained from CML and ALL imatinib-resistant patients [Gorre M.E. et al., 

2001]. 

 

1.6.2. Bcr-Abl independent mechanisms of resistance 

§ Drug efflux 

P-glycoprotein (P-gP) efflux pump mediates multidrug resistance in several 

types of cancers regulating the efflux of different chemotherapeutic 

compounds. It has been reported that imatinib is a substrate for P-gP [Dai H. et 

al., 2003] and that P-gP, overexpressed in cells from imatinib-resistant BP CML 

patients, inhibits intracellular accumulation of the drug [Mahon F.X. et al., 

2000]. However, the role of P-gP in imatinib-resistance is still unclear because 

of conflicting results obtained from other groups [Quintas-Cardama et al., 

2009].    

§ Leukemic stem cells (LSCs)  

According to an emerging concept of cancer biology, cancer cells might contain 

a subpopulation of rare cancer stem cells (CSCs), characterized by self-renewal, 

ability to differentiate, capacity to become quiescent and resistance to apoptosis. 
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Leukemic stem cells (LSCs) share with hematopoietic stem cells (HSCs) common 

features. It is well accepted that LSCs are HSCs that have become capable of    

indefinite proliferation due to accumulated mutations and/or epigenetic 

changes over time [Bonnet D., 2005].  

In CML, LSCs are resistant to current therapies and they could be responsible 

for relapse. Eradication of this niche of cells represents a critical element for the 

success of any therapy. It has been demonstrated that Hedgehog, Wnt, TGFß 

and Notch pathways play a pivotal role in LSCs survival. However, more studies 

aimed at elucidating diverse stemness factors between LSCs and HSCs are 

needed to develop new treatments to overcome drug-resistance [Cilloni D. and 

Saglio G., 2012].  

§ Activation of other pathways  

Imatinib-resistance can be originated from the Bcr-Abl independent activation 

of several survival signalings including MAPK, PI3K/Akt/mTOR, JAK/STAT 

pathways, which are normally under the control of Bcr-Abl (see section 1.1.4). 

Moreover, overexpression of Src family kinases provides survival advantage 

against imatinib [Roychowdhury S. and Talpaz M., 2011].      
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2. PROTEIN KINASE CK2 

 

Phosphorylation event is the most important and the best known reversible 

post-translational modification playing a critical role in signal transduction 

pathways. Phosphorylation is carried out by the large family of enzymes named 

protein kinases, often collectively referred to as “kinome” [Manning G. et al., 

2002]. Protein kinases are capable to transfer the terminal phosphate group 

from ATP (or rarely from GTP) to a substrate molecule, affecting its 

conformation and function. Based on the similarity of the catalytic domain, 

more than 500 putative protein kinases encoded by the human genome, are 

classified in different subfamilies [Manning G. et al., 2002]. Protein kinase CK2 

belongs to the big family of the eukaryotic protein kinases (EPKs) [Hanks S.K. 

and Hunter T. 1995].   

The discovery of protein kinase CK2 dates back to 1954 [Burnett G. and 

Kennedy E.P., 1954], when it was misnamed “casein kinase II” due to its ability 

to phosphorylate casein in vitro but, as demonstrated only many years later, not 

in vivo. CK2 is evolutionary highly conserved and ubiquitously expressed: it is 

distributed across eukaryotes, almost present in every kind of tissue and located 

all over subcellular compartments. This enzyme is pleiotropic and 

phosphorylates more than 500 proteins (http://www.phosphosite.org), 

implicated in several physiological and pathological processes.  

CK2 is an acidophilic kinase recognizing serine and threonine residues. The 

hallmark for CK2-dependent phosphorylation is represented by an acidic 

residue in position n+3 (Xn-1-S/T-Xn+1-Xn+2-E/D/Sp/Yp) downstream from the 

phosphor-acceptor site [Pinna L.A. and Ruzzene M., 1996; Meggio F. and Pinna 

L.A., 2003]. This minimum consensus sequence is commonly accompanied by 

acidic clusters from position n–1 to n+7, with preference for aspartic residue at 

n+1 and glutamic residue from n+2 to n+7. Basic residues around the target 

amino acid represent negative determinants, as well as proline, whose location 

at position n+1, is negatively selected.. It is interestingly to note that CK2 is 

endowed with the unusual ability to use, as phosphate donor, not only ATP but 

also GTP, with similar efficacy because of its singular binding cleft [Niefind K. 

et al., 1998]. With respect to the most of protein kinases which become active 
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in response to specific stimuli like phosphorylation events or second 

messengers, CK2 is constitutively active [Pinna L.A., 2002]. Although the 

sophisticated regulation of CK2 activity is not clearly established yet, increasing 

evidence suggests that it might be controlled by different mechanisms like 

recruitment to complexes [Keller D.M. et al., 2001; Allende-Vega N. et al., 

2008] and cell compartment shuttling [Filhol O. and Cochet C., 2009]. 

CK2 is essential for cell life and represents a “master regulator” of fundamental 

cellular processes such as cell cycle, gene expression, protein synthesis, 

proliferation, growth, survival, cytoarchitecture, migration, metabolism and 

apoptosis [Pinna L.A., 2002; Ahmed K. et al., 2002; Litchfield D.W., 2003].  

CK2 dysregulation is intimately related to cancer, viral infections, 

neurodegenerative syndromes, inflammatory and cardiovascular diseases and 

cystic fibrosis [Cozza G. et al., 2012]. 

 

 

2.1 - STRUCTURE AND ENZYMATIC FEATURES 

 

CK2 is composed of two catalytic (a and/or a’) and a dimer of regulatory 

subunits (ß) and is normally expressed in mammalian cells as a tetramer, 

consisting in a2ß2, aa’ß2 , a’2ß2 configurations [Chantalat L. et al., 1999]. 

However, in vitro assays have demonstrated that recombinant CK2 catalytic 

subunits are active either alone or associated with the ß subunits [Pinna L.A., 

2002]. 

The CK2 catalytic subunits are present in two different isoforms, a and a’, of 

42 and 38 kDa molecular weights, respectively. They are encoded by distinct 

genes and show an overall sequence resemblance of 80%, except for the C-

terminal portion which is completed unrelated and present only in the a 

subunit [Lozeman F.J. et al., 1990].  Both catalytic subunits share the typical 

kinase structure, formed by two lobes, a small, ß-sheet rich one (called C-

terminal lobe) and a large, a-helix rich one (called N-terminal lobe) [Cozza G. 

et al., 2012]. As for the other protein kinases, the structural subdomains of CK2 

catalytic subunits can be divided in: i) the P-loop (phosphate-binding loop, also 

known as glycine-rich loop): this small loop is located in the ATP binding zone, 
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and is fundamental for the correct orientation of ATP phosphates; in the case of 

CK2 the classical “G-X-G-X-X-G” motif is modified by the presence of a serine 

(S51) instead of the third glycine residue; ii) the catalytic loop: so called for the 

presence of the catalytic aspartate (D156). iii) the activation loop: in most 

protein kinases this loop is responsible for the full active state through a series 

of phosphorylation in its residues; this event blocks the activation loop in an 

“open” conformation, granting the access of both the ATP and the substrate. In 

the case of CK2, however, phosphorylations in the activation loop are not 

required for its full activity; on the contrary, CK2 displays a constitutively 

active state thanks to the interaction between the activation loop and the N-

terminal domain [Sarno S. et al., 2002]. iiii) The substrate binding site: 

characterized by the phosphorylation consensus motif  Xn-1-S/T-Xn+1-Xn+2-

E/D/Sp/Yp, as previously anticipated [Marin O. et al., 1986]. Despite the 

specific role of each catalytic subunit has not yet been discovered, several 

studies have demonstrated some functional specializations. In yeast, 

simultaneous disruption of the genes encoding both CK2 catalytic subunits 

results lethal [Glover C.V. et al., 1998]. While yeast with catalytically inactive 

CK2a presents defects of cell polarity, catalytic inactivation of CK2a’ causes 

cell cycle arrest [Hanna D.E. et al., 1995; Glover C.V. et al., 1998]. Studies in 

mouse models have also demonstrated that while CK2a’ knock-out mice causes 

infertility in male without affecting viability, CK2a (or CK2ß) knock-out results 

embryonic lethal [Lou D.Y. et al., 2008], suggesting that a subunit is able to 

compensate functionally, even if not absolutely, the lack of a’ in the context of 

viability [Xu X. et al., 1999]. In mammals, CK2a is phosphorylated, without 

effecting its activity, at multiple sites of the C-terminus, which is not present 

CK2a’, in a cell cycle dependent manner, suggesting a different functional 

specialization between the two catalytic subunits during the cell cycle 

[Litchfield D.W., 2003]. 

ß-subunit (25 kDa) has no extensive homology with other protein kinase 

regulatory subunits. It presents: i) a C-terminal region, responsible for both the 

ß-ß dimerization and the association with the catalytic subunit; ii) a N-terminal 

region which hosts the auto-phosphorylation site (MSSSEE) and the acidic 
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cluster involved in the positive/negative regulation of CK2 phosphorylation. 

Although CK2 is constitutively active and the definition of CK2ß as 

“regulatory” subunit does not appear really correct, it has been demonstrated 

that ß subunits regulate CK2 activity conferring CK2a/a’ substrate specificity. 

Usually, the catalytic activity of the tetramer is higher than that of isolated 

catalytic subunits. However, while for most of substrates, such as p53 and REV, 

CK2ß is absolutely required for substrate phosphorylation [Theis-Febvre N. et 

al., 2003], for other proteins, like calmodulin [Marin O. et al., 1999] and HS1 

[Ruzzene M. et al., 2000], CK2ß plays an inhibitory effect since they are 

phosphorylated only by monomeric CK2a or a’ form. Furthermore, over the 

last decade in vitro and in vivo studies have evidenced that CK2ß subunits exist 

and perform functions independently of CK2 holoenzyme, interacting with and 

modulating the kinase activity of several proteins like A-Raf, c-Mos and Chk1 

[Guerra B. et al., 1999; Guerra B. et al., 2003]. To support this hypothesis, an 

unbalanced expression of catalytic and regulatory subunits and their 

independent subcellular mobility has been highlighted in several tissues and 

cell cancers [Bibby A.C. and Litchfield D.W., 2005].     

 

 

 

Figure VII. Molecular representation of CK2 holoenzyme. CK2a (red and green) and CK2ß (yellow and 

blue) are highlighted.  

 

The association of CK2 catalytic and regulatory subunits in a tetrameric 

structure preserve the complex against unfolding and proteolysis. The 

crystallographic data of human CK2 tetramer reveal a “butterfly structure” (see 

Fig.VII), where the regulatory subunits form a stable dimer linking the two 
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catalytic subunits, which make no direct contact with one another. Each 

catalytic subunit interacts with both regulatory chains, through the ß subunit 

C-terminal tail. This interaction is mainly based on electrostatic contacts 

between a and ß subunits, since the presence of the isolated catalytic subunit or 

the tetrameric form of CK2 depends crucially on ionic strength. While different 

oligomerization models of the tetrameric structure have been proposed and the 

regulatory role of the ß subunit needs more clarification, it has been suggested 

that the ß subunit can provide a docking platform for substrates or potential 

positive/negative regulators [Cozza G. et al., 2012] 

 

 

 

2.2 - ROLE OF CK2 IN CELL SURVIVAL AND APOPTOSIS 

 

As mentioned previously, CK2 is essential for cell life end exerts a vast array of 

cellular functions related to cell decision between death and life, promoting cell 

survival and protecting cells from apoptosis. CK2 is a kinase for cell survival at 

all costs [Ruzzene M., 2013]. 

 

 

CK2 and cell cycle 

 

Mounting evidence demonstrates that CK2 plays an essential role in every stage 

of cell cycle progression. Studies in both yeast and mammalian cells indicate 

that CK2 is required for G0/G1, G1/S and G2/M transitions probably through 

the phosphorylation and regulation of many cell cycle regulatory proteins 

including Topoisomerase II [Daum J.R. and Gorbsky G.J., 1998; Escargueil A.E. 

et al., 2000], Cdc34 [Block K. et al., 2001], Cdk1 [Russo G.L. et al., 1992] and 

Six1 [Ford H.L. et al., 2000]; however, the specific functions of these 

phosphorylations are still largely unclear. CK2 is also able to modulate the 

activity of the master regulator of cell cycle CAK (Cdk-activating kinase) 

[Schneider E. et al., 2002]. CK2 regulates G1/S signaling through interaction 

with and phosphorylation of p53, SSRP1, Mdm-2, Cdk inhibitory proteins 
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p21WAF1/CIP1 and p27KIP1 [St-Denis N.A. and Litchfield D.W., 2009]. Additional 

evidence shows that, in G2/M transition, CK2 co-localizes with the mitotic 

spindle and centrosomes [Yu I.J. et al., 1991]. CK2 interacts with many proteins 

involved in mitosis including Pin1 [Messenger M.M. et al., 2002], and PP2A 

[Heriche J.K. et al., 1997].  Further evidence for the essential role played by CK2 

in cell cycle comes from the observation that both CK2a and CK2ß are 

phosphorylated in mitotic cells: the former by CdK1 at multiple sites (T344, 

T360, S262, S370) within its unique C-terminal domain, while the latter by 

p34cdc2 at site S209 [St-Denis N.A. and Litchfield D.W., 2009]. 

CK2 is implicated also in transcription control, regulating directly the activity 

of RNA polymerases I, II and III [Panova T.B. et al., 2006; Lin C. et al., 2006; 

Cabrejos M.E et al., 2004; Johnston I.M. et al., 2002] and phosphorylating 

many transcription-associated factors. CK2-catalyzed phosphorylation of eIF2ß 

[Llorens F. et al., 2006] and eIF5 [Majumdar R. et al., 2002] suggests also an 

involvement of CK2 in the translation machinery.    

 

 

CK2 and apoptosis 

 

Apoptosis is a form of programmed cell death, a mechanism tightly regulated 

that leads to cell elimination without damage in the surrounding cells 

[Gordeeva A.V. et al., 2004]. Its perturbation has been linked to cancer 

[Vermeulen K. et al., 2005].  

The role of CK2 in preventing apoptosis has been deeply dissected. CK2 exerts 

its anti-apoptotic function impinging on apoptosis pathway either intrinsically, 

induced by DNA-damage [Yamane K. and Kinsella T.J., 2005], or extrinsically, 

induced by receptor stimulation [Izeradjene K. et al., 2004].  In particular, CK2 

counteracts directly and indirectly the action of caspases, the proteases 

activated in response to apoptotic stimuli. CK2 is well suited to act 

phosphorylating several caspase substrates, including Bid [Desagher S. et al., 

2001], HS1 [Ruzzene M. et al., 2002], connexin 45.6 [Yin X. et al., 2001], 

presenilin-2 [Walter J. et al., 1999], PTEN [Torres J. et al., 2003] and Max 

[Krippner-Heidenreich A. et al., 2001], rendering them refractory to caspase-
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mediated cleavage, thus avoiding apoptosis. It is noteworthy that a similarity 

between CK2 consensus sequence for phosphorylation and the recognition 

sequence for caspase cleavage has been observed [Duncan J.S. et al., 2010]. 

CK2 blocks caspase activity also directly by phosphorylating pro-caspase 2 

[Shin S. et al., 2005], pro-caspase 9 [McDonnell M.A. et al., 2008] and the 

caspase inhibitor ARC [Li P.F. et al., 2002] and preventing their activation.  

Finally, CK2 overexpression correlates with the up-regulation of survivin, an 

inhibitor of apoptosis proteins [Tapia J.C. et al., 2006].  

  

 

 

2.3 - ONCOGENIC POTENTIAL OF CK2 

 

The correlation between CK2 and neoplasia has been known for a long time. An 

elevated protein level and activity of CK2 has been observed in many human 

cancers including both solid tumors [Laramas M. et al., 2007; Lin K.I. et al., 

2011] and hematological malignances [Kim J.S. et al., 2007]. CK2 up-

regulation correlates with aggressive cancer behavior, unfavorable prognosis 

and poor survival [Laramas M. et al., 2007; Piazza F. et al., 2012]. Studies in 

mouse have further reinforced the oncogenic potential imparted by CK2 

dysregulation: targeted expression of CK2 in transgenic mice promotes 

tumorigenesis, also cooperating with several oncogenes, including Tal-1 and    

c-Myc, or with the loss of the tumor suppressor p53 [Kelliher M.A. et al., 1996; 

Channavajhala P. and Seldin D.C., 2002; Landesman-Bollag E. et al., 2001]. 

Interestingly, this increase in CK2 protein level is usually not accompanied by a 

parallel mRNA enhancement [Trembley J.H. et al., 2009; Borgo C. et al., 2013], 

suggesting a slower turnover of CK2 at the protein level [Di Maira G. et al., 

2007]. With regard to this, many studies have reported that in normal cells 

CK2 is distributed in all compartments, while in cancer cells it is more 

concentrated in the nuclear compartment [Faust R.A. et al., 1999]. 

CK2 is not an oncogene in sensu stricto, in fact it is expressed in non-

transformed cells and no gain-of-function mutations have ever been shown in 

cancer cells. Although CK2 is never the main driver of malignant 
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transformation, it is critically required to promote an environment particularly 

suited for the development of neoplasia. This view has raised to the concept of 

CK2 non-oncogenic addiction. According to this view, CK2 reduction is not 

dramatic for normal cells, which are already adapted to low levels of protein 

and less dependent on the kinase activity. On the contrary, cancer cells, 

characterized by an invariantly high CK2 amount, are more dependent on CK2 

functions and strongly sensitive to CK2 down-regulation. Addiction to CK2 

represents a common feature of different cancer cells, not a peculiarity of only 

one [Ruzzene M. and Pinna L.A., 2010]. The common idea is that CK2 is neither 

the cause nor the consequence of neoplastic transformation, but a cooperating 

partner of tumorigenic pathways, mainly through its pro-survival and anti-

apoptotic role.  

