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Theory is when we know everything but nothing works. Praxis is when everythingworks but we do not know why. We always end up by ombining theory with praxis:nothing works and we do not know why. Albert Einstein (1879-1955)





Abstrat
The present study onerns the determination of oean tide model parameters from GOCE orbitalperturbation analysis. The GOCE satellite was launhed by the European Spae Ageny in 2009and is �ying on a Sun-synhronous near irular orbit, at the very low altitude of about 250km whih makes it very sensitive to tidally indued orbit perturbations. The strategy adoptedfor analyzing GOCE GPS traking data is the diret fully-dynami approah, onsisting in theGOCE preise orbit determination (POD) and aumulation of the normal equations for eahorbital ar, followed by a multiar solution for the estimation of the global oean tide parameters.The GOCE GPS observations are proessed using the NAPEOS S/W system (ESA/ESOC),spei� for satellite orbit determination and predition, upgraded to inlusion of the partialderivatives with respet to the oean tide parameters and the oean tide model inversion apa-bility.A sensitivity study of the oean tide perturbations on GOCE orbit was arried out using asa referene the FES2004 model, in order to de�ne the set of tidal harmoni parameters a�etingGOCE orbit. In partiular, the seular rates of the GOCE angular elements are estimatedthrough a linear least-square �t, being respetively ω̇ = −3.764817×10−7 rad/s for the argumentof perigee, Ω̇ = 2.022334 × 10−7 rad/s for the longitude of asending node and Ṁ = 1.167455 ×
10−3 rad/s for the mean anomaly.From GOCE mean orbital harateristis, the spetral analysis of oean tide perturbationsin the radial, transverse and normal diretion is performed using Kaula's linear satellite theory.Then, the perturbation statistis by oe�ient is omputed, obtaining a maximum RMS ofabout 1.323 m for the radial omponent, 363.136 m for the transverse omponent and 76.241m for the normal omponent. The temporal aliasing problem is also aounted for the reoveryof tidal parameters with GOCE and the prinipal alias periods are alulated for eah tidalperturbation frequeny, onsidering the length of the available GOCE data reord. To �x a limitfor the number of parameters to be estimated, three di�erent uto�s are applied to the RMSperturbation oe�ients, respetively equal to 5 mm for the radial omponent, 2 m for thetransverse omponent and 1 m for the normal omponent, both in the prograde and retrogradease. The total parameters to be estimated result to be 490.GOCE data are proessed to perform the fully-dynami POD over daily orbital ars fromthe 1st November 2009 until the 31st May 2011, but only ars with a post-�t RMS of the GPSphase observations residuals lower than 8 mm are onsidered for the multiar proessing, for atotal of 431 days.The obtained preliminary results show the relative error of the estimated parameters withrespet to the orresponding FES2004 parameters lower than 1 for about the 16% of the total,meaning that they are of the order of magnitude of the FES2004 parameters.GOCE orbital data were reproessed along the same period of the previous run, initializingthe oean tide model with the estimated parameters, if present, and maintaining otherwise theFES2004 parameters. The post-�t RMS of the GPS phase residuals obtained with the new oeantide model has a mean value of 6.5 mm, and it is noteworthy that the di�erene between theI



IIpost-�t RMS obtained with the FES2004 model and that resulting from the new oean tidemodel indiates a mean improvement of about 0.6 mm in for the 96% of the analyzed ars andgreater than 1 mm for the 16%, few days reah a di�erene of 2 mm.Finally, the orbits obtained with the estimated parameters are ompared with the orbitsobtained employing the FES2004 model and the o�ial GOCE Redued-Dynami PSO. The 3DRMS of the di�erene between the orbits omputed using FES2004 and those reomputed withthe new parameters shows a mean value of 2.5 m, while the 3D RMS of the di�erene withrespet to the o�ial R/D PSO has a mean value of 4.9 m. Moreover, the di�erene betweenthe 3D RMS of the orbit residuals between the R/D PSO and the GOCE POD with FES2004and the RMS of the di�erene between the GOCE R/D PSO and the GOCE POD with the newparameters results to have a mean improvement of 0.9 m.Further POD-Multiar runs are ertainly neessary, together with the re�nement of the listof parameters to be estimated, removing exessively ill-estimated oean tide parameters andintroduing new parameters where appropriate. Indeed, the model parameter tuning and inves-tigation is essential to adjust the best ombination of parameters to be estimated. Moreover, anextension of the data set to muh longer time-period should allow a substantial improvement ofthe obtained results. The task has proven very intensive and hallenging, but the partial resultsobtained are enouraging and a motivation for future analysis.



Summary
For ten years, the three satellite gravity missions CHAMP, GRACE and GOCE are ontinuouslyimproving our knowledge of the stati and temporally hanging Earth's gravity �eld, inreasingspatial and temporal resolution to the extremely high level required by many geosiene appli-ations, like Geodesy, Oeanography and Solid-Earth Physis. In partiular, this study onernsthe periodially variable part of the geopotential indued by the oean tides and the estimationof the oean tides parameters from GOCE orbital perturbation analysis.Tides are periodial phenomena a�eting both the solid Earth and oeans, aused by thedi�erential gravitational attration of external perturbing bodies on the Earth's surfae, whoseorresponding potential is named Tide-Generating Potential (TGP), and by their response to thispotential. The TGP an be diretly determined from the astronomial positions of the externalperturbing bodies, its e�et is also alled diret tide and is the basis for the equilibrium tidetheory. The equilibrium tide is the theoretial tide that would exist on an ideal perfetly rigidand non-rotating Earth (no e�et of the Coriolis fore), totally overed with oeans of uniformdepth, where the response to the tide-generating fores is instantaneous and no dissipation ispresent. Obviously, the equilibrium tide does not represent the real tidal e�et, being too smallompared to the observed tide, however it is an important referene for tidal analysis, giving anorder of magnitude of tidal phenomena. On the other hand, the real response of the solid Earthand oeans to the TGP, also alled indiret tide, depends on the elasti properties of the Earth.The Laplae Tidal Equations (LTE) are introdued to explain the relations between the oean,the solid Earth and the loading e�ets, in order to derive the fundamental equations of the oeantide height �eld and the oean tide potential.The two main parameterizations of the oean tide height �eld are presented. The lassialspherial harmoni representation is haraterized by a sum of partial tide heights eah orre-sponding to a tidal frequeny, while the response analysis assumes a transfer funtion or impulseresponse between the tidal foring and the oean tide height �eld, whih is linear inside eahtidal band. The otidal and orange harts are reported for the main diurnal and semidiurnaltidal onstituents (K1, P1, O1, Q1, M2, S2, K2, N2), to visualize the dynami ontent of theoean tide height indued by their tidal frequeny. On the other hand, the development of a newomputational algorithm for the aurate redetermination of the Groves and Reynolds orthotideoe�ients is illustrated and the orresponding omputational results are disussed within theorthotide formalism.In order to estimate the oean tide harmoni parameters, the lowest possible Earth orbit,GOCE orbit, was seleted to obtain the largest possible tidal signal a�eting a satellite. GOCE(Gravity �eld and steady-state Oean Cirulation Explorer) is a LEO satellite launhed by theEuropean Spae Ageny (ESA) on the 17th Marh 2009 and �ying at the very low altitude ofabout 250 km in a nearly Sun-synhronous and nearly irular orbit with an inlination of about96.7 deg. The main purposes of GOCE mission are to map the stati part of Earth's gravity�eld with an unpreedented preision of 1 mGal = 10−5 m/s2 and to model the geoid with anauray of 1-2 m, at a spatial resolution of 100 km. To ahieve these objetives, GOCE isIII



IVarrying onboard for the �rst time an Eletrostati Gravity Gradiometer (EGG) to measure theEarth's gravity gradient along three orthogonal diretions and a Satellite-to-Satellite TrakingInstrument (SSTI) onsisting of a GPS reeiver. The spetral harateristis of the measurementtypes of these two instruments are omplementary, but GOCE gradiometri measurements areonly marginally sensitive to oean tide e�ets, allowing to reover the short-wavelength part ofthe gravity �eld. For this reason, only GOCE GPS traking data are used for the present work,being GOCE very sensitive to tidally indued orbit perturbations thanks to its extremely low al-titude and so representing an exellent test-bed for the appliation of lassial orbit perturbationanalysis methods to reover tidal parameters.Several analysis proedures were onsidered, but the diret numerial method was hosen,onsisting in a fully-dynami POD of GOCE, with the aumulation of the normal equations foreah orbital ar, followed by a multiar solution for the estimation of the global ar-independentoean tide parameters. The tool seleted to perform this type of analysis is ESA's NAPEOSs/w system, whih provides the apabilities of orbit determination and predition and parameterestimation. The estimation of oean tide parameters, however, was not implemented in thesystem when it was aquired, so it was neessary to upgrade it with the entire implementation ofthe partial derivatives with respet to the oean tide harmoni parameters and the extension ofthe struture for the inlusion of the oean tide parameters harateristis: the tidal onstituent,the harmoni type (C or S), the harmoni degree and order and the hirality (prograde orretrograde).The prinipal task in order to aomplish the sienti� objetive of the study is the de�nitionof the set of oean tide harmoni parameters to whih GOCE is more sensitive. Hene, a globaland detailed sensitivity study of the oean tide perturbations on GOCE orbit is arried outusing as a referene the FES2004 model. First of all, the e�et of various ombinations of oeantide onstituents on GOCE orbit was evaluated over di�erent time intervals and oean tidesaelerations ating on GOCE orbit were determined using di�erent existent oean tide models.Then, from the evolution of GOCE orbital elements available from a preliminary run of GOCEPOD with NAPEOS, the GOCE mean orbital harateristis are estimated through a linearleast-square �t and reported in Table 1.Table 1. GOCE mean orbital elements and rates used for the spetral analysis of tidal perturbations on GOCE.Element Value
ā 6632.884525 km
ē 2.306273 × 10−3

ī 1.686227 rad
ω0 1.845595 rad
Ω0 5.471748 rad
M0 0.971383 rad
ω̇ −3.764817 × 10−7 rad/s
Ω̇ 2.022334 × 10−7 rad/s
Ṁ 1.167455 × 10−3 rad/sNodal Period 89.728100 minRepeat Period 979 revs/61 nodal daysThe analytial spetral analysis of the oean tide perturbations a�eting GOCE orbit inthe radial, transverse and normal (RTN) diretions up to degree and order 20 is omputedusing Kaula's linear satellite theory, together with the perturbation statistis by oe�ient. Theprograde amplitude spetra in RTN are reported respetively in Figure 1, 2, 3, while the RMS ofthe oean tide perturbations aumulated over all the onstituents in RTN is shown respetivelyin Figures 4, 5, 6, with a maximum RMS of about 1.323 m for the radial omponent, of 363.136m for the transverse omponent and of 76.241 m for the normal omponent.
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Figure 1. Amplitude spetrum of the radial prograde perturbation in position due to oean tides.

0 50 100 150 200 250 300 350
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Frequency (cyc/day)

T
ra

ns
ve

rs
e 

P
er

tu
rb

at
io

n 
A

m
pl

itu
de

 (
m

m
) 

−
−

 P
ro

gr
ad

e

Figure 2. Amplitude spetrum of the transverse prograde perturbation in position due to oean tides.
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Figure 3. Amplitude spetrum of the normal prograde perturbation in position due to oean tides.

Figure 4. Aumulated RMS by oe�ient of the radial perturbation in position due to oean tides.
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Figure 5. Aumulated RMS by oe�ient of the transverse perturbation in position due to oean tides.

Figure 6. Aumulated RMS by oe�ient of the normal perturbation in position due to oean tides.



VIIIThe temporal aliasing problem of the tidal perturbation frequenies strongly a�ets GOCE,beause it samples the stati gravity �eld and its time-varying part only along its orbital path,with a temporal resolution depending on its repeat period. Following losely a repeat period of979 revolutions in 61 nodal days, the tidal frequenies as felt by GOCE are aliased to periodsfrom 122 days (twie the orbit repeat period) to almost in�nite. Unfortunately, GOCE is alsoa Sun-synhronous satellite, so it does not allow the omplete estimation of the diurnal andsemidiurnal solar tide onstituents S2 and S1 whih have original periods of exatly 12 h and24 h, beause it will always sample both these onstituents at the same phase every day. Inpartiular, during the spetral analysis, the prinipal alias periods were omputed for all theoean tide perturbation frequenies. Also the length of the GOCE data reord is taken intoaount: for the available 400 days of measurements, the limit period beyond whih GOCE isnot able to solve for a parameter turns out to be approximately 200 days. The hoie adoptedonsists in not estimating the oe�ient (l,m), if the largest partial spetral amplitude, amongall those ontributing to the same pair (l,m), is aliased beyond 200 days.Combining information deriving from the spetral analysis, the perturbation statistis byoe�ient and the determination of oean tide alias periods, the gridof the oean tide parametersfrom harmoni degree 2 to 20 to be estimated from GOCE orbital data an be identi�ed andonsists of 490 parameters. It must be pointed out that the total number of parameters is limitedby the appliation of three di�erent uto�s on the perturbation RMS by oe�ient, respetivelyequal to 5 mm for the radial omponent, 2 m for the transverse omponent and 1 m for thenormal omponent, both in the prograde and retrograde ase.GOCE orbital data were proessed in daily ars from the 1st November 2009, orrespondingto the beginning of the operational phase, until the 31st May 2011, but only ars with a post-�tRMS of the GPS phase observations residuals lower than 8 mm were onsidered for the multiarproessing, for a total of 431 days.The obtained preliminary results show that the 56% of the total number of parameters hasa di�erene below 1 m from the FES2004 model, while the relative error of the estimatedparameters with respet to the orresponding FES2004 parameters lower than 1 for about the16% of the total, meaning that they are of the order of magnitude of the FES2004 parameters.GOCE orbital data were reproessed from the 1st November 2009 to the 31st May 2011,initializing the oean tide model with the estimated parameters, if present, and maintainingotherwise the FES2004 parameters. The post-�t RMS of the GPS phase residuals obtained withthe new oean tide model has a mean value of 6.5 mm, and it is noteworthy that the di�erenebetween the post-�t RMS obtained with the FES2004 model and that resulting from the newoean tide model indiates a mean improvement of about 0.6 mm in for the 96% of the analyzedars and greater than 1 mm for the 16%, while few days reah a di�erene of 2 mm (see Figure6.8).Finally, the orbit omparison shows that the 3D RMS of the di�erene between the orbitsomputed using FES2004 and those reomputed with the new parameters presents a mean valueof 2.5 m, the 3D RMS of the di�erene with respet to the o�ial R/D PSO has a mean valueof 4.9 m. The di�erene between the 3D RMS of the orbit residuals between the R/D PSO andthe GOCE POD with FES2004 and the RMS of the di�erene between the GOCE R/D PSOand the GOCE POD with the new parameters results to have a mean improvement of 0.9 m(see Figure 6.11).Further POD-Multiar runs are ertainly neessary, together with the re�nement of the listof parameters to be estimated, removing exessively ill-estimated oean tide parameters andintroduing new parameters where appropriate. The model parameter tuning and investigation isessential to adjust the best ombination of parameters to be estimated. Moreover, an extension ofthe data set to muh longer time-period should allow a substantial improvement of the obtainedresults. Indeed, the task has proven very intensive and hallenging, but the partial resultsobtained are enouraging and a motivation for future analysis.
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Figure 7. Di�erene between the �t RMS obtained using FES2004 model and the �t RMS obtained with thenew estimated oean tide parameters, instead of the orresponding FES2004 parameters.
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Figure 8. Di�erene between the 3D RMS of the di�erenes between R/D PSO and the GOCE orbits estimatedwith FES2004 and the RMS of the di�erene between the GOCE R/D PSO and the orbits reomputed with thenew parameters.



X The struture of the thesis is the following. In Chapter 1, a bakground of the main spaegeodeti tehniques is brie�y presented to introdue the three measurement onepts harater-izing the new generation of satellite gravity missions CHAMP, GRACE and GOCE.In Chapter 2 the theory and the mathematial development regarding the tidal fore isillustrated.In Chapter 3 the oean tide height parameterizations are desribed, the main being thelassial harmoni representation and the onvolution formalism, inluding the response methodand the orthotide method.In Chapter 4 two strategies for the proessing of GOCE orbital data are explained, thefundamental one being the diret numerial fully-dynami approah, onsisting in performingthe fully-dynami preise orbit determination of GOCE, and the alternative being a �rst-orderapproah, onsisting in determining the orretions to the tidal parameters of the referene modelused through a least-square di�erential orretion of the GPS phase observation residuals.In Chapter 5 a sensitivity analysis of the oean tide perturbations on GOCE is performed,omputing the analytial spetral analysis and the statistis perturbation by oe�ient of radial,transverse and normal perturbations on GOCE; alias periods of eah tidal term are also alulatedand the list of oean tide parameters to be estimated with the multiar approah is de�ned.In Chapter 6 the proessing of GOCE orbital data is presented and the preliminary results ofthe oean tide parameter estimation are disussed, showing the omparison with o�ial redued-dynami PSO and orbits omputed with the referene FES2004 oean tide model.In Chapter 7 the onlusions are reported.



Riassunto
Da diei anni, le missioni gravimetrihe satellitari CHAMP, GRACE e GOCE stanno ontin-uamente migliorando la nostra onosenza del ampo gravitazionale terrestre, sia della suaomponente statia he tempo variabile, aumentando la risoluzione spaziale e temporale �noai livelli estremamente elevati rihiesti da molte appliazioni geosienti�he, ome la Geode-sia, l'Oeanogra�a e la Fisia della Terra solida. In partiolare, il presente lavoro di riera sionentra sulla parte periodiamente variabile del geopotenziale indotta dalle maree oeanihee riguarda la stima dei parametri di marea oeania dall'analisi delle perturbazioni orbitali diGOCE.Le maree sono fenomeni periodii he interessano sia la Terra solida he gli oeani. Sonoausate dall'attrazione gravitazionale di�erenziale sulla super�ie della Terra da parte dei orpiperturbativi esterni, il ui potenziale orrispondente è hiamato Potenziale Generatore di Marea(TGP, Tide-Generating Potential), e dalla onseguente risposta della super�ie terrestre a questopotenziale. Il TPG può essere direttamente determinato dalle posizioni astronomihe dei orpiperturbativi esterni, il ui e�etto è hiamato marea diretta ed è alla base della teoria della mareadi equilibrio. La marea di equilibrio, infatti, è la marea teoria he esisterebbe in una Terraideale perfettamente rigida e non rotante (nessun e�etto della forza di Coriolis), totalmente op-erta di oeani aventi una profondità uniforme, dove la risposta alle forze generatrii di marea siaistantanea e non sia presente dissipazione. Ovviamente, la marea di equilibrio non rappresenta lamarea reale, essendo troppo piola rispetto alle marea osservata, tuttavia è un importante rifer-imento per l'analisi dei fenomeni mareali, in quanto ontribuise a darne un ordine di grandezza.Invee, la vera risposta della Terra solida e degli oeani al TPG, hiamata anhe marea indiretta,dipende dalle proprietà elastihe della Terra. Le Equazioni Mareali di Laplae (LTE, LaplaeTidal Equations) sono introdotte per spiegare le relazioni tra gli oeani, la Terra solida e l'e�ettodi ario degli oeani sulla terra solida (marea di loading), in modo da derivare le equazionifondamentali del ampi di altezza di marea oeania e del potenziale di marea oeania.Vengono desritte quindi le due prinipali parametrizzazioni del ampo di altezza di mareaoeania. La rappresentazione lassia in armonihe sferihe è aratterizzata da una somma dialtezze di marea parziali, iasuna orrispondente a una frequenza di marea, mentre l'analisi dellarisposta (Response Method) assume l'esistenza di una funzione di trasferimento o una rispostaimpulsiva tra le forze di marea e il ampo di altezza di marea oeania he è lineare all'internodi iasuna banda mareale.Le mappe otidali e di orange sono riportate per le prinipali ostituenti di marea diurne esemidiurne (K1, P1, O1, Q1, M2, S2, K2, N2), e sono utili per visualizzare il ontenuto dinamiodell'altezza di marea oeania indotto dalla loro frequenza. Inoltre, viene illustrato lo sviluppo unnuovo algoritmo di alolo per la rideterminazione aurata dei oe�ienti di ortomarea di Grovese Reynolds e i orrispondenti risultati numerii ottenuti sono disussi all'interno del formalismodelle ortomaree.Per stimare i parametri armonii di marea oeania si è deiso di utilizzare il satellite attual-mente posto sull'orbita più bassa attorno alla Terra, ovvero GOCE, osì da ottenere sulla suaXI



XIIperturbazione d'orbita i segnali di marea più ampi possibili. GOCE (Gravity �eld and steady-state Oean Cirulation Explorer) è un satellite LEO he è stato laniato dall'Agenzia SpazialeEuropea (ESA, European Spae Ageny) il 17 marzo 2009 e orbita ad un'altezza di ira 250 km,su un'orbita eliosinrona quasi irolare, avente un'inlinazione di ira 96.7 gradi. Gli obiettiviprinipali di GOCE sono la mappatura della parte statia del ampo gravitazionale terrestre onuna preisione senza preedenti pari a 1 mGal (10−5 m/s2) e il modellamento del geoide on unaauratezza di 1-2 m, entrambi on una risoluzione spaziale di 100 km. Per raggiungere questiobiettivi, GOCE trasporta a bordo per la prima volta un Gradiometro Gravitazionale Elettro-statio (EGG, Eletrostati Gravity Gradiometer) per misurare il gradiente di gravità lungo tredirezioni ortogonali e uno strumento per l'inseguimento d'orbita da satellite a satellite (SSTI),ostituito da un rievitore GPS. Le aratteristihe spettrali di questi due tipi di misure sonoomplementari. Tuttavia, le misure gradiometrihe di GOCE permettono di riostruire la partedel ampo gravitazionale a bassa frequenza, e sono solo marginalmente sensibili agli e�etti dellemaree oeanihe. Per questa ragione, in questo lavoro verranno utilizzati solamente i dati delrievitore GPS di GOCE, in quanto GOCE è partiolarmente sensibile alle perturbazioni orbitaliindotte dalle maree per via della sua altitudine estremamente bassa he lo rende un eellentebano di prova per l'appliazione del metodo lassio dell'analisi delle perturbazioni orbitali perla stima dei parametri di marea.Per il proessamento dei dati orbitali di GOCE, sono state onsiderate diverse proedure dianalisi, ma alla �ne è stato selto l'approio numerio diretto, he onsiste in una determinazioneorbitale preisa di GOCE totalmente dinamia on l'aumulazione delle equazioni normali perogni aro orbitale, seguiti da una soluzione multiaro per la stima dei parametri di marea oeaniaglobali.. Lo strumento selto per eseguire questa analisi è il software NAPEOS sviluppato emantenuto dall'ESA, he permette la determinazione e predizione orbitale e la stima di parametri.La stima dei parametri di marea oeania, tuttavia, non era già presente in NAPEOS ed è stataimplementata solo dopo aver aquisito il sistema. E stato neessario aggiornare NAPEOS onimplementazione ompleta delle derivate parziali rispetto ai parametri di marea oeanihe edestendere le sue strutture dati per l'inlusione delle aratteristihe dei parametri: la ostituentidi marea, il tipo armonio (C or S), l'ordine e il grado armonii e la hiralità (prograda oretrogada).Il ompito fondamentale per raggiungere gli obiettivi sienti�i di questo studio è la de�nizionedi un set di parametri di marea oeania verso i quali GOCE è maggiormente sensibile. A talesopo, è stato e�ettuato uno studio dettagliato della sensibilità dell'orbita di GOCE alle per-turbazioni di marea oeania, portato avanti usando ome modello di riferimento il FES2004.Innanzitutto, è stato valutato l'e�etto delle varie ombinazioni delle ostituenti delle mareeoeanihe sull'orbita di GOCE su di�erenti intervalli di tempo. Poi le aelerazioni delle mareeoeanihe agenti sull'orbita di GOCE sono state determinate usando di�erenti modelli esistenti dimarea oeania. Quindi, a partire dall'evoluzione degli elementi orbitali di GOCE resa disponi-bile grazie a una POD preliminare di GOCE on NAPEOS, sono state stimate le aratteristiheorbitali medie di GOCE (riportate in Tabella 2) tramite un �t lineare ai minimi quadrati.Utilizzando la teoria lineare di Kaula, è stata e�ettuata l'analisi spettrale analitia delleperturbazioni delle maree oeanihe agenti sull'orbita di GOCE nelle direzioni radiale, trasversa enormale (RTN) �no a ordine e grado 20, assieme alla statistia delle perturbazioni per oe�iente.Gli spettri delle ampiezze prograde nel sistema RTN sono mostrati rispettivamente nelle Figure 9,10, 11, mentre l'RMS delle perturbazioni di marea aumulato su tutte le ostituenti nel sistemaRTN è mostrato rispettivamente nelle Figure 12, 13, 14, in ui è possibile notare un RMS massimoper la omponente radiale di 1.323 m, per la trasversa di 363.136 m e per la normale di 76.241m. GOCE risente del problema dell'aliasing temporale delle frequenze di perturbazione mareale,in quanto ampiona il ampo gravitazionale statio e la parte tempo-variante solamente lungo ilperorso della sua orbita, on una risoluzione temporale he dipende dal suo periodo di ripetizione



XIIITable 2. Elementi orbitali medi di GOCE e loro variazioni utilizzati per l'analisi spettrale delle perturbazionimareali su GOCE. Elemento Valore
ā 6632.884525 km
ē 2.306273 × 10−3

ī 1.686227 rad
ω0 1.845595 rad
Ω0 5.471748 rad
M0 0.971383 rad
ω̇ −3.764817 × 10−7 rad/s
Ω̇ 2.022334 × 10−7 rad/s
Ṁ 1.167455 × 10−3 rad/sNodal Period 89.728100 minRepeat Period 979 revs/61 nodal days
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Figure 9. Spettro d'ampiezza della perturbazione prograda radiale in posizione dovuta alle maree oeanihe.
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Figure 10. Spettro d'ampiezza della perturbazione prograda trasversa in posizione dovuta alle maree oeanihe.
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Figure 11. Spettro d'ampiezza della perturbazione prograda normale in posizione dovuta alle maree oeanihe.

Figure 12. RMS aumulato per oe�iente sulle ostituenti dovuto alla perturbazione radiale delle mareeoeanihe in posizione.
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Figure 13. RMS aumulato per oe�iente sulle ostituenti dovuto alla perturbazione trasversa delle mareeoeanihe in posizione.

Figure 14. RMS aumulato per oe�iente sulle ostituenti dovuto alla perturbazione normale delle mareeoeanihe in posizione.



XVIdella traia a terra. Seguendo da viino un periodo di ripetizione di 979 rivoluzioni in 61 giorninodali, il ampionamento di GOCE ausa aliasing delle frequenze mareali aventi un periodoinferiore a 122 giorni (due volte il periodo di ripetizione dell'orbita), le quali verrano spostate aperiodi più lunghi, ompresi tra 122 giorni e diversi anni. Sfortunatamente GOCE è un satellitein orbita eliosinrona e pertanto non permette la stima ompleta delle ostituenti delle mareesolari diurne e semidiurne S2 and S1, aventi periodi di esattamente 12 e 24 ore, dato he ampionaentrambe queste ostituenti alla stessa fase ogni giorno. In partiolare, durante l'analisi spettrale,sono stati alolati i prinipali periodi di aliasing per tutte le frequenze di perturbazione dellemaree oeanihe. Si è tenuto onto anhe della durata del set di dati GOCE a disposizione: vistii 400 giorni di misure a disposizione, il limite oltre il quale GOCE non è più apae di stimareun parametro è di ira 200 giorni. Si è selto di non stimare i oe�ienti (l,m) se la più grandeampiezza parziale dello spettro, tra tutte quelle he ontribuisono alla stessa oppia (l,m), haun periodo di aliasing di oltre i 200 giorni.Combinando le informazioni derivanti dall'analisi spettrale, dalla statistia delle perturbazioniper oe�iente e dalla determinazione dei periodi di aliasing delle maree oeanihe, si può iden-ti�are la griglia dei parametri di marea oeania da grado 2 �no a 20 he devono essere stimation i dati orbitali di GOCE. Si tratta in tutto di 490 parametri. Il numero totale di parametri dastimare è limitato appliando un valore di soglia sugli RMS delle perturbazioni per oe�iente,rispettivamente di 5 mm per la omponente radiale, 2 m per la trasversa e 1 m per la normale,sia nel aso progrado he retrogrado.I dati orbitali di GOCE sono stati proessati suddividendoli in arhi giornalieri dal 1 novembre2009 (l'inizio della fase operativa) al 31 maggio 2011. Per l'analisi multiaro sono stati onsideratisolamente gli arhi on un RMS di post-�t dei residui di fase GPS inferiore a 8 mm, per un totaledi 431 giorni.I risultati preliminari ottenuti mostrano he il 56% del numero totale di parametri di�erisedai parametri del FES2004 per meno di 1 m, mentre l'errore relativo dei parametri stimatirispetto ai orrispettivi parametri del FES2004 è inferiore a 1 per ira il 16% del totale, indiandohe sono dello stesso ordine di grandezza dei parametri del FES2004.In�ne, i dati orbitali di GOCE sono stati riproessati dal primo novembre 2009 al 31 maggio2011, inizializzando il modello di marea oeania on i parametri stimati, se presenti, mantenendoaltrimenti i parametri del FES2004. L'RMS di post-�t dei residui degli osservabili di fase GPSottenuti on il nuovo modello di marea oeania ha un valore medio di 6.5 mm, ed è da notareome la di�erenza tra l'RMS post-�t ottenuto on il FES2004 e l'RMS risultante dal nuovomodello di marea oeania mostra un miglioramento di ira 0.6 mm per il 96% degli arhianalizzati e superiore a 1 mm per il 16%, mentre per aluni arhi raggiunge una di�erenza di 2mm (si veda Figura 15).Conludendo, il onfronto delle orbite mostra he l'RMS 3D delle di�erenze tra le orbitealolate usanto il FES2004 e quelle rialolate on i nuovi parametri mostra un valore mediodi 2.5 m, mentre l'RMS 3D delle di�erenze rispetto alle PSO a dinamia ridotta (R/D PreiseSiene Orbit) u�iali ha un valore medio di 4.9 m. Le di�erenze tra l'RMS 3D dei residuiorbitali tra la PSO e la POD di GOCE on il FES2004 e l'RMS dei residui orbitali tra la PSOdi GOCE e la POD di GOCE on i nuovi parametri mostra un miglioramento in media di ira0.9 m (si veda Figura 16).Certamente, si rendono neessari ulteriori eseuzioni dei proessi di POD e Multiaro, assiemeal ra�namento della lista dei parametri da stimare, andando a rimuovere quelli eessivamentemal stimati e introduendo opportunamente nuovi parametri. Inoltre, un'estensione del set didati di GOCE su un periodo più lungo dovrebbe onsentire un sostanziale miglioramento deirisultati. Infatti, sebbene il ompito sia stato estremamente ompliato e serrato, i risultatipreliminari ottenuti sono motivo di inoraggiamento per ulteriori analisi.La struttura di questa tesi è la seguente. Nel Capitolo 1 verrà presentato lo stato dell'arte delleprinipali tenihe di geodesia spaziale, per introdurre i tre onetti di misure he aratterizzano
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Figure 15. Di�erenze tra l'RMS del �t ottenuto usando il FES2004 e l'RMS del �t ottenuto on i nuovi parametridi marea oeania, invee dei orrispondenti parametri del FES2004.
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Figure 16. Di�erenze tra gli RMS 3D.



