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Theory is when we know everything but nothing works. Prazis is when everything
works but we do not know why. We always end up by combining theory with prazis:
nothing works and we do not know why.

Albert Einstein (1879-1955)






Abstract

The present study concerns the determination of ocean tide model parameters from GOCE orbital
perturbation analysis. The GOCE satellite was launched by the European Space Agency in 2009
and is flying on a Sun-synchronous near circular orbit, at the very low altitude of about 250
km which makes it very sensitive to tidally induced orbit perturbations. The strategy adopted
for analyzing GOCE GPS tracking data is the direct fully-dynamic approach, consisting in the
GOCE precise orbit determination (POD) and accumulation of the normal equations for each
orbital arc, followed by a multiarc solution for the estimation of the global ocean tide parameters.

The GOCE GPS observations are processed using the NAPEOS S/W system (ESA/ESOC),
specific for satellite orbit determination and prediction, upgraded to inclusion of the partial
derivatives with respect to the ocean tide parameters and the ocean tide model inversion capa-
bility.

A sensitivity study of the ocean tide perturbations on GOCE orbit was carried out using as
a reference the FES2004 model, in order to define the set of tidal harmonic parameters affecting
GOCE orbit. In particular, the secular rates of the GOCE angular elements are estimated
through a linear least-square fit, being respectively & = —3.764817 x 10~ rad /s for the argument
of perigee, ) = 2.022334 x 107 rad /s for the longitude of ascending node and M = 1.167455 x
1073 rad/s for the mean anomaly.

From GOCE mean orbital characteristics, the spectral analysis of ocean tide perturbations
in the radial, transverse and normal direction is performed using Kaula’s linear satellite theory.
Then, the perturbation statistics by coefficient is computed, obtaining a maximum RMS of
about 1.323 m for the radial component, 363.136 m for the transverse component and 76.241
m for the normal component. The temporal aliasing problem is also accounted for the recovery
of tidal parameters with GOCE and the principal alias periods are calculated for each tidal
perturbation frequency, considering the length of the available GOCE data record. To fix a limit
for the number of parameters to be estimated, three different cutoffs are applied to the RMS
perturbation coefficients, respectively equal to 5 mm for the radial component, 2 cm for the
transverse component and 1 ¢cm for the normal component, both in the prograde and retrograde
case. The total parameters to be estimated result to be 490.

GOCE data are processed to perform the fully-dynamic POD over daily orbital arcs from
the 1st November 2009 until the 31st May 2011, but only arcs with a post-fit RMS of the GPS
phase observations residuals lower than 8 mm are considered for the multiarc processing, for a
total of 431 days.

The obtained preliminary results show the relative error of the estimated parameters with
respect to the corresponding FES2004 parameters lower than 1 for about the 16% of the total,
meaning that they are of the order of magnitude of the FES2004 parameters.

GOCE orbital data were reprocessed along the same period of the previous run, initializing
the ocean tide model with the estimated parameters, if present, and maintaining otherwise the
FES2004 parameters. The post-fit RMS of the GPS phase residuals obtained with the new ocean
tide model has a mean value of 6.5 mm, and it is noteworthy that the difference between the
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post-fit RMS obtained with the FES2004 model and that resulting from the new ocean tide
model indicates a mean improvement of about 0.6 mm in for the 96% of the analyzed arcs and
greater than 1 mm for the 16%, few days reach a difference of 2 mm.

Finally, the orbits obtained with the estimated parameters are compared with the orbits
obtained employing the FES2004 model and the official GOCE Reduced-Dynamic PSO. The 3D
RMS of the difference between the orbits computed using FES2004 and those recomputed with
the new parameters shows a mean value of 2.5 cm, while the 3D RMS of the difference with
respect to the official R/D PSO has a mean value of 4.9 cm. Moreover, the difference between
the 3D RMS of the orbit residuals between the R/D PSO and the GOCE POD with FES2004
and the RMS of the difference between the GOCE R/D PSO and the GOCE POD with the new
parameters results to have a mean improvement of 0.9 cm.

Further POD-Multiarc runs are certainly necessary, together with the refinement of the list
of parameters to be estimated, removing excessively ill-estimated ocean tide parameters and
introducing new parameters where appropriate. Indeed, the model parameter tuning and inves-
tigation is essential to adjust the best combination of parameters to be estimated. Moreover, an
extension of the data set to much longer time-period should allow a substantial improvement of
the obtained results. The task has proven very intensive and challenging, but the partial results
obtained are encouraging and a motivation for future analysis.



Summary

For ten years, the three satellite gravity missions CHAMP, GRACE and GOCE are continuously
improving our knowledge of the static and temporally changing Earth’s gravity field, increasing
spatial and temporal resolution to the extremely high level required by many geoscience appli-
cations, like Geodesy, Oceanography and Solid-Earth Physics. In particular, this study concerns
the periodically variable part of the geopotential induced by the ocean tides and the estimation
of the ocean tides parameters from GOCE orbital perturbation analysis.

Tides are periodical phenomena affecting both the solid Earth and oceans, caused by the
differential gravitational attraction of external perturbing bodies on the Earth’s surface, whose
corresponding potential is named Tide-Generating Potential (TGP), and by their response to this
potential. The TGP can be directly determined from the astronomical positions of the external
perturbing bodies, its effect is also called direct tide and is the basis for the equilibrium tide
theory. The equilibrium tide is the theoretical tide that would exist on an ideal perfectly rigid
and non-rotating Earth (no effect of the Coriolis force), totally covered with oceans of uniform
depth, where the response to the tide-generating forces is instantaneous and no dissipation is
present. Obviously, the equilibrium tide does not represent the real tidal effect, being too small
compared to the observed tide, however it is an important reference for tidal analysis, giving an
order of magnitude of tidal phenomena. On the other hand, the real response of the solid Earth
and oceans to the TGP, also called indirect tide, depends on the elastic properties of the Earth.
The Laplace Tidal Equations (LTE) are introduced to explain the relations between the ocean,
the solid Earth and the loading effects, in order to derive the fundamental equations of the ocean
tide height field and the ocean tide potential.

The two main parameterizations of the ocean tide height field are presented. The classical
spherical harmonic representation is characterized by a sum of partial tide heights each corre-
sponding to a tidal frequency, while the response analysis assumes a transfer function or impulse
response between the tidal forcing and the ocean tide height field, which is linear inside each
tidal band. The cotidal and corange charts are reported for the main diurnal and semidiurnal
tidal constituents (K, Pi, O1, Q1, Ma, So, K2, N3), to visualize the dynamic content of the
ocean tide height induced by their tidal frequency. On the other hand, the development of a new
computational algorithm for the accurate redetermination of the Groves and Reynolds orthotide
coefficients is illustrated and the corresponding computational results are discussed within the
orthotide formalism.

In order to estimate the ocean tide harmonic parameters, the lowest possible Earth orbit,
GOCE orbit, was selected to obtain the largest possible tidal signal affecting a satellite. GOCE
(Gravity field and steady-state Ocean Circulation Explorer) is a LEO satellite launched by the
European Space Agency (ESA) on the 17th March 2009 and flying at the very low altitude of
about 250 km in a nearly Sun-synchronous and nearly circular orbit with an inclination of about
96.7 deg. The main purposes of GOCE mission are to map the static part of Earth’s gravity
field with an unprecedented precision of 1 mGal = 107° m/s? and to model the geoid with an
accuracy of 1-2 ¢cm, at a spatial resolution of 100 km. To achieve these objectives, GOCE is
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carrying onboard for the first time an Electrostatic Gravity Gradiometer (EGG) to measure the
Earth’s gravity gradient along three orthogonal directions and a Satellite-to-Satellite Tracking
Instrument (SSTI) consisting of a GPS receiver. The spectral characteristics of the measurement
types of these two instruments are complementary, but GOCE gradiometric measurements are
only marginally sensitive to ocean tide effects, allowing to recover the short-wavelength part of
the gravity field. For this reason, only GOCE GPS tracking data are used for the present work,
being GOCE very sensitive to tidally induced orbit perturbations thanks to its extremely low al-
titude and so representing an excellent test-bed for the application of classical orbit perturbation
analysis methods to recover tidal parameters.

Several analysis procedures were considered, but the direct numerical method was chosen,
consisting in a fully-dynamic POD of GOCE, with the accumulation of the normal equations for
each orbital arc, followed by a multiarc solution for the estimation of the global arc-independent
ocean tide parameters. The tool selected to perform this type of analysis is ESA’s NAPEOS
s/w system, which provides the capabilities of orbit determination and prediction and parameter
estimation. The estimation of ocean tide parameters, however, was not implemented in the
system when it was acquired, so it was necessary to upgrade it with the entire implementation of
the partial derivatives with respect to the ocean tide harmonic parameters and the extension of
the structure for the inclusion of the ocean tide parameters characteristics: the tidal constituent,
the harmonic type (C or S), the harmonic degree and order and the chirality (prograde or
retrograde).

The principal task in order to accomplish the scientific objective of the study is the definition
of the set of ocean tide harmonic parameters to which GOCE is more sensitive. Hence, a global
and detailed sensitivity study of the ocean tide perturbations on GOCE orbit is carried out
using as a reference the FES2004 model. First of all, the effect of various combinations of ocean
tide constituents on GOCE orbit was evaluated over different time intervals and ocean tides
accelerations acting on GOCE orbit were determined using different existent ocean tide models.
Then, from the evolution of GOCE orbital elements available from a preliminary run of GOCE
POD with NAPEOS, the GOCE mean orbital characteristics are estimated through a linear
least-square fit and reported in Table [II

Table 1. GOCE mean orbital elements and rates used for the spectral analysis of tidal perturbations on GOCE.

Element Value

a 6632.884525 km

e 2.306273 x 1073

i 1.686227 rad

wo 1.845595 rad

Qo 5.471748 rad

My 0.971383 rad

w —3.764817 x 1077 rad/s
Q 2.022334 x 1077 rad/s
M 1.167455 x 1073 rad/s

Nodal Period  89.728100 min
Repeat Period 979 revs/61 nodal days

The analytical spectral analysis of the ocean tide perturbations affecting GOCE orbit in
the radial, transverse and normal (RTN) directions up to degree and order 20 is computed
using Kaula’s linear satellite theory, together with the perturbation statistics by coefficient. The
prograde amplitude spectra in RTN are reported respectively in Figure[Il 2 B, while the RMS of
the ocean tide perturbations accumulated over all the constituents in RTN is shown respectively
in Figures[d], B 6] with a maximum RMS of about 1.323 m for the radial component, of 363.136
m for the transverse component and of 76.241 m for the normal component.
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Figure 2. Amplitude spectrum of the transverse prograde perturbation in position due to ocean tides.



VI

Normal Perturbation Amplitude (mm) —— Prograde

150 200
Frequency (cyc/day)

Figure 3. Amplitude spectrum of the normal prograde perturbation in position due to ocean tides.

Maximum RMS =1.323 m

Radial Perturbation RMS (mm)

Figure 4. Accumulated RMS by coefficient of the radial perturbation in position due to ocean tides.
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Figure 5. Accumulated RMS by coefficient of the transverse perturbation in position due to ocean tides.

Maximum RMS = 76:241 m
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Figure 6. Accumulated RMS by coefficient of the normal perturbation in position due to ocean tides.
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The temporal aliasing problem of the tidal perturbation frequencies strongly affects GOCE,
because it samples the static gravity field and its time-varying part only along its orbital path,
with a temporal resolution depending on its repeat period. Following closely a repeat period of
979 revolutions in 61 nodal days, the tidal frequencies as felt by GOCE are aliased to periods
from 122 days (twice the orbit repeat period) to almost infinite. Unfortunately, GOCE is also
a Sun-synchronous satellite, so it does not allow the complete estimation of the diurnal and
semidiurnal solar tide constituents Se and S; which have original periods of exactly 12 h and
24 h, because it will always sample both these constituents at the same phase every day. In
particular, during the spectral analysis, the principal alias periods were computed for all the
ocean tide perturbation frequencies. Also the length of the GOCE data record is taken into
account: for the available 400 days of measurements, the limit period beyond which GOCE is
not able to solve for a parameter turns out to be approximately 200 days. The choice adopted
consists in not estimating the coefficient (I, m), if the largest partial spectral amplitude, among
all those contributing to the same pair (I, m), is aliased beyond 200 days.

Combining information deriving from the spectral analysis, the perturbation statistics by
coefficient and the determination of ocean tide alias periods, the gridof the ocean tide parameters
from harmonic degree 2 to 20 to be estimated from GOCE orbital data can be identified and
consists of 490 parameters. It must be pointed out that the total number of parameters is limited
by the application of three different cutoffs on the perturbation RMS by coefficient, respectively
equal to 5 mm for the radial component, 2 cm for the transverse component and 1 cm for the
normal component, both in the prograde and retrograde case.

GOCE orbital data were processed in daily arcs from the 1st November 2009, corresponding
to the beginning of the operational phase, until the 31st May 2011, but only arcs with a post-fit
RMS of the GPS phase observations residuals lower than 8 mm were considered for the multiarc
processing, for a total of 431 days.

The obtained preliminary results show that the 56% of the total number of parameters has
a difference below 1 c¢cm from the FES2004 model, while the relative error of the estimated
parameters with respect to the corresponding FES2004 parameters lower than 1 for about the
16% of the total, meaning that they are of the order of magnitude of the FES2004 parameters.

GOCE orbital data were reprocessed from the 1st November 2009 to the 31st May 2011,
initializing the ocean tide model with the estimated parameters, if present, and maintaining
otherwise the FES2004 parameters. The post-fit RMS of the GPS phase residuals obtained with
the new ocean tide model has a mean value of 6.5 mm, and it is noteworthy that the difference
between the post-fit RMS obtained with the FES2004 model and that resulting from the new
ocean tide model indicates a mean improvement of about 0.6 mm in for the 96% of the analyzed
arcs and greater than 1 mm for the 16%, while few days reach a difference of 2 mm (see Figure
6.8).

Finally, the orbit comparison shows that the 3D RMS of the difference between the orbits
computed using FES2004 and those recomputed with the new parameters presents a mean value
of 2.5 cm, the 3D RMS of the difference with respect to the official R/D PSO has a mean value
of 4.9 cm. The difference between the 3D RMS of the orbit residuals between the R/D PSO and
the GOCE POD with FES2004 and the RMS of the difference between the GOCE R/D PSO
and the GOCE POD with the new parameters results to have a mean improvement of 0.9 cm
(see Figure [6.17]).

Further POD-Multiarc runs are certainly necessary, together with the refinement of the list
of parameters to be estimated, removing excessively ill-estimated ocean tide parameters and
introducing new parameters where appropriate. The model parameter tuning and investigation is
essential to adjust the best combination of parameters to be estimated. Moreover, an extension of
the data set to much longer time-period should allow a substantial improvement of the obtained
results. Indeed, the task has proven very intensive and challenging, but the partial results
obtained are encouraging and a motivation for future analysis.
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Figure 7. Difference between the fit RMS obtained using FES2004 model and the fit RMS obtained with the
new estimated ocean tide parameters, instead of the corresponding FES2004 parameters.
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Figure 8. Difference between the 3D RMS of the differences between R/D PSO and the GOCE orbits estimated
with FES2004 and the RMS of the difference between the GOCE R/D PSO and the orbits recomputed with the
new parameters.



The structure of the thesis is the following. In Chapter [I, a background of the main space
geodetic techniques is briefly presented to introduce the three measurement concepts character-
izing the new generation of satellite gravity missions CHAMP, GRACE and GOCE.

In Chapter 2 the theory and the mathematical development regarding the tidal force is
illustrated.

In Chapter Bl the ocean tide height parameterizations are described, the main being the
classical harmonic representation and the convolution formalism, including the response method
and the orthotide method.

In Chapter Bl two strategies for the processing of GOCE orbital data are explained, the
fundamental one being the direct numerical fully-dynamic approach, consisting in performing
the fully-dynamic precise orbit determination of GOCE, and the alternative being a first-order
approach, consisting in determining the corrections to the tidal parameters of the reference model
used through a least-square differential correction of the GPS phase observation residuals.

In Chapter [l a sensitivity analysis of the ocean tide perturbations on GOCE is performed,
computing the analytical spectral analysis and the statistics perturbation by coefficient of radial,
transverse and normal perturbations on GOCE; alias periods of each tidal term are also calculated
and the list of ocean tide parameters to be estimated with the multiarc approach is defined.

In Chapter [fl the processing of GOCE orbital data is presented and the preliminary results of
the ocean tide parameter estimation are discussed, showing the comparison with official reduced-
dynamic PSO and orbits computed with the reference FES2004 ocean tide model.

In Chapter [ the conclusions are reported.



Riassunto

Da dieci anni, le missioni gravimetriche satellitari CHAMP, GRACE e GOCE stanno contin-
uamente migliorando la nostra conoscenza del campo gravitazionale terrestre, sia della sua
componente statica che tempo variabile, aumentando la risoluzione spaziale e temporale fino
ai livelli estremamente elevati richiesti da molte applicazioni geoscientifiche, come la Geode-
sia, I’Oceanografia e la Fisica della Terra solida. In particolare, il presente lavoro di ricerca si
concentra sulla parte periodicamente variabile del geopotenziale indotta dalle maree oceaniche
e riguarda la stima dei parametri di marea oceanica dall’analisi delle perturbazioni orbitali di
GOCE.

Le maree sono fenomeni periodici che interessano sia la Terra solida che gli oceani. Sono
causate dall’attrazione gravitazionale differenziale sulla superficie della Terra da parte dei corpi
perturbativi esterni, il cui potenziale corrispondente é chiamato Potenziale Generatore di Marea
(TGP, Tide-Generating Potential), e dalla conseguente risposta della superficie terrestre a questo
potenziale. I1 TPG puo essere direttamente determinato dalle posizioni astronomiche dei corpi
perturbativi esterni, il cui effetto é chiamato marea diretta ed é alla base della teoria della marea
di equilibrio. La marea di equilibrio, infatti, & la marea teorica che esisterebbe in una Terra
ideale perfettamente rigida e non rotante (nessun effetto della forza di Coriolis), totalmente cop-
erta di oceani aventi una profonditd uniforme, dove la risposta alle forze generatrici di marea sia
istantanea e non sia presente dissipazione. Ovviamente, la marea di equilibrio non rappresenta la
marea reale, essendo troppo piccola rispetto alle marea osservata, tuttavia é un importante rifer-
imento per ’analisi dei fenomeni mareali, in quanto contribuisce a darne un ordine di grandezza.
Invece, la vera risposta della Terra solida e degli oceani al TPG, chiamata anche marea indiretta,
dipende dalle proprieta elastiche della Terra. Le Equazioni Mareali di Laplace (LTE, Laplace
Tidal Equations) sono introdotte per spiegare le relazioni tra gli oceani, la Terra solida e I'effetto
di carico degli oceani sulla terra solida (marea di loading), in modo da derivare le equazioni
fondamentali del campi di altezza di marea oceanica e del potenziale di marea oceanica.

Vengono descritte quindi le due principali parametrizzazioni del campo di altezza di marea
oceanica. La rappresentazione classica in armoniche sferiche & caratterizzata da una somma di
altezze di marea parziali, ciascuna corrispondente a una frequenza di marea, mentre ’analisi della
risposta (Response Method) assume ’esistenza di una funzione di trasferimento o una risposta
impulsiva tra le forze di marea e il campo di altezza di marea oceanica che é lineare all’interno
di ciascuna banda mareale.

Le mappe cotidali e di corange sono riportate per le principali costituenti di marea diurne e
semidiurne (K7, P, O1, Q1, M2, S, Ko, N3), e sono utili per visualizzare il contenuto dinamico
dell’altezza di marea oceanica indotto dalla loro frequenza. Inoltre, viene illustrato lo sviluppo un
nuovo algoritmo di calcolo per la rideterminazione accurata dei coefficienti di ortomarea di Groves
e Reynolds e i corrispondenti risultati numerici ottenuti sono discussi all’interno del formalismo
delle ortomaree.

Per stimare i parametri armonici di marea oceanica si € deciso di utilizzare il satellite attual-
mente posto sull’orbita pitt bassa attorno alla Terra, ovvero GOCE, cosi da ottenere sulla sua
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perturbazione d’orbita i segnali di marea piu ampi possibili. GOCE (Gravity field and steady-
state Ocean Circulation Explorer) ¢ un satellite LEO che ¢ stato lanciato dall’Agenzia Spaziale
Europea (ESA, European Space Agency) il 17 marzo 2009 e orbita ad un’altezza di circa 250 km,
su un’orbita eliosincrona quasi circolare, avente un’inclinazione di circa 96.7 gradi. Gli obiettivi
principali di GOCE sono la mappatura della parte statica del campo gravitazionale terrestre con
una precisione senza precedenti pari a 1 mGal (107> m/s?) e il modellamento del geoide con una
accuratezza di 1-2 cm, entrambi con una risoluzione spaziale di 100 km. Per raggiungere questi
obiettivi, GOCE trasporta a bordo per la prima volta un Gradiometro Gravitazionale Elettro-
statico (EGG, Electrostatic Gravity Gradiometer) per misurare il gradiente di gravita lungo tre
direzioni ortogonali e uno strumento per l'inseguimento d’orbita da satellite a satellite (SSTT),
costituito da un ricevitore GPS. Le caratteristiche spettrali di questi due tipi di misure sono
complementari. Tuttavia, le misure gradiometriche di GOCE permettono di ricostruire la parte
del campo gravitazionale a bassa frequenza, e sono solo marginalmente sensibili agli effetti delle
maree oceaniche. Per questa ragione, in questo lavoro verranno utilizzati solamente i dati del
ricevitore GPS di GOCE, in quanto GOCE ¢ particolarmente sensibile alle perturbazioni orbitali
indotte dalle maree per via della sua altitudine estremamente bassa che lo rende un eccellente
banco di prova per I'applicazione del metodo classico dell’analisi delle perturbazioni orbitali per
la stima dei parametri di marea.

Per il processamento dei dati orbitali di GOCE, sono state considerate diverse procedure di
analisi, ma alla fine é stato scelto I’approccio numerico diretto, che consiste in una determinazione
orbitale precisa di GOCE totalmente dinamica con I'accumulazione delle equazioni normali per
ogni arco orbitale, seguiti da una soluzione multiarco per la stima dei parametri di marea oceanica
globali.. Lo strumento scelto per eseguire questa analisi & il software NAPEOS sviluppato e
mantenuto dall’ESA, che permette la determinazione e predizione orbitale e la stima di parametri.
La stima dei parametri di marea oceanica, tuttavia, non era gia presente in NAPEOS ed é stata
implementata solo dopo aver acquisito il sistema. E stato necessario aggiornare NAPEOS con
implementazione completa delle derivate parziali rispetto ai parametri di marea oceaniche ed
estendere le sue strutture dati per l'inclusione delle caratteristiche dei parametri: la costituenti
di marea, il tipo armonico (C or S), l'ordine e il grado armonici e la chiralita (prograda o
retrogada).

Il compito fondamentale per raggiungere gli obiettivi scientifici di questo studio ¢ la definizione
di un set di parametri di marea oceanica verso i quali GOCE é maggiormente sensibile. A tale
scopo, é stato effettuato uno studio dettagliato della sensibilita dell’orbita di GOCE alle per-
turbazioni di marea oceanica, portato avanti usando come modello di riferimento il FES2004.
Innanzitutto, é stato valutato 1’effetto delle varie combinazioni delle costituenti delle maree
oceaniche sull’orbita di GOCE su differenti intervalli di tempo. Poi le accelerazioni delle maree
oceaniche agenti sull’orbita di GOCE sono state determinate usando differenti modelli esistenti di
marea oceanica. Quindi, a partire dall’evoluzione degli elementi orbitali di GOCE resa disponi-
bile grazie a una POD preliminare di GOCE con NAPEOS, sono state stimate le caratteristiche
orbitali medie di GOCE (riportate in Tabella [2)) tramite un fit lineare ai minimi quadrati.

Utilizzando la teoria lineare di Kaula, & stata effettuata l’analisi spettrale analitica delle
perturbazioni delle maree oceaniche agenti sull’orbita di GOCE nelle direzioni radiale, trasversa e
normale (RTN) fino a ordine e grado 20, assieme alla statistica delle perturbazioni per coefficiente.
Gli spettri delle ampiezze prograde nel sistema RTN sono mostrati rispettivamente nelle Figure @],
[I0, M1l mentre 'RMS delle perturbazioni di marea accumulato su tutte le costituenti nel sistema
RTN & mostrato rispettivamente nelle Figure[T2] [I3] [[4], in cui & possibile notare un RMS massimo
per la componente radiale di 1.323 m, per la trasversa di 363.136 m e per la normale di 76.241
m.

GOCE risente del problema dell’aliasing temporale delle frequenze di perturbazione mareale,
in quanto campiona il campo gravitazionale statico e la parte tempo-variante solamente lungo il
percorso della sua orbita, con una risoluzione temporale che dipende dal suo periodo di ripetizione
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Table 2. Elementi orbitali medi di GOCE e loro variazioni utilizzati per l'analisi spettrale delle perturbazioni
mareali su GOCE.

Elemento Valore

6632.884525 km
2.306273 x 1073
1.686227 rad

1.845595 rad

5.471748 rad

0.971383 rad
—3.764817 x 1077 rad/s
2.022334 x 1077 rad/s
M 1.167455 x 1073 rad/s
Nodal Period  89.728100 min

Repeat Period 979 revs/61 nodal days
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Figure 9. Spettro d’ampiezza della perturbazione prograda radiale in posizione dovuta alle maree oceaniche.
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Figure 10. Spettro d’ampiezza della perturbazione prograda trasversa in posizione dovuta alle maree oceaniche.
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Figure 11. Spettro d’ampiezza della perturbazione prograda normale in posizione dovuta alle maree oceaniche.

Maximum RMS = 1.323 m

Radial Perturbation RMS (mm)

Figure 12. RMS accumulato per coefficiente sulle costituenti dovuto alla perturbazione radiale delle maree
oceaniche in posizione.
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Figure 13. RMS accumulato per coefficiente sulle costituenti dovuto alla perturbazione trasversa delle maree
oceaniche in posizione.

Maximum RMS = 76:241 m

Normal Perturbation RMS (mm)

Figure 14. RMS accumulato per coefficiente sulle costituenti dovuto alla perturbazione normale delle maree
oceaniche in posizione.
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della traccia a terra. Seguendo da vicino un periodo di ripetizione di 979 rivoluzioni in 61 giorni
nodali, il campionamento di GOCE causa aliasing delle frequenze mareali aventi un periodo
inferiore a 122 giorni (due volte il periodo di ripetizione dell’orbita), le quali verrano spostate a
periodi pit lunghi, compresi tra 122 giorni e diversi anni. Sfortunatamente GOCE ¢é un satellite
in orbita eliosicnrona e pertanto non permette la stima completa delle costituenti delle maree
solari diurne e semidiurne Sy and S7, aventi periodi di esattamente 12 e 24 ore, dato che campiona
entrambe queste costituenti alla stessa fase ogni giorno. In particolare, durante ’analisi spettrale,
sono stati calcolati i principali periodi di aliasing per tutte le frequenze di perturbazione delle
maree oceaniche. Si & tenuto conto anche della durata del set di dati GOCE a disposizione: visti
i 400 giorni di misure a disposizione, il limite oltre il quale GOCE non ¢ piu capace di stimare
un parametro ¢ di circa 200 giorni. Si é scelto di non stimare i coefficienti (I,m) se la piu grande
ampiezza parziale dello spettro, tra tutte quelle che contribuiscono alla stessa coppia (I, m), ha
un periodo di aliasing di oltre i 200 giorni.

Combinando le informazioni derivanti dall’analisi spettrale, dalla statistica delle perturbazioni
per coefficiente e dalla determinazione dei periodi di aliasing delle maree oceaniche, si pud iden-
tificare la griglia dei parametri di marea oceanica da grado 2 fino a 20 che devono essere stimati
con i dati orbitali di GOCE. Si tratta in tutto di 490 parametri. Il numero totale di parametri da
stimare & limitato applicando un valore di soglia sugli RMS delle perturbazioni per coefficiente,
rispettivamente di 5 mm per la componente radiale, 2 cm per la trasversa e 1 cm per la normale,
sia nel caso progrado che retrogrado.

I dati orbitali di GOCE sono stati processati suddividendoli in archi giornalieri dal 1 novembre
2009 (I'inizio della fase operativa) al 31 maggio 2011. Per I’analisi multiarco sono stati considerati
solamente gli archi con un RMS di post-fit dei residui di fase GPS inferiore a 8 mm, per un totale
di 431 giorni.

I risultati preliminari ottenuti mostrano che il 56% del numero totale di parametri differisce
dai parametri del FES2004 per meno di 1 c¢cm, mentre ’errore relativo dei parametri stimati
rispetto ai corrispettivi parametri del FES2004 & inferiore a 1 per circa il 16% del totale, indicando
che sono dello stesso ordine di grandezza dei parametri del FES2004.

Infine, i dati orbitali di GOCE sono stati riprocessati dal primo novembre 2009 al 31 maggio
2011, inizializzando il modello di marea oceanica con i parametri stimati, se presenti, mantenendo
altrimenti i parametri del FES2004. L’RMS di post-fit dei residui degli osservabili di fase GPS
ottenuti con il nuovo modello di marea oceanica ha un valore medio di 6.5 mm, ed ¢ da notare
come la differenza tra I'RMS post-fit ottenuto con il FES2004 e 'RMS risultante dal nuovo
modello di marea oceanica mostra un miglioramento di circa 0.6 mm per il 96% degli archi
analizzati e superiore a 1 mm per il 16%, mentre per alcuni archi raggiunge una differenza di 2
mm (si veda Figura [I5]).

Concludendo, il confronto delle orbite mostra che 'RMS 3D delle differenze tra le orbite
calcolate usanto il FES2004 e quelle ricalcolate con i nuovi parametri mostra un valore medio
di 2.5 cm, mentre 'RMS 3D delle differenze rispetto alle PSO a dinamica ridotta (R/D Precise
Science Orbit) ufficiali ha un valore medio di 4.9 cm. Le differenze tra 'RMS 3D dei residui
orbitali tra la PSO e la POD di GOCE con il FES2004 e I'RMS dei residui orbitali tra la PSO
di GOCE e la POD di GOCE con i nuovi parametri mostra un miglioramento in media di circa
0.9 cm (si veda Figura [16]).

Certamente, si rendono necessari ulteriori esecuzioni dei processi di POD e Multiarco, assieme
al raffinamento della lista dei parametri da stimare, andando a rimuovere quelli eccessivamente
mal stimati e introducendo opportunamente nuovi parametri. Inoltre, un’estensione del set di
dati di GOCE su un periodo pitt lungo dovrebbe consentire un sostanziale miglioramento dei
risultati. Infatti, sebbene il compito sia stato estremamente complicato e serrato, i risultati
preliminari ottenuti sono motivo di incoraggiamento per ulteriori analisi.

La struttura di questa tesi ¢ la seguente. Nel Capitolo[dlverra presentato lo stato dell’arte delle
principali tecniche di geodesia spaziale, per introdurre i tre concetti di misure che caratterizzano
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di marea oceanica, invece dei corrispondenti parametri del FES2004.

2.5-
= \-Pso R/D-POD FES2004 OT - PSO R/D-POD ESTIMATED OT
S L
0
[
=]
=}
3 15F
§
[}
kel 1+
)]
b
@
S osf
c
[}
(5]
£
2 o0
[}
o
c
o
g -0.51
[a)

-1 1 1 1 1 1 |

0 100 200 300 400 500 600

Days

Figure 16. Differenze tra gli RMS 3D.



XVIII

le nuove generazioni di missioni gravimetriche spaziali, CHAMP, GRACE e GOCE.

Nel Capitolo 2] verranno illustrate la teoria e lo sviluppo matematico riguardanti la forza
mareale.

Nel Capitolo Bl saranno descritte le parametrizzazioni delle altezze di marea oceanica, sof-
fermandosi in particolare sulla classica rappresentazione in armoniche e sul formalismo della
convoluzione, il quale include il metodo di risposta e i metodo delle ortomaree.

Nel Capitolo @ verranno spiegate due strategie per I’analisi dei dati orbitali di GOCE, dove
I’approccio fondamentale & quello numerico diretto pienamente dinamico, consistente nell’eseguire
la determinazione orbitale di GOCE totalmente dinamica. Il metodo alternativo & un approccio
del primo ordine, dove si determinano le correzioni ai parametri mareali del modello di riferimento
attraverso una correzione differenziale ai minimi quadrati dei residui delle osservazioni di fase
GPS.

Nel Capitolo B verra eseguita I'analisi della sensitivita delle perturbazioni dei parametri di
marea su GOCE, calcolando 'analisi spettrale analitica e la statistica delle perturbazioni per
coefficiente delle perturbazioni radiali, trasverse e normali su GOCE; verranno inoltre calcolati i
periodi di aliasing di ciascun termine mareale e definita la lista dei parametri di marea da stimare
con ’approccio multiarco.

Nel Capitolo @l verra presentata ’analisi dei dati orbitali di GOCE e saranno discussi i risultati
preliminari della stima dei parametri di marea oceanica, mostrando i confronti con le orbite PSO
ufficiali a dinamica ridotta e le orbite determinate con il modello di marea oceanica di riferimento,
il FES2004.

Nel Capitolo [l saranno riportate le conclusioni.
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Chapter

The new generation of gravity missions

In this chapter, a background of the main space geodetic techniques is briefly presented in order
to illustrate in more details the three different measurement concepts characterizing the new
generation of satellite gravity missions CHAMP, GRACE and GOCE. Finally, the improvements
obtainable in the future satellite gravity missions from formation flying technologies are discussed.

1.1 Introduction

Since the beginning of the space age, the determination of the Earth’s gravity field has always
been one of the main interests of the earth-science community. The gravitational force is respon-
sible for many dynamic processes happening within the Earth’s interior and on its surface, such
as mantle convection, ocean and atmosphere circulation, solid Earth and ocean tides, ice distribu-
tion and sea-level change, post-glacial rebound and tectonic motions. All of these processes affect
the distribution of mass on the Earth and produce temporal variations in the gravitational field,
S0 an accurate gravity recovery is a necessary prerequisite for applications in different scientific
disciplines, like oceanography, glaciology, geophysics and climatology and plays a dominant role
in geodesy, the science concerned with the study of the shape and size of the Earth, its gravity
field, its orientation in space and the variations of these quantities over time.

The roots of satellite geodesy can be dated in 1802, when Laplace determined the dynamical
flattening of the Earth from the motion of the lunar node, treating the Moon as an artificial
satellite. In the pre-satellite era the knowledge of the Earth’s gravity field was based on terrestrial
and airborne measurements and it was available with high accuracy only in few areas of the world.

Only by means of satellites, the knowledge of the Earth’s gravity field can be achieved globally,
homogeneously and within a reasonable time period. The proper era of satellite geodesy started
with the launch of the first artificial satellite, Sputnik-1 (URSS), on 4 October 1957 and with
the important geodetic result of the determination of the Earth’s flattening as f = 1/298.3 from
tracking observations of Sputnik-2 (URSS) and Explorer-1 (NASA) in 1958.

The development of new technologies, relying on precise distance or phase measurements
transmitted or reflected from extraterrestrial objects, such as quasars, the Moon or artificial
satellites, has enhanced knowledge of the global Earth’s gravity field and the geoi. In particular,
space geodesy has become a dialectic science, in the sense that the geopotential models are better
known by the accurate orbit determination satellites and, at the same time, the position of
satellites is better localized by improved potential models. Nowadays, four main space geodetic
techniques can be classified (Schubert, 2007):

e Very Long Baseline Interferometry (VLBI), a radio measurement system that determines
the difference in arrival times of radio signals by cross-correlation; in particular, VLBI

!The geoid is the equipotential surface corresponding to the mean sea level of an hypothetical ocean at rest.