CK2 sustains the progression of tumorigenesis perpetuating abnormal pro-

survival and anti-apoptotic signals by alternative approaches: 1) by supporting 

the transforming potential of various oncogenes [Seldin D.C. and Leder P., 

1995]; 2) by stabilizing the onco-kinome through the activation of the co-

chaperone Cdc37, which acts preserving the active conformation of many 

onco-kinases [Miyata Y. and Nishida E., 2004]; 3) by facilitating DNA repair 

[Loizou J.I. et al., 2004]; 4) by promoting rRNA and tRNA biogenesis [Ghavidel 

A. and Schultz M.C., 2001]; 5) by counteracting the activation of caspases 

[Duncan J.S. et al., 2010]; 6) by preventing the efficacy of anti-tumor drugs 

[Piazza F. et al., 2006; Mishra S. et al., 2007]; 7) by potentiating the multidrug 

resistance phenotype [Di Maira G. et al., 2007; Borgo et al., 2013]; 8) by 

favoring the neovascularization [Ljubimov A.V. et al., 2004].  

The number and type of signaling pathways regulated by CK2 is impressive. 

Among them, the following pathways are frequently up-regulated in cancers 

(see Fig.VIII):  

a) PI3K/Akt/mTOR pathway. CK2 reinforces the survival signal dictated by 

PI3K cascade, operating as a multi-site up-regulator. First, CK2 phosphorylates 

the tumor suppressor PTEN, resulting in PTEN stabilization [Torres J. and Pulido 

R., 2001] and functional inactivation [Arevalo M.A. and Rodriguez-Tebar A., 

2006] with consequent increase in PI3K/Akt/mTOR signaling. Not surprisingly 

PTEN is frequently mutated in human cancers. Secondly, CK2 up-regulates the 
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anti-apoptotic Akt kinase by a direct phosphorylation on S129 [Di Maira G. et 

al., 2005], which fully activates the kinase preventing the de-phosphorylation 

of Akt T308 [Di Maira G. et al., 2009], one of the two activatory sites of Akt, by 

ensuring a stable association with the chaperone protein Hsp90 [Ruzzene M. 

and Pinna L.A., 2010].      

b) MAPK pathway. CK2 interferes with the regulation of cell proliferation 

operated by MAPK signaling. First, CK2ß has been shown to be a binding 

partner for A-Raf [Boldyreff B. and Issinger O.G.., 1997] and this interaction 

stimulates the     A-Raf-mediated phosphorylation of MEK [Hagemann C. et al., 

1997]. Secondly, CK2-catalyzed phosphorylation of ERK1/2 at the residues 

S244 and S246 is sufficient to induce its translocation from the cytoplasm into 

the nucleus, where ERK1/2 may interact with different proteins implicated in 

cell proliferation and differentiation [Plotnikov A. et al., 2011].  

c) Wnt signaling: CK2 strengthens the proliferation signal  transduced by Wnt/ 

ß-catenin pathway, which is essential for embryogenesis, generally silent in 

adult tissues but hyper-activated in up to 50% of human cancers. CK2 directly 

phosphorylates ß-catenin protecting it from proteolysis [Song D.H. et al., 2003] 

and resulting in the activation of several pro-survival signals (c-Myc, c-Jun, 

cyclin D). CK2-catalyzed phosphorylation of Dvl [Song D.H. et al., 2003] and 

LEF1 [Wang S. and Jones K.A., 2006], two Wnt signaling intermediates, further 

reinforces cell survival.  

d) NF-κB: Similarly to Wnt pathway, NF-κB cascade is essential for the regular 

development and its dysregulation can lead to oncogenesis. CK2 phosphorylates 

IκB promoting its proteolytic degradation, an event that activates NF-κB which 

translocates into the nucleus, where it acts as transcription factor for anti-

apoptotic and pro-survival genes [Dominguez I. et al., 2009]. Moreover, CK2 

induces also the expression of IKK [Eddy S.F. et al., 2005], which normally 

induces IκB proteolysis. Finally, the p65 subunit of NF-κB itself is 

phosphorylated and regulated by CK2 [Wang G. et al., 2000]. 

Interestingly, the participation of CK2 in each pathway is atypical with respect 

to the other protein kinases because it is not hierarchical. CK2 acts as a lateral 

player, with an horizontal role, impinging on different levels of the oncogenic 

pathways. On the contrary, canonical signaling cascades are activated by a 
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stimulus from outside the cells which achieves the membrane and transmits its 

message inside the cell in a figurative longitudinal direction [Ruzzene M. and 

Pinna L.A., 2010].   

 

 

Figure VIII. CK2-dependent control of PI3K (a), MAPK (b), Wnt (c) and NF-κB (d) pathways.  
Schematic representation of the multisite regulation played by CK2, a lateral player of “vertical 
signaling cascades”. Normal arrows indicate a positive effect (+) , dot-ended lines indicate a negative 
effect (-). Dot-arrows indicate subcellular translocation induction.  
[Adapted from Ruzzene M. and Pinna L.A., 2010] 
 

 

 

CK2 and drug-resistance 

 

The phenomenon of resistance to cancer therapy is a mechanism of paramount 

medical relevance being one of the major cause for cancer therapy failure, 

especially in the leukemic transformation  [Suarez L. et al., 2005; Di Maira G. 

et al., 2007]. The molecular mechanisms referred to drug-resistance have been 

dissected for many years: it is well known that they are due to multiple factors, 

which range from development of pro-survival mutations in key signaling 

molecules, to acquisition of alternative survival signaling pathways, to the 

overexpression of efflux transporter proteins such as P-glycoprotein (P-gP), 

which extrudes cytotoxic molecules from the cells [Rosenzweig S.A., 2012]. As 

final result, in all these cases cancer cells become refractory to apoptosis 

ensuring cell survival. Many studies have highlighted an intimate implication 

between CK2 and drug-resistance. CK2 overexpression has been associated 

with drug resistance mechanisms, either related to multi drug resistance 
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phenotype or induced by single drug [Di Maira G. et al., 2008; Matsumoto Y. et 

al., 2001]. In particular, P-gP is a well known CK2-substrate [Glavy J.S. et al., 

1997]. Although the role of this phosphorylation has never been elucidated, it 

has been shown that in P-gP expressing cells the drug accumulation is 

enhanced in parallel with the degree of CK2 inhibition, reflecting a positive 

role carried out by CK2 on P-gP activity [Di Maira G. et al., 2007; Di Maira G. 

et al., 2008].  Furthermore, in multidrug resistant glioma cells the 

overexpression of CK2 has been recognized to be responsible for the high in 

vivo phosphorylation of the DNA topoisomerase II [Matsumoto Y. et al., 2001].  

Finally, it is noteworthy that cell treatment with inhibitors of CK2 induces 

significant cell death activating the apoptotic process in different cancer cells, 

either sensitive or resistant to conventional chemotherapy [Zanin S. et al., 

2012].     

 

 

CK2: a logical target in cancer therapy 

 

Considering the dual role of CK2 in cell proliferation and cell death, the two 

main deregulated features in cancers, it is presently considered a promising 

therapeutic target.  

It has been observed that CK2 down-regulation, by pharmacological inhibition 

or by knocking down its expression, induces cell death mainly due to apoptosis. 

In particular, CK2 represents a promising pharmacological target to fight a 

tumor because it allows to overtake two major theoretical limits of cancer 

therapy: the lack of target selectivity and the inability to affect selectively 

cancer cells. First, CK2 has a peculiar structure of the catalytic site with respect 

to other kinases, which has allowed the development of specific and selective 

inhibitors. Secondly, the inhibitors affect more tumor cells than normal cells in 

agreement with the concept of addiction to CK2, that is not a peculiarity of 

some tumors but a common denominator of diverse cancer cells [Ruzzene M. 

and Pinna L.A., 2010]. On these bases, it has been developed a wide variety of 

cell permeable, potent and selective, ATP-site directed inhibitors belonging to 

different chemical classes [Sarno S. et al., 2001; Cozza G. et al., 2010] able to 

kill several cancer cell lines [Mishra S. et al., 2007; Buontempo F. et al., 2013]. 
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Interestingly, CK2-inhibition may sensitize tumor cells to the activity of other 

chemotherapeutic agents such as melphalan [Piazza F. et al., 2006], vinblastine 

[Di Maira G. et al., 2007], cisplatin [Siddiqui-Jain A. et al., 2012]. Even more 

interesting, CK2-inhibitors may be used to overcome multidrug resistance 

phenomenon. With respect to this, of especial interest is the CK2-specific 

inhibitor CX-4945, a small tricyclic compound displaying a Ki in vitro <1nM, 

that induces apoptosis selectively in tumor cells as compared with normal cells 

[Siddiqui-Jain A. et al., 2010]. It has been also demonstrated that CX-4945 is 

effective in different cancer cell lines associated to pharmacological resistance 

occurrence, either related to the expression of multi-resistance phenotype or 

induced by specific drugs [Zanin S. et al., 2012]. In murine xenograft models, 

CX-4945 shows a potent efficacy and is well tolerated. Finally, CX-4945 is 

orally bioavailable and it has recently entered clinical trials for the treatment of 

different kinds of cancers [Siddiqui-Jain A. et al., 2010].  
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AIM OF THE STUDY 

 

It has been described that cancer cells are addicted to protein kinase CK2, 

which is never the direct cause of tumor but is critically required to promote a 

more favorable environment for the development of neoplasia, mainly through 

its anti-apoptotic and pro-survival role [Ruzzene M. and Pinna L.A., 2010]. Aim 

of my PhD research was to shed light on the role of protein kinase CK2 in 

chronic myeloid leukemia (CML) pathology, which is driven by the 

constitutively active tyrosine kinase Bcr-Abl. Despite the great efficacy of the 

specific Bcr-Abl inhibitor imatinib, resistance to this drug represents the major 

problem in CML therapy. To highlight the role of CK2 in CML oncogenic 

signaling, my experiments were performed using two different CML cell lines, 

LAMA84 and KCL22, either sensitive (S) or resistant (R) to imatinib. Cells were 

examined to highlight i) the potential cross-talk occurring between CK2 and 

Bcr-Abl, ii) the possible implication of CK2 in the mechanism(s) of resistance 

induced by imatinib treatment, iii) the significance of CK2 as a potential target 

for CML treatment and of CK2-inhibitors as drugs for combined therapies to 

overcome CML imatinib-resistance.  

It has been recently demonstrated that in resistant LAMA84 cells, characterized 

by BCR-ABL1 gene amplification, CK2 is up-regulated as compared to the 

sensitive cells [Borgo C. et al., 2013]. To analyze the properties of the protein 

kinase CK2 and its role in imatinib-resistant LAMA84 cells, I investigated the 

CK2 cellular protein level and its subcellular distribution looking for a possible 

co-localization and interaction with Bcr-Abl. On the other hand KCL22 cells, 

which show an expression of CK2 and Bcr-Abl similar in imatinib-sensitive and 

-resistant cells, were examined to gain insights into unknown mechanisms of 

imatinib-resistance related to CK2. The participation of CK2 in the complex 

oncogenic network was investigated at multiple levels since the kinase does not 

act in a hierarchical way, but as a lateral player in the oncogenic signal 

transduction [Ruzzene M. and Pinna L.A., 2010]. Particular attention was paid 

to two Bcr-Abl downstream signalings: MAPK and PI3K/Akt/mTOR pathways, 

which have been frequently demonstrated to be hyper-activated in cancer cells 
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[Britten C.D., 2013]. The role played by CK2, in the deregulated pathways 

evidenced in resistant KCL22 cells, was studied by treating cells with the potent 

and selective CK2-inhibitor, CX-4945, currently in clinical trials for the 

treatment of several kinds of tumors [Siddiqui-Jain A. et al., 2010].  

To further assess the contribution of CK2 in CML, the effect of CK2-inhibition 

was examined on the viability and apoptosis induction of LAMA84 and KCL22 

cells. Finally, it was analyzed the possibility that CK2-inhibition might act 

synergistically with other anticancer agents counteracting the imatinib 

resistance.  
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MATERIALS 

 

 

1. Antibodies 

 

Anti-c-Abl used for immunofluorescence was from Calbiochem (Darmstadt, 

Germany) while anti-c-Abl for western blot was from Santa Cruz 

Biotechnology (Santa Cruz, CA), such as antibodies raised against Anti-

CK2a’, Akt, lamin B, LDH, rpS6, phospho-SGK(S422). Anti-phospho-tyrosine 

was purchased from Millipore Corporation (Billerica, MA), anti-PARP from 

Roche (Basel, Switzerland) and anti-tubulin from Sigma-Aldrich (Dorset, 

U.K.). Anti-CK2ß, anti-CrkL, anti-phospho-CrkL(T207), anti-RSK and anti-

phospho-RSK(S244) from Epitomics (Burlingame, CA). Antibodies against 

ERK1/2, phospho-ERK1/2(Y202-204), phospho-RSK(T573), phospho-

p53(S15), phospho-Akt(S473), phospho-Akt(T308), phospho-mTOR(S2448), 

phospho-GSK3ß(S9), phospho-PDK1(S241), phospho-rpS6(S235/6-240/4), 

4E-BP1, phospho-4E-BP1(T37/46) were form Cell Signalling Technology 

(Danvers, MA). Anti-CK2a against the sequence of the C-terminus (376-

391) [Sarno S. et al., 1996] and anti-phospho-Akt(S129) [Di Maira G. et al., 

2005] antibodies were raised in rabbit. Secondary antibodies: anti-rabbit and 

anti-mouse HRP-labeled were from Perkin-Elmer (Walthan, MA), anti-goat 

IgG biotinylated was from Sigma-Aldrich, streptavidin-horseradish 

peroxidase conjugate  was from GE Healthcare Life Sciences (Milano, Italy).  

 

 

2. Inhibitors 

 

Imatinib mesylate was purchased from Cayman Chemicals (Ann-Arbor, MI) , CX-

4945 was from AbMole BioScience (Hong Kong, China), U0126 and rapamycin 

from Selleck Chemicals (Houston, TX). All compounds were diluted in 100% 

dimethylsulphoxide (DMSO) and stored at -20°C. 
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3. Recombinant CK2 and CK2-substrate  

 

Recombinant CK2 (a2ß2) and recombinant His-tagged-CK2a’ were kindly 

provided by Dr. Andrea Venerando (University of Padova, Italy). 

RRRADDSDDDDD peptide was kindly provided by Dr. Oriano Marin 

(University of Padova, Italy). ß-casein was from Sigma-Aldrich.  

 

 

4. Radioactive materials  

 

[g33P]ATP was purchased from Perkin-Elmer. [35S]-L-methionine/cysteine protein 

labeling mix was from Hartmann Analytic (Braunschweig, Germany). 

 

 

5. Oligonucleotides 

 

CK2a specific siGENOME SMARTpool siRNAs and aspecific siRNA 

siCONTROL riscfree#1 were from Dharmacon (Lafayette, CO, USA). The 

used siRNAs are designed by Dr. Mauro Salvi (University of Padova, Italy) 

and  correspond to the sequence CK2ß-siRNA (sense, 5’-GCCAUGGUGAAGC 

UCUACUdTdT-3’; antisense, 5’-AGUAGAGCUUCACCAUGGCdTdT-3’) and to 

the sequence CK2a’ -siRNA (sense, 5’-GCUGCGACUGAUAGAUUGGdTdT-3’; 

antisense 5’-CCAAUCUAUCAGUCGCAGCdTdT-3’). Transfecting reagent 

INTERFERin was from Polyplus-transfection SA (Illkirch, France). 

 

 

6. Other Chemicals 

 

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) 

reagent, ColorBurst™ colored electrophoresis protein marker and BSA were  

from Sigma-Aldrich. Immobilon-P transfer membranes were from Millipore 

Corporation. Phosphatase inhibitor cocktails 2 and 3 were from Sigma-

Aldrich while protease inhibitor cocktail Set III was from Calbiochem. 
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METHODS 

 

 

 

1. Cell culturing and treatment 

 

LAMA84 and KCL22 cell lines, either sensitive or resistant to imatinib, were 

kindly provided by Prof. C. Gambacorti-Passerini (University of Milano-Bicocca). 

Cells were grown in RPMI 1640 medium supplemented with 10% foetal calf 

serum, 2mM L-glutamine, 100U/ml penicillin and 100 mg/ml streptomycin at 

37°C in an atmosphere containing 5% CO2. Resistant LAMA84 and KCL22 cells 

were supplemented with 1.5 µM and 3 µM imatinib, respectively.  

For the treatments, CML cells were seeded at 1 x 106/ml and treated for different 

times in the culture medium as indicated in the Figure legend. Imatinib, CX-4945, 

U0126 and rapamycin were dissolved in 100% DMSO. Control cells were treated 

with equal amount of the inhibitor vehicle. At the end of incubations, cells were 

harvested by centrifugation, washed with PBS and lysed as detailed below.  

 

 

2. Cell lysis 

 

Cells were lysed with ice-cold buffer containing 20 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 2 mM EDTA, 2 mM EGTA, 0.5% (v/v) triton X-100, 1mM NaF, protease 

inhibitor cocktail Set III and phosphatase inhibitor cocktails 2 and 3. After 1h 

incubation on ice, samples were centrifuged at 13.2 rpm for 15 minutes, at 4°C. 

The supernatant represents the total soluble cell fraction. The lysate protein 

content was determined by the Bradford method. 
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3. Western blot analysis 

 

Equal amounts of lysate proteins were loaded on 9%, 11%  or 15% SDS-PAGE 

(Laemmli,1970) and blotted on Immobilon-P membranes (Millipore) in a TE 22 

Mini Tank Transfer Unit (GE Healthcare), at 60 V for 90 or 120 min, using a 

buffer containing 10 mM CAPS-NaOH (3-(Cyclohexylamino)-1-propanesulfonic 

acid pH 10, 3 mM dithiothreitol (DTT) and 1% (v/v) methanol. Membranes were 

dried, washed with TBS buffer (50 mM Tris-HCl pH 7.5, NaCl 50 mM) with 1% 

(w/v) BSA for saturation, processed with the indicated antibodies and then 

developed using an enhanced chemiluminescence detection system (ECL). 