XVIIIle nuove generazioni di missioni gravimetrihe spaziali, CHAMP, GRACE e GOCE.Nel Capitolo 2 verranno illustrate la teoria e lo sviluppo matematio riguardanti la forzamareale.Nel Capitolo 3 saranno desritte le parametrizzazioni delle altezze di marea oeania, sof-fermandosi in partiolare sulla lassia rappresentazione in armonihe e sul formalismo dellaonvoluzione, il quale inlude il metodo di risposta e i metodo delle ortomaree.Nel Capitolo 4 verranno spiegate due strategie per l'analisi dei dati orbitali di GOCE, dovel'approio fondamentale è quello numerio diretto pienamente dinamio, onsistente nell'eseguirela determinazione orbitale di GOCE totalmente dinamia. Il metodo alternativo è un approiodel primo ordine, dove si determinano le orrezioni ai parametri mareali del modello di riferimentoattraverso una orrezione di�erenziale ai minimi quadrati dei residui delle osservazioni di faseGPS.Nel Capitolo 5 verrà eseguita l'analisi della sensitività delle perturbazioni dei parametri dimarea su GOCE, alolando l'analisi spettrale analitia e la statistia delle perturbazioni peroe�iente delle perturbazioni radiali, trasverse e normali su GOCE; verranno inoltre alolati iperiodi di aliasing di iasun termine mareale e de�nita la lista dei parametri di marea da stimareon l'approio multiaro.Nel Capitolo 6 verrà presentata l'analisi dei dati orbitali di GOCE e saranno disussi i risultatipreliminari della stima dei parametri di marea oeania, mostrando i onfronti on le orbite PSOu�iali a dinamia ridotta e le orbite determinate on il modello di marea oeania di riferimento,il FES2004.Nel Capitolo 7 saranno riportate le onlusioni.
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Chapter 1The new generation of gravity missionsIn this hapter, a bakground of the main spae geodeti tehniques is brie�y presented in orderto illustrate in more details the three di�erent measurement onepts haraterizing the newgeneration of satellite gravity missions CHAMP, GRACE and GOCE. Finally, the improvementsobtainable in the future satellite gravity missions from formation �ying tehnologies are disussed.1.1 IntrodutionSine the beginning of the spae age, the determination of the Earth's gravity �eld has alwaysbeen one of the main interests of the earth-siene ommunity. The gravitational fore is respon-sible for many dynami proesses happening within the Earth's interior and on its surfae, suhas mantle onvetion, oean and atmosphere irulation, solid Earth and oean tides, ie distribu-tion and sea-level hange, post-glaial rebound and tetoni motions. All of these proesses a�etthe distribution of mass on the Earth and produe temporal variations in the gravitational �eld,so an aurate gravity reovery is a neessary prerequisite for appliations in di�erent sienti�disiplines, like oeanography, glaiology, geophysis and limatology and plays a dominant rolein geodesy, the siene onerned with the study of the shape and size of the Earth, its gravity�eld, its orientation in spae and the variations of these quantities over time.The roots of satellite geodesy an be dated in 1802, when Laplae determined the dynamial�attening of the Earth from the motion of the lunar node, treating the Moon as an arti�ialsatellite. In the pre-satellite era the knowledge of the Earth's gravity �eld was based on terrestrialand airborne measurements and it was available with high auray only in few areas of the world.Only by means of satellites, the knowledge of the Earth's gravity �eld an be ahieved globally,homogeneously and within a reasonable time period. The proper era of satellite geodesy startedwith the launh of the �rst arti�ial satellite, Sputnik-1 (URSS), on 4 Otober 1957 and withthe important geodeti result of the determination of the Earth's �attening as f = 1/298.3 fromtraking observations of Sputnik-2 (URSS) and Explorer-1 (NASA) in 1958.The development of new tehnologies, relying on preise distane or phase measurementstransmitted or re�eted from extraterrestrial objets, suh as quasars, the Moon or arti�ialsatellites, has enhaned knowledge of the global Earth's gravity �eld and the geoid1. In partiular,spae geodesy has beome a dialeti siene, in the sense that the geopotential models are betterknown by the aurate orbit determination satellites and, at the same time, the position ofsatellites is better loalized by improved potential models. Nowadays, four main spae geodetitehniques an be lassi�ed (Shubert, 2007):
• Very Long Baseline Interferometry (VLBI), a radio measurement system that determinesthe di�erene in arrival times of radio signals by ross-orrelation; in partiular, VLBI1The geoid is the equipotential surfae orresponding to the mean sea level of an hypothetial oean at rest.1



2 Chapter 1. The new generation of gravity missionsmeasurements are made at two high frequenies, about 2.3 GHz and 8 GHz, and are a�etedby a propagation delay due to the ionosphere that an be removed by a dual-frequenyorretion; typially, observations are made in sessions with a duration of about 24 hours;VLBI is sensitive to proesses hanging the relative position of the radio telesopes withrespet to the soure, suh as solid Earth tides or tetoni motions; it is mostly used foraurate measurements of polar motion and UT1;
• Satellite and Lunar Laser Ranging (SLR and LLR), optial systems measuring the timeof �ight required for laser pulses to travel from a ground laser transmitter to a satelliteequipped with retro-re�etors and to return bak; this time is then onverted into a distanemeasurement between the satellite and the observing station with an auray of 1-10 mm.Like the previous tehnique, SLR is sensitive to proesses that hange the distane betweenthe satellite and the observing site and an be used to determine the temporal variationsof the Earth's gravity �eld and the loation of the Earth's entre of mass. LLR is similarto SLR exept that retro-re�etors are loated on the Moon and onsequently the reeivedsignal is muh weaker, needing more powerful laser and detetion systems;
• Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), a radio sys-tem developed by the Centre National d'Etudes Spatiales (CNES) and used sine 1990. Itonsists of more than 50 transmitting beaons globally distributed on the Earth's surfaeand reeivers loated onboard arti�ial satellites, with the aim to provide preise groundloation and preise orbit determination, in partiular traking satellites for radar altime-try appliations. DORIS uses a dual-frequeny Doppler traking that allows to orretfor ionospheri e�ets and operates by aurately measuring the Doppler shift of the twoseparate signals (2036.25 MHz and 401.25 MHz) transmitted from ground stations andreeived onboard the satellites. These measurements allow to derive the veloity of thesatellites on their orbits and are proessed to determine the preise satellite positions andother quantities, suh as the Earth Orientation Parameters (EOP);
• Global Navigation Satellite Systems (GPS, GLONASS), radio systems providing inexpen-sive, highly aurate, global and ontinuous positioning measurements. GNSS systemsonsist of onstellations of transmitting satellites and a ground network of reeivers. Theyan be used for a large variety of appliations in the �elds of navigation, geodesy andtiming, in partiular for satellite POD and Earth gravity �eld improvement.In reent deades a wide variety of satellite mission have been planned for geodeti applia-tions by ombining the spae-based tehniques desribed above and among them we illustratethe most relevant. LAGEOS-1 (LAser GEOdynamis Satellite) and LAGEOS-2, launhed re-spetively by NASA in 1976 and by NASA/ASI in 1992, were passive spherial satellites plaedat an altitude of 5900 km and overed with 426 orner-ube retro-re�etors used to re�et laserbeams transmitted from ground stations (see Figure 1.1). LAGEOS-1 was the �rst spaeraftdediated exlusively to high-preision laser ranging: by measuring the round trip time of �ightof the laser beam, the distane between the satellites and the ground station ould be auratelydetermined, allowing to alulate station position to within 1-3 m. These satellites were de-signed to be as heavy as possible to minimize the e�ets of non-gravitational fores, to ontain asmany retro-re�etors as possible and to minimize the e�ets of solar radiation pressure; moreoverthe materials were hosen to redue the e�ets of the Earth's magneti �eld on their orbits. Dueto their harateristis, LAGEOS satellites were used mainly for orbit determination and gravity�eld reovery purposes.Also STARLETTE (Satellite de Taille Adaptée ave Ré�eteurs Laser por les ETudes dela TErre) and Stella, launhed by CNES respetively in 1975 and 1993, are passive spherialbodies overed with 60 retro-re�etors (see Figure 1.1). Their small size ompared to their massallows their use mainly to determine the gravitational attration than other fores suh as the



1.2. Complementary satellite gravity missions 3atmospheri drag or the solar radiation pressure. In partiular Starlette is very sensitive to zonalvariations in the gravity �eld, more than the LAGEOS, while Stella is mainly used for gravity�eld reovery.The altimetry mission TOPEX/Poseidon, launhed by NASA/CNES in 1992 and ended in2005, provided information about oean topography, oean irulation and their interation withthe atmosphere with unpreedented auray employing three independent geodeti tehniques(SLR, DORIS and GPS) to determine the satellite altitude.ERS-2 (European Remote Sensing) satellite was launhed by ESA in 1995 and was equippedwith a radar altimeter to measure oean surfae temperature and winds and a sensor for atmo-spheri ozone researh.
Figure 1.1. On the left: artisti piture of LAGEOS 1 (GSFC web site http://library01.gsf.nasa.gov/); on theright: artisti piture of Starlette and Stella (GSFC web site http://ilrs.gsf.nasa.gov/).Jason-1, launhed by NASA/CNES in 2001 as follow-on to the highly suessful TOPEX/Poseidonmission, is a mirowave altimeter used primarily for oean studies.ENVISAT (ENVIronmental SATellite), launhed by ESA in 2002, suessor to ERS-2, arriesboth a radar altimeter and a DORIS traking reeiver to provide ontinuous observation andmonitoring of the Earth's land, atmosphere, oeans and ie aps.ICESat (Ie, Cloud and land Elevation Satellite), launhed by NASA in 2003, is a laseraltimeter used primarily for polar ie-sheet studies. The laser altimeter measures height fromthe spaeraft to the ie sheet with an preision of better than 10 m. The height measurementsoupled with the radial orbit positions, provided by a ombination of satellite laser ranging andGPS data, allows the determination of topography.1.2 Complementary satellite gravity missionsBefore the launh of the �rst satellite, the knowledge of the Earth's gravity �eld was based onlyon terrestrial and airborne observations allowing high aurate measurements in few regions ofthe world, while in others there were even no gravity data.In the last ten years, the more stringent requirements of preision neessary for varioussienti� disiplines have motivated the planning of three dediated satellite gravity missions(CHAMP, GRACE, GOCE), with the aim to improve auray and spatial resolution of theEarth's gravity �eld models. Three di�erent measurement onepts of the Earth's gravity �eldhave been realized (see Figure 1.2):
• high-low satellite-to-satellite traking (SST-hl), employed by CHAMP mission, in whih theLEO satellite orbit is ontinuously determined by GNSS systems and the 3D aelerometeronboard the satellite allows to obtain the aelerations aused by the Earth's gravity �eld,orresponding to the �rst derivatives of the gravitational potential;
• low-low satellite-to-satellite traking (SST-ll), employed by GRACE mission, that measuresthe di�erene between the aelerations ating on the two LEO satellites, in suh a way

http://library01.gsfc.nasa.gov/cgi-bin/gdprojs/searchAlpha.pl?letter=L
http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/stel_general.html


4 Chapter 1. The new generation of gravity missionsthat the e�ets of non gravitational aelerations, as atmospheri drag and solar radiationpressure, an be eliminated;
• Satellite Gravity Gradiometry (SGG), employed by GOCE mission, that determines theloal gravity gradient by measuring the di�erenes in aeleration of two masses within asingle spaeraft, orresponding to the seond derivative of the gravitational potential.The fundamental parameter that determines the sensitivity with respet to the spatial salesof the Earth's gravitational potential is the distane between the test masses (Hofmann-Wellenhof& Moritz, 2005). In pratie, the ase of SST-hl onsists in an aeleration determination over analmost in�nite baseline orresponding to the distane between the satellite and the Earth; SST-llonsists in an aeleration di�erene determination over a long baseline orresponding to thedistane between the two LEO satellites; SGG onsists in an aeleration gradient determinationover an almost zero baseline realized by the gradiometer axes. Consequently, while the low-low SST provides aurate long and mid wavelength model, the gravity gradiometry providesaurate short wavelength model, thus GRACE and GOCE missions are omplementary to eahother.

(a) SST-hl (b) SST-ll

() SGGFigure 1.2. Measurement onepts of three di�erent satellite gravity missions (ESA SP-1233(1), 1999).The purpose of these three measurement onepts is to ounterat the natural attenuationof the gravitational �eld with altitude by di�erential measurement, where the gravitational sen-sitivity inreases with dereasing distane between the test masses. Finally, it must be notiedthat high resolutions require relatively low satellite orbits, while the determination of temporallyvarying phenomena improves as the time span of the measurements inreases.



1.2. Complementary satellite gravity missions 51.2.1 CHAMPCHAMP (CHAllenging Minisatellite Payload) (Reigber, 1998) is a German mission under theleadership of the GFZ in Potsdam and with the partnership of NASA, CNES and AFRL (AirFore Researh Laboratories, USA). The satellite was launhed in 2000 from Plesetzk, Russia,onto an almost irular, near polar orbit, with an average altitude of 450 km. Although thedesign lifetime of the satellite system was 5 years, CHAMP is urrently olleting data used formany sienti� appliations, suh as GPS radio oultation.

Figure 1.3. Artisti piture of CHAMP (GFZ web site http://op.gfz-potsdam.de/hamp/).The primary objetives of CHAMP are the mapping of the global stati Earth's gravity �eldtogether with the reovering of the global magneti �eld and the pro�ling of the ionosphere andthe troposphere (see Figure 1.3). The main instruments to ahieve the mission goals are:
• a dual-frequeny GPS reeiver (provided by NASA/JPL), to determine the satellite orbit;
• a three-axis aelerometer (provided by CNES), to measure the non-gravitational aeler-ations ating on the satellite whih are mainly due to atmospheri drag, solar radiationpressure, Earth albedo radiation and attitude maneuvers. Using these measurements al-lows to generate a dynami orbit of the LEO without modeling the non-gravitational foreswhih is very helpful for gravity �eld reovery. A old gas propulsion system has been em-ployed in order to ontrol the attitude and to perform orbit hange maneuvers; the attitudeof the spaeraft is not stable over a long time period due to the design of the satellite.The attitude is orreted by thruster pulses of the old gas propulsion system, whih mayhappen between 70 and 200 times per day;
• a laser retro-re�etor array for SLR measurements. The SLR tehnique is a ompletelyindependent tehnique to determine preise orbits for the LEO. SLR observations are a-urate at the m level, unambiguous and free of atmospheri propagation e�ets due towater vapor. This is why the SLR tehnique is very useful for alibrating the orbit resultingfrom the GPS traking;
• a �uxgate magnetometer, to measure the vetor omponents of the Earth's magneti �eld.1.2.2 GRACEGRACE (Gravity Reovery And Climate Experiment), launhed in 2002, may be onsidered asthe follow-on of CHAMP mission. It is a joint projet between NASA and DLR and onsistsof two Earth satellites (see Figure 1.4), following eah other along the same orbital trajetory,with an along trak relative distane of 220 km ± 50 km. The inlination of the orbit is about89◦ to maximize the global overage and the orbit altitude, initially 500 km, is dereasing toabout 300 km. The main purpose of GRACE is the determination of the Earth's gravity �eldand its temporal variations. A K-Band Ranging (KBR) system is the fundamental instrument of

http://op.gfz-potsdam.de/champ/index_CHAMP.html


6 Chapter 1. The new generation of gravity missionsGRACE beause it allows to measure the range and range-rate between the two spaerafts witha preision of respetively 10 µm and 1 µm/s with a 5 s data sampling interval. This dual-bandmirowave link provides a new and independent observation type for mapping the gravity �eldof the Earth.

Figure 1.4. Artisti piture of GRACE (http://www.sr.utexas.edu/grae/).The dual one-way K (24.5 GHz) and Ka (32.7 GHz) band mirowave inter-satellite rangingsystem with a preision of 10 µm (Kim et al., 2001), the Ultra-Stable Osillator (USO) aurate towithin 70 ps for time-tagging, the 3-axis super-STAR aelerometers with a preision of 4×10−12m/s2 (Davis et al., 1999; Perret et al., 2001) within the bandwidth of 2× 10−4 − 0.1 Hz (Kanget al., 2006), and the dual-frequeny 24-hannel Blakjak GPS reeivers omprise GRACE'sinstrument suite.The orbits of the two satellites, sensing these e�ets at slightly di�erent phases, will beperturbed di�erentially. This di�erene in perturbations is manifested in the intersatellite rangehanges. The GRACE mirowave ranging instrument will provide very aurate measurements ofthe range hanges. By making these di�erential measurements enables signi�ant improvementin the estimates of the higher resolution features of the Earth gravity �eld.
1.2.3 GOCEGOCE (Gravity �eld and steady-state Oean Cirulation Explorer) was launhed on 17 Marh2009 (see Figure 1.5) as the �rst Earth Explorer ore mission of the ESA Living Planet Program.GOCE is �ying at the very low altitude of about 260 km on a dusk-dawn nearly Sun-synhronousand near irular orbit, inlined 96.5◦ with respet to the Earth's equator. In partiular, the dusk-dawn nearly Sun-synhronous orbit assures a stable energy supply from the solar panels, meaningthat the orientation of the satellite orbital plane is onstant relative to the diretion to the Sunand the loal time at the asending node is 18 h, so the orbital plane remains approximatelyperpendiular towards the Sun diretion. Moreover, GOCE is a very slim satellite with a ross-setional area of 1.1 m2, a length of 5.3 m and a weight of about 1050 kg.The main purpose of GOCE is to map the stati part of Earth's gravity �eld with an un-preedented preision of 1 mGal = 10−5 m/s2 and to model the geoid with an auray of 1 m,ahieving these results at a spatial resolution of 100 km.

http://www.csr.utexas.edu/grace/
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Figure 1.5. Artisti piture of GOCE (ESA web site http://www.esa.int/esaLP/).The main sienti� payload onboard GOCE is a three-axis Eletrostati Gravity Gradiometer(EGG), for the �rst time employed in a satellite mission. The EGG onsists of three pairs ofaelerometers along three spatial orthogonal diretions and two aelerometers of the same pairare mounted at 50 m distane to eah other. The proof masses are made of platinum-rhodiumalloy with a dimension of 4 m by 4 m by 1 m. The priniple of operation of an aelerometer isthat a proof mass is �oated in a small age and is kept in the entre of the age by eletrostatifores, representing the aelerations seen by the proof mass. The aelerations measured byeah aelerometer an be as small as one part in 10,000,000,000,000 of the gravity aelerationon the Earth.Beause the aelerations of the masses is very weak and subjet to noise or dissipativefores, the method of di�erential measurement is used. In fat, the di�erene in the aelerationsof two aelerometers belonging to the same arm is measured, allowing to remove noise anddisturbing fores that a�et both aelerometers in the same manner. The remaining signalis the Earth's gravity gradient along the arm diretion, in other words the seond derivativeof the gravitational potential, and it represents the basi sienti� produt of GOCE (ESASP-1233(1), 1999). In partiular, GOCE gradiometer has two ultra-sensitive axes and a lesssensitive axis. It provides very sensitive measurements of the three linear and the three angularaelerations of the spaeraft, the three in-line gravity gradient omponents Vxx, Vyy, Vzz (Xindiating the �ight diretion and Z pointing approximately radially away from the Earth) ofthe Earth gravity gradient tensor Vij and of one o�-diagonal gravity gradient term Vxz in theXZ plane to maximize the sensitivity of the determination of the angular aelerations aboutthe Y-axis. The two remaining o�-diagonal gravity gradient terms Vxy and Vyz are estimatedwith muh lower sensitivity (ESA SP-1233(1), 1999). The result of a siene measurement phaseis a gravity gradient map overing our planet exept for small areas around the poles. Thegradiometer is used to reover the short-wavelength part of the gravity �eld: the measurementbandwidth overs the frequeny range between 5 mHz and 100 mHz.The average aeleration of two aelerometers in one arm is also measured. This averagerepresents the external non-gravitational fores ating on the spaeraft, like atmospheri dragand solar radiation pressure. This information is used to ommand the eletri ion propulsionengine to ontinuously ompensate the atmospheri drag fores and torques and keep the satellite�ying drag-free in the in-�ight diretion. The air density average value during the sienti�mission is about 5.6 × 10−14 g/m3, orresponding to an altitude around 260 km. The varyingthrust level when in drag-free mode is due to hanges in the solar ativity, whih has inreasedsigni�antly starting from Marh 2011, ausing the average thrust level to jump from about 2.7mN to 4 mN, with peaks of instantaneous thrust of 7.6 mN, not a�eting, obviously, the GOCEaltitude.The seond sienti� payload of GOCE is the 12-hannel LAGRANGE (Laben GNSS Reeiverfor Advaned Navigation, Geodesy and Experiments) GPS reeiver, working on both L1 and L2frequenies, with a sampling rate of 1 Hz. Satellite-to-Satellite-Traking in high-low mode (SST-

http://www.esa.int/esaLP/ESA1MK1VMOC_LPgoce_0.html


8 Chapter 1. The new generation of gravity missionshl) is used for the orbit determination and for retrieval of the long- and medium-wavelength partof the gravity �eld.The tehniques of gradiometry and SST-hl are omplementary, allowing the reovery of thegravity �eld over all the spatial sales. The point of overlap between the gravity retrieval apa-bilities of SST-hl and gradiometry begins at around degree and order L = 15 (resolution of 1300km) and ends at degree and order L = 60 (resolution of 330 km).Finally, GOCE is arrying onboard a laser retro-re�etor array, used for SLR measurements,providing mainly an independent validation of the GPS POD, star ameras for the attitudeontrol and an ion thruster for the realization of a drag-free ontrol of the satellite in along-trakdiretion.1.3 Future satellite gravity missionsSatellite gravity missions suh as CHAMP, GRACE and GOCE, together with other omple-mentary information, are ontinuously improving our knowledge of the stati and temporallyhanging gravity �eld, inreasing spatial and temporal resolution to a high level required bymany geosiene appliations. Despite the always better auray in the gravity �eld reovery,some intrinsi limitations remain unremovable in urrent gravity missions. The limited missionduration prevents from the possibility of a ontinuous monitoring of hanges in Earth's gravity�eld and mass transport in the Earth system; moreover eah mission provides observable havinga proper diretional sensitivity and onsequently a non-isotropi error behavior.Future satellite gravity missions will probably make use of the formation �ying tehnologiesto solve the non-isotropy problem and some other ritiality. A satellite formation onsists of aonstellation of two or more satellites performing relative motion around a ommon enter usingan ative ontrol sheme to maintain their relative positions and veloities. GRACE also anbe seen as the most simple type of formation, named leader-follower on�guration, harater-ized by an along-trak orientation, so its observable su�ers from a weak information along theline-of-sight. On the other hand, in a generi formation with more than two satellites, the mea-sure of the distanes between the satellites inludes information about the radial gravitationalsignal, while a relative inlination between the satellites an provide a ross-trak gravitationalinformation. A �rst fundamental advantage is that the observations in suh formations are sig-ni�antly riher in gravitational ontent, leading to a higher S/N ratio. Moreover the globalinformation deriving from satellites �ying in formation an drastially derease the non-isotropyof the low-low satellite traking observations and in partiular the ross-trak information mayredue the aliasing problem (Sneeuw & Shaub, 2004) beause it allows to gain sensitivity inEast-West diretion. In pratie, a formation with su�iently many satellites ould permit todetermine the full tensor of gravity gradients. Furthermore, the GPS positioning of a satellitein a formation may be determined with a muh higher auray than positioning of a singlesatellite. Finally formation �ying presents the pratial advantages of improving the missionsurvivability and reduing mission osts.These future formation �ying missions will probably make use of laser traking and atomi in-terferene metrology systems for measuring the variation of the satellite-satellite relative distaneaused by external perturbations.In 2004 Thales Alenia Spae Italia (TAS-I) reeived by the European Spae Ageny (ESA)a ontrat for studying a new gravimetry mission, named Satellite-to-Satellite Interferometry(SSI), with the objetive of monitoring the temporal variations of the Earth's gravity �eld athigh resolution up to harmoni degree n = 180−240, as in GOCE and over a long period of timeequal to 5-10 years, as in CHAMP and GRACE (Cesare et al., 2006). Changes in the relativespaing between two satellites produed by the geopotential is measured by a Mihelson laserinterferometer rather than a radio-frequeny ranging system, in partiular in any interferometritehnique the phase of two di�erent waves are ompared as a measure of relative distane between



1.3. Future satellite gravity missions 9the soures. In the interferometri tehnique, optial frequenies presents some bene�ts withrespet to the mirowave frequenies: laser interferometry has an intrinsially higher resolutionbeause hanges in the spaing on the order of the wavelength are deteted and this allowsin priniple to reonstrut the Earth's gravity �eld with a higher spatial resolution; anothersigni�ant advantage of shorter wavelengths is the dramati redution in di�ration e�ets thatsale as the wavelength.A similar onept was also onsidered for the mission EX-5, planned by NASA as the follow-on to GRACE, whih will map the Earth's variable gravity �eld using the Disturbane RedutionSystem (DRS), a tehnology that will enable spaeraft ontrol with nanometer preision.Another metrology system urrently studied is the atom interferometry gravity gradiome-ter, whih allows to make aeleration measurements on two vertially separated laser ooledensembles of esium atoms in free-fall using a pair of vertially propagating laser beams. Thepropagation axes of these laser beams are aligned to pass through both ensembles. The light-pulse atom interferene method is used to measure the aeleration of eah ensemble with respetto a referene frame de�ned by the phase fronts of the interrogating optial �elds. The di�erenebetween the measured aeleration of eah atom ensemble, divided by their separation, is a mea-sure of the in-line omponent of the gravity gradient tensor, that haraterizes the gravitational�eld inhomogeneity indued by non-uniform mass distributions (MGuirk et al., 2002).
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Chapter 2The tidal foreTides are periodial phenomena a�eting both the solid Earth and oeans, aused by the dif-ferential gravitational attration of external perturbing bodies, mainly the Moon and the Sun,on the Earth's surfae. The spherial harmoni representation of the geopotential is treated asan introdution to the mathematial development of the tide �eld. The tidal fore ats both ina diret and indiret way. The tide-generating potential an be diretly determined from theastronomial positions of the external perturbing bodies, its e�et is also alled diret tide andis the basis for the equilibrium tide theory. On the other hand, the real response of the solidEarth and oeans to this potential, also alled indiret tide, depends on the elasti properties ofthe Earth.2.1 Historial bakgroundThe �rst explanation of the oean tide phenomenon an be found in Newton's gravitationaltheory in 1687. He desribed in his monograph Philosophiae Naturalis Prinipia Mathematiahow the tides arise from the gravitational attration of the Moon and the Sun on the Earthand set the basis for the equilibrium tide theory, resulting under ertain idealized onditions.However, the problem of tide predition has been onsidered and treated only after one hundredyears.In 1798 Laplae introdued the separation into tidal speies (long period, diurnal and semidi-urnal) visualizing the possibility of the harmoni method, not proeeding further with the devel-opment and formulated his tidal equations that an not be solved analytially and their numerialsolutions depend on the bathymetry and the shape of the oastlines.In 1867 Lord Kelvin introdued the harmoni method of tidal analysis and predition, in-venting in 1972 the tide-prediting mahine.In 1883 Darwin developed and systematized the harmoni method of tidal analysis based on�tting data from disrete tide gauges to known frequenies dependent on lunar and solar motion.In this way, knowledge of oean tides was possible only near the oastlines, but not on a globalsale. He also argued that for a perfetly rigid Earth, the observed amplitude of the oean tidewould equal the theoretial value. He applied it to observations of long periodi oean tides,�nding that the amplitude was only two-third of the theoretial tides, so onluding that theEarth is not ompletely rigid, but deformable. Moreover, Darwin introdued symbols to lassifythe main frequenies of the tidal spetrum, like the M2 symbol, representing the most energetitide aused by the Moon at a semidiurnal frequeny.In 1921 Doodson performed algebraially the �rst full expansion of the tide-generating poten-tial from an analytial ephemeris up to 378 harmonis and introdued a nomenlature for eahtidal onstituent haraterized by a sequene of six integer numbers, ompatly alled Doodson11



12 Chapter 2. The tidal forenumber k, whih are used to multiply six fundamental frequenies related to the Earth, Moonand Sun astronomial motions.In 1966 Munk and Cartwright introdued the onvolution method for tide predition, alledresponse method, de�ning the admittane funtion in the frequeny domain whih represents thelinear response of the oean to the tide-generating potential ([92℄ Munk & Cartwright, 1966).Cartwright, Tayler and Edden in 1971-1973 omputed the potential from more modern lunarephemerides and then applied Fourier methods to analyze numerially the resulting series andget amplitudes for the various harmonis in units of length ([10℄ Cartwright & Tayler, 1971;[11℄ Cartwright & Edden, 1973). The tidal onstituents of the TGP have been extended to 505harmonis, whih assumed the usual name of CTE representation.In 1975 Groves and Reynolds de�ned an orthogonalized onvolution method for tide predi-tion, alled orthotide method ([51℄ Groves & Reynolds, 1975).Büllesfeld in 1985 expanded the harmoni development to 656 terms.In 1987 Tamura was the �rst to introdue tidal ontributions oming from Jupiter and Venusand its harmoni expansion was extended to 1200 terms ([117℄ Tamura, 1987).Xi in 1989 omputed the tide-generating potential up to 2933 terms.Hartmann and Wenzel in 1995 and Roosbeek in 1996 added arguments for Mars, Meruryand Saturn arriving to a total of 11 astronomi elements. Hartmann and Wenzel introdued12935 lines ([53℄ Hartmann & Wenzel, 1994; [54℄ Hartmann & Wenzel, 1995), while Roosbeekused an analytial method and introdued about 6499 lines, also aounting for indiret lunarperturbations on the Sun ([102℄ Roosbeek, 1996).Finally, the most reent tidal potential development is that of Kudryavtsev in 2004, whointrodued 28806 harmonis ([69℄ Kudryavtsev, 2004).2.2 The gravitational �eld of the EarthThe gravity potential W on a point at rest on the Earth's surfae is the sum of the gravitationalpotential V and of the entrifugal potential C ([57℄ Hofmann-Wellenhof & Moritz, 2005)1
W = V + C = G
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2 + y2), (2.1)where G = 6.6672 · 10−11 m3/kg/s is the Newton gravitational onstant, d is the distane be-tween the mass element dM ′ and the attrated point P (x, y, z), V ′ is the integration volumeorresponding to the massMe, ωe is the angular veloity of the Earth and (x2+y2) is the squareof the distane to the rotational axis. The surfaes having a onstant gravity potential are alledequipotential surfaes
W = onstant (2.2)and the partiular equipotential surfae W0 to whih the fore of gravity is everywhere perpen-diular, orresponding to the mean sea level of an hypothetial oean at rest was proposed asthe mathematial �gure of the Earth by Gauss and was then alled geoid. The gravity potential

W satis�es the generalized Poisson equation
∇2W = ∇2V +∇2C = −4πGρ+ 2ω2

e , (2.3)where ρ is the mass density of the Earth.Moreover, a referene potential U , alled normal potential, has been de�ned as the gravitypotential assoiated with a best-�tting ellipsoid of revolution, the normal ellipsoid, rotating with1In addition to the entrifugal aeleration, there is the Coriolis aeleration aCo = −2ωe × v whih ats onlyon a moving body and is zero for a body at rest on the Earth.



2.2. The gravitational �eld of the Earth 13the Earth2. The di�erene T = W − U between the atual and the normal gravity potentialsis known as the anomalous or disturbing potential and it exludes the entrifugal potential ([4℄Barthelmes, 2009). The normal gravity potential aounts for approximately 99.9995% of thetotal potential ([107℄ Shubert, 2007).Now we fous on the Earth's gravitational potential V , also alled geopotential, in orderto illustrate its mathematial modeling and its temporal variations, among whih there are theperiodi variations aused by oean tides.In general, the gravitational potential outside an extended body like the Earth, where ρ = 0,satis�es the Laplae equation
∇2V = 0, (2.4)whose solutions are solid spherial harmonis, representable as zonal, setorial and tesseral har-monis (see Figure 2.1).The inverse of the distane d between two points, respetively the �eld point P (r, λ, φ) atwhih the potential V (r, λ, φ) is to be determined and the soure point Q(r′, λ′, φ′) orrespondingto the mass element dM ′, both de�ned by the spherial polar oordinates r (radius), λ (longitude)and φ (geoentri latitude3), an be expressed as a funtion of Legendre polynomials Pl(cosψ)

1

d
=

1

r

∞∑

l=0

(
r′

r

)l

Pl(cosψ), (2.6)where ψ is the angle between the two radius vetors r and r′ with r′ < r, meaning that P (r, λ, φ)is a point outside the Brillouin sphere4 of the body, so that the series onverges. Aording tothe addition theorem for spherial harmonis5, the inverse of the distane is written as
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′, φ′), (2.8)where Ylp(θ, φ) is a surfae spherial harmoni and ∗ indiates the omplex onjugate.Thus, the stati gravitational potential beomes
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′, φ′)dM ′. (2.9)Now we introdue the omplex harmoni oe�ients Klp of the gravitational potential, alledStokes oe�ients
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′, φ′)dM ′, (2.10)2To ompletely determine the normal gravity potential U and the referene ellipsoid, four fundamental on-stants are neessary: the Earth's gravitational parameter GMe, the semimajor axis a of the ellipsoid, the Earth'sangular veloity ωe and the Earth's �attening f or the seond-degree zonal Stokes oe�ient C20.3The geoentri latitude φ is related to the geodeti latitude φgeod through the relation

φ = arctan[tan φgeod(1− f)2], (2.5)where f is the Earth's �attening.4The Brillouin sphere is the sphere of minimum volume entered in the system origin and ontaining all themass of the body, in pratie it is the sphere outside whih, the series onverges.5The addition theorem for spherial harmonis establishes that a Legendre polynomial an be expressed as
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(p = 0)

Figure 2.1. Top: zonal, setorial and tesseral spherial harmonis of the gravitational potential; l and p arerespetively the harmoni degree and order ([78℄ Lorenzini, 2006); bottom: examples of zonal, setorial andtesseral harmonis on the sphere ([107℄ Shubert, 2007).whih are adimensional due to the sale fators of Earth mass Me and Earth radius ae. So thegravitational potential is developed as a Laplae series
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[Clp cos(pλ) + Slp sin(pλ)]Plp(sinφ), (2.12)where Clp and Slp are the real Stokes oe�ients of the stati �eld and L is the maximum degreeat whih the harmoni series is trunated. If the Earth had a omplete rotational symmetryand so all the longitudes were equivalent, the non-zonal terms (p 6= 0) would not be present inthe harmoni development, beause they depend on the longitude λ ([57℄ Hofmann-Wellenhof& Moritz, 2005). It is worth noting that the half-wavelength of a (l, p) harmoni in (2.12) isroughly 20, 000/l km. Moreover, any (l, p) term dereases with inreasing radius r as (ae/r)l+1,thus terms with small values of l (long wavelengths) are the least attenuated at the satellitealtitude and so tend to be easily determined. At the same time, terms with p = 0 are betterdetermined than terms with p > 0, beause they do not depend on the longitude ([107℄ Shubert,2007).Stokes oe�ients with degree l = 0, 1 require a disussion. The oe�ient with degree andorder zero C00 orresponds to the distribution of mass of the body and it is de�ned as C00 =
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V ′ dM
′ = 1, due to the hoie of the massMe as normalizing fator in equation (2.10), sothe �rst term of the geopotential harmoni series is the entral Keplerian term. Moreover, if theoordinate system origin is the Earth's baryenter, the terms with degree l = 1 (dipole) vanish,beause they are proportional to the enter of mass of the body generating the potential, so C10 =

C11 = S11 = 0. Thus, the perturbing (non-Keplerian and non-entral) part of the gravitationalpotential is usually expanded from degree l = 2 (quadrupole). Among the perturbing oe�ients,



2.2. The gravitational �eld of the Earth 15
C20
∼= −0.0010827 ([64℄ Kaula, 1966)6 is related to the Earth's �attening and it is about 103times greater than the other oe�ients; C22 and S22 aount for the equatorial elliptiity and

C30 is the pear-shaped term ([64℄ Kaula, 1966).In order to avoid problems in the numerial representation of the spherial harmonis, it isonvenient to introdue the so alled full normalization fator Nlp
7 ([64℄ Kaula, 1966)
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, (2.14)whih applies to both the Stokes oe�ients and the assoiated Legendre funtions and leads totheir normalized form
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P̄lp = NlpPlp. (2.17)Finally, the non-entral stati gravitational �eld of the Earth is given by
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. (2.18)Besides the stati geopotential, there is a time variable part due to the fat that the Earth isa dynami system, having oeans and a �uid atmosphere, a ontinuously hanging distributionof ie and snow, a rebound from glaial loading of the last ie age and mobile tetoni plates.These proesses a�et the distribution of mass of the Earth and produe hanges in the Earth'sgravity �eld on di�erent spatial and temporal sales, ranging from hours to thousands of years,and onveniently modeled as variations of the standard normalized Stokes oe�ients C̄lp and

S̄lp.The main phenomena ausing temporal variations of the Earth's gravity �eld, whih in turna�et the motion of Earth orbiting satellites, an be lassi�ed as solid and oean tides, atmo-spheri tides, pole tides, seasonal variations due to meteorologial mass redistribution, long termvariations due to post-glaial rebound (PGR).Solid and oean tides are periodi deformations indued in the solid Earth and in the oeans,arising from the gravitational attration of external bodies, primarily the Sun and the Moon.Oean tide phenomenon is the main topi of this work of researh and will be treated in detailin the next setions.Atmospheri tides onsist in minor atmospheri osillations on a global sale with typialperiods of 12 and 24 hours and veloities between 5 m/s (in the troposphere) and 50 m/s (inthe mesosphere), whih an load the Earth enough to indue �utuations in gravity. They aremainly due to air pressure hanges aused by daily variations in solar irradiation, while, only insmall measure, they an be driven by the gravitational attration of the Sun and the Moon ([24℄Chapman & Lindzen, 1970).6The seond degree zonal oe�ient C20 is often substituted by J2 = −C20 in Geodesy appliations.7The ratio of fatorials
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(2.13)an be omputed reursively for eah degree l as follows1. fl0 = 1,2. flp =

fl,p−1
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, p = 1, 2, ..., l.



16 Chapter 2. The tidal forePole tides represent the response of the solid Earth and the oean to variations in the en-trifugal fore, aused by hanges in the diretion of the Earth's spin axis relative to a point �xedon the Earth. In partiular, pole tides primarily our with a period of 433 days (about 14months), alled Chandler wobble, and annually, where the annual term is more important thanthe solar annual oean tide Sa ([71℄ Lambek, 1980). Both periods are long enough for the poletide displaement to be onsidered in equilibrium with the foring entrifugal potential. Themaximum range of potential height is a few m ([107℄ Shubert, 2007).The dominant e�et in seasonal variations is due to atmospheri mass transport assoiatedwith atmospheri disturbanes and seasonal limati variations, leading to atmospheri pressure�utuations and variations in groundwater storage.The post-glaial rebound is the isostati adjustment of the rust and mantle that were de-pressed by the stati weight of ie sheets during the last glaial period. Typial uplift rates ofthe rust are of the order of 1 m/yr. It a�ets northern Europe (espeially Sotland, Fennosan-dia and northern Denmark), Siberia, Canada, parts of Patagonia and Antartia and providesthe main observational evidene for mantle visosity ([71℄ Lambek, 1980). The redistribution oflithospheri masses after the melting of the ie sheets ontributes to a seular hange in the grav-ity �eld: in partiular, SLR data available sine 1979 revealed a seular derease in the Earth'soblateness, whih is diretly related to C20 and it is onsistent with a migration of mass fromlow latitudes toward high latitudes ([107℄ Shubert, 2007). However, C20 has been inreasingsine 1997 ([28℄ Cox & Chao, 2002), implying a glaial and oeani mass redistribution strongenough to reverse the negative trend due to the post-glaial rebound and probably aused bythe rapid subpolar glaial melting and mass shifts in the Pai� and Indian oeans ([33℄ Dikeyet al., 2002).2.3 Tide-Generating Potential (TGP)The tide-generating fore FTGP is responsible for the deformation of the solid Earth and theoeans under the gravitational attration of external perturbing bodies, so it is a onservativefore. At the enters of mass of two extended spherially symmetri and non-rotating bodies inorbital motion around the ommon baryenter, the gravitational aeleration equals the orbital(entrifugal) aeleration. In partiular, eah point of a bodies exeutes the same irular motion,experiening the same orbital aeleration, while the gravitational aeleration is not the sameeverywhere on the body. Thus, assuming the Earth as an extended and spherially symmetribody, a di�erene exists between the gravitational attration FP of an external body at the pointP on the Earth's surfae and the attration FECM at the Earth's enter of mass (ECM) and itrepresents the tide-generating fore, de�ned as a di�erential fore (see Figure 2.2)
FTGP(rP) =FP(rP)− FECM(rECM)

=∇rPV (rP)−∇rECMV (rECM)
=∇rP [V (rP)−W (rP)] (2.19)
=∇rPVTGP(rP),where VTGP is alled tide-generating potential (TGP).At the point diretly under the perturbing body (the sub-body point) and at its antipode,the tide-generating fore is oriented in opposite diretions away from the Earth, giving originto a double tidal bulge, whih is slightly weaker at the antipode, beause here the gravitationalfore of the external body is lower. It an be notied that the tide-generating �eld beomesweaker and weaker within the Earth's surfae, until it vanishes at the geoenter (see Figure 2.3).Moreover, tide-generating fores do not exerise an aeleration on the Earth, being symmetrialwith respet to three orthogonal axes, so that the resultant is zero ([125℄ Wenzel, 1997).However, at very high preision, it should be onsidered that assuming the orbital aelerationof the Earth equal to the gravitational attration of the perturbing body at the geoenter is an



2.3. Tide-Generating Potential (TGP) 17approximation, being valid only for a spherially symmetri Earth. The Earth's orbital motionis a�eted by the �gure fores, resulting from the interation between the non-spherial extendedmass distribution of the Earth and the perturbing bodies, whih are assumed to be point masses.In pratie, the Earth's oblateness is responsible for the so alled Earth's �attening e�et8 ([125℄Wenzel, 1997) on the TGP, onsisting of a small homogeneous �eld varying with time andsuperimposed on the onventional tide-generating fore. In partiular, the Earth's elliptiityontributes about ±3 ngal to the lunar tide-generating fore, while its e�et on the solar tide-generating fore is negligible, beause of the very small parallax9 of the Sun ([30℄ Dahlen, 1993).
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Figure 2.2. Geometry of the tide-generating fore due to an external body ating on the Earth's surfae.The alulation of tidal phenomena requires a representation of the TGP, whih is based onthe relative positions of the external bodies (indiated with the subsript j = 1, ..., J) and it isde�ned as
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imλj , (2.23)8Inluding the Earth's �attening e�et, the omplete expression of the TGP beomes ([126℄ Wilhelm, 1983)
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, (2.20)where θj is the olatitude of the perturbing body and zj is the angle Q̂ (see Figure 2.4).9The parallax ae/r is about 1/60 for the Moon and 1/23, 000 for the Sun.