2 Chapter 1. The new generation of gravity missions

measurements are made at two high frequencies, about 2.3 GHz and 8 GHz, and are affected
by a propagation delay due to the ionosphere that can be removed by a dual-frequency
correction; typically, observations are made in sessions with a duration of about 24 hours;
VLBI is sensitive to processes changing the relative position of the radio telescopes with
respect to the source, such as solid Earth tides or tectonic motions; it is mostly used for
accurate measurements of polar motion and UT1;

e Satellite and Lunar Laser Ranging (SLR and LLR), optical systems measuring the time
of flight required for laser pulses to travel from a ground laser transmitter to a satellite
equipped with retro-reflectors and to return back; this time is then converted into a distance
measurement between the satellite and the observing station with an accuracy of 1-10 mm.
Like the previous technique, SLR is sensitive to processes that change the distance between
the satellite and the observing site and can be used to determine the temporal variations
of the Earth’s gravity field and the location of the Earth’s centre of mass. LLR is similar
to SLR except that retro-reflectors are located on the Moon and consequently the received
signal is much weaker, needing more powerful laser and detection systems;

e Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), a radio sys-
tem developed by the Centre National d’Etudes Spatiales (CNES) and used since 1990. It
consists of more than 50 transmitting beacons globally distributed on the Earth’s surface
and receivers located onboard artificial satellites, with the aim to provide precise ground
location and precise orbit determination, in particular tracking satellites for radar altime-
try applications. DORIS uses a dual-frequency Doppler tracking that allows to correct
for ionospheric effects and operates by accurately measuring the Doppler shift of the two
separate signals (2036.25 MHz and 401.25 MHz) transmitted from ground stations and
received onboard the satellites. These measurements allow to derive the velocity of the
satellites on their orbits and are processed to determine the precise satellite positions and
other quantities, such as the Earth Orientation Parameters (EOP);

e Global Navigation Satellite Systems (GPS, GLONASS), radio systems providing inexpen-
sive, highly accurate, global and continuous positioning measurements. GNSS systems
consist of constellations of transmitting satellites and a ground network of receivers. They
can be used for a large variety of applications in the fields of navigation, geodesy and
timing, in particular for satellite POD and Earth gravity field improvement.

In recent decades a wide variety of satellite mission have been planned for geodetic applica-
tions by combining the space-based techniques described above and among them we illustrate
the most relevant. LAGEOS-1 (LAser GEOdynamics Satellite) and LAGEOS-2, launched re-
spectively by NASA in 1976 and by NASA /AST in 1992, were passive spherical satellites placed
at an altitude of 5900 km and covered with 426 corner-cube retro-reflectors used to reflect laser
beams transmitted from ground stations (see Figure [[LT)). LAGEOS-1 was the first spacecraft
dedicated exclusively to high-precision laser ranging: by measuring the round trip time of flight
of the laser beam, the distance between the satellites and the ground station could be accurately
determined, allowing to calculate station position to within 1-3 cm. These satellites were de-
signed to be as heavy as possible to minimize the effects of non-gravitational forces, to contain as
many retro-reflectors as possible and to minimize the effects of solar radiation pressure; moreover
the materials were chosen to reduce the effects of the Earth’s magnetic field on their orbits. Due
to their characteristics, LAGEOS satellites were used mainly for orbit determination and gravity
field recovery purposes.

Also STARLETTE (Satellite de Taille Adaptée avec Réflecteurs Laser por les ETudes de
la TErre) and Stella, launched by CNES respectively in 1975 and 1993, are passive spherical
bodies covered with 60 retro-reflectors (see Figure [[LT]). Their small size compared to their mass
allows their use mainly to determine the gravitational attraction than other forces such as the
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atmospheric drag or the solar radiation pressure. In particular Starlette is very sensitive to zonal
variations in the gravity field, more than the LAGEOS, while Stella is mainly used for gravity
field recovery.

The altimetry mission TOPEX /Poseidon, launched by NASA /CNES in 1992 and ended in
2005, provided information about ocean topography, ocean circulation and their interaction with
the atmosphere with unprecedented accuracy employing three independent geodetic techniques
(SLR, DORIS and GPS) to determine the satellite altitude.

ERS-2 (European Remote Sensing) satellite was launched by ESA in 1995 and was equipped
with a radar altimeter to measure ocean surface temperature and winds and a sensor for atmo-
spheric ozone research.

Figure 1.1. On the left: artistic picture of LAGEOS 1 (GSFC web site http://library01.gsfc.nasa.gov/); on the
right: artistic picture of Starlette and Stella (GSFC web site http://ilrs.gsfc.nasa.gov /).

Jason-1, launched by NASA /CNES in 2001 as follow-on to the highly successful TOPEX /Poseidon
mission, is a microwave altimeter used primarily for ocean studies.

ENVISAT (ENVIronmental SATellite), launched by ESA in 2002, successor to ERS-2, carries
both a radar altimeter and a DORIS tracking receiver to provide continuous observation and
monitoring of the Earth’s land, atmosphere, oceans and ice caps.

ICESat (Ice, Cloud and land Elevation Satellite), launched by NASA in 2003, is a laser
altimeter used primarily for polar ice-sheet studies. The laser altimeter measures height from
the spacecraft to the ice sheet with an precision of better than 10 cm. The height measurements
coupled with the radial orbit positions, provided by a combination of satellite laser ranging and
GPS data, allows the determination of topography.

1.2 Complementary satellite gravity missions

Before the launch of the first satellite, the knowledge of the Earth’s gravity field was based only
on terrestrial and airborne observations allowing high accurate measurements in few regions of
the world, while in others there were even no gravity data.

In the last ten years, the more stringent requirements of precision necessary for various
scientific disciplines have motivated the planning of three dedicated satellite gravity missions
(CHAMP, GRACE, GOCE), with the aim to improve accuracy and spatial resolution of the
Earth’s gravity field models. Three different measurement concepts of the Earth’s gravity field
have been realized (see Figure [[.2)):

e high-low satellite-to-satellite tracking (SST-hl), employed by CHAMP mission, in which the
LEO satellite orbit is continuously determined by GNSS systems and the 3D accelerometer
onboard the satellite allows to obtain the accelerations caused by the Earth’s gravity field,
corresponding to the first derivatives of the gravitational potential;

e low-low satellite-to-satellite tracking (SST-11), employed by GRACE mission, that measures
the difference between the accelerations acting on the two LEO satellites, in such a way
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that the effects of non gravitational accelerations, as atmospheric drag and solar radiation

pressure, can be eliminated;

e Satellite Gravity Gradiometry (SGG), employed by GOCE mission, that determines the
local gravity gradient by measuring the differences in acceleration of two masses within a
single spacecraft, corresponding to the second derivative of the gravitational potential.

The fundamental parameter that determines the sensitivity with respect to the spatial scales
of the Earth’s gravitational potential is the distance between the test masses (Hofmann-Wellenhof
& Moritz, 2005). In practice, the case of SST-hl consists in an acceleration determination over an
almost infinite baseline corresponding to the distance between the satellite and the Earth; SST-II
consists in an acceleration difference determination over a long baseline corresponding to the
distance between the two LEO satellites; SGG consists in an acceleration gradient determination
over an almost zero baseline realized by the gradiometer axes. Consequently, while the low-
low SST provides accurate long and mid wavelength model, the gravity gradiometry provides
accurate short wavelength model, thus GRACE and GOCE missions are complementary to each

other.
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Figure 1.2. Measurement concepts of three different satellite gravity missions (ESA SP-1233(1), 1999).

The purpose of these three measurement concepts is to counteract the natural attenuation
of the gravitational field with altitude by differential measurement, where the gravitational sen-
sitivity increases with decreasing distance between the test masses. Finally, it must be noticed
that high resolutions require relatively low satellite orbits, while the determination of temporally
varying phenomena improves as the time span of the measurements increases.
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1.2.1 CHAMP

CHAMP (CHAllenging Minisatellite Payload) (Reigber, 1998) is a German mission under the
leadership of the GFZ in Potsdam and with the partnership of NASA, CNES and AFRL (Air
Force Research Laboratories, USA). The satellite was launched in 2000 from Plesetzk, Russia,
onto an almost circular, near polar orbit, with an average altitude of 450 km. Although the
design lifetime of the satellite system was 5 years, CHAMP is currently collecting data used for
many scientific applications, such as GPS radio occultation.

Figure 1.3. Artistic picture of CHAMP (GFZ web site |http://op.gfz-potsdam.de/champ/)).

The primary objectives of CHAMP are the mapping of the global static Earth’s gravity field
together with the recovering of the global magnetic field and the profiling of the ionosphere and
the troposphere (see Figure [[3)). The main instruments to achieve the mission goals are:

e a dual-frequency GPS receiver (provided by NASA /JPL), to determine the satellite orbit;

e a three-axis accelerometer (provided by CNES), to measure the non-gravitational acceler-
ations acting on the satellite which are mainly due to atmospheric drag, solar radiation
pressure, Farth albedo radiation and attitude maneuvers. Using these measurements al-
lows to generate a dynamic orbit of the LEO without modeling the non-gravitational forces
which is very helpful for gravity field recovery. A cold gas propulsion system has been em-
ployed in order to control the attitude and to perform orbit change maneuvers; the attitude
of the spacecraft is not stable over a long time period due to the design of the satellite.
The attitude is corrected by thruster pulses of the cold gas propulsion system, which may
happen between 70 and 200 times per day;

e a laser retro-reflector array for SLR measurements. The SLR technique is a completely
independent technique to determine precise orbits for the LEO. SLR observations are ac-
curate at the cm level, unambiguous and free of atmospheric propagation effects due to
water vapor. This is why the SLR technique is very useful for calibrating the orbit resulting
from the GPS tracking;

e 3 fluxgate magnetometer, to measure the vector components of the Earth’s magnetic field.

1.2.2 GRACE

GRACE (Gravity Recovery And Climate Experiment), launched in 2002, may be considered as
the follow-on of CHAMP mission. It is a joint project between NASA and DLR and consists
of two Earth satellites (see Figure [[L4]), following each other along the same orbital trajectory,
with an along track relative distance of 220 km + 50 km. The inclination of the orbit is about
89° to maximize the global coverage and the orbit altitude, initially 500 km, is decreasing to
about 300 km. The main purpose of GRACE is the determination of the Earth’s gravity field
and its temporal variations. A K-Band Ranging (KBR) system is the fundamental instrument of
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GRACE because it allows to measure the range and range-rate between the two spacecrafts with
a precision of respectively 10 um and 1 um/s with a 5 s data sampling interval. This dual-band
microwave link provides a new and independent observation type for mapping the gravity field
of the Earth.

Figure 1.4. Artistic picture of GRACE (http://www.csr.utexas.edu/grace/|).

The dual one-way K (24.5 GHz) and Ka (32.7 GHz) band microwave inter-satellite ranging
system with a precision of 10 um (Kim et al., 2001), the Ultra-Stable Oscillator (USO) accurate to
within 70 ps for time-tagging, the 3-axis super-STAR accelerometers with a precision of 4x 1012
m/s? (Davis et al., 1999; Perret et al., 2001) within the bandwidth of 2 x 107* — 0.1 Hz (Kang
et al., 2006), and the dual-frequency 24-channel Blackjack GPS receivers comprise GRACE’s
instrument suite.

The orbits of the two satellites, sensing these effects at slightly different phases, will be
perturbed differentially. This difference in perturbations is manifested in the intersatellite range
changes. The GRACE microwave ranging instrument will provide very accurate measurements of
the range changes. By making these differential measurements enables significant improvement
in the estimates of the higher resolution features of the Earth gravity field.

1.2.3 GOCE

GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March
2009 (see Figure[L.0]) as the first Earth Explorer core mission of the ESA Living Planet Program.
GOCE is flying at the very low altitude of about 260 km on a dusk-dawn nearly Sun-synchronous
and near circular orbit, inclined 96.5° with respect to the Earth’s equator. In particular, the dusk-
dawn nearly Sun-synchronous orbit assures a stable energy supply from the solar panels, meaning
that the orientation of the satellite orbital plane is constant relative to the direction to the Sun
and the local time at the ascending node is 18 h, so the orbital plane remains approximately
perpendicular towards the Sun direction. Moreover, GOCE is a very slim satellite with a cross-
sectional area of 1.1 m?, a length of 5.3 m and a weight of about 1050 kg.

The main purpose of GOCE is to map the static part of Earth’s gravity field with an un-
precedented precision of 1 mGal = 107° m/s? and to model the geoid with an accuracy of 1 cm,
achieving these results at a spatial resolution of 100 km.
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Figure 1.5. Artistic picture of GOCE (ESA web site |http://www.esa.int/esaLP/).

The main scientific payload onboard GOCE is a three-axis Electrostatic Gravity Gradiometer
(EGG), for the first time employed in a satellite mission. The EGG consists of three pairs of
accelerometers along three spatial orthogonal directions and two accelerometers of the same pair
are mounted at 50 cm distance to each other. The proof masses are made of platinum-rhodium
alloy with a dimension of 4 cm by 4 cm by 1 cm. The principle of operation of an accelerometer is
that a proof mass is floated in a small cage and is kept in the centre of the cage by electrostatic
forces, representing the accelerations seen by the proof mass. The accelerations measured by
each accelerometer can be as small as one part in 10,000,000,000,000 of the gravity acceleration
on the Earth.

Because the accelerations of the masses is very weak and subject to noise or dissipative
forces, the method of differential measurement is used. In fact, the difference in the accelerations
of two accelerometers belonging to the same arm is measured, allowing to remove noise and
disturbing forces that affect both accelerometers in the same manner. The remaining signal
is the Earth’s gravity gradient along the arm direction, in other words the second derivative
of the gravitational potential, and it represents the basic scientific product of GOCE (ESA
SP-1233(1), 1999). In particular, GOCE gradiometer has two ultra-sensitive axes and a less
sensitive axis. It provides very sensitive measurements of the three linear and the three angular
accelerations of the spacecraft, the three in-line gravity gradient components Vg, Vi, V.. (X
indicating the flight direction and Z pointing approximately radially away from the Earth) of
the Earth gravity gradient tensor V;; and of one off-diagonal gravity gradient term V,, in the
XZ plane to maximize the sensitivity of the determination of the angular accelerations about
the Y-axis. The two remaining off-diagonal gravity gradient terms V,, and V. are estimated
with much lower sensitivity (ESA SP-1233(1), 1999). The result of a science measurement phase
is a gravity gradient map covering our planet except for small areas around the poles. The
gradiometer is used to recover the short-wavelength part of the gravity field: the measurement
bandwidth covers the frequency range between 5 mHz and 100 mHz.

The average acceleration of two accelerometers in one arm is also measured. This average
represents the external non-gravitational forces acting on the spacecraft, like atmospheric drag
and solar radiation pressure. This information is used to command the electric ion propulsion
engine to continuously compensate the atmospheric drag forces and torques and keep the satellite
flying drag-free in the in-flight direction. The air density average value during the scientific
mission is about 5.6 x 107 g/cm3, corresponding to an altitude around 260 km. The varying
thrust level when in drag-free mode is due to changes in the solar activity, which has increased
significantly starting from March 2011, causing the average thrust level to jump from about 2.7
mN to 4 mN, with peaks of instantaneous thrust of 7.6 mN, not affecting, obviously, the GOCE
altitude.

The second scientific payload of GOCE is the 12-channel LAGRANGE (Laben GNSS Receiver
for Advanced Navigation, Geodesy and Experiments) GPS receiver, working on both L1 and 1.2
frequencies, with a sampling rate of 1 Hz. Satellite-to-Satellite-Tracking in high-low mode (SST-


http://www.esa.int/esaLP/ESA1MK1VMOC_LPgoce_0.html

8 Chapter 1. The new generation of gravity missions

hl) is used for the orbit determination and for retrieval of the long- and medium-wavelength part
of the gravity field.

The techniques of gradiometry and SST-hl are complementary, allowing the recovery of the
gravity field over all the spatial scales. The point of overlap between the gravity retrieval capa-
bilities of SST-hl and gradiometry begins at around degree and order L. = 15 (resolution of 1300
km) and ends at degree and order L. = 60 (resolution of 330 km).

Finally, GOCE is carrying onboard a laser retro-reflector array, used for SLR measurements,
providing mainly an independent validation of the GPS POD, star cameras for the attitude
control and an ion thruster for the realization of a drag-free control of the satellite in along-track
direction.

1.3 Future satellite gravity missions

Satellite gravity missions such as CHAMP, GRACE and GOCE, together with other comple-
mentary information, are continuously improving our knowledge of the static and temporally
changing gravity field, increasing spatial and temporal resolution to a high level required by
many geoscience applications. Despite the always better accuracy in the gravity field recovery,
some intrinsic limitations remain unremovable in current gravity missions. The limited mission
duration prevents from the possibility of a continuous monitoring of changes in Earth’s gravity
field and mass transport in the Earth system; moreover each mission provides observable having
a proper directional sensitivity and consequently a non-isotropic error behavior.

Future satellite gravity missions will probably make use of the formation flying technologies
to solve the non-isotropy problem and some other criticality. A satellite formation consists of a
constellation of two or more satellites performing relative motion around a common center using
an active control scheme to maintain their relative positions and velocities. GRACE also can
be seen as the most simple type of formation, named leader-follower configuration, character-
ized by an along-track orientation, so its observable suffers from a weak information along the
line-of-sight. On the other hand, in a generic formation with more than two satellites, the mea-
sure of the distances between the satellites includes information about the radial gravitational
signal, while a relative inclination between the satellites can provide a cross-track gravitational
information. A first fundamental advantage is that the observations in such formations are sig-
nificantly richer in gravitational content, leading to a higher S/N ratio. Moreover the global
information deriving from satellites flying in formation can drastically decrease the non-isotropy
of the low-low satellite tracking observations and in particular the cross-track information may
reduce the aliasing problem (Sneeuw & Schaub, 2004) because it allows to gain sensitivity in
East-West direction. In practice, a formation with sufficiently many satellites could permit to
determine the full tensor of gravity gradients. Furthermore, the GPS positioning of a satellite
in a formation may be determined with a much higher accuracy than positioning of a single
satellite. Finally formation flying presents the practical advantages of improving the mission
survivability and reducing mission costs.

These future formation flying missions will probably make use of laser tracking and atomic in-
terference metrology systems for measuring the variation of the satellite-satellite relative distance
caused by external perturbations.

In 2004 Thales Alenia Space Italia (TAS-T) received by the European Space Agency (ESA)
a contract for studying a new gravimetry mission, named Satellite-to-Satellite Interferometry
(SSI), with the objective of monitoring the temporal variations of the Earth’s gravity field at
high resolution up to harmonic degree n = 180 — 240, as in GOCE and over a long period of time
equal to 5-10 years, as in CHAMP and GRACE (Cesare et al., 2006). Changes in the relative
spacing between two satellites produced by the geopotential is measured by a Michelson laser
interferometer rather than a radio-frequency ranging system, in particular in any interferometric
technique the phase of two different waves are compared as a measure of relative distance between
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the sources. In the interferometric technique, optical frequencies presents some benefits with
respect to the microwave frequencies: laser interferometry has an intrinsically higher resolution
because changes in the spacing on the order of the wavelength are detected and this allows
in principle to reconstruct the Earth’s gravity field with a higher spatial resolution; another
significant advantage of shorter wavelengths is the dramatic reduction in diffraction effects that
scale as the wavelength.

A similar concept was also considered for the mission EX-5, planned by NASA as the follow-
on to GRACE, which will map the Earth’s variable gravity field using the Disturbance Reduction
System (DRS), a technology that will enable spacecraft control with nanometer precision.

Another metrology system currently studied is the atom interferometry gravity gradiome-
ter, which allows to make acceleration measurements on two vertically separated laser cooled
ensembles of cesium atoms in free-fall using a pair of vertically propagating laser beams. The
propagation axes of these laser beams are aligned to pass through both ensembles. The light-
pulse atom interference method is used to measure the acceleration of each ensemble with respect
to a reference frame defined by the phase fronts of the interrogating optical fields. The difference
between the measured acceleration of each atom ensemble, divided by their separation, is a mea-
sure of the in-line component of the gravity gradient tensor, that characterizes the gravitational
field inhomogeneity induced by non-uniform mass distributions (McGuirk et al., 2002).
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Chapter

The tidal force

Tides are periodical phenomena affecting both the solid Earth and oceans, caused by the dif-
ferential gravitational attraction of external perturbing bodies, mainly the Moon and the Sun,
on the Earth’s surface. The spherical harmonic representation of the geopotential is treated as
an introduction to the mathematical development of the tide field. The tidal force acts both in
a direct and indirect way. The tide-generating potential can be directly determined from the
astronomical positions of the external perturbing bodies, its effect is also called direct tide and
is the basis for the equilibrium tide theory. On the other hand, the real response of the solid
Earth and oceans to this potential, also called indirect tide, depends on the elastic properties of
the Earth.

2.1 Historical background

The first explanation of the ocean tide phenomenon can be found in Newton’s gravitational
theory in 1687. He described in his monograph Philosophiae Naturalis Principia Mathematica
how the tides arise from the gravitational attraction of the Moon and the Sun on the Earth
and set the basis for the equilibrium tide theory, resulting under certain idealized conditions.
However, the problem of tide prediction has been considered and treated only after one hundred
years.

In 1798 Laplace introduced the separation into tidal species (long period, diurnal and semidi-
urnal) visualizing the possibility of the harmonic method, not proceeding further with the devel-
opment and formulated his tidal equations that can not be solved analytically and their numerical
solutions depend on the bathymetry and the shape of the coastlines.

In 1867 Lord Kelvin introduced the harmonic method of tidal analysis and prediction, in-
venting in 1972 the tide-predicting machine.

In 1883 Darwin developed and systematized the harmonic method of tidal analysis based on
fitting data from discrete tide gauges to known frequencies dependent on lunar and solar motion.
In this way, knowledge of ocean tides was possible only near the coastlines, but not on a global
scale. He also argued that for a perfectly rigid Earth, the observed amplitude of the ocean tide
would equal the theoretical value. He applied it to observations of long periodic ocean tides,
finding that the amplitude was only two-third of the theoretical tides, so concluding that the
Earth is not completely rigid, but deformable. Moreover, Darwin introduced symbols to classify
the main frequencies of the tidal spectrum, like the Ms symbol, representing the most energetic
tide caused by the Moon at a semidiurnal frequency.

In 1921 Doodson performed algebraically the first full expansion of the tide-generating poten-
tial from an analytical ephemeris up to 378 harmonics and introduced a nomenclature for each
tidal constituent characterized by a sequence of six integer numbers, compactly called Doodson

11
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number k, which are used to multiply six fundamental frequencies related to the Earth, Moon
and Sun astronomical motions.

In 1966 Munk and Cartwright introduced the convolution method for tide prediction, called
response method, defining the admittance function in the frequency domain which represents the
linear response of the ocean to the tide-generating potential ([92] Munk & Cartwright, 1966).

Cartwright, Tayler and Edden in 1971-1973 computed the potential from more modern lunar
ephemerides and then applied Fourier methods to analyze numerically the resulting series and
get amplitudes for the various harmonics in units of length ([I0] Cartwright & Tayler, 1971;
[11] Cartwright & Edden, 1973). The tidal constituents of the TGP have been extended to 505
harmonics, which assumed the usual name of CTE representation.

In 1975 Groves and Reynolds defined an orthogonalized convolution method for tide predic-
tion, called orthotide method ([5I] Groves & Reynolds, 1975).

Biillesfeld in 1985 expanded the harmonic development to 656 terms.

In 1987 Tamura was the first to introduce tidal contributions coming from Jupiter and Venus
and its harmonic expansion was extended to 1200 terms ([I17] Tamura, 1987).

Xi in 1989 computed the tide-generating potential up to 2933 terms.

Hartmann and Wenzel in 1995 and Roosbeek in 1996 added arguments for Mars, Mercury
and Saturn arriving to a total of 11 astronomic elements. Hartmann and Wenzel introduced
12935 lines ([53] Hartmann & Wenzel, 1994; [54] Hartmann & Wenzel, 1995), while Roosbeek
used an analytical method and introduced about 6499 lines, also accounting for indirect lunar
perturbations on the Sun ([102] Roosbeek, 1996).

Finally, the most recent tidal potential development is that of Kudryavtsev in 2004, who
introduced 28806 harmonics ([69] Kudryavtsev, 2004).

2.2 The gravitational field of the Earth

The gravity potential W on a point at rest on the Earth’s surface is the sum of the gravitational
potential V' and of the centrifugal potential C' ([57] Hofmann-Wellenhof & Moritz, 2005)

M 1
W:V+C:G/// dd ¥ W +1), (2.1)

where G = 6.6672 - 107'* m3/kg/s is the Newton gravitational constant, d is the distance be-
tween the mass element dM’ and the attracted point P(z,y,z), V' is the integration volume
corresponding to the mass M,, w, is the angular velocity of the Earth and (22 +y?) is the square
of the distance to the rotational axis. The surfaces having a constant gravity potential are called
equipotential surfaces

W = constant (2.2)

and the particular equipotential surface Wy to which the force of gravity is everywhere perpen-
dicular, corresponding to the mean sea level of an hypothetical ocean at rest was proposed as
the mathematical figure of the Earth by Gauss and was then called geoid. The gravity potential
W satisfies the generalized Poisson equation

VW = V2V + V2C = —47Gp + 22, (2.3)

where p is the mass density of the Earth.
Moreover, a reference potential U, called normal potential, has been defined as the gravity
potential associated with a best-fitting ellipsoid of revolution, the normal ellipsoid, rotating with

'In addition to the centrifugal acceleration, there is the Coriolis acceleration ac, = —2we X v which acts only
on a moving body and is zero for a body at rest on the Earth.
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the Eart. The difference T' = W — U between the actual and the normal gravity potentials
is known as the anomalous or disturbing potential and it excludes the centrifugal potential ([4]
Barthelmes, 2009). The normal gravity potential accounts for approximately 99.9995% of the
total potential ([107] Schubert, 2007).

Now we focus on the Earth’s gravitational potential V, also called geopotential, in order
to illustrate its mathematical modeling and its temporal variations, among which there are the
periodic variations caused by ocean tides.

In general, the gravitational potential outside an extended body like the Earth, where p = 0,
satisfies the Laplace equation

ViV =0, (2.4)

whose solutions are solid spherical harmonics, representable as zonal, sectorial and tesseral har-
monics (see Figure [21]).

The inverse of the distance d between two points, respectively the field point P(r, A, ¢) at
which the potential V'(r, A, ¢) is to be determined and the source point Q(r’', X', ¢') corresponding
to the mass element dM’, both defined by the spherical polar coordinates r (radlus) A (longitude)
and ¢ (geocentric Iatltud‘ can be expressed as a function of Legendre polynomials Pj(cos 1))

L L) e

=0

where 1 is the angle between the two radius vectors r and r’ with ' < r, meaning that P(r, \, ¢)
is a point outside the Brillouin sphere@ of the body, so that the series converges. According to
the addition theorem for spherical harmomc’ the inverse of the distance is written as

l

1 N 4 ! / /
-1 5 (5) v, 28
1=0 p=-I

where Y,(6, ¢) is a surface spherical harmonic and * indicates the complex conjugate.
Thus, the static gravitational potential becomes

V(r\¢) = Z Z 2l+1 Yip(A /// <—> Y (X, ¢)dM'. (2.9)

Now we introduce the complex harmonic coefficients Kj, of the gravitational potential, called

Stokes coefficients
K} & ¢)dM’, 2.1
lp (2l + 1 M al //// ( 0)

2To completely determine the normal gravity potential U and the reference ellipsoid, four fundamental con-
stants are necessary: the Earth’s gravitational parameter GM., the semimajor axis a of the ellipsoid, the Earth’s
angular velocity we and the Earth’s flattening f or the second-degree zonal Stokes coefficient Cyo.

3The geocentric latitude ¢ is related to the geodetic latitude @Pgeoa through the relation

¢ = arctan[tan ¢geoa(1 — f)?], (2.5)

where f is the Earth’s flattening.

“The Brillouin sphere is the sphere of minimum volume centered in the system origin and containing all the
mass of the body, in practice it is the sphere outside which, the series converges.

®The addition theorem for spherical harmonics establishes that a Legendre polynomial can be expressed as

l

P(cos ) = 214:1 Z Yo (N, ) Yip(A, 6). (2.7)
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Figure 2.1. Top: zonal, sectorial and tesseral spherical harmonics of the gravitational potential; [ and p are

respectively the harmonic degree and order ([78] Lorenzini, 2006); bottom: examples of zonal, sectorial and
tesseral harmonics on the sphere ([I07] Schubert, 2007).

which are adimensional due to the scale factors of Earth mass M, and Earth radius a.. So the
gravitational potential is developed as a Laplace series

00 l
S5 (%) K yir0) (2.11)

T
1=0 p=-1I

Vi(r,A¢) =

Because the potential is a real value function, we express it as

Vir 2 0) = 0SS (%) Gy cos(pA) + Sy sin(pA)] Py sin ), (2.12)

GM. L 1
=0

p=0

where Cj, and S, are the real Stokes coefficients of the static field and L is the maximum degree
at which the harmonic series is truncated. If the Earth had a complete rotational symmetry
and so all the longitudes were equivalent, the non-zonal terms (p # 0) would not be present in
the harmonic development, because they depend on the longitude A ([57] Hofmann-Wellenhof
& Moritz, 2005). It is worth noting that the half-wavelength of a (I,p) harmonic in (ZI2) is
roughly 20,000/] km. Moreover, any (I, p) term decreases with increasing radius r as (a./r)!*?,
thus terms with small values of [ (long wavelengths) are the least attenuated at the satellite
altitude and so tend to be easily determined. At the same time, terms with p = 0 are better
determined than terms with p > 0, because they do not depend on the longitude ([I07] Schubert,
2007).

Stokes coefficients with degree | = 0,1 require a discussion. The coefficient with degree and
order zero Cyg corresponds to the distribution of mass of the body and it is defined as Cyy =
MLE J | [,y dM’ =1, due to the choice of the mass M, as normalizing factor in equation (Z.I0), so
the first term of the geopotential harmonic series is the central Keplerian term. Moreover, if the
coordinate system origin is the Earth’s barycenter, the terms with degree [ = 1 (dipole) vanish,
because they are proportional to the center of mass of the body generating the potential, so Cg =
C11 = S11 = 0. Thus, the perturbing (non-Keplerian and non-central) part of the gravitational
potential is usually expanded from degree | = 2 (quadrupole). Among the perturbing coefficients,



2.2. The gravitational field of the Earth 15

Cy = —0.0010827 ([64] Kaula, 1966)@ is related to the Earth’s flattening and it is about 103
times greater than the other coefficients; Cy2 and S22 account for the equatorial ellipticity and
(30 is the pear-shaped term ([64] Kaula, 1966).

In order to avoid problems in the numerical representation of the spherical harmonics, it is
convenient to introduce the so called full normalization factor Nl,ﬂ ([64] Kaula, 1966)

Ny = \/ (2~ 3,) (2L + )L = p)! 214

(I+p)! ’

which applies to both the Stokes coefficients and the associated Legendre functions and leads to
their normalized form

Cip

Cyy = —L2, 2.15
Ip Nlp ( )
_ S,
Spp = N—llp (2.16)
P
Py, = NipPy. (2.17)

Finally, the non-central static gravitational field of the Earth is given by

GM. L ae\'! 5 - — .
Vr A\ ¢) = 1+ZZ<7) [C1p cos(pA) + Sy sin(pA)] By (sin ) . (2.18)

r
=2 p=0

Besides the static geopotential, there is a time variable part due to the fact that the Earth is
a dynamic system, having oceans and a fluid atmosphere, a continuously changing distribution
of ice and snow, a rebound from glacial loading of the last ice age and mobile tectonic plates.
These processes affect the distribution of mass of the Earth and produce changes in the Earth’s
gravity field on different spatial and temporal scales, ranging from hours to thousands of years,
and conveniently modeled as variations of the standard normalized Stokes coefficients Cj, and
Sip-

The main phenomena causing temporal variations of the Earth’s gravity field, which in turn
affect the motion of Earth orbiting satellites, can be classified as solid and ocean tides, atmo-
spheric tides, pole tides, seasonal variations due to meteorological mass redistribution, long term
variations due to post-glacial rebound (PGR).

Solid and ocean tides are periodic deformations induced in the solid Earth and in the oceans,
arising from the gravitational attraction of external bodies, primarily the Sun and the Moon.
Ocean tide phenomenon is the main topic of this work of research and will be treated in detail
in the next sections.

Atmospheric tides consist in minor atmospheric oscillations on a global scale with typical
periods of 12 and 24 hours and velocities between 5 m/s (in the troposphere) and 50 m/s (in
the mesosphere), which can load the Earth enough to induce fluctuations in gravity. They are
mainly due to air pressure changes caused by daily variations in solar irradiation, while, only in
small measure, they can be driven by the gravitational attraction of the Sun and the Moon (]24]
Chapman & Lindzen, 1970).

6The second degree zonal coefficient Cy is often substituted by Jo = —Cqo in Geodesy applications.
"The ratio of factorials

_(-p)!
fip = (T p) (2.13)

can be computed recursively for each degree [ as follows
1. fio=1,
fv — —
2. fip = (Hp)l(ll’if;rl), p=12 .1
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Pole tides represent the response of the solid Earth and the ocean to variations in the cen-
trifugal force, caused by changes in the direction of the Earth’s spin axis relative to a point fixed
on the Earth. In particular, pole tides primarily occur with a period of 433 days (about 14
months), called Chandler wobble, and annually, where the annual term is more important than
the solar annual ocean tide Sa (|[7TI] Lambeck, 1980). Both periods are long enough for the pole
tide displacement to be considered in equilibrium with the forcing centrifugal potential. The
maximum range of potential height is a few cm ([107] Schubert, 2007).

The dominant effect in seasonal variations is due to atmospheric mass transport associated
with atmospheric disturbances and seasonal climatic variations, leading to atmospheric pressure
fluctuations and variations in groundwater storage.

The post-glacial rebound is the isostatic adjustment of the crust and mantle that were de-
pressed by the static weight of ice sheets during the last glacial period. Typical uplift rates of
the crust are of the order of 1 cm/yr. It affects northern Europe (especially Scotland, Fennoscan-
dia and northern Denmark), Siberia, Canada, parts of Patagonia and Antarctica and provides
the main observational evidence for mantle viscosity ([71] Lambeck, 1980). The redistribution of
lithospheric masses after the melting of the ice sheets contributes to a secular change in the grav-
ity field: in particular, SLR data available since 1979 revealed a secular decrease in the Earth’s
oblateness, which is directly related to Coy and it is consistent with a migration of mass from
low latitudes toward high latitudes ([I07] Schubert, 2007). However, Cyy has been increasing
since 1997 ([28] Cox & Chao, 2002), implying a glacial and oceanic mass redistribution strong
enough to reverse the negative trend due to the post-glacial rebound and probably caused by
the rapid subpolar glacial melting and mass shifts in the Pacific and Indian oceans ([33] Dickey
et al., 2002).

