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Abstract

This dissertation presents efficient implementations of iterative X-rays im-
age reconstruction methods for the specific case of three-dimensional tomo-
graphic imaging from subsampled data. When a complete projection dataset
is not available, the linear system describing the so-called Sparse Tomogra-
phy (SpCT) is underdetermined, hence a Total Variation (TV) regularized
model is considered. The resulting optimization problem is solved by a Scaled
Gradient Projection algorithm and a Fixed Point method. They both are
accelerated by effective strategies, specifically tuned for a SpCT framework
where fast reconstructions must be provided in short run time, facing a very
large size problem. Good results on digital simulations attest the reliability
of the model-based approach and of the proposed schemes. Accurate re-
constructions from real medical datasets are also achieved in few iterations,
confirming the feagibility of the proposed approaches to sparse tomographic
imaging.

Keywords: sparse tomography, Total Variation, iterative solvers, inverse
problems, X-ray medical imaging.
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Ricostruzione di immagini tomografiche 3D a
raggi X da dati sottocampionati
con metodi TV-based

Elena Morotti

elena.morotti1988@gmail.com

Sommario

Questa tesi propone 'implementazione efficiente di due metodi iterativi per
la ricostruzione di immagini tridimensionali di tomografia a raggi X, nel caso
specifico in cui il volume debba essere ottenuto da dati sottocampionati.
Quando le proiezioni non possono essere acquisite completamente, la risul-
tante tecnica di Tomografia Computerizzata Sparsa (SpCT) é descritta da
un sistema lineare sottodeterminato, quindi ne riformuliamo il modello ag-
giungendo il termine di Variazione Totale (TV). Definiamo pertanto un prob-
lema di ottimizzazione e lo risolviamo con un algoritmo di Gradiente Scalato
Proiettato e uno di Punto Fisso. Entrambi i metodi sono stati accelerati con
valide strategie, calibrate appositamente per la SpCT. In questo contesto é
infatti necessario ricostruire un’immagine in brevissimo tempo, risolvendo
un problema di ampie dimensioni. Alcuni test di simulazione forniscono
buoni risultati che attestano la validita sia dell’approccio model-based che
dei metodi proposti. Accurate ricostruzioni sono state ottenute a partire da
proiezioni mediche reali, in poche iterazioni: ci6 conferma ’adeguatezza di
quanto proposto per la ricostruzione di immagini nel campo della SpCT.

Parole chiave: tomografia sparsa, Variazione Totale, metodi iterativi, prob-
lemi inversi, imaging medicale a raggi X
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Introduction

During the 1970s, there was an enormous step towards the advance of di-
agnostic possibilities in medicine and Computed Tomography (CT) evolved
into an indispensable imaging method in clinical routine, because it was the
first method to acquire images of the inside of the human body that were not
biased by superposition of distinct anatomical structures. However, research
in the field of CT is still as exciting as at the beginning of its development
during the 1960s and 1970s. Due to its easy use, clear interpretation in
terms of phyisical attenuation values, progress in detector technology, recon-
struction mathematics, and reduction of the radiation exposure, Computed
Tomography will expand its established position in the field of 2D and 3D
radiological imaging.

Nowadays, three-dimensional reconstructions would be helpful in many clin-
ical and industrial applications, but a complete projection dataset is not
always available. For instance, in mammography and intraoral dental imag-
ing, the projections can be taken only from a restricted angular range which
is significantly smaller than 180 degrees: this leads to a limited angle to-
mographic problem. In applications like surgical imaging, projections are
available from all around the body, but the radiation dose per patient is
minimized by reducing the number of X-ray projections. The image re-
construction from the above types of incomplete data defines the Sparse
Tomography (SpCT) problem. A well-known example is the Digital Breast
Tomosynthesis (DBT) technique, that is an emerging alternative to mam-
mography for breast cancer screening. It is characterized by both limited
range and few views, nevertheless it allows good quality volumetric recon-
structions.

From a mathematical point of view, any CT process can be modeled as a
linear system and the imaging reconstruction consists in solving an ill-posed
inverse problem. The resolution of this problem is complex in SpCT: the
system is underdetermined and has big dimensions, the matrix is sparse
and ill-conditioned and it does not have a specific structure. On the other
hand, a main driving factor for the development of SpCT imaging systems
has been the advent of model-based reconstruction approaches, proposed in
compressed sensing for signal processing applications. A multitude of recon-
struction formulations exploiting some forms of sparsity on the object have
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been proposed and theoretical results promise accurate reconstruction even
from heavily undersampled data. At the same time, iterative fast algorithms
have been developed for variational imaging in deblurring and denoising.
Their potential for successful application to CT problems has been already
demonstrated empirically, but not to SpCT cases.

In particular, in SpCT problems the subsampled data do not contain suf-
ficient information to perfectly come back to the scanned object, hence
successful reconstructing softwares require additional a priori information,
together with denoising tools. In addition, an accurate solution must be
provided in short time: commercial systems compute volumetric images in
less than one minute, thus a reconstructing algorithm must approach the
convergence solution in few iterations.

The contribution of this PhD thesis is the proposal of a model-based
framework to severe SpCT imaging problems (like the DBT one) and its
resolution by means of two accelerated algorithms, with a commercial-like
approach. In particular, the SpCT process is modeled as an optimization
problem with a data-fitting term and the Total Variation as prior, to en-
hance contrasts among the image objects.

The main topic of this work is the efficient implementation of two accurate
solvers: the Scaled Gradient Projection (SGP) and the Fixed Point (FP)
methods. The former is a gradient descent method, equipped with a specific
scaling strategy and a step-length rule to accelerate the descent to an op-
timal solution in its earlier iterations, without increasing its computational
cost: it preserves its general framework and may be applied to a larger set
of SpCT formulations. The latter is a quasi-Newton algorithm with a smart
approximation of the Hessian of the TV operator: it is fast, not computa-
tionally expensive and it requires little memory footprint. Both solvers have
a linear convergence rate, but in practical applications they achieve high
quality results in very few steps.

The performances of the SGP and FP methods are tested both on synthetic
problems and on real datasets, mainly acquired by a DBT device. The it-
erative reconstruction algorithms are always evaluated on short temporal
windows: we aim to compare the proposed solvers with practical needs of
commercial softwares, hence we are interested in fast recontructions and
not in convergence solutions. Good results on digital simulations attest the
reliability of the model-based approach and of the methods. Accurate re-
constructions from real medical datasets are also achieved in few iterations,
confirming the feasibility of the proposed approaches to sparse tomographic
imaging.

The thesis is organized as follows. Chapter [I| concerns the historical
evolution of tomographic devices up to the modern example of sparse CT
DBT technique. It further introduces physical and mathematical theoretical
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notions describing the CT data acquisition process, for X-ray imaging. In
chapter [2| the SpCT linear system is derived from the discretization of the
continuous CT model and a detailed study about the matrix computation
is presented. After that, the model-based optimization problem is defined,
for the specific case of sparse tomography. In chapter 3| the state-of-the-art
of iterative solvers for tomographic imaging is presented and the SGP and
FP methods are shown with accelerating strategies, properly tuned for the
prefixed model. Both theoretical and implementing remarks are discussed.
In chapter 4| medium size SpCT problems are considered. Here we compare
the algorithms performances both on 2D real data and on 3D simulations,
reflecting different tomographic settings and applications. Then we focus
on 3D breast imaging reconstructions from real DBT datasets, in chapter
Finally, chapter [f] collects some concluding remarks.
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Chapter 1

Basis of Computed
Tomography and Digital
Breast Tomosythesis

Medical imaging was born not long after Wilhelm Rontgen discoverd X-
rays in 1895, when scientists realized X-ray capability of crossing objects:
for decades 2D planar images (projection radiographies) have been used to
investigate the inner parts of human bodies. This conventional X-ray imag-
ing suffered from the severe drawback that it only produces two-dimensional
projections of a three-dimensional object: it results in a reduction in spatial
informations, as one projected image represents an averaging.

In 1917, a well-known paper by Radon provided the mathematical foundation
for tomographic imaging and, in the 1920s, the desire to undo the averaging
process of the conventional X-ray radiography led to the first tomographic
concept that was considerably influenced by the physician Grossmann, who
was the first to image one single slice of a body in 1934. Only in the 1970s,
thanks to the advent of the computers, the Computed Tomography (CT)
revolutionized the diagnostic imaging by allowing the three-dimensional ori-
entation of anatomy to be appreciated in transverse sections. In fact, as the
word tomography itself suggests (from the ancient greek, témnd (or témos)
that means "to slice” and from grdphd that means "to write” or "to draw”), a
computed tomographic system digitally writes a cross-sectional image (made
of one or more virtual "slices”) of a specific object. To performe classical
CT, many projections of the same slice must be acquired from many an-
gled views, in a round trajectory, according to the studies of Radon. Such
a setting allowed CT technique to provide some important advantages over
conventional radiography: for instance, it permitted depth localization and
removed the visual chaos due to the anatomical tissue overlapping. In addi-
tion, CT improved the constrast of local structures, by means of a dynamic
range in the visualization of a single slice; nowadays it also allows volumetric

5



6CHAPTER 1. BASIS OF COMPUTED TOMOGRAPHY AND DIGITAL BREAST TOMOSYTHESIS

investigations.

From the primordial rare machineries to the most modern and common
gantries that we can now find in any hospital (pictures in figure , many
studies have been done by different research groups, collecting engineers,
physicists, mathematicians and computer scientists all together, in order to
improve both the technologies and the reconstructing softwares.

Figure 1.1: On the left: a famous picture of Mr. Hounsfield and his first
prototype of head CT machinery. On the right: modern CT device, made of
a gantry (a donut-shaped open structure) and a patient-bed that can slowly
move through the gantry.

Nowadays, many tomographic devices have been designed to fit different

medical needs and, on the other hand, interesting technical, antropomor-
phic, forensic and archeological as well as paleonotological applications of
CT have been developed too [55], [6]. As a consequence, the CT technique
evolves into new inquiring forms continuously and all these applications fur-
ther strengthen the CT methodology as a generic diagnostic tool for non-
destructive material testing.
Recently, a growing interest is devoted to the so-called Sparse Computed To-
mography (SpCT) which aims to produce clear visualizations making use of
little radiation dose. In medical field, SpCT allows to apply CT techniques
to a wider class of examinations, including screening tests: safer routines can
be led without compromising the reliability of their diagnosis.

In this chapter, a fast overview on the historical evolution of the CT
devices (in section introduces to section where the Digital Breast
Tomosynthesis technique is presented as a famous example of Sparse To-
mography application. In section [I.3] basis physical concepts are shown to
describe the tomographic process of X-ray absorbtion and in we summa-
rize all the steps of the imaging reconstruction process.
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1.1 Historical evolution of the tomographic tech-
nique

Figure [I.2) shows the schemes of the four main generations of CT scans,
developed since the 1970s for the two-dimensional tomography.
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(a) First generation (b) Second generation
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Figure 1.2: Tomographic device sketches in their evolution, from the primor-
dial technology by Cormack and Hounsfield, to the most modern solution for
the 2D CT systems.

The first commercial machinery was designed by the physicist Allan Cor-
mack and the engineer Godfrey Hounsfield and it was installed in London in
1971; the two inventors won the Nobel Prize for Medicine in 1979, for such a
revolutionary innovation. The first prototype was equipped and based on a
naive technology: only a pencil beam was emitted from the X-ray source and
detected by one sensor behind the object to scan; then the source-detector
couple had to translate in order to project the whole object, as shown in
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figure After that, the synchronized couple had to rotate on a circular
trajectory and perform a further complete projection, and so on up to a full
tomographic scan over 180 degrees. The rotation angle between two subse-
quent projections was very small, hence the whole scanning process took up
to 4-5 minutes, while the first reconstruction of a 13 mm two-dimensional
brain slice took around 9 days [26].

The second CT generation (figure was powered with a 3-20 degree
wide fan beam, whose attenuation was measured on several detector cells
simultaneously. Before wheeling the source-detector pair, the translation
phase was still necessary to cover all the slices, hence a scan now took 15-30
seconds. However, the measuring field was still small and due to their long
ascquisition times, the first- and second-generation scanners use was limited
to the imaging of the cranium.

The main goal of further developments was to reduce the acquisition time
down to less than 20 seconds, in order to acquire an image of the abdomen
with minimal motion error while the patient holds his breath. In the 90s, a
third generation of devices was born, equipped with a wide fan beam (40-60
degrees) that can scan all the object in one only shot (figure . Of
course, a larger detector was installed, with up to 800-1000 recording cells.
No translation is required and the scanner can rotate continuously, hence
the total acquisition became very fast (around 1 second).

Thanks to the technological support, in the fourth generation scans thou-
sands of detector units surround the patient completely, hence only the X-ray
source needed to rotate and the complete tomographic process requires less
than 1 second (figure [L.2(d)).

On the other hand, when shorter acquistitions are required, the concept of
moving sampling systems must be left behind entirely. In 2000s one new ap-
proach was introduced on medical markets and it was based on electron beam
computerized tomography: this type of CT was developed for cardiac imag-
ing which is characterized by movement artifacts, due to the heartbeats. It
represents the fifth generation of scanners. Generally speaking, starting from
the third and the fourth generation prototypes, many medical CT scanners
have been designed with different configurations and geometries in recent
years, in order to fit better with specific areas of the human anatomy or to
reconstruct wider human sections.

Devices for 3D imaging

A new target of CT is to reconstruct not only a slice, but a whole volume
of human anatomy.
Even if there has not been so far a common definition of the generations
for CT machineries, we can identify as a sixth generation those scanners
equipped with a slip-ring technology [42]. In this case the energy is provided
via sliding contacts, in the so-called gantry, and the rotation frequency is
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of two rotations per second (hence the name "sub-second scanners”): these
devices are commonplace nowadays. In particular, the slip-ring innovation
enabled a new acquisition technique: along with a continuous motion of
the patient table through the sampling unit, it became possible to measure
data in the shape of a spiral and get projections of a larger slice (spiral CT
scanners). Moreover, this methodology has been evolved into a multislice
projection system to perform the helical CT: as shown in figure the X-
ray tube can now emit 4-16 fan beams in a single shot hence, moving the
patient towards the gantry, a complete human scan can be performed in olny
40 seconds. This type of machinery has been introduced into clinics in 1998
and supplied first volumetric images.

Figure 1.3: Sketches of the multi-slice and the helicoidal CT scanners.

A seventh generation of CT scanners can be identify with the one equipped
with a cone-shaped X-ray beam and a two-dimensional detector, as reported
in figure [[.4] In this case, the beam is wider than in the multi-slice one and
every projection consists in a two-dimensional recorded image: the source-
detector couple rotates only once to get all information we need to image a
volume.

. i Flat panel
Axis of rotation detector

Object | S—
» |
/ ' v
a ,~ /
» | -
£ -~ |
X-ray ; \
source Trajectory

Figure 1.4: A sketch of the seventh generation model for CT scanners, char-
acterized by a conical beam and a two-dimensional recording element.
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1.2 An example of sparse tomographic technique:
the Digital Breast Tomosynthesis

Motivated by an increasing focus on the potentially harmful effects of

CT radiations, a recent trend in CT research is to develop low-dose imaging
techniques. In classical CT, the angular step Ay that occurs between two
consecutive projection angles is typically lower than one degree. One way to
reduce the total amount of radiation consists in increasing Ay: as a conse-
quence, the final image must be computed from a smaller projection dataset
and this characterizes the Sparse Tomography (SpCT) technique. This ap-
proach is widely used not only in medicine but also in materials science, to
prevent damage to the subject under study, due to excessive radiations.
When a further dose reduction is required, one possible solution relies on
decreasing the scanning angular range, from the classical [—m, 7] to a signif-
icantly smaller range [-©,+0] where 0 < © < 7. In other tomographical
applications, the human anatomy does not allow a complete circular motion
to the X-ray source, thus the use of a reduced range is mandatory. The
resulting technique is called Tomosynthesis: it represents a crucial class of
SpCT cases because many projection views are missing, with respect to the
classical CT case.
By such a reduction of the X-ray exposure for a patient, low-dose imag-
ing has enabled new applications that were prevented by the high-dose lev-
els [56l [78]: nowadays this methodology has many applications in medical
imaging such as in vascular, dental, orthopedic, musculoskeletal, chest and
mammographic imaging. In particular, the results in chapter [5|are related to
the Digital Breast Tomosysnthesis (DBT) technique, which has been recently
developed from the seventh CT device generation as a low-dose tomographic
alternative to the mammographic screening test [74] 16l 59].

According to American Cancer Society’s recent studies, breast cancer is
the most common tumor among women today and a serious threat world-
wide. In Italy, for instance, every "healthy” woman between 40 and 69 years,
is called by the National Health System to performe a breast screening test
every two years, because an early detection of the cancer can be crucial
for its eradication. Mammographic screening has been proven effective in
significantly reducing breast cancers mortality rates in the screened popu-
lation; nevertheless 11% to 25% of tumors are overlooked by radiologist on
the initial mammogram and up to 15% of palpable cancers are missed by
mammography [25]. In fact, many important factors affect lesion detectabil-
ity on X-ray imaging, such as breast positioning, tumor small size and low
density, minimal distortion of healthy breast architecture and breast den-
sity, too. Moreover, the mammographic detection of a cancer suffers from
the obscuring effect of overlapping breast tissue, that is due to the projection
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onto a flat final diagnostic image of all the breast volume: the cancer can
be masked by sourrounding overlapping structures and not standed out, es-
pecially in woman with radiographically dense breasts. Magnetic resonance
imaging has been shown to be superior to mammography in dense breasts,
but its routine use is often prevented by its high cost, time requirement and
limited specificity.

Nowadays, the mammographic test is not recommended as breast cancer
screening anymore, while in 2011 the Food and Drug Administration (a fed-
eral agency of the United States Department of Health and Human Services)
approved the DBT for that in the US [10]: the Digital Breast Tomosynthesis
can provide a higher diagnostic accuracy, offering better detection rates, and
its dose is reported to be approximately equal to that of only a two view
digital mammography [32].