18 Chapter 2. The tidal forewhere Nnm is the ortho-normalization fator
Nnm = (−1)m

√

(2n + 1)(n −m)!

4π(n+m)!
, (2.24)whih inludes the Condon-Shortley phase (−1)m and is di�erent from the full normalization(2.14) applied to the geopotential spherial harmonis. The multipliative term (2 − δ0m) ex-pliitly appears in expression (2.22) beause it is not inluded in the ortho-normalization fator

Nnm.

Figure 2.3. Field of the tide-generating fores ating on the Earth: the elliptial line shows the equipotentialsurfae ([107℄ Shubert, 2007).The TGP an be expressed aording to the Cartwright-Tayler-Edden (CTE) onvention ([10℄Cartwright & Tayler, 1971; [11℄ Cartwright & Edden, 1973) in a ompat form, separating theastronomial time-dependent part and the geographial part as follows
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− i[Θk(t)+φnk], (2.27)where, for eah tidal onstituent de�ned by the Doodson number k in (2.39) whih is impliitlyrelated to the order m, Hk is the CTE tidal amplitude in units of a length, Θk(t) is the phaseangle or Doodson argument and φnk = π

2 mod (n +m; 2) is the phase orretion neessary toaount for the adopted CTE onvention ([32℄ Desai and Yuan, 2006).The spherial harmoni order m of the TGP expresses the longitude dependene and so thetime dependene, being related to the variations of this potential during a daily rotation, so it10TGP atalogues omputed by analytial spetral analysis require analytial ephemerides of elestial perturbingbodies, while those omputed by numerial spetral analysis require aurate numerial ephemerides of elestialperturbing bodies, like the JPL ephemerides ([125℄ Wenzel, 1997).



2.3. Tide-Generating Potential (TGP) 19de�nes the tidal speies: in partiular m = 0 represents long period tidal waves, beause theirperiod is not a fration of a day, while m = 1, 2, 3, 4, ..., n orresponds respetively to diurnal,semidiurnal, terdiurnal, quaterdiurnal bands, et., up to n band.Beause of the presene of the parallati fator (ae/rj)n, appliations generally require onlyterms of the TGP with degree n = 2, whih aount for the 98% of the total potential ([125℄Wenzel, 1997), so that the magnitude of the TGP is proportional to mass and distane of theexternal perturbing body as GMj/r
3
j . Normalizing this quantity to make the value for the Moonequal to 1, the value for the Sun is 0.46, for Venus 5 × 10−5, for Jupiter 6 × 10−6 and less forall other planets ([107℄ Shubert, 2007). Thus tides are dominated by the lunisolar omponent,nevertheless reent harmoni developments of the TGP also inlude planetary terms.For the highest preision appliations, it is neessary to onsider also terms of the TGP dueto the Moon with degree n = 3 and n = 4.Table 2.1. List of the main TGP atalogues, with the number of tidal waves and the perturbing bodies onsidered.TGP Number Perturbing AurayCatalogue of Waves Bodies (nm/s2)Doodson (1921) 378 Moon, Sun 1.04080Cartwright-Tayler-Edden (1973) 505 Moon, Sun 0.38440Buellesfeld (1985) 656 Moon, Sun 0.24020Tamura (1987) 1200 Moon, Sun, Venus, Jupiter 0.08340Xi (1989) 2933 Moon, Sun, Venus, Jupiter 0.06420Tamura (1993) 2060 Moon, Sun, Venus, Jupiter 0.03080Moon, Sun, Venus, Jupiter,Hartmann-Wenzel (1995) 12935 Mars, Merury, Saturn 0.00140Moon, Sun, Venus, JupiterRoosbeek (1996) 6499 Mars, Merury, Saturn, 0.02000lunar perturbations on the SunKudryavtsev (2004) 28806 Moon, Sun, Venus, Jupiter, 0.00064Mars, Merury, SaturnThese developments are identi�ed as TGP atalogues, whih onsist of tables ontainingamplitudes, phases and frequenies of tidal waves generated by the diret e�et of elestialperturbing bodies and have the advantage of remaining valid for a long time. Among the availableTGP atalogues, the most important are reported in Table 2.1 ([125℄ Wenzel, 1997), where, foreah one, the number of tidal waves, the perturbing bodies and the auray are spei�ed.Usually, the atalogues are distributed in the standard HW95 normalization and format ([54℄Hartmann and Wenzel, 1995).



20 Chapter 2. The tidal fore2.3.1 The equilibrium tideThe equilibrium tide is the theoretial tide that would exist on an ideal perfetly rigid and non-rotating Earth (no e�et of the Coriolis fore), totally overed with oeans of uniform depth,where the response to the tide-generating fores is instantaneous and no dissipation is present.The equilibrium tide potential an be diretly determined from the astronomial positionsof the external perturbing bodies, so it oinides simply with the TGP. Considering only theTGP of degree n = 2 in (2.21), the equilibrium tide potential on the Earth's surfae due to theperturbing body j results in
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(3 cos2 ψj − 1), (2.28)where the expression of the seond-degree Legendre polynomial P2(cosψj) =
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2 ψj−1) hasbeen substituted.The trigonometri term funtion of the zenith angle ψj an be onveniently expressed throughthe geoentri spherial oordinates of the perturbing body j and the geographi oordinates ofthe observer
cosψj = cos θ cos θj + sin θ sin θj cos(λ− λj), (2.29)

= cos θ sin δj + sin θ cos δj cos(ϑg + λ− αj), (2.30)
= cos θ cos δj + sin θ cos δj cosHj, (2.31)where φ and λ are respetively the latitude and the longitude of the observation point, θj and

λj are the olatitude and the longitude of the body, δj and αj are the delination and the rightasension of the body, ϑg is the Greenwih sidereal angle and Hj is the hour angle of the body(see Figure 2.4), satisfying the following relations
θj =

π

2
− δj, (2.32)

λj = αj − ϑg, (2.33)
Hj = λ− λj. (2.34)Substituting the relation (2.31) into (2.28), the equilibrium tide potential (2.28) on the Earth'ssurfae due to a elestial perturbing body j assumes the expression
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is the so alled Doodson tidal onstant and it is 2.63 m2/s2 for the Moonand 1.21 m2/s2 for the Sun. In this way, the equilibrium tide potential depends on the latitudeof the observer and the distane, the delination and the hour angle of the elestial body, withthe latter three all being funtions of time.Laplae was the �rst to separate the equilibrium tide potential (2.35) aording to three maintidal speies, looking at the dependene on the hour angle Hj of the perturbing body. The �rstterm in (2.35) orresponds to the �rst speies tides, it does not depend on the hour angle, but onthe delination yle of the perturbing body as sin2 δj , so it has a long period temporal frequenyof half month for the Moon and half year for the Sun. Moreover, it is a funtion of the latitude
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Figure 2.4. Geometry for the omputation of the equilibrium tide potential at the observation point P (λ,φ) dueto a elestial perturbing body: the geoentri spherial oordinates of the body are visualized, where î axis pointstoward the Greenwih meridian indiated by G, k̂ points toward the North Pole indiated by N and ĵ ompletesthe right-handed tern.as 3 sin2 φ − 1, so it is a zonal term, with maximum amplitude at the poles and zero amplitudeat latitude φ = ± 35.26◦.The seond term in (2.35) is assoiated to the seond speies tides and it depends on cosHj ,so it has a diurnal temporal frequeny, with maximum amplitude at latitude φ = ± 45◦ andzero amplitude at the equator and at the poles. These tides are modulated by periods of halfdelination yle of the perturbing body, beause of the fator sin(2δj).The third term in (2.35) is �nally assoiated to the third speies tides and it depends on
cos(2Hj), so it has a semidiurnal temporal frequeny, with maximum amplitude at the equatorand zero amplitude at the poles. Also these tides are modulated by periods of half delinationyle of the perturbing body, beause of the fator cos2 δj .Considering only the zonal seond-degree term of the TGP, the equilibrium tide height dueto a perturbing body j is de�ned as the radial displaement of a partile on the Earth's surfae
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, (2.36)where the maximum tide height happens for ψj = 0, π (onjuntion and opposition) and theminimum for ψj = ±π/2 (quadrature). In partiular, the relation ζ(j),max
2,EQ = −2ζ(j),min

2,EQ existsbetween the maximum and the minimum equilibrium tide due to an external body, resulting inMoon{ ζ
(M),max
2,EQ = 35.6 m
ζ
(M),min
2,EQ = −17.8 m (2.37)



22 Chapter 2. The tidal foreSun{ ζ
(S),max
2,EQ = 16.4 m
ζ
(S),min
2,EQ = −8.2 m (2.38)where, aounting for both lunar and solar ontribution, the maximum equilibrium tide is 52 mand the minimum is −26 m, with a total exursion of about 78 m. Moreover, it an be notiedthat the ratio between the solar and the lunar equilibrium tides is about ζ(S)2,EQ/ζ(M)

2,EQ = 0.46. Thisratio is valid also for the maximum tidal aeleration exerted by the Moon and the Sun on theEarth, being about 1.2× 10−6 m/s2 for the Moon and 5.5× 10−7 m/s2 for the Sun. The e�et ofthe other planets is muh smaller, the largest being that of Venus, with a ratio of 0.000113 withrespet to the Sun.Aording to the equilibrium theory, the tide-raising body (Moon or Sun) would tend todraw the hypothetial oean sphere overing the Earth into a prolate spheroid, strethed alongthe line joining the elestial body, thus generating two bulges of high water, one diretly underthe perturbing body and another one on the opposite side of the Earth, propagating around theEarth from east to west at a steady rate, keeping up with the relative position of the tide-raisingbody ([108℄ Shureman, 1940).Tidal yles are in�uened by various astronomial parameters. The orbital inlination ofthe elestial body (Moon or Sun), and hene of the tidal bulges, on the Earth's equator implieshanges in the delination of the tide-raising body, resulting in two unequal high tides andtwo unequal low tides per (lunar or solar) day. This phenomenon is known as the diurnal ordelinational inequality of the semidiurnal tides and gives rise to the diurnal tides. At the equatorthe tidal ellipsoid, and so the semidiurnal tides, are quite symmetrial, the diurnal inequality isminimum and the tides are known as equatorial tides; on the other hand, when the delinationof the elestial body is not equal to zero, the diurnal tides beome stronger, these tides are alledtropi tides and at the high latitudes in theory only one high and low tide would our (seeFigure 2.5).
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Figure 2.5. Geometri representation of the diurnal inequality: at the points A and A′ on the equator the tidalbulges are quite symmetrial and the tides are semidiurnal, at the points B and B′ away from the equator thetides are mixed, being two unequal high tides and two unequal low tides per tidal day, at the points C and C′ athigher latitudes there is only one high and low tide per tidal day.Also the relative positions of the Moon and the Sun a�et the magnitude of the tide-generatingfore. When the Moon is aligned with the Sun (new Moon and full Moon), the two tide-raising



2.3. Tide-Generating Potential (TGP) 23bodies reate the highest and lowest tides of the year, alled spring tides; while when the Moonand Sun are at right angles to eah other (�rst and last Moon quarters), the tides are at theirleast and are alled neap tides. Beause during one month the spring and neap tides our twotimes, their tidal period is lose to two weeks.The equilibrium tide does not represent the real tidal e�et, being too small ompared tothe observed tide, however it is an important referene for tidal analysis, giving an order ofmagnitude of tidal phenomena.2.3.2 The Doodson argumentBeing the TGP a periodially varying funtion, it an be expressed through a Fourier serieshaving many fundamental frequenies, instead of one single frequeny, beause tides are induedby di�erent ombinations of the astronomial motions of the Earth, the Moon, the Sun and theplanets.In 1921 Doodson �rst performed the harmoni development of the TGP as in (2.27) from ananalytial ephemeris11 and introdued a very e�ient lassi�ation of tidal waves, onsisting ina sequene of 6 digits, ompatly named Doodson number k and de�ned as
k = k1(k2 + 5)(k3 + 5).(k4 + 5)(k5 + 5)(k6 + 5), (2.39)where 5 is a bias added to avoid negative numbers and in the ase that the biased numbersexeed 9, the notation adopts X for 10 and E for 11; without bias the Doodson number is alledthe CTE number. The integer number k1 represents the spherial harmoni order of the TGPor the tidal speies, the pair k1 k2 de�nes a tidal group and the tern k1 k2 k3 de�nes a tidalonstituent. For example, the prinipal lunar semidiurnal onstituent M2 is spei�ed with theDoodson number 255.555 or the CTE number 200.000.In 1995 Hartmann and Wenzel �rst extended the Doodson number to 11 digits, beause theyinluded ontributions of the planets Merury, Venus, Mars, Jupiter and Saturn.The Doodson or astronomial argument Θk(t) de�ned for a spei�ed tidal onstituent k,aounts for the time variations of the TGP, representing the phase of the equilibrium tide at agiven time and it an be expressed to the �rst order as

Θk(t) =Θ̇k(t− t0) + Θk(t0) (2.40)
=2πfk(t− t0) + Θk(t0), (2.41)where Θ̇k is the Doodson frequeny in rad/day, fk is the frequeny of the tidal onstituent iny/day and t is the time expressed in mean solar days rekoned from a referene epoh t0 (J2000= 1 January 2000, 12 h).The Doodson argument Θk(t) an be onsidered as the angular position of a �titious bodyresponsible of the tidal foring indued by the onstituent, whih is assumed to travel around theequator with an angular speed equal to that of the orresponding onstituent (see Figure 2.6).In pratie, the astronomial tide-generating potential or equilibrium tide is deomposed into analmost periodi (non-harmoni frequeny spetrum) series of harmoni partial tides with eahonstituent featuring some property of the ellipti and inlined orbits of the Moon and Earth(Shwiderski, 1980).The Greenwih phase lag Ψk(φ, λ) is a onstant over a geographi grid for a tidal onstituentand physially an be interpreted as the angular di�erene between the equilibrium tide and theobserved tide for that onstituent (see Figure 2.6), so it measures the time delay (in radians,11An analytial ephemeris is essentially an algebrai desription of the motion of the body as a funtion oftime. However, the most preise ephemerides are numerial, oming from numerial integration of the equationsof motion, with parameters hosen to best �t some set of observational data. They have been used primarily toprodue referene time series, basis for a harmoni expansion of the tidal potential. The �rst tidal omputationprogram based diretly on an astronomial ephemeris was that of Longman (1959).



24 Chapter 2. The tidal foredegrees or time units) of the observed oean tide with respet to the foring equilibrium tide atthe Greenwih meridian. The phase of the observed onstituent is a funtion of the time originadopted, while the Greenwih phase lag is independent (Shwiderski, 1980).The Doodson argument is usually omputed as a linear ombination of the fundamentalastronomial arguments related to the Earth-Moon-Sun and planetary motions
Θk(t) = k1τ + k2s+ k3h+ k4p+ k5N

′ + k6ps +
11∑

i=7

kiLi, (2.42)where τ is the mean lunar time12 in angle units (Moon's hour angle plus 180◦ or 12 h), s is themean longitude of the Moon (the speed of s is about 13 deg/day), h is the mean longitude of theSun, p is the longitude of the lunar mean perigee, N ′ is the negative of the longitude of the lunarmean asending node on the elipti, ps is the longitude of the solar mean perigee and Li with
i = 7, ..., 11 are respetively the mean longitudes of Merury, Venus, Mars, Jupiter and Saturn([112℄ Simon et al., 1994). All the longitudes are measured along the elipti.Similarly, the Doodson frequeny Θ̇k is expressed in terms of the seular rates of the funda-mental astronomial arguments as

Θ̇k = k1τ̇ + k2ṡ+ k3ḣ+ k4ṗ+ k5Ṅ
′ + k6ṗs +

11∑

i=7

kiL̇i (2.43)and the sidereally demodulated Doodson frequeny Θ̇∗

k
is given by

Θ̇∗

k = Θ̇k − k1θ̇g. (2.44)In Table 2.2 the fundamental arguments of the Earth, Sun and Moon motions are reported,together with their frequenies and periods ([83℄ Petit and Luzum, 2010; [107℄ Shubert, 2007).Table 2.2. Fundamental astronomial arguments.Symbol Frequeny (y/day) Period Argument
θg 1.0027379 23h 56m 4.2s Greenwih sidereal angle
τ 0.9661368 24h 50m 28.3s loal mean lunar time
s 0.0366011 27.3216 d Moon's mean longitude
h 0.0027379 365.2422 d Sun's mean longitude
p 0.0003095 8.847 yr longitude of Moon's perigee
N ′ 0.0001471 18.613 yr the negative of the longitudeof Moon's asending node
ps 0.0000001 20941 yr longitude of Sun's perigeeThese arguments are determined in terms of the four Brown's arguments (Melhior, 1970),measured along the elipti eastward from the Vernal equinox: l is the Moon's mean anomaly,

lp the Sun's mean anomaly, F = (l − Ω) the Moon's mean elongation from the node (being Ωthe Moon's mean longitude of the asending node) and D the Moon's mean elongation from theSun.In Table 2.3 a list is reported of 106 tidal onstituents of the FES2004 oean tide model (Lyardet al., 2006) and ordered from the highest to the lowest CTE amplitude; for eah onstituentthe Doodson number and the Darwin symbol (if present) are also spei�ed. General symbolslike M and S refer to lunar and solar origin, while the subsripts 1 and 2 refer to diurnal and12The omputation of the argument τ requires to alulate the Greenwih Mean Sidereal Time (GMST), whihin turn needs the transformation from Terrestrial Time (TT) to Universal Time (UT1). The remaining argumentsin the Doodson relation are slowly varying angles.
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Figure 2.6. Geometry of the equilibrium tide, the observed tide and the Greenwih phase lag of a generi tideonstituent.semidiurnal speies respetively. The eight largest tidal onstituents together aount for over90% of the tidal signal ([35℄ Doodson, 1921) and they are the four semidiurnal waves M2, N2,
S2, K2 and the four diurnal waves K1, O1, P1, Q1. If also the long period waves Mf , Mm, Ssaare onsidered, more than 95% of the tidal signal is haraterized ([71℄ Lambek, 1980).In partiular, M2 is the prinipal lunar semidiurnal onstituent, representing the rotation ofthe Earth with respet to the Moon with the period equal to half of the mean lunar day, while
S2 is the prinipal solar semidiurnal onstituent, representing the rotation of the Earth withrespet to the Sun with the period equal to half of the solar day. On the other hand, N2 is alunar ellipti semidiurnal onstituent beause it depends on the hanges of distane and K2 is aluni-solar delinational semidiurnal onstituent beause modulates the amplitude and frequenyofM2 and S2 for the delinational e�et of the Moon and Sun, respetively. Q1 is a lunar elliptidiurnal onstituent and modulates the amplitude and frequeny of the delinational O1. K1 isa lunisolar diurnal onstituent and, with O1 lunar diurnal onstituent, expresses the e�et ofthe Moon's delination. They aount for diurnal inequality and, at extremes, diurnal tides.With P1 solar diurnal onstituent, it expresses the e�et of the Sun's delination. Ssa is the solarsemiannual onstituent and with Sa aounts for the nonuniform hanges in the Sun's delinationand distane, mostly re�eting yearly meteorologial variations in�uening sea level. Mm is alunar monthly onstituent, expressing the e�et of irregularities in the monthly variation of theMoon's distane and therefore this period is also named as ellipti and it is equal to 27.555,alled anomalisti month. Finally, Mf is a lunar fortnightly onstituent and re�ets the e�etof departure from a sinusoidal delinational motion (assoiated with the variation of the Moon'smonthly delination).Table 2.3. List of 106 tidal onstituents of the FES2004 oean tide model, reported in dereasing order withrespet to the CTE amplitude Hk.Sequene Doodson Constituent Number of CTE AmplitudeNumber Number Name Harmoni Terms Hk (m)1 255.555 M2 3316 7.45648E-012 273.555 S2 3304 2.94792E-013 165.555 K1 3300 2.70864E-014 145.555 O1 3237 1.90368E-01



26 Chapter 2. The tidal foreTable 2.3 � Continued from previous pageSequene Doodson Constituent Number of CTE AmplitudeNumber Number Name Harmoni Terms Hk (m)5 245.655 N2 3151 1.54442E-016 163.555 P1 2616 8.36399E-027 275.555 K2 2397 7.29849E-028 135.655 Q1 956 2.53895E-029 165.565 952 2.37951E-0210 145.545 887 2.29593E-0211 237.555 µ2 712 1.68275E-0212 247.455 ν2 701 1.64236E-0213 255.545 637 1.49012E-0214 275.565 446 1.14461E-0215 235.755 2N2 417 9.88063E-0316 265.455 L2 343 8.08723E-0317 075.555 Mf 277 7.75071E-0318 272.556 T2 282 6.87847E-0319 175.455 J1 309 6.64132E-0320 155.655 M1 238 5.31897E-0321 185.555 OO1 137 2.96702E-0322 065.455 Mm 100 2.85347E-0323 057.555 Ssa 83 2.35406E-0324 227.655 ǫ2 96 2.19345E-0325 055.565 LP 74 2.03640E-0326 075.565 74 2.01380E-0327 135.645 77 1.64369E-0328 137.455 ρ1 78 1.64273E-0329 127.555 σ1 68 1.48200E-0330 185.565 67 1.35448E-0331 245.645 56 1.12943E-0332 125.755 2Q1 50 1.09218E-0333 285.455 η2 45 9.45150E-0434 165.545 48 9.09621E-0435 155.455 45 8.74359E-0436 263.655 λ2 47 8.66789E-0437 245.555 O2 43 8.55173E-0438 162.556 π1 41 8.12688E-0439 265.655 40 7.56314E-0440 085.455 Mtm 25 6.14594E-0441 265.555 28 5.01433E-0442 225.855 3N2 27 4.83850E-0443 167.555 φ1 22 4.46243E-0444 183.555 SO1 17 3.10721E-0445 175.465 15 3.05464E-0446 275.575 19 2.83920E-0447 173.655 θ1 13 2.71002E-0448 274.554 R2 17 2.49127E-0449 254.556 α2 17 2.48433E-0450 155.665 11 2.47982E-0451 155.555 11 2.38996E-0452 157.455 χ1 11 2.36000E-04



2.3. Tide-Generating Potential (TGP) 27Table 2.3 � Continued from previous pageSequene Doodson Constituent Number of CTE AmplitudeNumber Number Name Harmoni Terms Hk (m)53 285.465 16 2.24067E-0454 195.455 ν1 13 2.09420E-0455 147.555 τ1 10 2.02425E-0456 253.755 γ2 14 1.89894E-0457 265.665 15 1.88495E-0458 256.554 β2 14 1.87287E-0459 063.655 MSm 6 1.85589E-0460 117.655 11 1.84777E-0461 166.554 ψ1 9 1.59933E-0462 295.555 12 1.58304E-0463 164.556 S1 9 1.57183E-0464 073.555 MSf 5 1.51731E-0465 085.465 5 1.37677E-0466 238.554 10 1.30755E-0467 217.755 9 1.24500E-0468 056.554 Sa 4 1.18664E-0469 295.565 9 1.08910E-0470 137.445 7 9.24843E-0571 229.455 7 8.90803E-0572 195.465 7 8.73525E-0573 185.355 6 8.25166E-0574 065.555 3 8.23239E-0575 127.545 5 6.97821E-0576 153.655 5 6.91321E-0577 235.655 5 6.52650E-0578 185.575 5 6.40134E-0579 145.755 5 6.28647E-0580 075.355 2 5.37031E-0581 125.745 4 5.02799E-0582 145.535 4 4.72655E-0583 246.654 4 4.53529E-0584 175.555 4 4.45470E-0585 075.575 1 3.90195E-0586 083.655 MStm 1 3.65997E-0587 065.445 1 3.49361E-0588 065.465 1 3.46336E-0589 244.656 3 3.28473E-0590 155.445 3 3.16794E-0591 248.454 3 3.16589E-0592 219.555 3 3.09327E-0593 093.555 MSqm 1 3.08527E-0594 065.655 1 2.84329E-0595 058.554 Sta 1 2.73742E-0596 095.355 1 2.55593E-0597 135.555 2 2.36545E-0598 293.555 2 2.17076E-0599 083.665 1 1.51239E-05100 083.455 1 1.39139E-05



28 Chapter 2. The tidal foreTable 2.3 � Continued from previous pageSequene Doodson Constituent Number of CTE AmplitudeNumber Number Name Harmoni Terms Hk (m)101 093.565 1 1.27040E-05102 065.665 1 1.16454E-05103 057.565 Ssaa 1 1.16454E-05104 115.855 1 1.07603E-05105 095.365 1 1.05867E-05106 163.545 1 1.04402E-05
2.4 The response of the Earth to the TGPThe Earth is not a homogeneous and perfetly rigid body, so it reats to the astronomial foringin a omplex way. The response of the Earth to the TGP an be separated in deformations(solid and oean tides), hanges in the Earth's orientation in spae (nutation and preession)and hanges in the Earth's rotation rate [123, Wahr, 1981℄.Oean tides are generated by the same gravitational fores as Earth tides, the ability of theoean to redistribute mass gives to oean tides their own dynamis. Oean tides have thereforethe same spetrum as Earth tides but di�erent amplitude and phase. Solid Earth tides are muheasier to model than oean tides beause the Earth is more rigid than water and has a muhsimpler shape than the oean basins.First of all, the ontinents interrupt the propagation of the oean tide waves and in shallowwater the waves an not move fast enough to follow Sun and Moon: the response of the Earth tothe TGP is not elasti and there is delay between the Earth's tidal bulge and the position of Sunand Moon. There are ompliated mehanisms of energy dissipation in the interior of the Earth[70, Lambek et al., 1974℄, ausing a phase lag with respet to the TGP, thus tides in the realoean are not in equilibrium with the tidal foring. In fat, on the equator the tide should takeone day to propagate around the Earth, but this would require a wave speed of about 460 m/s,whih is only possible in an oean about 22 km deep. So the tidal wave will follow the Moon orSun with a time delay in�uened by the bottom drag, slowing the progression of the wave.
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Figure 2.7. Spetrum of the TGP given by the amplitudes of the tidal harmonis, taken from Hartmann andWenzel (1995), though normalized aording to the onvention of Cartwright and Tayler (1971). Figure reportedby [107, Shubert, 2007℄.
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Chapter 3Parameterizations of the oean tide height�eldIn this Chapter, the Laplae Tidal Equations (LTE) are introdued to explain the relationsbetween the oean, the solid Earth and the loading e�ets, in order to derive the fundamen-tal equations of the oean tide height �eld and the oean tide potential. In partiular, theoean tide height an be expressed aording to di�erent parameterizations, the main being thelassial spherial harmoni representation, haraterized by a sum of partial tide heights eahorresponding to a tidal frequeny, and the response analysis, in whih the transfer funtion orimpulse response between the tidal foring and the oean tide height �eld is determined in eahtidal band. As regards the harmoni representation, the otidal and orange harts are reportedfor the main diurnal and semidiurnal tidal onstituents (K1, P1, O1, Q1, M2, S2, K2, N2), tovisualize the dynami ontent of the oean tide height indued by their tidal frequeny. On theother hand, the development of a new algorithm for the aurate reomputation of the Grovesand Reynolds orthotide oe�ients is illustrated and the orresponding omputational resultsare disussed within the orthotide formalism. Finally, a brief desription of the existent oeantide models and their general lassi�ation is provided.3.1 The Laplae Tidal Equations (LTE)As desribed in the previous Chapter, the equilibrium theory of tides introdued by Newton in1687 provides the astronomial tide-generating potential, to whih the oean responds hydro-dynamially in a omplex way. Laplae in 1775 was the �rst to formulate the hydrodynamialequations of oean tidal motions, the so alled Laplae Tidal Equations (LTE)
∂u

∂t
= 2ωv sinφ+

1

Re

∂

∂φ
[∆VTP − g(ζ + ζb)], (3.1)

∂v

∂t
= −2ωu sinφ+

1

Re cosφ

∂

∂λ
[∆VTP − g(ζ + ζb)], (3.2)

∂ζ

∂t
+

1

Re cosφ

[
∂

∂φ
(hv) +

∂

∂φ
(hu cos φ)

]

= 0, (3.3)where (φ, λ) are latitude and longitude, ∆VTP is the total tidal potential, u(φ, λ, t) and v(φ, λ, t)are respetively the east and north �uid veloities and ζ is the measured oean tide height1,1The LTE are based on the assumption of an inompressible and single-layer oean subjet only to linearizedinertial, potential, and Coriolis fores generated by the TGP. However, sine the oeani tidal motion is highlyturbulent, the veloities u(φ, , t) and the tidal height ζ must be averaged [109, Shwiderski, 1980℄.31



32 Chapter 3. Parameterizations of the oean tide height �eldde�ned by the di�erene between the geoentri oean surfae tide ζs over the geoid and thebottom tide ζb as
ζ = ζs + ζb. (3.4)The relations between the di�erent tidal surfaes are well explained in Figure 3.1. In par-tiular, a satellite altimeter measures the height of the instantaneous oean surfae relative to areferene ellipsoid, leading to a diret measurement of the geoentri or altimetri tide, denotedat a given latitude and longitude at any epoh by ζa. In turn, the altimetri tide is related tothe true or bottom-relative oean tide ζ as

ζa − ζet = ζ + ζol. (3.5)The di�erene between the altimetri and the Earth tides is also alled elasti oean tide [39,Eanes and Bettadpur, 1995℄.On the other hand, the oean bottom tide height ζb (or sea�oor tide) is given by the ontri-butions from the solid Earth tide ζet and the oean loading tide ζol as
ζb = ζet + ζol. (3.6)It is important to notie that assuming linearity of the oean's response, every oean tideonstituent is hydrodynamially deoupled from all others and an be onstruted independentlyfrom the others. Hene the LTE and aforementioned relations are also valid for a single on-stituent k.

Geoid SurfaceFigure 3.1. Geometri visualization of the measured oean tide ζ, de�ned by the di�erene between the geoentrioean surfae tide ζs and the bottom tide ζb [110, Shwiderski, 1980℄.The surfae oean loading displaement ζolm of a mass element m an be expressed as funtionof the adimensional oean loading Love number h′n
ζolm =

mRe

Me

∞∑

n=0

h′nPn(sinψ) (3.7)and integrating overm = ρwRe
2ζdσ, we obtain the surfae displaement due to the oean loadingas

ζol =
ρwR

3
e

Me

∫ ∫

Σ
ζ

∞∑

n=0

h′nPn(sinψ)dσ (3.8)
=

∞∑

n=0

3

2n + 1

ρw
ρe
h′nζn, (3.9)being dσ the solid angle element, ρe the Earth's density and ρw the mean density of the seawater.



3.2. The harmoni representation 33From the expressions of the body tide and oean loading tide, the geoentri tide results
ζs = hn

VTGP
g

+

∞∑

n=0

[

1 +
3

2n+ 1

ρw
ρe
h′n

]

ζn. (3.10)In onlusion, the solid Earth tide potential is
∆Un =

∞∑

n=0

knVTGPn, (3.11)the oean tide potential ζ on the Earth's surfae is given by
Uζ = g

∞∑

n=0

3

2n + 1

ρw
ρe
ζn (3.12)and the potential orretion due to the oean loading tide is

Uζ =

∞∑

n=0

k′nUζn. (3.13)3.2 The harmoni representationEvery harmoni omponent of the equilibrium tide generates through the oean's response anoean partial tide of idential frequeny, di�ering only in the amplitude and phase (Shwiderski,1980). Hene, in the lassial harmoni representation, the total tide height �eld ζ(φ, λ, t) anbe expressed as the sum of hundreds of partial tides ζk(φ, λ, t), eah orresponding to a spei�edonstituent k as
ζ(φ, λ, t) =

∑

k

ζk(φ, λ, t). (3.14)In partiular, eah partial tide an be written as
ζk(φ, λ, t) = Zk(φ, λ) cos[Θk(t) + χk −Ψk(φ, λ)], (3.15)where Zk(φ, λ) and Ψk(φ, λ) are respetively amplitude and phase2 of the tidal onstituent at aspei�ed geographi loation, while the temporal part is represented by the Doodson argument

Θk(t) and χk is the Doodson-Warburg phase orretion, reported by the IERS TN32 Standards[82, MCarthy and Petit, 2003℄ and added beause it is a onvention to have osine terms andpositive amplitudes (see Table 3.1).Tidal Band Hk > 0 Hk < 0Long Period π 0Diurnal π/2 −π/2Semidiurnal 0 πTable 3.1. Doodson-Warburg phase orretion (MCarthy & Petit, 2003): the phase hanges depending on thesign of the Cartwright-Tayler-Edden amplitude Hk (m) for a spei�ed onstituent k.2The Greenwih phase of the oean partial tide, whih measures the retardation time (in radians, degrees,or time units) of the oeani tide ζk, relative to the foring equilibrium tide at Greenwih meridian λ = 0(Shwiderski, 1980).



