
UNIVERSITÀ DI PADOVA FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA DELL’I NFORMAZIONE

SCUOLA DI DOTTORATO IN INGEGNERIA DELL’I NFORMAZIONE

INDIRIZZO IN SCIENZA E TECNOLOGIA DELL’I NFORMAZIONE

XXV Ciclo

On the Design of Incentive Mechanisms in

Wireless Networks:

a Game Theoretic Approach

Dottorando

LUCA CANZIAN

Supervisore: Direttore della Scuola:

Chiar.mo Prof. Michele Zorzi Chiar.mo Prof. Matteo Bertocco

Coordinatore di indirizzo:

Chiar.mo Prof. Carlo Ferrari

Anno Accademico 2012/2013





To my parents, Walter and Olivana.





Contents

List of Acronyms xv

Abstract xvii

Sommario xix

1 Introduction 1

1.1 Game Theory in Wireless Networks . . . . . . . . . . . . . . . . . . . .. . . . . . 3

1.2 Organization and Contributions of the Thesis . . . . . . . . .. . . . . . . . . . . . 4

2 Game Theory Preliminaries 7

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7

2.2 Static Games with Complete Information . . . . . . . . . . . . . .. . . . . . . . . 8

2.2.1 Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9

2.3 Bayesian Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 10

2.4 Stackelberg Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11

2.5 Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

2.6 Repeated Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14

2.7 Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15

3 Exploiting Game Theory for Resource Allocation in LTE Systems 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Overview of LTE and System Model . . . . . . . . . . . . . . . . . . . . .. . . . . 21

iii



iv CONTENTS

3.3 Proposed Game Theoretic Approach . . . . . . . . . . . . . . . . . . .. . . . . . . 22

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 25

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 28

4 Promoting Cooperation in Wireless Relay Networks 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 31

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 34

4.3 Renewal Theory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 36

4.4 Coalitional Game and Throughput Redistribution . . . . . .. . . . . . . . . . . . . 40

4.5 Dynamic Scheduling Scheme . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 41

4.5.1 Stackelberg formulation . . . . . . . . . . . . . . . . . . . . . . . .. . . . 43

4.5.2 User strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44

4.5.3 Access point strategy . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 48

4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 49

4.7 Discussions and Future Works . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 56

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 58

5 Inter-Network Cooperation exploiting Game Theory and Bayesian Networks 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 59

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Problem statement and outline of the proposed approach . . . . . . . . . . . 62

5.2 Bayesian Networks Preliminaries . . . . . . . . . . . . . . . . . . .. . . . . . . . . 63

5.2.1 Structure learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 64

5.2.2 Parameter learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 64

5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 64

5.3.1 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65

5.3.2 MAC layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

5.4 Definition and Estimation of the Network Performance . . .. . . . . . . . . . . . . 66

5.4.1 Cost metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.2 Computation ofζ(i,j) andp(i,j)pl . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.3 A Bayesian network approach to infer PP from TP . . . . . . .. . . . . . . 70