Immunostained bands were quantified by means of a Kodak Image Station 

4000MM PRO and analysis with Carestream Health Molecular Imaging software 

(New-Haven, CT). 

 

 

4. Immunoprecipitation experiments 

 

Indicated lysate proteins or indicated volume of the pooled fractions of glycerol 

gradients were immunoprecipitated overnight with the specific antibody or with 

an aspecific antibody, used as a negative control. Protein A-Sepharose (Sigma-

Aldrich) or Protein G Plus (Santa Cruz Biotechnology) was then added for 1 h at 

4°C. The immunocomplexes, washed three times with 50 mM Tris-HCl pH 7.5, 

were analysed by western blot. 

 

 

5. Subcellular fractionation by differential centrifugation 

 

For the isolation of subcellular particles, a cell fractionation protocol by Kang and 

Welch [Kang H.S. and Welch W.J., 1991] was used with some modifications. 

Briefly, about 8 x 106 cells were resuspended in 400 μl of a hypotonic buffer (10 

mM Tris/acetate pH 7.4 containing protease and phosphatase inhibitor cocktails), 

incubated for 5 min on ice and broken by 50 strokes in a dounce homogenizer 

with a tight pestle.  The solution was immediately adjusted to 0.25 M sucrose, 1 
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mM MgCl2, and centrifuged at 1000 g for 10 min at 4°C to remove nuclei. The 

supernatant was removed and centrifuged at 10000 g for 20 min to isolate the 

mitochondria. The supernatant was further centrifuged at 100000 g for 90 min 

to separate the cytosol from the microsomes. Each pellet was resuspended in an 

appropriate volume of lysis buffer. The same volume of the different fractions (the 

μl containing 10 ug of cytosol) was analyzed by Western blot with the indicated 

antibodies. 

 

 

6. In-gel kinase assay of CK2a 

 

The activity displayed by CK2a subunit alone was determined by running 

similar volumes of the subcellular fractions obtained as described in section 

5 on a 11% SDS-PAGE including the CK2-substrate ß-casein (0.5 mg/ml). 

After electrophoresis, in order to remove SDS, the gel was washed twice in a 

buffer composed of 50 mM Tris-HCl pH 8 containing 20%(v/v) 2-propanol 

for 30 min at room temperature (RT). Gel was quickly rinsed out in 50 mM 

Tris-HCl pH 8 and then incubated progressively with the indicated buffers: 

50 mM Tris-HCl pH 8 and 5 mM 2-mercaptoethanol for 1 h at RT; 50 mM 

Tris-HCl pH8, 5 mM 2-mercaptoethanol and 6 M guanidine for 1h at RT; 50 

mM Tris-HCl pH8, 5 mM 2-mercaptoethanol and 0.04% (v/v) Tween-20 

overnight at 4°C to renature proteins. The activity of CK2a toward the co-

localized ß-casein was detected by incubating the gel with a phosphorylation 

medium containing 10 µM ATP, 4 µCi [g33P]ATP, 50 mM Tris-HCl pH 7.5, 10 

mM MgCl2. Subsequently the gel was washed with 5% trichloroacetic acid 

(TCA) and 1% sodium pyrophosphate in order to remove the ATP in excess. 

Each incubation was performed with gentle shaking. Radioactive 33P-ß-casein 

was evidenced by analysing the dried gel with a Cyclone Plus Storage 

PhosphorSystem (PerkinElmer). Image was processed with the optiQuantTM 

image Analysis software and radioactivity was expressed in Digital Light 

Units (DLU).   
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7. CK2 kinase activity assay 

 

Lysate proteins were incubated for 10 min at 30° C in a phosphorylation 

mixture containing 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.1 M NaCl, 10 

µM [γ-33P]ATP and 400 μM CK2-specific peptide RRRADDSDDDDD. The 

reaction was stopped by absorption on phospho-cellulose P81 paper. Papers 

were washed three times for 10 minutes with 75 mM phosphoric acid, dried 

and the peptide radioactivity was counted in a Scintillation Counter 

(PerkinElmer). 

 

 

 

8. Separation of multi-protein complexes of cell extracts by glycerol-

gradient sedimentation 

LAMA84 cells (20x106) were lysed with a buffer containing 20mM Tris-HCl, 

pH 7.5, 10mM KCl, 1mM EDTA, 10% glycerol, 0.2% triton X-100, protease and 

phosphatase inhibitors. Samples were centrifuged and supernatant fractions 

(400 µg) were layered on the top of a 3.6 ml of a glycerol linear gradient (10%-

40%) made in 50 mM Hepes, pH 8, 1 mM EDTA, 1 mM DTT, protease and 

phosphatase inhibitors. After centrifugation at 100000 g in a SW60Ti rotor 

(Beckman) for 18 hours at 4°C. 20 fractions were collected from the bottom of 

the tube and 40 µl of each were immunoblotted with the indicated antibodies. 

Bovine serum albumin (66 kDa), alcohol dehydrogenase (150 kDa), apoferritin 

(443 kDa) and thyroglobulin (669 kDa) were run on separated tubes, as 

standards, for estimating the molecular weight of the complexes. 

 

9. Immunolocalization of CK2 and Bcr-Abl by confocal microscopy 

 

LAMA84 cells (5 x 105) were seeded on polylysine-coated glass coverslips and 

allowed to adhere overnight. Cells were fixed with 4% para-formaldehyde in 

PBS for 20 min at room temperature and permeabilized with 0.1% Triton X-

100 in PBS for 10 min at 4°C. For dual labelling, cells were first incubated with 
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mouse anti-Abl (1:10) overnight at 4°C, followed by 1 h incubation with anti-

mouse IgG/FITC conjugated (1:50) in a dark, humidified chamber at 37°C. 

Cells were then incubated with rabbit anti-CK2-alpha (1:50) for 1 h at 37°C, 

followed by Alexa Fluor 633 coniugated secondary antibody [goat anti-rabbit 

(1:500)] for 1 h at 37°C, as previously described. Nuclei were stained with 

Hoechst 33342 (Sigma-Aldrich). The coverslips were mounted with a drop of 

mounting medium (Fluoromount, Sigma-Aldrich). Fluorescence images were 

captured by means of LEICA TCS SP5 confocal microscopy (Wetzlar, Germany), 

equipped with HCX PL APO lambda blue 63 x 1.4 oil immersion objectives. The 

analysis was performed with Argon, HeNe and Diode 405 lasers, allowing 

separate collection of green fluorescence (Argon laser at 488 nm),  red 

fluorescence (HeNe laser at 633 nm) and blue fluorescence (Diode 405 laser) 

of the same microscope field. Images were processed with the LAS AF software. 

 

 

10.  Cell viability assay 

 

Cell viability was detected by the method of MTT [3-(4,5-dimethylthiazol-2yl)-

3,5-diphenyltetrazolium bromide), incubating 4 x 104 cells/100 µl in a 96-well 

plate for 48 h under the indicated conditions. After 1 h of incubation 10 µl of 

MTT solution (5 mg/ml in PBS) were added to each well. Incubations were 

stopped by addition of 20 µl of a pH 4.7 solution containing 20% (w/v) SDS, 

50% (v/v) N,N-dimethylformamide, 2% (v/v) acetic acid and 25 mM HCl. 

Plates were read for OD at λ 590, in a Titertek Multiskan Plus plate reader 

(Flow Laboratories). DC50 (concentration inducing 50% of cell death) values 

were calculated with Prism 4.0c software (GraphPad Software). 

 

 

11.  Combined treatments 

 

Concomitant administration of two or more inhibitors (imatinib, CX-4945, 

U0126, rapamycin) was assessed by treating cells with increasing 

concentrations of inhibitors at fixed concentration ratio, as indicated in the 
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Figure legend.  The combination index (CI) for the combined treatment with 

imatinib, CX-4945, U0126 and rapamycin was calculated with the software 

Calcusyn (Biosoft, Cambridge, U.K.) [Chou T.C., 2006]. 

 

 

12.  35S-Methionine/Cysteine metabolic labelling 

 

5 x 106 cells  per well were seeded in six-well plates and pre-treated for 3 h with 

vehicle (DMSO) or 4 µM CX-4945 prior to add 100 µg/ml cycloheximide. After 2 

h the medium was replaced by methionine- and cysteine-free RPMI supplemented 

with 2 mM L-glutamine and 100 µg/ml cycloheximide. Cells were incubated for 1 

h. Medium was then removed and cells were pulsed in the presence of a 

methionine- and cysteine-free RPMI supplemented with 2 mM L-glutamine, 10 

µCi/ml [35S]-L-methionine/cysteine protein labeling mix. After 1 h radiolabeled 

medium was removed and cells were washed and lysed as previously described. 

Exposure to CX-4945 was maintained throughout the experiment. Labeled lysate 

proteins were subjected to SDS-PAGE, blotted and the intensity of the radioactive 

bands was measured using the Cyclone Plus Storage PhosphorSystem and 

expressed as Digital Light Units (DLU).  

 

 

13.  Apoptosis assay by nucleosome enrichment quantification  

 

Apoptosis was determined using the Cell Death Detection Elisa kit (Roche), which 

quantify the nucleosomes present in the cytosol of the apoptotic cells by 

measuring the absorbance at λ 405 and λ 490 following the manufacturer’s 

instructions.  

 

 

14.  RNA interference 

 

Cells (1.5 x 106) were transfected with  50 nM CK2ß, CK2a’ or CK2a 

specific siGENOME SMARTpool siRNAs or aspecific siRNA siCONTROL 
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riscfree#1 as control, using the transfecting reagent INTERFERin, according 

to the manufacturer’s recommendations. 

 

 

15.  Statistical analysis 

 

Prism 4.0c software was used for graphs and statistical analysis (GraphPad 

Software). Data are presented as means + SD and mean differences were 

analyzed using t-test. A p<0.05 was considered as statistically significant.  
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CML LAMA84 cells 

 

 

 

Over the last few years increasing evidence highlighted an involvement of 

protein kinase CK2 in different drug-resistance mechanisms [Di Maira G. et al., 

2008; Matsumoto Y. et al., 2001]. With regard to this, in my laboratory it has 

been observed that resistant-LAMA84 CML cells, which are characterized by 

BCR-ABL1 gene amplification [Le Coutre P. et al., 2000], contain a 2-fold higher 

amount of CK2a catalytic and CK2ß regulatory subunits as compared to 

parental cells [Borgo C. et al., 2013].  

 

 

Protein quantification of CK2 in LAMA84 cells 

 

To better characterize the anomalous properties of CK2 previously found in 

LAMA84 cells, we performed a relative quantification of cellular CK2a and ß 

subunits in LAMA84 cells by comparative analysis with recombinant CK2 

holoenzyme α2ß2. The comparison suggests that the two CK2 subunits are 

expressed at very high levels in both CML cell variants (Fig.1). In particular, the 

densitometric analysis shows that in imatinib-resistant cells the amount of 

CK2α subunit represents about 0.3% of total proteins, a concentration in the 

range of structural proteins. In parallel, this analysis confirms that cellular 

protein levels of CK2α and ß are about two-fold higher in resistant cells with 

respect to the sensitive counterpart (Fig.1).  
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Figure 1. Relative quantification of CK2 a and ß subunits in LAMA84 cells. The indicated quantities of 

recombinant CK2 a2ß2 and of lysate proteins obtained from S-LAMA84 and R-LAMA84 cells were 

analysed by wb with the indicated antibodies. a-tubulin is shown as a loading control. Means of 

densitometric values ± SD, expressed in arbitrary units, are reported above the relative subunit bands. 
Cellular CK2 subunit amounts were calculated by densitometric analysis and extrapolation from the 
calibration curve built on the signal of recombinant CK2 subunits. 
 

 

It has been previously shown that CK2a’ protein level is similar in both 

imatinib-sensitive and -resistant LAMA84 cells. To compare the cellular 

expression of the two catalytic subunits, a and a’, in these cells, the amount of 

cellular CK2a’ was examined in parallel with known quantities of His-tagged 

recombinant CK2a’. The comparative analysis pointed out that the cellular 

level of CK2a’ is comparable to that of CK2a present in imatinib-resistant cells 

(Fig.2), highlighting that also this kinase subunit is highly expressed in 

LAMA84 cells.   
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Figure 2. Relative quantification of CK2a’ subunit in LAMA84 cells. The indicated quantities of 

recombinant CK2 a‘ and of lysate proteins from S-LAMA84 and R-LAMA84 cells were analysed by wb 

with the indicated antibodies. a-tubulin is shown as a loading control. Means of densitometric values ± 

SD, expressed in arbitrary units, are reported above the relative subunit bands. Cellular CK2a’ amount 
was calculated by densitometric analysis and extrapolation from the calibration curve built on the 
signal of His-tagged recombinant CK2. 

 

 

Subcellular distribution of protein kinase CK2 in LAMA84 cells 

 

Since subcellular localization of a protein often suggests clues to its functions, 

we analysed the CK2 distribution in the subcellular compartments of LAMA84 

cell lines (Fig.3). The comparison of CK2 subcellular localization in the two cell 

variants revealed that the amount of CK2a’ is similar in the different 

subcellular compartments of S-LAMA84 and R-LAMA84 cells. In contrast, while 

CK2a level is comparable in nuclei and almost undetectable in mitochondria, it 

is overexpressed in the cytosolic and microsomal fractions of R-LAMA84 cells. 

Likewise, the protein-level of CK2ß is consistently higher in cytosol and 

microsomes.  
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Figure 3. Analysis of the subcellular distribution of CK2 in LAMA84 cells. The subcellular 
compartments of LAMA84 cells were separated as detailed in Material and Methods. The same volume 
of the different fractions (the µl containing 10 µg of cytosol) was immunoblotted with the indicated 
antibodies. The pureness of nuclei, cytosol and microsomes was verified using the specific organelle-
marker antibodies lamin B, lactate dehydrogenase (LDH) and ribosomal protein S6 (rpS6), respectively. 
The Figure is representative of four separated experiments. Bars report the mean values ± SD of the 
densitometric analysis of the CK2-subunit bands obtained by wb analysis. Densitometric values are 
expressed in arbitrary units. *p<0.05.  

 

 

To assess whether a correlation occurs between protein-level and activation 

state of CK2 in R-LAMA84, we analysed the activity displayed by the kinase 

catalytic subunit a in the different subcellular fractions. To this purpose, the 

same volumes of each compartments were run on SDS-PAGE containing the 

CK2 substrate ß-casein and the activity of the a-subunit toward the co-localized 

substrate was determined by a radioactive in-gel kinase assay. Using this 

method the catalytic subunit a’ is not detectable. In agreement with the 

different CK2a subcellular distribution, while 33P-phosphorylation of ß-casein 

is similar in the nuclei, it results two-fold higher in the cytosol and microsomes 

of imatinib-resistant cells as compared to sensitive cells (Fig.4).     
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Figure 4. Analysis of the kinase activity of CK2a subunit in the subcellular fractions of LAMA84 cells. 
The same volume of the different subcellular compartments of S- and R-LAMA84 cells were loaded on 
polyacrylamide gel containing the CK2-substrate ß-casein and the activity of the catalytic CK2α subunit 
was analysed as detailed in Materials and Methods. 33P-phosphorylation of ß-casein was evidenced by 
Cyclone Plus Storage PhosphorSystem and expressed as Digital Light Units (DLU). Reported values are 

means ± SD of three separated experiments.  

 
 
 
CK2 and Bcr-Abl co-localize in imatinib-resistant LAMA84 cells 

 

We have demonstrated that, in imatinib-resistant LAMA84 cells, CK2 is 

overexpressed in the cytoplasm (cytosol and microsomes), the compartment 

where Bcr-Abl is also retained in chronic myeloid leukemia cells and where it 

interacts with most proteins involved in its oncogenic pathway [Cilloni D. and 

Saglio G., 2012]. This observation led us to analyse whether the two kinases, 

which are overexpressed in resistant cells, could co-localize. To this purpose, 

we performed confocal microscopy immunofluorescence experiments. Fig.5 

shows that LAMA84 cells present a circular shape and are characterized by a 

tight cytoplasm that is compressed between the big nucleus and the plasma 

membrane. CK2a red fluorescence is observable in the nucleus but it is mostly 

localized in the cytoplasm, where Bcr-Abl is exclusively visible and appears to 

co-localize with CK2 (Figs.5A,5B). 
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Figure 5. Immunolocalization of CK2 and Bcr-Abl by confocal microscopy. (A,B) Confocal microscopy 

analysis of double immunofluorescence staining of R-LAMA84 cells with CK2a (red) and Bcr-Abl (green) 
antibodies. Nuclei were stained with Hoechst 33342 in blue. Merging of red and green fluorescence is 
visualized  in yellow.   
 
 

Immunolocalization analysis performed in parallel with sensitive LAMA84  

cells highlighted a similar distribution of CK2a fluorescence, which is more 

evident in the cytoplasm (data not shown), whereas Bcr-Abl localization was 

unfeasible because the oncokinase fluorescence was not detectable.  
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CK2 and Bcr-Abl are members of the same multi-protein complex(es) and co-

immunoprecipitate in R-LAMA84 cells 

 

CK2 and Bcr-Abl co-localization prompted us assess whether the two protein 

kinases are interacting proteins, a finding that has been previously evidenced in 

cells overexpressing the two kinases and in lymphoblastic cells obtained from 

Bcr-Abl transgenic mouse [Mishra S. et al., 2003]. To this purpose, LAMA84 

cells were lysed under mild conditions to preserve the multi-molecular 

complex(es) that were separated by ultracentrifugation on glycerol gradient 

(Fig.6). We found that in sensitive cells Bcr-Abl is distributed in a main peak 

(fractions 8-11), which is partially superimposed to that of CK2 (fractions 7-

13) (Fig.6A). However, the two kinases are not interacting as demonstrated by 

CK2a-immunoprecipitation experiments performed using the pooled fractions 

8-11 of the gradient (right panel of Figs.6A,6B). At variance, in imatinib-

resistant LAMA84 cells, Bcr-Abl and CK2 co-migrate in several fractions 

(Fig.6B) and are members of the same complex(es) as highlighted by their co-

immunoprecipitation assayed in the gradient fractions 8-11 (right panel of 

Figs.6A,6B). This finding suggests an involvement of CK2 in the molecular 

machinery that reinforces the imatinib-resistance.  