34 Chapter 3. Parameterizations of the oean tide height �eld3.2.1 Shwiderski notationThe tide height an be written in omplex form, separating the geographi part from the temporalpart as
ζc
k
(φ, λ, t) = ζs

k
(φ, λ) e[Θk(t)+χk], (3.16)where ζs

k
(φ, λ) is the stati tide height depending only on the geographi loation and de�ned as

ζsk(φ, λ) = Zk(φ, λ) cos Ψk(φ, λ)− iZk(φ, λ) sinΨk(φ, λ). (3.17)The spherial harmoni analysis of the in-phase and quadrature omponents of the stati tideheight gives
Zk(φ, λ) cos[Ψk(φ, λ)] =

N∑

n=0

n∑

m=0

[aknm cos(mλ) + bknm sin(mλ)]Pm
n (sinφ), (3.18)

Zk(φ, λ) sin[Ψk(φ, λ)] =
N∑

n=0

n∑

m=0

[cknm cos(mλ) + dknm sin(mλ)]Pm
n (sinφ), (3.19)and allows to obtain the harmoni oe�ients aknm, bknm, cknm, dknm.Thus, the stati tide height beomes

ζs
k
(φ, λ) =Zk(φ, λ) cos Ψk(φ, λ)− iZk(φ, λ) sinΨk(φ, λ) (3.20)

=

N∑

n=0

n∑

m=0

[aknm cos(mλ) + bknm sin(mλ)− i cknm cos(mλ)− i dknm sin(mλ)]Pm
n (sin φ)After some algebrai manipulations we an express the trigonometri terms cos(mλ)± i sin(mλ)aording to the Euler notation e± imλ obtaining

aknm cos(mλ) =
1

2
[aknm cos(mλ) + i aknm sin(mλ) + aknm cos(mλ)− i aknm sin(mλ)]

=
1

2

−∑

+

aknm e± imλ, (3.21)
bknm sin(mλ) =

1

2
[bknm sin(mλ) + i bknm cos(mλ) + bknm sin(mλ)− i bknm cos(mλ)]

=
1

2

−∑

+

∓ i bknm e± imλ, (3.22)
− i cknm cos(mλ) =

1

2
[− i cknm cos(mλ) + cknm sin(mλ)− i cknm cos(mλ)− cknm sin(mλ)]

=
1

2

−∑

+

− i cknm e± imλ, (3.23)
− i dknm sin(mλ) =

1

2
[− i dknm sin(mλ) + dknm cos(mλ)− dknm cos(mλ)− i dknm sin(mλ)]

=
1

2

−∑

+

∓dknm e± imλ . (3.24)Substituting these relations into the equation (3.20) yields
ζsk(φ, λ) =

N∑

n=0

n∑

m=0

−∑

+

[(aknm ∓ dknm)− i(cknm ± bknm)]Pm
n (sinφ) e± imλ (3.25)



3.2. The harmoni representation 35and so the the omplex and the real tide heights, de�ned respetively by the equation (3.16) and(3.15), beome
ζck(φ, λ, t) =

1

2

N∑

n=0

n∑

m=0

−∑

+

[(aknm ∓ dknm)− i(cknm ± bknm)]Pm
n (sinφ) ei[Θk(t)+χk±mλ], (3.26)

ζk(φ, λ, t) =
1

2

N∑

n=0

n∑

m=0

−∑

+

[(aknm ∓ dknm) cos(Θk(t) + χk ±mλ)

+ (cknm ± bknm) sin(Θk(t) + χk ±mλ)]Pm
n (sinφ). (3.27)We an introdue the following relation

Ĉk±

nm sin εk±nm =
1

2
(aknm ∓ dknm), (3.28)

Ĉk±

nm cos εk±nm =
1

2
(cknm ± bknm), (3.29)where Ĉk±

nm and εk±nm are onstant in time and spae and are respetively amplitude and phase ofthe prograde and retrograde wave of the onstituent k. In partiular the harmoni oe�ientsare expliitly alulated as
aknm =Ĉk+

nm sin εk+nm + Ĉk−

nm sin εk−nm, (3.30)
bknm =Ĉk+

nm cos εk+nm − Ĉk−

nm cos εk−nm, (3.31)
cknm =Ĉk+

nm cos εk+nm + Ĉk−

nm cos εk−nm, (3.32)
dknm =Ĉk−

nm sin εk−nm − Ĉk+
nm sin εk+nm, (3.33)The diret relations to obtain phase εk±nm and amplitude Ck±

nm from these oe�ients are
Ĉk+
nm =

√

(Ĉk+
nm cos εk+nm)2 + (Ĉk+

nm sin εk+nm)2, (3.34)
Ĉk−

nm =

√

(Ĉk−
nm cos εk−nm)2 + (Ĉk−

nm sin εk−nm)2, (3.35)
εk+nm =arctan

(

Ĉk+
nm sin εk+nm

Ĉk+
nm cos εk+nm

)

, (3.36)
εk−nm =arctan

(

Ĉk−
nm sin εk−nm

Ĉk−
nm cos εk−nm

)

. (3.37)Finally, the tide height of a spei�ed onstituent is given by
ζk(φ, λ, t) =

∑

n

∑

m

−∑

+

Ĉk±

nm sin[Θk(t) + χk ±mλ+ εk±nm]Pm
n (sinφ). (3.38)3.2.2 Lambek and Ray notationAording to the Lambek-Ray notation, the phase εk±nm is replaed by the phase π

2 − ψk±
nm, thusthe trigonometri relation in equation (3.38) an be developed using the fundamental expressionsof sine and osine

sin(x± y) = sinx cos y ± cos x sin y, (3.39)
cos(x∓ y) = cos x cos y ± sinx sin y, (3.40)
sin(

π

2
− θ) = cos θ, (3.41)



36 Chapter 3. Parameterizations of the oean tide height �eld
cos(

π

2
− θ) = sin θ, (3.42)and beomes

sin
[

Θk(t) + χk ±mλ+
π

2
− ψk±

nm

]

= cos
[

Θk(t) + χk ±mλ− ψk±

nm

]

. (3.43)The phase aording to the Lambek-Ray notation is related to ours through the relation
ψk±

nm =
π

2
− εk±nm. (3.44)Thus, the tide height related to a spei�ed onstituent is given by the following relation equivalentto the equation (3.38)

ζk(φ, λ, t) =
∑

n

∑

m

−∑

+

Ĉk±

nm cos[Θk(t) + χk ±mλ− ψk±

nm]Pm
n (sinφ). (3.45)Substituting equation (3.44) into (3.28) and (3.29) yields

Ĉk±

nm cosψk±

nm =
1

2
(aknm ∓ dknm), (3.46)

Ĉk±

nm sinψk±

nm =
1

2
(cknm ± bknm), (3.47)and the harmoni oe�ients are expliitly alulated as

aknm =Ĉk+
nm cosψk+

nm + Ĉk−

nm cosψk−

nm, (3.48)
bknm =Ĉk+

nm sinψk+
nm − Ĉk−

nm sinψk−

nm, (3.49)
cknm =Ĉk+

nm sinψk+
nm + Ĉk−

nm sinψk−

nm, (3.50)
dknm =Ĉk−

nm cosψk−

nm − Ĉk+
nm cosψk+

nm. (3.51)The oe�ients aknm, bknm, cknm, dknm in Shwiderski and Casotto-Panzetta notation are equivalentto those in Lambek-Ray notation: only the phase is di�erent in the two notations.3.2.3 Temporal variations of the Stokes oe�ients due to oean tidesThe omplex and real tide height �eld for a seleted onstituent are respetively given by
ζck(φ, λ, t) =Zk(φ, λ) e

i[Θk(t)+χk−Ψk(φ,λ)], (3.52)
ζk(φ, λ, t) =Zk(φ, λ) cos[Θk(t) + χk −Ψk(φ, λ)]. (3.53)The stati part ζS

k
(φ, λ, t) of this tidal �eld an be expressed in two ways, aording to whetheror not the Doodson-Warburg phase orretion χk is inluded, as follows

ζ̃sk(φ, λ) =Zk(φ, λ) e
− i[Ψk−χk], (3.54)

ζsk(φ, λ) =Zk(φ, λ) e
− i Ψk . (3.55)Starting from the equation (3.55) and performing the spherial harmoni analysis of the realand imaginary parts, we an obtain the spherial harmoni oe�ients aknm, bknm, cknm, dknm

Zk(φ, λ) cos[Ψk(φ, λ)] =

N∑

n=0

n∑

m=0

[aknm cos(mλ) + bknm sin(mλ)]Pm
n (sinφ), (3.56)

Zk(φ, λ) sin[Ψk(φ, λ)] =
N∑

n=0

n∑

m=0

[cknm cos(mλ) + dknm sin(mλ)]Pm
n (sinφ). (3.57)



3.2. The harmoni representation 37On the other hand, the equation (3.54) inludes the Doodson-Warburg phase orretion andonsequently the spherial harmoni analysis of the real and imaginary parts yields di�erentoe�ients Ak
nm, B

k
nm, C

k
nm,D

k
nm

Zk(φ, λ) cos[Ψk(φ, λ) − χk] =
N∑

n=0

n∑

m=0

[Ak

nm cos(mλ) +Bk

nm sin(mλ)]Pm
n (sinφ), (3.58)

Zk(φ, λ) sin[Ψk(φ, λ) − χk] =

N∑

n=0

n∑

m=0

[Ck

nm cos(mλ) +Dk

nm sin(mλ)]Pm
n (sinφ). (3.59)Developing the �rst arguments of the equations (3.58) and (3.59) using the equations (3.40) and(3.41), we obtain

Zk(φ, λ) cos[Ψk(φ, λ)− χk] =Zk(φ, λ)[cos Ψk(φ, λ) cos χk + sinΨk(φ, λ) sinχk] (3.60)
=Zk(φ, λ) cos Ψk(φ, λ) cosχk + Zk(φ, λ) sinΨk(φ, λ) sinχk, (3.61)

Zk(φ, λ) sin[Ψk(φ, λ)− χk] =Zk(φ, λ)[sin Ψk(φ, λ) cos χk − cosΨk(φ, λ) sinχk], (3.62)
=Zk(φ, λ) sin Ψk(φ, λ) cosχk − Zk(φ, λ) cos Ψk(φ, λ) sinχk, (3.63)where the underlined terms are equal to �rst arguments of the equations (3.56) and (3.57).Substituting the seond arguments of the equations (3.56) and (3.57) into the underlined termsof the equations (3.60) and (3.63) gives the following relations

Zk(φ, λ) cos[Ψk(φ, λ)− χk] =

N∑

n=0

n∑

m=0

[aknm cos(mλ) + bknm sin(mλ)]Pm
n (sinφ) cos χk+

N∑

n=0

n∑

m=0

[cknm cos(mλ) + dknm sin(mλ)]Pm
n (sinφ) sinχk

=
N∑

n=0

n∑

m=0

[aknm cosχk cos(mλ) + bknm cosχk sin(mλ)+

cknm sinχk cos(mλ) + dknm sinχk sin(mλ)]P
m
n (sinφ)

=
N∑

n=0

n∑

m=0

[(aknm cosχk + cknm sinχk) cos(mλ)+

(bknm cosχk + dknm sinχk) sin(mλ)]P
m
n (sinφ), (3.64)

Zk(φ, λ) sin[Ψk(φ, λ)− χk] =

N∑

n=0

n∑

m=0

[cknm cos(mλ) + dknm sin(mλ)]Pm
n (sinφ) cosχk−

N∑

n=0

n∑

m=0

[aknm cos(mλ) + bknm sin(mλ)]Pm
n (sinφ) sinχk

=
N∑

n=0

n∑

m=0

[cknm cosχk cos(mλ) + dknm cosχk sin(mλ)

− aknm sinχk cos(mλ)− bknm sinχk sin(mλ)]P
m
n (sinφ)

=
N∑

n=0

n∑

m=0

[(cknm cosχk − aknm sinχk) cos(mλ)+

(dknm cosχk − bknm sinχk) sin(mλ)]P
m
n (sinφ). (3.65)Finally we an expliitly write the harmoni oe�ients Ak

nm, B
k
nm, C

k
nm,D

k
nm as

Ak

nm =aknm cosχk + cknm sinχk, (3.66)
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Bk

nm =bknm cosχk + dknm sinχk, (3.67)
Ck

nm =cknm cosχk − aknm sinχk, (3.68)
Dk

nm =dknm cosχk − bknm sinχk. (3.69)This is the map from the harmoni oe�ients aknm, bknm, cknm, dknm to the oe�ients Ak
nm, B

k
nm,

Ck
nm, Dk

nm inluding the Doodson-Warburg phase orretion. The oean tide height beomes
ζk(φ, λ, t) =

1

2

N∑

n=0

n∑

m=0

−∑

+

[(Ak

nm ∓Dk

nm) cos(Θk(t)±mλ)

+ (Ck

nm ±Bk

nm) sin(Θk(t)±mλ)]Pm
n (sinφ). (3.70)The inverse mapping is obtained resolving the two systems omposed by the oupled equations(3.66)-(3.68) and (3.67)-(3.69)

aknm =Ak

nm cosχk − Ck

nm sinχk, (3.71)
bknm =Bk

nm cosχk −Dk

nm sinχk, (3.72)
cknm =Ck

nm cosχk +Ak

nm sinχk, (3.73)
dknm =Dk

nm cosχk +Bk

nm sinχk. (3.74)Using the relations (3.28) and (3.29), it is possible to express the oe�ients Ak
nm, B

k
nm, C

k
nm,D

k
nmas funtions of Ĉk±

nm, εk±nm and χk as follows
1

2
(Ak

nm ∓Dk

nm) =Ĉk±

nm sin εk±nm cosχk + Ĉk±

nm cos εk±nm sinχk = Ck±

nm, (3.75)
1

2
(Ck

nm ±Bk

nm) =Ĉk±

nm cos εk±nm cosχk − Ĉk±

nm sin εk±nm sinχk = Sk±

nm. (3.76)Thus, the oean tide height an be written as
ζk(φ, λ, t) =

N∑

n=0

n∑

m=0

−∑

+

[(Ĉk±

nm sin εk±nm cosχk + Ĉk±

nm cos εk±nm sinχk) cos(Θk(t)±mλ)+

(Ĉk±

nm cos εk±nm cosχk − Ĉk±

nm sin εk±nm sinχk) sin(Θk(t)±mλ)]Pm
n (sinφ)

=

N∑

n=0

n∑

m=0

−∑

+

[Ck±

nm cos(Θk(t)±mλ) + Sk±

nm sin(Θk(t)±mλ)]Pm
n (sinφ). (3.77)From these expressions, the oe�ients Ak

nm, B
k
nm, C

k
nm,D

k
nm an be expliitly derived as

Ak

nm =(Ĉk+
nm sin εk+nm + Ĉk−

nm sin εk−nm) cos χk + (Ĉk+
nm cos εk+nm + Ĉk−

nm cos εk−nm) sinχk, (3.78)
Bk

nm =(Ĉk+
nm cos εk+nm − Ĉk−

nm cos εk−nm) cosχk − (Ĉk+
nm sin εk+nm − Ĉk−

nm sin εk−nm) sinχk, (3.79)
Ck

nm =(Ĉk+
nm cos εk+nm + Ĉk−

nm cos εk−nm) cosχk − (Ĉk+
nm sin εk+nm + Ĉk−

nm sin εk−nm) sinχk, (3.80)
Dk

nm =(Ĉk−

nm sin εk−nm − Ĉk+
nm sin εk+nm) cos χk + (Ĉk−

nm cos εk−nm − Ĉk+
nm cos εk+nm) sinχk (3.81)and

Ĉk±

nm =

√

Ck±2
nm + Sk±2

nm , (3.82)
εk±nm =arctan

(
Ck±
nm

Sk±
nm

)

− χk. (3.83)



3.2. The harmoni representation 39Developing the relation (3.77) we obtain
ζk(φ, λ, t) =

N∑

n=0

n∑

m=0

−∑

+

[Ck±

nm cosΘk(t) cos(mλ)∓ Ck±

nm sinΘk(t) sin(mλ)+

Sk±

nm sinΘk(t) cos(mλ)± Sk±

nm cosΘk(t) sin(mλ)]P
m
n (sin φ)

=

N∑

n=0

n∑

m=0

−∑

+

[(Ck±

nm cosΘk(t) + Sk±

nm sinΘk(t)) cos(mλ)+

(±Sk±

nm cosΘk(t)∓ Ck±

nm sinΘk(t)) sin(mλ)]P
m
n (sinφ). (3.84)The Stokes oe�ients variations due to oean tides, inluding oean loading e�ets, aregiven in the unnormalized omplex form by

∆Knm(t) =∆Cnm(t)− i ∆Snm(t)

=
∑

k

4πGρw
g

1 + k′n
2n+ 1

ζknm(t), (3.85)where ζknm(t) are the omplex unnormalized harmoni oe�ients of the tide height at a spei�edfrequeny, and the omplex form of the oean tide generated potential is
∆V C

OT (r, λ, φ) =
GM

r

N∑

n=2

n∑

m=0

(ae
r

)n
∆K∗

nm(t)Y m
n (φ, λ). (3.86)The real unnormalized oe�ients variations an be expliitly written as

∆Cnm(t) =
4πGρw
g

1 + k′n
2n + 1

∑

k

−∑

+

[Ck±

nm cosΘk(t) + Sk±

nm sinΘk(t)], (3.87)
∆Snm(t) =

4πGρw
g

1 + k′n
2n + 1

∑

k

−∑

+

[±Sk±

nm cosΘk(t)∓Ck±

nm sinΘk(t)]. (3.88)Inluding the full normalization fator into the fator Fnm de�ned as
Fnm =

4πGρw
g

1 + k′n
2n+ 1

√

(n+m)!

(2− δ0m)(2n + 1)(n −m)!
(3.89)and writing expliitly the relations (3.87) and (3.88), we obtain the fully-normalized Stokesoe�ients variations due to oean tides

∆C̄nm(t) =Fnm

∑

k

[Ck+
nm cosΘk(t) + Sk+

nm sinΘk(t) + Ck−

nm cosΘk(t) + Sk−

nm sinΘk(t)]

=Fnm

∑

k

[(Ck+
nm +Ck−

nm) cosΘk(t) + (Sk+
nm + Sk−

nm) sinΘk(t)], (3.90)
∆S̄nm(t) =Fnm

∑

k

[Sk+
nm cosΘk(t)− Ck+

nm sinΘk(t)− Sk−

nm cosΘk(t) + Ck−

nm sinΘk(t)]

=Fnm

∑

k

[(Sk+
nm − Sk−

nm) cos Θk(t)− (Ck+
nm − Ck−

nm) sinΘk(t)]. (3.91)Finally, omparing these relations to those of IERS-TN32 Standards (MCarthy & Petit,2003), it an be notied that the unnormalized prograde and retrograde harmoni oe�ients
Ck±
nm and Sk±

nm of the onstituent k are
Ck±

nm =Ck±

nm,IERS
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=
1

2
(Ak

nm ∓Dk

nm)

=
1

2
[(aknm ∓ dknm) cosχk + (cknm ± bknm) sinχk], (3.92)

Sk±

nm =Sk±

nm,IERS

=
1

2
(Ck

nm ±Bk

nm)

=
1

2
[(cknm ± bknm) cosχk − (aknm ∓ dknm) sinχk], (3.93)so that our harmoni oe�ients Ak

nm, B
k
nm, C

k
nm,D

k
nm are given by

Ak

nm =Ck+
nm +Ck−

nm, (3.94)
Bk

nm =Sk+
nm − Sk−

nm, (3.95)
Ck

nm =Sk+
nm + Sk−

nm, (3.96)
Dk

nm =Ck−

nm −Ck+
nm. (3.97)The oean tide generated potential is given in the real form by

∆VOT (r, λ, φ) =
GM

r

N∑

n=2

l∑

m=0

(ae
r

)n [
∆C̄nm(t) cos(mλ) + ∆S̄nm(t) sin(mλ)

]
P̄m
n (sin φ). (3.98)3.2.4 Cotidal and orange hartsIt is interesting to visualize the information ontent of the dynami tide height at a ertainfrequeny k through the orange and otidal harts. The otidal lines are those onnetinggeographi points with the same tidal phase Ψk(ϕ, λ) and so they are solutions of the equation

Ψk(ϕ, λ) = lα, l = 1, 2, ..., 360◦/α, (3.99)where the phase varies from 0◦ to 360◦ (see Figure ??).On the other hand, orange lines are those onneting geographi points with the sameorange, that orresponds to twie the tidal amplitude Zk(ϕ, λ) and are given by the followingequation
2Zk(ϕ, λ) = C. (3.100)The otidal lines meet at the amphidromi points haraterized by a null tidal exursion forthe onsidered onstituent, around whih the tide propagates in one tidal period and aused bythe Coriolis fore ombined with ontinental oasts to produe standing waves. There are alsoanti-amphidromi points haraterized by permanent high tide. Cotidal and orange lines wouldrepresent an orthogonal system if there were not tidal dissipation phenomena.Charts with otidal lines superimposed on the oean tide height at a seleted time are shownin Figures 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, respetively for the eight main semidiurnal anddiurnal tide onstituents M2, K2, S2, N2, K1, Q1, P1, O1. The otidal lines onneting pointswith the same tidal phase are represented with a olor sale from green to pink, while low andhigh tides are respetively represented with a olor sale from blue to red.
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Figure 3.2. Cotidal and height hart of the M2 onstituent of the FES2004 oean tide model.
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Figure 3.3. Cotidal and height hart of the K2 onstituent of the FES2004 oean tide model.
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Figure 3.4. Cotidal and height hart of the S2 onstituent using FES2004 oean tide model.
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Figure 3.5. Cotidal and height hart of the N2 onstituent using FES2004 oean tide model.
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Figure 3.6. Cotidal and height hart of the K1 onstituent using FES2004 oean tide model.
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Figure 3.7. Cotidal and height hart of the Q1 onstituent using FES2004 oean tide model.
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Figure 3.8. Cotidal and height hart of the P1 onstituent using FES2004 oean tide model.
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Figure 3.9. Cotidal and height hart of the O1 onstituent using FES2004 oean tide model.



3.3. The onvolution formalism 45Typially, an oean tide model provides maps for only the largest tides or main waves. Thespetrum of tidal geopotential perturbations an be ompleted by interpolation from the mainwaves to the smaller, seondary waves, using an assumption of linear variation of tidal admittanebetween losely spaed tidal frequenies (see the next Setion).3.3 The onvolution formalismIn the onvolution formalism, the oean tide height �eld is obtained through a transfer funtion,or impulse response, from the tidal foring in eah tidal band. Munk and Cartwright (1966) �rstintrodued the response method, taking advantage of the fat that the tidal admittane funtionis generally smooth inside eah tidal band, in the sense that it is assumed to be a slowly varyingfuntion of frequeny. An orthonormalized formulation of the response method was developedby Groves and Reynolds (1975), improving onvergene and stability of the representation.3.3.1 The response methodInstead of the sum of hundreds of tidal onstituents, the response method [92, Munk andCartwright, 1966℄ represents the total tide height ζ(φ, λ, t) at a given time and loation as asum of partial tide heights, eah arising from a tidal band de�ned by the order m (m = 0, 1, 2orresponds respetively to long period, diurnal and semidiurnal band) and expressed as a on-volution of the TGP oe�ients cnm(t) with appropriate weights for eah band gms (φ, λ)

ζ(φ, λ, t) = Re
∑

l,m

S∑

s=−S

gms (φ, λ)cnm(t+ s∆t), (3.101)where onvenient values are ∆t = 2 days [92, Munk and Cartwright, 1966℄ for the time lag and
S = 1 ([31℄ Desai and Wahr, 1995) for the number of lag. The main advantage of this methodarise from the fat that the response of the oean to the TGP is linear inside eah tidal band.To pass from the time domain to the frequeny domain is su�ient to apply a Fourier transformto the impulse response gms (φ, λ), obtaining the response of the oean Gk(φ, λ) at a partiularfrequeny k: this omplex funtion, alled tidal admittane, has the fundamental property ofbeing a generally a smooth funtion in eah tidal band and it is de�ned by

Gk(φ, λ) =
S∑

s=−S

gms (φ, λ)e− i Θ̇ks∆t. (3.102)The admittane related to a spei�ed band an be used to selet the tide height at a partiularfrequeny inside that band as follows
ζk(φ, λ, t) = Re[G∗

k(φ, λ)cnm(t)], (3.103)moreover the real and imaginary parts of Gk(φ, λ) = Xk(φ, λ)+ iYk(φ, λ) are useful to alulatethe in-phase and quadrature amplitudes (Zphk(φ, λ),Zquk(φ, λ)) of the tide height ζk(φ, λ, t)(Eanes and Bettadpur, 1995)
Zphk(φ, λ) =(−1)mHkXk(φ, λ), (3.104)
Zquk(φ, λ) =− (−1)mHkYk(φ, λ), (3.105)allowing to determine respetively the amplitude and phase of the tidal onstituent

Zk(φ, λ) =
√

Zphk(φ, λ)2 + Zquk(φ, λ)2, (3.106)
Ψk(φ, λ) = arctan

(
Zquk(φ, λ)

Zphk(φ, λ)

)

. (3.107)



46 Chapter 3. Parameterizations of the oean tide height �eld3.3.2 The orthotidesThe orthotide representation, �rstly proposed by ([51℄ Groves and Reynolds, 1975), is based onthe response method, but with orthogonality properties. Aording to this method the oean tideheight ζ(φ, λ, t) at an epoh t, latitude φ and longitude λ an be expressed as the real part of alinear ombination of omplex nearly orthogonal funtions of time ζmi (t), alled orthotides, mul-tiplied by omplex oe�ients zmi (φ, λ) = umi (φ, λ) − i vmi (φ, λ), alled orthoweights, dependenton the geographi loation and de�ned for eah tidal band indiated by the order m
ζ(φ, λ, t) = Re

∑

m

I∑

i=0

zmi (φ, λ)ζmi (t), (3.108)where I is the maximum orthotide order. Ideally, the orthoweights add some bene�ts withrespet to the simple weights of the response method, in partiular they are independent fromeah others, their magnitude dereases with inreasing orthotide order (onvergene) and theirvalues are unique (stability) (Alok and Cartwright, 1978).The omplex orthotides ζmi (t) are given by a onvolution between the omplex harmonioe�ients cnm(t) = anm(t) + i bnm(t) of the TGP and the omplex orthotide onstants Wm
i,s =

Um
i,s + iV m

i,s (tabulated for eah band by Groves and Reynolds, 1975)
ζmi (t) =

S∑

s=−S

Wm∗

i,s cnm(t+ s∆t), (3.109)where the symbol * denoted the omplex onjugate.It must be notied that the orthotides ζmi (t) are nearly orthogonal funtions if averaged overa long time, in partiular over at least 18.6 years, the period of the regression of the Moon'snodes. The reason for the orthotide basis to be only nearly orthonormal is that the fundamentalastronomial frequenies appearing in the foring funtion cnm(t) are inommensurable.By substituting the equation (3.109) in (3.108) and thus multiplying the orthoweigths zmi forthe orthotide onstants Wm
i,s, the total tide height an be written analogously to the responsemethod as a onvolution sum

ζ(φ, λ, t) = Re
∑

l,m

S∑

s=−S

wm
s (φ, λ)cnm(t+ s∆t), (3.110)where, for identity, wm

s (φ, λ) = gms (φ, λ). For eah tidal band m we an ompute the spherialharmoni analysis of the onvolution weights wm
s (φ, λ) (Desai and Yuan, 2006) up to degree land order p (not neessarily equal to the degree l and order m of the TGP development)

wm
s (φ, λ) =

∞∑

l=0

l∑

p=0

[D̄m
lp (s) cos(pλ) + Ēm

lp (s) sin(pλ)] (3.111)
· P̄lp(sin φ), (3.112)obtaining the omplex fully-normalized spherial harmoni oe�ients D̄m

lp (s) and Ēm
lp (s). Theonvolution between these harmoni oe�ients and the tide-generating-potential oe�ients

cnm(t) produes the normalized harmoni oe�ients Ām
lp(t) and B̄m

lp (t) of the total oean tideheight in eah tidal band (Desai and Yuan, 2006)
(
Ām

lp(t)

B̄m
lp (t)

)

= Re

S∑

s=−S

(
D̄m∗

lp (s)

Ēm∗

lp (s)

)

cnm(t+ s∆t). (3.113)



3.4. New algorithm to ompute Groves and Reynolds orthotide oe�ients 47Finally, the temporal variations of the Stokes oe�ients of the geopotential due to oeantides are given by the sum over ontributions of eah tidal band
(

∆C̄lp(t)
∆S̄lp(t)

)

=
∑

m

4πGρw
g

1 + k′l
2l + 1

(
Ām

lp(t)

B̄m
lp (t)

)

. (3.114)3.4 New algorithm to ompute Groves and Reynolds orthotideoe�ientsThe orthotide oe�ients of Groves and Reynolds (1975) are only available in the form of a tableand no expliit algorithm was spei�ed in the original paper. This ontribution is an analysisof the orthotide approah and provides an expliit algorithm for the omputation of the Grovesand Reynolds basis funtions.A real orthotide ζn(t) of order n and tidal speies s (omitted for simpliity from now on) anbe expressed as
ζn(t) =

K∑

k=−K

[Unka(t+ k∆t) + Vnkb(t+ k∆t)], (3.115)where a(t+k∆t) and b(t+k∆t) are the real and imaginary parts of the tide-generating potentialoe�ients of tidal speies s and Unk and Vnk are the orthotide oe�ients. This equation,together with the orthonormality onstraints
〈ζn(t)ζm(t)〉 = δnm, (3.116)are the de�ning equations for the orthotides. The angle braket operator 〈〉 is the time averageoperator.The determination of the orthotide oe�ients is based on the solution of a set of systemsof equations like (3.116). The strategy is reminisent of the Gram-Shmidt proess of orthonor-malization of a set of funtions.The analysis arried out in Appendix A shows that the maximum lag index K is a freeparameter and its e�etive value is a funtion Kn of the orthotide order n given by
Kn = ⌊(n+ 2)/4⌋. (3.117)The Appendix A also shows that the number of non-zero orthotide oe�ients at order n is
Ne =

⌊n

2

⌋

+ 1, (3.118)while the number of oe�ients Unk and the number of oe�ients Vnk are given respetively by
NU =

⌊
n+ 6

4

⌋

, (3.119)
NV = Ne −NU . (3.120)The orthotide oe�ients are then obtained as the solution of systems of (n + 1) equationsthe form

δnm =
Kn∑

k=−Kn

Km∑

l=−Km

[(UnkUml + VnkVml)ψk−l

+ (VnkUml − UnkVml)χk−l], (3.121)suessively for n = 0, 1, ....



48 Chapter 3. Parameterizations of the oean tide height �eldMoreover, as shown in Appendix A, only even-order oe�ients need be omputed, and,among other things, that the symmetry relations
Un,−k = (−1)nUn,k, (3.122)
Vn,−k = −(−1)nVn,k. (3.123)hold. This implies that the orthotide (3.115) an now be written as

ζn (t) = Un0a (t) + Vn0b (t) (3.124)
+

Kn∑

k=1

Unk [a (t+ k∆t) + (−1)n a (t− k∆t)]

+

Kn∑

k=1

Vnk [b (t+ k∆t)− (−1)n b (t− k∆t)] .If we now also restrit both n and m to be even, system (3.121) takes the form
δnm = Un0Um0ψ0

+

Kn∑

k=1

2Um0(Unkψk + Vnkχk)

+

Km∑

l=1

2Un0(Umlψl + Vmlχl)

+
Kn∑

k=1

Km∑

l=1

[2UnkUml(ψk−l + ψk+l)

+ 2VnkVml(ψk−l − ψk+l)

+ 2UnkVml(χk+l − χk−l)

+ 2VnkUml(χk+l + χk−l)]. (3.125)These are the Ne equations obtained for given n by letting m vary from 0 to n with step 2. Inthis ontext we will refer to m as the seondary order.We an further proeed to disard the oe�ients ViKi that have been eliminated by theanalysis of Appendix B. Then the previous equation, restrited to m varying from 0 to n − 2with step 2, writes as
Un0Um0ψ0 +

Km∑

l=1

2Un0Umlψl

+

NVm∑

l=1

2Un0Vmlχl +

Kn∑

k=1

2Um0Unkψk

+

NVn∑

k=1

2Um0Vnkχk

+

Kn∑

k=1

Km∑

l=1

2UnkUml(ψk−l + ψk+l) (3.126)
+

NVn∑

k=1

NVm∑

l=1

2VnkVml(ψk−l − ψk+l)



3.4. New algorithm to ompute Groves and Reynolds orthotide oe�ients 49
+

Kn∑

k=1

NVm∑

l=1

2UnkVml(χk+l − χk−l)

+

NVn∑

k=1

Km∑

l=1

2VnkUml(χk+l + χk−l) = 0,where NVi is the number of V oe�ients that an be determined for even orthotide order i. Inthe partiular ase n = m, equation (3.125) simpli�es instead to
U2
n0ψ0 +

Kn∑

k=1

4Un0Unkψk +

NVn∑

k=1

4Un0Vnkχk

+

Kn∑

k=1

Kn∑

l=1

2UnkUnl(ψk−l + ψk+l)

+

NVn∑

k=1

NVn∑

l=1

2VnkVnl(ψk−l − ψk+l) (3.127)
+

Kn∑

k=1

NVn∑

l=1

2UnkVnl(χk+l − χk−l)

+

NVn∑

k=1

Kn∑

l=1

2VnkUnl(χk+l + χk−l) = 1.The algebrai system formed by the Ne−1 = ⌊n/2⌋ equations (3.126) and the single equation(3.127) an now be solved to determine the orthotide oe�ients at order n.We proeed as follows. Rewrite Equation (3.126) by olleting eah of the ⌊n/2⌋ orthotideoe�ients Un0, Un1, Vn1, Un2, Vn2, . . ., UnKn , [VnKn ].
3 Then

Un0

(

Um0ψ0 +

Km∑

l=1

2Umlψl +

NVm∑

l=1

2Vmlχl

)

+ Un1

(

2Um0ψ1 +

Km∑

l=1

2Uml(ψ1−l + ψ1+l)

+

NVm∑

l=1

2Vml(χ1+l − χ1−l)
)

+ Vn1

(

2Um0χ1 +

NVm∑

l=1

2Vml(ψ1−l − ψ1+l)

+

Km∑

l=1

2Uml(χ1−l + χ1+l)
)

+ Un2

(

2Um0ψ2 +

Km∑

l=1

2Uml(ψ2−l + ψ2+l) (3.128)
+

NVm∑

l=1

2Vml(χ2+l − χ2−l)
)

+ . . .3 Hereinafter, square brakets around a single quantity with index n indiate the empty set when the ondition
n = 4i− 2, for i = 1, 2, ... is met, aording to the termination rule established in the analysis of Appendix B.
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+ UnK

(

2Um0ψK +

Km∑

l=1

2Uml(ψK−l + ψK+l)

+

NVm∑

l=1

2Vml(χK+l − χK−l)
)

+
[

VnK

(

2Um0χK +

NVm∑

l=1

2Vml(ψK−l − ψK+l)

+

Km∑

l=1

2Uml(χK−l + χK+l)
)]

= 0.3.4.1 The omputational algorithmIt is expedient at this point to introdue the auxiliary quantities Am, Bmk and Cmk for order mde�ned as
Am = Um0ψ0 +

Km∑

l=1

2Umlψl +

NVm∑

l=1

2Vmlχl, (3.129)
Bmk = 2Um0ψk +

Km∑

l=1

2Uml(ψk−l + ψk+l)

+

NVm∑

l=1

2Vml(χk+l − χk−l), (3.130)
Cmk = 2Um0χk +

NVm∑

l=1

2Vml(ψk−l − ψk+l)

+

Km∑

l=1

2Uml(χk−l + χk+l), (3.131)so that the algebrai system (3.126) takes the simple form
AmUn0 +

Kn∑

k=1

BmkUnk +

NVn∑

k=1

CmkVnk = 0, (3.132)for m = 0, 2, ..., n − 2. Referring to Appendix B, it an be dedued that the bloks Am areanalytially zero exept A0, the bloks Bmk are analytially zero for k = 1, 2..., ⌊m/4⌋ and
m > 2, the bloks Cmk are analytially zero for k = 1, 2, ..., ⌊(m− 1)/4⌋ and m > 4.At this point we onsider Un0 as a parameter and eah equation in (3.132) is solved for one ofthe ⌊n/2⌋ orthotide oe�ients aording to the sequene Un1, Vn1, Un2, Vn2, . . ., UnKn , [VnKn ].This leads to writing the oe�ients as

Un1 = Un1 (Un0;Vn1,Un2, Vn2, ..., UnKn, [VnKn,]) ,

Vn1 = Vn1 (Un0;Un2, Vn2, Un3, ..., UnKn, [VnKn,]) ,

Un2 = Un2 (Un0;Vn2, Un3, Vn3, ..., UnKn, [VnKn,]) ,

. . . = . . . (3.133)
Un,Kn−1 = Un,Kn−1 (Un0;Vn,Kn−1, UnKn, [VnKn,]) ,

Vn,Kn−1 = Vn,Kn−1 (Un0;UnKn, [VnKn,]) ,

Un,Kn = Un,Kn (Un0; [VnKn,]) ,
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Vn,Kn = [Vn,Kn (Un0)] .The proedure that leads to this form alls for the expression of eah oe�ient of seondaryorder m∗ to be immediately substituted into eah subsequent ourrene of that oe�ient inthe expressions of oe�ients of higher seondary orders m > m∗. This way the last expressionan only depend on the single parameter Un0. This leads to the general equations
Unk = −TkUn0 −

Kn∑

i=k+1

PikUni −
NVn∑

i=k

QikVni, (3.134)
Vnk = −ZkUn0 −

Kn∑

i=k+1

RikUni −
NVn∑

i=k+1

SikVni, (3.135)where the funtions Tk, Pik, Qik, Zk, Rik, Sik ontain the bloks Am, Bmk, Cmk with the order
m diretly expressed as a funtion of the lag index k and are given reursively as

Tk =
−Zk−1

B4(k−1),k

C4(k−1),k−1
−Rk,k−1

, (3.136)
Pik =

B4(k−1),i

C4(k−1),k−1
−Ri,k−1

B4(k−1),k

C4(k−1),k−1
−Rk,k−1

, i 6= 0, (3.137)
Qik =

C4(k−1),i

C4(k−1),k−1
− Si,k−1

B4(k−1),k

C4(k−1),k−1
−Rk,k−1

, i 6= 0, (3.138)
Zk =

−Tk
C2(2k−1),k

B2(2k−1),k
−Qkk

, (3.139)
Rik =

B2(2k−1),i

B2(2k−1),k
− Pik

C2(2k−1),k

B2(2k−1),k
−Qkk

, i 6= 0, (3.140)
Sik =

C2(2k−1),i

B2(2k−1),k
−Qik

C2(2k−1),k

B2(2k−1),k
−Qkk

, i 6= 0, (3.141)exept when k = 1, where the �rst three funtions T1, Pi1 and Qi1 are
T1 =

A0

B01
, (3.142)

Pi1 =
B0i

B01
, i 6= 0, (3.143)