Z )
| — Compression
Y, Breast — © / panels
X Detector _ H__; Y
(zy-plane)

Figure 1.5: Sketches of a breast screening machinery. The volume is scanned
from few angled positions while the X-ray source moves over it along an
arc; the breast is compressed by two plastic panels and a flat wide detector
element lies under, on a plane orthogonal to the vertical z—axis.

A modern DBT machinery is presented in figure In DBT, like in
conventional mammography, breast compression between two plastic pan-
els is used to improve image quality by fixing the breast and preventing its
movements. Such impaction is parallel to the detector plane: the detector,
in particular, is flat. It is stationary for all the scanning time and almost
parallel to the floor. It is convenient to fix the Cartesian axis system by iden-
tifing the xy—plane with the detector plane and the z—axis as the vertical
direction. Now, in DBT the X-ray source moves quickly on the yz—plane,
on an arc whose center of rotation is tipically centered above the breast, as
shown in figure [I.5] This arc is 11 to 60 degrees, hence © = 5 to 30 degrees
typically. Then, from equispaced angled points on the arc, the cone-beams
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draw Ng = 9-25 low-radiation-dose projection images on the detector. Ny
is an odd number, in order to capture the vertical projection from © = 0
(reflecting one mammographic-like view) and to make the DBT scan sym-
metric. Because of the limited range [—©,+0], DBT is unable to offer the
narrow slice thikness that CT offers, hence the z-axis resolution is 1-1.5 mm
typically. However, since the acquired data has 85 - 160 micron resolution,
most detectors allow very high in-plane resolution (i. e. the resolution on
slices parallel to the detector plane is smaller than (0.1 mm).

In comparison to classical medical CT, another important feature of the DBT
is its making use of soft X-rays with few tens of electron volts: this choice
helps to reduce the provided radiations, but it is motivated by the anatom-
ical structure of the breast. In breast imaging, there are no bones nor any
other metallic objects, but only adipose and fibro-glandular tissues that have
very low attenuating properties: breast materials would not capture many
photons from high X-rays. On the contrary, we can get meaningful informa-
tion from the projection data set with soft X-rays, which have less energy
and are more absorbable. Since much more photon scattering occurs, this
chioce provides noisier data; nevertheless it also allows to detect the breast
objects in a more distinguishable way.

We must highlight that the aim of DBT (and all the screening tests, in gen-
eral) is finding microcalcifications or suspected masses and try to classify
them into benign or malignant tumors. Benign tumors in breast may be
cysts or fibroadenomas and they appear like compact ovoidal lumps with
net boundaries in X-ray imaging; cancerous masses instead are characterised
by branched and spiculated shapes with smoothed edges, because they of-
ten occlude glandular ducts and they infiltrate in the sourrounding tissues.
Moreover, above all in case of malignant masses, cluster of microcalcifica-
tions may be present in all the breast: they are irregular calcium deposits of
high density, with diameters smaller than 0.5 mm, hence they appear as tiny
contrasting objects among soft tissues in X-ray imaging. The possibility of
a 3D imaging reconstruction can help in detecting all these objects and lead
to more reliable diagnosis, improving both the sensibility (the capability to
find true positive) and the specificity (the capability to find true negative)
of the screening tests. For medicians, accurate DBT reconstructions avoid
useless biopsies while for scientific community it is a new challenging target.

1.3 Radon transform and its inversion

What is there behind all the X-ray imaging technique? From a physical
point of view, the projection data reflect the absorbtion of photons the X-rays
are made of, and the visualization of the reconstructed object is a picture of
the attenuation coeflicient map, of the object itself, in pseudo-colors. In this
section, we deepen this topic.
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1.3.1 Lambert Beer’s law

All physical mechanisms that lead to the attenuation of radiation inten-
sity (i.e. reduction of photons) measured by a detector behind a homoge-
neous object, are usually to be subsumed by a single attenuation coefficient
= p(w) > 0 depending on the crossed point w . Within this simple model,
the total attenuation of a monochromatic X-ray beam can be calculated
in the following way [26]: the radiation intensity (which is propotional to
the number of photons) measured after passing a thickness Aw through an
object is determined by

m(w + Aw) = m(w) — p(w)m(w)Aw (1.1)

where m(w) is the intensity of the incoming beam. Reordering this equation,

we get
m(w + AAwUz —m(w) = —p(w)m(w). (1.2)

Taking the limit of the left hand side, we obtain the differential quotient

Jim m(w + A:g mw) _ % — —p(w)m(w). (1.3)
By assuming the object to be homogeneous, it can be described by a single
attenuation constant, i. e. p(w) = p along the entire path of penetration
Aw. This let us deal with an ordinary and homogeneous, first differential
equation with constant coefficient, hence its solution can be derived by sep-
aration of variables. In the last equation, we can therefore separate

dm
—— = —puduw. 14
m(w) P (1.4)
By integration of both sides of equation (1.4)), we get

dm
—_— == d 1.5
= [ (15)
providing
In|m| = —pw+ C. (1.6)

Because of their physical meaning, all the measured intensities m are pos-
itive quantities, so the absolute value can be deleted and we can apply an
exponentialization leading to

m(w) = e O, (1.7)

Since the initial condition m(0) = my is the emitted photon count, it is
known for any beam of the CT machinery and the special solution of the
differential equation (|1.3) becomes

m(w) = moe ", (1.8)
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that is known as Lambert Beer’s law of attenuation.

Truly, since the linear attenuation coefficient p is an additive combination
of a scatter coefficient and an absorption value, the Beer’s law holds for
pencil-beam geometry only, because here the scattered radiation is com-
pletely removed from the main beam; nevertheless it still remains one basic
concept for the X-ray CT.

From a mathematical point of view, the complicated dependency of the at-
tenuation coefficient on the property of the penetrated material means that
the differential equation cannot be fully integrated as shown in (L.5)).
In case of spatially varying attenuation p(w), in fact, the solution for the
intensity measured after a running length W is given by

m(W) = mope fOW N(w)d'w‘ (19)

We can now easily derive the projection integral

P(W) =—In <m(W)> - /OW p(w)dw (1.10)

mo

that is essentially the negative logarithm of the ratio of the outgoing and
incoming numbers of photons for the scanned object.

Honestly speaking, this law stands only for monoenergetic beams, that is
quite a theoretical concept: due to the energy dependence of the attenuation
values on the wave length of the emitted X-ray, we should integrate over all
the energies of the beam

Emaz
m(W):/O mo(E) e~ o mEw)w gp (1.11)

and consider a polychromatic X-rays beam properly. The assumption of
monochromatic rays and equation (1.9) instead of (1.11) is the origin of
what is called the beam-hardening artifact.

1.3.2 Radon transform

In 1917, the Austrian mathematicians Johann Radon provided the math-
ematical foundation for tomographic imaging reconstruction in [86].
Let us set a pencil geometry, in which the X-ray beam is collimated to a
pencil shape and moved linearly in the direction parallel to a linear X-ray
detector array, for every direction of projection, like it really was in the first
generation of CT scanners. Let us fix the bidimensional case, where one
single slice of the object is examinated at the time: in this case we can iden-
tify every point w with a bi-dimensional couple (z,y) of coordinates and the
attenuation coefficient is a real and continuous function p(w) = u(z,y) over
the spatial domain of the slice, mapping what it is made of. Let us identify
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Figure 1.6: Draft of the CT process in both the Cartesian and polar coordi-
nated systems.

one ray through its path L and the emittion angle ® (with respect to the
Cartesian system z0Oy), as shown in figure . Now, the projection integral
in equation (|1.10)) represents a line integration along the path L, crossed by
the emitted photons, and it is defined by the positions of the X-ray source
and the detector unit. The recorded value m is therefore such that

~In <:;> - —|—/Lu(x,y)dw. (1.12)

Let us consider the parallel beam in the Cartesian system {Os with versors
6 = (cos®,sin®) and #+ = (—sin®,cos ®), as shown in figure Any
X-ray L is a function of ® (or 6) and ¢, hence we can reformulate the line
integral in in these new coordinates [63], getting

+oo
/ w(x,y)dw = / n(t0 + s61)ds = Py(t) (1.13)
L —00

that perfectly mirrows the projection P of the object along a 6-sloping ray in
t. From now on, 8 stands for the scanning angle too, because it determines
® uniquely.

Given the current scanning angle 6, the Radon transform of u is defied
as the map Ry : u(z,y) — Py, such that

“+oo
(Rop)(£) = Py(#) :/ W(t0+s05)ds  VteR  (114)
—0o0
It means that the Radon transform Ry of an object, described by u, is the
whole projection Py of the object itself, when it is scanned from the 6 angled
position entirely.
The circular process defining the CT is based on continuous radial acquisi-
tion, meaning that a Radon transform of the slice of interest is measured
on the detector from all the angles 6 € [—m,7|. Of course devices can only
performe small angular steps Ay, hence a finite number Ny of scans are per-
formed from prefixed angles 6 € {61, ...,0n,}, and because of the finiteness
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of detector components also projections are recorded in a finite number of
points ¢; where i = 1,..., Np.

The graphical representation of all the data, in the bi-dimensional case, is
called sinogram whenever it is organized in the Cartesian system (6,t).

In case of volumetric tomography, pu(w) = p(z,y,z) is a map of a 3D ob-
ject and every Ry(u) is an X-ray image of projection, made of N, pixels,
accordingly to the detector resolution ng, x ny, (Np = ng - ny).

1.3.3 Backprojection operator

Once we collect all the projection data, the mathematical inverse problem
is defined: how can we come back to the spatial distribution of the attenu-
ation coefficients pu(w), having measured a certain number Ny of projection
data Py? The basic idea is to project backwards every data onto its original
ray-path, as schematically shown in figure [1.7]

Several problems arise at this point, in practical implementations. First

view 1 wiew 1

]

view 3 by

view 3

[

a. Using 3 views

Figure 1.7: Three projections are acquired for a single slice, containing only a
small circular object. Then they are back-projected onto an empty image, to
show how a Back Projection works, with Ny = 3. For each Radon transform,
the small object provides non-zero values in particular abscissa, according
to the scanning angle: by summing the contributions of each back-projected
image on a unique slice, we obtain the tomographic reconstruction. From this
example, it becomes clear how taking many views (from a circular trajectory)
is important to achieve high-quality results.

of all we need to know exactly which points are involved for each data and
tracing all the X-rays is an expensive task. Secondly, real data are corrupted
by noise, whose propagation must be faced during the reconstruction phase.
The first commercial softwares were based on an analytical approach: tak-
ing into account the Fourier Slice theorem (also known as Central Slide
theorem), it is possible to skip the heavy step of ray-tracing, on behalf of
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1-dimensional Fourier transform of every Radon transform. Moreover, in the
frequency domain it is possible to apply suitable smoothing filters and re-
duce the high-frequencies that tipically enphasyse noise propagation. These
features define the well-known Filtered Back Projetion algorithm that has
been widely used and developed in many commercial softwares, in the past
decades. See [43] [63] for more details.

1.4 Modulation transfer steps of the imaging pro-
cess

To conclude this first chapter, we want to sum up all the processes that

occur before the final visualization of the reconstructed image by a clinician,
because it is important to evaluate all the changes the continuous signal y
is subjected to. The signal path can be in fact modeled in five main layers
[42, 26]. The first one is the X-ray imaging (or physical) layer and it reflects
the beam features: the interaction between the radiation and the object gen-
erally changes the physical nature of the radiaton itself, producing hardening
of the spectrum of polychromatic X-ray. A second layer is the detector (or
sensor) one: here the signal is subdivided by a grid beam collimator and
physically transformed, because the photons are detected with a scintillator
and converted into an electric signal. Furthermore, a digitalization (or elec-
tronic) layer spatially discretizes the incoming electric signal and the values
are quantized by an acquisition with an analog-digital converter. The algo-
rithm (or reconstruction) step is the fourth one, where we model both the
size of the final image and some filter kernels, to impress some special prop-
erties to the output. At last, the display (or image processing) layer models
the type of visualization by mapping, for instance, the physical attenuation
values onto a gray-scale range and adjusting it for human perception as well
as for the used monitor.
All these steps produce a global deterioration (or better an unavoidable al-
teration) of the final representation of the object, that must be added to a
series of artifacts like motion, sub-sampling and metal ones. For instance,
the first layer causes the so-called "quantum noise” which appears as spots
(Poisson noise), while the "electronic noise” is due to the detector sensibility
of the second layer. Moreover, the third layer determines the quantity and
influences the quality of measured data. The fourth step shapes the image
resolution, can partially avoid some artifacts thanks to the use of a priori
information, but it can also introduce some beam-hardening effects and noise
propagation. At the end, the last step can hide some structural noise (due to
the unavoidable presence of anatomical dense tissues) adjusting the graphic
rendering for the medicians, or enforce the contrast between structures mak-
ing their detection easier.
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Of course not all the artifacts and the noise can be deleted, moving from
the tomographic setting, through the projection images up to the output;
for instance, typical image errors of third-generation scanners are called "ring
artifacts” if errors appear like ring-shaped shadows around the objects. They
are due to an inaccurate detector calibration. More in general, every specific
geometric set up of the scanners leads to some characteristic troubles, as well
as reconstruction algorithms influence the final output.

For what concerns the Sparse Tomography and the Tomosynthesis case,
it has been studied [74] that:

e increasing the radiation dose, we gain in image denoising immediately;

e wider angluar range [—©, O] provides better depth resolution and gives
increased reconstructed slice separation, while a narrow one enhance
the in-plane resolution and enlarge the out-of-plane artifacts;

e by fixing a constant dose and angular span, increasing the number of
projections Ny (i.e. reducing the angular step Ay) may not necessary
improve the performance too.

Moreover, due to the finite size of the detector, limited angular range and
small number of projections, any reconstruction from sparse subsampling
will exhibit some artifacts: some of them will obscure some tissue details
or interfere with radiologist visual evaluation of subtle anatomical features,
hence an active research should match more and more specific reconstruction
tools with artifact reduction strategies.



Chapter 2

A numerical model based on a
priori information for SpCT

In this thesis we focus on the 3D image reconstruction from low sampling

tomographic acquisitions. Since the SpCT system acquires only a reduced
number of data sets, the traditional analytical reconstruction methods (such
as the Filtered Back-Projection, called Feldkamp-Kress method in 3D [43])
produce images of low quality, with harmful artifacts and high noise. Con-
sequently, Iterative Image Reconstruction (ITR) methods are preferred [81],
but their application requires to reformulate the CT process in a new math-
ematical form.
Dealing with the search of a good model for the Sparse Tomographic imaging,
one should care that the mathematics of CT image reconstruction has widely
influenced other scientific fields and vice versa. In particular, Compressive
Sensing (CS) has attracted much interest in the medical image community
because of its great potential to achieve high quality results from sparse data
sampling acquitions: in this sense, if the prior knowledge that medical im-
ages are compressible is properly exploited, CS may lead to faster and safer
image acquisitions and reconstructions, without sacrificing image quality.

In section we will derive the reformulation of the CT process into a
large linear system and a focus on the forward projection matrix operator
is in section [2.2] Because of the subsampling, the SpCT system is under-
determined, hence in section the model-based approach is introduced
with different regularizing formulations and we will derive the optimization
problem we aim to solve.

2.1 CT discretization into a linear system

Recalling equations (1.12) and (1.14]), we can derive the linear system
which describes any CT acquisition process. Let us fix the notation for a

general CT scanner of the seventh generation, i. e. emitting an X-ray cone

19
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beam from a source that rotates in a (complete or uncomplete) circular tra-
jectory, together with a bidimensional detector panel, around the object of
interest. The derivation of the Sparse CT system follows immediately.

First of all, it is convenient to recall the Cartesian axis system intro-
duced in the previous chapter: let us identify the rotation plane with the
yz-coordinate plane and the recording panel lying on the z = 0 plane at
the beginning. We have to discretize the continuous volume into a certain
number N, of volumetric elements vozels, by discretizing it along the three di-
mensions into N, Ny, N, elements (with step sizes Ay, Ay, A, respectively):
of course N, = N, - Ny - N,. The three-dimensional discrete object can be
lexicographically reordered into a vector-shaped array, so that we refer to the
single element f;, ; ;. Vjz €1,..., Ny, jy €1,...,Nyand j, € 1,..., N, as
the j-th voxel f;,Vj € 1,..., Ny, according to the column-ordered reshape.
Moreover, if the whole detector is a grid of n, x n, recording units, each
of area 0, - J, mm? , let us define N, = ng - ny as the number of measur-
ments we get at each X-ray shot, in a single projection view: reordening
each projection image into a vector-shape, we will refer to each pixel (iz,iy)
Vig € 1,...,n, iy € 1,...,n,y with the corresponding index i € 1,..., N).
We define Ny as the number of projections performed by the CT device in
the angular range [—®, +®] at equispaced positions , that are defined by the
0 angles Vk = 1,..., Ny. Finally, Ny = Ny - N, is the total number of data:
in classical CT, N4 > N,, while in case of SpCT Ny is a small number, thus
Ng < N,.

If we now fix the k-th projection image (acquired from the 6x-th angled posi-
tion) and the i-th pixel over it (with ¢ € 1,..., N,), we can read its measured
value m; and, starting from equation , we define

gz‘:—lﬂ(:Z;) Viel,...,N, (2.1)

where my is the photon counting of the outcoming beam.
The line integral of equation (1.12)) can be discretized into a sum over all the
voxels, hence it becomes

Ny
gi=Y M;fj Viel,. .. N, (2.2)
j=0

where M; ; = 0 if the j—th voxel does not lie on the i—th integral path. This
formula can be compacted with a system notation into

g’ =M f (2.3)

where MP% is a sparse matrix of size N, x N,. Taking into account the
complete set of data ¢% = {gi}i=1,..,n, obtained from the angle 0, we can
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Figure 2.1: 2D scheme of the tomographic rotation process where the slice
of interest is scanned from prefixed 6 angles.

affirm to have discretized the Radon Transform (|1.14)) into equation (2.3]).