To further analyse the CK2/Bcr-Abl interaction and to evaluate the role played 

by the activity of each kinase on the reciprocal binding, imatinib-resistant 

LAMA84 cells were treated with imatinib or CX-4945, a potent CK2-inhibitor 

currently in clinical trials. Cellular extracts were then subjected to glycerol 

gradient sedimentation. Cell treatment with imatinib does not change the 

sedimentation profile of both CK2 and Bcr-Abl (Fig.6C) or their binding as 

demonstrated by the relative co-immunoprecipitation experiments (left panel of 

Fig.6C). Interestingly, while CK2-specific inhibitor, CX-4945, does not 

significantly affect the distribution profile of Bcr-Abl along the gradient, it 

triggers the shift of CK2a towards fractions of lower molecular weights 

(Fig.6D), implying that CK2 dissociates from Bcr-Abl, as judged by the reduced 

immunoprecipitation of the two kinases (left panel of Fig.6D). These findings 

corroborate the hypothesis that CK2 catalytic activity is crucial for the 
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interaction between the two kinases as suggested by the disruption of the 

complex induced by CK2 inhibition. However, ongoing studies are necessary to 

understand whether the binding between the two kinases is direct or mediated 

by adaptor proteins. 
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Figure 6.  Analysis of CK2 and Bcr-Abl interaction in LAMA84 cells. S-LAMA84 (A) and R-LAMA84 (B-
D) cells were treated for 24h with vehicle or 5 µM CX-4945 (C) or 3 µM imatinib (D) for 24h. 400 µg 
of a mild cell extracts of cells were loaded on a linear glycerol gradient, as detailed in Materials and 
Methods, and 40 µl of each fraction were immunoblotted with the indicated antibodies. Bovine serum 
albumin (66 kDa), alcohol dehydrogenase (150 kDa), apoferritin (443 kDa) and thyroglobulin (669 
kDa) were run on separated tubes as molecular weight standards. The densitometric analysis of the 
bands is reported above the relative gradient. (Right panels) Fractions 8-11 of each gradient were 

pooled, and 100µl were immunoprecipitated with an aspecific antibody (Ctrl) or anti-CK2a and 
analysed by wb with the indicated antibodies. Figure is representative of four different experiments.  
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Effect of CK2-inhibition on LAMA84 CML cell viability 

 

As previously demonstrated by my research group, CX-4945 is able to reduce 

the cell viability of different types of cancer cells including LAMA84 CML cell 

lines with  DC50 (concentration inducing the 50% of cell death) values of about 

8 µM and 5 µM in imatinib-sensitive and -resistant cells, respectively [Borgo C. 

et al., 2013]. In parallel, the DC50 values calculated for imatinib are about 0.3 

and 2.1 µM in sensitive and resistant cell lines, respectively [Borgo C. et al., 

2013]. These results prompted us to verify whether the cell death induced by 

the two inhibitors was mediated by apoptosis induction. Apoptosis occurrence 

was therefore analysed by comparing the cleavage of the caspase substrate 

PARP in the two cell variants. As expected, PARP is almost completely cleaved by 

treatment with 0.5 µM imatinib in sensitive LAMA84 cells, an event paralleled 

by the proteolysis of Bcr-Abl and a-tubulin (Fig.7A). On the contrary, as 

expected, treatment with up to 1 µM imatinib does not induce any appreciable 

effect in resistant cells (Fig.7A). The opposite is observable with CX-4945 which 

is not effective up to 5 µM concentration in S-LAMA84 cells, while the same 

concentration of inhibitor induces an almost complete cleavage of PARP and of 

the other analysed proteins in R-LAMA84 cells (Fig.7B). This outcome supports 

the hypothesis that imatinib-resistant cells are more dependent on CK2 activity 

for their survival than sensitive cells.  

Apoptosis occurrence induced by CK2 in imatinib-resistant LAMA84 cells 

prompted us to examine whether CX-4945 might sensitize resistant-cells to 

imatinib. To this purpose, cells were treated with CX-4945 and imatinib either 

separately or in combination (Fig.8). We then examined if the combined 

treatment induced a higher degree of cell death compared to the separate 

treatments. Interestingly, low concentrations of CX-4945 are able to 

substantially increase the effect of imatinib on resistant LAMA84 cells (Fig.8). 

The value of the combination index, which denotes synergism if <1 [Chou T.C., 

2006], is 0.57 for R-LAMA84, demonstrating that the combined treatment 

promotes a synergistic reduction of cell viability, partially rescuing the response 

to imatinib. 
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Figure 7. Cell death induction by imatinib and CX-4945 in LAMA84 cells. S-LAMA84 and R-LAMA84 
cells were treated with the indicated concentration of imatinib (A) or CX-4945 (B) for 48h. Lysate 
proteins (30 µg) were analysed by wb with the indicated antibodies. Figure is representative of five 
separate experiments.   
 
 
 

 
Figure 8. Synergistic effect of CX-4945 and imatinib treatment on R-LAMA84 cell viability. Cell 
viability was analysed by the MTT method after 48h treatment with increasing concentration of CX-
4945 and imatinib administrated alone or in combination at the fixed ratio 1:3. Viability was expressed 
as percentage of controls and the combination index was calculated with the software Calcusyn.  

 

 

 

The above described results are part of the data published in: 

Borgo C., Cesaro L., Salizzato V., Ruzzene M., Massimino M.L., Pinna LA., 

Donella-Deana A. (2013) Aberrant signalling by protein kinase CK2 in 

imatinib-resistant chronic myeloid leukaemia cells. Biochemical evidence and 

therapeutic perspectives. Mol.Onc.7(6):1103-15.  
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CML KCL22 cells 

 

 

 

In the first part of my thesis we have demonstrated that in imatinib-resistant 

LAMA84 cells CK2 is up-regulated as compared to imatinib-sensitive cells and 

that it co-operates with Bcr-Abl to maintain CML phenotype. We then 

investigated also in CML KCL22 cells the potential occurrence of a CK2 

involvement in imatinib-resistance and of a cross-talk with Bcr-Abl.  

Aim of my work was to gain insights into unknown mechanisms of drug-

resistance related to CK2.  

  

 

Analysis of Bcr-Abl and CK2 expression in KCL22 cell line 

 

In KCL22 cells, the resistance to imatinib is not caused by BCR-ABL1 gene 

amplification, mutations in the Bcr-Abl kinase domain [Le Coutre P. et al., 

2000; Redaelli S. et al., 2010] or by expression of the efflux drug transporter   

P-glycoprotein [Le Coutre P. et al., 2000; Zanin S. et al., 2012].  

First of all, we probed the protein levels and the activities of the two kinases 

under investigation, Bcr-Abl and CK2, in imatinib-sensitive and -resistant cells. 

Western blot analysis of equal amounts of proteins obtained from S- and R-

KCL22 cell lysates showed that similar protein level of Bcr-Abl is present in 

parental and imatinib-resistant cell variants (Fig.9). We then analysed the 

extent of Bcr-Abl autophosphorylation, which is indicative of the kinase 

activation state. Fig.9 shows that the protein is constitutively active and 

similarly autophosphorylated in the two cell variants as also corroborated by 

the similar phosphorylation of the key Bcr-Abl substrate CrkL [De Jong R. et al., 

1997].  
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Figure 9. Analysis of Bcr-Abl activation in 
KCL22 cells. 30 μg of proteins from cellular 
lysates obtained from sensitive and resistant-
KCL22 cells were analysed by wb with the 

indicated antibodies. a-tubulin was used as a 
loading control. Figure is representative of four 
separated experiments. 

 

 

 

CK2 expression was later examined by western blot analysis of lysate proteins 

obtained from KCL22 cells using antibodies raised towards the kinase catalytic 

(a and a’) and regulatory (ß) subunits. CK2 subunits resulted similarly 

expressed in both cell variants (Fig.10A). In parallel, the catalytic activity of 

CK2 was tested in equal amounts of KCL22 cell lysates by in vitro kinase assays 

using the CK2 specific peptide-substrate R3AD2SD5. Consistent with the protein 

level, also the cellular CK2 activity is not significantly different in sensitive and 

resistant cells (Fig.10B).     

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Analysis of protein level and activity of CK2 in KCL22 cells. S- and R-KCL22 cells were lysed. 

(A) 10 μg of lysate proteins were analysed by wb with the indicated antibodies. a-tubulin was used as a 
loading control. Figure is representative of four separated experiments. (B) 1 or 2 µg of proteins from 
cell lysates were incubated with a CK2 specific peptide-substrate in a phosphorylation mixture 

containing [g33P]ATP as detailed in Materials and Methods. Reported values are means ± SD of at least 
three separated experiments.  
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Bcr-Abl and CK2: are they interacting proteins? 

 

In the first section of the results, we have demonstrated that the two kinases are 

interacting proteins only in imatinib-resistant LAMA84 cells. Therefore, we 

performed a similar analysis in KCL22 cells, which were treated with vehicle, 

imatinib or CX-4945, lysed and immunoprecipitated with anti-Abl antibody.  

Fig.11 shows that, differently from LAMA84 cells, a substantial interaction 

between Bcr-Abl and CK2 is detectable in both imatinib-sensitive and -resistant 

KCL22 cells. Interestingly, while imatinib does not affect the protein binding, 

CX-4945 greatly counteracts the interaction between the two kinases, as 

already shown in R-LAMA cells (Fig.6). This finding confirms that CK2 catalytic 

activity is involved in the CK2/Bcr-Abl association. 

 

 

Figure 11. Analysis of CK2 and Bcr-Abl interaction in KCL22 cells. S- and R-KCL22 cells were treated 
for 16h with vehicle, imatinib or CX-4945. 300 µg of lysate proteins were immunoprecipitated with 

anti-Abl antibody. The immunocomplexes were then analysed by wb with anti-CK2a and anti-Abl 
antibodies. Figure is representative of three separated experiments.  

 

 

Analysis of the potential signaling pathways deregulated in imatinib-resistant 

KCL22 cells 

 

It has been described that imatinib-resistance may be originated from the 

constitutive and Bcr-Abl independent activation of survival pathways, which 

are also under the control of Bcr-Abl (see scheme of Fig.12). To identify 

additional targets involved in imatinib-resistance, we compared both expression 

and phosphorylation state of specific proteins in imatinib-resistant and               
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-sensitive KCL22 cells. The analysis of the tyrosine kinase Lyn, whose up-

regulation has been described to be associated with imatinib-resistance in CML 

K562 cells [Ptasznik et al., 2004], showed that the expression and the activity of 

this Src-kinase is similar in both variants of KCL22 cells (data not shown). 

Particular attention was paid to MAPK and PI3K/Akt/mTOR pathways, which 

are under the control of Bcr-Abl, related to CK2 and frequently demonstrated to 

be up-regulated in cancer cells [Britten C.D. 2013; Saini K.S. et al., 2013]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 12. BCR-ABL1 signaling cascade. Bcr-Abl induces activation of different signaling pathways, 
including MAPK and PI3K/Akt/mTOR cascades. rpS6 represents a downstream target of this two 
pathways.    
 

 

KCL22 cell lines were therefore lysed and probed with specific antibodies. We 

observed that whereas the level of total ERK1/2 is similar in R-KCL22 and S-

KCL22 cells, imatinib-resistant KCL22 cells are characterized by a strikingly 

higher phosphorylation extent of ERK1/2 at the residues T202/Y204 (Fig.13), 

in agreement with results reported by Colavita et al. (2010). The finding that, 

the phosphorylation level of the ERK-targets RSK T573 and p53 S15 are similar 
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in imatinib-sensitive and -resistant cells (Fig.13), suggests that other proteins 

among the numerous ERK-substrates might be affected by the anomalous ERK 

hyper-activation induced by imatinib-resistance.   

 
Figure 13. Analysis of the phosphorylation extent of MAPK/ERK signaling proteins. 20 μg of lysate 
proteins obtained from sensitive and resistant-KCL22 were analysed by wb with the indicated 

antibodies. a-tubulin was used as a loading control. Figure is representative of four separated 
experiments.  

 

As far as the PI3K/Akt/mTOR pathway is concerned, it is well known that Akt 

becomes active following the phosphorylation of T308 and S473, catalyzed by 

PDK1 and mTORC2, respectively. Akt can be further stimulated by the CK2-

mediated phosphorylation of S129, which prevents the de-phosphorylation of 

Akt T308 maintaining the kinase in its active conformation. Our analysis of Akt 

at S473 revealed that this activatory residue is highly phosphorylated in R-

KCL22 as compared to S-KCL22 cells (Fig.14A). Consistently, a great 

enhancement of the Akt-catalyzed phosphorylation of mTOR S2448 and a 

substantial increase of the Akt-target GSK3ß S9 is observed, revealing that the 

activity of this pro-survival kinase is highly up-regulated in resistant cells. To 

further investigate the Akt activation state, we examined mTORC2 and PHPPL2, 

the kinase and the phosphatase, respectively, responsible for the 

phosphorylation and de-phosphorylation of the Akt residue S473. Fig.14A 

shows that both the activation state of mTORC2, as judged by the 

phosphorylation of its substrate SGK1 at S422, and the protein level of PHPPL2 

are similar in S- and R-KCL22 cells. Further experiments are needed to assess 
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whether the phosphatase activity of PHPPL2 might be different in the two cell 

variants or whether other factors are responsible for the striking 

phosphorylation of Akt S473 in imatinib-resistant cells. In contrast with Akt 

S473, the phosphorylation extent of Akt T308 is similar in the two different 

variants, consistent with the similar auto-phosphorylation and activation state 

of PDK1, the kinase responsible for this site phosphorylation (Fig.14B). In 

agreement with the comparable CK2 protein expression, the CK2-catalyzed 

phosphorylation of Akt S129 and of PTEN S370 is similar in sensitive and 

resistant cells (Fig.14B). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Analysis of the phosphorylation state of PI3K/Akt/mTOR signaling proteins.(A,B) 20 μg of 
proteins from cellular lysates obtained from sensitive and resistant-KCL22 were analysed by wb with 

the indicated antibodies. a-tubulin was used as a control. Figure is representative of four separated 
experiments. 

 

 

Finally, we analysed the phosphorylation extent of S235/236 and S240/244 of 

the 40S ribosomal protein S6 (rpS6), a downstream effector of both MAPK/ERK 

and PI3K/Akt/mTOR signaling cascades. Interestingly, all the four 

phosphorylation residues of rpS6 appeared substantially more phosphorylated 

in R-KCL22 cells as compared to the parental cell line (Fig.15). At variance, the 

eukaryotic translational initiation factor 4E binding protein 1 (4E-BP1), another 
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PI3K/Akt/mTOR downstream effector, is similarly phosphorylated in the two 

cell variants (Fig.15). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.  Phosphorylation analysis of rpS6 and 4E-BP1. 20 μg of proteins from cellular lysates 

obtained from sensitive and resistant-KCL22 were analysed by wb with the indicated antibodies. a-
tubulin was used as a control. Figure is representative of four separated experiments. 

 

 

In summary, our western blot analyses, performed with phospho-specific 

antibodies, revealed that different key proteins become hyper-phosphorylated 

in resistant KCL22 cells, demonstrating that the imatinib-resistance is associated 

with an anomalous up-regulation of ERK1/2, Akt at S473 and rpS6. Differently 

from KCL22 cells, it is interesting to mention that in imatinib-resistant LAMA84 

cells Akt is hyper-phosphorylated at S473, while ERK1/2 and rpS6 are not up-

regulated in comparison with the sensitive counterpart (data not shown).  

 

 

CK2 down-regulation: a strategy to counteract imatinib-resistance ? 

 

Although protein kinase CK2 is not overexpressed in resistant KCL22 cells, as 

previously shown in resistant-LAMA84 cells, it is well known that: i) cancer 

cells are addicted to CK2 [Ruzzene M. and Pinna L.A., 2010], ii) CK2 acts as a 

cancer driver by creating a favorable environment to cancer progression 

[Ruzzene M. and Pinna L.A., 2010] iii) CK2 is involved in different kinds of 

drug-resistance [Di Maira G. et al., 2008; Matsumoto Y. et al., 2001]. To assess 
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whether CK2 might be involved in the Bcr-Abl-independent mechanisms of 

resistance induced by imatinib-treatment, R-KCL22 cells were treated with the 

CK2-specific inhibitor, CX-4945. In parallel, the effects of CK2-inhibition on 

Bcr-Abl signaling cascade were compared with those caused by other 

compounds that are known to counteract the activity of the proteins that we 

found to be anomalously up-regulated in imatinib-resistant KCL22 cells.  

 

 

 
Figure 16. Effects of imatinib-treatment on Bcr-Abl signaling cascade in KCL22 cells imatinib-sensitive 
and -resistant. KCL22 cells were treated for 4 hours with vehicle (DMSO) or imatinib at the indicated 
concentrations. Cell were lysed and 20µg of lysate proteins were analysed by wb with the indicated 

antibodies. a-tubulin was used as a loading control. Figure is representative of three separated 
experiments.  
 