Qi1 =
C0i

B01
i 6= 0. (3.144)Note that (3.134) and (3.135) must be interpreted as providing the ordered list (3.133), i.e., thetwo equations are to be used severally in pairs. Also note that Equations (3.136)-(3.141) de�nethe funtions Tk, Pik, Qik, Zk, Rik, Sik in the form of one-step, mixed reurrene relations.The system (3.134) and (3.135) an be solved by bak substitution from either UnKn or VnKn ,as provided by the last equation, in terms of the parameter Un0. In fat, bak substitution showsthat the parameter Un0 is atually a saling parameter, thus providing a solution for the saledoe�ients

Ũnk = Unk/Un0, (3.145)
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Ṽnk = Vnk/Un0, (3.146)for k = 1, 2, ...,Kn. The system then takes the form

Ũnk = −Tk −
Kn∑

i=k+1

PikŨni −
NVn∑

i=k

QikṼni, (3.147)
Ṽnk = −Zk −

Kn∑

i=k+1

RikŨni −
NVn∑

i=k+1

SikṼni, (3.148)for k = 1, 2, ...,Kn and an be solved by bak substitution from the last equation (whih providesthe last of either ŨnKn or ṼnKn), thus providing [ṼnKn ], ŨnKn , Ṽn,Kn−1, ..., for the orderedsequene k = Kn,Kn − 1, ..., 1 of the lag index.Now substitute these quantities in Equation (3.127), whih an then be used to solve for theparameter Un0 as
Un0 =

1√
Rn

, (3.149)where the radiand Rn is given by
Rn = ψ0 +

Kn∑

k=1

4Ũnkψk +

NVn∑

k=1

4Ṽnkχk

+
Kn∑

k=1

Kn∑

l=1

2ŨnkŨnl(ψk−l + ψk+l)

+

NVn∑

k=1

NVn∑

l=1

2ṼnkṼnl(ψk−l − ψk+l) (3.150)
+

Kn∑

k=1

NVn∑

l=1

2ŨnkṼnl(χk+l − χk−l)

+

NVn∑

k=1

Kn∑

l=1

2ṼnkŨnl(χk+l + χk−l).In the �nal step, Equations (3.145) and (3.146) are used to determine the remaining oe�-ients Unk and Vnk for k = 1, 2, ...,Kn.3.4.2 Example - Orthotide oe�ients of order 8It is useful to larify the omputational proedure developed in the previous setion through anexample. Consider the ase of order n = 8. In this ase Equation (3.132), for m = 0, 2, 4, 6 and
K8 = 2, an be used to generate a sequene of the type desribed by (3.133) aording to theassoiated proedure. This leads to the expressions

U81 = −
A0

B01
U80 −

C01

B01
V81 −

B02

B01
U82 −

C02

B01
V82,

V81 = −
− A0

B01(
C21
B21
− C01

B01

)U80 −

(
B22
B21
− B02

B01

)

(
C21
B21
− C01

B01

)U82

−

(
C22
B21
− C02

B01

)

(
C21
B21
− C01

B01

)V82,
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U82 = −

−
−

A0
B01

(

C21
B21

−
C01
B01

)

B42
C41
−

(

B22
B21

−
B02
B01

)

(

C21
B21

−
C01
B01

)

U80 −

C42
C41
−

(

C22
B21

−
C02
B01

)

(

C21
B21

−
C01
B01

)

B42
C41
−

(

B22
B21

−
B02
B01

)

(

C21
B21

−
C01
B01

)

V82,

V82 = −

−
−

−
A0
B01

(

C21
B21

−
C01
B01

)

B42
C41

−

(

B22
B21

−
B02
B01

)

(

C21
B21

−
C01
B01

)

C62
B62
−

C42
C41

−

(

C22
B21

−
C02
B01

)

(

C21
B21

−
C01
B01

)

B42
C41

−

(

B22
B21

−
B02
B01

)

(

C21
B21

−
C01
B01

)

U80, (3.151)
whih exhibit a high degree of redundany due to the presene of repeated bloks at suessivelag indies. In fat, simpler expressions an be found either through the introdution of theauxiliary quantities (3.137)-(3.141), or more diretly from Equations (3.134) and (3.135) as

U81 = −T1U80 −Q11V81 − P21U82 −Q21V82,

V81 = −Z1U80 −R21U82 − S21V82,
U82 = −T2U80 −Q22V82, (3.152)
V82 = −Z2U80.At this point we an solve this system parametrially in terms of U80 by bak substitution toyield
Ũ81 = −T1 −Q11Ṽ81 − P21Ũ82 −Q21Ṽ82,

Ṽ81 = −Z1 −R21Ũ82 − S21Ṽ82,
Ũ82 = −T2 −Q22Ṽ82, (3.153)
Ṽ82 = −Z2,whih an also be diretly obtained from (3.147) and (3.148). We an then substitute intoEquation (3.150) to get

R8 = ψ0 + 4Ũ81ψ1 + 4Ũ82ψ2 + 4Ṽ81χ1 + 4Ṽ82χ2

+ 2Ũ2
81(ψ0 + ψ2) + 2Ũ2

82(ψ0 + ψ4)

+ 2Ṽ 2
81(ψ0 − ψ2) + 2Ṽ 2

82(ψ0 − ψ4)

+ 4Ũ81Ũ82(ψ1 + ψ3) + 4Ṽ81Ṽ82(ψ1 − ψ3) (3.154)
+ 4Ũ81Ṽ82(χ3 + χ1) + 4Ũ82Ṽ81(χ3 − χ1)

+ 4Ũ81Ṽ81χ2 + 4Ũ82Ṽ82χ4.Now the �rst oe�ient U80 an be omputed from (3.149) as U80 = 1/
√
R8. Finally the remainingfour oe�ients are omputed from Equations (3.145) and (3.146) as

U81 = Ũ81U80,

V81 = Ṽ81U80,

U82 = Ũ82U80, (3.155)
V82 = Ṽ82U80.



54 Chapter 3. Parameterizations of the oean tide height �eld3.4.3 Orthotide oe�ients to order 50The algorithm developed to reompute the orthotide oe�ients Unk and Vnk has been imple-mented adopting a double preision for the �oating point variables. Moreover, an orthonormalitytest has been performed to verify to whih tolerane σnm the equations (3.126) and (3.127) aresatis�ed up to a maximum orthotide order Nmax = 50, using the orthotide oe�ients determinedwith our algorithm.
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Figure 3.10. Logarithm of the error in the orthonormality test for produts of diurnal even-order orthotides upto order 50.
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Figure 3.11. Logarithm of the error in the orthonormality test for produts of semidiurnal even-order orthotidesup to order 50.First of all, the mean displaed produts of the TGP oe�ients have been reomputed adopt-ing KSM03 tidal potential atalogue [69, Kudryavtsev, 2004℄, giving 28806 tidal onstituents inHW95 normalization [?, Hartmann and Wenzel, 1995℄. For this appliation, onstituents withmaximum degree p = 3 have been onsidered, among whih 10885 are diurnal and 9539 aresemidiurnal. The numerial results obtained from the omputation of the mean displaed prod-



3.4. New algorithm to ompute Groves and Reynolds orthotide oe�ients 55uts are shown for the diurnal and semidiurnal bands in Table 1, with values in m2 and roundedat the seventh signi�ant digit.Table 3.2. Diurnal and semidiurnal mean displaed produts.Diurnal SemidiurnalLag
k

ψk(m−1) χk(m−1) ψk(m−1) χk(m−1)0 0.1143485 0.0 0.2549553 0.01 0.1000269 -0.0267225 0.1807835 -0.15785982 0.0684872 -0.0311245 0.0139112 -0.20163543 0.0440198 -0.0091358 -0.1247702 -0.10485204 0.0438973 0.0232898 -0.1424478 0.05912615 0.0664914 0.0439981 -0.0345233 0.17839546 0.0945965 0.0406043 0.1231929 0.17853517 0.1082929 0.0176238 0.2287174 0.06345478 0.0978427 -0.0075126 0.2152325 -0.09235519 0.0697434 -0.0158238 0.0895000 -0.188671110 0.0429890 0.0007363 -0.0694914 -0.159287211 0.0368182 0.0327858 -0.1550701 -0.017459212 0.0564748 0.0585157 -0.1028699 0.143836013 0.0873914 0.0592547 0.0567200 0.209615414 0.1049500 0.0350730 0.2109848 0.128492015 0.0943468 0.0061111 0.2470939 -0.041899616 0.0632173 -0.0037733 0.1408460 -0.177370717 0.0347388 0.0134425 -0.0276157 -0.184307118 0.0284198 0.0449687 -0.1407011 -0.065158619 0.0463054 0.0688428 -0.1275794 0.094471420 0.0736908 0.0700231 -0.0029755 0.190355121 0.0903473 0.0494317 0.1507509 0.163536322 0.0836233 0.0224461 0.2353162 0.031492123 0.0565167 0.0090283 0.1940042 -0.122268824 0.0264741 0.0205810 0.0489067 -0.195863925 0.0142857 0.0510131 -0.1058212 -0.134297726 0.0287465 0.0793608 -0.1615129 0.026352327 0.0583619 0.0847097 -0.0735905 0.174932628 0.0788603 0.0632730 0.0980785 0.202958129 0.0725655 0.0325462 0.2292370 0.089245630 0.0431072 0.0171712 0.2266357 -0.082199831 0.0117786 0.0288222 0.0975010 -0.189443732 -0.0002620 0.0582372 -0.0640035 -0.163699733 0.0126984 0.0842585 -0.1504563 -0.029593934 0.0388940 0.0896280 -0.1102381 0.122035235 0.0583872 0.0717034 0.0279525 0.194622636 0.0559964 0.0433609 0.1760089 0.141444337 0.0310607 0.0249056 0.2372744 -0.006510438 -0.0011210 0.0307941 0.1661635 -0.154101039 -0.0187223 0.0584787 0.0046657 -0.198834940 -0.0094706 0.0883754 -0.1370553 -0.103655741 0.0185199 0.0978098 -0.1559570 0.068109542 0.0418485 0.0793484 -0.0358008 0.193361843 0.0404604 0.0475282 0.1366140 0.1816770



56 Chapter 3. Parameterizations of the oean tide height �eldTable 3.2 � Continued from previous pageDiurnal SemidiurnalLag
k

ψk(m−1) χk(m−1) ψk(m−1) χk(m−1)44 0.0139775 0.0270259 0.2376658 0.044385745 -0.0188116 0.0326615 0.2003948 -0.118242146 -0.0357635 0.0589241 0.0573575 -0.195701147 -0.0276524 0.0861275 -0.0923376 -0.142303148 -0.0029309 0.0953453 -0.1528841 0.002115149 0.0193326 0.0804811 -0.0876962 0.144092050 0.0218727 0.0515142 0.0625617 0.1925220
The orthotide oe�ients reomputed with our algorithm up to order n = 50 are listedin Table ?? for both diurnal and semidiurnal band, with numerial values up to the seventhsigni�ant digit in m−1.Figure 3.10 and Figure 3.11 illustrate the logarithm of the errors obtained in testing theorthonormality relation δnm for produts of even-order orthotides up to order 50. It an benotied that the orthonormality onditions are satis�ed with a preision ≥ 10−9 for the diurnalband and ≥ 10−8 for the semidiurnal band up to orthotide order 24. Errors inrease withthe inrease of the order n, beause the orthotide oe�ients of a spei�ed order depend on theoe�ients of the previous orders and so the numerial errors aumulate during the omputation.3.5 Global oean tide modelsGlobal oean tide models are fundamental for many sienti� disiplines. In partiular, tidesare onsidered as a noise or a orretion to be removed from satellite gravity reords and fromthe sea level observed by altimeters in order to study other oeani phenomena suh as oeanurrents, wind driven water, water exhanges, et. On the other hand, oean tides representa signal for appliations onerning the evaluation of gravitational perturbations ating on anEarth orbiting satellite, for the aurate omputation of oean tide loading deformation andstation displaements and to study the braking of the Earth's rotation by tidal dissipation intothe oeans.In general, it is possible to lassify the global oean tide models into three ategories ??Kantha,2000℄Kantha:
• models based on the analysis of altimetri data to extrat various tidal signals,
• purely hydrodynami models omputed without any data assimilation,
• dynamial models with assimilation from observed tidal data (altimeter and oastal andpelagi tide gauges).In Table 3.3 the main global oean tide models are reported aording to the previous las-si�ation, with their angular resolution.A global oean tide model an be ompared with data from the global network of tide gaugesat �xed stations, o�ering the only soure of historial, preise, long-term aurate reords of theoean tide height. Major onlusions from tide gauge data have been that global sea level hasrisen approximately 10-25 m during the past entury.



3.5. Global oean tide models 57

Table 3.3. Classi�ation of the main global oean tide models and their angular resolution.General Oean Tide AngularCategory Model ResolutionCSR3.0 (Eanes and Bettadpur, 1995) 0.5◦×0.5◦Analysis of altimetri data CSR4.0 (Eanes and Bettadpur, 1999) 0.5◦×0.5◦GOT00 (Ray, 2000) 0.5◦×0.5◦GOT4.7 (Ray, 2000)DTU10 (Cheng and Andersen, 2010) 0.125◦×0.25◦EOT11a (Bosh and Savenko, 2011)OSU12Purely hydrodynami FES95.2 (Le Provost et al., 1994) 0.5◦×0.5◦ORI96 (Matsumoto et al., 1995) 0.5◦×0.5◦NAO99 (Matsumoto et al., 2000) 0.5◦×0.5◦Dynamial with data assimilation SCW80 (Shwiderski, 1980) 1◦×1◦TPXO6 (Egbert and Erofeeva, 2002) 0.25◦×0.25◦TPXO7.2 0.25◦×0.25◦FES2004 (Lyard et al., 2006) 0.125◦×0.25◦FES2012 0.125◦×0.25◦
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Chapter 4Proessing strategies of GOCE orbital datafor oean tide parameter estimationDue to its 250 km altitude, GOCE is the most sensitive satellite to oean tide perturbationsand represents a test-bed for the appliation of lassial orbit perturbation analysis methodsto reover tidal parameters. Among the several proessing strategies that an be adopted, thefundamental one is the diret numerial fully-dynami approah, onsisting in performing thefully-dynami preise orbit determination of GOCE, aumulating the normal equations for eahorbital ar and estimating the global oean tide parameters through a multiar solution.The ESA's NAPEOS S/W system has been identi�ed as the tool to perform this type ofanalysis, providing orbit determination/predition and parameter estimation apabilities. How-ever, it was neessary to upgrade the system with the implementation of the partial derivativesallowing for the oean tide oe�ient estimation proess. As an alternative, a �rst-order ap-proah is onsidered, onsisting in determining the orretions to the tidal parameters of thereferene model used through a least-square di�erential orretion of the GPS phase observationresiduals. The partial derivatives with respet to the oean tide parameters aording to the twomain parameterizations are �nally developed and reported.4.1 The estimation problemIf at some time t0 the satellite state vetor X is known (X0) and the fores ating on the satelliteare known, then the satellite equations of motion an be integrated to determine the state vetorof the satellite at any future time. However, the initial state vetor in never known exatly.Moreover, ertain fore models require physial parameters that are known only approximately,for example the satellite drag oe�ient in aerodynamial fores, or the oe�ients of the spher-ial harmoni expansion representation of the terrestrial gravity �eld. This is also the ase withgeophysial parameters that a�et indiretly the equations of motion (like earth rotation andpolar motion). Consequently, to determine the position of the satellite at a future time it isneessary that observations of the satellite are taken and used to obtain a better estimate of thesatellite trajetory. The observational data, whih will be subjet to both systemati and ran-dom errors, will usually onsist of measurements suh as range, range-rate (Doppler), azimuth,elevation or some other observable quantity. These measurements have to be orreted withmodels whih are imperfet (e.g. tropospheri orretion) and are usually taken from stationswhose earth-�xed oordinates are not exatly known.The problem of determining the best estimate of the satellite state vetor (and optionallyother parameters and geophysial and geodeti quantities) is referred to as statistial orbit de-termination. Sometimes the main interest is foused on the estimation of the geophysial and59



60Chapter 4. Proessing strategies of GOCE orbital data for oean tide parameterestimationgeodeti quantities themselves: this �eld is alled spae geodesy. Another variation of the prob-lem is simulation and ovariane analysis in whih orbit determination strategies for a futuremission are studied in terms of overage, auray requirements and weighting of traking data,orbit determination auray expetation, optimal ar-length, et.The problem an be generalized as follows: given an initial state vetor at time t0 and theinitial values of parameters to be estimated (not neessarily at t0), together with their a-prioriovariane matrix, and given a set of real or simulated observations (not neessarily after t0)also with their initial ovariane matrix, �nd the "best" estimate of the state vetor at a futuretime and of the rest of the parameters, together with an a-posteriori parameter and observationovariane matrix. So, in matrix notation the a-priori values are
X0 =


















x0
y0
z0
ẋ0
ẏ0
ż0
α1...
αk


















, P0 =








σ211 σ12 . . . σ1n
σ21 σ222 . . . σ2n... ... . . . ...
σn1 σn2 . . . σ2nn








(4.1)
Y0 =








y1
y2...
ym







, Q0 =








σ21 0 . . . 0
0 σ22 . . . 0... ... . . . ...
0 0 . . . σ2m







, (4.2)

X0 being the matrix of estimated parameters or extended initial state vetor (n is the totalnumber of estimated parameters). P0 is the a-priori ovariane matrix of the parameters in
X0. σ2ii is the a-priori variane of parameter i, σij is the a-priori ovariane of parameters i and
j, whih is an indiator of their orrelation or interdependene. For a mathematial de�nitionof these statistial onepts see RD-12. Y is the matrix ontaining the observations (m is thetotal number of observations, m > n) and Q0 is the observation a-priori ovariane matrix. Wewill assume here that the observations are a-priori not orrelated, i.e. matrix Q0 is diagonal;this is not neessarily true, but it is in general not easy to �nd an a-priori estimation of theobservation ovariane. Let's all X̂(t) the best estimate of the extended state vetor at time
t, whih is what we are trying to solve. By far the most widely-used riterion to obtain inpratie the �best� estimate or solution is to minimize the sum of the square of the weightedresidual observation errors, that is, the square of the di�erene between the observation andthe expeted value omputed from an observation model (omputed observation), multipliedby a fator (weight) aording to the observation importane and expeted auray. Thesemethods are alled least-square estimators, see RD-9, RD-20, RD-21, RD-25, and RD-29. Inpratie, observations are omputed by evaluating the satellite state vetor at the observationtime and �nding a geometri/kinemati relationship between the satellite position/veloity andthe magnitude whih is observed. We an then assume that the omputed observations are afuntion of X(t), and de�ne the residual observation vetor as

ε =












y1 − f1
(

X̂ (t1)
)

y2 − f2
(

X̂ (t2)
)...

ym − fm
(

X̂ (tm)
)












(4.3)



4.2. Bath estimation 61The quantity to be minimized (i.e. the sum of the square of the weighted residual observationerrors) is alled the loss funtion and an be expressed as
J = ε

TQ−1
0 ε, (4.4)

Q−1
0 being the weight matrix. The weight matrix is neessary not only to give more importaneto the most aurate observations but also to avoid adding magnitudes of di�erent units (e.g.ranges and veloities). If the measurements are unorrelated then Q−1

0 is diagonal
Q−1

0 =








σ−2
1 0 . . . 0

0 σ−2
2 . . . 0... ... . . . ...

0 0 . . . σ−2
m








(4.5)The loss funtion desribed in Equation 4.4 an be modi�ed to aount for the unertaintiesof the a-priori values of the estimated parameters (see RD-26). This leads to the de�nition
J = ε

TQ−1
0 ε+Ψ, (4.6)where Ψ uses in some way (see below) information on the ovariane of X̂. The problem is then to�nd the X̂ whih minimize J . There are two major lasses of least-squares estimators: bath andsequential (see RD-9, RD-20, RD-25, and RD-30). A bath estimator updates the extended statevetor X0 (and optionally P0 and Q0) iteratively after a high enough number of observations(whih de�ne the estimation ar) has been olleted after the epoh t0. One the proess hasonverged to a best estimate of X0, X̂0, the satellite state vetor an be propagated to anyfuture time using as initial values the ones from X̂0. In a sequential estimator the observationsare proessed as soon as they are reeived, and the extended state vetor X and its ovarianematrix P are propagated/updated with every new observation or small set of observations. Themain appliation of these estimators is the operational real-time orbit determination. Bathmethods is desribed in the following Setion.4.2 Bath estimationThe objetive is to �nd a best estimate of X0, (and optionally of P0 and Q0). We have seen thatthe omputed observations an be expressed as a geometri/kinemati funtion of the satellitestate vetor at the time of the observation. As long as the satellite state vetor an be propagatedto any time from the initial state vetor, the omputed observations are a funtion of the time.The residual observation matrix an then be written as

ε

(

X̂0

)

=












y1 − f1
(

X̂0, t1

)

y2 − f2
(

X̂0, t2

)...
ym − fm

(

X̂0, tm

)












(4.7)
Let's de�ne in this ase the loss funtion in Equation 4.6 as:

J
(

X̂0

)

= ε
TQ−1

0 ε+ X̂T
0 P

−1
0 X̂0, (4.8)where

∆X̂0 = X̂0 −X0. (4.9)



62Chapter 4. Proessing strategies of GOCE orbital data for oean tide parameterestimationAn X̂0 has to be found whih minimizes the loss funtion J (X̂0

). This is ahieved by di�er-entiating Equation 4.8 with respet to the estimated parameters X̂0 and setting the resultingexpression to zero. The problem has to be linearized in order to be solved. Let's assume that thedi�erene between X̂0 and X0 (∆X̂0) is small (i.e. the initial values of the estimated parametersare a good enough approximation of the optimal ones). Then the omputed observations an beexpressed as their �rst order Taylor expansion around X0.
fi

(

X̂0, ti

)

= fi (X0, ti) +
n∑

j=1

∂fi
∂βj

(

β̂j − βj
)

. (4.10)where the betas are all the estimated parameters, i.e. the elements of the X0 vetor. Theresiduals an be expressed then as
ε

(

X̂0

)

=












y1 − f1 (X0, t1)

y2 − f2 (X0, t2)...
ym − fm (X0, tm)












− F
(

X̂0 −X0

)

. (4.11)
F is the matrix of observation equation oe�ients, whih ontains the partial derivatives of theomputed observations with respet to the estimated parameters

F =












∂f1
∂x0

∂f1
∂y0

∂f1
∂z0

∂f1
∂ẋ0

∂f1
∂ẏ0

∂f1
∂ż0

∂f1
∂α1

. . . ∂f1
∂αk

∂f2
∂x0

∂f2
∂y0

∂f2
∂z0

∂f2
∂ẋ0

∂f2
∂ẏ0

∂f2
∂ż0

∂f2
∂α1

. . . ∂f2
∂αk... ... ... ... ... ... ... . . . ...

∂fm
∂x0

∂fm
∂y0

∂fm
∂z0

∂fm
∂ẋ0

∂fm
∂ẏ0

∂fm
∂ż0

∂fm
∂α1

. . . ∂fm
∂αk












. (4.12)
Substituting Equation 4.11 in Equation 4.8 and di�erentiating with respet to X̂0 leads to thefollowing iterative algorithm (alled normal equations)

X̂k+1
0 = X̂k

0 +
(
P−1

0 + FTQ−1
0 F

)−1
(

∆Yk +P−1
0

(

X0 − X̂k
0

))

. (4.13)
X̂k

0 is the estimation on iteration k (equal to X0 on the �rst iteration), ∆Yk is the observationresidual matrix alulated propagating X̂k
0

∆Yk =












y1 − f1
(

X̂k
0, t1

)

y2 − f2
(

X̂k
0, t2

)...
ym − fm

(

X̂k
0 , tm

)












. (4.14)
The matrix

N = P−1
0 +FTQ−1

0 F (4.15)is alled the normal matrix. It an be shown that the inverse of the normal matrix N is thebest estimation of the ovariane matrix of the estimated parameters, that is
P̂0 = N−1 =

(
P−1

0 + FTQ−1
0 F

)−1
. (4.16)



4.3. Fully-dynami approah: multiar solution 634.3 Fully-dynami approah: multiar solutionTo estimate oean tide parameters assuring a lear separation of periodi e�ets, it neessaryto proess a long time period of data, so it is not possible to exeute a single run of orbitdetermination. It is neessary to split the proedure into multiple similar proedures, also thanksto the linearity of the system of equations. In the multi-ar tehnique, the dynamial set ofparameters is separated into two lasses: ar-dependent parameters, whih are onstant alongthe duration of the single ar (suh as the satellite state vetor at the epoh or the orbitalelements the epoh); ar-independent parameters, whih are global onstants along all the ars(suh as geodeti parameters, in partiular tidal parameters).The linearized observation equation is
Y = AX+ e (4.17)where Y is vetor ontaining observations residuals, X is the vetor ontaining the orretions tothe omplete state vetor in order to nullify the disrepany vetor e. The least-square estimateis

X̂ =
(
ATWA

)−1
ATWY = N−1s, (4.18)where

N = ATWA, (4.19)
s = ATWY, (4.20)This is the approah applied in a single ar solution with the orbital determination pro-gram BAHN when an unonstrained solution is required. If however Equation 4.17 is taken torepresent the measurement equation of many single ar, a partitioning of the state vetor intoar-independent parameters X1 and ar-dependent parameters

X2 = {X2,1,X2,2, . . . ,X2,n} (4.21)implies a measurement matrix having the struture
A =












A11 A12,1 0 . . . 0

A21 0 A12,2 . . . 0... ... ... . . . ...
An1 0 0 . . . A12,n












(4.22)giving a (symmetri) normal matrix N of the form
N =















N11 N12,1 N12,1 . . . N12,n

N21,1 N22,1 0 . . . 0

N21,2 0 N22,2 . . . 0... ... ... . . . ...
N21,n 0 0 . . . N22,n















(4.23)
This struture allows the solution to be written in the form of matries of muh smaller dimension.The estimate of the ar-independent parameters is ??Kaula, 1966℄Kaula1966

X̂1 = Ξ



s1 −
n∑

j=1

N12,jN
−1
22,js2,j



 , (4.24)
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Ξ =



N11 −
n∑

j=1

N12,jN
−1
22,jN21,j





−1

. (4.25)The estimate of the ar-dependent parameters of the kth ar is
X̂2,k = N−1

22,j

(

s2,k −N21,kX̂1

)

. (4.26)The vetor s in Equation 4.20 has been deomposed into
s1 =

n∑

j=1

Aj1
TWjYj , (4.27)

s2,k = A12,k
TWkYk, (4.28)where Yj is the vetor of measurements from the jth ar. It is supposed that the weightedmatrix W is seleted suh that W = diag {W1, . . . ,Wn}, where

W−1
k = D {Yk} . (4.29)Here D {Yk} denotes the ovariane of Yk, i.e. the expetation of YkY

T
k

D {Yk} = E
{
YkY

T
k

}
=

∫

YkY
T
k p (Yk) dYk, (4.30)where p (Yk) is the probability density funtion of Yk. The joint ovariane of two vetors

C {Yk,Yl} is de�ned in an analogous way. It is assumed that the measurements of eah ar areunorrelated with those of any other ar. It follows that
D {s1} =

n∑

j=1

Aj1
TWjAj1 = N11 (4.31)

C {s2,i, s2,j} = A12,j
TWjA12,jδij = N22,jδij (4.32)

C {s1, s2,j} = Aj1
TWjA12,j = N12,j (4.33)where δij = 1 if i = j and δij = 0 otherwise. From Equations 4.24, 4.31 and 4.33, it an be seenthat the ovariane of the ar-independent parameters is given by

D
{

X̂1

}

= Ξ. (4.34)Moreover, sine from Equations 4.24, 4.27 and 4.28
C
{

s2,k, X̂1

}

=
[

N12,k −N12,kN
−1
22,kN22,k

]T
ΞT = 0, (4.35)the ovariane of the ar-dependent parameters of the kth ar is

D
{

X̂2,k

}

= N−1
22,k +N−1

22,kN21,k ΞNT
21,kN

−1
22,k. (4.36)Finally, the joint ovariane between the ar-independent parameters X̂1 and the ar-dependentparameters of the kth ar is

C
{

X̂1, X̂2,k

}

= −ΞNT
21,kN

−1
22,k. (4.37)The FORTRAN program MULTIARC of NAPEOS has been modi�ed to perform the al-ulation outlined in the Equations from 4.24 to 4.26 and 4.34, 4.34 and 4.37 for the solution andovariane of a seletable set of ar-dependent parameters for what onerns the oean tides.In the following setion the derivation of the partials omputed for this implementation will beshown.



4.4. First-order approah: linear �t of GOCE GPS phase observation residuals 654.4 First-order approah: linear �t of GOCE GPS phase obser-vation residualsThe GPS observables O (ode pseudoranges, arrier phases, Doppler measurements) are generallynon-linear funtions of the state vetors Xt and Xr, respetively of the transmitter (onboard theGPS satellite) and the reeiver (onboard the LEO satellite), of kinemati parameters referringto the measure model and, impliitly, of dynami parameters a�eting the LEO satellite motion(Xu, 2003)
O = f(Xt,Xr, δt

t, δtr, δion, δtro, δtide, δrel, δmul, N), (4.38)where the kinemati parameters are indiated and, in partiular, δtt and δtr are respetivelythe lok errors of the transmitter and the reeiver, δion and δtro represent the ionospheri andtropospheri e�ets, δtide represents Earth tide and loading tide e�ets, δrel denotes relativistie�ets, δmul denotes the multipath e�ets and N is the ambiguity.Only if the fore models are desribed perfetly by their dynami parameters P, at eahinstant ti, the di�erene between the observations Oi and the omputed quantities Ci will be zero,but this will never happen in pratie, beause the observations have errors and the models areinaurate or inomplete, so that there will always be observation residuals ∆Oi = Oi −Ci 6= 0.If the observations ∆Oi are small, the non-linear problem an be approximated by a linearone and the observation funtional Oi is expanded in a Taylor series up to the �rst order aboutthe omputed value Ci

Oi = Ci +
∂Ci

∂P
∆P, (4.39)where eah observation is designed by subsript i.We onsider only GPS arrier phase observables φi beause of their better resolution. TheGPS phase residuals generated by NAPEOS with the referene fore model represent our obser-vations

Oi : ∆φ
C/NAP
i = φi − φC/NAP

i , (4.40)while the residuals generated by NAPEOS (or another software) with a di�erent fore modelrepresent the omputed observations
Ci : ∆φCi = φi − φCi . (4.41)Following the relation (4.39), we obtain our linearized observation equation

∆φ
C/NAP
i = ∆φCi +

∂∆φCi
∂P

∆P (4.42)that beomes
∆φ

C/NAP
i = ∆φCi +

∂(φi − φCi )
∂P

∆P, (4.43)where ∂φi
∂P = 0, beause the observables are onstant. Finally, the linearized observation equationis

∆φCi = ∆φ
C/NAP
i +

∂φCi
∂P

∆P (4.44)and an be solved for the parameters ∆P through a least-squares di�erential orretion, in orderto obtain ∆φCi = 0. The orretions are then added to the referene tidal parameters P to obtainthe �rst-order orreted parameters
P̂ = P+∆P. (4.45)In equation (4.44), the partial derivatives of the omputed phases with respet to the param-eters must be expressed aording to the hain rule as (Sansò & Rummel, 1989)

∂φCi
∂P

=
∂φCi
∂Xr

∂Xr

∂P
, (4.46)



66Chapter 4. Proessing strategies of GOCE orbital data for oean tide parameterestimationwhere Xr is the reeiver state vetor, beause, in general, GPS observables do not dependexpliitly on the dynami parameters. In partiular, the partials ∂φC
i

∂Xr
represent the geometripart, while the partials ∂Xr

∂P represent the dynami part.The reeiver state vetor is de�ned by all the variables and the onstant parameters desribingthe temporal variation of the dynami system
Xr =









r

v

P









(4.47)and its derivative as
Ẋr =









v

a

0q×1









, (4.48)where P is a q-dimensional vetor ontaining the dynami parameters to be estimated, while r,
v and a are 3-dimensional vetors ontaining respetively position, veloity and aeleration ofthe reeiver in the inertial geoentri system, so that the total dimension of the reeiver statevetor and of its derivative is d = 6+ q. In partiular, the aeleration a is omprehensive of theentire adopted fore model and an be expressed as the sum of di�erent ontributions

a = ak + ap + ab + aet + aot + ad + as + aa, (4.49)where ak is the keplerian aeleration, ap is the perturbing part of the geopotential, ab is thethird-body aeleration, aet and aot are terms due respetively to solid Earth tides and oeantides, ad represents the atmospheri drag, as is the solar radiation pressure aeleration and aais the Earth albedo pressure aeleration.The partial derivatives ∂φC
i

∂Xr
, that are ∂φC

i
∂r and ∂φC

i
∂v , are already implemented in NAPEOSand their numerial values an be printed on an output �le.On the other hand, the partials ∂Xr

∂P are alled variational partials and are obtained integratingnumerially the variational equations (Sansò & Rummel, 1989)
d

dt

(
∂Xr

∂P

)

=
∂Ẋr

∂P
=
∂Ẋr

∂Xr

∂Xr

∂P
︸ ︷︷ ︸impliit +

[

∂Ẋr

∂P

]

︸ ︷︷ ︸expliit , (4.50)whih are within the numerial integration proess of the state transition matrix Φ(t, t0)

Φ̇(t, t0) = A(t)Φ(t, t0), (4.51)with initial onditions
Φ(t0, t0) = I. (4.52)The matrix A(t), with dimension d×d, ontains the partial derivatives of the dynami modeland is expliitly de�ned as

A(t) =
∂Ẋr

∂Xr
=









∂v
∂r

∂v
∂v

∂v
∂P

∂a
∂r

∂a
∂v

∂a
∂P

0q×3 0q×3 0q×q









=









03×3 I3×3 03×q

A21 A22 A23

0q×3 0q×3 0q×q









. (4.53)



4.4. First-order approah: linear �t of GOCE GPS phase observation residuals 67The state transition matrix, having dimension d× d, is de�ned as
Φ(t, t0) =

∂Xr

∂X0r
=









∂r
∂r0

∂r
∂v0

∂r
∂P0

∂v
∂r0

∂v
∂v0

∂v
∂P0

∂P
∂r0

∂P
∂v0

∂P
∂P0









=









Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

0q×3 0q×3 Iq×q









(4.54)where X0r is the reeiver initial state vetor.The system (4.51) is written expliitly as








Φ̇11 Φ̇12 Φ̇13

Φ̇21 Φ̇22 Φ̇23

Φ̇31 Φ̇32 Φ̇33









=









03×3 I3×3 03×q

A21 A22 A23

0q×3 0q×3 0q×q









·









Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

0q×3 0q×3 Iq×q









, (4.55)so the set of di�erential equations to be integrated is redued to
Φ̇11 =Φ21, (4.56)
Φ̇12 =Φ22, (4.57)
Φ̇13 =Φ23, (4.58)
Φ̇21 =A21Φ11 +A22Φ21, (4.59)
Φ̇22 =A21Φ12 +A22Φ22, (4.60)
Φ̇23 =A21Φ13 +A22Φ23 +A23. (4.61)In onlusion, to proeed with the integration of the equations from (4.56) to (4.61) and thensolve the variational equations in (4.50), allowing to alulate the phase partials in (4.46), it isneessary to ompute the three bloks of partial derivatives

A21 =
∂a

∂r
, (4.62)

A22 =
∂a

∂v
, (4.63)

A23 =
∂a

∂P
. (4.64)Fousing on the omputation of the phase partials with respet to the oean tide parameters

Pot, only the term of the aeleration due to oean tides is onsidered and the bloks beome
A21 =

∂aot
∂r

, (4.65)
A22 =03×3, (4.66)
A23 =

∂aot
∂Pot

, (4.67)where A22 = 03×3, beause the oean tide �eld is onservative and the tidal aeleration doesnot depend on the veloity, so the set of di�erential equations to be integrated is simpli�ed to
Φ̇11 =Φ21, (4.68)
Φ̇12 =Φ22, (4.69)
Φ̇13 =Φ23, (4.70)
Φ̇21 =A21Φ11, (4.71)
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Φ̇22 =A21Φ12, (4.72)
Φ̇23 =A21Φ13 +A23. (4.73)The oean tide aeleration is the gradient of the oean tide potential Vot

aot = ∇Vot, (4.74)whih must be expressed as funtion of the tidal parameters we want to estimate.The following paragraphs onern the alulation of the gradient of the oean tide potentialand of the partial derivatives orresponding to the bloks A21 and A23. In partiular, the partialsof the blok A23 will be derived with respet to two types of tidal parameters: the orthoweightsand the harmoni oe�ients.4.5 Gradient of the oean tide potentialThe oean tide potential is expressed in polar oordinates r, λ, φ, so its gradient is writtenaording to the hain rule as
aot =∇Vot(r, λ, φ) =