Going on and perfoming all the Ny tomographic scansions as schemati-
cally shown in figure 2.1, we collect Ny projection images: each one defines
a vector g% of data. In particular, each X-ray scan can be described with
an adequate linear system of form and they all have the same size.
Gathering together all the Ny systems, we can construct the following huge
linear system

[ f1
I MO ] f2 g% ]
MY f3 g%
MO fa g%
MY f5 g%
= (2.4)
i MO Lo L]
|/ ]

and reducing this heavy notation into a more compact and familiar notation,
we finally state the linear system describing the CT process:

Mf=g (2.5)

where M € RNe x RN f € RVv and g € RN«

Once the X-ray scansion has been performed, the right-hand side g is
determined, while the dimension of the unknown f is tipically prefixed ac-
cording to the spatial resolution required by any specific examinations. The
most crucial issue in the CT system definition concerns the computation of
the matrix coefficients: although very simple in principle, elaborate com-
puter algorithms and a significant amount of computer time is required to
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evaluate the exact radiological path and determine, somehow, the coefficients
M; ; linking each voxel f; to a specific data g;. In particular, following this
approach, M can be considered the matrix operator M : RN — RN¢ de-
scribing the tomographic projection of the discretized exact volume f* into
the measured dataset g. Many algorithms have been proposed in literature
to implement realistic and efficient projection matrix: in section we will
study this issue more in detail.

2.2 The projection matrix operator

To define an appropriate matrix M, we must realize that it is the math-

ematical description of the physical process of CT data acquisition, hence
M must mirrow the forward projection (FwP) of a volume onto the detector
units, for all the scanning views. Because of the big dimensions, M is never
stored on commercial systems but it is evaluated run time whenever M or
M7 are required by the reconstructing algorithm: the computation of M is
required to be a fast routine, for its practical implementation on commercial
softwares.
This issue was pointed out quite early: in 1977 two 2D projecting algo-
rithms were already in a library user manual by Huesmanand [54] and their
approaches, called pixel-driven and ray-driven, were the basis of following
algorithms. We now focus on the most popular approaches for the 2D to-
mography, then we extend two of them for the 3D case.

(a) Pixel driven (b) Ray driven (c) Distance driven (d) Separable trape-
zoid footprint

Figure 2.2: 2D schemes of the tomographic forward projections. Even from
a first comparison of these images, it is noticeable how every projector de-
scribes in a different way the CT scanner. All these approaches are concep-
tually straightforward to be generalized to the 3D voxel case.

The pizel-driven basic algorithm [82] is quite simple and it is schemat-
ically shown in the figure according to the geometry of the device,
for each scanning angle every pixel in f is projected from its center (the pink



2.2. THE PROJECTION MATRIX OPERATOR 23

point on the figure) onto the detector; after its localization onto the detector,
its contribution is split among the adjacent measuring units with a linear or
more complex interpolation routine [52], 44]. When the spatial resolution of
the reconstruction is much bigger than the detector cell size, too few rays are
taken into account and it may happen that some detector cells do not receive
any values at all (that is, of course, unrealistic). As a result, high-frequency
artifacts will appear in the reconstruction: all the tecnhiques introduced to
reduce such artefacts (like the splatting one [79]) generally lead to compu-
tationally complex alghorithms. This is the main reason why pixel-driven
approaches are rarely used in real applications.

In the ray-driven (or ray-casting) approach, a straigth line from the source to
the center of each detector unit represents the X-ray beam which falls onto
the whole recording element: the projection value of that unit is computed
as a weighted sum of all the crossed pixels. A simple draw of this method-
ology is shown in figure m and the subsection will deal with this
routine for the 3D case, more in details. Many developments of these two
approaches have been proposed in literature [66], [7'7, [109].

More recently, different FwP algorithms such as the distance-driven and
the separable trapezoid footprints have been introduced, with lower compu-
tational costs and reduced high-frequency artifacts.

The distance-driven was proposed by De Mann in 2002 for the 2D CT imag-
ing [75] and it has been extended to the 3D case in 2004 [76]. The idea was
to project the pixel width onto the detector and then amplify its contribu-
tion with a certain weight, that is tipically given by the height of the crossed
element. In this case, not only a point but the element in-plane expansion
is projected: it provides a linear shadow onto the detector and we tipically
talk about a rectangular footprint, if we assume to enlarge the shadow for
the pixel height (as shown in figure . Subsection will focus on
this approach for the 3D case.

The separable trapezoid footprints algorithm was introduced in 2010 by Long
and Fessler in [72] [71]. In this method, we project all the vertices of the pixel
onto the detector and the element footprint is approximated by a trapeze,
to shape a more accurate footprint than in the distance driven case, as illus-
trated in figure

We now focus on the ray-driven and distance-driven algorithms for the 3D
CT imaging, because we use them for some SpCT simulations in chapter
and for DBT tests on real data in chapter [5| respectively.

2.2.1 Ray driven approach for 3D CT imaging

As mentioned before, the ray-driven is one of the "historical” approaches
for the computation of the matrix coefficients M; ; of equation . The main
idea is to perform a ray tracing, as requestes by the integral equation
Hence we follow each X-ray from its emission from the source, to its passage
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through the object, to its final detection in the center of a cell. At the end,
we sum over the intersected discretized elements, balancing their influences
with certain weights. This technique was introduced between 1982 and 1985
by different works [611, [91] [51], proposing different ideas for computing these
weights. In this work, we consider the Siddon approach [91].

AT

Figure 2.3: On the left: the ray driven approach for the forward projection on
a DBT-like device. It is seen on the yz-plane, hence the detector is reduced
to a 1D array of n, elements and the volume to a grid of N, - IV, voxels.
On the right: a dratf explaining how the ray driven approach computes the
matrix coefficients, again in the yz-plane.

Figure drafts this methodology, projecting it to the bidimensional
representation on the yz-plane, for a DBT machinery: the flat detector al-
ways lies on the xy-plane, parallel to the slices dividing the volume, and the
source rotates over the detector in a C-shaped trajectory. Since each element
M; j of M reflects the influence of a single voxel f; on a specific pixel g; (for
a fixed f-angled image), we have to take into account the X-ray emitted from
the #-position and incident to the center of the i-th cell, then compute its
path through the volume. It follows that

li
Mij; = LZ (2.6)

where [; ; is the length of the X-ray inside f; and L; is total length of the
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ray inside the object. By summing over all the voxels for j = 1,..., N, as in
equation , the projection value g; is determined. In this case, it results
M; ; > 0 if f; is crossed by the X-ray, or M;; = 0 otherwise. Moreover,
in a reasonable physical setting any row of M is normalized to 1, thanks to
the L% factor, and each column has at least one element greater than zero,
because each voxel is projected at least once onto the detector.

2.2.2 Distance driven approach for 3D CT imaging

In this subsection we explain in details the distance-driven (DD) method

that we use in chapter [5], for the numerical experiments with real DBT data.
The classical 3D algorithm in [76] is defined for a general CT process (i. e.
suitable for circular detectors too) but we adjusted it to the specific mam-
mographic setting.
The DD key-point consists in computing the overlap between a voxel foot-
print and the detector-cell "backward footprint”. Typically, the comparison
between these two areas is made on an arbitrary and intermediate plane,
where it is possible to project the squared section of the voxel and backpro-
ject the surface of a recording cell (whatever form it has, flat or spherical):
this plane is always chosen to be parallel to the volume layers. In the case
of DBT, since the detector is a stationary flat panel and it is parallel to the
compression planes of the breast (hence to all its layers), it would be enough
to directely project any volume slice onto the detector or to backproject the
detector grid onto each slice: the resulting implementation avoids several
forward or backward footprint computations for every coefficient M; ;, mak-
ing faster the creation of the system matrix. Figures and help in
understanding how these coefficients are indeed computed.

Recalling the notation introduced at the beginning of this chapter, A;, A,
and A, are the spatial resolution of the discretization into voxels of the vol-
ume, respectivelly along the x—,y—, z—axis, while J,, §, are the dimensions
of each detector unit mounted on the DBT machinery. For prefixed scanning
angle and pixel g;, the FwP operator computes the "backward X-ray cone”
having as a basis the detector pixel itself and vertex on the X-ray source
(figure ; then it determines the backward footprints in any slice, at its
middle height % (figure . Fixing one slice and calling A; the area of
this backward footprints on the layer and a; ; the intersection with the j-th
voxel (with j such that f; lies on the layer, of course), we compute

Az ai,j
7:7‘7. -

2.7
ivi Ai 27
for all the voxels on that slice.

In this equation, «; and ~; are the in- and out-of-plane angles, i. e. the two
angles we can derive to describe the X-ray linking the source to the center of
the i-th detector pixel. If we draw the perpendicular from the X-ray source to
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Figure 2.4: The DD approach for the forward projection on a DBT-like
device. It is seen on the yz-plane, hence the detector is reduced to a 1D
array of n, elements and the volume to a grid of N, - IV, voxels.

the detector and we trace the X-ray that comes down to the middle point of
the i-th pixel, ~; is the angle between these two elements on the yz—plane,
as shown in figure while «; is that angle on the xy—plane. As a
consequence, the weighting factor % can be read as the length of the X-
ray portion inside each voxel and it is also the quantity we use to "raise”
the rectangular footprint. Moreover, this factor can be interpretated as a
sort of normalization by T%, which is known as the inverse-square physical
law stating that a specific physical quantity (like the photon intensity in our
case) is inversely proportional to the square of the distance from the source
of that physical quantity. On the other hand, the ratio of the two areas
stands for a normalization to 1 (if we omit the weighting factor for a while)
over all the voxels lying on the same slice, because it reflects the percentage
of influence of a certain voxel on the final measurement with respect to the
other voxels on its same layer.

Implementation notes on the FwP operator

How does the FwP work in details? Once we have fixed, in this sequence,
the scanning angle, the i-th recording unit (to which we aim to assign a value)
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A, N

(a) (b)

Figure 2.5: On the left: the DD approach seen on the yz-plane. Only one
slice is partially reported and one voxel is highlighted together with the
values computed by the algorithm. On the right: the DD approach seen on
a ry-plane, from above the source. The blue square stands for one recording
element of the detector panel, the grid stands for the voxel discretization at
height Azz inside the layer and the green square is the voxel on it for which
we compute the matrix coefficient, the pink dashed square stands for the
square backward footprint of the pixel on the grid.

and one of the volume layer, we have to performe the backward projection
of the unit surface on the layer. To efficiently implement this last task,
let us focus on figure 2.5(b)] Starting from the cyan pixel, we can look
for the intersections of the two rays connecting its two opposite vertices
(the blue dots) to the source, at the middle altitude of the slice: we get
therefore the coordinates of two pink points, from which we approximate the
backprojected footprint into a rectangle (the pink and dashed one). This
simplification allows to directely compute the area A; as

A =LF LY (2.8)

where L? and LY are the distances between the pink points, respectively
along the z- and y-axes.
We need now to locate the two positions inside the layer grid, in order to get
the indices of the involved voxels. After that, a cycle over all the touched
voxels computes the resulting non-zeros coefficients of the i-th row of M. For
these voxels, in particular, the overlapping area a; ; is again rectangular and
it is given by

Qi 5 = lf’j : l?j (29)

where [§'; and 1 ; are the overlapping lenghts along the z- and y-axes.
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2.2.3 Main features of the system matrix

To conclude this section, we synthesize some important characteristics
of the system matrix M, that are independent from the approach we use to
define it. Under reasonable 3D tomographic setting, we can state that:

e M is a large RV x RNv matrix, because the detector resolution makes
the Ny value quite high and the number N, of voxels must be large
to have precise reconstructions: in some DBT cases, for instance, they
could reach values of order of 10?;

o M;; > 0 Vi,Vj because negative values are not coherent with the CT
process and the negative logarithmic transform of equation (2.1): if a
voxel is crossed by the beam reaching one pixel, it influences the corre-
sponding measurment with a "positive”, effective absorbtion, otherwise
its contribution is null (but never negative as no photons can be added
to the beam by the volume elements);

e M is a very sparse matrix, because few voxels are effective for a sin-
gle pixel value of a projection image, hence each row has mostly zero
elements;

e M is underdetermined in case of SpCT, hence no unique solution exists
for the CT linear system;

e M can not be stored because of its huge dimensions, neither in sparse
form, for most of the real CT imaging: whenever we need a matrix
product, M or M7 must be recalculated row by row and this represents
a noticeable computational cost;

e M does not have empty columns, because the reconstruction is per-
formed only on a scannable volume, hence at least one projection for
every voxel is included in the dataset;

2.2.4 Physical interpretation of the transpose matrix

In CT imaging, many algorithms make use of a "backward projection”
step to move from the dataset values back to the voxel intensities. Instead,
if we use classical iterative solvers for the solution of a tomographic problem,
we only handle with the matrix M and its transpose M’ to converge to the
solution. We do not care about the physical meaning of that transposition
basically, but the M”T matrix of a tomographic process has a precise role:
it performs, in fact, the backward projection of a dataset onto a volume,
accordingly to the CT device geometry defined in the FwP operator M.
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Figure 2.6: The DD approach for the backward projection on a DBT-like
device. It is seen on the yz-plane, hence the detector is reduced to a 1D
array of n, elements and the volume to a grid of N, - N, voxels.

We describe this process with a distance-driven scheme (for a DBT de-
vice), but the following observations may be extended to all the FwP ap-
proaches. If we fix the j-th voxel, that belongs to a certain slice of the
volume discretization, we can cycle over the Ny angles and project the voxel
onto the detector, as shown in figure 2.6] In this case, the projection plane
could be the one the detector panel lies in for semplicity, since we need to
identify all the detector elements involved for each projection on the cor-
responding projected image (similarly to what we have done for the FwP
operator). At the end, we cycle on these elements and compute the ratio
of overlapping areas on the detector plane and the weighting factors too,
with the same approach of the FwP in equation (2.7). Thanks to the ratio
between areas, it does not matter in which plane we are computing the ar-
eas, hence this procedure provides exactly the same coefficients both for the
forward- and the backward-projections. For this reason, the cycle provides
exactely the elements of the j-th column of M and the backprojection of a
Ngy—dimensional vector g into a volume f can be seen as

f=M"g. (2.10)

To conclude, we remark that the earlier commercial CT softwares were based
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on a filtered Back Projection algorithms, where the tomographic dataset was
retrospectively projected (and filtered in the Fourier domain) to achieve the
reconstruction, hence this approach is still present but in a very different
implementation scheme.

2.3 The model-based formulation for the SpCT

The CT reformulation in hides several drawbacks. First of all, the

presence of noise on real data makes this system inconsistent. In addition,
M does not have any standard form but big dimensions, hence any matrix
factorization-based method is prohibitive. Moreover, equation is a
Fredholm integral equation of the first kind, i. e. it is an ill posed problem
and the linear system arising from its discretization is usually highly ill-
conditioned. As a result, standard solutions will not be stable with respect
to small changes in g, hence the CT model should be adjusted exploiting
some kind of regularization.
Furthermore, in the case of SpCT where N,,- Ny < N,, infinite solutions exist
for and the introduction of the a priori information into the model is
necessary to choose one of the possible infinite solutions. In this thesis, we
formulate the reconstruction from limited data as an optimization problem
where the Total Variation regularizer balances a data-fitting function. The
resulting minimization problem will be solved by some iterative methods
that are discussed in the next chapter.

2.3.1 Compressive Sensing and medical imaging

The wide literature about medical imaging and iterative solvers has been
largely influenced by the Compressed Sensing (CS) theory.
To understand its approach, it could be useful to start this dissertation
by defining some basic CS concepts, as they were precisely cleared up by
Graff and Sidky in [50]. First of all, an Iterative Image Reconstruction (IIR)
method can be labelled as Sparsity-Exploiting Image Reconstruction (SEIR)
when it exploits some form of sparsity of the image (i.e. a sparsity on a cer-
tain mathematical domain), as an a priori information. Among all the SETIR
methods, Compressed Sensing can be defined as a set of models and re-
lated methods that are specifically intended to improve image quality with
a reduced sampling. Furthermore, when CS is reinforced by mathematical
proofs or empirical accurate studies, we can talk about Compressive Sensing
Guarantee (CSG) as a "security” passport: in 2006, papers by Candés and
Donoho [27, 28], [38] communicated these CSG concepts to the CT imaging
community. Since then, many papers address the issue of work in SEIR/CS
prior as CSGs.
However, one of the main features of the CSG is the idealization of the imag-
ing systems, for which the ezact image reconstruction can be reached from
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a sparse sampling, while for the medical community the mathematical ex-
act image does not provide the most useful visualization necessarily [311 [O8].
For this reason, Graff and Sidky have observed that TV-based approaches for
sparse tomography have been in use long before the concept of CS guarantees
and CS is often confused with optimization problems involving ¢; norms or
related solvers. Hence, since CS is also a distinct field of study from medi-
cal imaging, CS guarantees should olny be considered as potentially useful
ITR design tools, which provide practical intuitions to guide IIR algorithm
developments.

2.3.2 The regularized model for the SpCT

The SpCT community has been recently pushed towards the model-based

optimization where a penalty term containing a priori information on the so-
lution image is introduced to avoid artifacts, due to data inconsistency or
poor conditioning of the linear system [93], [95] 92] 106, 103, 53], [73], 105, 108,
40, 104, 58].
As a consequence, due to the underdetermined peculiarity of Sparse Tomog-
raphy, the imposition of a prior R on the CT system forces the IIR to look
for one precise solution f, among all the infinite solutions of . More in
detail, the CT problem can be reformulated as a constrained or uncostrained
minimization problem, where an objective function is defined by taking into
account a data-fitting term F and/or some form of regularity R. Different
formulations are proposed in literature:

arg min F(f; M, 2.11

g min F(f:M.g) (211)
i R 2.12

arg e (f) (2.12)
argmin F(f; M, 9) + AR(f) (2.13)

where €, and A are parameters balancing the influence of the two quantities
on the output.