5.5 Game Theoretic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 72



CONTENTS v

5.5.1 Repeated game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75

5.6.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75

5.6.2 Bayesian network estimation . . . . . . . . . . . . . . . . . . . . .. . . . . 77

5.6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 80

6 Designing and Selecting MAC Protocols With Selfish Users 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 85

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89

6.3 Game Model and Design Problem Formulation . . . . . . . . . . . .. . . . . . . . 90

6.3.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93

6.4 Perfect Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 95

6.4.1 Pricing design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

6.4.2 Intervention design . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 96

6.4.3 Comparison between pricing and intervention and someresults . . . . . . . . 98

6.5 Imperfect Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 99

6.5.1 Nobody is aware of the estimation errors . . . . . . . . . . . .. . . . . . . 100

6.5.2 The designer is aware of the estimation errors . . . . . . .. . . . . . . . . . 101

6.5.3 Everybody is aware of the estimation errors . . . . . . . . .. . . . . . . . . 103

6.5.4 Comparison between pricing and intervention and someresults . . . . . . . . 105

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 109

7 Information Revelation and Intervention with an Applicat ion to Flow Control 113

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 114

7.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

7.2.1 Null reports, messages and interventions . . . . . . . . . .. . . . . . . . . . 121

7.2.2 Direct mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 123

7.2.3 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

7.3 Why Intervention and Information Revelation Matter . . .. . . . . . . . . . . . . . 124

7.4 Resource Allocation Games in Communication Engineering . . . . . . . . . . . . . 128

7.4.1 The considered environment . . . . . . . . . . . . . . . . . . . . . .. . . . 129



vi CONTENTS

7.4.2 Intervention in the complete information setting . . .. . . . . . . . . . . . . 131

7.5 Optimal Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 132

7.5.1 Properties of a maximum efficiency device . . . . . . . . . . .. . . . . . . 132

7.5.2 Properties of an optimal device . . . . . . . . . . . . . . . . . . .. . . . . . 134

7.6 Algorithm that Converges to an Incentive Compatible Device . . . . . . . . . . . . . 136

7.7 Introduction to Flow Control . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 139

7.7.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.7.2 Formulation of the flow control problem . . . . . . . . . . . . .. . . . . . . 141

7.8 Flow Control Games Without Intervention . . . . . . . . . . . . .. . . . . . . . . . 143

7.8.1 Complete information scenario . . . . . . . . . . . . . . . . . . .. . . . . . 143

7.8.2 Incomplete information scenario . . . . . . . . . . . . . . . . .. . . . . . . 143

7.8.3 Illustrative results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 144

7.9 Flow Control Games with Intervention . . . . . . . . . . . . . . . .. . . . . . . . . 144

7.9.1 Complete information scenario . . . . . . . . . . . . . . . . . . .. . . . . . 148

7.9.2 Incomplete information scenario . . . . . . . . . . . . . . . . .. . . . . . . 150

7.9.3 Illustrative results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 153

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 157

8 Conclusions 159

8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 161

A Proofs Chapter 6 163

A.1 Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 163

A.2 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 165

A.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 166

A.4 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 168

A.5 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 169

B Proofs Chapter 7 171

B.1 Proof of Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 171

B.2 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172

B.3 Proof of Proposition 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 174

B.4 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176

B.5 Proof of Proposition 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 177



CONTENTS vii

B.6 Proof of Proposition 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 179

List of Publications 181

Acknowledgments 193





List of Figures

2.1 Representation of a Stackelberg game . . . . . . . . . . . . . . . .. . . . . . . . . 13

3.1 Bi-matrix representation of the game . . . . . . . . . . . . . . . .. . . . . . . . . . 24

3.2 Fairness over time for different values ofD. . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Throughput over time for different values ofD. . . . . . . . . . . . . . . . . . . . . 27

3.4 Pareto boundary and operating point of the algorithm. . .. . . . . . . . . . . . . . . 29

4.1 The considered scenario: an access point surrounded by user nodes . . . . . . . . . . 34

4.2 Non-cooperative transmission process of a packet of user i . . . . . . . . . . . . . . 36

4.3 Transmission process of a packet of useri in the forced cooperation scheme . . . . . 38

4.4 Transmission process of a packet of useri in the voluntary cooperation scheme . . . 46

4.5 Reachable rate varying the modulation depending on the SNR . . . . . . . . . . . . 50

4.6 Cumulative throughput of user10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Asymptotic throughput of each user . . . . . . . . . . . . . . . . . .. . . . . . . . 52

4.8 Incremental utilityψ of each user . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 Average throughput gain normalized to the no cooperation scenario . . . . . . . . . 53

4.10 Average throughput fairness . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 54

4.11 Average utility fairness . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 55

5.1 Logical structure of the proposed approach. . . . . . . . . . .. . . . . . . . . . . . 62

5.2 Bayesian Network showing the probabilistic relationships among the5 parameters of

interest:ζ, pt, pq F , andN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 BN estimation of the average delivery delayζ as a function of the number of flowsF

passing through the node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 78

ix



x LIST OF FIGURES

5.4 BN estimation of the probability of buffer overflowpqo as a function of the number

of flowsF passing through the node. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 BN estimation of the probability of transmission failureptf as a function of the num-

ber of flowsF passing through the node. . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Weighted delivery delayPWD as a function of the normalized packet generation in-

tensityλn = λ/λt, for the four compared scenarios. . . . . . . . . . . . . . . . . . . 81