 

We first compared the effect of imatinib in S- and R-KCL22 cells. In sensitive 

cells the treatment with 1 µM imatinib is sufficient to greatly counteract        

Bcr-Abl auto-phosphorylation (Fig.16A) and to almost abrogate its downstream 
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signaling as demonstrated by the inhibition of the phosphorylation of ERK1/2, 

Akt S473 and rpS6 (Figs.16B,16C and 16D, respectively). As expected, in 

resistant cells Bcr-Abl activation is strongly inhibited only when cells are 

treated with high concentration of imatinib (4 µM) (Fig.16A). The same drug 

concentration causes a substantial inhibition of ERK1/2 activity and of Akt 

phosphorylation at S473 (Figs.16A,16B). Interestingly, Bcr-Abl inhibition 

reduces only partially (about 35%) the phosphorylation extent of rpS6 

(Fig.16D), the downstream effector of MAPK/ERK and PI3K/Akt/mTOR 

cascades (see scheme of Fig.12). This finding confirms that in imatinib-resistant 

cells additional mechanisms, that are Bcr-Abl independent, sustain cell survival 

and strengthen the CML resistant phenotype. Therefore, resistant cells were 

treated with the following inhibitors: 4 µM CX-4945 (CK2-inhibitor),  1 µM 

imatinib (Bcr-Abl inhibitor), 10 µM U0126 (MEK-inhibitor) or 20 nM 

rapamycin (mTORC1-inhibitor) (Fig.17). As already shown in Fig.16D, 

imatinib-treatment only slightly affects rpS6 phosphorylation. In parallel, cell 

treatment with U0126, which inhibits the ERK1/2 phosphorylation, affects 

neither Bcr-Abl nor Akt activities counteracting only partially rpS6 

phosphorylation (Fig.17). On the contrary, as expected, the potent inhibitor of 

mTORC1 rapamycin abrogates the phosphorylation of rpS6 (Fig.17) [Jefferies 

H.B. et al., 1994]. Interestingly, addition of 4 µM CX-4945 which reduces the 

phosphorylation of the CK2-catalyzed Akt S129, almost abrogates the rpS6 

phosphorylation (Fig.17). Notably, CK2-inhibition does not affect the activities 

of Bcr-Abl, ERK1/2 and Akt as demonstrated by the unaffected phosphorylation 

extent of Akt regulatory sites S473 and T308, and of the Akt-substrate GSK3ß. 

These findings indicate that in imatinib-resistant KCL22 cells: i) rpS6 

phosphorylation is only partially under the control of MAPK/ERK signaling, 

while it is strongly regulated by PI3K/Akt/mTOR pathway as indicated by the 

abrogation of rpS6 phosphorylation induced by the mTORC1 inhibitor 

rapamycin (see scheme of Fig.12); ii) the striking inhibition of rpS6 

phosphorylation caused by CX-4945, which does not affect Akt activity, 

demonstrates that CK2 acts on downstream targets of Akt signaling. 
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Figure 17. Effects of different inhibitors on Bcr-Abl signaling cascade in resistant-KCL22 cells. Cells 
were treated for 4 hours with vehicle (DMSO), imatinib, U0126, CX-4945 or rapamycin at the 

indicated concentrations, lysed and analysed by wb with the indicated antibodies. a-tubulin was used 
as control. Figure is representative of three separated experiments. 
 

 

Although CX-4945 is highly selective for CK2, to further reinforce the specific 

role of CK2 in imatinib-resistance of CML KCL22 cells, we performed RNA-

interference experiments knocking down the expression of the regulatory ß or 

the catalytic subunits (a or a’) of CK2. Fig.18 shows that, while the decrease of 

CK2a amount does not affect rpS6 phosphorylation extent, an appreciable 

reduction of this phosphorylation can be observed when CK2a’ or CK2ß are 

down-regulated confirming the specific involvement of CK2 in the regulation of 

rpS6 phosphorylation. Moreover, the finding that the down-regulation of CK2ß 

subunit correlates with a concomitant reduction of the expression of  CK2a’, 
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suggests that this specific CK2 catalytic subunit might be involved in events 

leading to rpS6 phosphorylation.  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. Effect of CK2 knocking down by siRNA on rpS6 phosphorylation extent. R-KCL22 cells were 

transfected with aspecific siRNA (Ctrl) or CK2ß, CK2a’ or CK2a specific siRNA. After 72 h, cells were 

lysed and 20µg of proteins were analysed by wb with the indicated antibodies. a-tubulin was used as 
control. Figure is representative of three separated experiments. Bars report the mean values ± SD of the 
densitometric analysis of the p-235/6 rpS6 bands obtained by wb analysis. Densitometric values are 
expressed in arbitrary units. 

 

To analyse whether rpS6 might be a substrate of CK2 we performed in vitro 

phosphorylation experiments adding recombinant CK2 holoenzyme to rpS6 

immunoprecipitates obtained from R-KCL22 cell lysates (data not shown). The 

finding that rpS6 is not phosphorylated by CK2 in vitro suggests that the 

ribosomal protein is not a direct target of CK2 in cells. 

Experiments aimed at elucidating the mechanism(s), by which CK2 is involved 

in mTOR signaling mediating the rpS6 phosphorylation, highlighted that CK2a 

and CK2a’ co-immunoprecipitate with mTORC1 complex (mTOR and raptor) 

and p70S6K (Fig.19) (see scheme of Fig.12). Inhibition of CK2 activity by cell 

treatment with CX-4945 does not affect the binding between these proteins.   
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Figure 19. Analysis of CK2 interaction with mTOR signaling proteins. R-KCL22 were treated with 

vehicle or 4µM CX-4945 for 3h. 300µg of lysate proteins were immunoprecipitated with anti-CK2a 
antibody. The immunocomplexes were then analysed by wb with the indicated antibodies. Figure is 
representative of three separated experiments.  

 

 

Since it has been demonstrated that rpS6 phosphorylation is involved in the 

regulation of translation initiation, the limiting step of protein synthesis [Holz 

M.K. et al., 2005], we verified whether CK2-inhibition could affect the rate of 

the global protein synthesis by performing metabolic labeling. Resistant-KCL22 

cells were pre-treated with vehicle or CX-4945 for 3h prior to be pulsed in the 

presence of a radiolabeled methionine and cysteine media mix before 

quantification of total protein labeling. Interestingly, CK2-inhibition reduces 

the protein synthesis efficacy of about 50% as compared to control (Fig.20A). In 

parallel, the presence of CX-4945 in the medium strongly decreases rpS6 

phosphorylation, whereas the level of the total rpS6 is not affected (Fig.20B). 

These results confirm that CK2 is involved in the regulation of rpS6 

phosphorylation and highlight a new protein that mediates the effect of CK2 on 

the protein synthesis.  
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Figure 20. Effect of CK2-inhibition on protein synthesis. (A,B)  R-KCL22 cells were pre-treated with 
vehicle (Ctrl) or 4 µM CX-4945 for 3h prior to add 100mg/mL cycloheximide for 2h. Cells were then 
incubated in methionine- and cysteine-free RPMI media supplemented with 100mg/mL cycloheximide 
for 1h. Media were replaced with radiolabeled RPMI (10 µCi/mL of [35S]-Met/Cys protein labeling 
mix). After 1h the media were removed and cells were washed with PBS and lysed. Exposure to CX-
4945 was maintained throughout the experiment. (A)15µg and 30µg of lysate proteins were subjected 
to SDS-PAGE, blotted, and the intensity of radioactive bands was measured using the Cyclone Plus 
Storage PhosphorSystem and expressed as Digital Light Units (DLU). Reported values are means ± SD of 
four separate experiments. (B) 15µg of lysate proteins were analysed by wb with the indicated 

antibodies. a- tubulin was used as a loading control. 

 

 

Effects of CK2-inhibition on KCL22 cell viability 

 

Since it has been shown that cell treatment with specific CK2-inhibitors causes 

cell death by apoptosis in different types of tumor cells [Zanin S. et al., 2012; 

Buontempo F. et al, 2013], we examined whether CK2-inhibition causes 

cytotoxicity in KCL22 cells. The effect of CX-4945 on cell viability was 

compared in parallel experiments with that caused by imatinib or by U0126 

and rapamycin that counteract the pathways under the control of deregulated 

ERK1/2 and mTOR, respectively. To this purpose, cells were treated for 48h 

with increasing concentrations of inhibitors and cell viability was tested by the 

MTT assay. Results showed that imatinib-resistant KCL22 cells are sensitive to 

high concentrations of imatinib with a DC50 value of about 40 µM versus the 

value of 0.9 µM found with sensitive cells (Fig.21A). Otherwise, CX-4945 

decreases significantly the cell viability of both S- and R-KCL22 cell lines with 

DC50 values of 5 µM and 3.8 µM, respectively, showing a slightly more efficacy 

on R- with respect to S-cells (Fig.21B). The treatment with U0126 is similarly 

effective toward S- and R-KCL22 cells with DC50 of about 15 µM (Fig.21C), 
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while the DC50 values for rapamycin are 130 nM and 90 nM in S- and R-cells, 

respectively (Fig.21D). 

 

 

 

                                                                                             

 

 

                                                               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Effect of imatinib, CX-4945, U0126 and rapamycin on KCL22 cell viability. KCL22 cell 
viability was analysed by the MTT method, and expressed as percentage of controls, after 48 hours 
treatment with increasing concentrations of CX-4945, U0126 or imatinib.Viability was expressed as 

percentage of control and plotted as function of each drug concentration. Mean ± SD values of at least 
five independent experiments are reported.    

 
 
 
It has been described that inhibitors of the ERK pathway, including U0126, and 

rapamycin, can be classified as cytostatic but not as cytotoxic anticancer drugs 

able to “kill” cells by apoptosis [Kohno M. and Pouyssegur J., 2006; Quentmeier 

et al., 2011]. Therefore, we compared the induction of apoptosis following the 

treatment of KCL22 cells with CX-4945, imatinib, U0126 and rapamycin. As 

shown in Fig.22, 1 µM imatinib induces apoptotic cell death in sensitive cells, 

while, as expected, it is ineffective in imatinib-resistant cells (Fig.22, lane 2). 

On the contrary, while the treatment with CX-4945 up to 10 µM (Fig.22, lanes 

3-5) only partially affects the PARP cleavage in sensitive cells, 2 µM 

concentration of the CK2-inhibitor is sufficient to induce, in resistant KCL22 
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cells, a complete cleavage of the protein and a parallel proteolysis of cellular 

proteins, including a-tubulin. As previously mentioned, the treatment with 

U0126 and rapamycin does not cause PARP cleavage in KCL22 cells (Fig.22, 

lanes 6-7). This finding demonstrates that imatinib-resistant cells become 

partially dependent on CK2 for their survival.  

 

 

Figure 22. Cell death induction by imatinib, CX-4945, U0126 and rapamycin in KCL22 cells. 10µg 
proteins of lysates from KCL22 cells treated as indicated for 48 hours were analysed by wb using anti-

PARP and anti-a-tubulin antibodies. Figure is representative of three separated experiments.   
 

 

To better understand the mechanism of cell death activated by CX-4945, we 

evaluated the nucleosome formation in both imatinib-sensitive and -resistant 

cells. Fig.23 shows that the treatment with CX-4945 causes apoptosis in both 

cell lines (A) while necrosis is not induced (B). Interestingly, the presence of 

nucleosomes in cell cytosol, which indicates apoptosis, is more pronounced in 

resistant cells than in the parental cell line (Fig.23A), confirming that resistant 

cells rely more on CK2 activity for their survival than the sensitive one.  
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         B 
  
 
 
 
 
 
 
 
 
 
 
Figure 23. Apoptosis and necrosis  induction by CX-4945 in KCL22 cells. Apoptosis (A) and necrosis 
(B) were tested using the Cell Death Detection Elisa kit (Roche), following the manufacturer’s 
instruction. Nucleosome enrichment was determined from the ratio between the signals obtained in 
treated and untreated cells. Reported values are means ± SD of four independent experiments. 

 
 
 
 
 

Combined strategies in CML therapy 

 

Since imatinib-resistance CML cells evade the effect of Bcr-Abl inhibitors, 

alternative approaches are needed to treat this pathology. With respect to this, 

combined administration of two or more drugs, directed to different oncogenic 

targets activated by imatinib-resistance, can improve the therapeutic efficacy by 

means of synergistic effects. Based on the inhibitory effect on the viability of 

KCL22 cells demonstrated by imatinib, CX-4945, U0126 or rapamycin (Fig.21), 

we examined whether CX-4945 added in combination with the other agents 

could induce higher cytotoxicity in comparison with the single treatments. 
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Figure 24. Effect of combined treatments with different drugs. R-KCL22 viability was assessed by the 
MTT method after 48h treatment with increasing concentrations of the following drug combinations, 
used at the indicated fixed ratio: (A) CX-4945 + U0126, 1:3; (B) CX-4945 + imatinib, 1:1; (C) CX-
4945 + rapamycin, 25:1; (D) imatinib + UO126, 1:3; (E) CX-4945 + imatinib + U0126, 1:1:3. 
Viability was expressed as percentage of control and plotted as function of each drug concentration. 

Mean ± SD values of at least five independent experiments are reported.    
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Combined treatment C.I. (mean ± SD) 

CX-4945 + U0126 0.53 ± 0.02 

CX-4945 + imatinib 0.5 ± 0.03 

CX-4945 + rapamycin 0.4 ± 0.06 

Imatinib + U0126 0.6 ±  0.05 

CX-4945 + imatinib + U0126 0.35 ± 0.04  

 
 
Table 1. Combination index values obtained from the experiments shown in Fig.24. 
Combination index < 1, combination index = 1, and combination index > 1 characterize synergism, 

additivity, and antagonism, respectively [Chou T.C., 2006]. Mean ± SD values of at least five 
independent experiments are reported.    

. 
 
 
 

Different drug combinations were tested to determine synergism, additivity or 

antagonism. To this purpose, resistant KCL22 cells were treated for 48 hours 

with the inhibitors either alone or in binary or ternary association, by 

increasing simultaneously the concentration of the drugs added at fixed ratios. 

Cell viability was determined by the MTT method and the viability was plotted 

as function of the single inhibitor concentration (Fig.24). Intriguingly, all the 

combined treatments promote a synergistic reduction of cell viability, as judged 

by the combination index (C.I.), calculated at the 50% of cell lethality, which 

denotes synergism if < 1 [Chou T.C., 2006] (Table 1). When CX-4945 is used 

in association with U0126 (Fig.24A), imatinib (Fig.24B) or rapamycin 

(Fig.24C) a good synergistic effect was observed, with a C.I. value of 0.53, 0.5 

and 0.40, respectively. CK2 inhibition causes a significant reduction of the 

DC50 values of imatinib and U0126. The combination of imatinib with U0126 

(Fig.24D) showed that also these inhibitors act synergistically with a C.I. value 

of 0.6, consistent with results reported by Hentschel J. et al. (2011). 

Interestingly, the ternary association of CX-4945 with imatinib and U0126 

(Fig.24E) represents the most effective synergistic combination to inhibit the 

viability of R-KCL22 cells (C.I. = 0.35).  
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These data suggest that the association of CX-4945 with imatinib and/or 

inhibitors of MAPK/ERK pathway might be a promising strategy for the 

treatment of the CML pathology overcoming the drug-resistance.  
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DISCUSSION 

 
It has been recently demonstrated, in our laboratory, that in imatinib-resistant 

CML LAMA84 cell line, characterized by a BCR-ABL1 gene amplification [Le 

Coutre P. et al., 2000], the protein kinase CK2 is up-regulated in comparison 

with the parental cell line. In particular, while CK2a’ is equally expressed, the 

level of CK2a and CK2ß subunits, and in parallel the CK2 catalytic activity, are 

about two-fold higher in R-LAMA84 than in sensitive cells. [Borgo C. et al., 

2013]. Consistently, in the present study we quantify the protein amount of the 

different CK2 subunits and demonstrate that in imatinib-resistant cells the level 

of CK2 is very high and may be considered in the range of structural proteins 

(Fig.1). With respect to this, it is interesting to mention that high intracellular 

level of CK2 has been shown to be associated with an environment favourable 

to cancer progression [Ruzzene M. and Pinna L.A, 2010]. It is noteworthy that 

CK2 has been found over-represented in highly proliferating myeloblastic cells 

from CML patients in blast crisis [Phan-Dinh-Tuy F. et al., 1985], a phase in 

which Bcr-Abl overexpression has been associated with imatinib-resistance 

[Barnes D.J. et al., 2005; Gorre M.E. et al., 2001; Keeshan K. et al., 2001; Virgili 

A. and Nacheva E.P., 2010]. Given the pro-survival role of CK2, it is conceivable 

that its increased level represents a device to escape apoptosis and potentiate 

the imatinib-resistant cell survival. It has been reported that, while CK2 is 

generally distributed in various subcellular compartments, its nuclear 

concentration is particularly high in cancer cells [Trembley J.H. et al., 2009]. In 

contrast, in S-LAMA84 and R-LAMA84 cells CK2 is mainly present in the 

cytoplasm (Figs.3,5). We also show that CK2 and Bcr-Abl co-localize in the 

cytoplasm of R-LAMA84 cells (Fig.5), where Bcr-Abl is exclusively present and 

interacts with most proteins implicated in the oncogenic pathways [Cilloni D. 

and Saglio G., 2012] and where the CK2-targets related to imatinib-resistance 

are presumably placed. CK2 and Bcr-Abl co-localization reflects the finding 

that, in resistant LAMA84 cells, these two kinases are members of the same 

multi-protein complex(es) as demonstrated by their co-sedimentation in 

glycerol-gradients and co-immunoprecipitation (Fig.6B and right panel of 
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Figs.6A,6B). The occurrence of an interaction between CK2 and Bcr-Abl has 

been previously described in NHI3T3 fibroblasts overexpressing the two protein 

kinases and in lymphoblastic cells obtained from Bcr-Abl transgenic mouse 

[Hériché J.K. and Chambaz E.M., 1998; Mishra S. et al., 2003]. The region 

responsible for CK2 interaction is localized to residues 242-413 of the Bcr 

moiety of Bcr-Abl [Mishra S. et al., 2003]. Our results demonstrate that the two 

kinases do not apparently interact in S-LAMA84 cells, while they do in R-

LAMA84 cells (Fig.6A and right panel of Figs.6A,6B). Consistent with the 

finding that CK2-alpha is an in vitro substrate of Bcr-Abl [Hériché J.K. and 

Chambaz E.M, 1998], a Bcr-Abl-dependent Tyr-phosphorylation of CK2a has 

been evidenced in R-LAMA84 cells [Borgo C. et al., 2013]. However, here we 

demonstrate that the Bcr-Abl phosphorylation is not required for the interaction 

occurring between the two kinases, since the protein binding is not affected by 

cell treatment with imatinib (Fig.6C and right panel of Fig.6C). On the 

contrary, inhibition of CK2, which has been described to be unable to 

phosphorylate Bcr-Abl in vitro [Borgo C. et al., 2013], almost abrogates the 

interaction occurring between the two enzymes (Fig.7D and right panel of 

Fig.7D), corroborating the hypothesis that CK2 activity plays a specific role in 

this binding. Our experiments further reinforce the notion that CK2 and Bcr-

Abl are interacting proteins, however, additional studies are in progress to 

understand the physiological meaning of this binding in CML-resistance and its 

regulation by CK2 activity. 