2.3 Tide-Generating Potential (TGP)

The tide-generating force Frgp is responsible for the deformation of the solid Earth and the
oceans under the gravitational attraction of external perturbing bodies, so it is a conservative
force. At the centers of mass of two extended spherically symmetric and non-rotating bodies in
orbital motion around the common barycenter, the gravitational acceleration equals the orbital
(centrifugal) acceleration. In particular, each point of a bodies executes the same circular motion,
experiencing the same orbital acceleration, while the gravitational acceleration is not the same
everywhere on the body. Thus, assuming the Earth as an extended and spherically symmetric
body, a difference exists between the gravitational attraction Fp of an external body at the point
P on the Earth’s surface and the attraction Fpey at the Earth’s center of mass (ECM) and it
represents the tide-generating force, defined as a differential force (see Figure 2.2))

FTGP(rP) :FP(rP) - FECM(rECM)
=VipV(rp) = Vigou V(reem)
=Vyp[V(rp) — W(rp)] (2.19)
:vrpVTGP(rP)?

where Vigp is called tide-generating potential (TGP).

At the point directly under the perturbing body (the sub-body point) and at its antipode,
the tide-generating force is oriented in opposite directions away from the Earth, giving origin
to a double tidal bulge, which is slightly weaker at the antipode, because here the gravitational
force of the external body is lower. It can be noticed that the tide-generating field becomes
weaker and weaker within the Earth’s surface, until it vanishes at the geocenter (see Figure 2.3)).
Moreover, tide-generating forces do not exercise an acceleration on the Earth, being symmetrical
with respect to three orthogonal axes, so that the resultant is zero ([125] Wenzel, 1997).

However, at very high precision, it should be considered that assuming the orbital acceleration
of the Farth equal to the gravitational attraction of the perturbing body at the geocenter is an
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approximation, being valid only for a spherically symmetric Earth. The Earth’s orbital motion
is affected by the figure forces, resulting from the interaction between the non-spherical extended
mass distribution of the Earth and the perturbing bodies, which are assumed to be point masses.
In practice, the Earth’s oblateness is responsible for the so called Earth’s flattening effec'

Wenzel, 1997) on the TGP, consisting of a small homogeneous field varying with time and
superimposed on the conventional tide-generating force. In particular, the Earth’s ellipticity
contributes about £3 ngal to the lunar tide-generating force, while its effect on the solar tide-
generating force is negligible, because of the very small paralla)ﬂ of the Sun ([30] Dahlen, 1993).

Perturbing Body

Earth

Figure 2.2. Geometry of the tide-generating force due to an external body acting on the Earth’s surface.

The calculation of tidal phenomena requires a representation of the TGP, which is based on
the relative positions of the external bodies (indicated with the subscript j = 1,...,J) and it is
defined as

Vaiar(t,m, A, @) = ZZ GM; ( > P, (cos ), (2.21)

j=1n=2 T

where M; is the mass of the perturbing body, ¢; is the zenith angle between the vector to
the observation point P with geocentric coordinates (r, A, ¢) and the vector to the external
perturbing body O; with geocentric coordinates (r;, A;, ¢;). Hereinafter, the TGP is considered
as calculated on the Earth’s surface, so the radial coordinate is » = a, and can be dropped
out from the variables in the parentheses. It can be noticed that the TGP coincides with the
perturbing function of an external body acting on a particle on the Earth’s surface.

Applying the addition theorem for spherical harmonics (2.7)), the TGP becomes

J N n
VrorltA) =30 30 (2) Rl (0700 222

j=1ln=2m=-n 2n+1

The normalized complex surface spherical harmonics are defined as

Ynm()\j, ®j) = Ny Prm (sin ¢;) - Py (sin ®5) eim>‘j, (2.23)

®Including the Earth’s flattening effect, the complete expression of the TGP becomes ([I26] Wilhelm, 1983)

Vrap(t,r, A, ¢) = i {Z (E)nPn(coswj)

Jj=1
T ac\" | dPa(cosb;) . '
+ <T'j) ;Jn <rj) { n + 1) Py (cos ;) cos; + a0, sin ¥; cos z]] } , (2.20)

where 6, is the colatitude of the perturbing body and z; is the angle Q (see Figure 24).
°The parallax a./r is about 1/60 for the Moon and 1/23,000 for the Sun.
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where N, is the ortho-normalization factor

N, - (_1)m\/(2n+1)(n—m)!’ (2.24)

47 (n 4+ m)!

which includes the Condon-Shortley phase (—1)" and is different from the full normalization
(2.14)) applied to the geopotential spherical harmonics. The multiplicative term (2 — dgy,) ex-
plicitly appears in expression (2.22]) because it is not included in the ortho-normalization factor
Npm.

Figure 2.3. Field of the tide-generating forces acting on the Earth: the elliptical line shows the equipotential
surface (JI07] Schubert, 2007).

The TGP can be expressed according to the Cartwright-Tayler-Edden (CTE) convention ([10]
Cartwright & Tayler, 1971; [11] Cartwright & Edden, 1973) in a compact form, separating the
astronomical time-dependent part and the geographical part as follows

N n
VTGP(t’ A, gb) =49 Z Z E:Lm(t)ynm()" gb)’ (2'25)

n=2m=0

where g = G M /a? is the gravity acceleration on the Earth’s surface and €, (t) = Gpm ()41 bpm ()
are the complex ortho-normalized coefficients of the TGP, time-dependent quantities with the
dimension of a length in such a way that the term Vigp/g represents the change in the geoid
height due to the TGP. In particular, these harmonic coefficients ¢, (t) can be computed either
through accurate ephemerides of celestial perturbing bodies as

J .
() = 3 L

e " 4 2 - 6 m) . 3 .
<a_> Mpnm(sm ;) el ™A (2.26)
gr;

= rj 2n +1

or through the sum of tidal harmonics, obtained from analytical or numerical spectral analysi@
of the TGP, as
Com (t) = Y Hy e 10K T0md, (2.27)
Kk
where, for each tidal constituent defined by the Doodson number k in (2:39]) which is implicitly
related to the order m, Hy is the CTE tidal amplitude in units of a length, ©y(¢) is the phase
angle or Doodson argument and ¢, = 5 mod (n + m;2) is the phase correction necessary to
account for the adopted CTE convention ([32] Desai and Yuan, 2006).
The spherical harmonic order m of the TGP expresses the longitude dependence and so the
time dependence, being related to the variations of this potential during a daily rotation, so it

0TGP catalogues computed by analytical spectral analysis require analytical ephemerides of celestial perturbing
bodies, while those computed by numerical spectral analysis require accurate numerical ephemerides of celestial
perturbing bodies, like the JPL ephemerides (J[125] Wenzel, 1997).
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defines the tidal species: in particular m = 0 represents long period tidal waves, because their
period is not a fraction of a day, while m = 1,2,3,4,...,n corresponds respectively to diurnal,
semidiurnal, terdiurnal, quaterdiurnal bands, etc., up to n band.

Because of the presence of the parallactic factor (a./r;)", applications generally require only
terms of the TGP with degree n = 2, which account for the 98% of the total potential ([125]
Wenzel, 1997), so that the magnitude of the TGP is proportional to mass and distance of the
external perturbing body as GM;/ 7"33. Normalizing this quantity to make the value for the Moon
equal to 1, the value for the Sun is 0.46, for Venus 5 x 1072, for Jupiter 6 x 107¢ and less for
all other planets ([I07] Schubert, 2007). Thus tides are dominated by the lunisolar component,
nevertheless recent harmonic developments of the TGP also include planetary terms.

For the highest precision applications, it is necessary to consider also terms of the TGP due
to the Moon with degree n = 3 and n = 4.

Table 2.1. List of the main TGP catalogues, with the number of tidal waves and the perturbing bodies considered.

TGP Number Perturbing Accuracy

Catalogue of Waves Bodies (nm/s?)
Doodson (1921) 378 Moon, Sun 1.04080
Cartwright-Tayler-Edden (1973) 505 Moon, Sun 0.38440
Buellesfeld (1985) 656 Moon, Sun 0.24020
Tamura (1987) 1200 Moon, Sun, Venus, Jupiter 0.08340

Xi (1989) 2933 Moon, Sun, Venus, Jupiter 0.06420

Tamura (1993) 2060 Moon, Sun, Venus, Jupiter 0.03080

Moon, Sun, Venus, Jupiter,
Hartmann-Wenzel (1995) 12935 Mars, Mercury, Saturn 0.00140

Moon, Sun, Venus, Jupiter
Roosbeek (1996) 6499 Mars, Mercury, Saturn, 0.02000
lunar perturbations on the Sun

Kudryavtsev (2004) 28806 Moon, Sun, Venus, Jupiter, 0.00064
Mars, Mercury, Saturn

These developments are identified as TGP catalogues, which consist of tables containing
amplitudes, phases and frequencies of tidal waves generated by the direct effect of celestial
perturbing bodies and have the advantage of remaining valid for a long time. Among the available
TGP catalogues, the most important are reported in Table 1] ([125] Wenzel, 1997), where, for
each one, the number of tidal waves, the perturbing bodies and the accuracy are specified.
Usually, the catalogues are distributed in the standard HW95 normalization and format ([54]
Hartmann and Wenzel, 1995).
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2.3.1 The equilibrium tide

The equilibrium tide is the theoretical tide that would exist on an ideal perfectly rigid and non-
rotating Earth (no effect of the Coriolis force), totally covered with oceans of uniform depth,
where the response to the tide-generating forces is instantaneous and no dissipation is present.

The equilibrium tide potential can be directly determined from the astronomical positions
of the external perturbing bodies, so it coincides simply with the TGP. Considering only the
TGP of degree n = 2 in (2.21]), the equilibrium tide potential on the Earth’s surface due to the
perturbing body j results in

; GM; [ a. 2
V2(,J'I?GP(t’)‘? ¢) = T—] (T—> Py(cos1p;),
J J
) 2
_ 16, <a—> (3coseh; — 1), (2.28)

T

_2 T'j

where the expression of the second-degree Legendre polynomial P (cos ;) = %(3 cos? 1 —1) has
been substituted.

The trigonometric term function of the zenith angle v; can be conveniently expressed through
the geocentric spherical coordinates of the perturbing body j and the geographic coordinates of
the observer

cos)j = cos O cosf; + sinfsin 6, cos(A — Aj), (2.29)
= cos @ sind; + sinf cos 65 cos(Vg + A — « ), (2.30)
= cos 6 cos §; + sin @ cos 6 cos Hj, (2.31)

where ¢ and A are respectively the latitude and the longitude of the observation point, 6; and
Aj are the colatitude and the longitude of the body, ¢; and «; are the declination and the right
ascension of the body, ¥, is the Greenwich sidereal angle and H; is the hour angle of the body
(see Figure [2.4)), satisfying the following relations

0; = g — 5, (2.32)
)‘j = Q5 — ’199, (233)
Hj=X\- ), (2.34)

Substituting the relation (2Z31]) into (2.28]), the equilibrium tide potential ([Z.28]) on the Earth’s
surface due to a celestial perturbing body j assumes the expression

‘ : 1, . 1
‘6(7]T?Gp(t7 A @) = D; 3(sm2 o — 5)(sm2 5 — §)
+ sin(2¢) sin(24;) cos H; (2.35)

+ cos? ¢ cos? §; cos(2H;) |,

where D; = %GM]-ff—g is the so called Doodson tidal constant and it is 2.63 m?/s? for the Moon

and 1.21 m?/s? for tjhe Sun. In this way, the equilibrium tide potential depends on the latitude
of the observer and the distance, the declination and the hour angle of the celestial body, with
the latter three all being functions of time.

Laplace was the first to separate the equilibrium tide potential (Z33]) according to three main
tidal species, looking at the dependence on the hour angle H; of the perturbing body. The first
term in (2.35]) corresponds to the first species tides, it does not depend on the hour angle, but on
the declination cycle of the perturbing body as sin? d;, so it has a long period temporal frequency
of half month for the Moon and half year for the Sun. Moreover, it is a function of the latitude
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Perturbing Body

o>

Earth

Figure 2.4. Geometry for the computation of the equilibrium tide potential at the observation point P(\, ¢) due
to a celestial perturbing body: the geocentric spherical coordinates of the body are visualized, where i axis points
toward the Greenwich meridian indicated by G, k points toward the North Pole indicated by N andj completes
the right-handed tern.

as 3sin® ¢ — 1, so it is a zonal term, with maximum amplitude at the poles and zero amplitude
at latitude ¢ = £+ 35.26°.

The second term in (233 is associated to the second species tides and it depends on cos Hj,
so it has a diurnal temporal frequency, with maximum amplitude at latitude ¢ = + 45° and
zero amplitude at the equator and at the poles. These tides are modulated by periods of half
declination cycle of the perturbing body, because of the factor sin(24;).

The third term in (235]) is finally associated to the third species tides and it depends on
cos(2H}), so it has a semidiurnal temporal frequency, with maximum amplitude at the equator
and zero amplitude at the poles. Also these tides are modulated by periods of half declination
cycle of the perturbing body, because of the factor cos? ;.

Considering only the zonal second-degree term of the TGP, the equilibrium tide height due
to a perturbing body j is defined as the radial displacement of a particle on the Earth’s surface

) Vy o
2.EQ g
—— -£(3 1
2 M, ’I“?( cos™; )
3 GM]' a4 1
= — _€ N -
1M, [COS( vi ¥ 3}
1
= DjM.a? [008(21#]-) + 5} , (2.36)

where the maximum tide height happens for ¢); = 0,7 (conjunction and opposition) and the

minimum for ¢; = £7/2 (quadrature). In particular, the relation Cg({égnax = —QCQ({égnm

between the maximum and the minimum equilibrium tide due to an external body, resulting in

exists

cMmaz _ 35 6 oy
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(S),mazx — 164
Sun C%SE)Qmm 04 cm (2.38)
CGre =82 cm

where, accounting for both lunar and solar contribution, the maximum equilibrium tide is 52 cm
and the minimum is —26 cm, with a total excursion of about 78 cm. Moreover, it can be noticed
that the ratio between the solar and the lunar equilibrium tides is about CQ(i:)Q / CQ(%% = 0.46. This
ratio is valid also for the maximum tidal acceleration exerted by the Moon and the Sun on the
Earth, being about 1.2 x 1075 m/s? for the Moon and 5.5 x 10~7 m/s? for the Sun. The effect of
the other planets is much smaller, the largest being that of Venus, with a ratio of 0.000113 with
respect to the Sun.

According to the equilibrium theory, the tide-raising body (Moon or Sun) would tend to
draw the hypothetical ocean sphere covering the Earth into a prolate spheroid, stretched along
the line joining the celestial body, thus generating two bulges of high water, one directly under
the perturbing body and another one on the opposite side of the Farth, propagating around the
Earth from east to west at a steady rate, keeping up with the relative position of the tide-raising
body ([108] Schureman, 1940).

Tidal cycles are influenced by various astronomical parameters. The orbital inclination of
the celestial body (Moon or Sun), and hence of the tidal bulges, on the Earth’s equator implies
changes in the declination of the tide-raising body, resulting in two unequal high tides and
two unequal low tides per (lunar or solar) day. This phenomenon is known as the diurnal or
declinational inequality of the semidiurnal tides and gives rise to the diurnal tides. At the equator
the tidal ellipsoid, and so the semidiurnal tides, are quite symmetrical, the diurnal inequality is
minimum and the tides are known as equatorial tides; on the other hand, when the declination
of the celestial body is not equal to zero, the diurnal tides become stronger, these tides are called
tropic tides and at the high latitudes in theory only one high and low tide would occur (see

Figure 2.3)).

Earth’s Rotation Axis

Perturbing Body gERREERE

Diurnal i
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Semidiurnal Equator

Perturbing Body
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Figure 2.5. Geometric representation of the diurnal inequality: at the points A and A’ on the equator the tidal
bulges are quite symmetrical and the tides are semidiurnal, at the points B and B’ away from the equator the
tides are mixed, being two unequal high tides and two unequal low tides per tidal day, at the points C' and C’ at
higher latitudes there is only one high and low tide per tidal day.

Also the relative positions of the Moon and the Sun affect the magnitude of the tide-generating
force. When the Moon is aligned with the Sun (new Moon and full Moon), the two tide-raising
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bodies create the highest and lowest tides of the year, called spring tides; while when the Moon
and Sun are at right angles to each other (first and last Moon quarters), the tides are at their
least and are called neap tides. Because during one month the spring and neap tides occur two
times, their tidal period is close to two weeks.

The equilibrium tide does not represent the real tidal effect, being too small compared to
the observed tide, however it is an important reference for tidal analysis, giving an order of
magnitude of tidal phenomena.

2.3.2 The Doodson argument

Being the TGP a periodically varying function, it can be expressed through a Fourier series
having many fundamental frequencies, instead of one single frequency, because tides are induced
by different combinations of the astronomical motions of the Earth, the Moon, the Sun and the
planets.

In 1921 Doodson first performed the harmonic development of the TGP as in (2.27) from an
analytical ephemeri and introduced a very efficient classification of tidal waves, consisting in
a sequence of 6 digits, compactly named Doodson number k and defined as

k =ki(ko +5)(ks +5).(ks +5)(ks + 5) (ke + 5), (2.39)

where 5 is a bias added to avoid negative numbers and in the case that the biased numbers
exceed 9, the notation adopts X for 10 and E for 11; without bias the Doodson number is called
the CTE number. The integer number k; represents the spherical harmonic order of the TGP
or the tidal species, the pair ki ks defines a tidal group and the tern ki ko k3 defines a tidal
constituent. For example, the principal lunar semidiurnal constituent My is specified with the
Doodson number 255.555 or the CTE number 200.000.

In 1995 Hartmann and Wenzel first extended the Doodson number to 11 digits, because they
included contributions of the planets Mercury, Venus, Mars, Jupiter and Saturn.

The Doodson or astronomical argument ©O(t) defined for a specified tidal constituent k,
accounts for the time variations of the TGP, representing the phase of the equilibrium tide at a
given time and it can be expressed to the first order as

Ok (t) =Ox(t — to) + Ox(to) (2.40)
=27 fi(t — to) + Ox(to), (2.41)

where Oy is the Doodson frequency in rad/day, fx is the frequency of the tidal constituent in
cyc/day and t is the time expressed in mean solar days reckoned from a reference epoch ¢y (J2000
= 1 January 2000, 12 h).

The Doodson argument Oy (¢) can be considered as the angular position of a fictitious body
responsible of the tidal forcing induced by the constituent, which is assumed to travel around the
equator with an angular speed equal to that of the corresponding constituent (see Figure [2.6]).
In practice, the astronomical tide-generating potential or equilibrium tide is decomposed into an
almost periodic (non-harmonic frequency spectrum) series of harmonic partial tides with each
constituent featuring some property of the elliptic and inclined orbits of the Moon and Earth
(Schwiderski, 1980).

The Greenwich phase lag Wy (¢, \) is a constant over a geographic grid for a tidal constituent
and physically can be interpreted as the angular difference between the equilibrium tide and the
observed tide for that constituent (see Figure [2.0), so it measures the time delay (in radians,

1 An analytical ephemeris is essentially an algebraic description of the motion of the body as a function of
time. However, the most precise ephemerides are numerical, coming from numerical integration of the equations
of motion, with parameters chosen to best fit some set of observational data. They have been used primarily to
produce reference time series, basis for a harmonic expansion of the tidal potential. The first tidal computation
program based directly on an astronomical ephemeris was that of Longman (1959).
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degrees or time units) of the observed ocean tide with respect to the forcing equilibrium tide at
the Greenwich meridian. The phase of the observed constituent is a function of the time origin
adopted, while the Greenwich phase lag is independent (Schwiderski, 1980).

The Doodson argument is usually computed as a linear combination of the fundamental
astronomical arguments related to the Earth-Moon-Sun and planetary motions

11
Ow(t) = ka7 + kos + ksh + kap + ks N' + kgps + > _ kiLs, (2.42)
=7

where 7 is the mean lunar timd? in angle units (Moon’s hour angle plus 180° or 12 h), s is the
mean longitude of the Moon (the speed of s is about 13 deg/day), h is the mean longitude of the
Sun, p is the longitude of the lunar mean perigee, N’ is the negative of the longitude of the lunar
mean ascending node on the ecliptic, ps is the longitude of the solar mean perigee and L; with
i =17,...,11 are respectively the mean longitudes of Mercury, Venus, Mars, Jupiter and Saturn
([112] Simon et al., 1994). All the longitudes are measured along the ecliptic.

Similarly, the Doodson frequency Oy is expressed in terms of the secular rates of the funda-
mental astronomical arguments as

11
Ok = k17 + ks + ksh + kap + ksN' + keps + Y _ kL (2.43)
i=T7
and the sidereally demodulated Doodson frequency @1*( is given by
O = O — k16, (2.44)

In Table the fundamental arguments of the Earth, Sun and Moon motions are reported,
together with their frequencies and periods ([83] Petit and Luzum, 2010; [I07] Schubert, 2007).

Table 2.2. Fundamental astronomical arguments.

Symbol Frequency (cyc/day) Period Argument

Oy 1.0027379 23h 56m 4.2s  Greenwich sidereal angle

T 0.9661368 24h 50m 28.3s local mean lunar time

s 0.0366011 27.3216 d Moon’s mean longitude

h 0.0027379 365.2422 d Sun’s mean longitude

D 0.0003095 8.847 yr longitude of Moon’s perigee

N’ 0.0001471 18.613 yr the negative of the longitude
of Moon’s ascending node

Ds 0.0000001 20941 yr longitude of Sun’s perigee

These arguments are determined in terms of the four Brown’s arguments (Melchior, 1970),
measured along the ecliptic eastward from the Vernal equinox: [ is the Moon’s mean anomaly,
l, the Sun’s mean anomaly, F' = (I — ) the Moon’s mean elongation from the node (being €2
the Moon’s mean longitude of the ascending node) and D the Moon’s mean elongation from the
Sun.

In Table[2.3]a list is reported of 106 tidal constituents of the FES2004 ocean tide model (Lyard
et al., 2006) and ordered from the highest to the lowest CTE amplitude; for each constituent
the Doodson number and the Darwin symbol (if present) are also specified. General symbols
like M and S refer to lunar and solar origin, while the subscripts 1 and 2 refer to diurnal and

12The computation of the argument 7 requires to calculate the Greenwich Mean Sidereal Time (GMST), which
in turn needs the transformation from Terrestrial Time (TT) to Universal Time (UT1). The remaining arguments
in the Doodson relation are slowly varying angles.
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Figure 2.6. Geometry of the equilibrium tide, the observed tide and the Greenwich phase lag of a generic tide
constituent.

semidiurnal species respectively. The eight largest tidal constituents together account for over
90% of the tidal signal ([35] Doodson, 1921) and they are the four semidiurnal waves M, Na,
Sz, K3 and the four diurnal waves Ki, O1, P, Q1. If also the long period waves My, M,,, Ssq
are considered, more than 95% of the tidal signal is characterized ([71] Lambeck, 1980).

In particular, My is the principal lunar semidiurnal constituent, representing the rotation of
the Earth with respect to the Moon with the period equal to half of the mean lunar day, while
So is the principal solar semidiurnal constituent, representing the rotation of the Earth with
respect to the Sun with the period equal to half of the solar day. On the other hand, Ny is a
lunar elliptic semidiurnal constituent because it depends on the changes of distance and K is a
luni-solar declinational semidiurnal constituent because modulates the amplitude and frequency
of M5 and S5 for the declinational effect of the Moon and Sun, respectively. Q1 is a lunar elliptic
diurnal constituent and modulates the amplitude and frequency of the declinational O;. Kj is
a lunisolar diurnal constituent and, with Op lunar diurnal constituent, expresses the effect of
the Moon’s declination. They account for diurnal inequality and, at extremes, diurnal tides.
With P; solar diurnal constituent, it expresses the effect of the Sun’s declination. Sy, is the solar
semiannual constituent and with S, accounts for the nonuniform changes in the Sun’s declination
and distance, mostly reflecting yearly meteorological variations influencing sea level. M, is a
lunar monthly constituent, expressing the effect of irregularities in the monthly variation of the
Moon’s distance and therefore this period is also named as elliptic and it is equal to 27.555,
called anomalistic month. Finally, My is a lunar fortnightly constituent and reflects the effect
of departure from a sinusoidal declinational motion (associated with the variation of the Moon’s
monthly declination).

Table 2.3. List of 106 tidal constituents of the FES2004 ocean tide model, reported in decreasing order with
respect to the CTE amplitude Hy.

Sequence Doodson Constituent Number of CTE Amplitude
Number Number Name Harmonic Terms Hy (m)

1 255.555 Mo 3316 7.45648E-01

2 273.555 Sa 3304 2.94792E-01

3 165.555 K 3300 2.70864E-01

4 145.555 0O 3237 1.90368E-01
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Table 2.3 — Continued from previous page

Sequence Doodson Constituent Number of CTE Amplitude
Number Number Name Harmonic Terms Hy (m)
) 245.655 Ny 3151 1.54442E-01
6 163.555 P 2616 8.36399E-02
7 275.555 Ky 2397 7.29849E-02
8 135.655 Q1 956 2.53895E-02
9 165.565 952 2.37951E-02
10 145.545 887 2.29593E-02
11 237.555 %) 712 1.68275E-02
12 247.455 V9 701 1.64236E-02
13 255.545 637 1.49012E-02
14 275.565 446 1.14461E-02
15 235.755 2Ny 417 9.88063E-03
16 265.455 Lo 343 8.08723E-03
17 075.555 My 277 7.75071E-03
18 272.556 Ts 282 6.87847E-03
19 175.455 J1 309 6.64132E-03
20 155.655 M, 238 5.31897E-03
21 185.555 00, 137 2.96702E-03
22 065.455 M, 100 2.85347E-03
23 057.555 Ssa 83 2.35406E-03
24 227.655 €2 96 2.19345E-03
25 055.565 LP 74 2.03640E-03
26 075.565 74 2.01380E-03
27 135.645 7 1.64369E-03
28 137.455 P1 78 1.64273E-03
29 127.555 o1 68 1.48200E-03
30 185.565 67 1.35448E-03
31 245.645 o6 1.12943E-03
32 125.755 20 50 1.09218E-03
33 285.455 72 45 9.45150E-04
34 165.545 48 9.09621E-04
35 155.455 45 8.74359E-04
36 263.655 A2 47 8.66789E-04
37 245.555 O4 43 8.55173E-04
38 162.556 m 41 8.12688E-04
39 265.655 40 7.56314E-04
40 085.455 My, 25 6.14594E-04
41 265.555 28 5.01433E-04
42 225.855 3Ny 27 4.83850E-04
43 167.555 1 22 4.46243E-04
44 183.555 SO, 17 3.10721E-04
45 175.465 15 3.05464E-04
46 275.575 19 2.83920E-04
47 173.655 01 13 2.71002E-04
48 274.554 Ry 17 2.49127E-04
49 254.556 o9 17 2.48433E-04
50 155.665 11 2.47982E-04
51 155.555 11 2.38996E-04

52 157.455 X1 11 2.36000E-04
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Table 2.3 — Continued from previous page

Sequence Doodson Constituent Number of CTE Amplitude
Number Number Name Harmonic Terms Hy (m)
53 285.465 16 2.24067E-04
54 195.455 V] 13 2.09420E-04
95 147.555 T 10 2.02425E-04
56 253.755 Y2 14 1.89894E-04
57 265.665 15 1.88495E-04
58 256.554 B 14 1.87287E-04
99 063.655 MS,, 6 1.85589E-04
60 117.655 11 1.84777E-04
61 166.554 U 9 1.59933E-04
62 295.555 12 1.58304E-04
63 164.556 S1 9 1.57183E-04
64 073.555 MSy 5 1.51731E-04
65 085.465 ) 1.37677E-04
66 238.554 10 1.30755E-04
67 217.755 9 1.24500E-04
68 056.554 Sa 4 1.18664E-04
69 295.565 9 1.08910E-04
70 137.445 7 9.24843E-05
71 229.455 7 8.90803E-05
72 195.465 7 8.73525E-05
73 185.355 6 8.25166E-05
74 065.555 3 8.23239E-05
75 127.545 5 6.97821E-05
76 153.655 ) 6.91321E-05
77 235.655 5 6.52650E-05
78 185.575 ) 6.40134E-05
79 145.755 5 6.28647E-05
80 075.355 2 5.37031E-05
81 125.745 4 5.02799E-05
82 145.535 4 4.72655E-05
83 246.654 4 4.53529E-05
84 175.555 4 4.45470E-05
85 075.575 1 3.90195E-05
86 083.655 M Sim 1 3.65997E-05
87 065.445 1 3.49361E-05
88 065.465 1 3.46336E-05
89 244.656 3 3.28473E-05
90 155.445 3 3.16794E-05
91 248.454 3 3.16589E-05
92 219.555 3 3.09327E-05
93 093.555 MSgm, 1 3.08527E-05
94 065.655 1 2.84329E-05
95 058.554 Sta 1 2.73742E-05
96 095.355 1 2.55593E-05
97 135.555 2 2.36545E-05
98 293.555 2 2.17076E-05
99 083.665 1 1.51239E-05
100 083.455 1 1.39139E-05
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Table 2.3 — Continued from previous page

Sequence Doodson Constituent Number of CTE Amplitude

Number Number Name Harmonic Terms Hy (m)
101 093.565 1 1.27040E-05
102 065.665 1 1.16454E-05
103 057.565 Ssaa 1 1.16454E-05
104 115.855 1 1.07603E-05
105 095.365 1 1.05867E-05
106 163.545 1 1.04402E-05

2.4 The response of the Earth to the TGP

The Earth is not a homogeneous and perfectly rigid body, so it reacts to the astronomical forcing
in a complex way. The response of the Earth to the TGP can be separated in deformations
(solid and ocean tides), changes in the Earth’s orientation in space (nutation and precession)
and changes in the Earth’s rotation rate [123], Wahr, 1981].

Ocean tides are generated by the same gravitational forces as Earth tides, the ability of the
ocean to redistribute mass gives to ocean tides their own dynamics. Ocean tides have therefore
the same spectrum as Earth tides but different amplitude and phase. Solid Earth tides are much
easier to model than ocean tides because the Earth is more rigid than water and has a much
simpler shape than the ocean basins.

First of all, the continents interrupt the propagation of the ocean tide waves and in shallow
water the waves can not move fast enough to follow Sun and Moon: the response of the Earth to
the TGP is not elastic and there is delay between the Earth’s tidal bulge and the position of Sun
and Moon. There are complicated mechanisms of energy dissipation in the interior of the Earth
[70l Lambeck et al., 1974|, causing a phase lag with respect to the TGP, thus tides in the real
ocean are not in equilibrium with the tidal forcing. In fact, on the equator the tide should take
one day to propagate around the Earth, but this would require a wave speed of about 460 m/s,
which is only possible in an ocean about 22 km deep. So the tidal wave will follow the Moon or
Sun with a time delay influenced by the bottom drag, slowing the progression of the wave.
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Figure 2.7. Spectrum of the TGP given by the amplitudes of the tidal harmonics, taken from Hartmann and
Wenzel (1995), though normalized according to the convention of Cartwright and Tayler (1971). Figure reported
by [107} Schubert, 2007].
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Chapter

Parameterizations of the ocean tide height

field

In this Chapter, the Laplace Tidal Equations (LTE) are introduced to explain the relations
between the ocean, the solid Earth and the loading effects, in order to derive the fundamen-
tal equations of the ocean tide height field and the ocean tide potential. In particular, the
ocean tide height can be expressed according to different parameterizations, the main being the
classical spherical harmonic representation, characterized by a sum of partial tide heights each
corresponding to a tidal frequency, and the response analysis, in which the transfer function or
impulse response between the tidal forcing and the ocean tide height field is determined in each
tidal band. As regards the harmonic representation, the cotidal and corange charts are reported
for the main diurnal and semidiurnal tidal constituents (Ki, Py, O1, Q1, Ms, So, Ko, Nb), to
visualize the dynamic content of the ocean tide height induced by their tidal frequency. On the
other hand, the development of a new algorithm for the accurate recomputation of the Groves
and Reynolds orthotide coefficients is illustrated and the corresponding computational results
are discussed within the orthotide formalism. Finally, a brief description of the existent ocean
tide models and their general classification is provided.

3.1 The Laplace Tidal Equations (LTE)

As described in the previous Chapter, the equilibrium theory of tides introduced by Newton in
1687 provides the astronomical tide-generating potential, to which the ocean responds hydro-
dynamically in a complex way. Laplace in 1775 was the first to formulate the hydrodynamical
equations of ocean tidal motions, the so called Laplace Tidal Equations (LTE)

0 1 0

8—1; = 2wvsin ¢ + E%[AVTP —9(<+<b)]a (3.1)
ov . 1 0 b

a = —2wus1n¢ + ma[AVTP - g(C +< )]a (32)
a¢ 1 0 9 _

o + m a—¢(hv) + 8_¢(hu cos¢)| =0, (3.3)

where (¢, A) are latitude and longitude, AVip is the total tidal potential, u(p, A, t) and v(p, A, ¢
are respectively the east and north fluid velocities and ( is the measured ocean tide heigh,

'The LTE are based on the assumption of an incompressible and single-layer ocean subject only to linearized
inertial, potential, and Coriolis forces generated by the TGP. However, since the oceanic tidal motion is highly
turbulent, the velocities u(¢,,t) and the tidal height ¢ must be averaged [I09, Schwiderski, 1980].
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defined by the difference between the geocentric ocean surface tide (® over the geoid and the
bottom tide ¢? as

C=C+ b (3.4)

The relations between the different tidal surfaces are well explained in Figure BIl In par-
ticular, a satellite altimeter measures the height of the instantaneous ocean surface relative to a
reference ellipsoid, leading to a direct measurement of the geocentric or altimetric tide, denoted
at a given latitude and longitude at any epoch by (*. In turn, the altimetric tide is related to
the true or bottom-relative ocean tide ( as

¢ ==+ (3.5)

The difference between the altimetric and the Earth tides is also called elastic ocean tide [39,
Eanes and Bettadpur, 1995].

On the other hand, the ocean bottom tide height ¢* (or seafloor tide) is given by the contri-
butions from the solid Earth tide ¢°* and the ocean loading tide ¢% as

¢h=¢t ¢ (3.6)

It is important to notice that assuming linearity of the ocean’s response, every ocean tide
constituent is hydrodynamically decoupled from all others and can be constructed independently
from the others. Hence the LTE and aforementioned relations are also valid for a single con-
stituent k.

A
& ‘
- T b £ Al
\ 4 \ 4 C — Ce —|_ C

Geoid Surface
Figure 3.1. Geometric visualization of the measured ocean tide (, defined by the difference between the geocentric

ocean surface tide ¢* and the bottom tide ¢* [I10, Schwiderski, 1980].