It is interesting to highlight that the unconstrained formulation [2.13] can
be seen, from a statistical perspective, in an equivalent model stated as

F = argmin{P(flg) + R(/)}. (2.14)

Here, P(f|g) is called likelihood term and quantifies the probability to get a
certain recostruction f for a given data ¢: it represents a data-fidelity func-
tion. R(f) is again the prior term, including the "a priori” information on f.
Following this further approach, a class of IIR methods has been developped
and labelled as Statistical Solvers.
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In this thesis, we fix the unconstrained minimization problem of equation
For what concerns the fit to data function F(f; M, g) which reflects
a distance between the left and the rigth hand side of equation its
expression is related to the noise on the data. If the noise can be modeled
with a Gaussian distribution, the linear Least Squares (LS) function [19]

LS(f) = 310§ - gl (215)

gives the best fitting, while if the noise has a Poisson distribution, the non-
linear Kullback-Leibler (KL) divergence [65]

Ny Ny Ny
1 > Mijfj +bg
KL(f):§Z ZMz‘jfjerg—gi—gz‘lH( = g,] : (2.16)
i=1 \j=1 !

(bg is the background value) is the best estimator.

The noise on the CT data is mixed Poisson (due to the X-rays particles
behaviour) and Gaussian (due to the recording digital system) and the dom-
inant one depends on the particular system we consider.

In literature, many choises have been proposed for the function R(f): it
should reduce the noise, regularize the ill-conditioned problem arising from
the discretization of an ill-posed Fredholm integral equation and impose some
sparsity on the computed solution following the CS theory. Since many
medical images are almost uniform inside the organs, much work of the IIR
has been inspired by edge-preserving techniques, where the regularization
mainly focuses on a noise reduction, but preserving the edges of the image
at the expense of the exact reconstruction inside the main objects. Among
the most used regularizers, we find the Total Variation (TV) semi-norm
[106], 64, 88, 93, [94], 95, 92, 96] and the Huber penalty function [57]. The
nonlinear TV was introduced in denoising with the well-known paper of
Rudin, Osher and Fatemi in 1992 (|89]): for a smooth continuous function
f = f(x,y,2), the TV operator is essentially defined as the ¢; norm of
derivatives, that is [100]:

TV(f):/O1 /01 /01|Vf]dx dy dz (2.17)

where |w| = |(z,y,2)| = /22 + y% + 22 denotes the Euclidean norm in R3
— (9f 3f of

and Vf = (%, @, &)

Due to the nondifferentiability of 7V in zero, one can take an approximation

|lw| & \/|w]? + B2, where f3 is a small positive parameter. In this case, the TV

function is approximated by the following smoothing differentiable function

Tvﬁ(f)—/ol/ol/ol\/<§:fc>2+ (35)24- (gi)erﬁ? dz dy dz (2.18)
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In particular, by fixing a Total Variation regularizer we ask for a sparsity
in the gradient domain of the image: this SEIR approach is coherent with the
need of reliable detection of anatomical tissues, that is much more important
than the reconstruction of the exact "real” anatomy.

2.3.3 The TV discretization

If we consider the discretized volume f in a vector shape, the discretiza-
tion of equation ([2.18) leads to

IV£illz + 82, (2.19)

but we must keep in mind that ||V f;|| has to be computed with respect to
the three cartesian directions.

To avoid misunderstanding, we introduce here the discretization of the
problem in the 3D setting, by using the notation j,,j,,j. to indicate the
coordinates inside the object of the j-th voxel, with respect to the z,y, z axis
respectively.

When the 7'V function is discretized by forward differences with boundary
periodic conditions in each voxel (jz, jy, jz), the discrete TV function of the
image is

N, Ny N,

TVE Z Z Z fj¢+17]u7]z i fh Jy Jz)2 + . (2.20)

Jz=1 ]y—l J==1

(fjeyt1ge = Jinigysz)?
2
Ay

where A, A, and A, are the dimensions of the voxels, as already introduced

in section The expression (2.20) can be written as
CL‘ y Z
V()= 5 30 3 3 oD ) (2.21)

Jm 1]1;*1 j==1

(Fiogggett = Fiurgyois)? s
AQ

z

.t +

where
9 Fiot 1y = Fiviuds ) Fivguttge = Fivdvds )
D szvjyvjz = A v + ' A +
v ) 4 (2.22)
N Fividysget1 = Finriguis
A,

implements the forward differences and

o(t) = 2v/t + 2 (2.23)
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represents the differentiable approximation of the Total Variation.

Whenever we need to compute the gradient of the T'Vj function, we can
exploit this notation and derive the following formula

Na; Ny Nz

VIVE(£) =Y > ¢(D*f5i,5-)DFiriyi- VD Fjs gy e (2.24)

Jz=1jy=1j.=1

rpy 1

where ¢'(t) = T

It means that for every element of indices (jz, jy,jz), the discrete derivative
of the 7'V function is:

TV
Of iy

12 Fjusdyoiz = Fia1idyi
(f)=¢Dj,14,5.)" " (x
xr
+ QZ),( 2 )-f]lv]l/v]z — fjiﬁ7jy_11jz
gy —1.d- A
Yy
+¢l( 2 )fjxvjy,jz - sz7jy7jz_1
jw7jy7jz_1 A
z
S(D2 ) Fiwsivde = Jiattiyie | Siviose = fivguttse | Fiwiie = Fiwiugatn
Jz>Jy»J= Ax Ay Az
(2.25)

_|_

_|_

2.3.4 Unconstrained and constrained formulation

From now on, we keep fixed the Total Variation regularizer in the differ-
entiable and discrete form of equation (2.20) and the optimization problem
we aim to solve is finding f such that

f=arg min J(f)=arg min {F(f; M,g) +\T'Vs(f)} (2.26)
FERNY fERNY

We can easily show that:

Proposition 2.3.1. If F(f; M, g) has the form (2.15) or (2.16]), then the

solution of problem (2.26)) exists and is unique.

Proof. For what concerns the existence of the solution of (2.26)), the func-
tion J(f) is coercive, hence we refer to the Weierstrass theorem [80]. To
prove the uniqueness, we show the strict convexity of the function J(f) on
the domain. Since Ker(TVz(x)) contains only the constant images, while
Ker(Vfc(}"(f; M, g)) does not contain constant images except the null image,
both in the case of LS and KL, then:

Ker(V3(F(f: M, g)) + AV (TVy(p))) = Ker(F(g, M f)) [ Ker(TVs(f))

= {0}
(2.27)
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and J(f) is strictly convex. O

On the other hand, as already mentioned, the reconstructed image is
a map of the linear attenuation coefficient p that has always non-negative
values. Hence it is quite common to consider a nonnegative constrained
model as

f=arg I]pzigj(f) =arg I}lzig{f(f; M, g) + AXTV5(f)} (2.28)

In particular, the above proposition still holds for this problem, because the
objective function is coercive also on the domain Q = {f € RN : f > 0}.
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Chapter 3

Reconstruction algorithms for
Sparse CT problems

In section we have derived the formulation of the SpCT process into
a linear system, characterized by a huge sparse matrix (equation(2.5)). As
this system is underdetermined, the SpCT problem has been reformulated as
an optimization problem with a prior term that guarantees uniqueness and
stability of the solution, in paragraph [2.3] When a minimization problem
is solved with an Iterative Image Reconstruction (IIR) method, the con-
vergence solution is often achieved quickly but at least two matrix-vector
products are required at each iteration: the high computational cost per it-
eration is the main drawback of an IIR algorithm use in large scale problems.
On the other hand, thanks to the dramatic improvement of CPUs speed and
the possibility of performing parallel computations at low cost on GPUs, the
time per iteration of an IIR algorithm may be incredibly reduced.
Furthermore, reliable reconstructions must be provided almost in real-time
in SpCT applications, hence an iterative solver is always stopped before its
actual convergence. For this reason, a good algorithm must get close to the
convergence solution in its very first steps. To do that efficiently, an IIR
method must be enforced by no computationally onerous acceleration tech-
niques, of course.

In this chapter, an overview of the state-of-the-art algorithms for sparse
tomography is presented in section [3.I) then two solvers are shown in de-
tails: the Scaled Gradient Projection algorithm (SGP) in section and
the Lagged Diffusivity Fixed Point (FP) in section 3.3} The SGP is a gradi-
ent descent first-order method and it is applied to the constrained problem
(2.26)) with both the LS and the KL functions as data-fitting quantity; the FP
algorithm, instead, follows a quasi-Newton approach and it solves the uncon-
strained minimization ([2.28]) where the objective function is the LS fidelity
term. In addition, the FP implementation requires to solve an inner linear

37
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system, making its tuning more difficult for practical use. Nevertheless, they
both are equipped with accelerating strategies making them competitive in
their earlier iterations and suitable for SpCT image reconstructions.

3.1 [Iterative Image Reconstruction state-of-the-art

Initial effort to solve with IIR for CT took an algebraic approach,
where the linear system is solved by sequentially projecting onto hyperplanes,
each defined by a row of the matrix M.

In the 1970, the maiden implementations of an Algebraic Reconstruction
Technique (ART) was introduced by Gordon [49] to the imaging community,
as a 3D electron microscopy tool, which is quite similar to the Kaczmarz
algorithm for the resolution of a system of linear equations [62]. Two years
later, Gilbert [46] proposed a Simultaneous Iterative Reconstruction Tech-
nique (SIRT), while in 1984 Anderson [12] introduced a development of the
ART), called Simultaneous ART (SART), and later on he further developed
it in [I1] for sparse tomography. The main idea behind ART and SART
is to iteratively update the current image after processing subsets or some
elements of the projection data set. In particular, in the running iteration,
a forward projection of the current iterate is computed and its comparison
with the measured data establishes an updating term which is backprojected
afterwards onto the image domain. Such term involves only the elements re-
lated to a single ray (i. e. a single measurement) in the ART approach, or
all the elements of a specific projection image.

However, the algebraic methods aim to solve the linear system directely,
hence the ART approach tends to provide noisy but fast reconstruction,
while SIRT tipically results in good denoising but a lower convergence speed.
The SART has both good noise results and the ART-like fast convergence
property: implementations of SART-based methods are still settled on many
commercial softwares.

On the other hand, the novel model-based approach was proposed in
literature because an increasing interest in Compressive Sensing (CS) has
redoubled the effort in improving optimization problem solvers. Two main
cathegories of CS-motivated algorithms can be distinguished [50]: the one of
approximate solvers, based on sequential algorithms, and the one of accurate
solvers for non-smoothed large-scale optimization problems.

The approzimate sequential algorithms, on the contrary, may provide reliable
reconstructions in ten or fewer iterations, but the output quality strongly
depends on the parameters of both the optimization problem and the chosen
algorithm for the resolution. In particular, all these methods update the
current image after processing subsets or some elements of the preprojection
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data set: it results in a strong acceleration at the first steps of the convergence
towards a good image, even if the convergence to the optimal solution can be
slower from a certain iteration on. In this class we can find many methods
solving a T'V-regularized problem and starting from the well-known POCS
algorithm, such as the Adaptive Steepest Descent Projection Onto Convex
Sets ASD-POCS algorithm [94] and other [30, 4I]. We can include here also
some developments of the algebraic methods.

The group of accurate solvers containes many standard methods that

have been adapted to the hugeness of realistic system size only recently,
but they have not been largely applied to real SpCT problems up to now.
They use slightly smoothed versions of optimization problems involving TV
in one of the formulations presented in equations , and .
In this class, we find algorithms like the gradient descent, the nonlinear con-
jugate gradients and a limited memory BFGS with the approximate New-
ton’s method [57, 68, [69]. The main drawback of these solvers is that they
typically require hundreds of iterations for a good CT image, hence great
computational resources, because the convergence rates vary significantly
depending on the CT scanning configuration and data quality. However,
recent works propose improved versions of some first-order method, suited
for realistic big scale problems, such as the split Bregman [13], ADMM [87]
and the Chambolle-Pock [29], 83 92] approaches. At last, accurate solvers
eliminates the problem of deeply studing the dependence of the output on
the algorithm parameters and such robustness is an appreciable feature for
real images, where the parameter setting of the solving software is fixed once
at all.
Nowadays, sequential algorithms seems to be favored for CT problems be-
cause of their faster convergence, but aim of this thesis is to test the robust-
ness and efficiency of two accurate solvers, both on simulations and on real
measurements, when they are applied to the complicated issue of 3D imaging
reconstruction from severe subsampling.

3.2 Scaled Gradient Projection method

Aim of this section is to illustrate a first order accurate solver in the class
of Gradient Projection (GP) methods [18], for the solution of the constrained
formulation of the SpCT problem. This approach is accelerated by
a scaling matrix which improves the matrix conditioning: the resulting al-
gorithm is thus called Scaled Gradient Projection (SGP) method [23]. In
addition, two clever rules for the choice of an inner steplength parameter
are shown: they both provide a further acceleration to the scaled algorithm
and good quality reconstructions may be achieved in few iterations. Often,
algorithms acceleration techniques introduce new parameters that must be
tuned for each experiment: in our case, the proposed algorithm is robust with
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respect to the new parameters that are fixed on the basis of the applications
considered and they don’t change for the different experiments.

SGP algorithms have been successfully proposed in image restoration
applications [20], 24] [107], where the problem formulation is very similar to
, but the problem size is much smaller than in 3D CT imaging and the
involved matrix had a structure that can be exploited in the matrix-vector
product by using a Fast Fourier Transform. Hence the efficiency of the SGP
methods in the considered SpCT applications was not predictable.

We recall now a general framework that allows to design first-order
descent methods for the resolution of an optimization problem with non-
negative constraints. This framework is described in table and schemat-
ically drawn in figure [3.1] with both scaled gradient directions and effective
step-length selection rules.

Initialize: O >0, Spe Spor 7,0 €(0,1), 0< amin < Qmaz
ap € [Oémmyoémax];

for k=0,1,...
dk) = Py (f(k) - Oszij(f(k))) —f(k); (scaled gradient projection step)
e = 1;
while  J(f® + ned®) > T(F®) + onp VT (FE)T R
Nk = Vk; (backtracking step)
end

PO Z f0) 4 B,
define the diagonal scaling matrix Sk41 € ‘Spk+1 ; (scaling updating rule)
define the step-length ag11 € [Qmin, @maz|; (step-length updating rule)

end

Table 3.1: Algorithm SGP (Scaled Gradient Projection).

The following notation is used in the SGP description: S, denotes the set
of diagonal matrices S with entries s;;, j =1,..., N, such that % <555 <

p, with p > 1, and Py (z) is the euclidean projection of the vector z € RV
onto the non-negative orthant Q@ = {f € RV |f; >0Vj=1,...,N,}.

At the k-th iteration of the SGP algorithm, a matrix S, € S,, is used to
define the scaled gradient direction —S; V.7 (f*)) along which we move from
the current point f*) with a step established by the step-length parameter
ap > 0. After that, by projecting the resulting vector onto the nonnegative
orthant 2, the descent direction d®) is obtained. This direction is then
exploited in a linesearch procedure to generate the new approximation f (k+1)
in which the objective function achieves a sufficient reduction with respect
to its current value 7 (f*)). Finally, the scaling matrix and the step-length
parameter are re-evaluated for a new iteration, by means of suitable adaptive
updating rules.
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’ Q: {f/f/?O,forallj}

Figure 3.1: Draft of the k—th iteration of the SGP algorithm, in R2.

For an effective application of SGP to the problem (2.28), important
theoretical and practical aspects need to be discussed. The main convergence

properties of SGP are stated in the following proposition, whose proof can
be found in [22].

Proposition 3.2.1. Let {f(*)} be the sequence generated by applying SGP
to the problem (2.28). The following properties hold:

i) if ppo= 14 G G >0, ity < oo, then the sequence {fn
converges to the solution of the problem.

i) if J* denotes the optimal value for the objective function of the opti-
mization problem, then

J(f®) - 7" =001/k)

The proposition ensures that SGP converges without restrictive assump-
tions on the step-length parameter oy and the diagonal scaling matrix Sy,
whose choices can be directed to accelerate the convergence rate of the
scheme. Even if the theoretical convergence rate O(1/k) on the objective
function values is lower than the rate O(1/k?) of some optimal first-order
methods exploiting extrapolation steps, the practical performance of SGP
achievable by suitable selections of S and « is very well comparable with
that of the optimal algorithms. In the following we provide the updating
rules for S, and «j that allow SGP to efficiently solve problem ([2.28)).



42CHAPTER 3. RECONSTRUCTION ALGORITHMS FOR SPARSE CT PROBLEMS

3.2.1 Focus on the scaling strategy

In order to update the diagonal scaling matrix Sky1, we adapt to the SGP
framework the strategy proposed in [67], that in several applications of scaled
gradient methods has shown the ability to force convergence acceleration,
especially in the first steps of the iterative process [23 20]. The strategy
exploited in [67] leads to define the diagonal scaling matrix by means of
special splittings of the gradient of the objective function, which is

VI(f)=VI() =UI(f), with VI(f) >0, UI(f) > 0. (3.1)

In particular, V7 (f) and U7 (f) are obtained by splitting both the fit to
data function and the regularization term in

VI(f) = VI +AVIV(E), UT(f) =U7(f) + 0TV (f),

where
VF(f) = VZ(H-U"(f), V7(f)>0, U”(f)>0, (3.2)
VTVa(f) = VIV(H) =0T (f), VV(f)>0, U™ (f)>0. 7
. . . (k1) FED .
Given the splitting (3.1]), in [67] the choice ;5 = W, j=1,..., Ny,

is suggested for the diagonal entries of the matrix Siy;. Exploiting a simi-
lar idea within the SGP scheme, we propose to update the diagonal scaling
matrix by setting

(k+1) . 1 f;kﬂ) .
Sj,j = Imin pk+1,max p 5 j == 17...,Nfu. (33)

k1 VI(fEFD)

i. e. by adding an upper and a lower bound to the main splitted en-
tries. Following the suggestions in [21), B5], the parameter pyy; is chosen
as pr+1 = \/1+1015/(k + 1)21, hence the resulting variable bounds slowly
reduce the feasible range for the scaling values s; ; and we suit the first point

of Prop [3.2.1]

Of course, the vectors V7 (f# 1) and VTV (f*+1) are set taking into
account the special form of VF(f) and VI'Vg(f), respectively.
When the fitting function is the LS one (equation (2.15))), the gradient of
F(f) has the form

VF(f)=M"Mf—M'g;
hence we can split it into
V.F(f(k+1)) _ MTMf(k+1), U]-'(f(k:-i-l)) _ MTg V.