Our experiments in CML KCL22 cells demonstrate that protein-amount and 

activity of both Bcr-Abl (Fig.9) and CK2 (Fig.10) are similar in the two cell 

variants. CK2 up-regulation has been described in imatinib-resistant LAMA84 

cells [Borgo C. et al., 2013] and in cancer cell lines with other resistance 

mechanisms, either related to a multidrug resistance phenotype or induced by 

specific drugs [Di Maira G. et al., 2008; Matsumoto Y. et al., 2001]. Our results 

in KCL22 cells highlight that CK2 up-regulation does not represent an absolute 

requirement for the resistant phenotype as also shown in other resistant cells 

[Di Maira G. et al., 2008].  

The analysis in KCL22 cells evidences a novel Bcr-Abl-independent mechanism 

of resistance in agreement with the notion that imatinib-resistance can be 
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associated with the activation of oncogenic pathway(s) independently of Bcr-

Abl catalytic activity [Tipping A.J. et al., 2003]. On one hand, we identify new 

hyper-activated proteins in R-KCL22 versus S-KCL22 cells, and on the other, we 

highlight the important role played by CK2-dependent signalling in the 

resistant oncogenic network. Our results show that MAPK and PI3K/Akt/mTOR 

pathways are up-regulated in R-KCL22 cells as compared to the sensitive 

counterpart. While the hyper-activation of ERK1/2 has been previously 

highlighted [Fig.13; Colavita I. et al. 2010], we evidence, for the first time, an 

up-regulation of Akt as suggested by the hyper-phosphorylation of S473, one of 

the two canonical Akt activation sites, and of the Akt substrates mTOR and 

GSK3ß (Fig.14A). These findings demonstrate that, in KCL22 cells, imatinib-

resistance escapes the drug effect highly potentiating the cell proliferation 

mediated by ERK1/2 activation [Deschênes-Simard X. et al., 2014] and the pro-

survival and anti-apoptotic functions of up-regulated Akt [Toker A. and Yoeli-

Lerner M., 2006; Altomare D.A. and Testa J.R., 2005]. Interestingly, we also 

find that rpS6, a common downstream effector of both MAPK and 

PI3K/Akt/mTOR pathways, is substantially more phosphorylated in imatinib-

resistant KCL22 cells as compared to the sensitive cells (Fig.15). Considering 

the role played by rpS6 in ribosome biogenesis and in translation initiation, the 

limiting step of protein synthesis [Holz M.K. et al., 2005], it is conceivable to 

assume that its hyper-phosphorylation in R-KCL22 cells might strengthen the 

resistant leukemic phenotype, promoting cell proliferation.  

To evaluate the role played by CK2 in imatinib resistance, KCL22 cells were 

treated with Bcr-Abl and CK2 specific inhibitors. Treatment with high 

concentrations of imatinib greatly reduces ERK1/2 and Akt anomalous 

activation induced by the drug resistance, while rpS6 phosphorylation is only 

partially (about 35%) inhibited (Fig.16). On the contrary CK2-inhibition by CX-

4945 almost abrogates rpS6 phosphorylation (Fig.17) demonstrating that in 

imatinib-resistant KCL22 cells CK2 plays a role in rpS6 regulation. Our in vitro 

assays reveal that rpS6 is not a direct target of CK2 (data not shown). However, 

the finding that CX-4945 does not reduce the activity of ERK1/2 and Akt 

(Fig.17) suggests that CK2 modulates rpS6 pathway by a mechanism that lies 

downstream from mTORC1 complex (see scheme of Fig.12). Consistent with 



86 

 

this hypothesis, we provide the first evidence that CK2 interacts with mTOR 

and raptor, proteins of mTORC1 complex, and S6K (Fig.19). The finding that 

CK2 is involved in the regulation of rpS6 is also supported but the inhibition of 

the protein phosphorylation induced by knocking down the CK2a’ expression 

by RNA interference experiments (Fig.18). With respect to this, it is interesting 

to mention that CK2 plays a “lateral” role impinging on the canonical 

“longitudinal” pathways at different levels [Ruzzene M. and Pinna L.A., 2010]. 

Although we have not yet clarified the specific mechanism(s) by which CK2 is 

involved in the events leading to rpS6 phosphorylation, it is significant that 

CK2-inhibition causes a reduction of the protein synthesis efficacy of about 50% 

as compared to the control (Fig.20). Interestingly, we identify a new pathway 

mediated by CK2 able to affect cellular protein synthesis in imatinib-resistant 

KCL22 cells.  

The significant contribution played by CK2 in chronic myeloid leukemia is 

supported by the viability data obtained from cell treatments with the specific 

CK2-inhibitor CX-4945, which neither affects the protein level nor the activity 

of Bcr-Abl (Fig.17). Indeed, the viability of both LAMA84 and KCL22 cells, 

either sensitive or resistant to imatinib, is significantly reduced whenever CK2 

catalytic activity is inhibited by CX-4945 (Fig.21B and Borgo C. et al., 2013), 

consistent with the general anti-apoptotic and pro-survival role of CK2 in 

cancer cells [Zanin S. et al., 2012; Buontempo F. et al, 2013]. Of especial 

interest is the effect of CX-4945 on resistant CML cells, where the reduction of 

cell viability and the induction of apoptosis are caused by lower concentration 

of inhibitor as compared to the sensitive cells (Figs.7B, 22 and 23A). This 

finding supports the hypothesis that imatinib-resistant cells are more dependent 

on CK2 activity for their survival than sensitive cells. Interestingly, CX-4945 

added in combination with imatinib promotes a synergistic effect on cell 

viability of imatinib-resistant CML cells, partially rescuing the response to 

imatinib (Figs.8 and 24B). With regard to this, we can hypothesize that the 

interaction occurring between CK2 and Bcr-Abl, either direct or mediated by 

adaptor-protein(s), might be one of the molecular mechanisms reinforcing the 

imatinib-resistance but also offering the possibility to sensitize cells to imatinib 

by CK2 down-regulation and consequent binding disruption (right panel of 



87 

 

Figs.6D and 11). The increased evidence concerning the Bcr-Abl-independent 

mechanisms of imatinib-resistance that we report in KCL22 cells has provided 

the opportunity to analyse new drug combinations. Of note, we demonstrate 

that CX-4945 acts synergistically with U0126, an inhibitor of MAPK pathway, 

or with rapamycin, the potent inhibitor of mTORC1 complex, inducing a great 

decrease of the cell viability of imatinib-resistant KCL22 cells (Figs.24A,24C). 

Even more interesting, the treatment with the ternary association of CX-4945 

with imatinib and U0126 causes a strong synergistic decrease of cell viability, 

reducing considerably the effective cellular dose of each drug (Fig.24E). 

Pertinent to this, it has been already described that CX-4945 increases the 

efficacy of other chemotherapeutic agents such as gemcitabine and cisplatin in 

models of ovarian cancers [Siddiqui-Jain A. et al., 2012].  

In conclusion, among to different adaptations associated with imatinib-

resistance, we provide the first evidence that CK2-dependent signalling 

represents an additional mechanism that can be exploited to ensure survival to 

CML cells. In LAMA84 cells we  have shown that CK2 up-regulation 

strengthens the CML oncogenic pathway(s) and sustains the imatinib-resistant 

phenotype. In KCL22 cells we have highlighted the CK2-dependent activation 

of the signalling downstream from mTORC1 complex, which cooperates to 

circumvent the imatinib inhibitory effect on Bcr-Abl pathways.  
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CONCLUSIONS 

 

Although in the last decade imatinib has revolutionized the treatment of 

chronic myeloid leukemia, resistance to this drug remains one of the major 

reasons for the failure of cancer therapy and represents a problem of great 

interest. An improved understanding of the molecular mechanisms underlying 

imatinib-resistance is required to design novel strategies to treat this pathology. 

In this study we compared the properties of the protein kinase CK2 in imatinib-

sensitive and -resistant CML cell lines providing innovative evidence about the 

mechanisms that reinforce the imatinib-resistant phenotype. We identified CK2 

as a player in CML imatinib-resistance and demonstrated, for the first time, that 

CK2-dependent signaling contributes to sustain the aberrant phenotype caused 

by Bcr-Abl expression. In particular, we found that Bcr-Abl-dependent and/or   

-independent oncogenic pathways are supported by CK2 activity, which 

provides survival advantage against imatinib through different mechanisms. In 

resistant-LAMA84 cells up-regulated CK2 co-operates with Bcr-Abl reinforcing 

its dependent-signaling pathways, which lead to proliferation and survival. In 

resistant-KCL22, on one hand, CK2 interacts with Bcr-Abl presumably 

supporting its functions, on the other hand, CK2 is implicated in a Bcr-Abl-

independent signaling, downstream of mTORC1 complex, which affects protein 

synthesis and circumvents the imatinib inhibitory effect potentiating the pro-

survival and anti-apoptotic signals. Finally, we found that the down-regulation 

of CK2 significantly reduces the viability of CML cells by apoptosis induction 

and rescues the response to imatinib. On these bases, we suggest that CK2 

inhibitors, with special reference to CX-4945, a compound already in clinical 

trials for the treatment of different tumors, might represent promising drugs for 

combined strategies in imatinib-resistant CML therapy.   
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A B S T R A C T

Chronic myeloid leukaemia (CML) is driven by the fusion protein Bcr-Abl, a constitutively

active tyrosine kinase playing a crucial role in initiation and maintenance of CML pheno-

type. Despite the great efficacy of the Bcr-Abl-specific inhibitor imatinib, resistance to

this drug is recognized as a major problem in CML treatment. We found that in LAMA84

cells, characterized by imatinib-resistance caused by BCR-ABL1 gene amplification, the

pro-survival protein kinase CK2 is up-regulated as compared to the sensitive cells. CK2 ex-

hibits a higher protein-level and a parallel enhancement of catalytic activity. Consistently,

CK2-catalysed phosphorylation of Akt-Ser129 is increased. CK2 co-localizes with Bcr-Abl in

the cytoplasmic fraction as judged by subcellular fractionation and fluorescence immuno-

localization. CK2 and Bcr-Abl are members of the same multi-protein complex(es) in

imatinib-resistant cells as demonstrated by co-immunoprecipitation and co-

sedimentation in glycerol gradients. Cell treatment with CX-4945, a CK2 inhibitor currently

in clinical trials, counteracts CK2/Bcr-Abl interaction and causes cell death by apoptosis.

Interestingly, combination of CX-4945 with imatinib displays a synergistic effect in

reducing cell viability. Consistently, knockdown of CK2a expression by siRNA restores

the sensitivity of resistant LAMA84 cells to low imatinib concentrations. Remarkably, the

CK2/Bcr-Abl interaction and the sensitization towards imatinib obtained by CK2-

inhibition in LAMA84 is observable also in other imatinib-resistant CML cell lines.

These results demonstrate that CK2 contributes to strengthen the imatinib-resistance

phenotype of CML cells conferring survival advantage against imatinib. We suggest that

CK2 inhibition might be a promising tool for combined strategies in CML therapy.

ª 2013 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.

1. Introduction

The cytogenetic hallmark of the chronic myeloid leukaemia

(CML) is the chromosomal translocation t(9; 22)(q34; q11),

yielding the Philadelphia chromosome and generating a

fusion gene that encodes Bcr-Abl, a constitutively active pro-

tein tyrosine kinase. Signal transduction pathways activated

by Bcr-Abl kinase activity promote cell survival and
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proliferation while protecting cells from apoptosis (Goldman

and Melo, 2003). Since Bcr-Abl plays a critical role in the initi-

ation and maintenance of the CML phenotype, targeting its

tyrosine kinase activity is the therapeutic strategy of choice.

Imatinib mesylate is a potent inhibitor selective for Bcr-Abl

that has become the frontline therapy for CML patients.

However, despite the high effectiveness of this therapeutic

approach, up to one third of CML patients develop either

resistance or intolerance to imatinib and require alternative

therapy (Bixby and Talpaz, 2009; Roychowdhury and Talpaz,

2011). The various mechanisms of imatinib-resistance

described up to now, either Bcr-Abl-dependent (gene ampli-

fication or mutation) or Bcr-Abl-independent (decreased

imatinib bioavailability or activation of alternative signalling

pathway) (Bixby and Talpaz, 2009; Roychowdhury and

Talpaz, 2011) have provided the opportunity for second-

generation or combination therapies aimed at preventing

resistance or restoring response to the drug (Santos et al.,

2011; Stegmeier et al., 2010; Roychowdhury and Talpaz,

2011).

Protein kinase CK2 is a ubiquitous, highly conserved and

pleiotropic Ser/Thr kinase, endowed with constitutive ac-

tivity, independent of any known second messenger or

phosphorylation events. CK2 is usually present as a tetra-

meric holoenzyme composed of two catalytic subunits (a

and/or a0) and a dimer of regulatory (b) subunits. It phos-

phorylates a huge number of protein substrates, implicated

in fundamental cell processes and is essential for cell life

(Meggio and Pinna, 2003; Ruzzene and Pinna, 2010; Salvi

et al., 2009). CK2 is abnormally elevated in a wide variety

of tumours, where it plays a global role as an anti-

apoptotic and pro-survival agent (Ahmad et al., 2008; St-

Denis and Litchfield, 2009) and there is strong evidence

that it operates as a cancer driver by creating a cellular

environment favourable to neoplasia (Ruzzene and Pinna,

2010). Different data suggest that CK2 may also have a sig-

nificant role in the pathogenesis of haematopoietic tu-

mours, including CML (Piazza et al., 2012), where a

relationship between CK2 and Bcr-Abl has been suggested

(H�erich�e and Chambaz, 1998; Mishra et al., 2003, 2007).

The role of CK2 in imatinib-resistance, however, has never

been explored.

In this study we compare the properties of the protein ki-

nase CK2 in imatinib-sensitive and resistant LAMA84 cell

lines. We also analyse the potential cross-talk between CK2

and Bcr-Abl and the possibility of using CK2-specific inhibitors

for combined therapy to overcome the imatinib-resistance of

CML cells.

2. Materials and methods

2.1. Materials and antibodies

[g33P]ATP was purchased from PerkineElmer (Waltham, MA).

Protease inhibitor cocktail was from Calbiochem (Darmstadt,

Germany), while phosphatase inhibitor cocktails and b-casein

from SigmaeAldrich (Dorset, U.K.). Imatinib mesylate was

from Cayman Chemical (Ann-Arbor, MI), while CX-4945 was

provided by Cylene-Pharmaceuticals (S. Diego, CA). Inhibitors

GNF-2 and staurosporine, and other chemicals were from Sig-

maeAldrich. RRRADDSDDDDD peptide (Ruzzene et al., 2010)

and recombinant CK2 (a2b2) (Lolli et al., 2012) were kindly pro-

vided by Dr. Oriano Marin and Dr. Andrea Venerando (Univer-

sity of Padova, Italy), respectively. Anti-CK2a (Sarno et al.,

1996) and anti-phospho-Akt(Ser129) (Di Maira et al., 2005) an-

tibodies were raised in rabbit. Anti-c-Abl was from Calbio-

chem, anti-CK2b, CrkL and phospho-CrkL(Tyr207) from

Epitomics (Burlingame, CA), anti-CK2a0, Akt, phospho-

Akt(Ser473), Lyn, lamin B, LDH and rpS6 from Santa Cruz

Biotechnology (Santa Cruz, CA), anti-phospho-tyrosine from

Millipore Corporation (Billerica, MA), anti-PARP from Roche

(Basel, Switzerland) and anti-tubulin from SigmaeAldrich.

2.2. Cell culture

KCL-22, K562 and LAMA84 cell lines, either sensitive or resis-

tant to imatinib, were kindly supplied by Dr. C. Gambacorti-

Passerini (le Coutre et al., 2000; Redaelli et al., 2010). Cells

were maintained in RPMI 1640 supplemented with 10% foetal

calf serum, 2 mM L-glutamine, 100U/ml penicillin and 100 mg/

ml streptomycin in the absence (sensitive) or presence (resis-

tant) of imatinib (3 mM, 0.6 mM and 1.5 mM for KCL-22, K562 and

LAMA84 cells, respectively).

2.3. Cell lysis and western blot analysis

Cells were lysed as previously described (Di Maira et al., 2007).

Protein concentration was determined by Bradford method.

Proteins were subjected to 9% or 11% SDS-PAGE, blotted on

Immobilon-P membranes (SigmaeAldrich), processed in

western-blot with the indicated antibodies and developed us-

ing an enhanced chemiluminescent detection system (ECL).

Immunostained bands were quantified by means of a

Kodak-Image-Station 4000 MM-PRO and analysis with Care-

stream Molecular Imaging software (New-Haven, CT).

2.4. Immunoprecipitation experiments

Indicated lysate proteins were immunoprecipitated overnight

with the specific antibody, followed by addition of protein A-

Sepharose. The immunocomplexes, washed three times

with 50 mM TriseHCl, pH 7.5, were analysed by western-blot.