The surface ocean loading displacement (2 of a mass element m can be expressed as function
of the adimensional ocean loading Love number A/,

= Z K Py (sin 1) (3.7)

and integrating over m = p,, Re?(do, we obtain the surface displacement due to the ocean loading
as

ol = / / (Zh’ (sin ) do (3.8)

Pw n

being do the solid angle element, p. the Earth’s density and p,, the mean density of the sea
water.
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From the expressions of the body tide and ocean loading tide, the geocentric tide results

VTGP > w/
> = hy, +Z[ 2+1p ]Cn (3.10)

In conclusion, the solid Earth tide potential is

AU, = knVacea, (3.11)
n=0

the ocean tide potential ; on the Earth’s surface is given by

U = 3.12
¢ 922n+1p6 (3.12)

and the potential correction due to the ocean loading tide is

Uc =Y kU (3.13)
n=0

3.2 The harmonic representation

Every harmonic component of the equilibrium tide generates through the ocean’s response an
ocean partial tide of identical frequency, differing only in the amplitude and phase (Schwiderski,
1980). Hence, in the classical harmonic representation, the total tide height field {(¢, \,t) can
be expressed as the sum of hundreds of partial tides (x (¢, A, t), each corresponding to a specified
constituent k as

(¢, A1) ch é,\,1). (3.14)

In particular, each partial tide can be written as

Ck(gb’ >‘a t) = Zk(gb’ >‘) COS[@k(t) + Xk — \I’k((ﬁa )‘)]’ (315)

where Zy (¢, \) and Wy (¢p, \) are respectively amplitude and phas of the tidal constituent at a
specified geographic location, while the temporal part is represented by the Doodson argument
Ok(t) and xy is the Doodson-Warburg phase correction, reported by the IERS TN32 Standards
[82, McCarthy and Petit, 2003] and added because it is a convention to have cosine terms and
positive amplitudes (see Table B.1]).

| Tidal Band | H, >0 | Hy <0 |

Long Period m 0
Diurnal /2 —7/2
Semidiurnal 0 7r

Table 3.1. Doodson-Warburg phase correction (McCarthy & Petit, 2003): the phase changes depending on the
sign of the Cartwright-Tayler-Edden amplitude Hy (m) for a specified constituent k.

2The Greenwich phase of the ocean partial tide, which measures the retardation time (in radians, degrees,
or time units) of the oceanic tide (x, relative to the forcing equilibrium tide at Greenwich meridian A = 0
(Schwiderski, 1980).
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3.2.1 Schwiderski notation

The tide height can be written in complex form, separating the geographic part from the temporal
part as

Gel(9, A1) = Gi(9, A) el Ol Pd], (3.16)
where (;(¢, A) is the static tide height depending only on the geographic location and defined as

Ce(@,A) = Zi(é, A) cos Ui (p, A) — i Zi (¢, A) sin Wy (o, A). (3.17)

The spherical harmonic analysis of the in-phase and quadrature components of the static tide
height gives

N n

Zx(d, A) cos[Py (e, \) Z Z 1 Cos(mA) + X sin(m\)| P™ (sin ), (3.18)

n=0m=0
N n

Zx (&, ) sin[Wy (o, \) Z Z m COs(mA) + dk 1 SIN(MA)| P (sin ¢), (3.19)

n=0m=0

and allows to obtain the harmonic coefficients aX, bk &  d¥ .
Thus, the static tide height becomes

Ce(,A) :Zk(¢= A) cos Wy (d, A) — 1 Zi (o, A) sin Wi (¢, A) (3.20)

= Z Z m €os(mA) + b, sin(mA) —ick,, cos(m)) —idX,, sin(m\)]P™ (sin ¢)

n=0m=0

After some algebraic manipulations we can express the trigonometric terms cos(mA) £isin(mA)
according to the Euler notation e*1™* obtaining

[aX  cos(m\) +iaK, sin(m)) + a¥, cos(m)) —iaX, sin(m\)]

i eTimA (3.21)
n

bk sin(m)) :% (X sin(m\) 4+ 16K, cos(m)) + b, sin(m)) — b, cos(m)]

ak cos(m\) =

l\.')lr—l [\Dl}—‘

:_Z:Flb etimA (3.22)

k

—icy,, cos(mA) = k

[—ick  cos(m)) + ¢k, sin(m)) —icK, cos(m)) — ¥, sin(m\)]

etimA (3.23)

I
= = N
LM

|

—

o
el
3

—id¥ sin(m)\) ==[—idX sin(m\) + d¥, cos(m)) — d¥, cos(m)) —id¥, sin(mM\)]

k etimA (3.24)

MlllH
+M|
_H
<Y
s

Substituting these relations into the equation ([3.20) yields

Ce(9, A) ZZZ (i F drgm) — 1(crip £ U)| P (sin ¢) €17 (3.25)

n=0m=0 +
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and so the the complex and the real tide heights, defined respectively by the equation ([B.16]) and

(BI3), become

N n -
G, A1) %Z S l(ak,, F d,,) —i(ek,, £ 6K, P (sin g) elOxOPacEmAl (3 96)
n=0m=0 +
1 N n -
k(P A, 1) =5 Z Z ak. T d5 ) cos(O(t) + xi £ m)
n=0m=0 +
+ (i £ i) (O (1) + X1 £ mA)| P (sin 9). (3.27)

We can introduce the following relation

- 1
Chisinelt, =3 (el 5 ) 329
- 1
Chcosel =3 ek =05, 329

where C’kjE and Eki are constant in time and space and are respectively amplitude and phase of
the prograde and retrograde wave of the constituent k. In particular the harmonic coefficients
are explicitly calculated as

k k Ak— k—
ak, =CXtsinekt 4 Ok sinegk (3.30)
k k k Ak— k—
bk =CKFcosekt — Ok cosek (3.31)
&k =Ck* cos €k+ + Ck~ cosek (3.32)
¥, =Ck= sinek — Okt gin ekt (3.33)
The direct relations to obtain phase X} and amplitude CX* from these coefficients are
C’,lf;; :\/(C’ylf,ib cos 55%) (C’,lfﬁ,i sin 55%) , (3.34)
Ak— _ k k—\2
Com —\/(C K cOs exm )2 + (CKo, sin ekim)2, (3.35)
Ck+ N
eXt —arctan % (3.36)
CXt cosert
C,k, . k—
ek~ —arctan % . (3.37)
Crim COS Enm,

Finally, the tide height of a specified constituent is given by

Ck(p, A\, 1) Zzzckism (t) 4+ xx £ mA + eXETP™ (sin ). (3.38)
n
3.2.2 Lambeck and Ray notation
According to the Lambeck-Ray notation, the phase aki is replaced by the phase 5 ,lji, thus

the trigonometric relation in equation (B.38]) can be developed using the fundamental expressions
of sine and cosine

sin(x + y) =sinx cosy + cos zsin y, (3.39)
cos(x Fy) =coszcosy + sinzsiny, (3.40)

sin(g —60) =cosb, (3.41)
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cos(g —60) =sinb, (3.42)
and becomes
sin [Ox(t) + xx £ mA + g - wgi} = cos {@k(t) + xx £ mA — k=] (3.43)
The phase according to the Lambeck-Ray notation is related to ours through the relation
5%::2._555. (3.44)

Thus, the tide height related to a specified constituent is given by the following relation equivalent
to the equation (B.38])

Ck(, A, 1) Z Z Z CEE os[Ok (1) 4 i £ mA — Y] P (sin ¢). (3.45)

Substituting equation (3.44]) into (B:28)) and (B.29) yields
CEE cos kit — ( ak T d< ), (3.46)
Cki SHN/J - ( gm + bgm)a (347)

and the harmonic coefficients are explicitly calculated as

agm —C’k+ cos ¢k+ + C’k cos ¢nm, (3.48)
bk =CX+tsin gkt - sinyk (3.49)
K =CKtsin 1/1k+ + C’k sin k- (3.50)
d¥  =Ck-— cos X~ — Okt cos kit (3.51)
The coefficients aX,,, b¥, . c¥  d%  in Schwiderski and Casotto-Panzetta notation are equivalent
to those in Lambeck-Ray notation: only the phase is different in the two notations.
3.2.3 Temporal variations of the Stokes coefficients due to ocean tides
The complex and real tide height field for a selected constituent are respectively given by
G0, A1) =Zic(, A) el P e. ), (3.52)

C(9, A, t) =Zx (9, A) cos[Ok (t) + xx — Yi(9, A)]- (3.53)

The static part le((é, A, t) of this tidal field can be expressed in two ways, according to whether
or not the Doodson-Warburg phase correction yy is included, as follows

(D, N) =Zu(0,
(@, A) =Zi(¢,

Starting from the equation (3.55]) and performing the spherical harmonic analysis of the real

and imaginary parts, we can obtain the spherical harmonic coefficients a¥, b kK dk

)e~ MWimnd, (3.54)

A
A)e Wi (3.55)

Zi(é, A) cos[Py (o, N) Z Z 1 cos(mA) + X sin(m\)]|P™ (sin ¢), (3.56)

n=0m=0
N n

Zi (¢, A) sin[ Wy (o, N) Z Z cos(mA) + dXsin(m\)]|P™ (sin ¢). (3.57)

n=0m=0
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On the other hand, the equation (Z54)) includes the Doodson-Warburg phase correction and
consequently the spherical harmonic analysis of the real and imaginary parts yields different
coefficients AK Ck

nm? nm? nm,

Zx(d, A) cos[Py (g, N) Z Z - cos(mA) + BX  sin(m\)| P (sin ¢), (3.58)
n=0m=0

Zi (6, ) sin[ Uy (p, \) — Z Z k cos(m) + DX sin(m\)] P (sin ¢). (3.59)
n=0m=0

Developing the first arguments of the equations (8.58]) and (3.59]) using the equations (3.40) and
(341, we obtain

Zk(¢a )‘) COS[\I]k(gb’ ) Xk] Zk(¢a )‘)[COS \I]k(gb’ >‘) COS Xk + sin \I]k(gb’ >‘) sin Xk] (360)
=Zx (¢, \) cos Uy (¢, A) cos xx + Zk (¢, \) sin Uy (¢, A) sin xy, (3.61)

Zx (o, A) sin[Wy (o, N) — xx] =Zk (&, A)[sin Yy (¢, \) cos xx — cos Wi (¢, A) sin yk], (3.62)
=Zx(d, A) sin Uy (o, A) cos xx — Zk (¢, ) cos Ui (¢, \) sin xk, (3.63)

where the underlined terms are equal to first arguments of the equations (B.56]) and (B.57).
Substituting the second arguments of the equations ([B.56]) and (857) into the underlined terms
of the equations (3.60) and (3:63]) gives the following relations

N n

Zx (o, N) cos[Pi(d, \) — xk] = Z Z [aX  cos(mA) 4 bE  sin(mA)] P (sin ¢) cos Y+
Z Z [k cos(mA) + dX,, sin(m\)]P™(sin ¢) sin i

= Z Z [aX  cos i cos(mA) + bX,  cos xic sin(m\)+

K sin yi cos(mA) + d¥, sin xi sin(mA)] P™ (sin ¢)

= Z Z o8 Xk + X sin i) cos(mA)+

n=0m=0
(bK  cos xi + d¥, sin xi ) sin(mA)] P™ (sin ¢), (3.64)
N n

Zx (o, A) sin[Py (o, N) — xx] = Z Z (K cos(mA) + dX, sin(m))]P™(sin ¢) cos xx—

n=0m=0
N n

Z Z [aX  cos(m)) + b, sin(mA)]P™(sin ¢) sin yx

n=0m=0
N n

= Z Z [k cos xi cos(mA) + dX  cos xi sin(m)

n=0m=0

— aX, sin i cos(mA) — K sin xy sin(m\)] P (sin ¢)

= Z Z oS Xk — aXsin yy) cos(m\)+

n=0m=0
(d¥  cos xi — DX, sin xi) sin(m\)] P (sin ¢). (3.65)
Finally we can explicitly write the harmonic coefficients AX = BX Ck Dk  as

Ak —=aK, cos i + K, sin xu, (3.66)

—'nm
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:bk cos Xk + dX,, sin i, (3.67)

C’k =cK  cos xk — a¥, sin xi, (3.68)

k :dﬁm cos xx — bK,, sin xx. (3.69)

This is the map from the harmonic coefficients aX, , 0K . X d¥  to the coefficients AK  BX
CX . DX including the Doodson-Warburg phase correction. The ocean tide height becomes

k(P A1) Z Z Z K o F DX ) cos(O(t) £ m\)

n=0m=0 +
+(C%  + BX Ysin(O(t) = m\)| P (sin ¢). (3.70)

The inverse mapping is obtained resolving the two systems composed by the coupled equations

(3.66)-B.68) and (3.67)-(3.69)

ak =AK  cosxi — CX, sin i, (3.71)
bk =Bk cosxi — DX sin yx, (3.72)
C’ - cos Xk + AKX sin xy, (3.73)
dﬁm =DX  cos xix + BX,, sin yi. (3.74)
Using the relations (3:28) and (B:29), it is possible to express the coefficients AX = BX ~Cck = Dk

as functions of CXE ekt and yy as follows
1
—(Agm T DX ) =C¥E sin eXE cos xi + CXF cos ek sin vy = CXFE, (3.75)
C'k :I:Bk C’ki cosski cost—C'kjE sineXE sin yg = SkE. 3.76
nm nm

Thus, the ocean tide height can be written as

k(P, A, t) Z Z Z CEE sin ekt cos yi + CXE cos eXE sin xy) cos(O () £ mA)+
n=0m=0 +

(C’kjE cos eXE cos xi — CXF sin eXF sin yy ) sin(Oy () + mA)| P™ (sin ¢)

= Z Z Z CXE cos(Ox () £ mA) + SXE sin(O (t) £ mA)|P™(sing).  (3.77)

n=0m=0 +

Ck

From these expressions, the coefficients AX = BX Ck D

m can be explicitly derived as

K =(C¥Fsinekt 4+ Ok~ sinek ) cos i + (CXF cos 6%2—1 + CX— cos ek ) sin i, (3.78)
K —(C*Fcosekt — CX— coseX—) cos i — (CXF sin ekt — CX—sin ek~ ) sin xy., (3.79)
K =(CXF cosekt + CX cos ek ) cos xi — (CKF sin ekt + X~ sin ek Y sin xy., (3.80)
K =(CX-sineks — CXtginekh) cos xic + (CX cos ek — CKF cos ekt Y sin yyc (3.81)

and

eict —Joir 4 iz, (3.82)

Ck:I:
eXE —arctan <S£$> — Xk- (3.83)

nm
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Developing the relation (3.77) we obtain

Ck(P, A, 1) Z Z Z [CEE cos O (t) cos(mA) T CKE sin Oy (t) sin(m\)+
n=0m=0 +

Sk gin O (t) cos(mA) + SKE cos Oy (t) sin(mA)]| P™ (sin ¢)

= Z Z Z [(CXE cos O (1) + SKE sin Oy (t)) cos(mA)+

n=0m=0 +
(£SKE cos O (t) T CKE sin Oy (t)) sin(m\)] P (sin ¢). (3.84)

The Stokes coefficients variations due to ocean tides, including ocean loading effects, are
given in the unnormalized complex form by

AKpym(t) =AChm(t) — 1 ASym(t)

477Gpw 14k,
-3 e R ) (3.85)

where (X (t) are the complex unnormalized harmonic coefficients of the tide height at a specified
frequency, and the complex form of the ocean tide generated potential is

AVER(r, A ) = Z Z (%)" AR OV (6, ). (3.86)

n=2m=0

The real unnormalized coefficients variations can be explicitly written as

AnGpy 1 + K,

ACpm(t) = . It Z Z CXE cos Ok (t) + SKE sin Oy (1], (3.87)
ASpm(t) :47TC;pw ;n+f1 Z Z (£S5 cos Oy (t) T CKE sin O (2)]. (3.88)

Including the full normalization factor into the factor Fj,,, defined as

an:

/ |
ArGpy 1+ K}, \/ (n+m)! (3.89)

g 2n+1\ (2—3m)2n+1)(n —m)!

and writing explicitly the relations ([B.87) and (B88), we obtain the fully-normalized Stokes
coefficients variations due to ocean tides

ACpm(t) =Fom Z [CXF cos O (t) + SKT sin O (t) + CK cos Oy (t) + SX sin Oy (1)]
=Fom Z [(CXF + CK Y cos O () + (SKE + 5K ) sin O (1)], (3.90)
ASpn(t) =Fpm Z [SKt cos O (t) — CXF sin Oy (t) — SK- cos Oy (t) + CX- sin O (t)]
= an [(Sk+ — S%—) cos O () — (CKF — CX—) sin O ()] (3.91)

Finally, comparing these relations to those of TERS-TN32 Standards (McCarthy & Petit,
2003), it can be noticed that the unnormalized prograde and retrograde harmonic coefficients
CXEt and SKE of the constituent k are

k:l: _ okt
C Cnm JAERS
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1

1 .
:5[(0’2771 + dgm) COS Xk + (sz + bzm) Sl Xk]7 (392)

k+ k+
Snm :Snm,IERS
1
1 .
:5[(sz + bgm) COS Xk — (azm + dgm) Sl Xk]7 (393)

so that our harmonic coefficients AX = BX Ck Dk  are given by

nm? nm? nm? n

AX =CkE 4ok 3.94
By =S = Spms 3.95

3.96
3.97

Cr, =Skt + Sxon,

k _ k- k+
Dnm _Cnm - Cnm

~~ o~ o~
~— ~— ~— ~—

The ocean tide generated potential is given in the real form by

GM N Ae\™ _ _ _
AVor(r, A ¢) = — ZZ(f) [AC,m(t) cos(mA) + ASpm(t) sin(m)] P (sin ¢). (3.98)
n=2m=0

3.2.4 Cotidal and corange charts

It is interesting to visualize the information content of the dynamic tide height at a certain
frequency k through the corange and cotidal charts. The cotidal lines are those connecting
geographic points with the same tidal phase Wy (p, ) and so they are solutions of the equation

Uk(p, ) =la, 1 =1,2,...,360° /a, (3.99)

where the phase varies from 0° to 360° (see Figure 77).

On the other hand, corange lines are those connecting geographic points with the same
corange, that corresponds to twice the tidal amplitude Zx(p, ) and are given by the following
equation

27 (¢, \) = C. (3.100)

The cotidal lines meet at the amphidromic points characterized by a null tidal excursion for
the considered constituent, around which the tide propagates in one tidal period and caused by
the Coriolis force combined with continental coasts to produce standing waves. There are also
anti-amphidromic points characterized by permanent high tide. Cotidal and corange lines would
represent an orthogonal system if there were not tidal dissipation phenomena.

Charts with cotidal lines superimposed on the ocean tide height at a selected time are shown
in Figures B2, B3] B4, B3l 3.6 B.7 B8 B9 respectively for the eight main semidiurnal and
diurnal tide constituents Ms, Ko, So, No, K1, Q1, P1, O1. The cotidal lines connecting points
with the same tidal phase are represented with a color scale from green to pink, while low and
high tides are respectively represented with a color scale from blue to red.
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M2 Tide Phase (deg) —— FES2004 Model
0 60 120 180 240 300 360
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Figure 3.2. Cotidal and height chart of the M2 constituent of the FES2004 ocean tide model.
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Figure 3.3. Cotidal and height chart of the K2 constituent of the FES2004 ocean tide model.
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S2 Tide Phase (deg) —— FES2004 Model
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Figure 3.4. Cotidal and height chart of the S2 constituent using FES2004 ocean tide model.
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Figure 3.5. Cotidal and height chart of the N2 constituent using FES2004 ocean tide model.
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K1 Tide Phase (deg) -—— FES2004 Model
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Figure 3.6. Cotidal and height chart of the K1 constituent using FES2004 ocean tide model.

Q1 Tide Phase (deg) —— FES2004 Model
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Figure 3.7. Cotidal and height chart of the Q1 constituent using FES2004 ocean tide model.
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P1 Tide Phase (deg) —— FES2004 Model
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Figure 3.8. Cotidal and height chart of the P1 constituent using FES2004 ocean tide model.
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Figure 3.9. Cotidal and height chart of the O1 constituent using FES2004 ocean tide model.
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Typically, an ocean tide model provides maps for only the largest tides or main waves. The
spectrum of tidal geopotential perturbations can be completed by interpolation from the main
waves to the smaller, secondary waves, using an assumption of linear variation of tidal admittance
between closely spaced tidal frequencies (see the next Section).

3.3 The convolution formalism

In the convolution formalism, the ocean tide height field is obtained through a transfer function,
or impulse response, from the tidal forcing in each tidal band. Munk and Cartwright (1966) first
introduced the response method, taking advantage of the fact that the tidal admittance function
is generally smooth inside each tidal band, in the sense that it is assumed to be a slowly varying
function of frequency. An orthonormalized formulation of the response method was developed
by Groves and Reynolds (1975), improving convergence and stability of the representation.

3.3.1 The response method

Instead of the sum of hundreds of tidal constituents, the response method [92] Munk and
Cartwright, 1966] represents the total tide height (¢, \,t) at a given time and location as a
sum of partial tide heights, each arising from a tidal band defined by the order m (m = 0,1,2
corresponds respectively to long period, diurnal and semidiurnal band) and expressed as a con-
volution of the TGP coefficients ¢, (t) with appropriate weights for each band ¢7*(¢, A)

C(p, A\ 1) Rez Z 97 (s N enm (t + sAL), (3.101)

Im s=—S

where convenient values are At = 2 days [92) Munk and Cartwright, 1966] for the time lag and
S =1 ([31] Desai and Wahr, 1995) for the number of lag. The main advantage of this method
arise from the fact that the response of the ocean to the TGP is linear inside each tidal band.
To pass from the time domain to the frequency domain is sufficient to apply a Fourier transform
to the impulse response g7'(¢, A), obtaining the response of the ocean Gy(¢, \) at a particular
frequency k: this complex function, called tidal admittance, has the fundamental property of
being a generally a smooth function in each tidal band and it is defined by

S .
= Y gl(p, A)em OB, (3.102)

s=—5

The admittance related to a specified band can be used to select the tide height at a particular
frequency inside that band as follows

(P, A1) = Re[Gie(; A enm (D), (3.103)

moreover the real and imaginary parts of Gx(¢, \) = Xk (¢, ) +1Yk(¢, A) are useful to calculate
the in-phase and quadrature amplitudes (Zppk(¢,A),Zgux (¢, X)) of the tide height (k(¢, A, t)
(Eanes and Bettadpur, 1995)

Zphk (95 A) =(=1)" Hic X1 (¢, A), (3.104)
Zqu(¢7 )\) = (_1)mHkYk(¢7 )‘)7 (3105)
allowing to determine respectively the amplitude and phase of the tidal constituent
\/ ik (0 \)? + Zgur (0, M), (3.106)
uk (9 A)
Ui (p, \) =arctan <7q k . 3.107
k(%) Zphk(9; A) ( )
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3.3.2 The orthotides

The orthotide representation, firstly proposed by ([5I] Groves and Reynolds, 1975), is based on
the response method, but with orthogonality properties. According to this method the ocean tide
height ((¢, A, t) at an epoch ¢, latitude ¢ and longitude A can be expressed as the real part of a
linear combination of complex nearly orthogonal functions of time " (¢), called orthotides, mul-
tiplied by complex coefficients 2" (¢, A) = u* (¢, A) — iv]*(¢, ), called orthoweights, dependent
on the geographic location and defined for each tidal band indicated by the order m

1

C(dy A\ t) Rezzz;ﬂ " (t), (3.108)
=0

where [ is the maximum orthotide order. Ideally, the orthoweights add some benefits with
respect to the simple weights of the response method, in particular they are independent from
each others, their magnitude decreases with increasing orthotide order (convergence) and their
values are unique (stability) (Alcock and Cartwright, 1978).

The complex orthotides (/"(t) are given by a convolution between the complex harmonic
coefficients ¢ (t) = anm(t) + 1bpm(t) of the TGP and the complex orthotide constants W/ =
Ul +1V;y (tabulated for each band by Groves and Reynolds, 1975) 7

Z W Cm (t + sA), (3.109)
s=—S

where the symbol * denoted the complex conjugate.

It must be noticed that the orthotides ("(¢) are nearly orthogonal functions if averaged over
a long time, in particular over at least 18.6 years, the period of the regression of the Moon’s
nodes. The reason for the orthotide basis to be only nearly orthonormal is that the fundamental
astronomical frequencies appearing in the forcing function ¢, (t) are incommensurable.

By substituting the equation (3.109) in ([B.I08) and thus multiplying the orthoweigths 2] for
the orthotide constants W), the total tide height can be written analogously to the response

(A 87
method as a convolution sum

C(¢\t) =Red Z A)Cnm (t + sAL), (3.110)

l,m s=—S

where, for identity, w7 (¢, \) = ¢g7*(4, A). For each tidal band m we can compute the spherical
harmonic analysis of the convolution weights w?*(¢,\) (Desai and Yuan, 2006) up to degree [
and order p (not necessarily equal to the degree | and order m of the TGP development)

ZZ D (s) cos(pA) + Efl(s) sin(pA)] (3.111)

(=0 p=0
- Pp(sin ¢), (3.112)

obtaining the complex fully-normalized spherical harmonic coefficients D{Z(s) and E’l’g(s). The
convolution between these harmonic coefficients and the tide-generating-potential coefficients
¢nm(t) produces the normalized harmonic coefficients Ag(t) and Bl’g(t) of the total ocean tide
height in each tidal band (Desai and Yuan, 2006)

< g% > = Re f_: ( g::gj; >Cnm(t—i—8At). (3.113)
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Finally, the temporal variations of the Stokes coefficients of the geopotential due to ocean
tides are given by the sum over contributions of each tidal band

< AC(t) > 5 AnGpw 1+ k] ( A1) > (3.114)

ASp,(t) g 2+1\ B

3.4 New algorithm to compute Groves and Reynolds orthotide
coefficients

The orthotide coefficients of Groves and Reynolds (1975) are only available in the form of a table
and no explicit algorithm was specified in the original paper. This contribution is an analysis
of the orthotide approach and provides an explicit algorithm for the computation of the Groves
and Reynolds basis functions.

A real orthotide (,(t) of order n and tidal species s (omitted for simplicity from now on) can

be expressed as
K

Galt) = D [Unnalt + kAt) + Vigb(t + kAL)], (3.115)
k=—K
where a(t+kAt) and b(t + kAt) are the real and imaginary parts of the tide-generating potential
coefficients of tidal species s and U, and V. are the orthotide coefficients. This equation,
together with the orthonormality constraints

<<n(t)<m(t)> = dnm, (3.116)

are the defining equations for the orthotides. The angle bracket operator () is the time average
operator.

The determination of the orthotide coefficients is based on the solution of a set of systems
of equations like (B.I16]). The strategy is reminiscent of the Gram-Schmidt process of orthonor-
malization of a set of functions.

The analysis carried out in Appendix [A] shows that the maximum lag index K is a free
parameter and its effective value is a function K, of the orthotide order n given by

K, =|(n+2)/4]. (3.117)
The Appendix [A] also shows that the number of non-zero orthotide coefficients at order n is
N, = LgJ 4, (3.118)

while the number of coefficients U, and the number of coefficients V,,; are given respectively by

”+6J, (3.119)

o= [
Ny =N, — Np. (3.120)

The orthotide coefficients are then obtained as the solution of systems of (n + 1) equations
the form

Kn  Km
Onm = Z Z [(UnUnni + Vot Vit ) Vr—1
k=K, l=—Kp
+ (VarUnmi — UnieVint) Xk—1) (3.121)

successively for n = 0,1, ....
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Moreover, as shown in Appendix [A], only even-order coefficients need be computed, and,

among other things, that the symmetry relations

Un,—k = (_1)nUn,k,
Vo,—k = —(—1)nVn7k.

hold. This implies that the orthotide (3I15]) can now be written as
Cn (t) = Unoa (t) + Vnob (t)

Ky

+ 3 Uni[a (t + kA) + (=1)" a (t — kA?)]
k=1

3 e k80— P ko).
k=1

If we now also restrict both n and m to be even, system ([B.I2I) takes the form

5nm = nOUmowO

Kn
+ Z 2Unmo (Unk¥r + VakXk)
=1
Kmn
+ Z 2Uno(Upitvr + Vimixa)
=1
Ky K
) 0 Uk Uit (-t + Prey)
=1 =1

+ 2V Vit (Vi1 — i1y)
+ 2Unk Vit (Xke41 — Xk—1)
+ 2Vak Ut (Xae41 + Xa—1)]-

(3.122)
(3.123)

(3.124)

(3.125)

These are the N, equations obtained for given n by letting m vary from 0 to n with step 2. In

this context we will refer to m as the secondary order.

We can further proceed to discard the coefficients Vg, that have been eliminated by the
analysis of Appendix B. Then the previous equation, restricted to m varying from 0 to n — 2

with step 2, writes as

Km
UnoUmoto + Z 2UnoUnuthn
=1
Ny, Ky
+ ) 2UnoVuxa + Y 2UmoUnikti
=1 k=1
Nv,
+ Z 2Umo Vak Xk
k=1
Kn Km
+ 302Uk Unut(Vr—t + Yres)
k=1 1=1
Nviy, Nvi,

+ Z Z 2V Vit (V-1 — i)

k=1 l=1

(3.126)
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K, Nv,,

)0 20Uk Vit (et — Xo—1)
=1 1=1
Nv,, K,

+ ) 2k Ut (Xt + Xi1) = 0,
k=1 1=1

where Ny, is the number of V' coefficients that can be determined for even orthotide order i. In
the particular case n = m, equation (B.I125]) simplifies instead to

Kn NVn
Upgtbo + Y 4AUnoUnitr + Y AUn0 Vi Xk
k=1 k=1
K Kn
+ Z Z 2UnkUpi (k-1 + k1)
k=1 =1
Nvi, Nv,
N Wk Vi (k1 — V) (3.127)
k=1 1=1
Kn Nvi,
+ 30 2 Via (k1 — Xk1)
k=1 1=1
Ny, K,
+ )Y 2ViUni(Xkess + xi1) = 1.
k=1 1=1

The algebraic system formed by the N, —1 = [n/2] equations (3.126]) and the single equation
(BI27) can now be solved to determine the orthotide coefficients at order n.

We proceed as follows. Rewrite Equation (8.126) by collecting each of the [n/2] orthotide
coefficients Uyo, Up1, Vai, Un2, Voo, -+, Unk,,, [VnKn] Then

Km Nvip,
Uno (Umolbo + > Wt + Y QVmIXl)
=1 =1

Km

+ Un1 <2Um01/11 + ) 2 (P11 + Y141)
=1

Nv,,
+ ) 2Vl — Xl—l))
=1
Nyp
+ Va1 (2Um0X1 + ) 2V (W1 — Y1)
=1
Ko
+ ) 2 (xa— + X1+l))
=1
Ko
o+ Una (20motbz + 3 20 (s + 1) (3.128)
=1
Nv,,
+ > 2WVu(xasi — X2—l)>
=1
_l’_

% Hereinafter, square brackets around a single quantity with index n indicate the empty set when the condition
n=4i—2, for i =1, 2,... is met, according to the termination rule established in the analysis of Appendix B.
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Kom
+ Unk (2Um01/1K + 3 2 (-1 + brc41)
=1
Nv,,
+ > 2WVou(xass — XK—l))
=1
Ny,
+ |:VnK (2UmoXK + > W (k1 — Yrcyi)
=1
K

+ > WX -1 + XKH))] =0.
=1

3.4.1 The computational algorithm

It is expedient at this point to introduce the auxiliary quantities A,,, By and C,,; for order m
defined as

K Nvim
A = Upotho + 32Ut + Y 2Viaxi, (3.129)
=1 =1

Km
Bk = 2Unmotk + Y 20Ut (b—t + Prs1)
=1
Num
+ Z 2V (Xk+1 — Xk—1)5 (3.130)
=1
Nvm
Crnk = 2Umoxk + >, 2Vt (Y-t — Vi)
=1
Km
+ ZQUml(kal + Xkt1) (3.131)
=1

so that the algebraic system (B.126]) takes the simple form

Kn Nvi,
AmUno + > BkUni + Y, Cone Ve = 0, (3.132)
k=1 k=1

for m = 0,2,...,n — 2. Referring to Appendix B, it can be deduced that the blocks A,, are
analytically zero except Ap, the blocks B, are analytically zero for k = 1,2...,|m/4] and
m > 2, the blocks C,, are analytically zero for k =1,2,..., [ (m — 1)/4] and m > 4.

At this point we consider U, as a parameter and each equation in (3.132) is solved for one of
the [n/2] orthotide coefficients according to the sequence Up1, Vi1, Un2, Vao, - .., Unk,,s [Vak, |-
This leads to writing the coefficients as

Uni = Un1 (Uno; Va1,Un2, Va2, ..., Unk,,, [Var,))) s

Vo1 = Va1 (Uno; Un2, Viz, Uns, ... Unk,,, [Vaka,])

Un2 = Un2 (Uno; Va2, Uns, Vi, - Unk,,, [Vak,l)) s

L= (3.133)
Un.k,—1 = Un kn—1 (Uno; Vi k=1, Unk, [Vak,,)) 5

Viikn—1 = Vo, —1 (Uno; Unk,, [Vak,.])

Un.k, = Un i, (Uno; [Var, ) »
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Vn,Kn = [Vn,Kn (Un )] .

The procedure that leads to this form calls for the expression of each coefficient of secondary
order m* to be immediately substituted into each subsequent occurrence of that coefficient in
the expressions of coefficients of higher secondary orders m > m*. This way the last expression
can only depend on the single parameter Uy,g. This leads to the general equations

Kn Nvy,
Unk = —=TiUno — Y PitUni — Y _ QitVais (3.134)
i=k+1 i=k
Kn Nvy,
Vok = =ZkUno = Y RpUni = > SikVai, (3.135)
i=k+1 i=k+1

where the functions T, Py, Qik, Zi, Rir, Sir contain the blocks A,,, Byk, Cmi with the order
m directly expressed as a function of the lag index k and are given recursively as

—Zg1

T}, = e , (3.136)
Ca(k—1),k—1 a Rk’kfl
Byk—1),i R
Crre — Ay k-1
P = g : i # 0, (3.137)
Ca(k—1),k—1 o Rk’kfl
Cyk—1),i S
Crurn — T Pik-1 )
Qit = By : i # 0, (3.138)
Cik—1),—1 Ry -1
Ty
Zy, = = , (3.139)
Baak—1),k Qe
Boar—1),i 2
Boor_1) e Ik .
R = c;(f:,f)),: , i#0, (3.140)
Baak—1),k Qe
Co2k—1),i Q
Boon_1) e Xk .
S = c;f:,;)f: , i#0, (3.141)
Boak—1),k Qrk
except when k = 1, where the first three functions 77, P;; and (J;1 are
A
T =—, 3.142
By ( )
B
Py = Bz, i 0, (3.143)
Ch:
Qi1 = BSi i 0. (3.144)

Note that ([B.I34) and (3I35) must be interpreted as providing the ordered list (B.I33)), i.e., the
two equations are to be used severally in pairs. Also note that Equations (3.130)-(3.141]) define
the functions Ty, Pir, Qik, Zk, Rik, Sir in the form of one-step, mixed recurrence relations.

The system ([B.134]) and (B:I35) can be solved by back substitution from either U, x, or V,x, ,
as provided by the last equation, in terms of the parameter U,q. In fact, back substitution shows
that the parameter U,q is actually a scaling parameter, thus providing a solution for the scaled
coefficients
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Vok = Viuke/ Uno, (3.146)

for k=1,2,..., K,. The system then takes the form

Ny,
Unk = —Tk — Z PitUni = Qit Vi, (3.147)
i=k+1 i=k
Kn Ny,
Vik =—=Zk— Y RaUni— > SikVii, (3.148)
i=k+1 i=k+1

for k =1,2,..., K, and can be solved by back substitution from the last equation (Whlch provides
the last of e1ther UnKn or VnKn) thus providing [VnKn] UnKn, Vn,Kn 1, ..., for the ordered
sequence k = K,,, K, — 1,...,1 of the lag index.