5.7 In-time packet arrival rateλIT as a function of the normalized packet generation

intensityλn for a value of the maximum allowed delay (a)dmax = 100 and (b)dmax =

600, in number of slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 In-time packet arrival rateλIT as a function of the maximum allowed delaydmax for

a normalized packet generation intensity (a)λn = 1.2 and (b)λn = 2. . . . . . . . . 83

6.1 Social welfare and total throughput vs. number of users,in the perfect monitoring

scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Social welfare and total throughput vs. number of users,in the imperfect monitoring

scenario, assuming nobody is aware of the estimation errors. . . . . . . . . . . . . . 106

6.3 Social welfare and total throughput vs. number of users,in the imperfect monitoring

scenario, assuming that only the designer is aware of the estimation errors . . . . . . 107

6.4 Social welfare and total throughput vs. number of users,in the imperfect monitoring

scenario, assuming everybody is aware of the estimation errors . . . . . . . . . . . . 107

6.5 Threshold vs. noise in the imperfect monitoring scenario, assuming everybody is

aware of the estimation errors . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 108

6.6 Social welfare and total throughput vs. number of users adopting pricing, for different

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 Social welfare and total throughput vs. number of users adopting intervention, for

different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 110

6.8 The users’ actions and the average level of interventionvs. number of users in the

imperfect monitoring scenario, assuming everybody is aware of the estimation errors,

adopting the considered policy and the optimal one . . . . . . . .. . . . . . . . . . 110

6.9 Social welfare and total throughput vs. number of users in the imperfect monitoring

scenario, assuming everybody is aware of the estimation errors, adopting the consid-

ered policy and the optimal one . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 111

7.1 Useri’s utility vs. useri’s action, for different suggested actions . . . . . . . . . . . 138



LIST OF FIGURES xi

7.2 Representation of a flow control application as an M/M/1 queue . . . . . . . . . . . 141

7.3 Intervention device utility with respect to the number of users . . . . . . . . . . . . . 145

7.4 Manager’s expected utility vs. number of users for the complete and incomplete

information scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 148

7.5 Manager’s expected utility vs. number of users for the complete and incomplete

information scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 155

7.6 Manager’s expected utility vs. low type probability forthe incomplete information

scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.7 Total expected throughput and delay vs. number of users for the complete information

scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.8 Expected throughput and delay per user vs. number of users for the incomplete infor-

mation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158





List of Tables

3.1 Main system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 26

5.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 76

7.1 Comparison among different flow control works . . . . . . . . .. . . . . . . . . . . 140

xiii





List of Acronyms

3GPP 3rd Generation Partnership Project

ACK ACKnowledgement

ARQ Automatic Repeat reQuest

BIC Bayesian Information Criterion

BN Bayesian Network

BNE Bayesian Nash Equilibrium

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DAG Directed Acyclic Graph

FDD Frequency Division Duplexing

FDMA Frequency Division Multiple Access

GT Game Theory

IEEE Institute of Electrical and Electronics Engineers

IMT International Mobile Telecommunications

LTE Long Term Evolution

MAC Medium Access Control

MIMO Multiple Input Multiple Output



xvi List of Acronyms

NE Nash Equilibrium

OFDMA Orthogonal Frequency Division Multiple Access

OLSR Optimized Link State Routing

PP Performance Parameters

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RRA Radio Resource Allocator

SC Single Carrier

SE Stackelberg Equilibrium

SINR Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

TCP Transmission Control Protocol

TDD Time Division Duplexing

TP Topological Parameters

UMTS Universal Mobile Telecommunications System

UTRAN Universal Terrestrial Radio Access Network



Abstract

In wireless communication networks, many protocols (e.g.,IEEE 802.11 a/b/g Medium Access

Control (MAC) protocols) have been designed assuming that users are compliant with the protocol

rules. Unfortunately, a self-interested and strategic user might manipulate the protocol to obtain a

personal advantage at the expense of the other users. This would lead to socially inefficient outcomes.