(
∂Vot
∂r

)T

=

[
∂Vot
∂r

∂r

∂r
+
∂Vot
∂φ

∂φ

∂r
+
∂Vot
∂λ

∂λ

∂r

]T

=

(
∂r

∂r

)T ∂Vot
∂r

+

(
∂φ

∂r

)T ∂Vot
∂φ

+

(
∂λ

∂r

)T ∂Vot
∂λ

. (4.75)The partials of the potential with respet to the polar oordinates are given by
∂Vot
∂r

=− GM

r2

∞∑

l=0

l∑

p=0

(l + 1)
(a

r

)l [
∆C̄lp(t) cos(pλ) + ∆S̄lp(t) sin(pλ)

]
P̄lp(sinφ), (4.76)

∂Vot
∂φ

=
GM

r

∞∑

l=0

l∑

p=0

(a

r

)l [
∆C̄lp(t) cos(pλ) + ∆S̄lp(t) sin(pλ)

] ∂

∂φ

[
P̄lp(sinφ)

]

=
GM

r

∞∑

l=0

l∑

p=0

(a

r

)l [
∆C̄lp(t) cos(pλ) + ∆S̄lp(t) sin(pλ)

] (4.77)
·
[

−p tanφP̄lp(sinφ) + P̄ p+1
l (sinφ)

]

, (4.78)
∂Vot
∂λ

=
GM

r

∞∑

l=0

l∑

p=0

p
(a

r

)l [
−∆C̄lp(t) sin(pλ) + ∆S̄lp(t) cos(pλ)

]
P̄lp(sinφ). (4.79)The partials of the polar oordinates with respet to the position vetor are obtain de�ningthe Jaobian matrix of the transformation from polar oordinates to artesian oordinates

F =









∂r
∂r

∂φ
∂r

∂λ
∂r









=









∂r
∂x

∂r
∂y

∂r
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

∂λ
∂x

∂λ
∂y

∂λ
∂z









, (4.80)where the relations between the polar and the artesian oordinates are






r =
√

x2 + y2 + z2

ϕ = sin−1
(
z
r

)

λ = tan−1
( y
x

)
,

(4.81)



4.6. Partials with respet to the reeiver position vetor 69allowing to expliit the partials of r as
(
∂r

∂r

)T

=









∂r
∂x

∂r
∂y

∂r
∂z









=









x
r

y
r

z
r









=
r

r
. (4.82)The partials of φ are

∂φ

∂x
=
∂

∂x
sin−1

(z

r

)

=
1

√

1−
(
z
r

)2

∂

∂x

(z

r

)

=
r

√

x2 + y2

(

− z

r3
x
)

=
1

√

x2 + y2

(

− z

r2
x
)

, (4.83)
∂φ

∂y
=
∂

∂y
sin−1

(z

r

)

=
r

√

x2 + y2

(

− z

r3
y
)

=
1

√

x2 + y2

(

− z

r2
y
)

, (4.84)
∂φ

∂z
=
∂

∂z
sin−1

(z

r

)

=
r

√

x2 + y2

(
r − z zr
r2

)

=
1

√

x2 + y2

(

1− z

r2
z
)

=

√

x2 + y2

r2
, (4.85)that in ompat form are

(
∂φ

∂r

)T

=
1

(x2 + y2)1/2

[(
∂z

∂r

)T

− z

r2
r

]

. (4.86)Finally, the partials of λ are
∂λ

∂x
=

1

1 +
( y
x

)2

∂

∂x

(y

x

)

=
x2

x2 + y2

(

− y

x2

)

= − y

x2 + y2
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∂λ

∂z
=0 (4.89)and in ompat form
(
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. (4.90)4.6 Partials with respet to the reeiver position vetorTo ompute the partials with respet to the reeiver position vetor, we have to apply the hainrule to the gradient of the potential, obtaining the following relation
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. (4.92)Using the Jaobian matrix F and de�ning the matrix E
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, (4.93)equivalent to the Hessian matrix of the potential in polar oordinates, we an rewrite the equation(4.92) in ompat notation as
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+ FT EF . (4.94)The remaining partials that have to be omputed are then
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, (4.100)while for the partials with respet to the oordinates we have
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, (4.103)The matries, in expliit form are
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, (4.106)and the partials are
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4.7. Partials with respet to the tidal parameters 734.7.1 Partials with respet to the orthoweightsUsing the orthotide parameterization, the vetor of tidal parameters is de�ned as
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, (4.125)where umi (φ, λ) and vmi (φ, λ) are the orthoweights at order i and tidal band m, so we have toompute
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. (4.127)The partials of the Stokes oe�ient variations due to oean tides with respet to the or-thoweights at a spei�ed order i and band m are
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i,sbnm(t+ s∆t)]. (4.131)4.7.2 Partials with respet to the harmoni oe�ientsUsing the harmoni parameterization, the vetor of tidal parameters is
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. (4.134)The partials of the Stokes oe�ient variations due to oean tides with respet to the har-moni oe�ients at a spei�ed tidal frequeny k are
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Chapter 5Sensitivity study of GOCE orbit to oeantide perturbationsIn this Chapter, a sensitivity study of oean tide perturbations on GOCE orbit is presented.First of all, the e�et of various ombinations of oean tide onstituents on GOCE orbit wasevaluated over di�erent time intervals and oean tides aelerations ating on GOCE orbit weredetermined using di�erent existent oean tide models. Then, a preliminary work was arriedout to study the evolution of GOCE orbital elements along the preise estimated orbits overingthe period of available data (1 November 2009 - 31 May 2011) and the seular rates of theGOCE angular elements (argument of perigee, longitude of asending node, mean anomaly)were estimated through a linear least-square �t. Finally, the analytial spetral analysis of theoean tide perturbations a�eting GOCE orbit is presented using Kaula's linear satellite theory,whih is neessary to de�ne the set of oean tide harmoni parameters to whih GOCE is moresensitive, whih will be estimated through a multiar solution subsequent to the GOCE fullydynami POD and aumulation of normal equations.5.1 Evaluation of oean tide e�ets on GOCE orbitThe e�et of various ombinations of oean tide onstituents on GOCE orbit was evaluated over1 year, omputing the di�erene between two orbits propagated with di�erent fore models.The initial state vetor of GOCE was taken from the GOCE PSO of November 1, 2009 andtwo orbits were propagated: the �rst orbit was propagated with a fore model omprehensiveof the stati gravity �eld (EIGEN-6C, 120x120) and the oean tide �eld (FES2004, 50x50, forspei�ed onstituents); the seond orbit was propagated with a fore model inluding only thestati gravity �eld (EIGEN-6C, 120x120).The initial satellite state vetor for the one-year forward propagation is taken from the GOCEo�ial kinemati PSO solution of the 1 November 2009 at 00:00:00, while the initial satellitestate vetor for the 19-year bakward propagation is taken from the GOCE o�ial kinematiPSO solution of the 20 May 2011 at 00:00:00 ([8℄ Bok at al., 2011).The results obtained for the di�erent ombinations of tidal onstituents over 1 year are asfollows:
• 106 onstituents of the oean tide �eld FES2004, 50x50, show a total position perturbationreahing a maximum of about 3000 m (see Figure 5.1);
• 8 main onstituents O1, P1, K1, Q1, N2, M2, K2, S2 of the oean tide �eld FES2004,50x50, show a total e�et of about 3000 m (see Figure 5.2);75
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• 6 main onstituents O1, P1, Q1, N2, M2, K2 of the oean tide �eld FES2004, 50x50 (thetwo resonant onstituents K1 and S2 have been disarded), show a total e�et of about400 m (see Figure 5.3);
• 103 onstituents of the oean tide �eld FES2004, 50x50 (the three resonant onstituents
K1, S1 and S2 have been disarded), show a total e�et of about 600 m (see Figure 5.4),

• the main onstituent M2 of the oean tide �eld FES2004, 50x50, shows a total e�et ofabout 600 m (see Figure 5.5).In addition, the two orbits were propagated bakward over 19 years to over the longest tidalperiod of 18.6 years regarding the lunar node regression due to the Sun perturbation. The �rstorbit inludes 106 onstituents of the oean tide �eld (FES2004, 50x50). The di�erene betweenthe orbits was omputed and plotted in the RTN referene frame (see Figure 5.6), showing amaximum perturbation of about 140 km.
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Figure 5.1. Di�erene between two GOCE orbits, one propagated with the gravity �eld and oean tide �eld(106 onstituents) and the other one propagated with only the gravity �eld over a period of 1 year. The maximume�et is about 3000 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (8 main constituents, FES2004) vs GF120x120 −− 1 year, RTN frame

0 50 100 150 200 250 300 350 400
−2000

0

2000

4000

Time (days)

∆T
 (

m
)

0 50 100 150 200 250 300 350 400
−2000

0

2000

Time (days)

∆N
 (

m
)

0 50 100 150 200 250 300 350 400
0

2000

4000

Time (days)

∆ T
O

T (
m

)

Figure 5.2. Di�erene between two GOCE orbits, one propagated with the gravity �eld and oean tide �eld(8 main onstituents) and the other one propagated with only the gravity �eld over a period of 1 year. Themaximum e�et is about 3000 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (6 constituents, excluded K1,S2, FES2004) vs GF120x120 −− 1 year, RTN frame

0 50 100 150 200 250 300 350 400
−500

0

500

Time (days)

∆T
 (

m
)

0 50 100 150 200 250 300 350 400
−100

0

100

Time (days)

∆N
 (

m
)

0 50 100 150 200 250 300 350 400
0

200

400

600

Time (days)

∆ T
O

T (
m

)

Figure 5.3. Di�erene between two GOCE orbits, one propagated with the gravity �eld and oean tide �eld (6main onstituents, the resonant K1 and S2 are exluded) and the other one propagated with only the gravity�eld over a period of 1 year. The maximum e�et is about 400 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (106 constituents, excluded K1, S2, S1, FES2004) vs GF120x120 −− 1 year, RTN frame
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Figure 5.4. Di�erene between two GOCE orbits, one propagated with the gravity �eld and oean tide �eld(103 onstituents, the resonant K1, S1 and S2 are exluded) and the other one propagated with only the gravity�eld over a period of 1 year. The maximum e�et is about 600 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (M2 constituent, FES2004) vs GF120x120 −− 1 year, RTN frame
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Figure 5.5. Di�erene between two GOCE orbits, one propagated with the gravity �eld and oean tide �eld(only M2 onstituent) and the other one propagated with only the gravity �eld over a period of 1 year. Themaximum e�et is about 600 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (106 constituents, FES2004) vs GF120x120 −− 19 years, RTN frame
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Figure 5.6. Di�erene between two GOCE orbits, one propagated with the gravity �eld and oean tide �eld (106onstituents) and the other one propagated with only the gravity �eld over a period of 19 years. The maximume�et is about 140 km.



5.1. Evaluation of oean tide e�ets on GOCE orbit 79The e�et of oean tides on the GOCE orbit was also evaluated over di�erent time intervalsby �tting an orbit propagated with the stati gravity �eld EIGEN-6C 120x120 ([50℄ Förste et al.,2011) and the oean tide �eld FES2004 50x50 (106 onstituents) ([79℄ Lyard et al., 2006) withan orbit inluding only the stati gravity �eld EIGEN-6C 120x120. The �tted orbit is the orbitwhih best represents the propagated orbit, so the di�erene between these two orbits re�ets theperturbation whih an not be ompensated by a fore model inluding only the stati gravity�eld, that is the oean tide perturbation. The �t was performed hoosing as initial epoh themiddle of eah onsidered time interval, in order to redue the numerial e�et due to the errorpropagation; moreover, only the initial satellite state vetor was estimated during the �t proess.The initial satellite state vetor for the propagation was taken from the GOCE o�ial kine-mati PSO solution of the 1 November 2009 at 00:00:00 ([8℄ Bok at al., 2011). The followingprograms of NAPEOS are used:
• PROPAG, to propagate the GOCE orbit for the onsidered time interval, inluding thestati gravity �eld and the oean tide �eld;
• TRACKSIM, to onvert the format of the propagated orbit from sp3 �le to NAPEOSTraking Data Format (NTDF) �le, a position observation �le whih an be read by BAHN;
• BAHN, to ompute the �t, reeiving in input the NTDF �le and the propagated orbit andgiving an sp3 �le as output;
• ORBCOMP, to ompute the statisti omparison between the propagated and the �ttedorbit in RTN referene frame.Results of the statisti omparison between the two orbits in RTN referene frame are reportedin Table 5.1 and show a total RMS of the �t of 48.26 m over one day, 19.98 m over one monthand 131.90 m over one year. RMS of the orbit di�erenes in RTN is omputed as

RMS∆R =

√
∑Ntot

1 ∆R2

Ntot
, (5.1)

RMS∆T =

√
∑Ntot

1 ∆T 2

Ntot
, (5.2)

RMS∆N =

√
∑Ntot

1 ∆N2

Ntot
, (5.3)while the total RSS and RMS result from

RSS =
√

(RMS∆R)2 + (RMS∆T )2 + (RMS∆N )2, (5.4)
RMS =

√

(RMS∆R)2 + (RMS∆T )2 + (RMS∆N )2

3
. (5.5)Di�erenes between the propagated and the �tted orbit are plotted in RTN referene framefor one day, one month and one year respetively in Figures 5.7, 5.8 and 5.9.NAPEOS allows to inlude in the fore model empirial aelerations, estimated in the radial,along-trak and ross-trak diretions to ompensate model omission errors. They onsist of aombination of two periodi terms, funtion of the satellite argument of latitude u = ω+ f , anda onstant one, as

∆ar = (ar 0 + ar c cos u+ ar s sinu)ur

∆aa = (aa 0 + aa c cos u+ aa s sinu)ua

∆ac = (ac 0 + ac c cos u+ ac s sinu)uc.

(5.6)



80 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsThe orresponding nine parameters (ar 0, ar c, ar s, aa 0, aa c, aa s, ac 0, ac c, ac s) are alled CPRbeause the period of these aelerations is one yle per revolution.To evaluate how muh of the tidal signal is absorbed by CPR oe�ients, another �t wasperformed inluding the stati gravity �eld and the along- and ross-trak CPR (see Table 5.2).Radial CPR is not onsidered beause depends on the along-trak CPR. This spei� studyis interesting in order to build a suitable setup in NAPEOS for GOCE POD and oean tideparameter estimation through a multiar solution. The goal is to obtain a good trade-o� betweenthe ompensation of the model omission errors during the GOCE POD and the non-absorptionof the tidal signal from whih tidal parameters will be estimated.Table 5.1. Statisti omparison between the propagated and the �tted orbit: RMS along the radial, transverseand normal diretions, RSS and total RMS for one day, one month and one year. CPR are not inluded in the�tted orbit. Time RMS∆R RMS∆T RMS∆N RSS RMSInterval1 day 7.60 m 82.52 m 11.25 m 83.59 m 48.26 m1 month 8.71 m 31.68 m 10.90 m 34.61 m 19.99 m1 year 31.33 m 112.18 m 196.53 m 228.45 m 131.90 m
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Figure 5.7. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with onlythe gravity �eld over a period of 1 day. Total RMS is of the order of 48.26 m. CPR are not inluded in the �ttedorbit.
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Figure 5.8. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with onlythe gravity �eld over a period of 1 month. Total RMS is of the order of 19.98 m. CPR are not inluded in the�tted orbit.
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Figure 5.9. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with onlythe gravity �eld over a period of 1 year. Total RMS is of the order of 131.90 m. CPR are not inluded in the�tted orbit.
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Figure 5.10. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with thegravity �eld and along-trak CPR for 12 intervals over a period of 1 day. Total RMS is of the order of 9.90 m.
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Table 5.2. Statisti omparison between the propagated and the �tted orbit along the radial, transverse andnormal diretions, RSS and total RMS for one day, one month and one year. Along- and ross-trak CPR (sine,osine and onstant oe�ients) are inluded in the �tted orbit for di�erent numbers of intervals over 1 day.Time CPR Intervals RMS∆R RMS∆T RMS∆N RSS RMSInterval AT, 12 intervals 5.80 m 11.04 m 11.77 m 17.14 m 9.90 m1 day CT, 12 intervals 18.48 m 211.42 m 3.48 m 212.25 m 122.55 mAT+CT, 12 intervals 5.80 m 11.04 m 1.60 m 12.57 m 7.26 mAT, 24 intervals 1.16 m 1.08 m 11.27 m 11.38 m 6.57 m1 day CT, 24 intervals 24.24 m 198.49 m 4.55 m 200.02 m 115.48 mAT+CT, 24 intervals 1.16 m 1.08 m 0.46 m 1.65 m 0.95 m
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Figure 5.11. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with thegravity �eld and ross-trak CPR for 12 intervals over a period of 1 day. Total RMS is of the order of 122.54 m.
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Figure 5.12. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with thegravity �eld, along- and ross-trak CPR for 12 intervals over a period of 1 day. Total RMS is of the order of 7.26m.
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Figure 5.13. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with thegravity �eld and along-trak CPR for 24 intervals over a period of 1 day. Total RMS is of the order of 6.54 m.
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Figure 5.14. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with thegravity �eld and ross-trak CPR for 24 intervals over a period of 1 day. Total RMS is of the order of 115.50 m.
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Figure 5.15. Di�erene between GOCE orbit propagated with gravity �eld and oean tides and its �t with thegravity �eld, along- and ross-trak CPR for 24 intervals over a period of 1 day. Total RMS is of the order of 0.95m.5.2 Computation of oean tide aelerations on GOCE orbit dueto existent modelsAelerations due to oean tides ating on GOCE orbit at a spei�ed epoh were determined usingdi�erent existent oean tide models: FES2004, CSR 3.0, CSR 4.0, GOT00, TPXO6, SCW80,NAO99. As GOCE referene orbit we used kinemati orbits overing the period from 31 Otober2009 to 11 January 2010 (72 days). The RMS of these aelerations are reported in Table 5.3for eah oean tide model onsidered.
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Figure 5.16. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using Shwiderskioean tide model ([109℄, Shwiderski, 1980). The total RMS is 5.69× 10−8 m/s2.
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Table 5.3. RMS of oean tide aelerations due to di�erent oean tide models and a�eting GOCE orbit,omputed over the period from 31 Otober 2009 to 11 January 2010. For eah model, maps of amplitude andphase were harmonially analyzed up to degree and order 50.Oean Tide Angular Tidal AelerationModel Resolution Constituents RMS

Q1, O1, P1,SCW80 (Shwiderski, 1980) 1◦×1◦ K1, N2,M2, 5.69× 10−8 m/s2
S2,K2,Mf

Q1, O1, P1,CSR3.0 (Eanes and Bettadpur, 1995) 0.5◦×0.5◦ K1, N2,M2, 5.72× 10−8 m/s2
S2, K2

Q1, O1, P1,CSR4.0 (Eanes and Bettadpur, 1999) 0.5◦×0.5◦ K1, N2,M2, 5.74× 10−8 m/s2
S2, K2

Q1, O1, P1,GOT00 (Ray, 2000) 0.5◦×0.5◦ K1, N2,M2, 5.69× 10−8 m/s2
S2, K2

Q1, O1, P1,NAO99 (Matsumoto et al., 2000) 0.5◦×0.5◦ K1, N2,M2, 5.69× 10−8 m/s2
S2,K2,Mf

Q1, O1, P1,TPXO6 (Egbert and Erofeeva, 2002) 0.25◦×0.25◦ K1, N2,M2, 5.69× 10−8 m/s2
S2,K2,Mf

Q1, O1, P1,K1, S1,FES2004 (Lyard et al., 2006) 0.125◦×0.25◦ N2,M2, S2,K2, 2N2, 5.70× 10−8 m/s2
Mf ,Mm,Mtm,MSqm
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Figure 5.17. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using the CSR3.0 oean tide model ([39℄, Eanes and Bettadpur, 1995). The total RMS is 5.72 × 10−8 m/s2.
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Figure 5.18. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using the CSR4.0 oean tide model ([39℄, Eanes and Bettadpur, 1995). The total RMS is 5.74 × 10−8 m/s2.
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Figure 5.19. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using theGOT00 oean tide model ([99℄, Ray, 1999). The total RMS is 5.69 × 10−8 m/s2.
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Figure 5.20. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using the NAO99oean tide model ([85℄, Matsumoto et al., 2000). The total RMS is 5.69× 10−8 m/s2.
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Figure 5.21. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using theTPXO6 oean tide model ([40℄ Egbert and Erofeeva, 2002). The total RMS is 5.69 × 10−8 m/s2.
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Figure 5.22. Oean tide aeleration ating on GOCE orbit over a period of 72 days, omputed using theFES2004 oean tide model ([79℄ Lyard et al., 2006). The total RMS is 5.70 × 10−8 m/s2.



88 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbations5.3 Evolution of GOCE orbital elementsThe natural evolution of GOCE orbital elements was analyzed along the period for whih GOCEpreise orbits were determined (1st November 2009 to 31st May 2011) as a preliminary study forthe evaluation of oean tide perturbations on the GOCE orbit. Figures 5.23, 5.24, 5.25, 5.27,5.26, 5.28 and 5.29 show respetively the pattern of semimajor axis, eentriity, inlination,longitude of asending node, argument of perigee, mean anomaly and true anomaly.In Figure 5.23, the hanges of semimajor axis after the periods of missing data due to on-boardfailures an be observed: of partiular signi�ane were anomalies on the platform omputers in2010, leading to a prolonged interruption of the sienti� mission.The argument of perigee shows several numerial problems orresponding to low peaks ofeentriity of the order of 10−5.

Figure 5.23. Evolution of the semimajor axis of GOCE orbit over the period 1st November 2009 - 31st May2011. Units are kilometers.

Figure 5.24. Evolution of the eentriity of GOCE orbit over the period 1st November 2009 to 31st May 2011.
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Figure 5.25. Evolution of the inlination of GOCE orbit over the period 1st November 2009 - 31st May 2011.Units are degrees.
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Figure 5.26. Evolution of the longitude of asending node of GOCE orbit over the period 1st November 2009 -31st May 2011. Units are degrees.

Figure 5.27. Evolution of the argument of perigee of GOCE orbit over the period 1st November 2009 - 31stMay 2011. Units are degrees.
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Figure 5.28. Evolution of the mean anomaly of GOCE orbit over the period 1st November 2009 - 31st May2011. Units are degrees.

Figure 5.29. Evolution of the true anomaly of GOCE orbit over the period 1st November 2009 - 31st May 2011.Units are degrees.



5.4. Computation of the seular rates of GOCE angular elements 915.4 Computation of the seular rates of GOCE angular elementsConsidering the �rst 30 days of the GOCE preise estimated orbits (1st-30th November 2009), theseular rates of the angular elements of GOCE orbit (argument of perigee, longitude of asendingnode, mean anomaly) were estimated through a linear least-square �t in order to aount for theseular perturbations due to all the zonal terms Cn0 of the geopotential. GOCE mean orbitalharateristis are reported in Table 5.4.Table 5.4. GOCE mean orbital elements and rates used for the spetral analysis of tidal perturbations on GOCE.Element Value
ā 6632.884525 km
ē 2.306273 × 10−3

ī 1.686227 rad
ω0 1.845595 rad
Ω0 5.471748 rad
M0 0.971383 rad
ω̇ −3.764817 × 10−7 rad/s
Ω̇ 2.022334 × 10−7 rad/s
Ṁ 1.167455 × 10−3 rad/sNodal Period 89.728100 minRepeat Period 979 revs/61 nodal daysThe obtained orbital rates lead to the ratio

Ṁ + ω̇

θ̇g − Ω̇
= 16.049183, (5.7)whih orresponds losely to the orbital resonane 16:1, so resonanes will our at orders mlose to 16, 32, 48, 64, et.The nodal period Np is given by

Np =
2π

Ṁ + ω̇
= 89.728053 min, (5.8)while the nodal day1 Nd is approximately equal to a solar day, beause GOCE is a Sun-synhronous satellite

Nd =
2π

ωe − Ω̇
= 1.000043 days. (5.9)Finally, the repeat period in solar days results form the multipliation between the nodal dayand the repeat period TN

rp in nodal days, whih is 61 days for GOCE
Trp = NdT

N
rp = 61.002623 days. (5.10)1A nodal day is the period between two onseutive passages of the asending node of the satellite orbit overthe same Earth-�xed meridian. In general, the preession of the asending node is muh slower than the Earth'srotation, so the nodal day di�ers slightly from a solar day; for a Sun-synhronous orbit a nodal day is equal to asolar day.



92 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsFigures 5.30, 5.31 and 5.32 show in blue the pattern of the angular element and in red theorresponding �t.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (days)

A
rg

um
en

t o
f P

er
ig

ee
 (

ra
d)

Figure 5.30. Fit of the argument of perigee.
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Figure 5.31. Fit of the asending node.
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Figure 5.32. Fit of the mean anomaly.5.5 Spetral analysis of oean tide perturbations on GOCEIn order to identify a spei� list of oean tide parameters (C̄±

klm, S̄
±

klm) to be estimated through amultiar solution during the GOCE fully dynami POD, it is neessary to evaluate the sensitivityof these parameters on GOCE orbit. An analytial method is used whih determines the spetrumof oean tide perturbations in the radial, transverse and normal (RTN) positions using Kaula'slinear satellite theory.5.5.1 Analytial spetrum from Kaula's linear satellite theoryThe geopotential de�ned in (2.18) must be expressed as funtion of the orbital elements (a, e, i, ω,Ω,M)through the Wigner's theorem2 for the rotation of spherial harmonis, in order to be used inthe Lagrange Planetary Equations. This formulation reads [64, Kaula, 1966℄
V =

GMe

Re

L∑

l=0

l∑

m=0

l∑

p=0

Q
∑

q=−Q

(
Re

a

)l+1

F̄lmp(i)Glpq(e)Alm cos(νlmpq − ψlm + πlm), (5.13)where F̄lmp(i) are the normalized inlination funtions, Glpq(e) the eentriity funtions, πlm =
−π

2 mod (l +m, 2) is a phase orretion aounting for the parity of l +m, Alm and ψlm arerespetively amplitude and phase in terms of the geopotential Stokes oe�ients as
Alm =

√

C̄2
lm + S̄2

lm, (5.14)
ψlm = arctan(S̄lm/C̄lm), (5.15)and νlmpq is the Kaula phase given by

νlmpq = (l − 2p)ω + (l − 2p+ q)M +m(Ω− θg). (5.16)2The Wigner's theorem establishes that a spherial harmoni an be rotated by R(α, β, γ) as
Ylp(λ

′, φ′) =
l∑

k=−l

Dl
kp(α, β, γ)Ylk(λ,φ), (5.11)where Dl

kp are given in terms of the Wigner's oe�ients
Dl

kp(α, β, γ) = e− i k(α−π/2) dlkp(β) e
− i p(γ+π/2) . (5.12)



94 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsThe time derivative of (5.16) is the Kaula frequeny, funtion of the satellite seular rates
(ω̇, Ω̇, Ṁ) and the Earth's rotation rate θ̇g as

ν̇lmpq = (l − 2p)ω̇ + (l − 2p + q)Ṁ +m(Ω̇− θ̇g). (5.17)Analogously, for the oean tide ase A±

lm and ψ±

lm are respetively amplitude and phase interms of the fully-normalized and adimensional oean tide harmoni parameters (C̃±

klm, S̃
±

klm),already de�ned in (3.92) and (3.93), so that
A±

lm =

√

C̃±2
lm + S̃±2

lm , (5.18)
ψ±

lm = arctan(S̃±

lm/C̃
±

lm), (5.19)Kaula's linear satellite theory ([64℄ Kaula, 1966) allows the analytial determination of thespetrum of oean tide perturbations a�eting a satellite, both in the orbital elements and in theRTN positions and veloities. In partiular, oean tide perturbations in the radial, transverseand normal positions (∆r, ∆τ , ∆χ) are given respetively by [14, Casotto, 1989℄
∆r =

L∑

l=1

l∑

m=0

l∑

p=0

Q
∑

q=−Q

∑

k

−∑

+

A±

klmC
r±
klmpq cos(γ

±

klmpq ∓ ψ±

klm + πlm), (5.20)
∆τ =

L∑

l=1

l∑

m=0

l∑

p=0

Q
∑

q=−Q

∑

k

−∑

+

A±

klmC
τ±
klmpq sin(γ

±

klmpq ∓ ψ±

klm + πlm), (5.21)
∆χ =

L∑

l=1

l∑

m=0

l∑

p=0

Q
∑

q=−Q

∑

k

−∑

+

A±

klm

[

Cχ+±

klmpq sin(γ
±

k(l+1)mpq ∓ ψ
±

klm + πlm)

−Cχ−
±

klmpq sin(γ
±

k(l−1)mpq ∓ ψ
±

klm + πlm)
]

, (5.22)where γ±
klmpq is the tidal argument de�ned in terms of the Kaula phase and the Doodson argumentas

γ±
klmpq = νlmpq ±Θk = ν̇lmpq(t− t0) + ν0±lmpq ± Θ̇k(t− t0)±Θ0

k, (5.23)where ν0±lmpq and Θ0
k
are the Kaula phase and the Doodson argument at epoh t0. The timederivative of the tidal argument in (5.23) represents the tidal perturbation frequeny

γ̇±
klmpq = ν̇lmpq ± Θ̇k (5.24)whih is the ombination of the Kaula frequeny ν̇lmpq and the Doodson frequeny Θ̇k in (2.43)and an not be zero (seular perturbation) for the inommensurability assumption between thesatellite and the tidal frequenies. However, tidal seular perturbations exist and they resultfrom the stati part (k = 055.555) of the tidal potential, orresponding to the onstant term inthe zonal TGP.The funtions Cr±

klmpq, Cτ±
klmpq, Cχ+±

klmpq, Cχ−±

klmpq have the units of a length and are expressedas [103, Rosborough and Tapley, 1987℄
Cr±
klmpq =

S∑

s=−S

(γ̇±
klmps)

−1
[

Hq−sE
a±
lmps + aH ′

q−sE
e±
lmps + a(q − s)Hq−sE

M±

lmps

]

, (5.25)
Cτ±
klmpq = a

S∑

s=−S

(γ̇±
klmps)

−1
[

Hq−s(E
ω±
lmps + EM±

lmps + EΩ±

lmps cos i)

+
U∑

u=−U

Hu−s (I
′

q−uE
e±
lmps + (q − u)Iq−uE

M±

lmps)
]

, (5.26)
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Cχ+±

klmpq =
a

2

S∑

s=−S

U∑

u=−U

(γ̇±
klmps)

−1Hu−s(E
i±
lmps − EΩ±

lmps sin i)(Rq−u+1 +Qq−u+1), (5.27)
Cχ−±

klmpq =
a

2

S∑

s=−S

U∑

u=−U

(γ̇±
klmps)

−1Hu−s(E
i±
lmps + EΩ±

lmps sin i)(Rq−u−1 −Qq−u−1). (5.28)It an be notied that they depend on the exitation funtions Eα±
lmps whih at the �rst order areequivalent to Eα

lmps ∀ α ∈ {a, e, i, ω,Ω,M} [64, Kaula, 1966℄
Ea

lmpq = 2na

(
Re

a

)l

FlmpGlpq(l − 2p + q),

Ee
lmpq = n

√
1− e2
e

(
Re

a

)l

FlmpGlpq[(l − 2p+ q)
√

1− e2 − (l − 2p)],

Ei
lmpq =

n√
1− e2 sin i

(
Re

a

)l

FlmpGlpq[(l − 2p) cos i−m],

Eω
lmpq =

n√
1− e2 sin i

(
Re

a

)l [1− e2
e

FlmpG
′

lpq sin i− F ′

lmpGlpq cos i

]

, (5.29)
EΩ

lmpq =
n√

1− e2 sin i

(
Re

a

)l

F ′

lmpGlpq,

EM
lmpq =

n√
1− e2 sin i

(
Re

a

)l

Flmp

[

2(l + 1)Glpq −
1− e2
e

G′

lpq

]

,and on the speial funtions Hn, In, Qn, Rn of order n, written in terms of the Bessel funtion
Jn of the �rst kind of order n and its �rst derivative J ′

n with respet to the eentriity. Thespeial funtions are given by [103, Rosborough and Tapley, 1987℄
H0 = 1 + e2

2 , Hn = H−n = − e
n2J

′
n(ne), n = 1, 2, ...,∞

R0 = −e, Rn = R−n = (1−e2)
e Jn(ne), n = 1, 2, ...,∞

Q0 = 0, Qn = −Q−n = 1
n

√

(1− e2)J ′
n(ne), n = 1, 2, ...,∞

I0 = 0, In = −I−n, n = 1, 2, ...,∞

(5.30)where
In =

1

n

{

Jn(ne) +
∞∑

ν=1

βν [Jn−ν(ne) + Jn+ν(ne)]

}

, β =
1−

√

(1− e2)
e

. (5.31)In order to ompute spetral analysis of the RTN oean tide perturbations, the equations in(5.20) must be written in spetral form as [14, Casotto, 1989℄
∆r =

L∑

l=1

l∑

m=0

l∑

p=0

Q
∑

q=−Q

∑

k

−∑

+

Ar±
klmpq cos(γ̇

±

klmpq(t− t0)∓ ψr±
klmpq), (5.32)

∆τ =

L∑

l=1

l∑

m=0

l∑

p=0

Q
∑

q=−Q

∑

k

−∑

+

Aτ±
klmpq sin(γ̇

±

klmpq(t− t0)∓ ψτ±
klmpq), (5.33)

∆χ =
L∑

l=1

l∑

m=0

l∑

p=0

Q
∑

q=−Q

∑

k

−∑

+

[

Aχ+±

klmpq sin(γ̇
±

k(l+1)mpq(t− t0)∓ ψ
χ+±

k(l+1)mpq)

−Aχ−±

klmpq sin(γ̇
±

k(l−1)mpq(t− t0)∓ ψ
χ−±

k(l−1)mpq)
]

, (5.34)
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klmpq, Aτ±

klmpq, Aχ+
±

klmpq, Aχ−
±

klmpq are the prograde and retrograde amplitudes of the spetrallines in the radial, transverse and normal diretions
Ar±

klmpq = A±

klmC
r±
klmpq, (5.35)

Aτ±
klmpq = A±

klmC
τ±
klmpq, (5.36)

Aχ+±

klmpq = A±

klmC
χ+±

klmpq, (5.37)
Aχ−±

klmpq = A±

klmC
χ−±

klmpq, (5.38)while ψr±
klmpq, ψτ±

klmpq, ψχ+±

k(l+1)mpq , ψχ−±

k(l−1)mpq are the orresponding phases, whih an be de�nedseparating the frequeny part from the phase part of the osine and sine arguments in (5.32),(5.33), (5.34) as
γ±
klmpq ∓ ψ±

klm + πlm = ν̇lmpq(t− t0) + ν0±lmpq ± Θ̇k(t− t0)±Θ0
k ∓ ψ±

klm + πlm. (5.39)From this relation it follows that the spetral phases for the radial, transverse and normalomponents result
ψr±
klmpq = ψτ±

klmpq = ψ±

klm ∓ ν0±lmpq −Θ0
k ∓ πlm, (5.40)

ψχ+
±

k(l+1)mpq = ψ±

klm ∓ ν0±(l+1)mpq −Θ0
k ∓ πlm, (5.41)

ψχ−±

k(l−1)mpq = ψ±

klm ∓ ν0±(l−1)mpq −Θ0
k
∓ πlm. (5.42)The tide perturbation frequenies de�ned in (5.24) are hosen to be positive

γ̇±
klmpq =







ν̇lmpq ± Θ̇k if γ̇±
klmpq > 0

−ν̇lmpq ∓ Θ̇k if γ̇±
klmpq < 0

(5.43)so also the phases of the osine and sine terms in (5.32), (5.33), (5.34) must be hanged in signas
ψr±
klmpq = ψτ±

klmpq =







ψ±

klm ∓ ν0±lmpq −Θ0
k
∓ πlm if γ̇±

klmpq > 0

−(ψ±

klm ∓ ν0±lmpq −Θ0
k
∓ πlm) if γ̇±

klmpq < 0
(5.44)

ψχ+±

k(l+1)mpq =







ψ±

klm ∓ ν0±(l+1)mpq −Θ0
k
∓ πlm if γ̇±

k(l+1)mpq > 0

−(ψ±

klm ∓ ν0±(l+1)mpq −Θ0
k
∓ πlm) if γ̇±

k(l+1)mpq < 0
(5.45)

ψχ−
±

k(l−1)mpq =







ψ±

klm ∓ ν0±(l−1)mpq −Θ0
k
∓ πlm if γ̇±

k(l−1)mpq > 0

−(ψ±

klm ∓ ν0±(l−1)mpq −Θ0
k
∓ πlm) if γ̇±

k(l−1)mpq < 0
(5.46)and, at the same time, the orresponding amplitudes are hanged in sign following the generaltrigonometri relations cos(−α) = cos(α) and sin(−α) = − sin(α).At this point, another hek is required on the spetral amplitudes to fore them to be positive,and in the ase of negative amplitudes the sign of the spetral phases must be hanged againtaking advantage of the trigonometri formulas cos(α + π) = − cos(α) for the radial ase and

sin(α+ π) = − sin(α) for the transverse and normal ases. After these algebrai manipulations,all the tide perturbation frequenies and the spetral amplitudes will be positive, balaned bythe suitable hanges in the orresponding spetral phases.Now, it is important to notie that di�erent ombinations of indies (l,m, p, q) an generatethe same tidal perturbation frequeny γ̇±
klmpq. Thus, in order to ompute the oean tide per-turbation spetrum, it is neessary to aumulate all the amplitudes and phases whih refer to



5.5. Spetral analysis of oean tide perturbations on GOCE 97the same frequeny or spetral line. Using a simpli�ed notation and de�ning eah unique tidalperturbation frequeny with γ̇±
kf and eah pair of amplitude and phase ontributing to the samefrequeny respetively with (Ar±
kf , ψr±

kf ), (Aτ±
kf , ψτ±

kf ), (Aχ±
kf , ψχ±

kf ), we an express the progradeand retrograde oean tide perturbations in the RTN positions for a spei�ed onstituent k as aFourier series expansion
∆r±

k
=

∞∑

f=1

[ar±
kf cos(γ̇

±

kf (t− t0)) + br±
kf sin(γ̇

±

kf (t− t0))], (5.47)
∆τ±

k
=

∞∑

f=1

[aτ±
kf cos(γ̇±

kf (t− t0)) + bτ±
kf sin(γ̇±

kf (t− t0))], (5.48)
∆χ±

k
=

∞∑

f=1

[aχ±
kf cos(γ̇±

kf (t− t0)) + bχ±
kf sin(γ̇±

kf (t− t0))], (5.49)where eah pair of Fourier oe�ients (ar±
kf , a

r±
kf ), (aτ±kf , aτ±kf ), (aχ±kf , aχ±kf ) results from the om-bination of all the spetral amplitudes and phase ontributing to the same spetral frequeny

γ̇kf . Given the spetral formulation in (5.32), (5.33), (5.34) and following the standard rela-tions for trigonometri produts, the pairs of Fourier oe�ients for the RTN perturbations aredetermined respetively as
ar±
kf =

∑

f

Ar±
kf cos(ψ

r±
kf ), br±

kf = ±
∑

f

Ar±
kf sin(ψ

r±
kf ), (5.50)

aτ±
kf = ∓

∑

f

Aτ±
kf sin(ψτ±

kf ), bτ±
kf =

∑

f

Aτ±
kf cos(ψτ±

kf ), (5.51)
aχ±
kf =

∑

f

Aχ±
kf sin(ψχ±

kf ), bχ±
kf =

∑

f

Aχ±
kf cos(ψχ±

kf ). (5.52)As a onsequene, for eah onstituent, the total amplitude and the total phase referring tothe same spetral line are respetively
A±

kf =
√

ar±2
kf + br±2

kf , Ψ±

kf = arctan(br±
kf /a

r±
kf ), (5.53)

A±

kf =
√

aτ±2
kf + bτ±2

kf , Ψ±

kf = arctan(bτ±
kf /a

τ±
kf ), (5.54)

A±

kf =
√

aχ±2
kf + bχ±2

kf , Ψ±

kf = arctan(bχ±
kf /a

χ±
kf ). (5.55)The main resonanes of the oean tide perturbations belong to the short period band andare de�ned by

(l − 2p+ q)Ṁ ≈ (m∓ s)θ̇g, (5.56)being s the tidal speies and leading to a resonant harmoni order
m ≈ kṀ

θ̇g
± s, (5.57)where k = l − 2p + q is the order of the resonane.Following the mathematial formulation desribed above, the analytial spetral analysis ofoean tide perturbations on GOCE was omputed using, as referene model, the FES2004 model(Lyard et al., 2006) up to degree and order 20 × 20 for 106 onstituents reported in Table 2.3.GOCE mean orbital elements and rates used to ompute the spetral analysis are reported inTable 5.4.