2.5. RNA extraction and real-time quantitative PCR

Total RNA from S- and R-LAMA84 cells was extracted using

TRIzol reagent (Life-Technologies, Carlbad, CA) and 1 mg RNA

was reverse transcribed with TaqMan Reverse Transcription

Reagents (Life-Technologies) according to the manufacturer’s

instructions and subsequently used for real-time quantitative

PCR. Amplification and quantificationwas performedwith Po-

wer SYBR Green PCR Master Mix (Life-Technologies) and a

Rotor-Gene 3000 system (Corbett Life Science, Concorde,

NSW). The oligonucleotide primers (SigmaeAldrich) used for

CK2a were: 50-GAGAGGAGGTCCCAACATCA-30 (sense) and 50-

TGACATTATGGGGCTTGACA-30 (antisense), and for b-actin:

50-GGACTTCGAGCAAGAGATGG-30 (sense) and 50-AGCACTG

TGTTGGCGTACAG-30 (antisense). Expression levels were

normalized to b-actin.
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2.6. CK2 kinase activity assay

Lysate proteins were incubated for 10 min at 30  C in 25 ml of a

phosphorylationmediumcontaining 50mMTriseHCl (pH 7.5),

100 mM NaCl, 12 mM MgCl2, 400 mM synthetic peptide-

substrate RRRADDSDDDDD and 20 mM [g33P]ATP (1000 cpm/

pmol). Assays were stopped by absorption onto phosphocellu-

lose filters. Filters were washed four times in 75 mM phos-

phoric acid (Ruzzene et al., 2010) and analysed by a

Scintillation Counter (PerkinElmer).

2.7. In-gel kinase assay of CK2a

The activity displayed by CK2a subunit alone was determined

by running cell lysates on an 11% SDS-PAGE containing the

CK2-substrate b-casein (0.5 mg/ml). After electrophoresis,

the activity of CK2a toward the co-localized b-casein was

detected by incubating the gel with the above described phos-

phorylation medium containing 1 mM [g33P]ATP (Ruzzene

et al., 2010). Radioactive 33P-b-casein was evidenced by analy-

sing the dried gel with a Cyclone Plus Storage PhosphorSystem

(PerkinElmer).

2.8. Subcellular fractionation by differential

centrifugation

Cells (8! 106) were re-suspended in a hypotonic buffer (10mM

Tris/acetate, pH 7.4, containing protease and phosphatase in-

hibitor cocktails), incubated for 5 min on ice and broken by

Dounce homogenization. The solution was immediately

adjusted to 0.25 M saccharose, 1 mM MgCl2 and subjected to

differential centrifugation to separate nuclei, mitochondria,

microsomes and cytosol (Kang and Welch, 1991). Pellets

were re-suspended in a volume of lysis buffer corresponding

to that of cytosol. Same volumes of different fractions were

analysed by western-blot.

2.9. Immunolocalization of CK2 and Bcr-Abl by

fluorescence microscopy

Cells (5 ! 105) were seeded on polylysine-coated glass cover-

slips, allowed to adhere overnight, fixed with 4% para-

formaldehyde in PBS for 20 min at room temperature and per-

meabilised with 0.1% Triton Xe100 in PBS for 10 min at 4  C.

For dual labelling, cells were first incubated with mouse

anti-Abl antibody (1:10) overnight at 4  C, followed by 1 h incu-

bation with anti-mouse IgG/FITC conjugated antibody (1:50) at

37  C. Cells were then incubated with rabbit anti-CK2a anti-

body (1:50) for 1 h at 37  C followed by goat anti-rabbit

Alexa-Fluor 633 conjugated antibody (1:500) for 1 h at 37  C.

Nuclei were stained with Hoechst 33342. Fluorescence images

were captured using a LEICA-TCS SP5 confocal microscopy

(Wetzlar, Germany), equipped with HCX PL APO lambda blue

63 ! 1.4 oil immersion objective. Images were processed

with the LAS-AF software.

2.10. Glycerol gradient sedimentation

Cells (20 ! 106) were lysed with the above-described lysis

buffer containing 10 mM KCl and 0.2% triton X-100. 400 mg of

lysates were layered on the top of a 3.6 ml of a glycerol linear

gradient (10%e40%) in 50 mM Hepes, pH 8, 1 mM EDTA, 1 mM

DTT, protease and phosphatase inhibitors. The tubes were

centrifuged at 100 000! g for 18 h at 4  C and fractionated

from the bottom into 20 fractions.

2.11. RNA interference

Cells (1.5 ! 106) were transfected with 30 nM CK2a specific

siGENOME SMARTpool siRNAs (Dharmacon, Lafayette, CO,

USA) or aspecific siRNA siCONTROL riscfree#1 (Dharmacon),

as control, using the transfecting reagent INTERFERin (Poly-

plus-transfection SA, Illkirch, France), according to the manu-

facturer’s recommendations.

2.12. Cell viability assay

Cell viability was detected by the method of MTT [3-(4,5-

dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide),

incubating 15 ! 103 cells/100 ml in a 96-well plate under

different conditions. 1 h before the incubation end, 10 ml of

MTT solution (5mg/ml in PBS) was added to eachwell. Incuba-

tions were stopped by addition of 20 ml of a pH 4.7 solution

containing 20% (w:v) SDS, 50% (v:v) N,N-dimethylformamide,

2% (v:v) acetic acid and 25 mM HCl. Plates were read at

l540 nm absorbance, in a Titertek Multiskan Plus plate reader

(Flow Laboratories, Sutton, U.K.).

2.13. Combined treatments

The combination index (CI) (Chou, 2006) for the combined

treatment with imatinib and CX-4945 was calculated with

the software Calcusyn (Biosoft, Cambridge, U.K.).

2.14. Statistical analysis

Data are presented asmeans" SD andmean differences were

analysed using t-test. A p< 0.05 was considered as statistically

significant.

3. Results

3.1. Protein-level and activity of protein kinase CK2 in

imatinib-sensitive and -resistant CML cells

The CML cell lines KCL-22, K562 and LAMA84, either sensitive

(S) or resistant (R) to imatinib, were characterizedwith specific

antibodies. In these cell lines the imatinib-resistance is

neither due to Bcr-Abl mutations (le Coutre et al., 2000;

Redaelli et al., 2010) nor to a multidrug resistance phenotype

(le Coutre et al., 2000; Zanin et al., 2012). Western blot analysis

of equal amounts of cell lysates shows that the protein-level

of Bcr-Abl, while similar in parental and imatinib-resistant

KCL-22 and K562 cell lines, is about four-fold higher in

imatinib-resistant as compared to imatinib-sensitive

LAMA84 cells (Figure 1A). This finding is consistent with the

notion that in this cell line imatinib-resistance is associated

with an overexpression of the oncokinase mediated by gene

amplification (le Coutre et al., 2000). As expected, the parallel
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analysis with anti-phospho-tyrosine antibody shows that

overexpressed Bcr-Abl is constitutively active as judged from

its autophosphorylation and the phosphorylation of the key

Bcr-Abl substrate CrkL (de Jong et al., 1997), which are higher

in R-LAMA84 than in sensitive cells (Figure 1A).

Since up-regulation of the Src-kinase Lyn has been

described to be associated with imatinib-resistance (Ptasznik

et al., 2004), the protein-level of this Src family tyrosine kinase

was also analysed in the leukaemic cells. In all CML cell lines

Lyn is similarly expressed in imatinib-resistant and sensitive

cells (Figure 1A).

The expression of the protein kinase CK2 was next exam-

ined using antibodies toward the kinase catalytic (a and a0)

and regulatory (b) subunits (Figure 1B). While CK2 subunits

are similarly expressed in both imatinib-sensitive and -resis-

tant KCL-22 and K562 cell lines, the amount of CK2a and b sub-

units is approximately two-fold higher in R-LAMA84 cell line

as compared to the sensitive counterpart. At variance, the

expression of CK2a0 is similar in sensitive and resistant cells.

The outcome that CK2 is more abundant in R-LAMA84 cells

prompted us to further characterizes the two LAMA84 cell var-

iants. To assess whether the high CK2a amount detected in

resistant cells might be due to altered regulation at transcrip-

tion level, CK2a mRNA amount was examined by means of

relative semi-quantitative RT-PCR (not shown) and real-time

quantitative PCR (Figure 1C). Both methods showed that com-

parable levels of mRNA are present in S-LAMA84 and R-

LAMA84 cells.

The activity of cellular CK2 was then tested using

increasing amounts of cell lysates by in vitro kinase assay to-

ward a CK2-specific peptide-substrate. Consistent with the

protein level, the cellular kinase activity is about two-fold

higher in R-LAMA84 cells than in parental cell line

(Figure 2A). To further characterize the detected kinase activ-

ity, a parallel analysis was performed using the lysates of cells

treated with imatinib or CX-4945, a potent and selective CK2-

inhibitor currently in clinical trials for the treatment of

different tumours (Siddiqui-Jain et al., 2010). As expected,

CX-4945 strongly reduces CK2 activity in the two cell lines,

while imatinib treatment does not affect it (Figure 2B).

Cellular CK2 was also studied by analysing the activity dis-

played by its catalytic subunit a. To this purpose CK2a was

separated on a polyacrylamide gel containing the CK2-

substrate b-casein and the activity of the a-subunit toward

the co-localized substrate was determined by a radioactive

in-gel kinase assay. Equal amounts of cellular lysates show a

higher 33P-phosphorylation of b-casein in R-LAMA84 cells as

compared to the parental counterpart (Figure 2C).

3.2. Protein quantification and subcellular distribution

of CK2 in LAMA84 cells

CK2 level was found markedly increased in highly prolifer-

ating myeloblastic cells from CML patients in comparison

with normal granulocytes (Phan-Dinh-Tuy et al., 1985). This

finding prompted us to perform a relative quantification of

cellular CK2a and b subunits in LAMA84 cells by comparative

analysis with recombinant CK2 holoenzyme (a2b2) containing

equimolar amounts of the two subunits. The comparison sug-

gests that the two CK2 subunits are expressed at very high

levels in both CML cell lines and confirms that imatinib-

resistant cells contain about twice as much CK2a and b sub-

units (Figure 3A). In particular, the densitometric analysis sug-

gests that in imatinib-resistant cells the amount of CK2a

represents about 0.3% of total proteins.

Figure 1 e Expression analysis of Bcr-Abl, Lyn and CK2 in different

CML cell lines. (A,B) 30 mg (A) or 10 mg (B) of lysate proteins were

analysed by Western blot. Anti-p-Tyr immunostaining was

superimposed on Bcr-Abl band, which was detected by anti-Abl

antibody. Anti-a-tubulin Western blot is shown as a loading control.

Figure is representative of at least five separate experiments. (C) Real-

time quantitative PCR analysis of CK2a gene expression was

performed using cDNA obtained from reverse transcribed total RNA

from S-LAMA84 and R-LAMA84 cells. The CK2a mRNA level was

assessed by quantitative PCR analysis as described in Materials and

methods. Results were normalized to b-actin mRNA used as internal

standard and the expression level of CK2a gene in R-LAMA84 is

normalized to that of S-LAMA84 cells. Reported values are

means ± SD of four separate experiments performed in triplicate.
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There is ample evidence that CK2 is distributed in nearly

every subcellular compartment, where it plays different func-

tions, and that the subcellular localization of CK2 is tightly

regulated (Filhol and Cochet, 2009). Therefore studying the

distribution of this kinasemay be a key to understand its func-

tion. The comparison of CK2 subcellular localization in the

two cell variants (Figure 3B) reveals that the amount of

CK2a0 is similar in the different subcellular compartments of

S-LAMA84 and R-LAMA84 cells. In contrast, while CK2a level

is comparable in nuclei and almost undetectable inmitochon-

dria, it is overexpressed in the cytosolic and microsomal frac-

tions of R-LAMA84 cells. Likewise, the protein-level of CK2b is

consistently higher in cytosol and microsomes.

It is noteworthy that, in resistant cells, CK2 is overex-

pressed in the cytoplasm (cytosol and microsomes), where

Bcr-Abl is alsomainly retained in CML cells andwhere it inter-

acts with most proteins involved in the oncogenic pathway

(Cilloni and Saglio, 2012). This prompted us to perform a

confocal microscopy immunofluorescence analysis looking

for a possible co-localization of the two protein kinases, which

are both overexpressed in R-LAMA84 cells. CK2 fluorescence is

observable in the nucleus but is mostly localized in the cyto-

plasm, where Bcr-Abl is exclusively visible and appears to

co-localize with CK2 (Figure 3C). Immunolocalization per-

formed in parallel with S-LAMA84 cells showed a similar dis-

tribution of CK2 fluorescence, which is more evident in the

cytoplasm (results not shown), while Bcr-Abl localization

was unfeasible because the oncokinase fluorescence was not

detectable (see also Figure 1A).

3.3. CK2 and Bcr-Abl interact in CML cells

CK2 and Bcr-Abl co-localization prompted us to check if the

two protein kinases are interacting proteins. To this purpose,

Bcr-Abl-immunoprecipitates obtained from LAMA84 cellular

lysates were probed with anti-CK2 antibodies (Figure 4Aa).

Interestingly, while CK2 does not co-immunoprecipitate with

Bcr-Abl in S-LAMA84 cells, a substantial amount of both CK2a

and b subunits is detectable in R-LAMA84 cells. Consistently,

Bcr-Abl is present in CK2a immunocomplexes only in

imatinib-resistant cells (Figure 4Ab). A parallel analysis was

also performed to compare LAMA84 with K562 and KCL-22

cell lines, where Bcr-Abl and CK2 are similarly expressed in S

and R variants (Figure 4Ac). Differently from LAMA84, in K562

and KCL-22 the interaction between Bcr-Abl and CK2 is detect-

able also in imatinib-sensitive cells. Interestingly, in K562 the

association observed is higher in imatinib-resistant than in

sensitive cells as in the case of LAMA84 cells (Figure 4Ac).

Since it has been shown that Abl tyrosine kinase phosphor-

ylates CK2a in vitro (H�erich�e and Chambaz, 1998), the lysates of

Figure 2 e Analysis of CK2 activity in S-LAMA84 and R-LAMA84

cells. (A) The kinase activity of cellular CK2 was tested, as detailed in

Materials and methods, toward the peptide-substrate

RRRADDSDDDDD in a phosphorylation medium containing the

indicated micrograms of lysate proteins. Reported values are

means ± SD of four separate experiments. (B) Cells, incubated for 24h

with vehicle DMSO (Ctrl), CX-4945 (3 mM) or imatinib (0.5 mM in

S-LAMA84 and 2 mM in R-LAMA84), were lysed and CK2 activity

was tested in 1 mg of lysate proteins as described in (A). Reported

values are means ± SD of four separate experiments. (C) The kinase

activity of monomeric CK2a was analysed by an in-gel kinase assay.

The indicated micrograms of lysate proteins were loaded on a

polyacrylamide gel containing the CK2-substrate b-casein and CK2a

activity was detected as detailed in Materials and methods. The 33P-

phosphorylation of b-casein, evidenced by a Cyclone Plus Storage

PhosphorSystem is expressed in Digital Light Units (DLU). Reported

values are means ± SD of four separate experiments.
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the CML cell lines were immunoprecipitated with anti-CK2a

antibody and analysed for the presence of phospho-tyrosine

(p-Tyr) (Figure 4B). In LAMA84 cells CK2a is Tyr-phosphorylate

d only in the imatinib-resistant counterpart, while in K562 and

KCL-22 the subunit is Tyr-phosphorylated in both cell variants

(Figure 4Ba). Interestingly, in the case of K562 the extent of

Tyr-phosphorylation is higher in the imatinib-resistant than

in the sensitive cells, as observed in LAMA84 cells suggesting

a relationship between higher CK2 association to Bcr-Abl

(Figure 4Bc) and higher CK2a Tyr-phosphorylation. Parallel

Figure 3 e Quantification and subcellular distribution of CK2 in S-LAMA84 and R-LAMA84 cells. (A) The indicated ng of recombinant CK2

holoform (a2b2) and mg of lysate proteins from S-LAMA84 and R-LAMA84 cells were analysed by Western blot with anti-CK2a (left panel) and

anti-CK2b (right panel) antibodies. Anti-a-tubulin Western blot is shown as a loading control. Means of densitometric values ± SD, expressed in

arbitrary units (a.u.), are reported above the relative subunit bands. Cellular CK2 subunit amounts were calculated by densitometric analysis and

extrapolation from the calibration curve built on the signal of recombinant CK2. (B) (Left panel) Cells were disrupted by Dounce homogenization

and subcellular fractionation was performed by differential centrifugation as detailed in Materials and methods. Subcellular fractions (N, nuclei;

Mt, mitochondria; C, cytosol and Mc, microsomes) were resuspended in an equal volume and the same volume of resulting fractions was

immunoblotted with the indicated antibodies including the organelle-specific antibodies against lamin B (nuclei), lactate dehydrogenase (LDH)

(cytosol) and S6 ribosomal protein (microsomes and nucleoli). The Figure is representative of five separate experiments. (Right panel) Bars report

the mean values ± SD of the densitometric analysis of the CK2-subunit bands obtained as in left panel. Densitometric values are expressed in

arbitrary units. *p < 0.05. (C) Confocal microscopy of double immunofluorescence staining of R-LAMA84 cells with anti-CK2a (red) and

anti-Abl (green) antibodies. Nuclei were stained with Hoechst 33342. Co-localization of red and green fluorescences is visualized by the yellow

fluorescence appearing after merging of both signals. Violet appears from the merging of nuclear staining and red fluorescence.
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experiments demonstrated that Tyr-phosphorylation is unde-

tectable in CK2b immunoprecipitates (data not shown).

To assess whether CK2 itself, or Bcr-Abl (or eventually both)

might be responsible for this Tyr-phosphorylation, imatinib-

resistant LAMA84 cells were treated for 24 h with vehicle, CX-

4945 or imatinib. CX-4945, which neither affects the protein-

level nor the activity of Bcr-Abl (Figure 4Bb), does not reduce

the Tyr-phosphorylation extent of immunoprecipitated CK2a

(Figure 4Bc), ruling out the possibility that CK2 catalytic subunit

might undergo Tyr-autophosphorylation in R-LAMA84 cell line,

as found in other mammalian cells (Vilk et al., 2008). On the

contrary, imatinib greatly decreases both the Bcr-Abl activation

state (Figure 4Bb) and the extent of CK2a Tyr-phosphorylation

(Figure 4Bc), consistent with the concept that Bcr-Abl is the ki-

nase responsible for this phosphorylation. Experiments aimed

at highlighting the effect of this Tyr-phosphorylation on CK2

catalytic activity failed to show any significant difference be-

tween CK2a immunoprecipitated in comparable amounts

from control or imatinib-treated R-LAMA84 cells (not shown).