On the other hand, when the fit-to-data term is the KL function of equation

(2.16]), we have
VF(f) =M1 - MTy 1y,
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where 1 € RVe is a vector whose components are all equal to one and Y =
diag(M f + bg) is a diagonal matrix with the entries of (M f + bg) on the
main diagonal. Therefore we can define

V]:(f(k+1)) _ ]\47’17 U]:(f(kJrl)) — MTYflg

where the dependance of k is hidden in the Y diagonal matrix.
Focusing on the regularizer and recalling the notation introduced in [2.3.3]
from equation (2.25)) we derive the splitting functions of VI'V(f*+1)) as

2 2 2
IV (plrn)) ¢(D5,5,5.) | ¢ D) | 9D, N
Jx 5]y ]z Az Ay AZ
2 2 2
¢/(Djz*1,jy7jz) + ¢/(Djz,jy*17jz) + ¢/(Djrvjyvjzfl) f(k+1)
A, A, A, Jrsdunds
(3.4)

and

) judyode 41

_|_

JxsJysJz Ja:JysJz

A, A,

(k+1)y . L
2 (f )JrlJ Jz
' (Dj,~14,.4.) A

+

/ 2 jwvj’.llvjz_l
¢ (Djacajyyjz—l) AZ

(3.5)

3.2.2 Focus on two step-lenght rules

Once the scaling matrix Siy1 has been defined, a new value for the step-
length a1 must be computed with the aim to achieve further acceleration
of the iterative process. The wide literature of the last decades identifies the
Barzilai-Borwein (BB) rules as effective selection rules for the step-length
updating in gradient methods [I7]. In particular, recent studies have shown
that selection rules based on special adaptive alternations of the two classical
BB rules generally provide the best performance [110, 45]. For these reasons,
first we derive the two BB rules for the step used by SGP and then we
exploit these step-lengths rules within the alternating strategy proposed in
[45], that has provided interesting convergence rate acceleration in many
imaging algorithms [23, 84]. Due to the use of scaled gradient directions,
by applying the quasi-Newton properties on which the classical BB rules are

(RH1Y. s (k+1)y. . (k+1
TV (f(k+1)) —gb'(DQ- ) <(f )Jx‘f‘ldwz i (f )]wvjy"!‘lv]z (f

A,

)
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based, the following step-lengths are obtained:

h()g S—1 pk)

BBI . —17(k) _ (k)| _ E+1°k+1
Q = argmin ||(ag1S h z = 3.6
k+1 gakeRH( k+15k+1) | h(’f)TSkilz(’“) (3.6)
and
hTg, k)

BB2 (k—1)y _ k+1

apy; = argmln [ *) — (s Sps1)z | = (3.7)
e e PO

where h(®) = (fE+) — fB)) and ) = (VF(fFD) - VT (f®)).
The alternating strategy ABB introduced in [45] leads to the following se-
lection rule:

BB2 BBl
if a7 oy <

akA_EB = min {Q?BQ |j=max{l,k+1—my},....k+ 1}, T=0.9r,
else

akAJrEl’B = akB+]311, T=11r,

end;

where m,, is a nonnegative integer and 7y is a positive real number.

Other step-length updating rules are currently investigated in literature
[14, [48],36]; in particular, in 2015 Porta [85] proposed a strategy based on the
use of a limited number m of "previous” gradients for capturing second-order
information.

This rule can be explained as follows. Let us start denoting by G the N, xm
matrix we can define taking the last m scaled gradients, i. e.

1
G = [5;3 w8 SR (3.8)
where .
G =)0 if f§k):0’ (3.9)
J (VIO if £ >0

Let R be the m x m upper triangular matrix obtained by the Cholesky
factorization of GTG and consider the resulting small linear system

1
RTT _ GTS]§+1§(k+1)

whose solution r is easily computable. We can further define a matrix

T=[R r[TR™!
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where I" is an (m + 1) x m bidiagonal matrix with non-zero entries

Tjj = (Mk—mijQhmis) " (3.10)
Ujv1; = —(Mh—mtjQh—mij) L i=1,...,m. '
J+1, Nk—m~+; ¥k—m+j y J ’ )

Now, from the upper Hessenberg matrix T we define an m x m symmetric
tridiagonal matrix 7', by replacing the strictly upper triangle of T with the
transpose of its strictly lower triangle. At the end, according to [85], we
compute the m eigenvalues of T, i. e. tj, 7 = 1,...,m, which are called
Ritz-like values, and, in the current k—th iteration we define the step-lengths
for the next m iterations as

Qptj = l,jzl,...,m. (3.11)
t
Since m should be a small number (tipically m = 3), all these computa-
tions handle with small matrices, thus this step-lenght rule is not too much
computationally expansive, even if it requires to store in memory m past
gradient vectors.

3.3 Lagged Diffusivity Fixed Point method

The FP method has been proposed by Vogel since 1996 [101], Q9] [37]
for image denoising, to solve a Total Variation-penalized Least Squares min-
imization problem, with a fixed point method involving the Hessian of the ob-
jective function. He further developed the algorithm into a limited memory
BFGS scheme for 2D large scale problems [47] and into a fast quasi-Newton
solver for deblurring 2D imaging [102]. Starting from this last approach and
its implementation proposed in [100], we derived the 3D lagged diffusivity FP
algorithm for 3D imaging, to solve the unconstrained problem where
we fix the fitting term with the LS function (2.15)).

If we aim to compute

1
win 51301 gl3 + ) | VIVIP+ P (312)

where V is the discretized volume, the associated Euler-Lagrange equations
are
G(f)=M"(Mf —g)+AL(f)f =0, inV
(3.13)
g =0, ondV
on

where L(f) is the differential operator whose action on a function w is

L(f)w=—V- (Ww) . (3.14)
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It represents a diffusion operator. We highlight that, in (3.I3), MTM
and L(f) are symmetric and positive semidefinite operators, in a nonlin-
ear integro-differential equation of elliptic type. Furthermore, equations in
may also be expressed [102] as a nonlinear first order system

MTMf-AV-0=MT"g

. (3.15)
-Vf+VIV?+527=0
where ¢ is the dual variable
U= V—f (3.16)

VIVIZE+82

If we linearize by fixing f = f*) in the square root and substitute (3.14)
into (3.15)), we get

[(MTM + AL(fON) fE+H) = MTg Yk =0,1,... (3.17)
that is equivalent to the following Fized Point iteration rule:
FED — (MTM + AL(f*)*MTg VE=0,1,.... (3.18)

This scheme can be seen as a quasi-Newton solver. In fact, the Hessian
of our objective function is

Hess(J(f*))) = MTM + AL(f®) + AL/ (f¥) f (3.19)
while the descent direction of this FP scheme is
— f(k+1) _ f(k) —

= —[MTM + AL(f®)) 7 ((MTM 4+ AL(FW)) W) — MTg) = (3.20)
= —[MTM + AL(fO)] 7 (VLS(fW) + AVTV5(f*)).

Sk

Therefore, by omitting the )\L’(f(k))f(k) quantity, we can define the matrix
Hy = MTM +XL(f%®) as an approximation of Hess(J(f*))) and equation
(3.18) can be written in a quasi-Newton form

Y — pB) H,;le (3.21)
where G, = G(f®) is exactly the gradient of the objective function V.7 (f*)).

To conclude, we remark that 7 (f*)) is strictly convex in our prefixed
model. In [37], the authors proved the global convergence of this algorithm
with a linear convergence rate, under the assumption of strictly convexity
for the objective function. In addition, increasing the smoothness parameter
B accelerates the convergence as well as with relatively small values of A.
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Initialize: f© > 0;

for k=0,1,...
Gr = VI(f¥);
H, = MTM -+ )\L(f(k)); (hessian approximation)
solve the linear system Hys, = —Gy (inner solver calling)
FERD = f0) 4 g

end

Table 3.2: Algorithm FP (Lagged Diffusivity Fixed Point).

3.3.1 Implementation notes

A scheme of the FP algorithm is shown in table 3.2, to focus on some
implementation remarks.

The most expensive step is the computation of the descent direction sy,
since it requires the resolution of an inner linear system Hpsip = —Gp in
each k-th iteration: because of its large size, we propose to solve it with a
CG algorithm. An internal loop must be handled and every inner iteration
requires two matrix-vector products which make remarkably increase the
computational cost of the FP solver. On the other hand, we consider CG
approximated solutions by stopping it before convergence: asking for less
data-fitting is a way of getting more regularized final solutions. Thus, the
CG iterations end when the residual 2-norm is smaller than a large tolerance
(typically of 1073) or a maximum number of iterations (of order of tens) is
reached.

Once we get si, the FP updating rule comes from equation we ob-
serve that it is executed without line-search, because the convergence of the
scheme is demonstrated to be global.

Concerning the Hessian approximation into the Hj matrix, we highlight
that it theoretically involves one matrix-matrix product MT M. Of course it
is never computed, because its action can be evaluated runtime by the inner
solver, if we make use of the CG algorithm.

We now recall the notation introduced in paragraph the T'Vp(f) func-
tional of equation can be computed as

N, Ny N
1 x Y z
TVs(f) =5 > D (D], .0 + (D, 5, ;.07 + (D5, 5,5.0)°)
e
S (3.22)
where ¢(t) = 24/t + 32 and

e g Siet 1y, = Fivsiyoi- voopo ey t1d: = Fjosjyoi
JzyJyslz - AJ} ) jz,jy,jz - Ay ’
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D . f= iesiyiztt = Finyois
JzsJysJzt T Az
define the forward differences used for the TV evaluation. Starting from the
2D implementation proposed in [L00], we have developed the matrix L(f) of
the 3-dimensional diffusion operator (3.14]) as

diag(¢) D*
L(f)=[(D")" (D¥)" (D*)T] diag(¢') DY
diag(¢')| | D?
(3.23)
where ¢}, . =¢'(D}, ;, .0+ (D}, 5 5. 0+ (D, ;5.0
The resulting L(f®*)) is a 7-diagonal matrix, because it derives from the
discretization of the 3D forward differences of the TV operator that involves
7 voxels for every point (jz, jy, j.). Figure shows the sparsity pattern of
L(f™), for a very small problem: for every row j & (jz,jy,j.), the three
elements in the upper diagonals reflect the forward voxels along the three
directions x,y and z, while the elements in the lower diagonals are related
to those points for which the current j-th voxel is the forward point.
As a consequence, it is always enough to store seven vectors of maximum
length N,, instead of a full N, x N, matrix Hy.

Figure 3.2: Sparsity pattern of the matrix L(f) for a volume f discretized
into 8x8xH voxels: the diagonals are not completely full because of hte bound-
ary conditions.

The FP algorithm is stopped when
£ — B < r (3.24)
or a maximum number of iterations is reached

k = MAXIT. (3.25)
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We avoid stopping rules involving the objective function, because its evalu-
ation is not required by the FP scheme and it would increase the computa-
tional cost of the algorithm.

We further observe that in every iteration, V.7 (f*)) is computed as

VI(f®) = MT(Mf® — g) + AL(F®) f8),

hence it requires two matrix-vector products. We underline that, in the fol-
lowing chapters, the number of iterations performed by the FP algorithm to
provide a certain solution in considered as the sum of the FP standard iter-
ations and the total number of CG executions: we believe it could represent
a more practical approach to the tomographic imaging problem.
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Chapter 4

Tests on medium size problems
in Matlab

In this section, we report some tests performed to try out the Scaled Gra-

dient Projection and the Fixed Point methods, on different phantoms and
according to very different sparse tomographic settings: the aim is to pre-
liminarly show the efficiency of the proposed algorithms for IIR from sparse
subsampling.
These tests have been executed in Matlab environment thanks to the medium
sizes of the problems. We start focusing, in section on the performances
of the scaling strategy and the two step-length rules (shown in the previous
chapter) for the SGP algorithm on a 3D version of the well-known Shepp
Logan phantom: the proposed strategies seem to indeed accelerate the con-
vergence to the problem solution, in the first iterations. In section the
comparison of SGP and FP methods is performed on 2D imaging reconstruc-
tion problelm, where the dataset comes from a real C'T acquisition: here we
investigate the robustness of the algorithms with regard to the regularization
parameter and to an increasing sparsity level. At the end, in section [d.3] the
comparison is made on a Digital Breast Tomosynthesis sham problem, to
introduce the results of the following chapter which are performed on real
DBT data.

ol
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4.1 Focus on the SGP algorithm

This section is centered on the evaluation of the SGP accelerating strate-
gies, proposed in chatper 3.2 To do that, we made use of some functions
of the TVReg Matlab Toolbox, available at [9]. It provides both a ray-driven
forward projector and a useful implementation of the state-of-the-art algo-
rithm UNP [57, 60] for a comparison.

These numerical results have been performed on a MacBook Pro, 3GHz Intel
Core i7, 8 Gb of RAM, equipped with Matlab R2015a [34] [33].

4.1.1 Test problem and setting

We start considering as the true object f* the digital Shepp Logan phan-
tom, having values in [0, 1] and discretized into N, = N, x Ny x N, =
61 x 61 x 61 = 226981 voxels lexicographically ordered in a vector: in figure
[4.1] the slices number 24, 31 and 35 in the z direction are shown. To simulate

(c) layer 35 (d) layer 31

Figure 4.1: Different layers in the z-direction of the original phantom. For
the analysis of the results, in (d) some interesting features are highlighted
on layer 31: a yellow small crop where the Standard Deviation is computed,
an orange line along which we analyse the vertical profile and a red pixel to
examine the depth profile.
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the tomographic process, the projection data have been created as:

where M is the projection matrix, obtained with the functions in the TVReg
Toolbox for a 3D geometry with random angles over the half of a sphere. The
detector is supposed with IV, = 61 x 61 pixels and the number of angles Ny
varies in the set {19,37,55}: in all the cases the problem is underdetermined
and it allows us to test the SGP algorithm on different sparsity levels. The
projections are corrupted by noise, with both Gaussian and Poisson distri-
bution, as specified in the following subsections.

We describe here the stopping criterion for the SGP algorithm and the

setting of its main parameters. If k is the index of the current iteration and
o = T (D) =g (f*)|

b TG : .
the objective function, we consider the conditions

is the relative distance between successive values of

—1
1p
o <e, BE o <e if k>p—1,
=0

where e; = 107%, p = 20 and e = 107°; the SGP stopping criterion consists
in satisfying both the conditions or performing a maximum number of k =
1000 iterations.

For what concerns the SGP parameters, the setting reported below is
used:

e v=0.4 and o = 10~* as backtracking parameters;

e min = 10710 aypae = 10°, a9 = 1, mq = 2 and 79 = 0.5 for the
step-length selection.

In order to evaluate the reconstruction results, we consider the following
parameters: the Relative Error (RelErr) between the exact volume f* and
the reconstructed image f, that is

RelBrr = ||f* = fll2/Ilf*2, (4.1)

and the Standard Deviation (StdDev) of the image values inside a small crop
(represented by the yellow 8 x 8 pixel square in Figure on a uniform
region in the central layer. The reconstructed images are also evaluated by
plotting the profile of the yellow vertical line in Figure vertical profile
(VP), and the profile over the 61 layers in the z direction of the red pixel in
Figure depth profile (DP).

We show the results obtained by the algorithms at three different tem-
poral windows: at 5 seconds (10-15 iterations), for simulating a real-time
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execution; at 20 seconds (40-60 iterations), corresponding to an over-time of
few minutes in real applications; at the convergence, i.e., when the conver-
gence criterium is satisfied (this is a long execution that can be performed
only off-line in a real application). We think that each of these three differ-
ent outputs may have a practical interest and together they represent the
evolution of the methods in time.

4.1.2 Case of Gaussian noise. Results with the LS data func-
tion.

In this paragraph we show the results obtained on the simulated data

g = g" + e, where e IHS che vector representing white Gaussian noise with
ell2

level defined as v = s e consider here v = 0.01, corresponding to a
Signal-to-Noise Ratio SNR := 20 - l0910(||g|Lg;‘3||2) of about 40. We consider

the fit-to-data function J(x) as the LS function and we set the TV smooth-
ing parameter 3 equal to 0.001 in all the experiments. The regularization
parameter A has been heuristically set to 0.09; we have experimented that
for this test the model is not very sensitive to the value of A (similar results
have been obtained with different values of X in the interval [0.005, 0.5]).

We compare the results of the SGP implementation with the BB step-
length rule, with the non-scaled Gradient Projection method (GP) (with
the step-length selection used by SGP, but with Siy1 = I in the definitions
and of the BB rules) and with the UPN method proposed in [57],
implemented in the TVReg toolbox. The UPN method has been equipped
with the same stopping criterion and regularization parameter used for SGP,
while its own parameters have been set at their best values after a careful
tuning.