Now substitute these quantities in Equation (8.127]), which can then be used to solve for the

parameter U, as
1
Upo = TR (3.149)
n

where the radicand R, is given by

Ny,
Ry, = 1o + Z AUy, + Z AV, Xk
wn
+ Z Z 2UntUnt(Yk—1 + Prt1)
k=1 =1
Nvi, Nvs,
+ Z Z 2V Vo (k-1 — Yretr) (3.150)
k=1 I=1
Kn Nv
+) > 20V (et — Xr—t)
k=1 I=1
Nv,, K, o
N 2k U (Xt + Xkt)-
k=1 =1

In the final step, Equations (3.145]) and (B.I146]) are used to determine the remaining coeffi-
cients Upg and Vi, for k=1,2, ..., K,,.

3.4.2 Example - Orthotide coefficients of order 8

It is useful to clarify the computational procedure developed in the previous section through an
example. Consider the case of order n = 8. In this case Equation (3.I32]), for m = 0,2,4,6 and
Kg = 2, can be used to generate a sequence of the type described by (BI33]) according to the
associated procedure. This leads to the expressions
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which exhibit a high degree of redundancy due to the presence of repeated blocks at successive
lag indices. In fact, simpler expressions can be found either through the introduction of the

auxiliary quantities (3I37)-(3I4I), or more directly from Equations (3.I34]) and (3.I35) as

Us1 = —T1Usp — Q11Vs1 — Po1Usa — Q21 Va2,
Va1 = —Z1Usp — R2a1Usa — S21Vs2,
Use = —ToUsp — Q22Vs2, (3.152)
Vs = —Z2Usp.
At this point we can solve this system parametrically in terms of Ugy by back substitution to
yield
Ust = —T1 — Qu1Vs1 — PorUsy — Qo1 Vaa,
Va1 = —Z1 — RonUss — So1Vio,
Usy = —Ts — QaaVko, (3.153)
Vao = — 2o,
which can also be directly obtained from (3.147) and (B.148). We can then substitute into
Equation (ZI50) to get
Rg = g + 4Us1¥1 + 4Usathz + 4Vs1x1 + 4Vaox2
+ 2081 (o + 2) + 205 (o + 1)
+ 2V (0 — ¥2) + 2Via (o — ¢u)
+ AUs1 Usa (1 + ¥3) + 4Vi1 Voo (¥ — 3) (3.154)
+ 4Us1 Vao (x3 + x1) + 4Us2 Va1 (x3 — x1)
+ 4Us1 Va1 x2 + 4Us2 Vaz xa.-

Now the first coefficient Ugg can be computed from ([3.149) as Ugy = 1/+/ Rs. Finally the remaining
four coefficients are computed from Equations (3.145) and (B.146]) as

Us1 = Us1Uso,
Va1 = Va1Uso,
Uss = Us2Uso, (3.155)

Vaa = ViaUso.
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3.4.3 Orthotide coefficients to order 50

The algorithm developed to recompute the orthotide coefficients U,,;, and V,,; has been imple-
mented adopting a double precision for the floating point variables. Moreover, an orthonormality
test has been performed to verify to which tolerance o, m the equations ([B.126) and (B127) are
satisfied up to a maximum orthotide order N, = 50, using the orthotide coefficients determined
with our algorithm.

Orthotide order n
Logm(cnm) —- Diurnal Band

|
LN
N

1 1 1 -14

I
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Orthotide order m

Figure 3.10. Logarithm of the error in the orthonormality test for products of diurnal even-order orthotides up
to order 50.

-7

-11

Orthotide order n
9,,(0,,,) ~— Semidiurnal Band

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Orthotide order m

Figure 3.11. Logarithm of the error in the orthonormality test for products of semidiurnal even-order orthotides
up to order 50.

First of all, the mean displaced products of the TGP coefficients have been recomputed adopt-
ing KSMO03 tidal potential catalogue [69, Kudryavtsev, 2004], giving 28806 tidal constituents in
HWO95 normalization [?, Hartmann and Wenzel, 1995|. For this application, constituents with
maximum degree p = 3 have been considered, among which 10885 are diurnal and 9539 are
semidiurnal. The numerical results obtained from the computation of the mean displaced prod-
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ucts are shown for the diurnal and semidiurnal bands in Table 1, with values in m? and rounded
at the seventh significant digit.

Table 3.2. Diurnal and semidiurnal mean displaced products.

Diurnal Semidiurnal

Lag v, Xk U Xk

k. (m™h (m~) (m~) (m~)

0 0.1143485 0.0 0.2549553 0.0

1 0.1000269 -0.0267225  0.1807835 -0.1578598
2 0.0684872 -0.0311245 0.0139112  -0.2016354
3 0.0440198 -0.0091358 -0.1247702 -0.1048520
4 0.0438973 0.0232898  -0.1424478 0.0591261
5 0.0664914 0.0439981 -0.0345233  0.1783954
6 0.0945965 0.0406043  0.1231929  0.1785351
7 0.1082929 0.0176238  0.2287174  0.0634547
8 0.0978427 -0.0075126  0.2152325 -0.0923551
9 0.0697434 -0.0158238  0.0895000 -0.1886711
10 0.0429890 0.0007363 -0.0694914 -0.1592872
11 0.0368182 0.0327858  -0.1550701 -0.0174592
12 0.0564748 0.0585157  -0.1028699  0.1438360
13 0.0873914 0.0592547  0.0567200  0.2096154
14 0.1049500 0.0350730  0.2109848  0.1284920
15 0.0943468 0.0061111  0.2470939 -0.0418996
16 0.0632173 -0.0037733  0.1408460 -0.1773707
17 0.0347388 0.0134425 -0.0276157 -0.1843071
18 0.0284198 0.0449687 -0.1407011 -0.0651586
19 0.0463054 0.0688428 -0.1275794  0.0944714
20 0.0736908 0.0700231 -0.0029755  0.1903551
21 0.0903473 0.0494317  0.1507509  0.1635363
22 0.0836233 0.0224461  0.2353162  0.0314921
23 0.0565167 0.0090283  0.1940042 -0.1222688
24 0.0264741 0.0205810  0.0489067 -0.1958639
25 0.0142857 0.0510131  -0.1058212 -0.1342977
26 0.0287465 0.0793608 -0.1615129  0.0263523
27 0.0583619 0.0847097 -0.0735905  0.1749326
28 0.0788603 0.0632730  0.0980785  0.2029581
29 0.0725655 0.0325462  0.2292370  0.0892456
30 0.0431072 0.0171712  0.2266357 -0.0821998
31 0.0117786 0.0288222  0.0975010 -0.1894437
32 -0.0002620 0.0582372 -0.0640035 -0.1636997
33 0.0126984 0.0842585 -0.1504563 -0.0295939
34 0.0388940 0.0896280 -0.1102381  0.1220352
35 0.0583872 0.0717034  0.0279525  0.1946226
36 0.0559964 0.0433609  0.1760089  0.1414443
37 0.0310607 0.0249056  0.2372744 -0.0065104
38 -0.0011210 0.0307941  0.1661635 -0.1541010
39 -0.0187223 0.0584787  0.0046657 -0.1988349
40 -0.0094706 0.0883754 -0.1370553 -0.1036557
41 0.0185199 0.0978098  -0.1559570  0.0681095
42 0.0418485 0.0793484 -0.0358008 0.1933618
43 0.0404604 0.0475282  0.1366140  0.1816770
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Table 3.2 — Continued from previous page

Diurnal Semidiurnal
Lag v, Xk U Xk
k. (m™h (m~") (m~) (m~)
44 0.0139775 0.0270259  0.2376658  0.0443857
45 -0.0188116 0.0326615  0.2003948 -0.1182421
46 -0.0357635 0.0589241  0.0573575 -0.1957011
47 -0.0276524 0.0861275 -0.0923376 -0.1423031
48 -0.0029309 0.0953453 -0.1528841 0.0021151
49 0.0193326 0.0804811 -0.0876962  0.1440920
50 0.0218727 0.0515142  0.0625617  0.1925220

The orthotide coefficients recomputed with our algorithm up to order n = 50 are listed
in Table ?? for both diurnal and semidiurnal band, with numerical values up to the seventh
significant digit in m™1.

Figure BI0 and Figure B.I1] illustrate the logarithm of the errors obtained in testing the
orthonormality relation &,,, for products of even-order orthotides up to order 50. It can be
noticed that the orthonormality conditions are satisfied with a precision > 10~ for the diurnal
band and > 1078 for the semidiurnal band up to orthotide order 24. Errors increase with
the increase of the order n, because the orthotide coefficients of a specified order depend on the

coefficients of the previous orders and so the numerical errors accumulate during the computation.

3.5 Global ocean tide models

Global ocean tide models are fundamental for many scientific disciplines. In particular, tides
are considered as a noise or a correction to be removed from satellite gravity records and from
the sea level observed by altimeters in order to study other oceanic phenomena such as ocean
currents, wind driven water, water exchanges, etc. On the other hand, ocean tides represent
a signal for applications concerning the evaluation of gravitational perturbations acting on an
Earth orbiting satellite, for the accurate computation of ocean tide loading deformation and
station displacements and to study the braking of the Earth’s rotation by tidal dissipation into
the oceans.

In general, it is possible to classify the global ocean tide models into three categories ??Kantha,
2000|Kantha:

e models based on the analysis of altimetric data to extract various tidal signals,
e purely hydrodynamic models computed without any data assimilation,

e dynamical models with assimilation from observed tidal data (altimeter and coastal and
pelagic tide gauges).

In Table B3] the main global ocean tide models are reported according to the previous clas-
sification, with their angular resolution.

A global ocean tide model can be compared with data from the global network of tide gauges
at fixed stations, offering the only source of historical, precise, long-term accurate records of the
ocean tide height. Major conclusions from tide gauge data have been that global sea level has
risen approximately 10-25 cm during the past century.
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Table 3.3. Classification of the main global ocean tide models and their angular resolution.

General Ocean Tide Angular

Category Model Resolution
CSR3.0 (Eanes and Bettadpur, 1995) 0.5°%0.5°

Analysis of altimetric data CSR4.0 (Eanes and Bettadpur, 1999) 0.5°x0.5°
GOTO00 (Ray, 2000) 0.5°x0.5°

Purely hydrodynamic

Dynamical with data assimilation

GOT4.7 (Ray, 2000)
DTU10 (Cheng and Andersen, 2010)
EOT11a (Bosch and Savcenko, 2011)

OSU12

FES95.2 (Le Provost et al., 1994)

ORI96 (Matsumoto et al., 1995)
NAO99 (Matsumoto et al., 2000)
SCWS0 (Schwiderski, 1980)

TPXO06 (Egbert and Erofeeva, 2002)

TPXO7.2

FES2004 (Lyard et al., 2006)

FES2012

0.125°x0.25°

0.5°x0.5°

0.5°x0.5°
0.5°x0.5°
1°x1°
0.25°x0.25°
0.25°x0.25°
0.125°x0.25°
0.125°%0.25°
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Chapter

Processing strategies of GOCE orbital data
for ocean tide parameter estimation

Due to its 250 km altitude, GOCE is the most sensitive satellite to ocean tide perturbations
and represents a test-bed for the application of classical orbit perturbation analysis methods
to recover tidal parameters. Among the several processing strategies that can be adopted, the
fundamental one is the direct numerical fully-dynamic approach, consisting in performing the
fully-dynamic precise orbit determination of GOCE, accumulating the normal equations for each
orbital arc and estimating the global ocean tide parameters through a multiarc solution.

The ESA’s NAPEOS S/W system has been identified as the tool to perform this type of
analysis, providing orbit determination/prediction and parameter estimation capabilities. How-
ever, it was necessary to upgrade the system with the implementation of the partial derivatives
allowing for the ocean tide coefficient estimation process. As an alternative, a first-order ap-
proach is considered, consisting in determining the corrections to the tidal parameters of the
reference model used through a least-square differential correction of the GPS phase observation
residuals. The partial derivatives with respect to the ocean tide parameters according to the two
main parameterizations are finally developed and reported.

4.1 The estimation problem

If at some time t( the satellite state vector X is known (Xg) and the forces acting on the satellite
are known, then the satellite equations of motion can be integrated to determine the state vector
of the satellite at any future time. However, the initial state vector in never known exactly.
Moreover, certain force models require physical parameters that are known only approximately,
for example the satellite drag coefficient in aerodynamical forces, or the coefficients of the spher-
ical harmonic expansion representation of the terrestrial gravity field. This is also the case with
geophysical parameters that affect indirectly the equations of motion (like earth rotation and
polar motion). Consequently, to determine the position of the satellite at a future time it is
necessary that observations of the satellite are taken and used to obtain a better estimate of the
satellite trajectory. The observational data, which will be subject to both systematic and ran-
dom errors, will usually consist of measurements such as range, range-rate (Doppler), azimuth,
elevation or some other observable quantity. These measurements have to be corrected with
models which are imperfect (e.g. tropospheric correction) and are usually taken from stations
whose earth-fixed coordinates are not exactly known.

The problem of determining the best estimate of the satellite state vector (and optionally
other parameters and geophysical and geodetic quantities) is referred to as statistical orbit de-
termination. Sometimes the main interest is focused on the estimation of the geophysical and

29
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geodetic quantities themselves: this field is called space geodesy. Another variation of the prob-
lem is simulation and covariance analysis in which orbit determination strategies for a future
mission are studied in terms of coverage, accuracy requirements and weighting of tracking data,
orbit determination accuracy expectation, optimal arc-length, etc.

The problem can be generalized as follows: given an initial state vector at time ¢y and the
initial values of parameters to be estimated (not necessarily at ty), together with their a-priori
covariance matrix, and given a set of real or simulated observations (not necessarily after tg)
also with their initial covariance matrix, find the "best" estimate of the state vector at a future
time and of the rest of the parameters, together with an a-posteriori parameter and observation
covariance matrix. So, in matrix notation the a-priori values are

o
Yo
ZO 2
. 011 012 ... O1n
Xo=| % |, Po=]| . o . (4.1)
ZO . . . .
%1 Onl Onp2 ... 0'72m
L Ok
r 2
Y1 09 0 ... 0
2
Y2 0 o3 ... O
Yo = : ) QO = : : . : ) (42)
| Ym 0 0 ... o2

Xp being the matrix of estimated parameters or extended initial state vector (n is the total
number of estimated parameters). Pg is the a-priori covariance matrix of the parameters in
Xo. O'Z-ZZ- is the a-priori variance of parameter 4, o;; is the a-priori covariance of parameters i and
j, which is an indicator of their correlation or interdependence. For a mathematical definition
of these statistical concepts see RD-12. Y is the matrix containing the observations (m is the
total number of observations, m > n) and Qg is the observation a-priori covariance matrix. We
will assume here that the observations are a-priori not correlated, i.e. matrix Qg is diagonal,
this is not necessarily true, but it is in general not easy to find an a-priori estimation of the
observation covariance. Let’s call X (t) the best estimate of the extended state vector at time
t, which is what we are trying to solve. By far the most widely-used criterion to obtain in
practice the “best” estimate or solution is to minimize the sum of the square of the weighted
residual observation errors, that is, the square of the difference between the observation and
the expected value computed from an observation model (computed observation), multiplied
by a factor (weight) according to the observation importance and expected accuracy. These
methods are called least-square estimators, see RD-9, RD-20, RD-21, RD-25, and RD-29. In
practice, observations are computed by evaluating the satellite state vector at the observation
time and finding a geometric/kinematic relationship between the satellite position/velocity and
the magnitude which is observed. We can then assume that the computed observations are a
function of X(t), and define the residual observation vector as

y1— f1 (X (tl))

Y2 — f2 (X (tz)) (4.3)

| Ym — fm (X (tm))
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The quantity to be minimized (i.e. the sum of the square of the weighted residual observation
errors) is called the loss function and can be expressed as

J=e"'Qyle, (4.4)

Q, ! being the weight matriz. The weight matrix is necessary not only to give more importance
to the most accurate observations but also to avoid adding magnitudes of different units (e.g.
ranges and velocities). If the measurements are uncorrelated then Qg lis diagonal

o2 0 0
B 0 02_2 ... 0
Qo = : : . : (4.5)
0 0 om?

The loss function described in Equation [£4] can be modified to account for the uncertainties
of the a-priori values of the estimated parameters (see RD-26). This leads to the definition

J=e"Qyle + Vv, (4.6)

where U uses in some way (see below) information on the covariance of X. The problem is then to
find the X which minimize J. There are two major classes of least-squares estimators: batch and
sequential (see RD-9, RD-20, RD-25, and RD-30). A batch estimator updates the extended state
vector Xgo (and optionally Py and Q) iteratively after a high enough number of observations
(which define the estimation arc) has been collected after the epoch ty. Once the process has
converged to a best estimate of X, XO, the satellite state vector can be propagated to any
future time using as initial values the ones from Xo. In a sequential estimator the observations
are processed as soon as they are received, and the extended state vector X and its covariance
matrix P are propagated/updated with every new observation or small set of observations. The
main application of these estimators is the operational real-time orbit determination. Batch
methods is described in the following Section.

4.2 Batch estimation

The objective is to find a best estimate of Xg, (and optionally of Pg and Qg). We have seen that
the computed observations can be expressed as a geometric/kinematic function of the satellite
state vector at the time of the observation. Aslong as the satellite state vector can be propagated
to any time from the initial state vector, the computed observations are a function of the time.
The residual observation matrix can then be written as

y1— f1 (Xo,h)
. <Xo) | v fo :(Xo,b) (47)

Ym — fm (XOatm>

Let’s define in this case the loss function in Equation as:
J(X0) = €7Qg'e + XFP;Xo, (4.8)

where

AXy = Xo — Xo. (4.9)
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An XO has to be found which minimizes the loss function J <X0). This is achieved by differ-

entiating Equation 8] with respect to the estimated parameters X, and setting the resulting
expression to zero. The problem has to be linearized in order to be solved. Let’s assume that the
difference between X and Xo (AXy) is small (i.e. the initial values of the estimated parameters
are a good enough approximation of the optimal ones). Then the computed observations can be
expressed as their first order Taylor expansion around Xg.

fi (Xo,ti) fi (Xo, t; Z gg; ( > . (4.10)

where the betas are all the estimated parameters, i.e. the elements of the Xg vector. The
residuals can be expressed then as

— f1 (Xo, t1)

e (%o) = yQ_fz:(XO’tQ) —F (Xo—Xo). (4.11)

- fm (XO, tm)

F' is the matriz of observation equation coefficients, which contains the partial derivatives of the
computed observations with respect to the estimated parameters

of 0fi Ofi Ofi Ofi Ofi 9N of1
0z Yo 0z0 0T Yo 020 dap Tt dayg
Of2 0fz 9fr Ofp 9fz Ofz Ofe df2
F— Oxg Yo 0z0 Oxg Yo BEN) Oa T day, ) (412)
Ofm  Ofm Ofm Ofm Ofm Ofm Ofm Ofm
L Oxo Yo 0z0 0T Yo 020 dap Tt dag |

Substituting Equation EI1 in Equation E8 and differentiating with respect to X leads to the
following iterative algorithm (called normal equations)

X5 = X5+ Py +FTQp'F) ! (AYF + Pyl (X - b)) (4.13)

X’g is the estimation on iteration k (equal to X on the first iteration), AY* is the observation
residual matrix calculated propagating X’g

- fi <X§,t1)
Y2 — f2 <Xk,t2)
AYF = 0 . (4.14)
| - fm <X][<):7 tm) |
The matrix
N=P,! +FIQ,'F (4.15)

is called the normal matrix. It can be shown that the inverse of the normal matrix N is the
best estimation of the covariance matrix of the estimated parameters, that is

Py=N"'=(P;' +F'Q;'F) . (4.16)
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4.3 Fully-dynamic approach: multiarc solution

To estimate ocean tide parameters assuring a clear separation of periodic effects, it necessary
to process a long time period of data, so it is not possible to execute a single run of orbit
determination. It is necessary to split the procedure into multiple similar procedures, also thanks
to the linearity of the system of equations. In the multi-arc technique, the dynamical set of
parameters is separated into two classes: arc-dependent parameters, which are constant along
the duration of the single arc (such as the satellite state vector at the epoch or the orbital
elements the epoch); arc-independent parameters, which are global constants along all the arcs
(such as geodetic parameters, in particular tidal parameters).
The linearized observation equation is

Y =AX +e (4.17)

where Y is vector containing observations residuals, X is the vector containing the corrections to
the complete state vector in order to nullify the discrepancy vector e. The least-square estimate
is

X = (ATWA) 'ATWY =Ns, (4.18)

where
N =ATWA, (4.19)
s=ATWY, (4.20)

This is the approach applied in a single arc solution with the orbital determination pro-
gram BAHN when an unconstrained solution is required. If however Equation 17 is taken to
represent the measurement equation of many single arc, a partitioning of the state vector into
arc-independent parameters X; and arc-dependent parameters

Xg = {X2,17 X272, . ,Xgm} (4.21)

implies a measurement matrix having the structure

A A12,1 0 .. 0
Ay 0 Aps ... 0
N _ (4.22)
i Anl O O P A127n ]

giving a (symmetric) normal matrix IN of the form

Ni1 Nig1 Npg ... Nigp
N1 Ny 0 ... 0
N = N2172 0 N2272 e 0 (4.23)
| Noip 0 0 oo Nogp |

This structure allows the solution to be written in the form of matrices of much smaller dimension.
The estimate of the arc-independent parameters is ??Kaula, 1966]Kaulal966

n
Xl == S1 — ZN127jN2_21,j527j s (424)
J=1



Chapter 4. Processing strategies of GOCE orbital data for ocean tide parameter
64 estimation

where E is defined as )

n
E=|Nu—» NNy No,| . (4.25)
j=1

The estimate of the arc-dependent parameters of the kth arc is
Xoy = Nz_gl,j (52,k - NZl,kX1> . (4.26)

The vector s in Equation [4.20] has been decomposed into

n
s1=> Ajn"W;Y;, (4.27)
j=1
sok = Arap! WiYy, (4.28)

where Y is the vector of measurements from the jth arc. It is supposed that the weighted
matrix W is selected such that W = diag {W1,..., W, }, where

W = D{Y}}. (4.29)
Here D {Y}} denotes the covariance of Yy, i.e. the expectation of YkYg

DY} = E{Y,Y[} = /YkYZ;p (Yy) dYy, (4.30)

where p(Y}) is the probability density function of Y. The joint covariance of two vectors
C{Yy,Y;} is defined in an analogous way. It is assumed that the measurements of each arc are
uncorrelated with those of any other arc. It follows that

n
D {Sl} = ZAleWjAjl = N11 (431)

j=1
C {52,052} = Au2,; W;A120;j = Nao ;6 (4.32)
C {517527]'} = AleWjAmJ = N127j (4.33)

where 0;; = 1 if i = j and §;; = 0 otherwise. From Equations {.24], E.31] and B33}, it can be seen
that the covariance of the arc-independent parameters is given by

D {Xl} —= (4.34)
Moreover, since from Equations 4.24] .27 and .28
G -1 T
C {SQ,k,Xl} = [N12,k - N12,kN227kN22,k] E =0, (4.35)
the covariance of the arc-dependent parameters of the kD arc is
D {Xoxp = NG + NG Ny BN, NG (4.36)

Finally, the joint covariance between the arc-independent parameters X; and the arc-dependent
parameters of the kth arc is

C {le X?,k} = _E‘Ngl7kN2_217k (437)

The FORTRAN program MULTIARC of NAPEOS has been modified to perform the cal-
culation outlined in the Equations from to and 34, £34] and [£37 for the solution and
covariance of a selectable set of arc-dependent parameters for what concerns the ocean tides.
In the following section the derivation of the partials computed for this implementation will be
shown.
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4.4 First-order approach: linear fit of GOCE GPS phase obser-
vation residuals

The GPS observables O (code pseudoranges, carrier phases, Doppler measurements) are generally
non-linear functions of the state vectors X! and X, respectively of the transmitter (onboard the
GPS satellite) and the receiver (onboard the LEO satellite), of kinematic parameters referring
to the measure model and, implicitly, of dynamic parameters affecting the LEO satellite motion
(Xu, 2003)

0= f(Xt, Xy 6tt, Oty ions Otros Otide > Orels Omuls N), (438)

where the kinematic parameters are indicated and, in particular, 6t and &t, are respectively
the clock errors of the transmitter and the receiver, &;,, and d;., represent the ionospheric and
tropospheric effects, d;4. represents Earth tide and loading tide effects, d,¢; denotes relativistic
effects, d,n,y denotes the multipath effects and IV is the ambiguity.

Only if the force models are described perfectly by their dynamic parameters P, at each
instant ¢;, the difference between the observations O; and the computed quantities C; will be zero,
but this will never happen in practice, because the observations have errors and the models are
inaccurate or incomplete, so that there will always be observation residuals AO; = O; — C; # 0.

If the observations AQ; are small, the non-linear problem can be approximated by a linear
one and the observation functional O; is expanded in a Taylor series up to the first order about

the computed value C;
oC;
O, =0C;+ B—PZAP, (4.39)
where each observation is designed by subscript .
We consider only GPS carrier phase observables ¢; because of their better resolution. The
GPS phase residuals generated by NAPEOS with the reference force model represent our obser-
vations

O AgTNAT — g, gOINAP, (4.40)

7

while the residuals generated by NAPEOS (or another software) with a different force model
represent the computed observations

Ci:  A¢Y =¢; —¢f. (4.41)
Following the relation ([@.39), we obtain our linearized observation equation

A

AgTNAPY — ApC + T8 AP (4.42)
! oP
that becomes o
O(p; — ¢
AGEINAP _ pge y 00— 97) ) ap, (4.43)
oP
where g‘%’ = 0, because the observables are constant. Finally, the linearized observation equation
is
BlNg
AgC = AgPNAP | %AP (4.44)

and can be solved for the parameters AP through a least-squares differential correction, in order
to obtain A¢{ = 0. The corrections are then added to the reference tidal parameters P to obtain
the first-order corrected parameters

P=P+AP. (4.45)

In equation ([L44]), the partial derivatives of the computed phases with respect to the param-
eters must be expressed according to the chain rule as (Sansd & Rummel, 1989)

0¢¢  9¢¢ 9X,
oP 09X, oP’

(4.46)
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where X, is the receiver state vector, because, in general, GPS observables do not depend

(&)
explicitly on the dynamic parameters. In particular, the partials gf& represent the geometric

part, while the partials ‘98)% represent the dynamic part.

The receiver state vector is defined by all the variables and the constant parameters describing
the temporal variation of the dynamic system

r
X, =| v (4.47)
P
and its derivative as
v
X, =| a , (4.48)
Ogx1

where P is a ¢-dimensional vector containing the dynamic parameters to be estimated, while r,
v and a are 3-dimensional vectors containing respectively position, velocity and acceleration of
the receiver in the inertial geocentric system, so that the total dimension of the receiver state
vector and of its derivative is d = 6 4+ ¢. In particular, the acceleration a is comprehensive of the
entire adopted force model and can be expressed as the sum of different contributions

a=a;p+a,+ay,+ag+ay+a;s+as+a,, (4.49)

where aj, is the keplerian acceleration, a, is the perturbing part of the geopotential, a; is the
third-body acceleration, a.; and a,; are terms due respectively to solid Earth tides and ocean
tides, a4 represents the atmospheric drag, a, is the solar radiation pressure acceleration and a,
is the Earth albedo pressure acceleration.

The partial derivatives 067 that are il and 097 are already implemented in NAPEOS

b X, ! or v y 1mp

and their numerical values can be printed on an output file.

On the other hand, the partials %}1{; are called variational partials and are obtained integrating
numerically the variational equations (Sanso & Rummel, 1989)

d (0X,\  0X, 0X,0X,  |0X, (4.50)
at\ oP ) 0P  0X, OP P |’ '
—_———
implicit explicit
which are within the numerical integration process of the state transition matrix ®(t, o)
with initial conditions
B (to,to) = L. (4.52)

The matrix A(t), with dimension d x d, contains the partial derivatives of the dynamic model
and is explicitly defined as

ov ov ov

) o  ov  oP 03x3 I3x3 034
A(t) = 0X, = da da da = A A A . (4.53)
0X, or ov P 21 22 23

0q><3 0q><3 Oq><q Oq><3 Oq><3 Oq><q
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The state transition matrix, having dimension d x d, is defined as

Or or Or
ox rg  9vo 9Pg ¢ P D3
= ro_— ov ov ov —
(I)(t7 tO) 8X0r oro Ovo 0Py 5% Doy (1323 (454)
oP 0P oP
o0 Ove 0Py 043 Ogx3  Igxq

where Xy, is the receiver initial state vector.
The system (€51]) is written explicitly as

Dy Dby Dy 03x3 I3zx3z O3xq D11 Pp Py3
Do; Doy Doz | = | A As Asz || Py Py Doy | (4.55)
Dy Dy Dy 0gx3 Ogx3 Ogxq Oyx3 Ogx3 Igxq

so the set of differential equations to be integrated is reduced to

b1y =By, (4.56)
D1y =By, (4.57)
D13 =By, (4.58)
Dy =Ag1 P11 + AgaPoy, (4.59)
Dy =Ap1 P12 + AzaPo, (4.60)
Bo3 =Ag1 B3 + AzaPos + Asg. (4.61)
In conclusion, to proceed with the integration of the equations from (£56)) to (£.61]) and then

solve the variational equations in ([50), allowing to calculate the phase partials in (£46]), it is
necessary to compute the three blocks of partial derivatives

Oa

Ay =50 (4.62)
Oa

Am =50, (4.63)
Oa

Ao =5p" (4.64)

Focusing on the computation of the phase partials with respect to the ocean tide parameters
P.:, only the term of the acceleration due to ocean tides is considered and the blocks become

aaot
Ag = 4.
=22, (4.65)
Agg =03x3, (4.66)
(9aot
= 4.67
23 8P0t7 ( )

where Ao = 033, because the ocean tide field is conservative and the tidal acceleration does
not depend on the velocity, so the set of differential equations to be integrated is simplified to

P11 =Dy, (4.68)
Pro =Doo, (4.69)
Prg =Dos, (4.70)
Doy =Ao 1 P1q, (4.71)
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Doy =A21 P, (4.72)
(i)23 :A21‘1)13 + A23. (473)

The ocean tide acceleration is the gradient of the ocean tide potential V,;
Aot = VVot, (474)

which must be expressed as function of the tidal parameters we want to estimate.

The following paragraphs concern the calculation of the gradient of the ocean tide potential
and of the partial derivatives corresponding to the blocks Ao and Ass. In particular, the partials
of the block Asg will be derived with respect to two types of tidal parameters: the orthoweights
and the harmonic coefficients.

4.5 Gradient of the ocean tide potential

The ocean tide potential is expressed in polar coordinates r, A, ¢, so its gradient is written
according to the chain rule as

Wi \ "
Aot :v%t(T,A,¢) = ( art>

_[0Ver0r 0V 09 Ve OM]"
| 9r Or 0¢ Or o\ Or

or\ T ov,, oo\"T oV, oM\ T v,
_<§) or +<5> 99 +<§) ox (4.75)

The partials of the potential with respect to the polar coordinates are given by

% = Ci—]?” SN+ (%)l [ACH(t) cos(pA) + ASy, () sin(pA)] Py(sing),  (4.76)

=0 p=0
oo
38—‘? =G7M > (%)l [AC,(t) cos(p)) + ASy(t) sin(p))] a% [Pyy(sin )]
=0 p=0
oo
=SS (%) [ACH (1) cos(pA) + Ay (1) sin(pA)] (4.77)
=0 p=0
. {—p tan Py, (sin ¢) + ]51p+1(sin )|, (4.78)
oo
aavf = 7{\4 D00 (%)l [—ACi(t) sin(pA) + ASy,(t) cos(pA)] Pip(sin ). (4.79)
=0 p=0

The partials of the polar coordinates with respect to the position vector are obtain defining
the Jacobian matrix of the transformation from polar coordinates to cartesian coordinates

or or  or Or
or ox Oy 0z
=] 9 | =| 2 98 9¢
F or dx Oy Oz ’ (4 8 0)
o oA O 9A
Oor ox Oy 0z

where the relations between the polar and the cartesian coordinates are

r = \/m

o= sin~! (%) (4.81)
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allowing to explicit the partials of r as

% z
T T
or\ T r
—_— = & = Y = —. .
(61') Oy r r (4.82)
or z
0z r

The partials of ¢ are

dp 0 . _ 0
o~ (5) = 1%()2@—;6 () - m (-730) - 7@ (-722) (s3)

a¢ 0 .1 (7 r Z 1 z
99 Ou )T = \"3Y) T =\ 73 4.84
8y 8y Sin (T> 1.2 +y2 ( Tgy) xQ +y2 < 7a2y>7 ( 8 )
00 0 iy v (r=zE\_ 1 i IR
=—sin = = 1 z) =+——", (4.85)
0z 0z r /22 + y2 r2 22 + yz r2 r2
that in compact form are
T T
1
@) e [(%) B %‘"] | (486)
r (% +y?) r r
Finally, the partials of X\ are
Ox 1+(y)2 Ox (x) 22 + 12 < x2> 22 + 42 (4.87)
O\ 1 d [y x? x x
Jy 1+(%)23y (.%') .%'2—|—y2 <x2) x2+y2’ ( 88)
o\
5, 4.
0z 0 (4.89)

and in compact form
' __ 1 [dy
or) 14+ (%)2 or
1 dy T (o T
“\or Y\ or ’

N
4.6 Partials with respect to the receiver position vector

—~

4.90)

To compute the partials with respect to the receiver position vector, we have to apply the chain
rule to the gradient of the potential, obtaining the following relation

o (V" _o [(or\Tov (oo ov (o ov
Or \ Or ~or |\ or or or foler or o\
Lo (or\Tav 9 (9s\Tov o (oA\T oV
- Or \Or or  Or \ Or d¢p  Or \ Or o\

(Y 20V (00T ooV (oo
Or ) Or Or or ) Or ¢ or ) Or O\’ '
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which can be rewrite in a simpler form as

a (av\T 9 [or\T oV o6 a oNT ov
a(a) “or <3_> E*&(&«) 2 " <a> o
Tro2vor 0%V 9¢ a?v O\
[ar2§+6ra¢§+arm§]

(@)
() 3535 * 5 * s o
(%)

960r or | 942 or | 040N or
[021/ or 02V 9¢ a?vm}

or 9 , OV OA 492
ONOrOr | ONDp Or | ON? Or (492)

Using the Jacobian matrix F and defining the matrix E

92V 92V 92V
or? orde  Oro

E= 22V %V 2%V 4.
¢ or 942 PO ’ (4.93)
9%V 9%V %V
OXOr  OXDP N2

equivalent to the Hessian matrix of the potential in polar coordinates, we can rewrite the equation
([A92) in compact notation as

o (ov\T o for\T oV d¢p o (oN\\Tov .,
a_<a_> —a—<a—> EJrar(ar) a¢+ (a) oy PEEF. (494)

The remaining partials that have to be computed are then

l
‘9 V _ oM ZZ [+1)(1+2) ( ) [AC,(t) cos(pA) + ASy,(t) sin(p))] Pp(sing), (4.95)

=0 p=0
21/ ! a _ _
5_ _ GM s <_> [AC(¢) cos(p) + AS,(t) sin(pA)] Py(sin ) , (4.96)
=0 p=0
02V X o . ik
W = 2 pz% < > [ACy,(t) cos(pX) + ASp,(t) sin(p))] 957 [Pyp(sin¢)]
[AC),(t) cos(pA) + ASy(t) sin(pA)] x
GM S~ fay! _ _
- Ty ZZ <;> { _@Plp(sm ¢) +p° t3“12¢Plp(sm ?) } (4.97)
1=0 p=0 _ _
’ —(2p+ 1) tan ¢ Ppi1(sin @) + Pipi2(sin @)
PV GM Sy A\t Aa S, (1)
T ; pz% (I+1) (;) [ACy,(t) cos(pX) + ASp,(t) sin(pA)] a¢ﬂp(s1n ®)
[e’¢) l S Q in
_ _G_]2\4 ZZ (+1) (g)l { [AC),(t) cos_(p)\) + ASlp_(t)s (pA)] x } (4.98)
(R ’ [—qtan ¢ Py, (sin¢) + Pipy1(sin ¢)]
o*V _ _ _
N Z Zp (I+1) ( ) [—AC,(t) sin pA + ASy,(t) cospA] Py(sing),  (4.99)

=0 p=0
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i i ( ) p [~ AC,(t) sin pA + ASy,(t) cos pA] x (4.100)
&ba)\ " 10 =0 [—ptan ¢ Py, (sin @) + Pjpi1(sing)]
while for the partials with respect to the coordinates we have
o (or\" d (r) 1 [or or
- - — - — e —7r —r—
or \ Or or \r r2 | Or Or
1 r\T
- A
r2 [ TG ]
1 T
~- - [I - %} , (4.101)
r r
T
1 1 0
2 <@> —— 7 [Iz + ra—z — 2—2rrT}
Or \ Or % (22 4 2) r
1 o\ T z ox oy
— | - — = 4.102
(22 + y2)%/2 [<8r> 7'2] [xar yar} ( )
o (ot 1 f(oy\Tox  (0x\" oy
or (22 4y or /) Oor or ) Or
T
2 0 6 0
- 9y x — —x ° +y %9 (4.103)
(2% 4+ y?) or or “or " Vor
The matrices, in explicit form are
or r  9%r 9Pr
T ox Ox2 Oydx 920z
2 @ = g o | = o%r  9%r  0%r (4.104)
Or \ Or or 9y Ox0y oy2 020y ’
or 9%r 9%r %r
Oz 0xdz  Oydz 0z2
99 29 P %%
T or Ox2 Oydx 020z
O (00N _ 0| a5 || 20 0 % (4.105)
Or \ Or or | 9y 9zdy  9y?  0z0y |’
9% 9%¢ 9%¢ o)
0z O0xdz  Oydz 022
i) 92X 92N 92
T oz Oz2 Oydxr 020z
2 Q = 2 o | = (o LD SO LD NG oD (4.106)
JOr \ Or or | 9y dxdy  9y? 920y |’
o2 3%\ 3%\ 92X
Oz 0x0z  Oydz 0z2
and the partials are
2 2 2 1 2 2 1 2
o _ 1Ty o _1( vy O L (122 w107
Ox? r2 oy r r2 022 r r2
0%r _ 0%r _ oy r :ﬁ:_% 0%r _ 0%r :—%(4108)
Oxdy Oyox r3’ 020y  Oyoz r3’ 020x  0x0z r3
2 1 1 2
Oz % | (22 +4?) r (22 + 32)
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9?¢ 1 1 Z o zy?
Ao A | S Y oy [ — — (4.110)
8y2 7».2 (1_2 +y2)1/2 < 742 ) (1.2 +y2)3/2
2 2
¢ _ ¢ N — - 1 | (4.111)
Jxdy  Oyox 2|12 (22 4 2) (22 + y2)
2 3
0o 11 (5 o2, (4.112)
82,2 7a2 (LEQ + y2)1/2 7a2
0%¢ 0%¢ 1 x 22
0rdz  0z0x _r_(x2 +y2)l/2 <1 B 2r_2> ’ (4.113)
0% 0% 1 Y 22
-1 -2— 4.114
Oydz  0z20y 12 (22 4 )12 < 7"2> ’ ( )
(o 2 [ 2
PN A 411
(LD NG 1 2 )
= = — 4.11
Oxdy  Oydx 22 + 32 + (22 + y2)2y ’ (4.116)
2 2 2 2 2
Q:aA:aA:aA:aAZO. (4.117)
022 020y 0Oydz Oxdz  020x
4.7 Partials with respect to the tidal parameters
Applying the chain rule we have
T T T T
0 (Vu\"_ 0 [(or\" 0V (06N OVu _(OA\" OV ws)
OP, \ Or OP or or or 0 or o\
T 21/ T 21/ T 92
— @ 07V, ot + 8¢ 07V, ot + @ 0 Vot ] (4119)
or OP,:Or or OP ,+0¢ or OP O\
The remaining partials that have to be computed are then
82V, GM a\! [OAC,(t) OAS(t) o
oP.0r 12 ;I;) (1+1) (;) [Tgt cos(p\) + P, sm(p)\)] Py (sin @),
(4.120)
0V  GM S~ fan! [OAC(t) OAS,(t) 0
9P,00  r lzgpzo <;> [aTot cos(pA) + Tot sm(p)\)] agb [Plp(sm qﬁ)] (4.121)
GM IAC,(t) OAS(t) .
.2 < > [aTt cos(pA) + P, sin(pA) (4.122)
: [—Ptan ¢Pyy(sin @) + Pipy1(sing)] (4.123)

PV GM &
6Pot6)\ B T

l — —
a\! [ OAC,(t) | OAS,(t)
p (T’) |:_ 8Pot bln(p)\) + a]-:)ot

IAC(1) 4 IAS, (1)

cos(pA>] Biy(sin 6).