In this thesis we address the problem of designing protocolsthat are able to avoid or limit the

inefficiencies occurring when the users act selfishly and strategically. To do so, we exploit the tools

offered by Game Theory (GT), the branch of mathematics that models and analyzes the interaction

between strategic decision makers.

The dissertation covers aspects related to wireless communications at different levels. We start

analyzing the downlink radio resource allocation issue of acellular network based on Orthogonal

Frequency Division Multiple Access (OFDMA). We propose a suboptimal game theoretic algorithm

able to preserve the modularity of the system and to trade–off between sum–rate throughput and

fairness among the users of the network.

Successively, we address the problem of promoting cooperation in wireless relay networks. To

give the incentive for the users of a network to relay the packets sent by other users, we consider a

dynamic scheduling in which cooperative users are rewardedwith more channel access opportunities.

Infrastructure sharing is another form of cooperation thatmight be exploit to meet the increasing

rate demands and quality of service requirements in wireless networks. We analyze a scenario where

two wireless multi–hop networks are willing to share some oftheir nodes – acting as relays – in or-

der to gain benefits in terms of lower packet delivery delay and reduced loss probability. Bayesian

Network analysis is exploited to compute the correlation between local parameters and overall perfor-

mance, whereas the selection of the nodes to share is made by means of a game theoretic approach.

Afterwards, our analysis focuses on channel access policies in wireless ad–hoc networks. We

design schemes based on pricing and intervention to give incentives for the users to access the channel

efficiently.



xviii Abstract

Finally, we consider another important issue that arises when the users are strategic and selfish:

when asked to report relevant information, the users might lie, if it is in their individual interest to do

so. For a class of environments that includes many resource allocation problems in communication

networks, we provide tools to design an efficient system, in which the users have the incentive to

report truthfully and to follow the instructions, despite the fact that they are self–interested. We then

apply our framework and results to design a flow control management system.



Sommario

Nelle reti di comunicazione wireless, molti protocolli (adesempio, i protocolli di accesso al

mezzo IEEE 802.11 a/b/g) sono stati progettati assumendo che gli utenti rispettino le regole. Purtroppo

un utente, guidato da interessi personali, potrebbe manipolare il protocollo per ottenere un beneficio

a discapito degli altri utenti. Di conseguenza, la rete wireless sarebbe sfruttata in maniera inefficiente

da un punto di vista sociale.

Questa tesi si occupa della progettazione di protocolli in grado di prevenire le inefficienze dovute

al comportamento egoistico e strategico degli utenti. Per raggiungere questo scopo, vengono sfruttati

gli strumenti offerti dalla teoria dei giochi, la scienza matematica che modella e analizza l’interazione

tra soggetti che possono prendere delle decisioni in maniera autonoma.

La tesi copre aspetti legati alla gestione delle comunicazioni wireless a differenti livelli. Si inizia

analizzando l’allocazione delle risorse radio, in fase di downlink, di una rete cellulare basata sulla tec-

nologia di accesso al mezzo di multiplazione a divisione di frequenza ortogonale (OFDMA). Viene

proposto un algoritmo sub–ottimo basato sulla teoria dei giochi che permette di preservare la mod-

ularità del sistema ed é in grado di trovare un compromesso tra la massimizzazione del throughput

totale e un livello equo delle prestazioni degli utenti.

Successivamente, si analizza il problema di incentivare lacooperazione nelle reti wireless in cui

gli utenti agiscono opportunisticamente da relay. Per incentivare gli utenti della rete a inoltrare i

pacchetti spediti da altri utenti viene adottato uno scheduling dinamico, in cui gli utenti cooperativi

sono premiati aumentando le loro opportunità di accesso al mezzo.