In Table we present the results obtained with different number of
views (Ny = 19,37, 55) for the GP, SGP and UPN methods. In the columns
from left to right we report the Relative Error, the Standard Deviation,
the objective function value and the number of performed iterations in the
three considered temporal windows: at 5 seconds, at 20 seconds and at
convergence. From the table, we see that the SGP method outperforms
the others in the first iterations (5 and 20 seconds) for all the considered
angles, while they all give very similar results at convergence, mirroring
their convergence to the unique solution of the constrained problem .
Comparing, in fact, the decreases of the objective functions for the GP and
SGP cases related to the earliest reconstructions, we can appreciate the
acceleration of the latter method, even if every scaled iteration takes a little
longer time. Focusing on the StdDev values, we can assign good denoising
properties to all the tested strategies. In particular, the reconstructions of
central layer (layer 31) obtained with the three considered methods in the
case Ng = 37 are shown in figure 4.2} at first glance, it seems that the 5
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55

RelErr  StdDev fun iters
5secs | 0.3816  0.0559  5574.36 16
GP 20 secs | 0.1548  0.0312 1596.75 69
conv 0.0559  0.0052 1498.49 263
Hsecs | 0.2637  0.0463  3396.96 19
Nyg=19 SGP 20secs | 0.1178  0.0241 1560.48 71
conv 0.0543  0.0052 1498.57 198
Hsecs | 0.3785  0.0640  6075.55 11
UPN 20 secs | 0.1786 0.0414 1652.62 48
conv 0.0580  0.0056 1484.46 606
bsecs | 0.3475  0.0331 11537.90 16
GP 20 secs | 0.0898  0.0241 1795.02 64
conv 0.0245  0.0028 1645.77 154
Hsecs | 0.1840  0.0261  4335.56 18
Ng =37 SGP 20secs | 0.0477  0.0777  1689.30 66
conv 0.0247  0.0030 1646.39 194
5secs | 0.4001 0.0281  19918.90 8
UPN 20 secs | 0.1045  0.0343 1917.49 46
conv 0.0241 0.0028 1632.07 224
5secs | 0.3091 0.0438 14306.80 15
GP 20 secs | 0.0779  0.0276 1997.80 60
conv 0.0199  0.0044 1783.11 142
Hsecs | 0.2148  0.0306  9662.70 16
Nop=55 SGP 20secs | 0.0277  0.0077  1814.38 60
conv 0.0199  0.0044  1783.60 147
Hsecs | 0.4315  0.0325 40865.00 6
UPN 20 secs | 0.0677  0.0293  2033.66 46
conv 0.0199  0.0043 1769.47 200

Table 4.1: Results obtained on the test problems with data affected by Gaus-

sian noise.
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second outputs only detect the main structures, the 20 second ones make the
small objects more visible among the brain background disuniformity and
the final reconstructions validate our model with high quality images.

(c) UPN method at 5 seconds, 20 seconds, convergence.

Figure 4.2: Reconstructions obtained in case of Gaussian noise on the data.
From the left to the right: reconstructions after 5 seconds, after 20 seconds,
at convergence.

In Figure the errors versus the iterations (on the left) and the objec-
tive function values versus the iterations (on the right) are shown in log-log
scale. We compare here the GP method (blue line), the SGP method (red
line) and the UPN method (green line) up to the convergence of the methods.

The advantage of using the scaling matrix is evident, especially in the
first iterations, and is confirmed by analysing some important profiles on the
reconstructions. Figure displays the VP (on the left) and DP (on the
right) after 5 seconds, 20 seconds and at convergence: we compare again
the GP reconstruction (blue line), SGP reconstruction (red line) and UPN
reconstruction (green line) with the phantom profile (grey line).
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The VP plots confirm that after few iterations (5 seconds) we can identify,
in the signal reconstructed by the SGP method, all the objects with a good
approximation of their intensity; in the DP plot after 20 seconds the SGP
method has almost completely eliminated the noise, while the GP and UPN
plots show a residual noise yet. In figure [£.5] we show a zoom of figure [£.4] for
the pixels between 4 and 27 for the VP plots on the left and between 19 and
43 for the DP plots on the right, in order to clearer represent the behaviour
of the method for reconstructing the small object represented by the red dot
in Figure . We can see that the SGP profiles are less noisy than the
others and in the DP the peak of the SGP line is the closest the exact one.

4.1.3 Case of Poisson noise. Results with the KL data func-
tion.

We consider now some tests where the projections are affected by Poisson
noise, with SNR ~ 40 and background bg = 10~°. The problem is solved by
using the KL fit-to-data function in . In this case the regularization
parameter A has been heuristically set to 0.03 and the TV smoothing param-
eter § = 0.001; we have experimented that, as in the case of Gaussian noise,
similar results have been obtained with different values of A in the interval
[0.001,0.1].

For this model, we compare the results obtained with the GP and the
SGP methods, since the UPN method is provided only for the case of LS
fit-to-data function. Table[d.2)reports the results in the case Ny = 19,37, 55,
with the same information of table For the KL model, the performance
improvement due to the scaling is more consistent than in the LS model, as
it can be seen by the RelErr and StdDev values. If the number of performed
iterations in the last column is equal to 1000 an asterisk reminds that the
algorithm has stopped after reaching the maximum number of iterations.
We want to stress that this happens only for the GP method, confirming
its slower convergence rate. In figure we plot the Relative Error versus
the iterations in the left panel, while the objective function values versus the
iterations are displayed in the right panel. In figure the reconstructions
of the layer 31 obtained with both GP and SGP methods after 5 seconds, 20
seconds and at convergence are represented. Both the plots and the images
confirm the convergence acceleration of the scaled algorithm with respect to
the non-scaled one.

The analysis of VP and DP profiles for Ny = 37 in figure shows that
the scaling allows recovering very good profiles in very short time: after 20
seconds the line of the reconstructed image almost overlap the line of the
exact phantom and the only exception is the small peak in the center of the
DP, whose detection is very hard (due to the sparsity of the scanning views).
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RelErr StdDev fun iters
5secs | 0.6305  0.0154 16781.30 12
GP 20 secs | 0.5685  0.0204  9031.95 61
Ny =19 conv 0.4353  0.0290  3085.58 877
5secs | 0.2145  0.0332 767.85 19
SGP 20 secs | 0.0984  0.0097 524.80 72
conv 0.0869  0.0063 522.01 172
H5secs | 0.6914  0.0085 55813.10 11
GP 20 secs | 0.6349  0.0107 31273.40 53
conv 0.4045  0.0180  4913.71  1000*

No =31 osecs | 0.1752  0.0201  1127.98 18
SGP 20 secs | 0.0798  0.0129 597.74 66
conv 0.0335  0.0031 045.41 393
osecs | 0.6919  0.0105 85188.70 12
GP 20 secs | 0.6495  0.0121  54467.70 52
conv 0.4191  0.0222  8215.40 1000*
Ny =55

dsecs | 0.1745  0.0226  1552.37 16
SGP 20 secs | 0.0496  0.0107 996.71 60
conv 0.0387  0.0068 580.17 198

Table 4.2: Results obtained on the test problems with data affected by Pois-
son noise.
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Figure 4.3: Case of Gaussian noise. On the left: errors vs iterations; on the
right: function values vs iterations. The circles and the diamonds represent

the values at 5 and 20 seconds, respectively.
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Figure 4.4: Case of Gaussian noise. Profiles for 37 angles: on the left VP
plots and on the rigth DP plots at different temporal windows.
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Figure 4.5: Zooms of the plots in figure
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Figure 4.6: Case of Poisson noise. On the left: errors vs iterations; on the
right: function values vs iterations.
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(b) SGP method at 5 seconds, 20 seconds, convergence.

Figure 4.7: Reconstructions obtained in case of Poisson noise on the data.
From the left to the right: reconstructions after 5 seconds, after 20 seconds,
at convergence.
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Figure 4.8: Case of Poisson noise. Profiles for 37 angles: on the left VP plots
and on the rigth DP plots at different temporal windows.
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4.1.4 Algorithms reliability with regard to noise

To test the reliability of the scaled algorithm on harder problems, in this
paragraph we take into acconut higher levels of noise on the projections,
which can reflect a CT process with a lower X-ray dose. In particular,
we have performed some tests by adding noise of different intensity on the
data and solving the reconstruction problem with a suitable regularization
parameter in each case: we show in figure the plots of the quantitative
indeces to analyse the results obtained after 20 seconds. In particular, we
plot the relative errors as a function of the SNR in the case of Gaussian
noise (left panel) and Poisson noise (right panel): the relative error obviously
increases with increasing noise but the SGP method always performs better
for all noise levels. We highlight the remarkable difference between the errors
obtained with SGP and GP methods in the case of Poisson noise, where
the proposed scaling is indeed more effective. On the other hand, we can
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Figure 4.9: Relative errors vs SNR after 20 seconds for all the methods.
On the left panel, the results with Gaussian noise on the data; on the right
panel, the results with Poisson noise on the data.

observe that even for SNR = 30 the scaled implementation provides a good
reconstruction in only 20 iterations, with a relative error smaller than 0.1 in
the case of Gaussian noise, too.

4.1.5 Comparison of step-length rules

To conclude the analysis of the SGP algorithm, we now focus on the two
step-length selection strategies prososed in paragraph the alternating
Barzilai-Borwein (BB) rule and the one based on the Ritz-like values (R).
The exact projections g* are again corrupted by random noise from Poisson
distribution with level 10° and bg = 10~ and the regularization parameter
A is heuristically fixed as 0.03, while the smoothing parameter is 5 = 0.01.
Now we show the results obtained with Ng = 37 angles, but the algorithms
showed a very similar behavior in the case of 19 and 55 angles. The plots
in figure compare the errors (on the left panel) and the values of the
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objective function (on the right panel) versus the iterations, for the different
SGP implementations: the red and blue lines refer to the scaled methods
with the step-length based on the BB rules (SGP_BB) and the Ritz-like
values (SGP_R), respectively, while the black and green lines denote the
non-scaled methods (GP_BB and GP_R, respectively), that are again the
SGP versions with scaling Sk equal to the identity matrix at each iteration.
Independently of the step-length rule, the scaling strategy accelerates the
GP methods considerably, especially in the first iterations, and it represents
a great guarantee for the proper use of an SGP algorithm in SpCT. In figure
[4.11] we show the reconstruction of the central layer obtained with the scaled
methods, both after 20 and 1000 iterations, and the quality of the SGP R
reconstruction after 20 iterations is indeed noticeable: the lighter object
has a sharper edge and the whole brain looks neater. In order to better
compare the SGP BB and SGP_R results after 20 iterations, we analyse
again the Vertical and Depth profiles, respectively on the left and on the
right hand pictures of figure We observe that the noise is suppressed
almost everywhere and the small objects represented by narrow peaks are
detected, even if the intensity of the signal is somewhere lower than the exact
one. Furthermore, it is evident that the SGP R gets a better reconstruction
in few iterations and this is crucial for medical softwares that must provide
reliable images almost in real time. To conclude, in table 4.3 we report
both the value of the objective function and the relative error for the results
obtained by the SGP BB and SGP R algorithms at 20 and 1000 iterations,
with a different number of source angles: The table confirms that the choice
of the step-length based on the Ritz-like values improves the algorithm speed
in all the considered underdetermined cases, providing useful reduction of the
reconstruction error and a remarkable approach toward the minimum value
of the minimizing function.

relative error
3

iteration iteration

Figure 4.10: Relative errors vs iterations on the left; function values vs
iterations on the right. GP_BB is in black, SGP_ BB in red, GP_R in
green and SGP _R in blue.
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(b) Profiles after 1000 iterations

Figure 4.11: The central layer of the scaled reconstructions. The SGP BB
outputs in the left column and SGP R outputs in the right column.

original
—SGP BB
1 —SGP_R

Figure 4.12: Vertical profile (on the left) and depth profile (on the right) over
the objects of interest. The gray line is the exact profile, the red line refers
to SGP BB, the blue line denotes SGP_R stopped after 20 iterations.

Ny =19 Ny =37 Ny =55
fun RelErr fun RelErr fun RelErr
K — 20 SGP_ BB | 765.109 0.2140 | 1055.09 0.1705 | 1310.77 0.1609
SGP_R | 553.704 0.1522 | 590.133 0.0856 | 661.329 0.0894
K — 1000 SGP_ BB | 520.047 0.0722 | 543.907 0.0301 | 569.152 0.0251
SGP_R | 520.813 0.0798 | 544.602 0.0324 | 571.04  0.0290

Table 4.3: Behavior of SGP_BB and SGP R for different numbers of Np,
at 20 and 1000 iterations.
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4.2 Comparisons on a real 2D SpCT dataset

In this section, a first comparison between the SGP and the FP algo-
rithms is made on a 2D example of SpCT, starting from a real dataset. Such
dataset is freely downloadable from the web page of the Finnish Inverse Prob-
lem Society www.fips.fi/dataset.php and the relative documentation can
be found in [7]. The object in exam is a lotus root which has been filled with
attenuating objects and scanned from 120 positions on a round angle with
a fan beam. The reconstruction of one bi-dimensional slice of the lotus root
is here achieved both from 120 and 20 projection data, to test the reliability
of the SGP and FP methods on both a medium-level SpCT case and on a
harder imaging problem.

All these tests are implemented in Matlab R2016a and performed on a
computer equipped with two processors Intel (R) Xeon(R) CPU E5-2650,
2.30 GHz, 20 cores, with 132 GB RAM.

4.2.1 Test problem and setting

The provided Matlab files allow to test any IIR method to real projection
data in 2D. The scanned object is a slice of lotus root, whose holes have

Figure 4.13: A picture of the lotus root, filled with different materials.

been filled with elements made of different chemical elements: if we refer to
figure .13 and move clockwise on the holes, we find one hole in the upper-
left corner filled with some match-heads (made of sulphur), then one filled
with a portion of a pencil (made of carbon sourrounded by wood), another
one with three rectangular pieces of ceramics (made of calcium) while the
last hole contains a thick circular chunk of chalk (made of calcium again).
The scanning process consists in 120 projections performed from a circular
trajectory, with angular step size Ay = 3 degrees; each real projection array
has been downsampled into 429 recorded values, hence the sinogram is a
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matrix of size 429 x 120 and it is shown in figure The dataset also
provides the forward projector, as a sparse matrix of size 51480 x 65536,
hence the reconstruction will be an image of 256 x 256 pixels. Because of the
variety of the components inside the lotus root, of their shapes and sizes, and
because of the tomographic geometry, this dataset can be a good template
of a SpCT reconstraction for industrial applications.

2 4 6 8 10 12 14 16 18 20

(a) (b)

Figure 4.14: The full sinogram of the lotus dataset with 120 projections on
the left and the reduced sinogram with only 20 views on the right.

To simulate a more severe sparse tomography, we also considered a re-
duced dataset made of only 20 projections on the round angle: the resulting
CT is thus performed with a wide angular step of 18 degrees and its sinogram
is reported in figure

To solve the two SpCT problems, we set the Least Squares data-fitting
function and applied both the SGP method with the BB step-length rule and
the FP algorithm. As this 2D case does not lead to a very big dimensional
problem, we prefere to stop the executions after having computed a prefixed
number of iterations in both the algorithms, but we must remark that in the
FP case all the CG iterations compute a couple of matrix-vector product,
hence they all must be counted together with every external iteration over k.
In details, the inner CG solver always executes 10 iterations: it represents a
good compromise between the required accuracy on the nested linear system
resolution and the practical need of fast reconstructions. If not specified,
the SGP parameters are the same we set in the previous test on the Shepp
Logan phantom. The value of Sy is 1073,

Since we do not have an exact image to compare with, we cannot com-
pute an image error. Neither, we can analyze the algorithms comparing
the descent of their objective functions: even if they could make use of the
same regularization parameter, the SGP solver includes a projection onto
the non-negativity orthant in every iteration that may not be added in the
FP formulation. As a consequence, a parallel analysis of the algorithm per-
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formances must be done just looking at the outputs.

On the other hand, a post-processing rehash is tipically applied to the out-
put, above all in practical applications, to make the visualization clearer: for
example, it is common to cut all the negative values setting them to zeros, in
order to keep the physical meaning of the non-negative absorbtion coefficient
for every pixel (or voxel). Of course this procedure is not necessary for the
SGP reconstructions, but it is for the FP images. Here, only few elements
show negative values and they are supposedly due to noisy components: all
the figures related to the FP algorithm have been already projected onto
non-negative values.

4.2.2 Results from the 120 projections data set

We want to start this dissertation by showing the robustness of both the
proposed algorithms with respect to the regularization parameter A. For
what concerns the SpCT case with 120 projections, figure shows the
outputs of the SGP and the FP methods, after 1000 iterations, for different
values of A spacing from 1072 to 1073, The FP method never provides an
unacceptable reconstraction, even if with the smallest parameters the images
are affected by tipical artifacts due to the subsampling (that look like rays,
starting from the center of the image and extending to the edges): in this
case, we can state that a good regularization parameter should be taken in
[10, 100] approximately. On the other hand, it is evident that high values
for A are not adequate to the SGP algorithmn, that prefers a parameter in
[0.1, 1]: lower values exhibit artifacts, while higher ones blur the objects too
much. Anyway, both the suitable ranges are one order large and it confirms
the robustness of the two solvers. In addition, the FP requires a stronger
regularization than the SGP algorithm: it is to compensate the lack of the
additional ”a priori” information of the non-negativity of the solution, that
is incuded in the constrained formulation for the SGP. This feature
can also be seen as a positive confirm of the proposed model.

If we performe the same analysis we have just done for the early recon-
structions, we probably would set the suitable ranges for A in a different
way: if we are interested in fast reconstructions from sparse tomographic
data (and not only in SpCT IIR), we could prefere to fix smaller regular-
ization parameters above all for the FP algorithm. Looking at figure 4.16]|
displaying the reconstructions achieved in 10 iterations, we realize that the
FP outperforms the SGP when A < 1, while for larger values all the recon-
structions are too blurred. This behaviour can be explained by the fact that
in this case, the first iterations do not spread noise nor artefacts too much,
hence a good reconstruction aims to minimize the data-fitting term at first.
On the contrary, a too heavy Total Variation can slow down the object de-
tention in the first steps.
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(a) SGP and FP with A = 0.01 ) SGP and FP with A = 0.1
) SGP and FP with A =1 ) SGP and FP with A = 10
) SGP and FP with A = 100 ) SGP and FP with A = 1000

Figure 4.15: Convergence results achieved in 1000 iterations, for varing values
of the regularization parameter. In each subfigure, the image on the left is
the SGP reconstruction, the one on the right is the projected FP output.

The choise of a proper regularization parameter for SpCT reconstruction
may represent an open question for future investigations.