(4.124)

The last partials that have to be computed are 5P~ an 5P, which depend on the

adopted ocean tide parameterization.
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4.7.1 Partials with respect to the orthoweights

Using the orthotide parameterization, the vector of tidal parameters is defined as

P, = ( ul(p, N) v (¢, N) ) (4.125)

where u]"(¢, ) and v" (4, A) are the orthoweights at order ¢ and tidal band m, so we have to
compute

8Aélp(t) _( 9AC,(t) OAC(t)
e ( iy s ) , (4.126)
OASL(t) [ ans, ) oA,
e = ( = = ) . (4.127)

The partials of the Stokes coefficient variations due to ocean tides with respect to the or-
thoweights at a specified order ¢ and band m are

OAC,(t) _4nGpy 1+ kl
A m A 4.12
oo g 21 ZZ;ZS tatm{t SR F Visbam(t +080), - (4128
AC),(t 4 1+ k|
08C(1) _4nCGpu L+ ki, ZZ Z Vi (t + SAL) + U (t + sAL)],  (4.129)

oM, \) g 2+1

n=2 m s=—=S

OAS,(t) _4nGpy 1+ k:l
A m A 4.1
G g 2Tl ZZ;ZS Tt + SA8) + Vbt + 5AD],  (4.130)

ZZ Z VS anm (t + sAt) + Ubum (t + sAt)]. (4.131)

n=2 m s=-—S5

OAS,(t) _4nGpy 1+ k:l
oV (p, ) g 20+1

4.7.2 Partials with respect to the harmonic coefficients

Using the harmonic parameterization, the vector of tidal parameters is
— ~k+ A~Ak—  gk+  gk—
Py = ( Crr CE SEY S ) (4.132)

where the harmonic coefficients C};‘L, Cll; ,Sll;;“, Sk are defined for a tidal frequency k, so we
have to compute

OACI(t) [ anCL(t) 9AC,(E) OACL(E) OAC(H) (4.133)
P, aC)t aCy” oSKT EEhe ’ )
OASI(t) [ 0AS,(1) AS,L(E)  OASL(E)  OASL() (4.134)
P, aé};f aé};— aSl‘;* BS};— ’ )

The partials of the Stokes coefficient variations due to ocean tides with respect to the har-
monic coefficients at a specified tidal frequency k are

OAC,(t)
——= . =Fj, cos Ok(t), (4.135)
oCys*
AC(t
aagiip() =Fj, cos O(t), (4.136)
lp
9ACH (1) =}, sin Ok (t), (4.137)

aS};f
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AC,(t

a?ill(p_() =F}, sin Ok (t), (4.138)

OAS,(t) .

ﬁ = — [}, sin Ok (1), (4.139)

OAS(t) .

# =F}, sin O (1), (4.140)

OAS;,(1)

ﬁ =F}, cos Ok (1), (4.141)
AS,(t

925 (t) = — [}, cos O (t). (4.142)

0S)”



Chapter

Sensitivity study of GOCE orbit to ocean
tide perturbations

In this Chapter, a sensitivity study of ocean tide perturbations on GOCE orbit is presented.
First of all, the effect of various combinations of ocean tide constituents on GOCE orbit was
evaluated over different time intervals and ocean tides accelerations acting on GOCE orbit were
determined using different existent ocean tide models. Then, a preliminary work was carried
out to study the evolution of GOCE orbital elements along the precise estimated orbits covering
the period of available data (1 November 2009 - 31 May 2011) and the secular rates of the
GOCE angular elements (argument of perigee, longitude of ascending node, mean anomaly)
were estimated through a linear least-square fit. Finally, the analytical spectral analysis of the
ocean tide perturbations affecting GOCE orbit is presented using Kaula’s linear satellite theory,
which is necessary to define the set of ocean tide harmonic parameters to which GOCE is more
sensitive, which will be estimated through a multiarc solution subsequent to the GOCE fully
dynamic POD and accumulation of normal equations.

5.1 Evaluation of ocean tide effects on GOCE orbit

The effect of various combinations of ocean tide constituents on GOCE orbit was evaluated over
1 year, computing the difference between two orbits propagated with different force models.
The initial state vector of GOCE was taken from the GOCE PSO of November 1, 2009 and
two orbits were propagated: the first orbit was propagated with a force model comprehensive
of the static gravity field (EIGEN-6C, 120x120) and the ocean tide field (FES2004, 50x50, for
specified constituents); the second orbit was propagated with a force model including only the
static gravity field (EIGEN-6C, 120x120).

The initial satellite state vector for the one-year forward propagation is taken from the GOCE
official kinematic PSO solution of the 1 November 2009 at 00:00:00, while the initial satellite
state vector for the 19-year backward propagation is taken from the GOCE official kinematic
PSO solution of the 20 May 2011 at 00:00:00 ([8] Bock at al., 2011).

The results obtained for the different combinations of tidal constituents over 1 year are as
follows:

e 106 constituents of the ocean tide field FES2004, 50x50, show a total position perturbation
reaching a maximum of about 3000 m (see Figure (.1));

e 8 main constituents O1, P1, K1, Q1, N2, M2, K2, 52 of the ocean tide field FES2004,
50x50, show a total effect of about 3000 m (see Figure 0.2));

6]
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e 6 main constituents O1, P1, Q1, N2, M2, K2 of the ocean tide field FES2004, 50x50 (the
two resonant constituents K1 and S2 have been discarded), show a total effect of about
400 m (see Figure [5.3);

e 103 constituents of the ocean tide field FES2004, 50x50 (the three resonant constituents
K1, S1 and S2 have been discarded), show a total effect of about 600 m (see Figure [5.4)),

e the main constituent M2 of the ocean tide field FES2004, 50x50, shows a total effect of
about 600 m (see Figure [5.5]).

In addition, the two orbits were propagated backward over 19 years to cover the longest tidal
period of 18.6 years regarding the lunar node regression due to the Sun perturbation. The first
orbit includes 106 constituents of the ocean tide field (FES2004, 50x50). The difference between
the orbits was computed and plotted in the RTN reference frame (see Figure [0.0]), showing a
maximum perturbation of about 140 km.

Difference Propagated Orbits: GF120x120 + OT50x50 (106 constituents, FES2004) vs GF120x120 —- 1 year, RTN frame
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Figure 5.1. Difference between two GOCE orbits, one propagated with the gravity field and ocean tide field
(106 constituents) and the other one propagated with only the gravity field over a period of 1 year. The maximum
effect is about 3000 m.

Difference Propagated Orbits: GF120x120 + OT50x50 (8 main constituents, FES2004) vs GF120x120 —- 1 year, RTN frame
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Figure 5.2. Difference between two GOCE orbits, one propagated with the gravity field and ocean tide field
(8 main constituents) and the other one propagated with only the gravity field over a period of 1 year. The
maximum effect is about 3000 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (6 constituents, excluded K1,S2, FES2004) vs GF120x120 -~ 1 year, RN frame
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Figure 5.3. Difference between two GOCE orbits, one propagated with the gravity field and ocean tide field (6
main constituents, the resonant K1 and S2 are excluded) and the other one propagated with only the gravity
field over a period of 1 year. The maximum effect is about 400 m.

Difference Propagated Orbits: GF120x120 + OT50x50 (106 constituents, excluded K1, S2, S1, FES2004) vs GF120x120 —- 1 year, RTN frame
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Figure 5.4. Difference between two GOCE orbits, one propagated with the gravity field and ocean tide field
(103 constituents, the resonant K1, S1 and S2 are excluded) and the other one propagated with only the gravity
field over a period of 1 year. The maximum effect is about 600 m.
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Difference Propagated Orbits: GF120x120 + OT50x50 (M2 constituent, FES2004) vs GF120x120 -~ 1 year, RN frame
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Figure 5.5. Difference between two GOCE orbits, one propagated with the gravity field and ocean tide field
(only M2 constituent) and the other one propagated with only the gravity field over a period of 1 year. The

maximum effect is about 600 m.

Difference Propagated Orbits: GF120x120 + OT50x50 (106 constituents, FES2004) vs GF120x120 -~ 19 years, RTN frame
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Figure 5.6. Difference between two GOCE orbits, one propagated with the gravity field and ocean tide field (106

constituents) and the other one
effect is about 140 km.

propagated with only the gravity field over a period of 19 years. The maximum
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The effect of ocean tides on the GOCE orbit was also evaluated over different time intervals
by fitting an orbit propagated with the static gravity field EIGEN-6C 120x120 ([50] Forste et al.,
2011) and the ocean tide field FES2004 50x50 (106 constituents) ([79] Lyard et al., 2006) with
an orbit including only the static gravity field EIGEN-6C 120x120. The fitted orbit is the orbit
which best represents the propagated orbit, so the difference between these two orbits reflects the
perturbation which can not be compensated by a force model including only the static gravity
field, that is the ocean tide perturbation. The fit was performed choosing as initial epoch the
middle of each considered time interval, in order to reduce the numerical effect due to the error
propagation; moreover, only the initial satellite state vector was estimated during the fit process.

The initial satellite state vector for the propagation was taken from the GOCE official kine-
matic PSO solution of the 1 November 2009 at 00:00:00 ([8] Bock at al., 2011). The following
programs of NAPEOS are used:

e PROPAG, to propagate the GOCE orbit for the considered time interval, including the
static gravity field and the ocean tide field;

e TRACKSIM, to convert the format of the propagated orbit from sp3 file to NAPEOS
Tracking Data Format (NTDF) file, a position observation file which can be read by BAHN;

e BAHN, to compute the fit, receiving in input the NTDF file and the propagated orbit and
giving an sp3 file as output;

e ORBCOMP, to compute the statistic comparison between the propagated and the fitted
orbit in RTN reference frame.

Results of the statistic comparison between the two orbits in RTN reference frame are reported
in Table B.1] and show a total RMS of the fit of 48.26 ¢cm over one day, 19.98 m over one month
and 131.90 m over one year. RMS of the orbit differences in RTN is computed as

[ S~ Neot AR2
RMSAR == ZIT, (5].)
[ S Neot AT?2

RMSax ZiV:;jN o (53)

while the total RSS and RMS result from
RSS = \/(RMSaR)? + (RMSa7)? + (RMSaN)?, (5.4)
RS — \/(RMSAR)Q - (RM?ATP + (RMSan)® (55)

Differences between the propagated and the fitted orbit are plotted in RTN reference frame
for one day, one month and one year respectively in Figures 5.7, 5.8 and B9l

NAPEOS allows to include in the force model empirical accelerations, estimated in the radial,
along-track and cross-track directions to compensate model omission errors. They consist of a
combination of two periodic terms, function of the satellite argument of latitude u = w + f, and
a constant one, as

Aa, = (ar0+ arc cOSU+ ay s sinu) u,
Aay, = (aq0 + age cOSU+ ag s sinu) u, (5.6)

Aa, = (aco + Gee COSU+ acs SINU) U,.
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The corresponding nine parameters (G, g, Ay ¢, Gr s, Aa0, Qg cs Qa ss Ae0s ees Aes) are called CPR,
because the period of these accelerations is one cycle per revolution.

To evaluate how much of the tidal signal is absorbed by CPR coefficients, another fit was
performed including the static gravity field and the along- and cross-track CPR, (see Table [5.2)).
Radial CPR. is not considered because depends on the along-track CPR. This specific study
is interesting in order to build a suitable setup in NAPEOS for GOCE POD and ocean tide
parameter estimation through a multiarc solution. The goal is to obtain a good trade-off between
the compensation of the model omission errors during the GOCE POD and the non-absorption
of the tidal signal from which tidal parameters will be estimated.

Table 5.1. Statistic comparison between the propagated and the fitted orbit: RMS along the radial, transverse
and normal directions, RSS and total RMS for one day, one month and one year. CPR are not included in the
fitted orbit.

Time RMSAr RMSArT RMSapN RSS RMS
Interval
1 day 760 cm  8252cm 11.25cm  83.59 cm  48.26 cm

1 month 871 m 31.68 m 10.90 m 34.61 m 19.99 m
1 year 31.33m 11218 m 196.53m 22845 m 131.90 m

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
Time (days)

Figure 5.7. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with only
the gravity field over a period of 1 day. Total RMS is of the order of 48.26 cm. CPR are not included in the fitted
orbit.
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Figure 5.8. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with only
the gravity field over a period of 1 month. Total RMS is of the order of 19.98 m. CPR are not included in the

fitted orbit.
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Figure 5.9. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with only
the gravity field over a period of 1 year. Total RMS is of the order of 131.90 m. CPR are not included in the

fitted orbit.
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Figure 5.10. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with the
gravity field and along-track CPR for 12 intervals over a period of 1 day. Total RMS is of the order of 9.90 cm.
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Table 5.2. Statistic comparison between the propagated and the fitted orbit along the radial, transverse and
normal directions, RSS and total RMS for one day, one month and one year. Along- and cross-track CPR (sine,
cosine and constant coefficients) are included in the fitted orbit for different numbers of intervals over 1 day.

Time CPR Intervals RMSAr RMSA7 RMSan RSS RMS
Interval

AT, 12 intervals 580 cm  11.04cm 11.77 cm  17.14 cm 9.90 cm
1 day CT, 12 intervals 1848 cm 21142 cm 348 cm 212.25 cm 122.55 cm

AT+CT, 12 intervals 5.80 cm  11.04 cm  1.60 cm 12,57 cm 7.26 cm

AT, 24 intervals 1.16 cm 1.08 cm  11.27 cm  11.38 cm 6.57 cm
1 day CT, 24 intervals 2424 cm 19849 cm 455 cm  200.02 cm  115.48 cm
AT+CT, 24 intervals 1.16 cm 1.08 cm 0.46 cm 1.65 cm 0.95 cm

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
Time (days)

Figure 5.11. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with the
gravity field and cross-track CPR for 12 intervals over a period of 1 day. Total RMS is of the order of 122.54 cm.
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Figure 5.12. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with the
gravity field, along- and cross-track CPR for 12 intervals over a period of 1 day. Total RMS is of the order of 7.26
cm.
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Figure 5.13. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with the
gravity field and along-track CPR for 24 intervals over a period of 1 day. Total RMS is of the order of 6.54 cm.
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Figure 5.14. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with the
gravity field and cross-track CPR for 24 intervals over a period of 1 day. Total RMS is of the order of 115.50 cm.
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Figure 5.15. Difference between GOCE orbit propagated with gravity field and ocean tides and its fit with the
gravity field, along- and cross-track CPR for 24 intervals over a period of 1 day. Total RMS is of the order of 0.95
cm.

5.2 Computation of ocean tide accelerations on GOCE orbit due
to existent models

Accelerations due to ocean tides acting on GOCE orbit at a specified epoch were determined using
different existent ocean tide models: FES2004, CSR 3.0, CSR 4.0, GOT00, TPXO6, SCW80,
NAO99. As GOCE reference orbit we used kinematic orbits covering the period from 31 October
2009 to 11 January 2010 (72 days). The RMS of these accelerations are reported in Table B3]
for each ocean tide model considered.
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Figure 5.16. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using Schwiderski
ocean tide model ([T09], Schwiderski, 1980). The total RMS is 5.69 x 10™% m/s>.
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Table 5.3. RMS of ocean tide accelerations due to different ocean tide models and affecting GOCE orbit,
computed over the period from 31 October 2009 to 11 January 2010. For each model, maps of amplitude and

phase were harmonically analyzed up to degree and order 50.

Ocean Tide Angular

Model Resolution

Tidal

Constituents

Acceleration

RMS

SCW80 (Schwiderski, 1980) 1°x1°

CSR3.0 (Eanes and Bettadpur, 1995) 0.5°x0.5°

CSR4.0 (Eanes and Bettadpur, 1999) 0.5°%0.5°

GOTO00 (Ray, 2000) 0.5°%0.5°

NAO99 (Matsumoto et al., 2000) 0.5°x0.5°

TPXO6 (Egbert and Erofeeva, 2002)  0.25° x0.25°

FES2004 (Lyard et al., 2006) 0.125°x0.25°

Q17017P17
K1, Na, Mo,
Sa, K, My

Q17017P17
K1, N2, Mo,
Sa, Ko

Q1,01, P,
K1, Na, Ma,
Sa, Ko

Q1,01, P,
K1, Na, Ms,
Sa, Ko

Q17017P17
K1, Na, Mo,
So, K, My

Q17017P17
K1, Na, Mo,
Sa, K, My

Q1,01, P, K1, 51,
Na, M2, S2, K2,2Na3,
Mfme7thyMSqm

5.69 x 1078

5.72 x 1078

5.74 x 1078

5.69 x 1078

5.69 x 1078

5.69 x 1078

5.70 x 1078

m/s

m/s

m/s

m/s

m/s

m/s

m/s
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Figure 5.17. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using the CSR,
3.0 ocean tide model (J39], Eanes and Bettadpur, 1995). The total RMS is 5.72 x 107% m//s?.
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Figure 5.18. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using the CSR,
4.0 ocean tide model ([39], Eanes and Bettadpur, 1995). The total RMS is 5.74 x 10™% m/s”.
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Figure 5.19. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using the
GOTO00 ocean tide model ([99], Ray, 1999). The total RMS is 5.69 x 107% m/s?.
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Figure 5.20. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using the NAO99
ocean tide model ([85], Matsumoto et al., 2000). The total RMS is 5.69 x 107% m/s?.
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Figure 5.21. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using the
TPXO6 ocean tide model ([40] Egbert and Erofeeva, 2002). The total RMS is 5.69 x 10 m/s>.
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Figure 5.22. Ocean tide acceleration acting on GOCE orbit over a period of 72 days, computed using the
FES2004 ocean tide model (J79] Lyard et al., 2006). The total RMS is 5.70 x 107% m/s?.
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5.3 Evolution of GOCE orbital elements

The natural evolution of GOCE orbital elements was analyzed along the period for which GOCE
precise orbits were determined (1st November 2009 to 31st May 2011) as a preliminary study for

the evaluation of ocean tide perturbations on the GOCE orbit. Figures .23, 524 (.25 B.27),
5.260], 5.28 and (.29 show respectively the pattern of semimajor axis, eccentricity, inclination,

longitude of ascending node, argument of perigee, mean anomaly and true anomaly.

In Figure[5.23] the changes of semimajor axis after the periods of missing data due to on-board
failures can be observed: of particular significance were anomalies on the platform computers in
2010, leading to a prolonged interruption of the scientific mission.

The argument of perigee shows several numerical problems corresponding to low peaks of
eccentricity of the order of 107°.
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Figure 5.23. Evolution of the semimajor axis of GOCE orbit over the period 1st November 2009 - 31st May
2011. Units are kilometers.
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Figure 5.24. Evolution of the eccentricity of GOCE orbit over the period 1st November 2009 to 31st May 2011.



5.3. Evolution of GOCE orbital elements 89

A

1 1
200 300 400 500 600
Time (days)

96.72

96.71-

96.68

96.66

96.64

Inclination (deg)

96.62

96.6

96.58

96.56

Figure 5.25. Evolution of the inclination of GOCE orbit over the period 1st November 2009 - 31st May 2011.
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Figure 5.26. Evolution of the longitude of ascending node of GOCE orbit over the period 1st November 2009 -
31st May 2011. Units are degrees.
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Figure 5.27. Evolution of the argument of perigee of GOCE orbit over the period 1st November 2009 - 31st
May 2011. Units are degrees.
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Figure 5.28. Evolution of the mean anomaly of GOCE orbit over the period 1st November 2009 - 31st May
2011. Units are degrees.

N
R
S

180

True Anomaly (deg)

N
S

1 I
300 400 500 600
Time (days)

Figure 5.29. Evolution of the true anomaly of GOCE orbit over the period 1st November 2009 - 31st May 2011.
Units are degrees.
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5.4 Computation of the secular rates of GOCE angular elements

Considering the first 30 days of the GOCE precise estimated orbits (1st-30th November 2009), the
secular rates of the angular elements of GOCE orbit (argument of perigee, longitude of ascending
node, mean anomaly) were estimated through a linear least-square fit in order to account for the
secular perturbations due to all the zonal terms C,g of the geopotential. GOCE mean orbital
characteristics are reported in Table (.41

Table 5.4. GOCE mean orbital elements and rates used for the spectral analysis of tidal perturbations on GOCE.

Element Value

a 6632.884525 km

3 2.306273 x 1073

i 1.686227 rad

wo 1.845595 rad

Qo 5.471748 rad

M 0.971383 rad

w —3.764817 x 1077 rad/s
O 2.022334 x 107 rad/s
M 1.167455 x 1073 rad /s

Nodal Period 89.728100 min

Repeat Period 979 revs/61 nodal days

The obtained orbital rates lead to the ratio

M .
LY 16.049183, (5.7)
b, —

which corresponds closely to the orbital resonance 16:1, so resonances will occur at orders m
close to 16, 32, 48, 64, etc.
The nodal period N, is given by
27
M+

, = 89.728053 min, (5.8)

while the nodal da Ny is approximately equal to a solar day, because GOCE is a Sun-

synchronous satellite
27

Ny = 5 = 1000043 days. (5.9)

We —

Finally, the repeat period in solar days results form the multiplication between the nodal day
and the repeat period TTJX in nodal days, which is 61 days for GOCE

T,p = NgT}) = 61.002623 days. (5.10)

1A nodal day is the period between two consecutive passages of the ascending node of the satellite orbit over
the same Earth-fixed meridian. In general, the precession of the ascending node is much slower than the Earth’s
rotation, so the nodal day differs slightly from a solar day; for a Sun-synchronous orbit a nodal day is equal to a
solar day.
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Figures 5.30] 5.31] and £.32] show in blue the pattern of the angular element and in red the
corresponding fit.
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Figure 5.30. Fit of the argument of perigee.
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Figure 5.31. Fit of the ascending node.
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Figure 5.32. Fit of the mean anomaly.

5.5 Spectral analysis of ocean tide perturbations on GOCE

In order to identify a specific list of ocean tide parameters (C’fflm, Slflm) to be estimated through a
multiarc solution during the GOCE fully dynamic POD, it is necessary to evaluate the sensitivity
of these parameters on GOCE orbit. An analytical method is used which determines the spectrum
of ocean tide perturbations in the radial, transverse and normal (RTN) positions using Kaula’s
linear satellite theory.

5.5.1 Analytical spectrum from Kaula’s linear satellite theory

The geopotential defined in (2.I8) must be expressed as function of the orbital elements (a, e, i, w, 2, M)
through the Wigner’s theorem? for the rotation of spherical harmonics, in order to be used in
the Lagrange Planetary Equations. This formulation reads [64, Kaula, 1966]

a

aM L 1 1 Q RN _
V= R, Z Z Z Z <_> Flmp(i)Glpq(e)Alm COS(Vlmpq — Yy + 7Tlm)’ (513)

where Fj,,,(i) are the normalized inclination functions, G,,(€) the eccentricity functions, 7y, =

—% mod (I +m,2) is a phase correction accounting for the parity of I +m, Ay, and ¥y, are

respectively amplitude and phase in terms of the geopotential Stokes coefficients as
Apn =/CE, + S, (5.14)
VYim = arctan(Syy, /Cim), (5.15)
and vy, is the Kaula phase given by

Vimpg = (I = 2p)w + (I = 2p + )M + m (2 — b;). (5.16)

*The Wigner’s theorem establishes that a spherical harmonic can be rotated by R(c, 3,7v) as
1
Vip(N',6') = Y Dip(a, B,7)Yir(N, 8), (5.11)
k=—1
where Dip are given in terms of the Wigner’s coefficients

Dip(a, B,7y) = e KO/ g (g) e POFT/2) (5.12)
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The time derivative of (5.16]) is the Kaula frequency, function of the satellite secular rates
(w,§, M) and the Earth’s rotation rate 6, as

I)lmpq = (l - 2p)w + (l — 2p + q)M + m(Q — 09) (517)

Analogously, for the ocean tide case Aljfn and wljfn are respectively amplitude and phase in

terms of the fully-normalized and adimensional ocean tide harmonic parameters (é’f{clm, gljflm),
already defined in (3.92)) and (3.93), so that

A =\/CE2 + 522, (5.18)
wffn = arctan(gﬁn/é’lfn), (5.19)

Kaula’s linear satellite theory ([64] Kaula, 1966) allows the analytical determination of the
spectrum of ocean tide perturbations affecting a satellite, both in the orbital elements and in the
RTN positions and velocities. In particular, ocean tide perturbations in the radial, transverse
and normal positions (Ar, A7, Ay) are given respectively by [14] Casotto, 1989]

L 1 l Q -
+ + + +
Ar=3 3> > D> A Crimpg €S g F Vi + Tim), (5.20)
=1 m=0p=0¢g=—Q k +
L l ! Q —
+ + . + +
AT=3"330 3 30D A Colipa S gy F Vit + T, (5.21)
=1 m=0p=0¢g=-—Q k -+

L l l Q -
AX = Z Z Z Z Z Z Al:i:lm [Cl)f;n:;q Sin(’yl:(t(l-',-l)mpq + ¢l:(tlm + Trlm)

=1 m=0p=0¢g=-—Q k -+
== + +
Ot SR gy F Uil + mm)] , (5.22)
where Wfflmp e the tidal argument defined in terms of the Kaula phase and the Doodson argument

as
Vidimpq = Vimpa T Ok = Uimpq(t — t0) + Vi o £ Okt — to) + OF, (5.23)

1w and @?{ are the Kaula phase and the Doodson argument at epoch tg. The time
derivative of the tidal argument in (5.23]) represents the tidal perturbation frequency

where 0%

w;flmpq = Dmpq & Ok (5.24)

which is the combination of the Kaula frequency ;,,,, and the Doodson frequency Oy in ([243)
and can not be zero (secular perturbation) for the incommensurability assumption between the
satellite and the tidal frequencies. However, tidal secular perturbations exist and they result
from the static part (k = 055.555) of the tidal potential, corresponding to the constant term in
the zonal TGP.

The functions CI'E CcTE CX'E OXF have the units of a length and are expressed

kimpq’> “kimpqg’> ~“klmpq’> ~kimpq
as [103, Rosborough and Tapley, 1987]

S
+ .4 — + + M=
Clzlmpq - Z (f)/klmps) ! |:Hq—5Elamp8 + aH{’]*SElemps + a(q - S)Hq—sElmps] ? (525)
s=—5
S
+ == -1 + M+ Q+ .
Cl:lmpq =a Z (Vklmps) |:H‘1_5(Elcjnps + Elmps + Elmps Cos Z)
s=—S

Imps Imps

U
Y Hus (G Bt + (0= 0B (5.26)
u=—U
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+ Q
klmpq_ Z Z Vklmps IHU*S(ElZmps_Elmj;;SSIHZ)(quUJrl+Qq7u+1)a (5.27)
s—fSu—f
-1 i+ Q+ .
klmpq Z Z fyklmps HU S(Elzmps Elmps San)( q—u—1 " Qq C 1) (528)
s—fsu—f

It can be noticed that they depend on the excitation functions Ef;i;s which at the first order are
equivalent to E Vae{aeiw Q M} [64, Kaula, 1966]

lmps
R, l
Elmpq = 2na ( a ) ﬂmpGZPQ(l - 2p + Q)

. 1-e /R
Elppg =1 <7> FrpGipg[(1 = 2p + @)V 1 — % — (I — 2p)],

e
Elimpq = ﬁ (%)l FlmpGlpq[(l — 2p) cosi — m],

E%Ipq _ ﬁ (%)l [%FlmpG;pq sing — Fl'mpGlpq cos z} , (5.29)
BM = ﬁ (%)lﬂmp [2([ + 1)Gipg — %G;pq} ,

and on the special functions H,, I,, Qn, Ry, of order n, written in terms of the Bessel function
Jy, of the first kind of order n and its first derivative J;, with respect to the eccentricity. The
special functions are given by [103 Rosborough and Tapley, 1987]

Hy=1+%, Hy,=H_,=—5%J(ne), n=12,..,00
Ry = —e, R, =R_, =997 (ne), n=1,2,..00 530
Qo =0, Qn=-Q_,= %\/m(]r’z(ne), n=1,2,..,00 .
Iy =0, Iy=—1_,, n=12,..00
where
I = % {Jn(ne) + ;5V[Jw(ne) + JnJr,,(ne)]} , 8= # (5.31)

In order to compute spectral analysis of the RTN ocean tide perturbations, the equations in
(5:20) must be written in spectral form as [14, Casotto, 1989|

L l l
= Z Z Z Z Z Z Aklmpq Cos Pyklmpq( ) + wklmpq) (532)

=1 m=0 p=0
L 11 Q

AT = Z Z Z Z Aklmpq sin 7klmpq( to) F wklmpq)’ (5.33)
=1 m=0p=0¢g=—Q k

Q
T+ = T+
Z Z Z [Aiglmpq Sln(ryk(l—i—l)mpq (t o to) + T’Z);(((l—l—l)mpq)

q
= ==
kimpq Sln(fyl:i:(lfl)mpq (t - to) + wllc(lfl)mpq)] ’ (534)
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where Ai"fmp g A;ffnp " Aﬁ;i; g’ Ail_ni; , are the prograde and retrograde amplitudes of the spectral

lines in the radial, transverse and normal directions

Alimpa = AétmCrompy (5.35)
Al pa = AeimClliompey (5.36)
At = A Ol (5.37)
A = At Oy (5.38)

. r+ T+ xT+ X+
Whlle /l/}klmpqy klmqu wk(l+1)mpq7 wk(lfl)mpq

separating the frequency part from the phase part of the cosine and sine arguments in (2.32)),

(E.33), (B.34) as
Vlitlmpq + wlzi:lm + M, = Dlmpq(t — to) + I/lon:qu + G)k(t — to) + @?{ + 1/11:5m + Tim- (5.39)

are the corresponding phases, which can be defined

From this relation it follows that the spectral phases for the radial, transverse and normal
components result

¢lr<;tmpq = wl:?;npq = ¢l:<tlm + Vlon:i:pq - @ﬁ + Tim,; (540)
t+ + 0+ 0

wl):(lJrl)mpq = wklm + V(l+1)mpq - ek + Tim, (541)
= + 0+ 0

wl):(lfl)mpq - wklm + V(l*l)mpq - 6k + Tm.- (542)

The tide perturbation frequencies defined in (5.24]) are chosen to be positive

Dmpe £ Ok i A5 >0
emp = (5.43)
~Vmpg F Ok if Victmpg < 0

so also the phases of the cosine and sine terms in (5.32)), (5.33]), (5:34)) must be changed in sign
as

+ 0+ 0 : ==
TZJTi o wTi o TJZ)klm + Vlmpq - ®k + Tim if ’yklmpq >0 (5 44)
kimpqg — "kimpq ~— n 0+ 0 ) " .
_(wklm + Vlmpq - ek + Wlm) if fyklmpq <0
+ 0+ 0 : ==
¢X+j: _ Vit T Y(+1)ympg — Ok F Tim if Y@+ 1)ympq = 0 (5.45)
k(i+1)mpq + 0+ ) foaE '
_(wklm + V(l+1)mpq — Ok T ﬂ-lm) 1 7k(l+1)mpq <0
+ 0+ 0 o ot
X"+ _ wklm + V(lfl)mpq B @k + Tim if Vk(lfl)mpq >0 5.46
¢k(l—1)mpq - 0+ ( : )

+ : =
_(wklm + V(l—l)mpq - @g + Trlm) if ’yk(l—l)mpq <0

and, at the same time, the corresponding amplitudes are changed in sign following the general
trigonometric relations cos(—a) = cos(a) and sin(—a) = — sin(«).