To evaluate the role played by the activity of each kinase on

the reciprocal binding, CK2/Bcr-Abl interaction was analysed

in R-LAMA84 cells treated with different kinase inhibitors

(Figure 5A). Intriguingly, the treatment with CX-4945 almost

abrogates the interaction occurring between CK2 and Bcr-

Abl, while imatinib and GNF-2, an allosteric non-ATP compet-

itive inhibitor of Bcr-Abl (Adri�an et al., 2006), do not affect this

binding. The additional finding that staurosporine, added at a

concentration ineffective toward CK2 but able to inhibit most

protein kinases (Meggio et al., 1995) including Bcr-Abl (not

shown), does not counteract the interaction between CK2

and Bcr-Abl (Figure 5A), corroborates the hypothesis that

CK2 kinase activity plays a specific role in the binding. Consis-

tently, a highly reduced amount of Bcr-Abl is detectable in

CK2a immunoprecipitates from R-LAMA84 cells treated

with CX-4945 (Figure 5B). This finding prompted us to

assess whether CK2-catalysed phosphorylation of Bcr-Abl

might be a prerequisite for the interaction of the two kinases.

However, phosphorylation assays performed in vitro by adding

Figure 4 e Analysis of CK2 and Bcr-Abl interaction in S-LAMA84 and R-LAMA84 cells. (Aa, Ab) S- and R-LAMA84 cells were lysed and 300 mg

of lysate proteins were immunoprecipitated with a control antibody from the same class (Ctrl) and anti-Abl antibody (Aa), or pre-immune serum

(Ctrl) and anti-CK2a antibody (Ab). The immunocomplexes were then analysed by Western blot with the indicated antibodies. (Ac) LAMA84,

K562 and KCL-22 cells were immunoprecipitated with anti-Abl antibody and immunocomplexes were analysed by anti-CK2a immunostaining.

(Ba) LAMA84, K562 and KCL-22 cells were lysed and lysate proteins (300 mg) were immunoprecipitated with anti-CK2a antibody. The

immunocomplexes were then analysed by Western blot with anti-phospho-tyrosine (anti-p-Tyr) followed by anti-CK2a antibodies. (Bb,Bc)

R-LAMA84 cells were treated with vehicle, CX-4945 (5 mM) or imatinib (3 mM) for 24h and then lysed. (Bb) Cellular lysates were analysed by

Western blot with the indicated antibodies. (Bc) 300 mg of cellular lysates were immunoprecipitated by anti-CK2a antibody and immunocomplexes

were immunostained with anti-p-Tyr followed by anti-CK2a antibodies. Figure is representative of at least four separate experiments.
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recombinant CK2 holoenzyme to Bcr-Abl immunoprecipitated

from R-LAMA84 lysates, do not support the hypothesis that

Bcr-Abl might be a targetesubstrate of CK2 (not shown).

To further analyse the CK2/Bcr-Abl interaction, R-LAMA84

cells treatedwith vehicle or CX-4945were lysedundermild con-

ditions and subjected to glycerol gradient sedimentation

(Figure 5C). In control cells CK2a subunit co-migrates with

most Bcr-Abl (fractions 8e12), suggesting that they are partners

of the same complex(es) as confirmed by their co-

immunoprecipitation observed using the pooled fractions

8e12 of the gradient (Figure 5C, right panel). Interestingly, CX-

4945-treatment, which does not significantly change the sedi-

mentation profile of Bcr-Abl, makes CK2a to shift towards frac-

tions containing complexesdisplaying lowermolecularweights

(fractions 10e14), implying that CK2 dissociates fromBcr-Abl as

corroboratedby thereducedco-immunoprecipitationof the two

oncokinases (Figure 5C, right panel).

3.4. Effect of CK2 down-regulation on CML cell viability

The effect of imatinib on LAMA84 cell viability was compared

with that of CX-4945. As expected, the DC50 values

(concentration inducing the 50% of cell death) calculated for

imatinib are about 0.3 and 2.1 mM, in sensitive and resistant

cell lines, respectively (Figure 6A). Treatment with CX-4945 re-

duces the viability of both S-LAMA84 and R-LAMA84 cells with

DC50 values of about 8 and 5 mM, respectively (Figure 6B).

Apoptosis occurrence was then analysed by comparing the

cleavage of the caspase substrate PARP in the two cell vari-

ants. As expected, PARP is almost completely cleaved by treat-

ment with 0.5 mM imatinib in sensitive LAMA84 cells, an event

parallelled by the proteolysis of Bcr-Abl, Akt and a-tubulin

(Figure 6C). On the contrary, treatment with up to 1 mM imati-

nib does not induce any appreciable effect in resistant cells

(Figure 6C). The opposite is observable with CX-4945, which

is not effective up to 5 mM concentration in S-LAMA84 cells,

while the same concentration of inhibitor induces an almost

complete cleavage of PARP and of the other analysed proteins

in R-LAMA84 cells (Figure 6D). This outcome supports the hy-

pothesis that imatinib-resistant cells are more dependent on

CK2 activity for their survival than sensitive cells.
Since CK2 phosphorylates Akt at Ser129 inducing an

increased activity of this pro-survival kinase (Di Maira et al.,

2005), the phosphorylation state of this residue was evaluated

Figure 5 e Effect of CX-4945 on CK2/Bcr-Abl interaction. (A) R-LAMA84 cells were treated with vehicle, CX-4945 (5 mM), imatinib (3 mM),

GNF-2 (10 mM) or staurosporine (1 mM) for 24 h. Lysate proteins (300 mg) were immunoprecipitated by anti-Abl antibody and immunocomplexes

were analysed by Western-blot. (B) R-LAMA84 cells were treated with the indicated inhibitors as in (A). Lysate proteins (300 mg) were

immunoprecipitated with anti-CK2a antibody and then probed with the indicated antibodies. (C) R-LAMA84 cells, treated for 24 h with vehicle

(Ctrl) or 5 mMCX-4945, were lysed and lysate proteins were separated on glycerol gradient as detailed in Materials and methods. Molecular weight

standards were run on separated tubes: bovine serum albumin (66 kDa), alcohol dehydrogenase (150 kDa), apoferritin (443 kDa) and thyroglobulin

(669 kDa). 40 ml of the resulting fractions were analysed by Western blot. The densitometric analysis of CK2a and Bcr-Abl bands is reported above

the relative gradient. (Right panel) Fractions 8e12 of each gradient were pooled and immunoprecipitated with anti-CK2a antibody. The

immunocomplexes were analysed by Western blot. Figure is representative of four separate experiments.
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upon treatment with the two inhibitors. Consistent with the

higher CK2 activity, the extent of Akt Ser129 phosphorylation

is higher in imatinib-resistant than in sensitive cells under

basal conditions (Figure 6C and D) suggesting an up-

regulation of Akt signalling in R-LAMA84 cells. Moreover,

while imatinib treatment does not affect Ser129 phosphoryla-

tion (Figure 6C), CX-4945 strongly reduces the phosphoryla-

tion of this Akt residue, which, in both cell variants, is

almost abrogated by 2 mM CX-4945, a concentration not

affecting the total Akt amount (Figure 6D).

We have recently found that inhibition of CK2 by CX-4945

reduces also the viability of the CML cell lines K562 and KCL-

22 (Zanin et al., 2012). In all the tested CML lines, CK2 inhibi-

tion induces cell death also in the imatinib-resistant variants

(see Figure 6B and Zanin et al., 2012), independently of the CK2

expression level (Figure 1B); this prompted us to investigate

whether CX-4945 might sensitize resistant cells to imatinib.

To this purpose, cells were treated with CX-4945 and imatinib

either separately or in combination. We then examined if the

combined treatment induced a higher degree of cell death

compared to the separate treatments. Interestingly, low con-

centrations of CX-4945 are able to significantly increase the ef-

fect of imatinib on all the resistant CML cell lines analysed

(Figure 7). The values of the combination index (which de-

notes synergism if <1) (Chou, 2006) are 0.57 for R-LAMA84,

0.75 for R-K562, and 0.87 for R-KCL-22, demonstrating that

the combined treatment promotes a synergistic reduction of

cell viability more pronounced in R-LAMA84 and R-K562 cells.

To further support a specific role of CK2 in imatinib-

resistance, we knocked down the expression of CK2a in

LAMA84 cells by performing RNA-interference experiments.

A decrease of CK2a protein-level of about 52% and 80%was ob-

tained in S- and R-LAMA84 cells, respectively (Figure 8A). Also

CK2 activity was reduced, although to a lesser extent (about

30% and 56% in S- and R-LAMA84 cells, respectively)

(Figure 8B), due to the contribution of the other catalytic sub-

unit (a0) not affected by the silencing procedure. Moreover,

CK2a down-regulation by siRNA greatly reduces the interac-

tion occurring between CK2 and Bcr-Abl (Figure 8C) as previ-

ously shown in LAMA84 cells treated with the CK2-inhibitor

CX-4945 (Figure 5A,B). When we treated control and CK2a

down-regulated cells with increasing concentration of imati-

nib, we found that no significant effect on cell viability was

induced in sensitive cells by CK2a silencing (Figure 8D). On

the contrary, in imatinib-resistant cells, CK2a down-

regulation promotes a higher sensitivity to low imatinib con-

centrations (Figure 8E), confirming the data obtained with

the pharmacological blockade of CK2 (Figure 7A).

4. Discussion

In this study, we provide the first evidence that, among

different adaptations described to be associated with

imatinib-resistance, CK2-dependent signalling represents an

additionalmechanism that can be exploited to ensure survival

Figure 6 e Cell death induction by imatinib and CX-4945 in LAMA84 cells. (AeD) S-LAMA84 and R-LAMA84 were treated with the indicated

concentration of imatinib (A,C) or CX-4945 (B,D) for 48 h. (A,B) Cell viability was assessed by MTT method and expressed as percentage of

controls. *p < 0.01, **p < 0.05 vs S-LAMA84 cells. (C,D) Cellular lysates (30 mg) were analysed by Western blot. Anti-PARP antibody

recognizes the full length protein and its p85 fragment. Figure is representative of five separate experiments.
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to CML cells. In particular, we found that in imatinib-resistant

LAMA84 cell line, characterized by a BCR-ABL1 gene amplifica-

tion, CK2 is upregulated in comparison with the parental cell

line. While CK2a0 is equally expressed, the level of CK2a and

b subunits is about two-fold higher in R-LAMA84 than in sen-

sitive cells (Figure 1A and B). CK2 protein increase, which is

accompanied by a parallel increase of cellular CK2 catalytic

activity (Figure 2), appears related to an altered regulation at

protein level since the mRNA amount of CK2a is very similar

in the two cell variants (Figure 1C). These results are in agree-

ment with studies where abnormally high level of CK2 protein

and activity in cancer cells is not accompanied by a parallel

mRNA increase (Di Maira et al., 2007; Trembley et al., 2009).

It is noteworthy that CK2 has been found overrepresented

in highly proliferating myeloblastic cells from CML patients in

blast crisis (Phan-Dinh-Tuy et al., 1985), a phase in which

Bcr-Abl overexpression has been associated to imatinib-

resistance (Barnes et al., 2005; Gorre et al., 2001; Keeshan

et al., 2001; Virgili and Nacheva, 2010). Considering the pro-

survival function of CK2, it is conceivable that its increased

level represents a device to escape apoptosis. Although CK2

up-regulation is not an absolute requirement for the resistant

phenotype (Figure 1B and DiMaira et al., 2008), overexpression

of CK2a, either alone or in combination with the b subunit has

been already associated in other cancer cell lines with resis-

tance mechanisms, either related to a multidrug resistance

phenotype or induced by specific drugs (Di Maira et al., 2008;

Matsumoto et al., 2001).

CK2 nuclear concentration has been reported to be partic-

ularly high in cancer cells (Trembley et al., 2009). In contrast,

in S-LAMA84 and R-LAMA84 cells CK2 is mainly present in

the cytoplasm (Figure 3B,C). We also show that CK2 and

Bcr-Abl co-localize in the cytoplasm, where the CK2-targets

related to imatinib-resistance are presumably placed.

Figure 7 e Synergistic effect of CX-4945 and imatinib treatment on CML cell viability. (A) R-LAMA84, (B) R-K562 or (C) R-KCL-22 were

treated for 48 h with the indicated concentration of imatinib, CX-4945 or with the two drugs in combination by increasing simultaneously the

concentration of both compounds added at 1:3 (A), 1:4 (B), and 1:1 (C) imatinib:CX-4945 ratio. Viability, assessed by MTT method and expressed

as percentage of controls, was plotted as function of imatinib concentration (left panel), or CX-4945 concentration (right panel). *p < 0.01,

**p < 0.05 vs cells treated with a single inhibitor.
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Phospho-proteomic analyses are in progress to identify the

proteins whose phosphorylation, sensitive to CX-4945-

inhibition, is evoked/increased in R-LAMA84 as compared to

sensitive cells.

CK2 and Bcr-Abl co-localization reflects the finding that, in

resistant LAMA84 cells, these two oncokinases are members

of the same multi-protein complex(es) as demonstrated by

their co-immunoprecipitation and co-sedimentation in

glycerol-gradients (Figures 4A, 5C). CK2a and Bcr-Abl interac-

tion is also detectable in the other CML cell lines analysed,

K562 and KCL-22 (Figure 4Ac). Our results demonstrate that

in the case of LAMA84 and K562 cells the two oncokinases

interact more in imatinib-resistant than in sensitive cells

(Figure 4Ac). The occurrence of an interaction between CK2

and Bcr-Abl has been previously described in cells overex-

pressing the two protein kinases and in lymphoblastic cells

obtained from Bcr-Abl transgenic mouse (H�erich�e and

Chambaz, 1998; Mishra et al., 2003). The region responsible

for CK2 interaction was localized to residues 242e413 of the

Bcr moiety of Bcr-Abl (Mishra et al., 2003).

In the attempt to detect reciprocal phosphorylation of the

two protein kinases in CML cell lines we disclosed a Bcr-Abl-

dependent Tyr-phosphorylation of CK2a, which is more

evident in R-LAMA84 and R-K562 cells (Figure 4Ba), where

also Bcr-Abl/CK2 interaction is higher (Figure 4Ac). The Tyr-

phosphorylation of CK2a, however, is not required for the

interaction occurring between the two kinases, which is not

affected by imatinib. On the contrary, inhibition of CK2 almost

abrogates the binding between the two enzymes (Figure 5).

A significant contribution of CK2 to chronic myeloid

leukaemia is supported by data obtained from cell treatments

with the highly selective CK2 inhibitor CX-4945, which affects

neither the amount nor the activity of Bcr-Abl (Figure 4Bb).

Indeed the viability of both imatinib-sensitive and -resistant

CML cells is significantly reduced whenever CK2 activity is

inhibited by CX-4945, consistent with the general anti-

apoptotic and pro-survival role played by CK2 in cancer cells

(Figure 6B and Zanin et al., 2012). Interestingly, CX-4945 added

in combination with imatinib promotes a synergistic effect on

the cell viability of imatinib-resistant CML variants, partially

rescuing the response to imatinib. The synergism is especially

evident in R-LAMA84 and R-K562 cells (Figure 7), where Bcr-

Abl/CK2 interaction is also higher (Figure 4Ac). In this respect,

we can hypothesize that the interaction occurring between

CK2 and Bcr-Abl might be one of the molecular mechanisms

reinforcing the imatinib-resistance but also offering the possi-

bility to sensitize cells to imatinib by CK2 down-regulation

and consequent binding disruption (Figure 5 for CK2 inhibition

by CX-4945, and Figure 8C for CK2 knock-down by siRNA).

The hypothesis that imatinib-resistant cells become

partially dependent on CK2 for their survival was confirmed

by the observation that the CX-4945 concentrations required

to induce apoptosis in R-LAMA84 cells are lower than those

effective in S-LAMA84 cells (Figure 6B,D).

Figure 8 e Effect of CK2a knocking down by siRNA on LAMA84 sensitivity to imatinib. S-LAMA84 and R-LAMA84 cells were transfected with

aspecific siRNA (Ctrl) or CK2a specific siRNA. (A, B and C) After 96 h, cells were lysed, and (A) 10 mg of lysate proteins were analysed by Western

blot, (B) 1 mg of lysate proteins was tested for CK2 activity toward the specific peptide RRRADDSDDDDD, and (C) 300 mg of R-LAMA84 cell

proteins were immunoprecipitated with anti-Abl antibody and then analysed by Western blot with the indicated antibodies. Panels AeC are

representative of four separate experiments (D, E) 48 h after transfection, S-LAMA84 (D) or R-LAMA84 (E) cells were treated for 48 h with the

indicated imatinib concentrations and cell viability was analysed by MTT method. *p < 0.01, **p < 0.05 vs control cells. Panels D and E are

representative of five separate experiments performed in triplicate.
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It has been proposed that the high CK2 level observed in

cancer cells may generate an environment, which favours

cancer progression by promoting/fostering multiple onco-

genic pathways (Ruzzene and Pinna, 2010). Since some of

these deregulated pathways are also under the control of

Bcr-Abl (Perrotti et al., 2010; Quint�as-Cardama and Cortes,

2009), CK2 might, on one hand, potentiate the Bcr-Abl onco-

genic signalling and, on the other, strengthen the imatinib-

resistant phenotype by activating key molecular events able

to circumvent the drug inhibitory effects on Bcr-Abl pathways.

Pertinent to this, we have found that Akt-signalling is rein-

forced in R-LAMA84 cells by the increased phosphorylation

of the CK2 target-residue Ser129 (Figure 6C,D).

Imatinib is the first-line therapy for chronic myeloid

leukaemia, but resistance to this drug frequently occurs and

causes therapy failure. This study identifies the protein kinase

CK2 as a player in CML imatinib resistance, where it supports

the Bcr-Abl oncogenic potential conferring survival advantage

against imatinib. Down-regulation of CK2 rescues the

response to imatinib. We suggest that CK2 inhibitors, with

special reference to CX-4945, a compound already in clinical

trials for the treatment of different tumours, might represent

promising drugs for combined strategies in CML therapy.
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