98 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsThe obtained prograde and retrograde radial amplitude spetra are shown in Figures 5.33and 5.34. The prograde and retrograde transverse amplitude spetra are shown in Figures 5.35and 5.36. The prograde and retrograde normal amplitude spetra are shown in Figures 5.37 and5.38.All the spetra show resonanes at frequenies of 16 y/day (one-per-rev band) and itsmultiples and a very strong resonane is espeially evident in the normal prograde spetrum.Moreover, the radial amplitude spetrum show large perturbations in the short period band,while the transverse amplitude spetrum is haraterized by large long period perturbations.
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Figure 5.33. Amplitude spetrum of the radial prograde perturbation in position due to oean tides.5.5.2 Statistis of oean tide perturbations by oe�ientThe oean tide perturbations in the RTN positions generated by the prograde and retrogradeoe�ient (l,m) for a onstituent k an be expressed using the spetral equations (5.32), (5.33),(5.34), where only the summations over the indies (p, q) remain, as
∆r±

klm =

l∑

p=0

Q
∑

q=−Q

Ar±
klmpq cos(γ̇

±

klmpq(t− t0)∓ ψr±
klmpq), (5.58)

∆τ±
klm =

l∑

p=0

Q
∑

q=−Q

Aτ±
klmpq sin(γ̇

±

klmpq(t− t0)∓ ψτ±
klmpq), (5.59)

∆χ±

klm =

l∑

p=0

Q
∑

q=−Q

[

Aχ+
±

klmpq sin(γ̇
±

k(l+1)mpq(t− t0)∓ ψ
χ+

±

k(l+1)mpq)

−Aχ−±

klmpq sin(γ̇
±

k(l−1)mpq(t− t0)∓ ψ
χ−±

k(l−1)mpq)
]

. (5.60)The mean of the square values of the perturbations by oe�ients< (∆r±
klm)2 >, < (∆τ±

klm)2 >,
< (∆χ±

klm)2 > depend on the mean of the produt between osine and sine terms, suh as
< cos(γ̇±

klmpq(t − t0) ∓ ψr±
klmpq) cos(γ̇

±

klmuv(t − t0) ∓ ψr±
klmpq) >, whih are not zero only for
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Figure 5.34. Amplitude spetrum of the radial retrograde perturbation in position due to oean tides.
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Figure 5.35. Amplitude spetrum of the transverse prograde perturbation in position due to oean tides.
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Figure 5.36. Amplitude spetrum of the transverse retrograde perturbation in position due to oean tides.
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Figure 5.37. Amplitude spetrum of the normal prograde perturbation in position due to oean tides.
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Figure 5.38. Amplitude spetrum of the normal retrograde perturbation in position due to oean tides.
γ̇±
klmpq = γ̇±

klmuv, leading to
< (∆r±

klm)2 > =
1

2

l∑

p=0

Q
∑

q=−Q

(Ar±
klmpq)

2, (5.61)
< (∆τ±

klm)2 > =
1

2

l∑

p=0

Q
∑

q=−Q

(Aτ±
klmpq)

2, (5.62)
< (∆χ±

klm)2 > =
1

2

l∑

p=0

Q
∑

q=−Q

[(Aχ+±

klmpq)
2 + (Aχ−±

klmpq)
2]. (5.63)Hene, the prograde and retrograde RMS by oe�ients (l,m) in the RTN position pertur-bations is given for eah onstituent by

RMS∆r±
klm

=

√

1

2
< (∆r±

klm)2 >, (5.64)
RMS∆τ±

klm
=

√

1

2
< (∆τ±

klm)2 >, (5.65)
RMS∆χ±

klm
=

√

1

2
< (∆χ±

klm)2 >, (5.66)while the total (prograde + retrograde) ontribution is
RMS∆rklm =

√
√
√
√

1

2

−∑

+

(RMS∆r±
klm

)2, (5.67)
RMS∆τklm =

√
√
√
√

1

2

−∑

+

(RMS∆τ±
klm

)2, (5.68)
RMS∆χklm

=

√
√
√
√

1

2

−∑

+

(RMS∆χ±

klm
)2. (5.69)



102 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsFinally, the total RMS by oe�ients aumulated over the onstituents is
RMS∆rlm =

√

1

2

∑

k

(RMS∆rklm)
2, (5.70)

RMS∆τlm =

√

1

2

∑

k

(RMS∆τklm)2, (5.71)
RMS∆χlm

=

√

1

2

∑

k

(RMS∆χklm
)2. (5.72)In Figures 5.39, 5.40, 5.41 the aumulated RMS by oe�ient is shown respetively forthe radial, transverse and normal oean tide perturbations. In partiular, the maximum RMSfor the radial omponent is about 1.323 m orresponding to the oe�ient (l,m) = (3, 2), themaximum RMS for the transverse omponent is 363.136 m for the oe�ient (l,m) = (2, 2) andthe maximum RMS for the normal omponent is 76.241 m for the oe�ient (l,m) = (2, 2).

Figure 5.39. Aumulated RMS by oe�ient of the radial perturbation in position due to oean tides.5.6 Aliasing of the oean tide onstituents for GOCEGOCE does not monitor the entire global �eld ontinually, but samples the stati gravity �eldand its time-varying part only along its orbital path, with a temporal resolution depending onthe frequeny with whih the satellite repeats the same groundtrak, de�ned by the satelliterepeat period.The exat repeat period is a non-linear funtion of semimajor axis and inlination of thesatellite orbit and, in partiular, GOCE orbit has been designed to follow losely a repeat periodof 979 revolutions in 61 nodal days (orbital resonane 979:613), in order to ahieve a global,dense and uniformly distributed groundtrak overage for an extremely good spatial sampling of3An orbital resonane R:D happens when the satellite performs exatly R revolutions in D nodal days, R andD being oprime integers.
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Figure 5.40. Aumulated RMS by oe�ient of the transverse perturbation in position due to oean tides.

Figure 5.41. Aumulated RMS by oe�ient of the normal perturbation in position due to oean tides.



104 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsthe stati gravity �eld, guaranteeing an equatorial separation4 of the ground traks of less than0.4 deg or 41 km and a maximum degree of the spherial harmoni expansion of the geopotentialequal to about 2005.However, for Earth observing satellites, the spatial resolution an not be inreased withoutloosing temporal resolution and vie-versa, ausing respetively temporal and spatial aliasingphenomena. To redue both types of aliasing, more satellites would be neessary. Indeed, thesienti� requirements of the GOCE mission ensure a very good spatial overage, orrespondingto a long repeat period, at the expense of temporal resolution, leading to strong temporal aliasing.Many oeanographi signals may su�er the aliasing problem, in partiular oean tide aliasing isa ruial issue and will be disussed in the following.Aording to the Nyquist riterion, temporal aliasing ours when there is a variability in asignal at sales shorter than twie the sampling interval Ts, so that signals with original periodsbetween 0 and 2Ts might be aliased to longer periods ranging from 2Ts to in�nite (non-periodisignals). Analogously, temporal aliasing for oean tides reovered by a satellite ours when theperiod of a tidal onstituent is less than twie the orbit repeat period, also alled the Nyquistperiod, whih is about 122 days for GOCE; aliasing does not exist for signals with period greaterthan the Nyquist limit. As a onsequene, the minimum alias period is twie the orrespondingorbit repeat period and inreases linearly with it. The ase of in�nite alias periods is the worstto reover oean tide signals, beause they ould not be ompletely separated from the Earth'sstati gravity �eld, ating as onstant terms.For repeating orbits, the alias periods of the oean tide onstituents an be alulated a-urately, beause they depend on the satellite exat repeat period Trp and the period Tk of thetide onstituent. The prinipal alias period T a
k
for a tidal frequeny an be determined as [95,Parke et al., 1987℄

T a
k =

∣
∣
∣
∣

2πTrp
∆φk

∣
∣
∣
∣
, (5.74)where ∆φk is the hange of the tidal phase for that onstituent over the satellite repeat period

∆φk =
2πTrp
Tk

, [−π, π] . (5.75)The prinipal alias periods for the 106 tidal onstituents of the FES2004 model to be reoveredby GOCE are reported in Table 5.5.Table 5.5. Original periods and prinipal alias periods for the 106 oean tide onstituents of the FES2004model deteted by GOCE. The original periods are the inverse of the Doodson frequeny or, equally, of the tidalperturbation frequeny with l = 2p, m = 0, q = 0, p > 0, being the Kaula frequeny zero.Tidal Darwin Original Period Alias PeriodConstituent Symbol (days) (days)165555 K1 0.997269576 359.595739003255555 M2 0.517525054 483.220633707245655 N2 0.527431168 179.3537741194For an R:D resonant orbit, the equatorial separation of the ground traks is expressed as ([6℄ Bezd¥k et al.,2010)
∆λdeg = 360◦/R or ∆λkm = 2πRe/R. (5.73)5For the Nyquist sampling theorem, the maximum degree N of the Stokes oe�ients that might be fullyreovered by a gravimetri satellite in the resonane R:D is approximately N ≤ R/2.



5.6. Aliasing of the oean tide onstituents for GOCE 105Table 5.5 � Continued from previous pageTidal Darwin Original Period Alias PeriodConstituent Symbol (days) (days)145555 O1 1.075805910 206.170746684163555 P1 1.002745417 371.071362978135655 Q1 1.119514811 124.435924954273555 S2 0.500000000 11627.749505082275555 K2 0.498634788 179.797869502235755 2N2 0.537723914 136.779437965115855 1.218530090 976.547974398117655 1.211361065 170.044451432125745 1.167126164 228.152158399125755 2Q1 1.166925821 220.743737538127545 1.160547602 139.803478299127555 σ1 1.160349511 142.738917214135645 1.119699204 126.756135754137445 1.113643040 274.215020430137455 ρ1 1.113460637 285.740962047145535 1.076146513 194.380512406145545 1.075976185 200.102106655145755 1.075089982 236.331270709147555 τ1 1.069505562 1598.845342483153655 1.040614670 161.263687362155445 1.035539509 670.545087419155455 1.035381791 743.923616878155655 M1 1.034718639 1378.884265940155665 1.034561171 1729.732641159157455 χ1 1.029544743 242.038390802162556 π1 1.005505848 184.070555560163545 1.002893347 351.864955983164556 S1 1.000000000 23201.542664760165545 0.997415895 379.679466512



106 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.5 � Continued from previous pageTidal Darwin Original Period Alias PeriodConstituent Symbol (days) (days)165565 0.997123299 341.529986719166554 ψ1 0.994554120 181.202075576167555 φ1 0.991853215 122.909960477173655 θ1 0.966956486 699.190593115175455 J1 0.962436581 159.057737090175465 0.962300344 155.421284203183555 SO1 0.934174078 202.578836659185355 0.929954783 151.524612746185555 OO1 0.929419770 167.207642064185565 0.929292719 171.424029343185575 0.929165703 175.858562333195455 ν1 0.899093237 404.128041000195465 0.898974342 429.670780807217755 0.558046925 193.964176044219555 0.556538526 156.731300006225855 3N2 0.548426378 262.817904245227655 ǫ2 0.546969472 129.349006550229455 0.545520286 347.920251529237555 µ2 0.536323242 236.692145521238554 0.535536889 672.450967796244656 0.528193880 123.772102882245645 0.527472092 174.743526124246654 0.526670655 352.389045467247455 ν2 0.526083537 1391.260479627248454 0.525326903 495.287994234253755 γ2 0.518829140 144.378311638254556 α2 0.518259366 208.019221975255545 0.517564456 451.151960486256554 β2 0.516792821 1496.217682528



5.6. Aliasing of the oean tide onstituents for GOCE 107Table 5.5 � Continued from previous pageTidal Darwin Original Period Alias PeriodConstituent Symbol (days) (days)263655 λ2 0.509240578 292.387107133265455 L2 0.507984191 696.050893451265655 0.507824509 486.457851243265665 0.507786577 453.972509168272556 T2 0.500685388 377.102511201274554 R2 0.499316486 354.132582885275565 0.498598216 175.165057365275575 0.498561650 170.764993360285455 η2 0.489771754 136.522276712285465 0.489736470 139.320163716293555 0.482345620 129.579830943295555 0.481074991 312.530538904295565 0.481040950 327.590957353135555 1.119902846 129.420277592155555 1.035050109 966.441267415175555 0.962149982 151.594964160235655 0.537813420 142.825712569245555 O2 0.527517279 169.921436361265555 0.507904337 572.679776794055565 LP 6798.096532971 6798.096532971056554 Sa 365.256775513 365.256775513057555 Ssa 182.621717375 182.621717375057565 Ssaa 177.844172936 177.844172936058554 Sta 121.749293854 122.262277179063655 MSm 31.811877283 740.370341278065445 27.666726611 297.705469988065455 Mm 27.554585634 285.215190972065465 27.443350065 273.730774031065555 27.321583231 262.080288919



108 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.5 � Continued from previous pageTidal Darwin Original Period Alias PeriodConstituent Symbol (days) (days)065655 27.092488337 242.416919420065665 26.984945099 234.070090283073555 MSf 14.765290935 463.940412704075355 13.777292817 142.607595486075555 Mf 13.660791616 131.040144459075565 13.633395274 128.561983000075575 13.606108599 126.175813185083455 9.613720702 176.629331423083655 MStm 9.556848916 159.221120143083665 9.543432639 155.577278312085455 Mtm 9.132937207 190.281781660085465 9.120683978 195.761226499093555 MSqm 7.095791770 151.376635968093565 7.088392969 154.824183972095355 6.859397443 571.677084899095365 6.852483169 624.165468009
Unfortunately, a Sun-synhronous satellite, like GOCE, does not allow the omplete estima-tion of the diurnal and semidiurnal solar tide onstituents S2 and S1 whih have original periodsof exatly 12 h and 24 h, beause it will always sample both these onstituents at the samephase every day. As a onsequene, S2 and S1 are aliased to almost in�nite periods, respetivelyof about 31 years for S2 and 63 years for S1, in the spei� ase of GOCE, so they representessentially a bias.Moreover, the diurnal solar tide onstituents K1 and P1 are aliased to annual periods, re-spetively of about 359 and 371 days, while K2 is aliased to semiannual period of about 179days.Another important fator to be aounted for is the apability to separate tidal onstituentswith neighboring alias periods from eah other, expressed by the Rayleigh riterion. The min-imum data reord length needed for the aurate separation of two tide onstituents is alledRayleigh period and is de�ned as

TRay =
1

∣
∣
∣
1
T1
− 1

T2

∣
∣
∣

, (5.76)where T1 and T2 are the original periods of the two onstituents. For the GOCE satellite,



5.7. De�nition of the oean tide parameters to be estimated 109the Rayleigh period neessary to separate respetively the semidiurnal lunar and lunisolar on-stituents N2 and K2 is approximately 199 years, beause they are aliased to nearly the sameperiod of about 179 days, so it results quite impossible to resolve them.Finally, the time series of available GOCE orbital observations must be onsidered and, forthe Nyquist sampling theorem, only oean tide frequenies with alias periods shorter than twiethis period and relatively large amplitudes are detetable. For the available GOCE data reord ofabout 400 days, the maximum alias period beyond whih the tidal onstituents must be disardedturns out to be Tmax = 200 days.5.7 De�nition of the oean tide parameters to be estimatedCombining information deriving from the spetral analysis, the perturbation statistis by oef-�ient, the determination of oean tide alias periods and resonant oe�ients, it is possible toidentify the list of the oean tide parameters to be estimated from GOCE orbital data. Alsothe total number of parameters must be taken into aount, so uto�s on the RTN perturbationRMS by oe�ient must be applied. The following automati proedure was adopted for boththe prograde and retrograde ase, whih an be treated in parallel and independently from eahother.During the spetral analysis, the prinipal alias periods were omputed aording to therelation (5.74) for the oean tide perturbation frequenies γ̇±
klmpq de�ned by all the ombinationsof indies (l,m, p, q). In this way, it is possible to disriminate between the partial spetralamplitudes A±

klmpq whih are aliased to periods greater than the limit period Tmax or not. Thehoie adopted onsists in not estimating the oe�ient (l,m), if the dominant partial amplitudeamong all those ontributing to the same pair (l,m) is aliased beyond Tmax, beause in that aseGOCE would not be able to solve it. As a onsequene, in the proessing of GOCE data, theseparameters will not be estimated, but taken from the referene oean tide model FES2004 andkept �xed.Also the resonant prograde/retrograde oean tide oe�ients (l,m) of the short period band,as de�ned in (5.56), are exluded from the estimation proess and the orresponding FES2004parameters are used instead.To limit the number of parameters to be estimated with the multiar approah, three di�er-ent uto�s are adopted for the seletion of the parameters based on the perturbation RMS byoe�ient in the three diretions RTN and are reported in Table 5.6, being 5 mm for the radialomponent, 2 m for the transverse omponent and 1 m for the normal omponent, both in theprograde and retrograde ase. In partiular, if at least a RMS by oe�ient is above its uto�in any one of the three diretions RTN, the orresponding parameter prograde/retrograde (l,m)is retained for the estimation.Table 5.6. Cuto�s adopted for the perturbation RMS by oe�ient in the radial, transverse and normal dire-tions. Cuto� R Cuto� T Cuto� N(mm) (mm) (mm)5 20 10Aording to this seletion proedure, the oean tide parameters whih will be estimatedthrough the proessing of GOCE orbital data are 490 in total, among whih 460 are progradeand 30 are retrograde. They are listed in Table 5.7, where onstituent, degree and order areindiated and the string potide refers to prograde oe�ients, rotide to retrograde oe�ientsand otide to both types.



110 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.7. Original periods and prinipal alias periods for the 106 oean tide onstituents of the FES2004model deteted by GOCE. The original periods are the inverse of the Doodson frequeny or, equally, of the tidalperturbation frequeny with l = 2p, m = 0, q = 0, p > 0, being the Kaula frequeny zero.Parameter Type Constituent (l,m)potide 125.755 2 1potide 125.755 4 1potide 127.555 2 1potide 127.555 4 1potide 135.645 2 1potide 135.645 4 1potide 145.545 2 1potide 145.545 2 2potide 145.545 3 1potide 145.545 4 1potide 145.545 4 2potide 145.545 5 1potide 145.545 6 1potide 145.545 8 1potide 145.545 10 1potide 145.545 12 1potide 145.545 17 17potide 153.655 4 1potide 155.655 2 1potide 155.655 4 1potide 157.455 2 1potide 157.455 4 1potide 162.556 3 1potide 162.556 4 1potide 162.556 5 1potide 162.556 6 1potide 162.556 7 1potide 164.556 2 1



5.7. De�nition of the oean tide parameters to be estimated 111Table 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 164.556 4 1potide 165.565 6 1potide 165.565 8 1potide 165.565 10 1potide 166.554 3 1potide 166.554 4 1potide 166.554 5 1potide 167.555 2 1potide 167.555 4 1potide 167.555 5 1potide 167.555 7 1potide 175.455 2 1potide 175.455 2 2potide 175.455 4 1potide 175.455 5 1potide 175.455 10 1rotide 175.455 15 15potide 175.465 2 1potide 175.465 4 1potide 183.555 4 1potide 185.555 2 1potide 185.555 4 1rotide 185.555 15 15potide 185.565 2 1potide 185.565 4 1potide 227.655 2 2potide 227.655 4 2potide 237.555 2 2potide 237.555 4 2potide 237.555 6 2



112 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 247.455 2 2potide 253.755 2 2potide 253.755 4 2potide 254.556 2 2potide 254.556 4 2potide 265.455 2 2potide 274.554 2 2potide 275.565 8 2potide 275.565 9 2potide 275.565 10 2rotide 275.565 15 14potide 275.565 16 2potide 275.565 17 2potide 275.565 19 18potide 275.575 3 2potide 275.575 4 2potide 275.575 5 2potide 275.575 6 2potide 285.455 2 2potide 285.455 4 2potide 285.455 6 2potide 285.465 2 2potide 285.465 4 2potide 245.555 2 2potide 245.555 4 2potide 055.565 2 0potide 055.565 4 0potide 055.565 6 0potide 055.565 12 0potide 056.554 2 0



5.7. De�nition of the oean tide parameters to be estimated 113Table 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 057.555 2 0potide 057.555 4 0potide 057.555 5 0potide 057.555 6 0potide 057.555 7 0potide 057.555 9 0potide 057.555 11 0potide 057.555 15 0potide 057.555 17 0potide 057.565 2 0potide 058.554 2 0potide 065.455 2 0potide 065.655 2 0potide 065.665 2 0potide 075.355 2 0potide 075.555 4 0potide 075.555 5 0potide 075.555 6 0potide 075.555 7 0rotide 075.555 17 16potide 075.565 4 0potide 083.655 2 0potide 085.455 2 0potide 085.455 4 0potide 085.465 2 0potide 093.555 2 0potide 235.755 2 2potide 235.755 4 2potide 235.755 6 2potide 165.555 3 1



114 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 165.555 4 1potide 165.555 5 1potide 165.555 6 1potide 165.555 7 1potide 165.555 8 1potide 165.555 10 1potide 165.555 11 1potide 165.555 12 1potide 165.555 13 1potide 165.555 16 1potide 165.555 18 1potide 165.555 19 1potide 165.555 20 1potide 255.555 2 2rotide 255.555 15 14potide 245.655 2 2potide 245.655 3 2potide 245.655 4 0potide 245.655 4 1otide 245.655 4 2potide 245.655 4 3potide 245.655 4 4potide 245.655 5 2potide 245.655 6 0potide 245.655 6 1potide 245.655 6 2potide 245.655 6 4otide 245.655 6 6potide 245.655 7 2potide 245.655 8 1



5.7. De�nition of the oean tide parameters to be estimated 115Table 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 245.655 8 2potide 245.655 10 2potide 245.655 12 2rotide 245.655 15 14rotide 245.655 17 14potide 245.655 18 2potide 245.655 19 18potide 145.555 2 0otide 145.555 2 1potide 145.555 2 2potide 145.555 3 1potide 145.555 3 2otide 145.555 3 3potide 145.555 4 0otide 145.555 4 1potide 145.555 4 2potide 145.555 4 3otide 145.555 4 4potide 145.555 5 1potide 145.555 6 0potide 145.555 6 1potide 145.555 6 2potide 145.555 7 1potide 145.555 8 1potide 145.555 10 1potide 145.555 11 1potide 145.555 12 1potide 145.555 13 1potide 145.555 14 1rotide 145.555 15 15



116 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 145.555 16 1potide 145.555 17 17potide 145.555 18 1potide 145.555 18 17potide 145.555 20 17potide 163.555 4 1potide 135.655 2 0potide 135.655 2 1potide 135.655 2 2potide 135.655 3 1potide 135.655 4 0potide 135.655 4 1potide 135.655 4 2potide 135.655 5 1potide 135.655 6 1potide 135.655 10 1potide 135.655 12 1potide 273.555 2 2potide 273.555 3 2potide 273.555 4 2potide 273.555 5 2potide 273.555 6 2potide 273.555 7 2potide 273.555 8 2potide 273.555 9 2potide 273.555 10 2potide 273.555 11 2potide 273.555 12 2potide 273.555 14 2potide 273.555 16 2



5.7. De�nition of the oean tide parameters to be estimated 117Table 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 273.555 17 2potide 273.555 18 2potide 273.555 19 2potide 273.555 19 18potide 273.555 20 2potide 275.555 2 2potide 275.555 3 2potide 275.555 4 1potide 275.555 4 2potide 275.555 4 3potide 275.555 4 4potide 275.555 5 2potide 275.555 6 2potide 275.555 7 2potide 275.555 8 2potide 275.555 9 2potide 275.555 10 2potide 275.555 11 2potide 275.555 12 2potide 275.555 13 2potide 275.555 14 2potide 275.555 15 2rotide 275.555 15 14potide 275.555 16 2potide 275.555 17 2rotide 275.555 17 14potide 275.555 18 2potide 275.555 19 2rotide 275.555 19 14potide 275.555 19 18



118 Chapter 5. Sensitivity study of GOCE orbit to oean tide perturbationsTable 5.7 � Continued from previous pageParameter Type Constituent (l,m)potide 275.555 20 2



Chapter 6Preliminary estimation of oean tideparametersThe GOCE GPS observations are proessed in daily orbital ars using the NAPEOS S/W sys-tem (ESA/ESOC), spei� for satellite orbit determination and modi�ed to inlude the partialderivatives with respet to the oean tide parameters and the oean tide model inversion apa-bility. For eah ar, the satellite state vetor at the initial epoh is estimated, together withone solar radiation pressure (SRP) parameter, six empirial aelerations per hour (three CPRalong-trak and three CPR ross-trak) and the oean tide parameters seleted from the sensi-tivity study of tidal perturbations on GOCE. Oean tide parameters are then estimated globallythrough a multiar solution, ombining the normal equations for a spei�ed number of dailyars. To evaluate the goodness of the obtained results, the GOCE POD was then arried outusing the estimated tidal parameters instead of the orresponding FES2004 parameters and theomparison with the POD performed using FES2004 is shown, involving the post-�t RMS ofGPS phase observations and the 3D RMS of orbit residuals, the last omputed also with respetto the o�ial GOCE R/D PSO.6.1 GOCE orbital data proessing with NAPEOSNAPEOS (NAvigation Pakage for Earth Observation Satellites) is a software developed andmaintained by ESA/ESOC for Earth Observation satellite missions, providing espeially apabil-ities of orbit determination/predition and parameter estimation. It is fully written in Fortran90and is haraterized by an objet oriented methodology and a highly modular and �exible design.However, the oean tide model inversion apability was not implemented in the system. As aonsequene, it was neessary to extend the S/W system introduing a new data struture withinexisting satellite global struture, to allow for the estimation of oean tide parameters througha multiar solution. A total of eighteen Fortran90 modules of NAPEOS have been modi�edand the main programs involved in the upgrade were BAHN (orbits and parameters estimator)and MULTIARC (ombines normal equations of independent ar runs) [3, Bardella and Casotto,2012℄. Partial derivatives with respet to the oean tide parameters were entirely implemented inNAPEOS. In partiular, the entral body struture in BAHN was extended to inlude the oeantide parameters harateristis: the tidal onstituent, harmoni type (C or S), the harmonidegree and order and the hirality (prograde or retrograde). The MULTIARC upgrade involvedessentially the normal equation �le output to ontain these harateristis.The sequene of NAPEOS programs de�ned to proess the GOCE orbital data is reportedin Figure 6.1. The main input data for the POD/Multiar proessing are:
• GOCE GPS observables in RINEX 2.20 format (�le type SST RIN 1b), overing the time119



120 Chapter 6. Preliminary estimation of oean tide parametersinterval from 1st November 2009 (beginning of the operational phase) to 31st May 2011,provided by ESA through EOLI-SA ([43℄, Earth Observation Link - Stand Alone), aninterative tool to view and order produts from ESA's Earth Observation atalogues;
• IGS �nal GPS orbits and lok solutions ([59℄);
• o�ial GOCE R/D PSO as a-priori referene orbits [8, Bok et al., 2011℄;
• GOCE GPS antenna information in ANTEX (ANTenna EXhange) format [60, Jäggi etal., 2009℄;
• GOCE radiation ross-setion area, aerodynami ross-setion area and attitude informa-tion [47, ESA/ESOC℄.Eah program performs a spei� task with spei� proessing proedures, alled modes, andan brie�y desribed as follows:
• ClokUpd, for the merge and onversion of lok �les;
• OrbUpd, for the merge of SP3 orbit �les with the IGS orbits to get a omplete SP3 �le;
• Traksim, for the onversion of SP3 orbits to NTDF �les;
• Buildat, generates an RTDC (RINEX Traking Data Catalogue) atalogue of RINEX �les;
• GnssObs, for RINEX observation pre-proessing;
• Bahn, for parameter estimation;
• Multiar, for normal Equation Staking;
• CmdLine,The three prinipal modes assoiated to the programs are:
• ORBIT-FIT, whih haraterized the group of programs involved in the generation of abest �tting orbit whih serves as a-priori orbit;
• GOCE-RAW, whih haraterized the programs involved in the �rst data pre-proessingand generation of a raw orbit at the meter level using only pseudorange measurements;
• GOCE, whih haraterized the programs involved in the seond data pre-proessing andparameter estimation, resulting in an aurate orbit at the entimeter level using bothpseudorange and phase measurements.
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Figure 6.1. Sequene of NAPEOS programs to perform the GOCE fully-dynami POD and multiar proessing.