Now, we fix heuristically A = 1 for the SGP algorithm and test both
A =1and A = 100 for the FP method. We aim to understand how the
reconstructions evolve between the two extreme cases already analysed: we
think this approach could be of interest also for an industrial SpCT applica-
tion. Figure .17 reports the images we get in 10, 50, 100 and 1000 iteration,
while in figure two zooms are offered to better appreciate the detection
of the match-heads and of the pencil mine together with the ceramic frag-
ments (in the zooms on the left and on the right hand side respectively, in
each subfigure) for each reconstruction.
As already stated, in only 10 iterations the best reconstruction is achieved
by the FP method with a little regularization (central image in ﬁgure
and zoomed crops in 4.18(b)|): it is the only one that detects the lotus edges
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) SGP and FP with A = 0.01 ) SGP and FP with A =0.1
) SGP and FP with A =1 ) SGP and FP with A = 10
) SGP and FP with A = 100 ) SGP and FP with A = 1000

Figure 4.16: Results achieved in only 10 iterations, for varing values of the
regularization parameter. In each subfigure, the image on the left is the SGP
reconstruction, the one on the right is the projected FP output.

with a certain accuracy and the inserted objects are already well defined,
even if many artifact lines are too visible. Going on with the iterations, a
turning point is around k£ = 50, when the SGP method and the FP one with
A = 100 furnish similiar and good reconstructions. Of course these images
are not as reliable as the convergence results, but by comparing them to their
corresponding later outputs (provided after 100 and 1000 iterations) we can
assert that in only 50 executions both the proposed solvers get very close
to their targets. Focusing on the details in figure {.18] we realize that the
TV regularization (with its suitable parameter, of course) indeed removes
many artifact effects and prevents noise propagation in this SpCT case: all
the objects and the lotus background are well detected with their regular
shapes, uniform densities and only 100 iterations are enough to reconstruct
the pencil mine round section with a good contrast.
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(a) Outputs at 10 iterations

(b) Outputs at 50 iterations

(¢) Outputs at 100 iterations

(d) Outputs at 1000 iterations

Figure 4.17: Results obtained by the SGP with A = 1 in the left column, by
the FP with A = 1 in the central column, by the FP with A = 100 on the
right column.
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) SGP with A =1 ) FP with A =1 ) FP with A = 100
) SGP with A =1 ) FP with A =1 ) FP with A = 100
) SGP with A =1 ) FP with A =1 ) FP with A = 100
) SGP with A =1 ) FP with A =1 ) FP with A = 100

Figure 4.18: Results obtained in 10 iterations on the first row, in 50 iterations
on the second row, in 100 iterations on the third row and in 1000 iterations
on the last row.



4.2. COMPARISONS ON A REAL 2D SPCT DATASET 75

4.2.3 Results from the 20 projections data set

For our studies, it is interesting to compare the SGP and the FP meth-
ods also on a more challenging underdetermined CT problem: to do that,
we now consider a further subsampling of the CT acquisition where only
20 projections are performed with a wide angular step of 18 degrees. The
resulting sinogram is shown in figure m
When so few projections are available, more iterations must be performed to
achieve reasonable results and for sure some artifacts will be present in all the
reconstructions, whatever solver we use. Figure [£.19]shows some recostruc-
tions we get from the SGP algorithm with A = 0.1 and the FP method with
A = 100, together with the relative zooms over the pencil and the ceramics
pieces.

In 20 iterations, only the calcium elements are visible, while the mine ap-
pears after about 50 iterations but it is still a low contrast object, above
all on the FP reconstruction. The match-heads are more difficult to detect:
because of the missing views and their small dimensions, their high contrast
intensities degenerate into an unreal ray beam, centered on them and spread
along many directions. Such artifact sourrounds other objects too, but their
more regular shaped reconstruction is favoured by the TV regularization.
Enhanced reconstructions are the convergence outputs (i. e. made in 145
iterations by the SGP and 1000 iterations by the FP algorithm), where both
the lotus slice and the external background are more uniform.

By the way, from this test we realize the importance of running the recon-
structing solvers for longer time, when the CT problem is characterized by a
severe subsampling, and it mirrors the difficulty to back-project the data and
fit them, in case of SpCT datasets. Furthremore, another difference between
the two methods relies in the SGP capability to reach its convergence while
the FP can not do that, because it only performs 10 iterations (as we count
1000 iterations taking into accont also the CG inner executions).
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) SGP method at 20 iterations ) FP method at at 20 iterations
. I

) SGP method at 50 iterations ) FP method at 50 iterations

) SGP method at 100 iterations ) FP method at 100 iterations

) SGP method at convergence ) FP method at 1000 iterations

Figure 4.19: Results obtained from the dataset with 20 projections, by the
SGP with A = 107! and by the FP with A = 100.
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4.3 Comparisons on a simulated DBT case

In this section, the application of the SGP and the FP techniques to
SpCT problems goes on comparing them on a 3D simulation test. In this
case, the Digital Breast Tomosynthesis geometry is considered, hence pro-
jections are virtually acquired from sparse and equispaced positions on a
limited angular range. We believe it could be a proper starting point to
understand the main issues of such a challenging subsampled tomographic
technique and its characteristic artifacts [70].

All these tests are implemented in Matlab R2016a and performed on a com-
puter equipped with two processors Intel (R) Xeon(R) CPU E5-2650, 2.30
GHz, 20 cores, with 132 GB RAM.

4.3.1 Test problem and setting

To better simulate the breast imaging, we have defined a digital version
of an accreditation phantom, called CIRS mod. 015 [I], really used in mam-
mography to quantify the accuracy of a machinery. In our tests, such exact
volume f* is discretized in 128 x128x15 voxels with a resolution of 1x1x3
mm? that is almost proportional to some real cases.

Figure shows the center slices of this phantom: inside a voxel-thin
boundary of simulated skin, objects comparable to fibers, microcalcifications
and masses are neatly put in a uniform background of adipose-like tissue.
Outside the skin-made boundary, air is simulated with null attenuation co-
efficient and it is part of the volume we want to reconstruct together with
the phantom. CIRS mod. 015 is used to check the competency of mammo-
graphic systems because the included objects are very important for the early
detection of a breast cancer: in particular, they are of different dimensions
and thickness, in order to analyse and compare the 3D graphic resolution of
different reconstructions, and their attenuation values are performed taking
into account a low-dose X-ray scan of 20 keV (in table the attenuation
coefficients we used to create our phantom).

As shown in figure [£.20(c)] the phantom has values in [0, 3] and most

) Attenuation
Object coefficient
adipose tissue 0.1703
skin 0.24
fibers and masses 0.27
microcalcifications 3

Table 4.4: All breast objects are characterized by different densities. The
table reports the attenuation coefficients related to a 20 keV scan for our
simulated geometry.
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anatomical structures are low contrast objects on the adipose background.
On the contrary, microcalcifications are typically of very little size but they
have a greater attenuation coefficient than all the other structures. This
phantom includes many microcalcifications laying on the central layer and,
in particular, one-voxel thin microcalcifications on the right are very useful
to analyse the reconstructing algorithms even on the smallest objects.

a) Layer 6 b) Layer 7 c¢) Layer 8

(d) Layer 9 (e) Layer 10

Figure 4.20: Central layers of the digital mammographic phantom CIRS
mod. 015, sliced in 15 digital planes with resolution of 128 x128 pixels.

For what concerns the geometry setting, the detector is supposed to have
128 x 128 pixels and its extension is the same of the volume area on the zy-
plane. Of course the detector captures all the projections entirely, even the
most angled ones because, thanks to the sourrounding air ring, the Cirs sur-
face is smaller than the detector. The tomosynthesis acquisition is performed
from 13 angles, uniformly distributed from -17 and +17 degrees. The cen-
tral cone beam starts 64 cm above the detector and the X-ray monochrome
source wheels along the y-direction, with a 59 cm ray, representing a realistic
DBT scanner.

The matrix is computed once, with a ray-driven algorithm, and then stored
because of its medium size: M is a 212992 x 245760 sparse matrix, with only
5494248 nonzeros elements, meaning that only one thousandth of its entries
must be stored.

The simulation problem is again defined by computing the projection ar-
ray as ¢ = M f* 4+ e, where e is a Gaussian noise of relative noise level
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RNL = {4 =102,

Outputs agr‘e quantitative evaluated as we did in section i. e. by comput-
ing the relative error RelE'rr of the whole reconstructions and the standard
deviation value StdDewv, that now is computed inside a rectangular area in
the upper-right side of the central layer where the actual phantom is uni-
form (figure [£.21(a)). To better highlight the object detection during the
code executions, we analyse some early outputs comparing some profiles of
interest: we can take Horizontal Profiles (HP) on the central layer, one over
the microcalcifications and one over the masses (in figures{4.21(b)|and 4.21(c)|
respectively), while to analyse the algorithm 3D accuracy we can focus on
two specific voxels (figure[t.21(d)]) and plot z-directional profiles (Depth Pro-
files DP) fixing the (x, y) coordinates. We underline that any HP on in-plane
slices is interesting because it is parallel to the source motion: due to the
reduced scanning range of the DBT, we forecast shadow-like artifacts (called
ring-artifacts) along the horizontal direction.

e s e e by Ll Wl
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(a) (b) (c) ()

Figure 4.21: Objects we will focus on to analyze reconstructions deeply.

Furthermore, the TV makes use of 8 = 1073 for its differentiability in
both algorithms, while the regularization parameter has been heuristically
chosen as A = 0.09 for the SGP and A = 0.5 for the FP: this choises ensure
good results since we carefully evaluated the robustness of both methods. In
the SGP code, we made use of the same parameter setting of the previous
section, while the maximum number of iteration for the inner CG loop, in
the FP algorithm, is 10.

Both the algorithms start from an initial constant vector f(©) = NL and run
for a prefixed time. ’

4.3.2 Results

Table |4.5|shortly analyzes the behaviour of the SGP and the FP methods
during their executions, looking at temporal windows of 1, 5, 20, 60 and 120
seconds of run time. The corresponding reconstruction of the eighth slice are
shown in figure [4.22]for the 1, 5 and 60 seconds, while three central layers for
the 120 outputs are presented in figure [£.23|to better appreciate the accuracy
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RelErr iters StdDev
SGP FP SGP FP | SGP FP
1 sec 0.4205 0.3834 4 2 | 35e3 9.7e4
5secs | 0.2787 0.3057 | 14 6 | 28¢3 28e4
20 sec | 0.1655 0.1930 | 51 21 | 5.7e4 26e4
60 secs | 0.1395 0.1105 | 147 63 | 2.1e4 85¢eb
120 secs | 0.0898 0.1067 | 300 124 | 1.5e4 7.1e-5

Table 4.5: Results for the SGP and FP methods at different run times.

of advanced reconstructions. We highlight that the FP solutions have been
already projected onto non-negative values, as a post-processing step.

First of all, we can appreciate that all the microcalcifications are de-
tected, even the smallest ones and even on the earliest outputs: this is an
encouraging remark. In particular, the solutions achieved in only one second
are comparable to the fastest reconstructions of commercial softwares pro-
vided in less than one minute: the SGP method performed 4 iterations and
the FP algorithm only 2 (plus 20 inner executions of CG steps). Focusing on
figures|4.22(a)|and |4.22(b)|, we realize that the voxel intensities are not yet in
[0, 3] but all the objects are detected. Of course many swiping artifacts are
well visible, but they are due to the limited range characterizing the DBT
technique and more regularization (hence more iterations) are required to
delete them.

After few seconds, the SGP reconstruction is more uniform than the FP
one, but its objects are less defined and constant. On the other hand, the
FP reconstruction does not fulfill the full range yet and still exhibits strong
shadows-like artifacts. They both improve the vertical skin edges, that are
more difficult to recover because they are perpendicular to the scanning tra-
jectory.

In one minute long execution, the FP output looks more accurate and in one
further minute the outputs seem not to improved significantly.

By looking at the HP shown in figure 1.24] we confirm that both the micro-
calcifications and the masses have been faster detected by the Fixed Point
algorithm (blue lines), but it also provides undesired ring artifacts around
the objects borders (which are partially erased by projecting the negative
voxels to zero). In 60 second outputs, the FP definitely overcomes the SGP
solver avoiding artifacts and providing the same in-plane accuracy of the
convergence solution.

Maybe the depth profiles in figure [£.25] mirrow the most important differ-
ence between the proposed algorithms for this simulation. In DBT imaging,
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in fact, even if we are interessed in 3D reconstructions with anisotropic ac-
curacy, the precision along the z—axis provides important measurements in
case of biopsies. Looking at the plots related to the thinnest microcalcifi-
cation, we can thus confirm the excellent capability of both the methods to
locate voxel-wise elements of high intensity in their exact positions, even in
few iterations. On the contrary, the plots on the right hand side column
are related to the central voxel of the biggest mass (that is 3 layer thick):
they reveal the inability of the SGP algorithm to detect lighter and plainer
objects while the FP method needs short time to detect smoother structures.
In particular, the SGP method detects the mass, but with a very lower in-
tensity, and it spreads it into too many slices, causing a long backprojection
of the mass measurements. Only with longer executions the SGP approaches
the FP depth accuracy.

To conclude, we think that the Scaled Gradient Method and the Fixed Point
algorithm may provide useful reconstructions when applied to a DBT prob-
lem.



82CHAPTER 4. TESTS ON MEDIUM SIZE PROBLEMS IN MATLAB
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(a) SGP in 1 second (b) FP in 1 second

(c) SGP in 5 seconds (d) FP in 5 seconds

(e) SGP in 60 seconds (f) FP in 60 seconds

Figure 4.22: Results for the SGP on the left and FP method on the right,
at different execution times, with the colorbar that is relative to the whole
volume in output and mirrows the
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) Central layers of the SGP reconstruction, having values in [0, 3.1926]
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) Central layers of the FP reconstruction, having values in [0, 3.0226]

Figure 4.23: Layers 7, 8 and 9 of the SGP and FP reconstruction after 120
seconds of run time.
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Figure 4.24: Horizontal Profiles (HP) taken on the reconstructions at 1, 5,
60 and 120 seconds, both on the microcalcifications (left column) and on the
masses (right column).
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Figure 4.25: Depth Profiles (DP) taken on the reconstructions at 1, 5, 60
and 120 seconds, both on the microcalcifications (left column) and on the
masses (right column).
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Chapter 5

Results with real DBT data

In this chapter we finally test the SGP and the FP solvers on 2D real
projection data, that have been acquired from a DBT device.
We used mainly the digital system Giotto Class of the IMS Giotto Spa

Figure 5.1: Giotto Class device, by the IMS Giotto company.

company in Bologna, Italy [5 B], that is reported in figure When in
vertical position (6=0 degrees), the source is approximately 70 cm over the
detector, then it rotates on a 30° angular range over the y—axis and the
unit acquires 11 projection views with a low dose protocol. The stationary
digital detector has a sensitive area of 24x30 ¢m? and squared pixel pitch
0z = 0y = 0.085 mm; the reconstructed voxel sizes are A, = A, = 0.090 mm
and A, =1 mm.

To handle with the resulting optimization problems, a C-based code has been
implemented. Here the projection matrix M is computed with the Distance
Driven algorithm, discussed in 2.2.2] The resulting sparse matrix is never
stored, but it is re-evaluated row by row at each matrix-involving product:
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looking at the run time, it becomes evident that this is the most onerous
tasks in each step of both the algorithms. For this reason, in the follow-
ing dissertation the SGP and FP solvers are always stopped after a pre-fixed
maximum number of iterations. In particular, the primary recostructions are
the earlier outputs we get after 4 iterations of the SGP solver or after only
1 iteration of the FP scheme, where 3 CG executions solve the inner linear
system, to sum up the same number of matrix-vector products. We set such
stopping criterion to fit better with commercial timing: the breast volume
must be displayed in less than one minute. The ”advance” reconstructions
are achieved with 12 global iterations (that become 3 FP executions plus 9
CG total iterations): we believe they could provide improvements on the im-
ages and highlight important features to analyse the trend of the algorithms.
Nevertheless, performing 12 iterations may be a feasible target, especially in
case of uncertain diagnosis where further iterations may be launched offline.

Dealing with reconstructions from real data also forces to face many

troubles which do not emerge with simulations. First of all, it is difficult to
state quantitative indeces to analyse the results and only the radiographer
trained eyes can provide reliable qualitative feedbacks. In addition, we do
not know the exact range for the image values and any solver reconstructs the
volume in a certain interval: it makes their comparison harder than on digital
problems. For sure, the most important feature is to make the suspicious
objects as distinguishable as possible among the sourranding tissues, hence
we can focus on their relative appearance in the slices, and not on their
reconstructed values, as suggested in the Technical Evaluation of a DBT
system by the English Public Health [39]. As a consequence, the following
in-plane profiles are all normalized in [0, 1] with respect to their original
proportions. Furthermore, each in-plane and depth profile represents a mean
over adjacent voxels, because one-voxel thin profile would have been a too
noisy plot and a disloyal visualization of the object detectability inside the
image.
In particular, in both the European Protocol [97] and the American approach
[90] to the Quality Control (QC) of DBT imaging, the Depth Profile analysis
is made through the study of an artifact spread along the depth-direction.
We have thus defined an Artifact Spread Function (ASF) with values in [0,
1], in the following way: if an object is centered in the Z slice, let mop;(2)
be the mean of the intensities of the voxels in a ROI inside the object and
Mipg(Z) the mean of voxels of a ROTI in the same layer but on a background
area. If we compute mep;(2;,) and myg(z;,) in the same ROIs but over all
the slices z;, where j, € 1,...,N., we can define the ASF values as

. \mobj(zj ) — mbg(zj ) :
ASF(j,) = : : ,€1l,....N,. 1
SE(:) Mobj(Z) — Mipg(Z) v € >

In the following, we report the most noticeable results we get from two
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breast quality control phantoms and, at last, from a real medical examina-
tion. All the images are rotated, as usual habit for right cranio-caudal views,
with the y—axis in vertical orientation on the right hand side.