At this point, another check is required on the spectral amplitudes to force them to be positive,
and in the case of negative amplitudes the sign of the spectral phases must be changed again
taking advantage of the trigonometric formulas cos(aw + 1) = — cos(«) for the radial case and
sin(a + 7) = —sin(«) for the transverse and normal cases. After these algebraic manipulations,
all the tide perturbation frequencies and the spectral amplitudes will be positive, balanced by
the suitable changes in the corresponding spectral phases.

Now, it is important to notice that different combinations of indices (I, m,p,q) can generate
the same tidal perturbation frequency ;yl:(tlmpq' Thus, in order to compute the ocean tide per-
turbation spectrum, it is necessary to accumulate all the amplitudes and phases which refer to
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the same frequency or spectral line. Using a simplified notation and defining each unique tidal
perturbation frequency with ﬁff and each pair of amplitude and phase contributing to the same
frequency respectively with (Aﬁ, 1/1{55), (AEE, 1/11755), (Axi, 1/1 ), we can express the prograde
and retrograde ocean tide perturbations in the RTN p0s1t10ns for a specified constituent k as a
Fourier series expansion

[e.e]

Ary = Z[aﬁ COS(’ka( to)) + bkf Sm(’ka( —t))], (5.47)
=1
o
ATE = lagy cos(3iep (t — to)) + b sin(i, (t — to))], (5.48)
f=1
o
+ .+ + . /.
Axi = Z[aif cos(Ygp (£ — to)) + bif Sm(’hjff(t —t0))], (5.49)
f=1
where each pair of Fourier coefficients (a, f,aﬁ) (a ;?, ;?) (aﬁjf,ak ;) results from the com-
bination of all the spectral amplitudes and phase contributing to the same spectral frequency
Akf. Given the spectral formulation in (£.32), (5.33), (34) and following the standard rela-
tions for trigonometric products, the pairs of Fourier coefficients for the RTN perturbations are
determined respectively as

aﬁ = Z Aﬁ COS(T/J;:}:), bﬁ = Z ATjE sin (¢ (5.50)
f
apy = ;ZATi sin(¢) b = ALT cos(ypy), (5.51)
f
aiy = Z k7 s, BT = D A cos(u). (5.52)
1 !

As a consequence, for each constituent, the total amplitude and the total phase referring to
the same spectral line are respectively

Aljff = 71"(?2 + bﬁQ, \I/ljff = arctan(bri/a ) (5.53)

Ar = Jaig + 057 Uy, = arctan(by /ags), (5.54)
+2 +2 +

Aljff =\/ar +057 \I/ljff = arctan(by /ay . (5.55)

The main resonances of the ocean tide perturbations belong to the short period band and

are defined by . .
(L = 2p+ Q)M ~ (m F )0, (5.56)

being s the tidal species and leading to a resonant harmonic order

M
ma k— =+ s, (5.57)
Oq

where k = [ — 2p + ¢ is the order of the resonance.

Following the mathematical formulation described above, the analytical spectral analysis of
ocean tide perturbations on GOCE was computed using, as reference model, the FES2004 model
(Lyard et al., 2006) up to degree and order 20 x 20 for 106 constituents reported in Table 2.3
GOCE mean orbital elements and rates used to compute the spectral analysis are reported in
Table .41
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The obtained prograde and retrograde radial amplitude spectra are shown in Figures (.33
and 534l The prograde and retrograde transverse amplitude spectra are shown in Figures
and The prograde and retrograde normal amplitude spectra are shown in Figures [5.37 and
£33

All the spectra show resonances at frequencies of 16 cyc/day (once-per-rev band) and its
multiples and a very strong resonance is especially evident in the normal prograde spectrum.
Moreover, the radial amplitude spectrum show large perturbations in the short period band,
while the transverse amplitude spectrum is characterized by large long period perturbations.
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Figure 5.33. Amplitude spectrum of the radial prograde perturbation in position due to ocean tides.

5.5.2 Statistics of ocean tide perturbations by coefficient

The ocean tide perturbations in the RTN positions generated by the prograde and retrograde
coefficient (I,m) for a constituent k can be expressed using the spectral equations (5.32)), (533)),
(534)), where only the summations over the indices (p,q) remain, as

Alei:lm Z Z Aizltmpq cos ’yklmpq( ) + TJZ)klm;r)q) (558)
p= Oq—f

Ale;m = Z Z Aklmpq sin ’yklmpq( ) + ¢klmpq) (559)
p= Oqf

+

AXigm = Z Z [ klmpq sin 'Yk(z+1)mpq( —to) F wk(lJrl mpq)
p=0¢=—Q
_Ailmpq Sln(;)/k(lfl)mpq( - ) + Tlik(l 1 mpq) (560)

The mean of the square values of the perturbations by coefficients < (Arlflm)2 >, < (ATl:sm)Q >,
< (Axfl )2 > depend on the mean of the product between cosine and sine terms, such as

< 08 (Viggmpg (t — o) F Q,Z)klmpq) cos(wklmuv(t to) F ¢klmpq) >, which are not zero only for
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Figure 5.34. Amplitude spectrum of the radial retrograde perturbation in position due to ocean tides.
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Figure 5.35. Amplitude spectrum of the transverse prograde perturbation in position due to ocean tides.
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Figure 5.38. Amplitude spectrum of the normal retrograde perturbation in position due to ocean tides.

L4 L+ .
Vitmpg = Vibmauw: leading to

1 Q
1 T
< (Ar,)? > = 5 D (A

p=0g¢=-Q
1 I Q
+ 2 + 2
< (ATklm) > = 5 Z Z (A;lmpq) )
p=0q¢=-Q
I Q
A + 2 _ 1 Ax+i 2 AX i
<( Xklm) > = 52 Z [( klmpq) ( kimpq
p=0¢=-Q

(5.61)

(5.62)

(5.63)

Hence, the prograde and retrograde RMS by coefficients (I, m) in the RTN position pertur-

bations is given for each constituent by

1
RMSArklm = \/5 <

(Arljflm)z >,

1
RMSATﬁm - \/5 <

(Aﬁimy >,

1
RMSAXfLm = \/5 <

while the total (prograde + retrograde) contribution is

-
RMSar,,, = \2 ;

1
RMSanr,, = \ 5 ;

1 =
RMSAXkLm = \ 9 ;(

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)
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Finally, the total RMS by coefficients accumulated over the constituents is

1
RMSArlm = \/5 Z(RMSATklm)Qa (570)
k
1
RMSar,, = \/ 3 > (RMSan,,, )% (5.71)
k
1
RMSay,,, = \/ 5 > (RMSay,,,)? (5.72)
k

In Figures £.39, 5401 £.41] the accumulated RMS by coefficient is shown respectively for
the radial, transverse and normal ocean tide perturbations. In particular, the maximum RMS
for the radial component is about 1.323 m corresponding to the coefficient (I,m) = (3,2), the
maximum RMS for the transverse component is 363.136 m for the coefficient (I,m) = (2,2) and
the maximum RMS for the normal component is 76.241 m for the coefficient (I, m) = (2,2).

10

Maximum RMS =1.323 ir

107

Radial Perturbation RMS (mm)

Figure 5.39. Accumulated RMS by coefficient of the radial perturbation in position due to ocean tides.

5.6 Aliasing of the ocean tide constituents for GOCE

GOCE does not monitor the entire global field continually, but samples the static gravity field
and its time-varying part only along its orbital path, with a temporal resolution depending on
the frequency with which the satellite repeats the same groundtrack, defined by the satellite
repeat period.

The exact repeat period is a non-linear function of semimajor axis and inclination of the
satellite orbit and, in particular, GOCE orbit has been designed to follow closely a repeat period
of 979 revolutions in 61 nodal days (orbital resonance 979:6), in order to achieve a global,
dense and uniformly distributed groundtrack coverage for an extremely good spatial sampling of

3 An orbital resonance R:D happens when the satellite performs exactly R revolutions in D nodal days, R and
D being coprime integers.
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Maximum RMS = 363.

Transverse Perturbation RMS (mm)

Figure 5.40. Accumulated RMS by coefficient of the transverse perturbation in position due to ocean tides.
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Figure 5.41. Accumulated RMS by coefficient of the normal perturbation in position due to ocean tides.
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the static gravity field, guaranteeing an equatorial separatio of the ground tracks of less than
0.4 deg or 41 km and a maximum degree of the spherical harmonic expansion of the geopotential
equal to about 20.

However, for Earth observing satellites, the spatial resolution can not be increased without
loosing temporal resolution and vice-versa, causing respectively temporal and spatial aliasing
phenomena. To reduce both types of aliasing, more satellites would be necessary. Indeed, the
scientific requirements of the GOCE mission ensure a very good spatial coverage, corresponding
to a long repeat period, at the expense of temporal resolution, leading to strong temporal aliasing.
Many oceanographic signals may suffer the aliasing problem, in particular ocean tide aliasing is
a crucial issue and will be discussed in the following.

According to the Nyquist criterion, temporal aliasing occurs when there is a variability in a
signal at scales shorter than twice the sampling interval Ty, so that signals with original periods
between 0 and 27 might be aliased to longer periods ranging from 27 to infinite (non-periodic
signals). Analogously, temporal aliasing for ocean tides recovered by a satellite occurs when the
period of a tidal constituent is less than twice the orbit repeat period, also called the Nyquist
period, which is about 122 days for GOCE; aliasing does not exist for signals with period greater
than the Nyquist limit. As a consequence, the minimum alias period is twice the corresponding
orbit repeat period and increases linearly with it. The case of infinite alias periods is the worst
to recover ocean tide signals, because they could not be completely separated from the Earth’s
static gravity field, acting as constant terms.

For repeating orbits, the alias periods of the ocean tide constituents can be calculated ac-
curately, because they depend on the satellite exact repeat period T}, and the period Tk of the
tide constituent. The principal alias period T} for a tidal frequency can be determined as [95),
Parke et al., 1987]
2Ty
Ak

where Agy is the change of the tidal phase for that constituent over the satellite repeat period

T = , (5.74)

2rTp
Ty

Agy = 22, [—m,m]. (5.75)
The principal alias periods for the 106 tidal constituents of the FES2004 model to be recovered
by GOCE are reported in Table

Table 5.5. Original periods and principal alias periods for the 106 ocean tide constituents of the FES2004
model detected by GOCE. The original periods are the inverse of the Doodson frequency or, equally, of the tidal
perturbation frequency with [ = 2p, m =0, ¢ = 0, p > 0, being the Kaula frequency zero.

Tidal Darwin Original Period  Alias Period
Constituent Symbol (days) (days)
165555 K 0.997269576 359.595739003
255555 My 0.517525054 483.220633707
245655 Ny 0.527431168 179.353774119

*For an R:D resonant orbit, the equatorial separation of the ground tracks is expressed as ([6] Bezdg&k et al.,
2010)
AN = 360° /R or AN = 27 R, /R. (5.73)

’For the Nyquist sampling theorem, the maximum degree N of the Stokes coefficients that might be fully
recovered by a gravimetric satellite in the resonance R:D is approximately N < R/2.
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Table 5.5 — Continued from previous page

Tidal Darwin Original Period Alias Period
Constituent Symbol (days) (days)
145555 O, 1.075805910 206.170746684
163555 P, 1.002745417 371.071362978
135655 Q1 1.119514811 124.435924954
273555 So 0.500000000 11627.749505082
275555 Ko 0.498634788 179.797869502
235755 2N, 0.537723914 136.779437965
115855 1.218530090 976.547974398
117655 1.211361065 170.044451432
125745 1.167126164 228.152158399
125755 2Q1 1.166925821 220.743737538
127545 1.160547602 139.803478299
127555 o1 1.160349511 142.738917214
135645 1.119699204 126.756135754
137445 1.113643040 274.215020430
137455 p1 1.113460637 285.740962047
145535 1.076146513 194.380512406
145545 1.075976185 200.102106655
145755 1.075089982 236.331270709
147555 Ty 1.069505562 1598.845342483
153655 1.040614670 161.263687362
155445 1.035539509 670.545087419
155455 1.035381791 743.923616878
155655 M, 1.034718639 1378.884265940
155665 1.034561171 1729.732641159
157455 X1 1.029544743 242.038390802
162556 m 1.005505848 184.070555560
163545 1.002893347 351.864955983
164556 S1 1.000000000 23201.542664760

165545

0.997415895

379.679466512
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Table 5.5 — Continued from previous page

Tidal

Constituent

Darwin Original Period

Symbol

(days)

Alias Period

(days)

165565
166554
167555
173655
175455
175465
183555
185355
185555
185565
185575
195455
195465
217755
219555
225855
227655
229455
237555
238554
244656
245645
246654
247455
248454
253755
254556
255545
256554

(01
?1
6
Ji

SO

00,

V1

3Ny

€2

2

vy

V2

a2

o

0.997123299
0.994554120
0.991853215
0.966956486
0.962436581
0.962300344
0.934174078
0.929954783
0.929419770
0.929292719
0.929165703
0.899093237
0.898974342
0.558046925
0.556538526
0.548426378
0.546969472
0.545520286
0.536323242
0.535536889
0.528193880
0.527472092
0.526670655
0.526083537
0.525326903
0.518829140
0.518259366
0.517564456
0.516792821

341.529986719
181.202075576
122.909960477
699.190593115
159.057737090
155.421284203
202.578836659
151.524612746
167.207642064
171.424029343
175.858562333
404.128041000
429.670780807
193.964176044
156.731300006
262.817904245
129.349006550
347.920251529
236.692145521
672.450967796
123.772102882
174.743526124
352.389045467
1391.260479627
495.287994234
144.378311638
208.019221975
451.151960486
1496.217682528
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Table 5.5 — Continued from previous page

Tidal

Constituent

Darwin Original Period

Symbol

(days)

Alias Period

(days)

263655
265455
265655
265665
272556
274554
275565
275575
285455
285465
293555
295555
295565
135555
155555
175555
235695
245555
265555
055565
056554
057555
057565
058554
063655
065445
065455
065465
065555

A2
Lo

i)
Ry

2

0o

LP
Sa
Ssaa
Sta
MS,,

M,

0.509240578
0.507984191
0.507824509
0.507786577
0.500685388
0.499316486
0.498598216
0.498561650
0.489771754
0.489736470
0.482345620
0.481074991
0.481040950
1.119902846
1.035050109
0.962149982
0.537813420
0.527517279
0.507904337

6798.096532971

365.256775513
182.621717375
177.844172936
121.749293854
31.811877283
27.666726611
27.554585634
27.443350065
27.321583231

292.387107133
696.050893451
486.457851243
453.972509168
377.102511201
354.132582885
175.165057365
170.764993360
136.522276712
139.320163716
129.579830943
312.530538904
327.590957353
129.420277592
966.441267415
151.594964160
142.825712569
169.921436361
D72.679776794
6798.096532971
365.256775513
182.621717375
177.844172936
122.262277179
740.370341278
297.705469988
285.215190972
273.730774031
262.080288919
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Table 5.5 — Continued from previous page

Tidal Darwin Original Period  Alias Period
Constituent Symbol (days) (days)
065655 27.092488337 242.416919420
065665 26.984945099 234.070090283
073555 MSy 14.765290935 463.940412704
075355 13.777292817 142.607595486
075555 My 13.660791616 131.040144459
075565 13.633395274 128.561983000
075575 13.606108599 126.175813185
083455 9.613720702 176.629331423
083655 M Sy, 9.556848916 159.221120143
083665 9.543432639 155.577278312
085455 M, 9.132937207 190.281781660
085465 9.120683978 195.761226499
093555 MSqm 7.095791770 151.376635968
093565 7.088392969 154.824183972
095355 6.859397443 571.677084899
095365 6.852483169 624.165468009

Unfortunately, a Sun-synchronous satellite, like GOCE, does not allow the complete estima-
tion of the diurnal and semidiurnal solar tide constituents S and .S; which have original periods
of exactly 12 h and 24 h, because it will always sample both these constituents at the same
phase every day. As a consequence, Sy and 57 are aliased to almost infinite periods, respectively
of about 31 years for Ss and 63 years for Sy, in the specific case of GOCE, so they represent
essentially a bias.

Moreover, the diurnal solar tide constituents K7 and P; are aliased to annual periods, re-
spectively of about 359 and 371 days, while K5 is aliased to semiannual period of about 179
days.

Another important factor to be accounted for is the capability to separate tidal constituents
with neighboring alias periods from each other, expressed by the Rayleigh criterion. The min-
imum data record length needed for the accurate separation of two tide constituents is called
Rayleigh period and is defined as .

1l
T~ Ty

TRay = (576)

where 77 and 75 are the original periods of the two constituents. For the GOCE satellite,
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the Rayleigh period necessary to separate respectively the semidiurnal lunar and lunisolar con-
stituents No and K» is approximately 199 years, because they are aliased to nearly the same
period of about 179 days, so it results quite impossible to resolve them.

Finally, the time series of available GOCE orbital observations must be considered and, for
the Nyquist sampling theorem, only ocean tide frequencies with alias periods shorter than twice
this period and relatively large amplitudes are detectable. For the available GOCE data record of
about 400 days, the maximum alias period beyond which the tidal constituents must be discarded
turns out to be Ty,q, = 200 days.

5.7 Definition of the ocean tide parameters to be estimated

Combining information deriving from the spectral analysis, the perturbation statistics by coef-
ficient, the determination of ocean tide alias periods and resonant coefficients, it is possible to
identify the list of the ocean tide parameters to be estimated from GOCE orbital data. Also
the total number of parameters must be taken into account, so cutoffs on the RTN perturbation
RMS by coefficient must be applied. The following automatic procedure was adopted for both
the prograde and retrograde case, which can be treated in parallel and independently from each
other.

During the spectral analysis, the principal alias periods were computed according to the
relation (5.74) for the ocean tide perturbation frequencies %jflmpq defined by all the combinations
of indices (I,m,p,q). In this way, it is possible to discriminate between the partial spectral
amplitudes Aflmp . which are aliased to periods greater than the limit period T},4, or not. The
choice adopted consists in not estimating the coefficient (I, m), if the dominant partial amplitude
among all those contributing to the same pair (I, m) is aliased beyond T}, because in that case
GOCE would not be able to solve it. As a consequence, in the processing of GOCE data, these
parameters will not be estimated, but taken from the reference ocean tide model FES2004 and
kept fixed.

Also the resonant prograde/retrograde ocean tide coefficients (I,m) of the short period band,
as defined in (B.56]), are excluded from the estimation process and the corresponding FES2004
parameters are used instead.

To limit the number of parameters to be estimated with the multiarc approach, three differ-
ent cutoffs are adopted for the selection of the parameters based on the perturbation RMS by
coefficient in the three directions RTN and are reported in Table 5.6, being 5 mm for the radial
component, 2 cm for the transverse component and 1 cm for the normal component, both in the
prograde and retrograde case. In particular, if at least a RMS by coefficient is above its cutoff
in any one of the three directions RTN, the corresponding parameter prograde/retrograde (I, m)
is retained for the estimation.

Table 5.6. Cutoffs adopted for the perturbation RMS by coefficient in the radial, transverse and normal direc-
tions.

Cutoff R Cutoff T Cutoff N

) 20 10

According to this selection procedure, the ocean tide parameters which will be estimated
through the processing of GOCE orbital data are 490 in total, among which 460 are prograde
and 30 are retrograde. They are listed in Table [5.7, where constituent, degree and order are
indicated and the string potide refers to prograde coefficients, rotide to retrograde coefficients
and otide to both types.
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Table 5.7. Original periods and principal alias periods for the 106 ocean tide constituents of the FES2004
model detected by GOCE. The original periods are the inverse of the Doodson frequency or, equally, of the tidal
perturbation frequency with [ = 2p, m =0, ¢ = 0, p > 0, being the Kaula frequency zero.

Parameter Type Constituent (I,m)

potide 125.755 21
potide 125.755 41
potide 127.555 21
potide 127.555 41
potide 135.645 21
potide 135.645 41
potide 145.545 21
potide 145.545 22
potide 145.545 31
potide 145.545 41
potide 145.545 42
potide 145.545 51
potide 145.545 61
potide 145.545 81
potide 145.545 101
potide 145.545 121
potide 145.545 17 17
potide 153.655 41
potide 155.655 21
potide 155.655 41
potide 157.455 21
potide 157.455 41
potide 162.556 31
potide 162.556 41
potide 162.556 51
potide 162.556 61
potide 162.556 71

potide 164.556 21
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 164.556 41
potide 165.565 61
potide 165.565 81
potide 165.565 101
potide 166.554 31
potide 166.554 41
potide 166.554 51
potide 167.555 21
potide 167.555 41
potide 167.555 51
potide 167.555 71
potide 175.455 21
potide 175.455 22
potide 175.455 41
potide 175.455 51
potide 175.455 101
rotide 175.455 15 15
potide 175.465 21
potide 175.465 41
potide 183.555 41
potide 185.555 21
potide 185.555 41
rotide 185.555 15 15
potide 185.565 21
potide 185.565 41
potide 227.655 22
potide 227.655 42
potide 237.555 22
potide 237.555 42

potide 237.555 6 2
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 247.455 22
potide 253.755 22
potide 253.755 42
potide 254.556 22
potide 254.556 42
potide 265.455 22
potide 274.554 22
potide 275.565 82
potide 275.565 92
potide 275.565 10 2
rotide 2'75.565 15 14
potide 275.565 16 2
potide 275.565 172
potide 275.565 19 18
potide 275.575 32
potide 275.575 42
potide 2'75.575 52
potide 275.575 6 2
potide 285.455 22
potide 285.455 42
potide 285.455 6 2
potide 285.465 22
potide 285.465 42
potide 245.555 22
potide 245.555 42
potide 055.565 20
potide 055.565 40
potide 055.565 60
potide 055.565 120

potide 056.554 20
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 057.555 20
potide 057.555 40
potide 057.555 50
potide 057.555 60
potide 057.555 70
potide 057.555 90
potide 057.555 110
potide 057.555 150
potide 057.555 170
potide 057.565 20
potide 058.554 20
potide 065.455 20
potide 065.655 20
potide 065.665 20
potide 075.355 20
potide 075.555 40
potide 075.555 50
potide 075.555 60
potide 075.555 70
rotide 075.555 17 16
potide 075.565 40
potide 083.655 20
potide 085.455 20
potide 085.455 40
potide 085.465 20
potide 093.555 20
potide 235.755 22
potide 235.755 42
potide 235.755 6 2

potide 165.555 31
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 165.555 41
potide 165.555 51
potide 165.555 61
potide 165.555 71
potide 165.555 81
potide 165.555 101
potide 165.555 11
potide 165.555 121
potide 165.555 131
potide 165.555 161
potide 165.555 181
potide 165.555 191
potide 165.555 201
potide 255.555 22
rotide 255.555 15 14
potide 245.655 22
potide 245.655 32
potide 245.655 40
potide 245.655 41
otide 245.655 42
potide 245.655 43
potide 245.655 44
potide 245.655 52
potide 245.655 60
potide 245.655 61
potide 245.655 6 2
potide 245.655 64
otide 245.655 66
potide 245.655 72

potide 245.655 81
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 245.655 82
potide 245.655 10 2
potide 245.655 122
rotide 245.655 15 14
rotide 245.655 17 14
potide 245.655 18 2
potide 245.655 19 18
potide 145.555 20
otide 145.555 21
potide 145.555 22
potide 145.555 31
potide 145.555 32
otide 145.555 33
potide 145.555 40
otide 145.555 41
potide 145.555 42
potide 145.555 43
otide 145.555 44
potide 145.555 51
potide 145.555 60
potide 145.555 61
potide 145.555 6 2
potide 145.555 71
potide 145.555 81
potide 145.555 10 1
potide 145.555 111
potide 145.555 121
potide 145.555 131
potide 145.555 141

rotide 145.555 1515
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 145.555 16 1
potide 145.555 1717
potide 145.555 181
potide 145.555 18 17
potide 145.555 20 17
potide 163.555 41
potide 135.655 20
potide 135.655 21
potide 135.655 22
potide 135.655 31
potide 135.655 40
potide 135.655 41
potide 135.655 42
potide 135.655 51
potide 135.655 61
potide 135.655 101
potide 135.655 121
potide 273.555 22
potide 273.555 32
potide 2'73.555 42
potide 273.555 52
potide 273.555 6 2
potide 2'73.555 72
potide 273.555 82
potide 273.555 92
potide 2'73.555 10 2
potide 273.555 11 2
potide 273.555 12 2
potide 2'73.555 14 2

potide 273.555 16 2
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 273.555 17 2
potide 2'73.555 18 2
potide 273.555 19 2
potide 273.555 19 18
potide 2'73.555 20 2
potide 275.555 22
potide 275.555 32
potide 2'75.555 41
potide 275.555 42
potide 275.555 43
potide 275.555 44
potide 275.555 52
potide 275.555 6 2
potide 2'75.555 72
potide 275.555 82
potide 275.555 92
potide 2'75.555 10 2
potide 275.555 112
potide 275.555 12 2
potide 2'75.555 13 2
potide 275.555 14 2
potide 275.555 15 2
rotide 2'75.555 15 14
potide 275.555 16 2
potide 275.555 17 2
rotide 275.555 17 14
potide 275.555 18 2
potide 275.555 19 2
rotide 2'75.555 19 14

potide 275.555 19 18
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Table 5.7 — Continued from previous page

Parameter Type Constituent (I,m)

potide 275.555 20 2




Chapter

Preliminary estimation of ocean tide
parameters

The GOCE GPS observations are processed in daily orbital arcs using the NAPEOS S/W sys-
tem (ESA/ESOC), specific for satellite orbit determination and modified to include the partial
derivatives with respect to the ocean tide parameters and the ocean tide model inversion capa-
bility. For each arc, the satellite state vector at the initial epoch is estimated, together with
one solar radiation pressure (SRP) parameter, six empirical accelerations per hour (three CPR
along-track and three CPR cross-track) and the ocean tide parameters selected from the sensi-
tivity study of tidal perturbations on GOCE. Ocean tide parameters are then estimated globally
through a multiarc solution, combining the normal equations for a specified number of daily
arcs. To evaluate the goodness of the obtained results, the GOCE POD was then carried out
using the estimated tidal parameters instead of the corresponding FES2004 parameters and the
comparison with the POD performed using FES2004 is shown, involving the post-fit RMS of
GPS phase observations and the 3D RMS of orbit residuals, the last computed also with respect
to the official GOCE R/D PSO.

6.1 GOCE orbital data processing with NAPEOS

NAPEOS (NAvigation Package for Earth Observation Satellites) is a software developed and
maintained by ESA/ESOC for Earth Observation satellite missions, providing especially capabil-
ities of orbit determination/prediction and parameter estimation. It is fully written in Fortran90
and is characterized by an object oriented methodology and a highly modular and flexible design.
However, the ocean tide model inversion capability was not implemented in the system. As a
consequence, it was necessary to extend the S/W system introducing a new data structure within
existing satellite global structure, to allow for the estimation of ocean tide parameters through
a multiarc solution. A total of eighteen Fortran90 modules of NAPEOS have been modified
and the main programs involved in the upgrade were BAHN (orbits and parameters estimator)
and MULTIARC (combines normal equations of independent arc runs) [3, Bardella and Casotto,
2012]. Partial derivatives with respect to the ocean tide parameters were entirely implemented in
NAPEOS. In particular, the central body structure in BAHN was extended to include the ocean
tide parameters characteristics: the tidal constituent, harmonic type (C or S), the harmonic
degree and order and the chirality (prograde or retrograde). The MULTTARC upgrade involved
essentially the normal equation file output to contain these characteristics.

The sequence of NAPEOS programs defined to process the GOCE orbital data is reported
in Figure [6.Jl The main input data for the POD/Multiarc processing are:

e GOCE GPS observables in RINEX 2.20 format (file type SST RIN 1b), covering the time

119
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interval from 1st November 2009 (beginning of the operational phase) to 31st May 2011,
provided by ESA through EOLI-SA ([43], Earth Observation Link - Stand Alone), an
interactive tool to view and order products from ESA’s Earth Observation catalogues;

e IGS final GPS orbits and clock solutions ([59]);
e official GOCE R/D PSO as a-priori reference orbits [8, Bock et al., 2011];

e GOCE GPS antenna information in ANTEX (ANTenna EXchange) format [60) Jiggi et
al., 2009];

e GOCE radiation cross-section area, aerodynamic cross-section area and attitude informa-
tion [47, ESA/ESOC].

Each program performs a specific task with specific processing procedures, called modes, and
can briefly described as follows:

e ClockUpd, for the merge and conversion of clock files;

e OrbUpd, for the merge of SP3 orbit files with the IGS orbits to get a complete SP3 file;
e Tracksim, for the conversion of SP3 orbits to NTDF files;

e Buildcat, generates an RTDC (RINEX Tracking Data Catalogue) catalogue of RINEX files;
e GnssObs, for RINEX observation pre-processing;

e Bahn, for parameter estimation;

e Multiarc, for normal Equation Stacking;

e CmdLine,

The three principal modes associated to the programs are:

e ORBIT-FIT, which characterized the group of programs involved in the generation of a
best fitting orbit which serves as a-priori orbit;

e GOCE-RAW, which characterized the programs involved in the first data pre-processing
and generation of a raw orbit at the meter level using only pseudorange measurements;

e GOCE, which characterized the programs involved in the second data pre-processing and
parameter estimation, resulting in an accurate orbit at the centimeter level using both
pseudorange and phase measurements.
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A-priori orbit: IGS Final Products:
GOCE RINEX GOCE Reduced- GPS orbits and 30 s
Dynamic PSO clock solutions 4
BuildCat Tracksim ClockUpd
(mode: GOCE) (mode: ORBIT-FIT) (mode: GOCE)
Bahn Cmdline
(mode: ORBIT-FIT) (mode: COPY-IGS)
I
v
OrbUpd
(mode: ORBIT-FIT)
GNSSObs

(mode: GOCE-RAW)

v

Bahn
(mode: GOCE-RAW)

v

OrbUpd
(mode: GOCE-RAW)

v

GNSSObs
(mode: GOCE)

v

Bahn
(mode: GOCE)

GOCE POD and
normal equations

\ 4

\ 4

Multiarc
(mode: GOCE)

Figure 6.1. Sequence of NAPEOS programs to perform the GOCE fully-dynamic POD and multiarc processing.
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The main input data for the POD-Multiarc processing are:

e GOCE GPS observables in RINEX 2.20 format (file type SST RIN 1b), covering the time
interval from 1st November 2009 (beginning of the operational phase) to 31st May 2011,
provided by ESA through EOLI-SA ([43], Earth Observation Link - Stand Alone), an
interactive tool to view and order products from ESA’s Earth Observation catalogues;

e IGS final GPS orbits and clock solutions ([59]);
e official GOCE R/D PSO as a-priori reference orbits [8, Bock et al., 2011];

e GOCE GPS antenna information in ANTEX (ANTenna EXchange) format [60) Jéggi et
al., 2009];

e GOCE radiation cross-section area, aerodynamic cross-section area and attitude informa-
tion [47, ESA/ESOC].

For a detailed explanation of the NAPEOS programs refer to the NAPEOS User Manual [45)],
ESA GMVSA, 2006].

6.1.1 Dynamical model

In order to estimate the ocean tide parameters through a fully-dynamic POD of GOCE, it is
necessary to have a complete and accurate dynamical model. However, mismodeling of some per-
turbations is inevitable and this may lead to high discrepancies of the resulting tidal parameters
with respect to the reference tide model.

The Earth’s static gravity field considered for the GOCE data processing is the EIGEN-6C
model [50, Forste et al., 2011] up to degree and order 200, which combines LAGEOS, GRACE
and GOCE satellite measurements, gravity and altimetric data, and can be downloaded from
the International Centre for Global Earth Models [58, ICGEM].

The third-body gravitational forces of the Sun, the Moon and the planets are included,
together with the indirect oblateness perturbation, consisting in the perturbation due to the Jo
Earth gravity field component on the Moon.

The effect of ocean tides is not distinguishable from that of solid tides and is therefore relative
to the particular solid Earth tide model used, which is the IERS-TN32 [82, McCarthy and Petit,
2003 | up to degree and order 4 for 71 constituents. On the other hand, the reference ocean
tide model accounting for the parameters which are not considered in the list of parameters to
be estimated is the FES2004 model [79], Lyard et al., 2006] up to degree and order 50 for 106
constituents.

The correction due to General Relativistic effects caused by the curvature in the time-space
generated by the Earth heavy rotating body is included in the dynamical model [82, McCarthy
and Petit, 2003 |.

Three analytical models are implemented in NAPEOS in order to compute the non-gravitational
perturbations due to solar radiation pressure (SRP) [82) McCarthy and Petit, 2003 |, Earth
albedo and infrared radiation [2, Arnold and Dow, 1984].

The aerodynamic forces are not considered during the POD process because GOCE is fly-
ing in drag-free control via an electric propulsion system used to continuously counteract the
atmospheric drag in the direction of the motion.

Finally, one cycle per revolution empirical accelerations are introduce in the radial, along-
track and cross-track directions to compensate model omission errors.

Table illustrates the force models considered during GOCE fully-dynamic POD process.
For the mathematical models and algorithms implemented in NAPEOS refer to [46, ESA/ESOC,
2009].
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Table 6.1. Gravitational, non-gravitational and empirical forces adopted for the GOCE fully-dynamic POD

process.