122 Chapter 6. Preliminary estimation of oean tide parametersThe main input data for the POD-Multiar proessing are:
• GOCE GPS observables in RINEX 2.20 format (�le type SST RIN 1b), overing the timeinterval from 1st November 2009 (beginning of the operational phase) to 31st May 2011,provided by ESA through EOLI-SA ([43℄, Earth Observation Link - Stand Alone), aninterative tool to view and order produts from ESA's Earth Observation atalogues;
• IGS �nal GPS orbits and lok solutions ([59℄);
• o�ial GOCE R/D PSO as a-priori referene orbits [8, Bok et al., 2011℄;
• GOCE GPS antenna information in ANTEX (ANTenna EXhange) format [60, Jäggi etal., 2009℄;
• GOCE radiation ross-setion area, aerodynami ross-setion area and attitude informa-tion [47, ESA/ESOC℄.For a detailed explanation of the NAPEOS programs refer to the NAPEOS User Manual [45,ESA GMVSA, 2006℄.6.1.1 Dynamial modelIn order to estimate the oean tide parameters through a fully-dynami POD of GOCE, it isneessary to have a omplete and aurate dynamial model. However, mismodeling of some per-turbations is inevitable and this may lead to high disrepanies of the resulting tidal parameterswith respet to the referene tide model.The Earth's stati gravity �eld onsidered for the GOCE data proessing is the EIGEN-6Cmodel [50, Förste et al., 2011℄ up to degree and order 200, whih ombines LAGEOS, GRACEand GOCE satellite measurements, gravity and altimetri data, and an be downloaded fromthe International Centre for Global Earth Models [58, ICGEM℄.The third-body gravitational fores of the Sun, the Moon and the planets are inluded,together with the indiret oblateness perturbation, onsisting in the perturbation due to the J2Earth gravity �eld omponent on the Moon.The e�et of oean tides is not distinguishable from that of solid tides and is therefore relativeto the partiular solid Earth tide model used, whih is the IERS-TN32 [82, MCarthy and Petit,2003 ℄ up to degree and order 4 for 71 onstituents. On the other hand, the referene oeantide model aounting for the parameters whih are not onsidered in the list of parameters tobe estimated is the FES2004 model [79, Lyard et al., 2006℄ up to degree and order 50 for 106onstituents.The orretion due to General Relativisti e�ets aused by the urvature in the time-spaegenerated by the Earth heavy rotating body is inluded in the dynamial model [82, MCarthyand Petit, 2003 ℄.Three analytial models are implemented in NAPEOS in order to ompute the non-gravitationalperturbations due to solar radiation pressure (SRP) [82, MCarthy and Petit, 2003 ℄, Earthalbedo and infrared radiation [2, Arnold and Dow, 1984℄.The aerodynami fores are not onsidered during the POD proess beause GOCE is �y-ing in drag-free ontrol via an eletri propulsion system used to ontinuously ounterat theatmospheri drag in the diretion of the motion.Finally, one yle per revolution empirial aelerations are introdue in the radial, along-trak and ross-trak diretions to ompensate model omission errors.Table 6.1 illustrates the fore models onsidered during GOCE fully-dynami POD proess.For the mathematial models and algorithms implemented in NAPEOS refer to [46, ESA/ESOC,2009℄.
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Table 6.1. Gravitational, non-gravitational and empirial fores adopted for the GOCE fully-dynami PODproess.Dynamial Models Desription RefereneStati gravity �eld EIGEN-6C 200x200 [50℄Solid Earth tides IERS-TN32 71 onstituents, 3x3 [82℄Oean tides FES2004 106 onstituents, 50x50 [79℄Oean loading tides FES2004, 50x50 [79℄Third body perturbation Lunar gravitySolar gravityPlanetary gravityIndiret oblateness perturbationRelativisti orretion Corretion aording to General Relativity [82℄Aerodynami fores not onsideredRadiation Pressure Solar Radiation Pressure [82℄Albedo radiation pressure [2℄Infrared radiation pressure [2℄Empirial aelerations Radial, along-, ross-trak CPR [46℄



124 Chapter 6. Preliminary estimation of oean tide parameters6.1.2 Analyzed GOCE dataGOCE data are proessed in daily orbital ars from the 1st November 2009, orresponding tothe beginning of the operational phase, until the 31st May 2011 to perform the fully-dynamiPOD. For eah ar, the satellite state vetor at the initial epoh (at 12 h of eah day) is es-timated, together with one solar radiation pressure (SRP) parameter (onsidering a onstantGOCE radiation area), six empirial aelerations per hour (three CPR along-trak and threeCPR ross-trak) and the oean tide parameters seleted from the sensitivity study reportedin the previous Chapter. The normal equations are aumulated at the end of eah ar. Theparameters estimated over eah daily ar during GOCE fully-dynami POD proess are reportedin Table 6.2.
2009 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

November 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

December 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

2010

January 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

February 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

March 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

April 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

May 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

June 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

July 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

August 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

September 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

October 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

November 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

December 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

2011

January 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

February 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

March 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

April 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

May 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

not usable

SSTI anomaly (antenna switch)

RMS fit < 8 mm   used for MULTIARC

8 mm < RMS fit < 10 mm

10 mm < RMS fit < 12 mm

RMS fit > 12 mm

GOCE POD + MULTIARC

Figure 6.2. Daily report showing GOCE suessful proessed data for POD with di�erent olors orrespondingto di�erent �t RMS values, of whih aumulated normal equations are then used for the multiar solution foroean tide parameter estimation.A daily report of the obtained post-�t RMS of the GPS phase observations for the analyzeddata is shown in Figure 6.2. GOCE POD was suessfully omputed for at total of 472 days.Of these, 18 days present a post �t-RMS greater than 12 mm and other 18 days have a post-�tRMS between 10 mm and 12 mm, 5 days show a post-�t RMS between 8 mm and 10 mm, whilethe remaining 431 days have a post-�t RMS lower than 8 mm with a minimum of about 5 mm.Only ars with a post �t RMS of the GPS phase observations residuals lower than 8 mm areonsidered for the multiar proessing, so a total of 431 days are used to solve for 490 seletedoean tide parameters. Firstly, a pre-elimination of the ar-dependent parameters (satellite statevetor, SRP oe�ient, CPR oe�ients) is performed, without loosing information as desribedin Chapter 4. Then, the oean tide parameters are globally estimated through a multiar so-lution, ombining the normal equations for a spei�ed number of daily ars, not neessarily



6.2. Preliminary results 125onseutive. In fat, for the estimation of ar-independent (time-independent) parameters, it isnot required the ondition of ontinuity of the orbital ars at the boundaries, beause they areglobal (onstant) over all the ars.Table 6.2. Estimated and �xed parameters during the GOCE fully-dynami POD proess for eah daily ar.Parameters Desription Type RefereneSatellite state vetor estimated (1 per ar at epoh)Radiation pressure Solar Radiation Pressure estimated (1 per ar) [82℄Albedo radiation pressure �xed, equal to 1 [2℄Infrared radiation pressure �xed, equal to 1 [2℄Empirial aelerations CPR onstant along-trak estimated (1 per hour) [46℄CPR onstant ross-trak estimated (1 per hour)CPR osine along-trak estimated (1 per hour)CPR osine ross-trak estimated (1 per hour)CPR sine along-trak estimated (1 per hour)CPR sine ross-trak estimated (1 per hour)Oean tide parameters 490 seleted parameters estimated (one per ar)6.2 Preliminary resultsAll major diurnal, semi-diurnal and long-period tides from harmoni degree 2 to 20, aording tothe seleted list, were inluded in the estimation proess and preliminary results were obtained.In Figure 6.3 the absolute di�erene of the estimated parameters with respet to the orrespond-ing FES2004 oean tide parameters is shown. In partiular, the 56% of the total number ofparameters has a di�erene below 1 m from the FES2004 model.The standard deviation of the estimated parameters is reported in Figure 6.4 and it an beobserved that the 36% of the parameters presents a value lower than 1 mm.In Figure 6.5 the relative error with respet to the FES2004 parameters is illustrated andabout the 16% have a relative error lower than 1, meaning that they are of the order of magnitudeof the FES2004 parameters.These preliminary results show quite signi�ant disrepanies if ompared with the values ofthe FES2004 model. However, it must be onsidered that the FES2004 model results from theassimilation of satellite altimeter data into a hydrodynami oean solution with the best om-bination between physial parameters and model disretization, while the parameters estimatedthrough the POD-Multiar proessing are the result of a densely-parameterized, fully-dynamiorbital solution and tend to absorb errors due to the mismodeling of the fore �eld ating on thesatellite.Certainly, GOCE is the most sensitive satellite to oean tide perturbations, but there aremany di�ulties for the tidal reovery from GOCE orbital data. First of all beause it is a Sun-synhronous satellite with perfet resonanes with the dominant semidiurnal solar tide S2 anddeep resonanes with all the other solar tides. Moreover, GOCE long repeat period of 61 daysauses strong temporal aliasing of the tidal perturbation frequenies haraterized by a period



126 Chapter 6. Preliminary estimation of oean tide parametersshorter than about 122 days. An extension of the data set to muh longer time-period, togetherwith the inlusion of more satellites, suh as GRACE, should allow a substantial improvementof the obtained results.Further POD-Multiar runs are ertainly neessary, together with the re�nement of the listof parameters to be estimated, removing exessively ill-estimated oean tide parameters (andthe orrelated ones) and introduing new parameters where appropriate. The model parametertuning and investigation is essential to adjust the best ombination of parameters to be estimated.Indeed, the task has proven very intensive and hallenging, but the partial results obtained areenouraging and a motivation for future analysis.
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Figure 6.3. Absolute di�erene of the estimated parameters with respet to the orresponding FES2004 oeantide parameters.The orrelation matrix of the oean tide estimated parameters is reported in Figure 6.6.6.3 Reomputation of GOCE orbit with the estimated parame-tersThe impat of the estimated parameters on the preise orbit determination of GOCE was eval-uated. GOCE orbital data were reproessed from the 1st November 2009 to the 31st May 2011,initializing the oean tide model with the estimated parameters, if present, and maintaining oth-erwise the FES2004 parameters. During this run no oean tide model estimation is performed.The results are ompared with those obtained from the GOCE preise orbit determination usingthe omplete FES2004 model.Figure 6.7 shows the post-�t RMS of the GPS phase residuals obtained with the new oeantide model, with a mean value of 6.5 mm. Moreover, Figure 6.8 reports the di�erene betweenthe post-�t RMS obtained with the FES2004 model and that resulting from the new oean tidemodel. A mean improvement of 0.6 mm in the post-�t RMS an be observed for the 96% of theanalyzed daily ars, in partiular, the 16% of the ars shows an improvement greater than 1 mmand few days reah a di�erene of 2 mm.The GOCE orbits resulting from the new oean tide model are then ompared with boththe o�ial R/D PSO [122, Visser et al. 2009℄[8, Bok et al., 2011℄and the orbits obtained using
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Figure 6.4. Standard deviation of the estimated parameters.
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Figure 6.5. Relative error of the estimated parameters with respet to the orresponding FES2004 oean tideparameters.
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Figure 6.6. Correlation matrix of the estimated parameters.FES2004 model. In partiular, the 3D RMS of the di�erene between the orbits omputed usingFES2004 and those reomputed with the new parameters is illustrated in Figure 6.9, showinga mean value of 2.5 m. Also the 3D RMS of the di�erene between the o�ial R/D PSO andthose reomputed with the new oean tide model were omputed and plotted in 6.10, resultingin an averaged di�erene of 4.9 m.Finally, the di�erene between the 3D RMS of the orbit residuals between the R/D PSO andthe GOCE POD with FES2004 and the RMS of the di�erene between the GOCE R/D PSO andthe GOCE POD with the new parameters is presented in Figure 6.11. It is interesting to notiethat only for the 25% of the ars the POD performed with FES2004 has more agreement withthe R/D PSO, with a mean improvement of 0.2 m. For the remaining ars, the POD arriedout with the model inluding the estimated parameters shows a mean improvement of 0.9 m,with several peaks greater than 1 m.These results on�rm that the estimated oean tide parameters absorbed unmodeled signaldue to omission errors or mismodeling errors deriving from the other models. The improvementin the agreement of the GOCE POD performed with the new oean tide model is noteworthyand a good premise for further investigations.
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Figure 6.7. Fit RMS of the GPS phase residuals obtained using the new estimated parameters in the oean tidemodel, instead of the orresponding FES2004 parameters.

0 100 200 300 400 500 600
−0.5

0

0.5

1

1.5

2

2.5

Daily arcs

D
iff

er
en

ce
 b

et
w

ee
n 

G
P

S
−

P
ha

se
 fi

t R
M

S
 (

m
m

)

 

 

POD FES2004 OT − POD ESTIMATED OT

Figure 6.8. Di�erene between the �t RMS obtained using FES2004 model and the �t RMS obtained with thenew estimated oean tide parameters, instead of the orresponding FES2004 parameters.
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Figure 6.9. 3D RMS of the di�erene between the GOCE orbits omputed using FES2004 and the orbitsreomputed with the new parameters substituting the orresponding FES2004.
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Figure 6.10. 3D RMS of the di�erene between the GOCE R/D PSO [8, Visser et al. 2009; Bok et al., 2011℄and the orbits reomputed with the new parameters substituting the orresponding FES2004.
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Figure 6.11. Di�erene between the 3D RMS of the di�erenes between R/D PSO and the GOCE orbitsestimated with FES2004 and the RMS of the di�erene between the GOCE R/D PSO and the orbits reomputedwith the new parameters.
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Chapter 7Conlusions and future worksTides are periodial phenomena a�eting both the solid Earth and oeans, aused by the di�er-ential gravitational attration of external perturbing bodies on the Earth's surfae, and by theEarth's response to this tide-generating potential, so they represent a time-variable part of thegeopotential.The oean tide height �eld was expressed aording to di�erent parameterizations, the mainbeing the lassial spherial harmoni representation, haraterized by a sum of partial tideheights eah orresponding to a tidal frequeny, and the response analysis, in whih the transferfuntion or impulse response between the tidal foring and the oean tide height �eld is assumedto be linear inside eah tidal band. Conerning the orthonormalized formulation of the responsemethod developed by Groves and Reynolds (1975), a new omputational algorithm was devel-oped and implemented, with the aim to aurately redetermine diurnal and semidiurnal orthotideonstants neessary for the aurate redetermination of the orthotides used as basis funtions inthe representation of the oean tide height �eld. The results show that orthonormality require-ments are satis�ed with a preision better than 10−8 for the diurnal band and better than 10−7for the semidiurnal band up to orthotide order 50.Tides are often onsidered as a noise or a orretion to be removed from satellite gravityreords and from the sea level observed by altimeters, in order to study other oeani phenom-ena suh as oean urrents. However, oean tides represent also a signal to be reovered forappliations onerning the evaluation of gravitational perturbations ating on the Earth or-biting satellites or for the aurate omputation of oean tide loading deformation and stationdisplaements.Thanks to its extremely low altitude of about 250 km, the GOCE satellite launhed by ESA in2009 is the most sensitive to oean tide perturbations and a test-bed for the appliation of lassialorbit perturbation analysis methods to estimate tidal parameters, whih is the fundamental topiof this work of researh. Among the several proessing strategies that an be adopted, the diretfully-dynami approah was hosen, onsisting in performing the fully-dynami preise orbitdetermination of GOCE, aumulating the normal equations for eah orbital ar and estimatingthe global oean tide parameters through a multiar solution. The tool to perform this type ofanalysis has been identi�ed in ESA's NAPEOS S/W system, spei� for orbit determination andpredition and parameter estimation apabilities for the Earth orbiting satellites. However, itwas neessary to upgrade the system with the entire implementation of the partial derivativeswith respet to the oean tide harmoni parameters and the extension of the struture for theinlusion of the oean tide parameters harateristis: the tidal onstituent, harmoni type (Cor S), the harmoni degree and order and the hirality (prograde or retrograde).The prinipal and quite intensive task in order to aomplish the sienti� objetive of thestudy was to de�ne the set of oean tide harmoni parameters (C̄±

klm, S̄
±

klm) to whih GOCE ismore sensitive. 133



134 Chapter 7. Conlusions and future worksA global and detailed sensitivity study of the oean tide perturbations on GOCE orbit wasarried out using as a referene the FES2004 model. First of all, the e�et of several ombinationsof oean tide onstituents on GOCE orbit was quanti�ed over annual period, obtaining thefollowing results:
• 106 onstituents of the oean tide �eld FES2004, 50x50, show a total position perturbationreahing a maximum of about 3000 m;
• 8 main onstituents O1, P1, K1, Q1, N2, M2, K2, S2 of the oean tide �eld FES2004,50x50, show a total e�et of about 3000 m;
• 6 main onstituents O1, P1, Q1, N2, M2, K2 of the oean tide �eld FES2004, 50x50 (thetwo resonant onstituents K1 and S2 have been disarded), show a total e�et of about400 m;
• 103 onstituents of the oean tide �eld FES2004, 50x50 (the three resonant onstituents
K1, S1 and S2 have been disarded), show a total e�et of about 600 m;

• the main onstituent M2 of the oean tide �eld FES2004, 50x50, shows a total e�et ofabout 600 m.In addition, over the longest tidal period of 18.6 years regarding the lunar node regression,the e�et of 106 onstituents of the model FES2004, 50x50, shows a maximum perturbation ofabout 140 km.Oean tides aelerations ating on GOCE orbit were determined over a period of about 70days using di�erent existent oean tide models, resulting in an RMS of the order of 10−8 m/s2.Then, from the evolution of GOCE orbital elements available from a preliminary run ofGOCE preise orbit determination with NAPEOS, the mean values of the foronomi elementsand the seular rates of the angular elements were estimated through a linear least-square �t,obtaining respetively for the argument of perigee, the longitude of asending node and meananomaly values of ω̇ = −3.764817×10−7 rad/s, Ω̇ = 2.022334×10−7 rad/s, Ṁ = 1.167455×10−3rad/s.Using the mean orbital harateristis of GOCE (reported in Table 5.4), the analytial spe-tral analysis of the radial, transverse and normal oean tide perturbations a�eting GOCE posi-tion on orbit was omputed using Kaula's linear satellite theory, up to degree and order 20× 20for 106 onstituents of the FES2004 model, reported in Table 2.3. The resulting amplitude spe-tra were plotted for the three diretions for both the prograde and the retrograde ase in Figures5.33, 5.34, 5.35, 5.36, 5.37 and 5.38.Together with the spetral analysis, the perturbation statistis by oe�ient was also per-formed respetively for the radial, transverse and normal oean tide perturbations, obtaininga maximum RMS for the radial omponent of about 1.323 m, for the transverse omponent of363.136 m and for the normal omponent of 76.241 m.Moreover, an investigation onerning the temporal aliasing problem of the tidal perturbationfrequenies a�eting GOCE was neessary. In fat, GOCE does not monitor the entire global �eldontinually, but samples the stati gravity �eld and its time-varying part only along its orbitalpath, with a temporal resolution depending on the satellite repeat period. Following loselya repeat period of 979 revolutions in 61 nodal days, the tidal frequenies as felt by GOCE arealiased to periods from 122 days (twie the orbit repeat period) to almost in�nite. Unfortunately,GOCE is also a Sun-synhronous satellite, so it does not allow the omplete estimation of thediurnal and semidiurnal solar tide onstituents S2 and S1 whih have original periods of exatly12 h and 24 h, beause it will always sample both these onstituents at the same phase everyday, so they represent essentially a bias.Combining information deriving from the spetral analysis, the perturbation statistis byoe�ient and the determination of oean tide alias periods, the list of the oean tide parameters



135from harmoni degree 2 to 20 to be estimated from GOCE orbital data was identi�ed. It mustbe pointed out that the total number of parameters was limited through the appliation of threedi�erent uto�s on the perturbation RMS by oe�ient, respetively equal to 5 mm for the radialomponent, 2 m for the transverse omponent and 1 m for the normal omponent, both inthe prograde and retrograde ase. The resulting total number of parameters, to be estimatedthrough a multiar solution, is 490 and they are listed in Table 5.7.GOCE orbital data were proessed in daily ars from the 1st November 2009, orrespondingto the beginning of the operational phase, until the 31st May 2011 and the fully-dynami PODwas suessfully omputed for a total of 472 days (see Figure 6.2). However, only ars with apost-�t RMS of the GPS phase observations residuals lower than 8 mm were onsidered for themultiar proessing, so a total of 431 days were used to solve for 490 oean tide parameters.The obtained preliminary results show that the 56% of the total number of parameters hasa di�erene below 1 m from the FES2004 model (see Figure 6.3), while the relative error of theestimated parameters with respet to the orresponding FES2004 parameters lower than 1 forabout the 16% of the total (see Figure 6.5), meaning that they are of the order of magnitudeof the FES2004 parameters. Though a large part of estimated parameters shows quite signi�-ant disrepanies from the values of the FES2004 model, it must be onsidered that they arereovered di�erently from the hydrodynami with assimilation FES2004 model, being the resultof a densely-parameterized, fully-dynami orbital solution and tend to absorb errors due to themismodeling of the fore �eld ating on the satellite.Then, the impat of the estimated parameters on the GOCE preise orbit determination wasevaluated. GOCE orbital data were reproessed from the 1st November 2009 to the 31st May2011, initializing the oean tide model with the estimated parameters, if present, and maintainingotherwise the FES2004 parameters. The post-�t RMS of the GPS phase residuals obtained withthe new oean tide model has a mean value of 6.5 mm, and it is noteworthy that the di�erenebetween the post-�t RMS obtained with the FES2004 model and that resulting from the newoean tide model indiates a mean improvement of about 0.6 mm in for the 96% of the analyzedars and greater than 1 mm for the 16%, few days reah a di�erene of 2 mm.Finally, the orbits obtained with the estimated parameters are ompared with the orbitsobtained employing the FES2004 model and the o�ial GOCE R/D PSO. The 3D RMS ofthe di�erene between the orbits omputed using FES2004 and those reomputed with the newparameters shows a mean value of 2.5 m (see Figure 6.9), while the 3D RMS of the di�erenewith respet to the o�ial R/D PSO has a mean value of 4.9 m. The di�erene between the3D RMS of the orbit residuals between the R/D PSO and the GOCE POD with FES2004 andthe RMS of the di�erene between the R/D PSO and the GOCE POD with the new parametersresults to have a mean improvement of 0.9 m (see Figure 6.11).As a future work, further POD-Multiar runs are ertainly neessary, together with the re-�nement of the list of parameters to be estimated, removing exessively ill-estimated oean tideparameters whih ould wrongly absorb tidal signal, redistributing erroneously the remainingsignal on the other parameters, and then introduing new parameters where appropriate. Themodel parameter tuning and investigation is essential to adjust the best ombination of parame-ters to be estimated. Moreover, an extension of the data set to muh longer time-period shouldallow a substantial improvement of the obtained results. Indeed, the task has proven very in-tensive and hallenging, but the partial results obtained are enouraging and a motivation forfuture analysis.
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Appendix ALag index limits and symmetry properties ofthe orthotide oe�ientsThe number of unknown oe�ients Unk and Vnk assoiated with the orthotide of any order n,as expressed by equation (3.115) in terms of an arbitrary value K of the maximum lag index,is N = 2(2K + 1). However, aording to the orthonormality relation (3.116), the number ofequations of ondition is (n+ 1) . If we set K = n = i the plot of these two integer funtionsshown in Figure A.1 reveals that the number of oe�ients to be determined is always greaterthan the number of available equations, i.e., the system to be solved is underdetermined. It isthen expedient to use K as a free parameter to limit the number of unknowns depending onthe order n of the orthotide in suh a manner as to generate a non-overdetermined system ofequations 〈ζn(t)ζm(t)〉 = δnm, for m = 0, 1, ..., n.
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138 Appendix A. Lag index limits and symmetry properties of the orthotideoe�ientsoe�ients to N = 2(K +1) by imposing the following relations of symmetry between orthotideoe�ients of opposite parity
Un,−k = (−1)nUnk, (A.1)
Vn,−k = −(−1)nVnk, (A.2)whih e�etively eliminate the negative lag indies. Then the expression for the generi orthotideof order n beomes1

ζn (t) = Un0a (t) + Vn0b (t) (A.4)
+

K∑

k=1

Unk [a (t+ k∆t) + (−1)n a (t− k∆t)]

+

K∑

k=1

Vnk [b (t+ k∆t)− (−1)n b (t− k∆t)] .As Figure A.1 shows, the slope of the relation between the number of oe�ients and themaximum lag index K is less steep. Now we hoose the maximum lag index K in order that isthe maximum value allowing for an underdetermined or determined system.Examining the problem in more detail, we observe that for order n = 0 and maximum lag
K = 0, the system onsists of only one equation

〈ζ0(t)ζ0(t)〉 = (U2
00 + V 2

00)ψ0 = 1, (A.5)so there must be only one unknown and this implies that either U00 or V00 must be disarded. Wehoose to set V00 = 0 beause in the orthotide expression (3.115), Vnk terms multiply b(t+ k∆t)terms, whih are built as ombination of sine funtions, while it an be preferable to have osinefuntions. The solution is then U00 =
√

1/ψ0 so that
ζ0 (t) = U00a (t) . (A.6)1

ζn(t) =
K∑

k=−K

[Unka (t+ k∆t) + Vnkb (t+ k∆t)]

=

K∑

k=0

[Unka (t+ k∆t) + Vnkb (t+ k∆t)]

+
−1∑

k=−K

[Unka (t+ k∆t) + Vnkb (t+ k∆t)]

=

K∑

k=0

[Unka (t+ k∆t) + Vnkb (t+ k∆t)]

+
K∑

k=1

[Un,−ka (t− k∆t) + Vn,−kb (t− k∆t)]

=
K∑

k=0

[Unka (t+ k∆t) + Vnkb (t+ k∆t)]

+

K∑

k=1

(−1)n [Unka (t− k∆t)− Vnkb (t− k∆t)]

= Un0a (t) + Vn0b (t)

+
K∑

k=1

{Unk [a (t+ k∆t) + (−1)n a (t− k∆t)]

+ Vnk [b (t+ k∆t)− (−1)n b (t− k∆t)]} . (A.3)



139For order n = 1, the system has two equations and the maximum lag index must be K = 0so as to have only two unknowns. In fat, the orresponding system is then
〈ζ1(t)ζ0(t)〉 = (U10U00 + V10V00)ψ0 = 0, (A.7)
〈ζ1(t)ζ1(t)〉 = (U2

10 + V 2
10)ψ0 = 1. (A.8)Using the known values of V00 and U00, the system simpli�es to

√

ψ0U10 = 0, (A.9)
(U2

10 + V 2
10)ψ0 = 1, (A.10)whih admits the solution U10 = 0, V10 =
√

1/ψ0. Note that U10 = −V00 and V10 = U00.Therefore
ζ1 (t) = V10b (t) , (A.11)or
ζ1 (t) = U00b (t) . (A.12)For order n = 2 we have a system of three equations, and the maximum lag index an betaken as K = 1. In this ase there are three oe�ients and the system

〈ζ2(t)ζ0(t)〉 = U00(U20ψ0 + 2U21ψ1 (A.13)
+ 2V21χ1) = 0, (A.14)

〈ζ2(t)ζ1(t)〉 = V10V20ψ0 = 0, (A.15)
〈ζ2(t)ζ2(t)〉 = U2

20ψ0 + 2U2
21(ψ0 + ψ2)

+ 2V 2
21(ψ0 − ψ2) + 4U20V21χ1 (A.16)

+ 4U20U21ψ1 + 4U21V21χ2 = 1.is well determined. Again, using the previous solutions this simpli�es to
√

1/ψ0(U20ψ0 + 2U21ψ1 + 2V21χ1) = 0, (A.17)
√

ψ0V20 = 0, (A.18)
U2
20ψ0 + 2U2

21(ψ0 + ψ2)

+ 2V 2
21(ψ0 − ψ2) + 4U20V21χ1 (A.19)

+ 4U20U21ψ1 + 4U21V21χ2 = 1.The seond of these equations is deoupled from the other two and provides V20 = 0. Theother two equations still ontain the three unknowns U20, U21, and V21. We eliminate one bysetting V21 = 0. Then U20 and U21 follow from eqs. (A.17) and (A.19), whih now read
U20ψ0 + 2U21ψ1 = 0, (A.20)
U2
20ψ0 + 2U2

21(ψ0 + ψ2) + 4U20U21ψ1 = 1. (A.21)The orthotide2 of order 2 is then
ζ2 (t) = U20a (t) + U21 [a (t+∆t) + a (t−∆t)] . (A.23)2The general orthotide at n = 2 has the expression

ζ2 (t) = U2,−1a (t−∆t) + V2,−1b (t−∆t) + U20a (t) + V20b (t)

+U21a (t+∆t) + V21b (t+∆t)

= U21a (t−∆t)− V21b (t−∆t)

+U20a (t) + V20b (t) + U21a (t+∆t) + V21b (t+∆t)

= U20a (t) + V20b (t) + U21 [a (t+∆t) + a (t−∆t)]

+V21 [b (t+∆t)− b (t−∆t)] . (A.22)



140 Appendix A. Lag index limits and symmetry properties of the orthotideoe�ientsFor order n = 3 we keep K = 1 and write the following system
〈ζ3(t)ζ0(t)〉 = U00U30ψ0 = 0, (A.24)
〈ζ3(t)ζ1(t)〉 = V10(V30ψ0 + 2V31ψ1 − 2U31χ1) = 0, (A.25)
〈ζ3(t)ζ2(t)〉 = 2U31U20ψ1 = 0 (A.26)
〈ζ3(t)ζ3(t)〉 = V 2

30ψ0 + 2V 2
31(ψ0 + ψ2)

+ 4V30V31ψ1 = 1. (A.27)Substitution of known quantities, whih we also indiate with the notation [[]] , yields
√

1/ψ0U30 = 0, (A.28)
√

1/ψ0(V30ψ0 + 2V31ψ1 − 2U31χ1) = 0, (A.29)
[[2U20ψ1]]U31 = 0 (A.30)
V 2
30ψ0 + 2V 2

31(ψ0 + ψ2) + 4V30V31ψ1 = 1. (A.31)Here, the �rst and the third equations are deoupled from the others and provide U30 = 0 and
U31 = 0. Note that we an write U30 = −V20 and U31 = −V21. The system then further simpli�esto the form

V30ψ0 + 2V31ψ1 = 0, (A.32)
V 2
30ψ0 + 2V 2

31(ψ0 + ψ2) + 4V30V31ψ1 = 1, (A.33)whih is idential with the system (A.20)-(A.21) under the identi�ations V30 ←→ U20 and
V31 ←→ U21. This implies that

V30 = U20, (A.34)
V31 = U21, (A.35)or that the system of orthotide order 3 has the same solution as the system of order 2 under anappropriate hange of variables. Then3

ζ3 (t) = V30b (t) + V31 [b (t+∆t) + b (t−∆t)] , (A.37)or
ζ3 (t) = U20b (t) + U21 [b (t+∆t) + b (t−∆t)] . (A.38)For order n = 4 and again K = 1 we have
〈ζ4(t)ζ0(t)〉 = U00(U40ψ0 + 2U41ψ1 (A.39)

+ 2V41χ1) = 0,

〈ζ4(t)ζ1(t)〉 = V10V40ψ0 = 0, (A.40)
〈ζ4(t)ζ2(t)〉 = U20(U40ψ0 + 2U41ψ1 + 2V41χ1) (A.41)3Generially,

ζ3 (t) = U3,−1a (t−∆t) + V3,−1b (t−∆t) + U30a (t) + V30b (t)

+U31a (t+∆t) + V31b (t+∆t)

= −U31a (t−∆t) + V31b (t−∆t)

+U30a (t) + V30b (t) + U31a (t+∆t) + V31b (t+∆t)

= U30a (t) + V30b (t) + U31 [a (t+∆t)− a (t−∆t)]

+V31 [b (t+∆t) + b (t−∆t)] . (A.36)
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+ U21(2U40ψ1 + 2U41ψ0 + 2U41ψ2 (A.42)
+ 2V41χ2) = 0,

〈ζ4(t)ζ3(t)〉 = 0, (A.43)
〈ζ4(t)ζ4(t)〉 = U2

40ψ0 + 2U2
41(ψ0 + ψ2)

+ 2V 2
41(ψ0 − ψ2) + 4U40U41ψ1 (A.44)

+ 4U40V41χ1 + 4U41V41χ2 = 1.The seond equation leads to V40 = 0. Note that equation (A.43) is identially satis�ed, whihbrings the e�etive number of equations down by one unit to 3, and this just�es having kept themaximum leg index K to 1. The system4 of three equations in three unknowns is then
U40ψ0 + 2U41ψ1 + 2V41χ1 = 0, (A.49)
[[U20]] (U40ψ0 + 2U41ψ1 + 2V41χ1)

+ [[U21]] (2U40ψ1 + 2U41ψ0 + 2V41χ2) = 0, (A.50)
U2
40ψ0 + 2U2

41(ψ0 + ψ2) + 2V 2
41(ψ0 − ψ2)

+ 4U40U41ψ1 + 4U40V41χ1 + 4U41V41χ2 = 1, (A.51)where we have eliminated U00, U20 and U21 being known quantities. The solution then providesvalues for U40, U41, V41.The orthotide of order 4 is then5
ζ4 (t) = U40a (t) + U41 [a (t+∆t) + a (t−∆t)]

+ V41 [b (t+∆t)− b (t−∆t)] . (A.53)For order n = 5 we an still keep K = 1. The orresponding system is
〈ζ5(t)ζ0(t)〉 = U00U50ψ0 = 0, (A.54)
〈ζ5(t)ζ1(t)〉 = V10(V50ψ0 + 2V51ψ1

− 2U51χ1) = 0, (A.55)
〈ζ5(t)ζ2(t)〉 = 0, (A.56)
〈ζ5(t)ζ3(t)〉 = V30(V50ψ0 + 2V51ψ1 − 2U51χ1)4

√
1/ψ0(U40ψ0 + 2U41ψ1 + 2V41χ1) = 0, (A.45)

√
1/ψ0V40ψ0 = 0, (A.46)

U20(U40ψ0 + 2U41ψ1 + 2V41χ1)

+ U21(2U40ψ1 + 2U41ψ0 + 2U41ψ2 + 2V41χ2) = 0, (A.47)
U2

40ψ0 + 2U2
41(ψ0 + ψ2) + 2V 2

41(ψ0 − ψ2) + 4U40U41ψ1

+ 4U40V41χ1 + 4U41V41χ2 = 1. (A.48)5In general,
ζ4 (t) = U4,−1a (t−∆t) + V4,−1b (t−∆t) + U40a (t)

+V40b (t) + U41a (t+∆t) + V41b (t+∆t)

= U41a (t−∆t)− V41b (t−∆t) + U40a (t) + V40b (t)

+U41a (t+∆t) + V41b (t+∆t)

= U40a (t) + V40b (t) + U41 [a (t+∆t) + a (t−∆t)]

+V41 [b (t+∆t)− b (t−∆t)] . (A.52)
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+ V31(2V50ψ1 + 2V51ψ0 + 2V51ψ2 (A.57)
− 2U51χ2) = 0,

〈ζ5(t)ζ4(t)〉 = 0, (A.58)
〈ζ5(t)ζ5(t)〉 = V 2

50ψ0 + 2V 2
51(ψ0 + ψ2) + 2U2

51(ψ0 − ψ2)

+ 4V50V51ψ1 − 4V50U51χ1 (A.59)
− 4U51V51χ2 = 1.The �rst equation leads to U50 = 0. Note that we an write U50 = −V40. The third and the �fthequations are atually identities and thus lower the number of equations by 2. Using the previoussolutions the system redues to

V50ψ0 + 2V51ψ1 − 2U51χ1 = 0, (A.60)
V30(V50ψ0 + 2V51ψ1 − 2U51χ1) (A.61)
+ V31(2V50ψ1 + 2V51ψ0 + 2V51ψ2 − 2U51χ2) = 0,

V 2
50ψ0 + 2V 2

51(ψ0 + ψ2) + 2U2
51(ψ0 − ψ2)

+ 4V50V51ψ1 − 4V50U51χ1 − 4U51V51χ2 = 1. (A.62)Now this is a system of 3 equations in the three unknowns U51, V50 and V51. The system isidential with the system of order 4 (A.49)-(A.51) under the identi�ations U51 ←→ −V41,
V50 ←→ U40 and V51 ←→ U41. Therefore we dedue that

U51 = −V41, (A.63)
V50 = U40, (A.64)
V51 = U41. (A.65)The system of order n = 5 therefore has the same solution as the system of order n = 4 under anappropriate hange of variables. This again justi�es having kept the maximum lag index K �xedto 1. In fat, the maximum lag index K remains the same until all the oeffiientsU,V available with that K are used to determine the oeffiients of subsequentodd orders. When all the oeffiients of an even order have been used todetermine the oeffiients of the subsequent odd order, the maximum lag indexK must be inreased by 1 and, onsequently, also the number of oeffiients tobe determined.The orthotide of order 5 is then6

ζ5 (t) = V50b (t) + U51 [a (t+∆t)− a (t−∆t)]

+ V51 [b (t+∆t) + b (t−∆t)] , (A.67)or
ζ5 (t) = U40b (t)− V41 [a (t+∆t)− a (t−∆t)]

+ U41 [b (t+∆t) + b (t−∆t)] . (A.68)6In general terms,
ζ5 (t) = U5,−1a (t−∆t) + V5,−1b (t−∆t) + U50a (t)

+V50b (t) + U51a (t+∆t) + V51b (t+∆t)

= −U51a (t−∆t) + V51b (t−∆t) + U50a (t) + V50b (t)

+U51a (t+∆t) + V51b (t+∆t)

= U50a (t) + V50b (t) + U51 [a (t+∆t)− a (t−∆t)]

+V51 [b (t+∆t) + b (t−∆t)] . (A.66)
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Figure A.2. Relation between the maximum lag K and the orthotide order n.The analysis an be ontinued7 for n = 6 (where the maximum lag index inreases to K = 2)and beyond, but we an already draw the fundamental onlusions. We an state in fat that1. The maximum lag index K is a funtion Kn of the orthotide order n. It starts at 0 for
n = 0, inreases by 1 for n = 2, 6, 10, ... and (see Figure A.2) is thus given by

Kn = ⌊(n+ 2)/4⌋ . (A.69)
Kn is the minimum value suh that the number N = 2 (Kn + 1) of oe�ients at order n isompatible with a non-overdetermined system of equations (reall that the order of the systemis equal to the number of available equations of onstraint). It follows that the total number ofoe�ients (both zero and non-zero) at orthotide order n is

N = 2

(⌊
n+ 2

4

⌋

+ 1

)

. (A.70)2. At eah order n there are ⌊(n+ 1) /2⌋ produts of opposite parity and they all generateeither identities, or trivial equations (i.e., equations diretly implying either U2n+1,0 = 0 or
V2n,0 = 0). Thus the number Ne of e�etive equations (those generating the non-zero oe�ients)beomes

Ne = (n+ 1)−
⌊
n+ 1

2

⌋

=
⌊n

2

⌋

+ 1; (A.71)3. It has been observed that at eah odd order the solution an be diretly expressed in termsof the previous, even order, i.e., we an express the orthotide oe�ients of order 2n + 1 as afuntion of the orthotide oe�ients of order 2n as
V2n+1,k = U2n,k, (A.72)
U2n+1,k = −V2n,k. (A.73)Then orthotides are always of even order and they assume the expression, for n = 0, 1, ...

ζ2n (t) = U2n,0a (t) + V2n,0b (t)

+

K∑

k=1

U2n,k [a (t+ k∆t) + a (t− k∆t)]

+
K∑

k=1

V2n,k [b (t+ k∆t)− b (t− k∆t)] . (A.74)
ζ2n (t) = U2n,0a (t) + V2n,0b (t)7For order n = 6, the maximum lag is K = 2 and the system onsists of four equations whih an be solvedfor the oe�ients U60, U61, U62, V61, while V60 = 0 and V62 is disarded.
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+

K∑

k=1

U2n,k a
+
k (t) +

K∑

k=1

V2n,k b
−

k (t) , (A.75)where
a+k (t) = a (t+ k∆t) + a (t− k∆t) , (A.76)
b−k (t) = b (t+ k∆t)− b (t− k∆t) . (A.77)4. Realling that we set V00 = 0, these relations an also be used to write that, for eahorthotide order n ≥ 0,

U2n+1,0 = V2n,0 = 0. (A.78)5. Examination of the results obtained for the solutions of orders n = 2, 4 and beyondestablishes the property aording to whih the V funtions either terminate at maximum lagindex Kn or at the previous index Kn− 1, respetively for orthotides of order n = 4i, i = 1, 2, ...and orthotides of order n = 4i−2, i = 1, 2, ... This means, in pratie, that the ordered sequeneof U and V oe�ients assoiated with (even) orthotide orders n alternately terminates with thepair UnKn , VnKn for n = 4, 8, ..., or with the single oe�ient UnKn for n = 2, 6, ..., the oe�ient
VnKn being identially zero in this ase.
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