All the reconstruction analysis have been performed in ImageJ environment
[4]. ImagelJ is a public domain Java-based image processing program devel-
oped at the United States National Institutes of Health. It can read many
image formats including TIFF, DICOM and "raw” and it supports “stacks”
(i.e. series of images that share a single window), hence it is a useful platform
for 3D CT imaging. It also includes standard image processing functions and
further analysis or processing plugins can be developed using ImageJ’s built-
in editor and a Java compiler.

5.1 Results on a Quality Control phantom

The TomoPhan (TP) phantom TSP004 by PhantomLab [§] is designed
to perform Quality Control tests to the reconstruction system on specific
metallic objects and it is reported in figure [5.2]

The TP phantom is 17 cm width and 4,2 cm thick; it is mainly made of

4mm

"y
A10m1n¢
?10mm

Figure 5.2: Technical drawing of the TP phantom with coloured objects of
interest on the left and pictures of the phantom on the right.



90 CHAPTER 5. RESULTS WITH REAL DBT DATA

uniform breast equivalent material and it has a semi-circular shape to sim-
ulate the breast. It contains three Aluminium beads (the pink ones on the
TP technical drawing) to test the z—axis spacing: they are 0.5 mm spheres
and are 10 mm spaced in depth, hence they will lie on different layers on
the reconstructions. Since metallic elements cause many more shadows than
anatomical tissues in the sourranding layers, it is interesting to see the ar-
tifacts they produce, which are further observable because of the homoge-
neous background. Inside the TP phantom there are also some acrylic bigger
spheres simulating breast masses: we focus on the yellow one, in the follow-
ing discussion. It is centered in layer 24, on the reconstructions.

The dataset contains 11 projection views and the regularization parameters
have been set to provide the best solutions in 4 iterations: they are A = 0.5
for the SGP and A = 10 for the FP. All the other parameters are equal to
those used in the Matlab simulations.

) SGP reconstrution in 4 iterations

) FP reconstrution in 4 iterations

Figure 5.3: Slices 9, 19, 29 and 39 of the reconstructed volumes in 4 itera-
tions.

Images in figure exhibit layers 9, 19, 29 and 39 of the volumes re-
constructed by the SGP and the FP algorithms in only 4 iterations: these
reconstructions are comparable to the commercial ones. We remark that the
ranges of the gray-level scale are automatically set by ImagelJ, to better visu-
alize the cropped portion of each single slice. If we focus on the three beads
we can appreciate their proper shape with net boundaries and the uniformity
of the background, that does not suffer too much for the sparse view artifacts
in any in-plane visualization. On the other hand, we can perfectly see the
shadows of these objects in all the other layers, because they degenerate in
a double-fan artifact, above and below its central slice. In particular, we
can recognise exactly 11 small points on the farther layers, reflecting the 11
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(a) SGP reconstrution in 12 iterations

(b) FP reconstrution in 12 iterations

Figure 5.4: Slices 9, 19, 29 and 39 of the reconstructed volumes in 12 itera-
tions.

performed projections: this is a typical artifact of all the limited angle CT
techniques. Their precise circular shape with clear edges suggests that the
bead spread is quite limitated.

Performing more iterations (ﬁgure, the apparence of the reconstructions
seems not to change a lot and it represents an important confirm of the capa-
bility of both the solvers to go close to the solution in their earlier iterations
in SpCT cases. On the other hand, if we look at figure[5.5] we notice that the

o

(a) SGP in 4 iters. (b) FP in 4 iters.  (c¢) SGP in 12 iters.  (d) FP in 12 iters.

Figure 5.5: Focus on the acrylic spheres.

detection of the acrylic masses improves with longer executions, above all for
the FP algorithm that provides more uniform objects and a more effective
denoising. This is coherent with the results of the DBT simulation of the
previous chapter.

To better compare the reconstructions, in figure [5.6| we see the Vertical Pro-
files (VP) on the right bead and on the mass, both in 4 and in 12 iterations.
The SGP algorithm (in red lines) can not make the Aluminium bead uniform
at the beginning, but in 12 iterations it achieves more precise and stepper
edges. The FP solver (in blue lines) gets a smoother object but also more
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uniform tails out of the mass. They both do not show ringing artifacts,
meaning that a good regularization may delete them.

Intensity
&

0.0 1 1 1 1 1

0 10 20 30 40 &0 o 20 40 80 80 100 120
Distanee invoxzls Distance in voxels

Intensity
I

00| T 1 1 T T 0.0 1 1 1 1 1

0 10 20 30 40 &0 o 20 40 80 80 100 120
Distanee invoxzls Distance in voxels

(b) VP in 12 iterations

Figure 5.6: On the left, profiles over a small Aluminium beads; on the right,
profiles over the mass-like sphere.

The profiles in figure [5.6] can not reproduce the algorithm executions
faithfully, because we lose some details when we scale the plots in the uni-
tary interval. In figure 5.7 the same VP profiles are reported, putting to-
gether the two reconstructions of each solver. The black line is always the
"advanced” solution, while the red and blue curves are related to the SGP
and FP outputs in 4 iterations respectively. The SGP fast reconstruction
has values quite close to the advance ones and the acrylic sphere has almost
equal intensities, while the FP algorithm shows a slower convergence. In 4
iterations, in fact, it provides very low values to all the volume and the image
range changes a lot when a longer execution is allowed.

The Depth Profiles in figure report the ASF graphics for the two ob-
jects of interest. The SGP is very precise in detecting the Aluminium bead
in its actual quote, because the corresponding red lines are indeed very thin
Guassian-like bells, while the blue larger bells reflect a spreading effect on
the z—axis direction for the FP solutions. The mass detection is harder: the
object is correctly located around the 24-th layer but we have high tails in
all the four reconstructions.

As suggested in [15], two repeated scans were acquired with the TP
phantom in exactely the same position and under equal geometry setting,
hence the two outputs (computed by the same algorithm with the same
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L L T T I L L L i
0 10 20 0 10 50 0 20 10 60 80 100 120
Distance in voxels Distance in voxels

(b) VP of the FP

Figure 5.7: In-plane VP over a small Aluminium beads and the mass-like
sphere, taken on the 4- and 12- iteration outputs.

SGP FP
4iter  12iter | 4iter 12 iter
mean | 5.96e6 16e4 | 7.3e6 2.22e5
StdDev | 2.5 e-4 6e3d | 27eb 238e5

Table 5.1: Mean and Standard Deviation values of the 3D difference images
presenting stochastic noise components.

parameters) may be subtracted and the resulting 3D image is a volume
of noise. Because the "anatomical” structure and its consequent noise are
supposed to be the same in every couple of reconstructions, the difference
between the two outputs are related to quantum and electronic noises (that
are indipendent at each scan) and to their amplification in the iterative
scheme. Table reports the mean and the Standard Deviation (StdDev)
of the four 3D difference images: the FP algorithm has a powerful denoising
effect with longer run times, as already seen for this problem, while the
standard reconstructions are comparable.

5.2 Results on a breast phantom

We now consider the projection dataset of a phantom which better sim-
ulates the breast anatomy: it is the "BR3D” model 020 phantom of the
CIRS company [2]. It is characterized by a heterogeneous background, where
adipose-like and gland-like tissues are mixed in approximate 50/50 ratio. Tt
is made of six slabs (as shown in figure and they may be arranged to
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(b) DP in 12 iterations

Figure 5.8: On the left, profiles over a small Aluminium beads; on the right,
profiles over the mass-like sphere.

Screen film mammography image of the target slab

Figure 5.9: A picture of the CIRS phantom "BR3D” model 020, its technical
drawing and a mammographic image.
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create multiple anatomical backgrounds. Inside one of them, in paricular, we
find acrylic spheres simulating breast masses, 1 cm length fibers and many
clusters of Calcium carbonate specks simulating microcalcifications. Each
slab has a semicircular shape, 1 cm thickness and it is 10 cm x 18 cm.

We scanned the phantom in 11 projections from -14.5 to +14.5 degrees, with
two different dose levels, to analyze the influence of the quantum statistics
on the algorithm performances.

Reconstructions with high radiation dose

For this IIR problem, the regularization parameters are A\ = 0.005 for
the SGP and A = 0.001 for the FP: the corresponding results are shown in
figure [5.10] Here we focus on a cropped portion over the 5-th slices of the
volumes, where we find the fibers number 10 on the left, number 9 and 11
in the middle and the microcalcification-like clusters number 3 and 4 on the
right hand side.

Like in the DBT simulation of paragraph the small microcalcifica-

(b) SGP and FP reconstructions in 12 iterations

Figure 5.10: Crops of the slices 5 of the volumes, reconstructed by the SGP
on the left column and by the FP on the right column, in 4 or 12 iterations.

tion appearance is noticeable even on the earlier reconstructions, while the
“anatomical” objects may have smaller constrasts in the in-plane visualiza-
tion too. These images, actually, have been graphically processed to adjust
their intensity ranges to the visualized portions and that is the reason why
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the edges of the adipose and gland tissues are put so much in contrast.

(a) SGP in 4 iters. (b) FP in 4 iters.  (c¢) SGP in 12 iters. (d) FP in 12 iters.

Figure 5.11: Focus on the upper cluster of microcalcifications.

Looking at the zoomed crops over the upper set of microcalcifications
(in figure , we appreciate the deblurring enhancement after longer run
time and the clear detection of both the algorithms after only 4 iterations.
Most of the specks, in fact, already have a circular net shape and no ringing
artifact or sparsity-caused shadows are present. In particular, the Vertical
Profiles in figure analyze the in-plane reconstructions of the central mi-
crocalcification and of the bottom fiber that is not too much evident on the
slice. Figure shows the same micro in the depth direction with the Ar-
tifact Spread Functions over the layers. The VP over the fiber is taken as
an average line over 70 voxels and it is orthogonal to the fiber orientation.
The VP plots on the specks confirm the reliability of the reconstructions:

10l T T T
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0 10 20 30 40 0 10 20 30 40
Distance invoxels Distance in voxels

1.0

Intensity

Intensity
=

0.0 1 1 1

0 10 20 30 40 0 10 20 30 40
Distance invoxels Distance in voxels

(b) VP in 12 iterations

Figure 5.12: On the left, the Vertical Profiles on the central microcalcification
of the third cluster; on the right, the Vertical Profiles over a thin fiber.

these kind of breast objects are immediately detected and with further it-
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erations we achieve higher precision. The same holds for the DP: the exact
in-depth position is found and the ASF becomes smoother with 12 iterations.
On the other hand, the VP graphics over the fiber reveal that not all the
objects may be better detected with longer executions.

Slice Slice

Figure 5.13: Depth Profiles over the microcalcificaion in slice 5, after 4
iterations on the left and after 12 iterations on the right hand side.

Reconstructions with low radiation dose

We now consider the same DBT acquisition but performed with a smaller
dose of radiations in each projection. In particular, we have almost halved
the mAs (milliampere-second), that is the measure of electric charge to de-
scribe the exposure setting of a CT device, hence it determines the density of
the X-ray images. As a consequence, the projection images are much noisier
then in the previous dataset. By the way, after a careful tuning, we set regu-
larization parameters ten times smaller than in the previous reconstructions
(A =0.0005 for the SGP and A = 0.0001 for the FP).

Figure shows some details to compare with figure [5.11} now we indeed

(a) SGP in 4 iters. (b) FP in 4 iters.  (c) SGP in 12 iters. (d) FP in 12 iters.
Figure 5.14: Focus on the upper cluster of microcalcifications.

have noisier backgrounds, but the microcalcifications are detached equally,
with precise bounds and no shadows. This is confirmed by the VP plots in
the left column of figure[5.15] The advanced solutions are not more accurate,
because of the noise amplification. In addition, the values of A have been
set to let the solvers perform at their best in 4 iterations: we have already
highlighted in section [4.2] that the regularization parameters may be set ac-
cordingly to the prefixed number of iterations, for SpCT reconstractions from
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real data. Nevertheless, the microcalcifications are still well detected, with
acute profiles.

These results further validate the capability of the proposed methods to pro-
vide accurate solutions from subsampled tomographic data, in very short
run times and under different dose settings.

Intensity

0.0 1 1 1 1
0 10 20 30 40 0 10 20 30 40

Distance invoxels Distance in voxels

1.0

Intensity
Intensity
e

00 1 1 1 0.0 1 1 1 1 |

i 10 20 30 an 0 10 20 30 40
Distance invoxels Distance in voxels

(b) VP in 12 iterations

Figure 5.15: On the left, the Vertical Profiles on the central microcalcification
of the third cluster; on the right, the Vertical Profiles over a thin fiber.

5.3 Results from real breast projections

To conclude, we look at the SGP and FP performances on a real breast
dataset. It has been acquired by the Giotto TOMO system, performing
13 projections in a range of 40 degrees. It also elaborates the volumetric
reconstruction in less than one minute, with an approach very different from
the SGP or the FP ones: the layers 30, 41 and 55 are shown in figure [5.16]
We remark that the reported images are taken from the mere reconstruction,
hence they are stripped of all the optimization steps usually adopted for
clinical presentation. By the way, adipose and glandular tissues are well
discerned and two tumoral masses are occluding some upper ductals on slice
41. We now focus on these two objects.

We have run the SGP with A = 0.001 and the FP algorithm with
A = 0.01. Figure [5.17| compares the commercial image with our recon-
structions: they all show the suspect anatomical feature. The FP solution
is smooth but the tumors are prominent, while the SGP image looks much
closer to our target with clearer masses. The advanced reconstructions in
figure [5.18 exhibit tumors with sharper edges but the backgrounds are nois-
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(a) Layer 30 (b) Layer 41 (c) Layer 55

Figure 5.16: Three layers of a real DBT reconstruction, without all the grey
level optimization usually performed before clinical review. Two spiculated
masses are pointed out in layer 41: their in-depth position is well determined
and there are no interferences in the above and below layers.

ier, especially in the SGP result. Looking at the difference images between
the volumes achieved in 12 and 4 iterations by each solver (in figure|5.19)), we
understand the further iterations have worked on the tumoral borders but
without particular upsetting improvements on the earlier reconstructions.
On the other hand, if we can run the algorithms for longer executions,
we can also change their parameters to obtain their best results. For in-
stance, figure [5.20(a)| shows the 12-iterations reconstruction, achieved by
the SGP method with A = 0.1: a stronger regularization cleans away noise
components and the dense masses have well bordered branches. In the FP
algorithm, we can also exploit the added iterations to refine the inner lin-
ear system resolution. The picture in m is the FP output we get by
computing 5 CG iterations in each main step, with the same regularization
parameter A = 0.01. As a consequence, only two iterations have been per-
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(a) Commercial reconstruction

S

(b) SGP reconstruction (c) FP reconstruction

Figure 5.17: Zooms of the reconstructions in layer 41, with tumoral masses.

formed in the FP scheme; nevertheless the resulting solution refines improves
the visualization of the spicules.

All these results validate the capability of getting detailed reconstructions in
short run times, for the proposed methods.
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(a) SGP reconstruction (b) FP reconstruction

Figure 5.18: Zooms of the reconstructions achieved in 12 iterations.

(a) SGP (b) FP

Figure 5.19: Differences between the advanced and the standard reconstruc-
tions, for the SGP and FP solvers.

(a) SGP reconstruction (b) FP reconstruction

Figure 5.20: Zooms of the reconstructions achieved in 12 iterations.
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Chapter 6

Conclusions

This PhD thesis has addressed the iterative reconstruction problem for
three-dimensional CT imaging from sparse subsampling, introducing a model-
based approach. In chapter [I] a general overview of the CT devices and
process has been shown. In chapter 2| the tomographic linear system has
been derived and numerical issues have been introduced for the Sparse CT
(SpCT) case. In particular, the problem has been formulated as a regular-
ized optimization problem in a general framework which may be adapted
to a wider class of model-based approaches. In this dissertation, we have
set both the Least Squares function and the Kullback-Leibler divergence to
impose a data-fitting, and we have fixed the Total Variation (TV) operator
as prior term to force the convergence of the solvers to a desired solution,
with preserved edges and little noise.

Up to now, most of the CT devices are equipped with algebraic solvers but
the results obtained in this thesis reveal that other approaches may be con-
sidered, especially in case of sparse data. Two algorithms have been proposed
for the minimization problem, in chapter [3} they both belong to the class
of the so-called accurate solvers. The first one is a Scaled Gradient Projec-
tion (SGP) solver, which has been accelerated by both a scaling strategy,
based on a gradient splitting tuned for the prefixed model, and a step-length
rule, defined for a more general objective function. The second algorithm
is the Lagged Diffusivity Fixed Point (FP), which has been presented with
an efficient implementation involving both a not expensive approximation of
the TV Hessian matrix and an early-stopped inner solver, to adjust the FP
scheme to tomographic problems.

The suitability of the two methods to reconstruct SpCT images has been
verified on several test problems. In chapter 4] with medium-sized digital
simulations we investigated the algorithms performances up to a "mathemat-
ical” convergence for 3D reconstructions, while results from a real dataset for
2D SpCT imaging have highlighted the robustness of the solvers with respect
to the regularization parameter, which is an appreciated feature for practical

103
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applications. All the analysis validate the applicability of a model-based ap-
proach to imaging reconstructions from sparse views: accurate solutions are
accessible even when many tomographic informations are missing and the
reconstructions of the proposed algorithms achieve reliable solutions very
early.

This result has been further strengthened by the succesful application of
the SGP and FP solvers to real SpCT datasets for the 3D reconstruction
of breast images, in chapter f] To simulate their actual application, the
algorithms have been tuned to perform commercial-like reconstructions and
provide one volume image in less than one minute on GPUs devices: as a
consequence, very few iterations have been executed. The accuracy of the
reconstructions has been shown on Quality Control phantoms, widely used
to evaluate commercial devices: the objects of interest are detected with
sharp boundaries both on the in-plane and on the in-depth visualizations. A
real breast reconstruction has been computed too: the good quality images
provided by both the algorithms reflect the high reliability of the proposed
approaches for their practical use in SpCT.
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