Dynamical Models Description Reference
Static gravity field EIGEN-6C 200x200 [50]
Solid Earth tides IERS-TN32 71 constituents, 3x3 [82]
Ocean tides FES2004 106 constituents, 50x50 [79]
Ocean loading tides FES2004, 50x50 [79]
Third body perturbation Lunar gravity
Solar gravity
Planetary gravity
Indirect oblateness perturbation
Relativistic correction Correction according to General Relativity [82]
Aerodynamic forces not considered
Radiation Pressure Solar Radiation Pressure [82]
Albedo radiation pressure 12]
Infrared radiation pressure 2]
Empirical accelerations Radial, along-, cross-track CPR [46]
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6.1.2 Analyzed GOCE data

GOCE data are processed in daily orbital arcs from the 1st November 2009, corresponding to
the beginning of the operational phase, until the 31st May 2011 to perform the fully-dynamic
POD. For each arc, the satellite state vector at the initial epoch (at 12 h of each day) is es-
timated, together with one solar radiation pressure (SRP) parameter (considering a constant
GOCE radiation area), six empirical accelerations per hour (three CPR along-track and three
CPR cross-track) and the ocean tide parameters selected from the sensitivity study reported
in the previous Chapter. The normal equations are accumulated at the end of each arc. The
parameters estimated over each daily arc during GOCE fully-dynamic POD process are reported
in Table

GOCE POD + MULTIARC

12 3 4 5 6 7 8 o 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 350 360 361 362 363 364 365
anuary 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
February 32 33 34 35 36 37 38 39 40 41 4 47 48 49 50 51 52 53 54 55 57 58 59
March 60 61 62 63 64 65 66 67 6 69 70 71 72 73 74 75 76 77 78 79 8 81 8 8 8 8 8 8 88 8 90
[April 91 92 93 9 95 9 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 15 116 117 118 119 120
May 121 122 123 124 125 12 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
iune 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
July 182 183 185 186
[August
September 246 247 248 249 250 251 252 253 254 255 256 257 258 259 262 263 264 265 266 267 268 260 270 271 272 273
October 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
November 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
December 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
anuary 1 19 20 21 2 23 24 25 26 27 28 29 30 31
February 39 40 42 43 44 45 46 47 48 49 S0 51 52 53 54 55 56 57 58 59
March 60 61 62 63 64 65 66 67 68 6 70 71 72 73 74 75 76 77 78 79 8 8 8 8 8 8 8 8 8 8 90
April 91 9 93 9 95 9 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
May 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

B ot usable

SSTI anomaly (antenna switch)
RMS fit < 8 mm T} used for MuLTIARC

8mm < RMS fit < 10 mm
10 mm < RMS fit < 12 mm
RMS fit > 12 mm

Figure 6.2. Daily report showing GOCE successful processed data for POD with different colors corresponding
to different fit RMS values, of which accumulated normal equations are then used for the multiarc solution for
ocean tide parameter estimation.

A daily report of the obtained post-fit RMS of the GPS phase observations for the analyzed
data is shown in Figure 62 GOCE POD was successfully computed for at total of 472 days.
Of these, 18 days present a post fit-RMS greater than 12 mm and other 18 days have a post-fit
RMS between 10 mm and 12 mm, 5 days show a post-fit RMS between 8 mm and 10 mm, while
the remaining 431 days have a post-fit RMS lower than 8 mm with a minimum of about 5 mm.

Only arcs with a post fit RMS of the GPS phase observations residuals lower than 8 mm are
considered for the multiarc processing, so a total of 431 days are used to solve for 490 selected
ocean tide parameters. Firstly, a pre-elimination of the arc-dependent parameters (satellite state
vector, SRP coefficient, CPR coefficients) is performed, without loosing information as described
in Chapter @ Then, the ocean tide parameters are globally estimated through a multiarc so-
lution, combining the normal equations for a specified number of daily arcs, not necessarily
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consecutive. In fact, for the estimation of arc-independent (time-independent) parameters, it is
not required the condition of continuity of the orbital arcs at the boundaries, because they are
global (constant) over all the arcs.

Table 6.2. Estimated and fixed parameters during the GOCE fully-dynamic POD process for each daily arc.

Parameters Description Type Reference
Satellite state vector estimated (1 per arc at epoch)
Radiation pressure Solar Radiation Pressure  estimated (1 per arc)

Albedo radiation pressure fixed, equal to 1

Infrared radiation pressure fixed, equal to 1

EEEF

Empirical accelerations CPR constant along-track  estimated (1 per hour)
CPR constant cross-track  estimated (1 per hour)
CPR cosine along-track estimated (1 per hour)
CPR cosine cross-track estimated (1 per hour)
CPR sine along-track estimated (1 per hour)
CPR sine cross-track estimated (1 per hour)

Ocean tide parameters 490 selected parameters estimated (once per arc)

6.2 Preliminary results

All major diurnal, semi-diurnal and long-period tides from harmonic degree 2 to 20, according to
the selected list, were included in the estimation process and preliminary results were obtained.
In Figure the absolute difference of the estimated parameters with respect to the correspond-
ing FES2004 ocean tide parameters is shown. In particular, the 56% of the total number of
parameters has a difference below 1 cm from the FES2004 model.

The standard deviation of the estimated parameters is reported in Figure and it can be
observed that the 36% of the parameters presents a value lower than 1 mm.

In Figure the relative error with respect to the FES2004 parameters is illustrated and
about the 16% have a relative error lower than 1, meaning that they are of the order of magnitude
of the FES2004 parameters.

These preliminary results show quite significant discrepancies if compared with the values of
the FES2004 model. However, it must be considered that the FES2004 model results from the
assimilation of satellite altimeter data into a hydrodynamic ocean solution with the best com-
bination between physical parameters and model discretization, while the parameters estimated
through the POD-Multiarc processing are the result of a densely-parameterized, fully-dynamic
orbital solution and tend to absorb errors due to the mismodeling of the force field acting on the
satellite.

Certainly, GOCE is the most sensitive satellite to ocean tide perturbations, but there are
many difficulties for the tidal recovery from GOCE orbital data. First of all because it is a Sun-
synchronous satellite with perfect resonances with the dominant semidiurnal solar tide S, and
deep resonances with all the other solar tides. Moreover, GOCE long repeat period of 61 days
causes strong temporal aliasing of the tidal perturbation frequencies characterized by a period
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shorter than about 122 days. An extension of the data set to much longer time-period, together
with the inclusion of more satellites, such as GRACE, should allow a substantial improvement
of the obtained results.

Further POD-Multiarc runs are certainly necessary, together with the refinement of the list
of parameters to be estimated, removing excessively ill-estimated ocean tide parameters (and
the correlated ones) and introducing new parameters where appropriate. The model parameter
tuning and investigation is essential to adjust the best combination of parameters to be estimated.
Indeed, the task has proven very intensive and challenging, but the partial results obtained are
encouraging and a motivation for future analysis.
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Figure 6.3. Absolute difference of the estimated parameters with respect to the corresponding FES2004 ocean
tide parameters.

The correlation matrix of the ocean tide estimated parameters is reported in Figure [6.6]

6.3 Recomputation of GOCE orbit with the estimated parame-
ters

The impact of the estimated parameters on the precise orbit determination of GOCE was eval-
uated. GOCE orbital data were reprocessed from the 1st November 2009 to the 31st May 2011,
initializing the ocean tide model with the estimated parameters, if present, and maintaining oth-
erwise the FES2004 parameters. During this run no ocean tide model estimation is performed.
The results are compared with those obtained from the GOCE precise orbit determination using
the complete FES2004 model.

Figure shows the post-fit RMS of the GPS phase residuals obtained with the new ocean
tide model, with a mean value of 6.5 mm. Moreover, Figure reports the difference between
the post-fit RMS obtained with the FES2004 model and that resulting from the new ocean tide
model. A mean improvement of 0.6 mm in the post-fit RMS can be observed for the 96% of the
analyzed daily arcs, in particular, the 16% of the arcs shows an improvement greater than 1 mm
and few days reach a difference of 2 mm.

The GOCE orbits resulting from the new ocean tide model are then compared with both
the official R/D PSO [122, Visser et al. 2009]|8, Bock et al., 2011]and the orbits obtained using
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Figure 6.5. Relative error of the estimated parameters with respect to the corresponding FES2004 ocean tide
parameters.
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Figure 6.6. Correlation matrix of the estimated parameters.

FES2004 model. In particular, the 3D RMS of the difference between the orbits computed using
FES2004 and those recomputed with the new parameters is illustrated in Figure [6.9], showing
a mean value of 2.5 cm. Also the 3D RMS of the difference between the official R/D PSO and
those recomputed with the new ocean tide model were computed and plotted in [E.10] resulting
in an averaged difference of 4.9 cm.

Finally, the difference between the 3D RMS of the orbit residuals between the R/D PSO and
the GOCE POD with FES2004 and the RMS of the difference between the GOCE R/D PSO and
the GOCE POD with the new parameters is presented in Figure [6.11l It is interesting to notice
that only for the 25% of the arcs the POD performed with FES2004 has more agreement with
the R/D PSO, with a mean improvement of 0.2 cm. For the remaining arcs, the POD carried
out with the model including the estimated parameters shows a mean improvement of 0.9 cm,
with several peaks greater than 1 cm.

These results confirm that the estimated ocean tide parameters absorbed unmodeled signal
due to omission errors or mismodeling errors deriving from the other models. The improvement
in the agreement of the GOCE POD performed with the new ocean tide model is noteworthy
and a good premise for further investigations.
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Figure 6.7. Fit RMS of the GPS phase residuals obtained using the new estimated parameters in the ocean tide
model, instead of the corresponding FES2004 parameters.
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Figure 6.8. Difference between the fit RMS obtained using FES2004 model and the fit RMS obtained with the
new estimated ocean tide parameters, instead of the corresponding FES2004 parameters.
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Figure 6.9. 3D RMS of the difference between the GOCE orbits computed using FES2004 and the orbits
recomputed with the new parameters substituting the corresponding FES2004.
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Figure 6.10. 3D RMS of the difference between the GOCE R/D PSO [8| Visser et al. 2009; Bock et al., 2011]
and the orbits recomputed with the new parameters substituting the corresponding FES2004.
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Figure 6.11. Difference between the 3D RMS of the differences between R/D PSO and the GOCE orbits
estimated with FES2004 and the RMS of the difference between the GOCE R/D PSO and the orbits recomputed
with the new parameters.
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Chapter

Conclusions and future works

Tides are periodical phenomena affecting both the solid Earth and oceans, caused by the differ-
ential gravitational attraction of external perturbing bodies on the Earth’s surface, and by the
Earth’s response to this tide-generating potential, so they represent a time-variable part of the
geopotential.

The ocean tide height field was expressed according to different parameterizations, the main
being the classical spherical harmonic representation, characterized by a sum of partial tide
heights each corresponding to a tidal frequency, and the response analysis, in which the transfer
function or impulse response between the tidal forcing and the ocean tide height field is assumed
to be linear inside each tidal band. Concerning the orthonormalized formulation of the response
method developed by Groves and Reynolds (1975), a new computational algorithm was devel-
oped and implemented, with the aim to accurately redetermine diurnal and semidiurnal orthotide
constants necessary for the accurate redetermination of the orthotides used as basis functions in
the representation of the ocean tide height field. The results show that orthonormality require-
ments are satisfied with a precision better than 10~® for the diurnal band and better than 10~7
for the semidiurnal band up to orthotide order 50.

Tides are often considered as a noise or a correction to be removed from satellite gravity
records and from the sea level observed by altimeters, in order to study other oceanic phenom-
ena such as ocean currents. However, ocean tides represent also a signal to be recovered for
applications concerning the evaluation of gravitational perturbations acting on the Earth or-
biting satellites or for the accurate computation of ocean tide loading deformation and station
displacements.

Thanks to its extremely low altitude of about 250 km, the GOCE satellite launched by ESA in
2009 is the most sensitive to ocean tide perturbations and a test-bed for the application of classical
orbit perturbation analysis methods to estimate tidal parameters, which is the fundamental topic
of this work of research. Among the several processing strategies that can be adopted, the direct
fully-dynamic approach was chosen, consisting in performing the fully-dynamic precise orbit
determination of GOCE, accumulating the normal equations for each orbital arc and estimating
the global ocean tide parameters through a multiarc solution. The tool to perform this type of
analysis has been identified in ESA’s NAPEOS S/W system, specific for orbit determination and
prediction and parameter estimation capabilities for the Farth orbiting satellites. However, it
was necessary to upgrade the system with the entire implementation of the partial derivatives
with respect to the ocean tide harmonic parameters and the extension of the structure for the
inclusion of the ocean tide parameters characteristics: the tidal constituent, harmonic type (C
or S), the harmonic degree and order and the chirality (prograde or retrograde).

The principal and quite intensive task in order to accomplish the scientific objective of the
study was to define the set of ocean tide harmonic parameters (C’flm, S'ijlm) to which GOCE is
more sensitive.
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A global and detailed sensitivity study of the ocean tide perturbations on GOCE orbit was
carried out using as a reference the FES2004 model. First of all, the effect of several combinations
of ocean tide constituents on GOCE orbit was quantified over annual period, obtaining the
following results:

e 106 constituents of the ocean tide field FES2004, 50x50, show a total position perturbation
reaching a maximum of about 3000 m;

e 8 main constituents O1, P1, K1, Q1, N2, M2, K2, 52 of the ocean tide field FES2004,
50x50, show a total effect of about 3000 m;

e 6 main constituents O1, P1, Q1, N2, M2, K2 of the ocean tide field FES2004, 50x50 (the
two resonant constituents K1 and S2 have been discarded), show a total effect of about
400 m;

e 103 constituents of the ocean tide field FES2004, 50x50 (the three resonant constituents
K1, S1 and S2 have been discarded), show a total effect of about 600 m;

e the main constituent M2 of the ocean tide field FES2004, 50x50, shows a total effect of
about 600 m.

In addition, over the longest tidal period of 18.6 years regarding the lunar node regression,
the effect of 106 constituents of the model FES2004, 50x50, shows a maximum perturbation of
about 140 km.

Ocean tides accelerations acting on GOCE orbit were determined over a period of about 70
days using different existent ocean tide models, resulting in an RMS of the order of 107% m /s%.

Then, from the evolution of GOCE orbital elements available from a preliminary run of
GOCE precise orbit determination with NAPEOS, the mean values of the foronomic elements
and the secular rates of the angular elements were estimated through a linear least-square fit,
obtaining respectively for the argument of perigee, the longitude of ascending node and mean
anomaly values of & = —3.764817x 1077 rad/s, Q = 2.022334x 1077 rad/s, M = 1.167455x 1073
rad/s.

Using the mean orbital characteristics of GOCE (reported in Table [5.4]), the analytical spec-
tral analysis of the radial, transverse and normal ocean tide perturbations affecting GOCE posi-
tion on orbit was computed using Kaula’s linear satellite theory, up to degree and order 20 x 20
for 106 constituents of the FES2004 model, reported in Table 23l The resulting amplitude spec-
tra were plotted for the three directions for both the prograde and the retrograde case in Figures
.33, 534, 5.35], .36, 537 and .38

Together with the spectral analysis, the perturbation statistics by coefficient was also per-
formed respectively for the radial, transverse and normal ocean tide perturbations, obtaining
a maximum RMS for the radial component of about 1.323 m, for the transverse component of
363.136 m and for the normal component of 76.241 m.

Moreover, an investigation concerning the temporal aliasing problem of the tidal perturbation
frequencies affecting GOCE was necessary. In fact, GOCE does not monitor the entire global field
continually, but samples the static gravity field and its time-varying part only along its orbital
path, with a temporal resolution depending on the satellite repeat period. Following closely
a repeat period of 979 revolutions in 61 nodal days, the tidal frequencies as felt by GOCE are
aliased to periods from 122 days (twice the orbit repeat period) to almost infinite. Unfortunately,
GOCE is also a Sun-synchronous satellite, so it does not allow the complete estimation of the
diurnal and semidiurnal solar tide constituents Sy and S7 which have original periods of exactly
12 h and 24 h, because it will always sample both these constituents at the same phase every
day, so they represent essentially a bias.

Combining information deriving from the spectral analysis, the perturbation statistics by
coefficient and the determination of ocean tide alias periods, the list of the ocean tide parameters
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from harmonic degree 2 to 20 to be estimated from GOCE orbital data was identified. It must
be pointed out that the total number of parameters was limited through the application of three
different cutoffs on the perturbation RMS by coefficient, respectively equal to 5 mm for the radial
component, 2 cm for the transverse component and 1 cm for the normal component, both in
the prograde and retrograde case. The resulting total number of parameters, to be estimated
through a multiarc solution, is 490 and they are listed in Table [5.7]

GOCE orbital data were processed in daily arcs from the 1st November 2009, corresponding
to the beginning of the operational phase, until the 31st May 2011 and the fully-dynamic POD
was successfully computed for a total of 472 days (see Figure [6.2)). However, only arcs with a
post-fit RMS of the GPS phase observations residuals lower than 8 mm were considered for the
multiarc processing, so a total of 431 days were used to solve for 490 ocean tide parameters.

The obtained preliminary results show that the 56% of the total number of parameters has
a difference below 1 cm from the FES2004 model (see Figure [6.3]), while the relative error of the
estimated parameters with respect to the corresponding FES2004 parameters lower than 1 for
about the 16% of the total (see Figure [6.5]), meaning that they are of the order of magnitude
of the FES2004 parameters. Though a large part of estimated parameters shows quite signifi-
cant discrepancies from the values of the FES2004 model, it must be considered that they are
recovered differently from the hydrodynamic with assimilation FES2004 model, being the result
of a densely-parameterized, fully-dynamic orbital solution and tend to absorb errors due to the
mismodeling of the force field acting on the satellite.

Then, the impact of the estimated parameters on the GOCE precise orbit determination was
evaluated. GOCE orbital data were reprocessed from the 1st November 2009 to the 31st May
2011, initializing the ocean tide model with the estimated parameters, if present, and maintaining
otherwise the FES2004 parameters. The post-fit RMS of the GPS phase residuals obtained with
the new ocean tide model has a mean value of 6.5 mm, and it is noteworthy that the difference
between the post-fit RMS obtained with the FES2004 model and that resulting from the new
ocean tide model indicates a mean improvement of about 0.6 mm in for the 96% of the analyzed
arcs and greater than 1 mm for the 16%, few days reach a difference of 2 mm.

Finally, the orbits obtained with the estimated parameters are compared with the orbits
obtained employing the FES2004 model and the official GOCE R/D PSO. The 3D RMS of
the difference between the orbits computed using FES2004 and those recomputed with the new
parameters shows a mean value of 2.5 cm (see Figure [6.9), while the 3D RMS of the difference
with respect to the official R/D PSO has a mean value of 4.9 cm. The difference between the
3D RMS of the orbit residuals between the R/D PSO and the GOCE POD with FES2004 and
the RMS of the difference between the R/D PSO and the GOCE POD with the new parameters
results to have a mean improvement of 0.9 cm (see Figure [6.11]).

As a future work, further POD-Multiarc runs are certainly necessary, together with the re-
finement of the list of parameters to be estimated, removing excessively ill-estimated ocean tide
parameters which could wrongly absorb tidal signal, redistributing erroneously the remaining
signal on the other parameters, and then introducing new parameters where appropriate. The
model parameter tuning and investigation is essential to adjust the best combination of parame-
ters to be estimated. Moreover, an extension of the data set to much longer time-period should
allow a substantial improvement of the obtained results. Indeed, the task has proven very in-
tensive and challenging, but the partial results obtained are encouraging and a motivation for
future analysis.
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Appendix

Lag index limits and symmetry properties ot
the orthotide coefhicients

The number of unknown coefficients U, and V,,; associated with the orthotide of any order n,
as expressed by equation (B.I15]) in terms of an arbitrary value K of the maximum lag index,
is N = 2(2K + 1). However, according to the orthonormality relation (B.I16]), the number of
equations of condition is (n+ 1). If we set K = n = i the plot of these two integer functions
shown in Figure [A.T] reveals that the number of coefficients to be determined is always greater
than the number of available equations, i.e., the system to be solved is underdetermined. It is
then expedient to use K as a free parameter to limit the number of unknowns depending on
the order n of the orthotide in such a manner as to generate a non-overdetermined system of
equations ((p(t)¢m(t)) = dpm, for m =0,1,...,n.
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Figure A.1. In black (continuous line with diamond marker): number of equations N = n + 1 to be solved for
each system of mean displaced products versus the order represented here by the index ¢; in blue (dash-dot line
with square marker): number of coefficients N = 2(2K + 1) free of constraints and comprehensive of negative lag
indeces versus the maximum lag index K, here represented by 7; in magenta (dashed line with plus sign marker):
number of coefficients N = 2(K + 1) to be determined versus the maximum index K, here represented by i, after
the imposition of symmetry conditions allowing the exclusion of negative lag indeces; in red (dash-dot line with
circle marker): number of coefficients N = 2(|(n + 2)/4] + 1) to be determined versus the order represented by
the index i, after the imposition of the constraint (A69) on K; in green (continuous line with cross marker):
number of non-zero coefficients N = |n/2] + 1, equivalent to the number of effective equations to be solved for
each system of mean orthotide products.

Following Groves and Reynolds (1985), it is convenient to drastically reduce the number of
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coefficients to N = 2(K + 1) by imposing the following relations of symmetry between orthotide
coefficients of opposite parity
Un—i = (—1)"Upg, (A1)
Vn,_k = _(_1)nVnka (AQ)

which effectively eliminate the negative lag indices. Then the expression for the generic orthotide
of order n becomed]]

Cn (t) = Unoa(t) + Viob (¢) (A.4)

K
+>  Unila(t + kAL) + (—=1)" a(t — kAL))
k=1

+3 " Vi [b (¢ + kAL) — (—1)" b (t — kAL)].
k=1

As Figure [A.T] shows, the slope of the relation between the number of coefficients and the
maximum lag index K is less steep. Now we choose the maximum lag index K in order that is
the maximum value allowing for an underdetermined or determined system.

Examining the problem in more detail, we observe that for order n = 0 and maximum lag
K =0, the system consists of only one equation

(Co(t)Co(1)) = (Ugo + Vio)vo = 1, (A5)

so there must be only one unknown and this implies that either Uy or V(o must be discarded. We
choose to set Vo = 0 because in the orthotide expression ([B.115]), V., terms multiply b(t + kAt)
terms, which are built as combination of sine functions, while it can be preferable to have cosine
functions. The solution is then Uyy = 1/1/vg so that

Co (t) = Uogoa (1) . (A.6)

I
M=

Cn(t) [Unka (t + EAL) + Vorb (8 + kKAL)

ES
Il

—-K

[
M=

[Unia (t + kAL) + Vaib (¢ + kAL))

x>
Il

0

-1
+ Y [Unka (t+ kAL) + Vorb (t + kAL)]
k=—K

= > [Unka(t + kAL) + Vo (t + kAL)]

K
+ D [Un,—ka(t — KAL) + Vo b (t — kAL)]

+ (1) [Unga (t — kAL) — Vigb (t — kAL)]
= Unoa (t) + Vi0ob (t)
+> {Unk [a(t+ kAE) + (—1)" a (t — kAt)]

F Vi [b(t + kAL) — (=1)" b (t — KAL)} . (A.3)
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For order n = 1, the system has two equations and the maximum lag index must be K =0
so as to have only two unknowns. In fact, the corresponding system is then

(C1(t)Co(t)) = (UroUoo + VioVoo)to = 0, (A.7)
(GOG) = (Ul + Vio)vo = 1. (A.8)
Using the known values of Vg9 and Uy, the system simplifies to
vV ¢oUio =0, (A.9)
(UR + Vip)o = 1, (A.10)

which admits the solution Ujg = 0, Vig = /1/¢g. Note that Ujg = —Vyp and Vig = Ugyo.
Therefore

G (1) = Viob (2). (A.11)
or
G (t) = Uoob (t). (A.12)
For order n = 2 we have a system of three equations, and the maximum lag index can be
taken as K = 1. In this case there are three coefficients and the system

(C2(t)Co(t)) = Uoo (U200 + 2Ua1¢1 (A.13)
+2Va1x1) =0, (A.14)
(C2(t)C1(t)) = VioVaoiho = 0, (A.15)
(G(0)G (1)) = Usytbo + 203 (o + t2)
+ 2V (o — 2) + 4Uz0Varxa (A.16)

+ AU U101 + 4U21 Vo1 x2 = 1.

is well determined. Again, using the previous solutions this simplifies to

V1o (Uaotho + 2Un by 4 2Varx1) = 0, (A.17)
VhoVao = 0, (A.18)
Usotbo + 2U31 (to + ¢2)

+2V51 (o — 4ha) + 4Uz0Varxa (A.19)

+ AU U101 + 4U21 Vo1 x2 = 1.

The second of these equations is decoupled from the other two and provides Voy = 0. The
other two equations still contain the three unknowns Usy, Us1, and Vo1. We eliminate one by
setting Vo1 = 0. Then Uy and Uy follow from egs. (A.17) and (A.19)), which now read

Uaotbo + 2U21¢1 =0, (A.20)
Uzt + 2U3, (Yo + b2) + 4UxUs19hy = 1. (A.21)
The orthotid of order 2 is then
G (t) = Uxa (t) + Un [a (t + At) + a (t — At)]. (A.23)
*The general orthotide at n = 2 has the expression
Co(t) = Us—1a(t— At)+ Ve,_1b(t — At) + Usoa () + Vaob (£)

+Uza (t + At) + Varb (t + At)
= Una(t— At) — Varb(t — At)
+Uz0a (t) + Vaob (t) + Uzra (t 4+ At) + Var b (t + At)
= Usoa (t) + Vaob (t) + U21 [a (t + At) + a (t — At)]
+Var [b(t+ AL) — b (t — At)]. (A.22)
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For order n = 3 we keep K = 1 and write the following system

(C3(t)¢o(t)) = UnoUsotho = 0, (A.24)
(G()C1 (1) = Vio(Vaotho + 2Va1h1 — 2Usz1xa) = 0, (A.25)
(¢3(£)¢2(t)) = 2Us1Uz0th1 = 0 (A.26)
(GG (1)) = Vitwo + 2V31 (o + 42)

+4V3o Va1 = 1. (A.27)

Substitution of known quantities, which we also indicate with the notation [[]], yields

V1/40Usy =0, (A.28)
V1o (Vatho + 2Va11 — 2Us1x1) = 0, (A.29)
[[2U2091]] Us1 = 0 (A.30)
Voo + 2V (o + v2) + 4VaoVargy = 1. (A.31)

Here, the first and the third equations are decoupled from the others and provide Uzg = 0 and
Us1 = 0. Note that we can write Usg = —V5p and U3y = —V51. The system then further simplifies
to the form

Vaotbo + 2V3191 = 0, (A.32)
Voo + 2V (tho + o) + 4VaoVarehy = 1, (A.33)

which is identical with the system ([A.20)-(A.21)) under the identifications V3 «— Uy and
V31 +— Usy. This implies that

Vag = Uo, (A34)
Va1 = Ua, (A.35)

or that the system of orthotide order 3 has the same solution as the system of order 2 under an
appropriate change of variables. The

Q3 (t) = Vsob () + Var [b (¢ + At) + b (t — At)], (A.37)

or

C3(t) = Ub (t) + Uan [b(t + At) + b (t — At)]. (A.38)

For order n = 4 and again K = 1 we have

(Ca(t)Co(t)) = Uoo(Usotpo + 2Us191 (A.39)
+2Vix1) =0,
(Ca(t)¢i(t)) = VioVaotho = 0, (A.40)
(Ca(t)C2(t)) = Ua0(Usoto + 2Un¢1 + 2Vaixa) (A.41)
Generically,
(3 (t) = U37_1a (t — At) + Vg,_lb(t — At) + Uspa (t) + V30b (t)
+Us1a (t —+ At) + V31b (t -+ At)
= 7U31a(tht) +V31b(t*At)

+Usoa (t) + Vaob (t) + Usia (t + At) + Vaib (t + At)
= Uspa (t) + Vaob (t) + Usi [a (t + At) — a (t — At)]
+Va1 [b(t+ At) + b (t — At)]. (A.36)
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+ U21(2Us0%1 + 2Us1100 + 2U41¢2
+2Viix2) =0,

(Ca(t)Gs(t)) =0,

(Ca(t)Ca(t)) = Uorho + 2UF (o + 12)
+ 2V (Yo — v2) 4+ 4UsoUs1h
+4UsoVaix1 +4Un Vi xe = 1.

(A.42)

(A.43)

(A.44)

The second equation leads to V9 = 0. Note that equation (A.43)) is identically satisfied, which
brings the effective number of equations down by one unit to 3, and this justfies having kept the

maximum leg index K to 1. The system@ of three equations in three unknowns is then

Usoto + 2Un1 +2Vixa =0,

[[Ua0]] (Usotpo 4 2Us191 + 2Via1x1)

+ [[Ua1]] (2Us0%1 + 2Us17p0 4 2Var x2) = 0,
Uioto + 2051 (o + ) + 2V3 (o — ¢2)

+ 4UsoUn1 + 4UsoVar x1 + 4UnViaxe = 1,

(A.49)

(A.50)

(A.51)

where we have eliminated Uyg, Usg and Us; being known quantities. The solution then provides

values for Uy, U1, Va1.
The orthotide of order 4 is thenﬁ

@ (t) = Uya (t) + Uxy [a (t + At) +a (t — At)]
+ Vi [b(t+ At) —b(t — At)].

For order n = 5 we can still keep K = 1. The corresponding system is

(C5(t)Co(t)) = UnoUsoto = 0,

(G(1)C1(t)) = Vio(Vsovo + 2Vs191
—2Us1x1) = 0,

(G(1)C2(t)) =0,

(G5(1)¢3(t)) = Vao(Vsovo + 2Vs191 — 2Us1x1)

\/W(Uuﬂﬁo + 2Un 1 + 2Vaix1) = 0,

V/1/doViotho = 0,

Uz0(Usoto + 2Us191 + 2Va1x1)

+ U21(2Us0%1 + 2Us1%0 + 2Us192 4+ 2Va1x2) = 0,
Uioto + 22U (o + 1b2) + 2V (Yo — 12) + 4Us0Us19n
+ 4UsoVarx1 + 4Un Var x2 = 1.

°In general,

Ca(t) = Us—1a(t—At)+ Va,_1b(t — At) + Usoa (t)
+Vaob (t) + Usra (t + At) + Varb (t + At)
= Usna(t— At) — Varb (t — At) + Usoa (t) + Vaob (¢)
+Usia (t + At) + Vb (t + At)
= Usoa (t) + Vaob (t) + U1 [a (t + At) + a (t — At)]
+Var [b(t+ At) —b(t — At)].

(A.53)

(A.54)

(A.56)

(A.52)
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+ V31(2Vs011 + 2Vs190 + 2Vs1902 (A.57)
—2Us1x2) = 0,
(Cs(t)Ca(t)) =0, (A.58)
(G ()G (1)) = Vaytho + 2V (vho + ¥2) + 2U3 (Yo — tha)
+ 4V50Vs1¢1 — 4Vs0Us1x1 (A.59)

—4Us1 Vs1x2 = 1.

The first equation leads to Usy = 0. Note that we can write Usg = —Vy9. The third and the fifth
equations are actually identities and thus lower the number of equations by 2. Using the previous
solutions the system reduces to

Vsoto + 2Vs1¢1 — 2Us1x1 = 0, (A.60)

Va0(Vsovo + 2Vs1901 — 2Us1x1) (A.61)

+ V31(2Vs0t1 + 2Vs1¢ho + 2Vs190e — 2Us1x2) = 0,

Voo + 2Vi (o + 1b2) + 2U%; (o — )

+ 4V V191 — 4VsoUsix1 — 4Us1 Vi xz2 = 1. (A.62)
Now this is a system of 3 equations in the three unknowns Usi, V59 and Vs1. The system is

identical with the system of order 4 (A.49)-(A.51)) under the identifications Us; +— —Vji,
Vso «— Uy and Vi1 < Uyy. Therefore we deduce that

U = —Va, (A.63)
Vso = Uy, (A.64)
Vs1 = Uy (A65)

The system of order n = 5 therefore has the same solution as the system of order n = 4 under an
appropriate change of variables. This again justifies having kept the maximum lag index K fixed
to 1. IN FACT, THE MAXIMUM LAG INDEX K REMAINS THE SAME UNTIL ALL THE COEFFICIENTS
U,V AVAILABLE WITH THAT K ARE USED TO DETERMINE THE COEFFICIENTS OF SUBSEQUENT
ODD ORDERS. WHEN ALL THE COEFFICIENTS OF AN EVEN ORDER HAVE BEEN USED TO
DETERMINE THE COEFFICIENTS OF THE SUBSEQUENT ODD ORDER, THE MAXIMUM LAG INDEX
K MUST BE INCREASED BY 1 AND, CONSEQUENTLY, ALSO THE NUMBER OF COEFFICIENTS TO
BE DETERMINED.
The orthotide of order 5 is ther[d

G5 (t) = Vsob (t) + Usi [a (t + At) — a(t — At)]

+ Vs1 [b(t+ At) + b (t — At)], (A.67)
G (1) = Usob (t) — Var la (t + At) — a (t — At)]

+ U [b(t+ At) +b(t — At)]. (A.68)

In general terms,
G (t) = Us,—1a(t— At)+ Vs _1b(t — At) + Usoa (t)
+Vs0b (t) + Usra (t + At) + Vs1b (t + At)
= —Usia(t — At) + Vs1b (t — At) + Usoa (t) + Vsob (t)
+Usia (t + At) + Vs1b (t + At)
= Usoa (t) + Vsob (t) + Us1 [a (t + At) — a (t — At)]
+Vs1 [b(t+ At) +b(t — At)]. (A.66)
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n

Maximum Lag Index K

| | | | | | | | |
(% 1 2 3 4 5 6 7 8 9 10
Order n

Figure A.2. Relation between the maximum lag K and the orthotide order n.

The analysis can be continued for n = 6 (where the maximum lag index increases to K = 2)
and beyond, but we can already draw the fundamental conclusions. We can state in fact that

1. The maximum lag index K is a function K, of the orthotide order n. It starts at 0 for
n = 0, increases by 1 for n = 2,6, 10, ... and (see Figure [A.2)) is thus given by

Ky = [(n+2)/4]. (A.69)

K,, is the minimum value such that the number N = 2 (K, + 1) of coefficients at order n is
compatible with a non-overdetermined system of equations (recall that the order of the system
is equal to the number of available equations of constraint). It follows that the total number of
coefficients (both zero and non-zero) at orthotide order n is

N:2Q”I2J+1>. (A.70)

2. At each order n there are |(n + 1) /2] products of opposite parity and they all generate
either identities, or trivial equations (i.e., equations directly implying either Us,y10 = 0 or
Van,0 = 0). Thus the number N, of effective equations (those generating the non-zero coefficients)
becomes

1
No=(n+1)— V; J - LSJH; (A.71)
3. It has been observed that at each odd order the solution can be directly expressed in terms

of the previous, even order, i.e., we can express the orthotide coefficients of order 2n + 1 as a
function of the orthotide coefficients of order 2n as

Vont1k = Uz, (A.72)
Usni1e = —Vonk (A.73)

Then orthotides are always of even order and they assume the expression, for n =0, 1, ...
Con (t) = Uanoa (t) + Vanob (t)

K
+ 3 Usngela (t + KAL) + a(t — kAL)]
k=1

K
+ > Vo [b(t+ kAL) = b(t — kAL)]. (A.74)
k=1

Con (t) = Uspoa(t) + Vanob(t)

"For order n = 6, the maximum lag is K = 2 and the system consists of four equations which can be solved
for the coefficients Usg, Us1, Us2, V1, while Vo = 0 and Vi is discarded.
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K K
+ Z UQn,k a]i_ (t) + Z VQn,k b]; (t) 9 (A75)
k=1 k=1
where
af (t) = a(t+kAt)+a(t—kAt), (A.76)
b, (t) = b(t+kAt) —b(t — kEAL). (A.77)

4. Recalling that we set Voo = 0, these relations can also be used to write that, for each
orthotide order n > 0,
Uzn+1,0 = Van,o = 0. (A.78)

5. Examination of the results obtained for the solutions of orders n = 2,4 and beyond
establishes the property according to which the V' functions either terminate at maximum lag
index K, or at the previous index K,, — 1, respectively for orthotides of order n =44, i =1,2, ...
and orthotides of order n = 4¢— 2, i = 1,2, ... This means, in practice, that the ordered sequence
of U and V coefficients associated with (even) orthotide orders n alternately terminates with the
pair Uy, , Vak, for n = 4,8, ..., or with the single coefficient U, g, for n = 2,6, ..., the coefficient
Vak, being identically zero in this case.
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