La condivisione dell’infrastruttura é un’altra forma di cooperazione che potrebbe essere sfruttata

per soddisfare la crescente esigenza di rate e qualità di servizio nelle reti wireless. A tal fine, si

considera uno scenario in cui due reti wireless multi–hop sono disposte a condividere alcuni nodi, che

agiscono da relay per entrambe le reti. Un’analisi basata sulle reti Bayesiane permette di stimare le

prestazioni globali da alcuni parametri locali, mentre un’analisi basata sulla teoria dei giochi permette

di selezionare in modo opportuno i nodi da condividere.



xx Sommario

In seguito, la nostra analisi si concentra sulle politiche di accesso al mezzo in reti wireless ad–hoc.

Viene progettato un protocollo basato sugli schemi di pricing e intervention per incentivare gli utenti

ad utilizzare il canale wireless efficientemente.

Infine, si considera un altro importante problema che sorge nel momento in cui gli utenti sono

egoisti e strategici: quando viene richiesto di riportare delle informazioni rilevanti, gli utenti potreb-

bero mentire, se ció fosse nel loro interesse. Partendo da uno scenario generico, comprendente molte

problematiche associate all’allocazione di risorse nellereti di comunicazione, vengono forniti degli

strumenti per progettare un sistema efficiente, in cui gli utenti sono incentivati a comunicare le infor-

mazioni veritiere e seguire le istruzioni del protocollo. Tali strumenti e risultati vengono applicati per

progettare un sistema di controllo della congestione in unarete di comunicazione.



Chapter 1
Introduction

Mobile communications have grown exponentially over the last two decades, and will continue

to grow: Cisco projected a 18-fold increase of global mobiledata traffic between the end of 2011

and 2016 and over 10 billion mobile-connected devices in 2016 [1]. While this exceptional pace of

growth is exciting, it also presents a whole new set of challenges. To meet the increasingly high rate

demands and quality of service requirements, future wireless networks must be reliable, able to inter-

operate and to manage dynamically and efficiently a large setof devices. As a consequence, wireless

communication networks are migrating towards more distributed approaches, shifting network intel-

ligence from the core network towards the edges of the network. This transformation is supported

by the increase of mobile terminals computation capabilities and leads to more scalable, flexible and

reliable networks, decreasing the information exchange and removing the single point of failure of

completely centralized approaches.

Distributed algorithms, in which each device of the wireless network is capable of independently

adapting its operation based on the current environment, have been studied extensively. Most of these

works assume that devices comply with the rules of the algorithm. However, the distribution of the

decision making process leads to a new fundamental issue: what happens if the algorithm used by a

device is manipulated to pursue a personal benefit? In centralized approaches, such deviations from a

prescribed protocol are not authorized and can be detected,because every action is dictated by a cen-

tral entity. In decentralized approaches, each device has some degree of freedom in setting parameters

or changing the mode of operation. By exploiting such leeway, a device might be programmed, by

the manufacturer or by the final user, to accomplish a certainobjective, at the cost of overall network

performance.1 As a consequence, there is the necessity to design systems able to cope withselfish

1In [2] the 802.11 MAC protocol of a commercial Broadcom chipset is replaced with a state machine execution engine
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users.

To reach this goal wireless engineers need novel analyticalapproaches to study modern wire-

less networks, which exploit the tools offered bygame theory. Game theory is a branch of applied

mathematics that models the interaction amongdecision makers, each of them pursuing a personal ob-

jective, defines the solution concepts of such interaction and, based on them, provides analytical tools

to predict the outcomes. The ability to model independent decision makers, whose actions potentially

affect all other decision makers, renders game theory particularly attractive to analyze networking

issues. The earlier applications of game theory to wirelessnetworks problems were limited to the

analysis of the impact of user selfishness on the performanceof existing distributed algorithm. Only

recently have they been used in a constructive way: todesign distributed protocols.

In this dissertation we present some contributions on the design of efficient game-theoretic schemes

in wireless networks. This research field can be divided intotwo main branches. In the first one, de-

vices connected to a wireless network are assumed to pursue the objectivesassignedby the protocol.

Game theory is used to predict the outcomes for different sets of objectives and to design the objec-

tives that allow to achieve the most efficient outcomes. Notice that, in this case, devices arecompliant

with the protocol rules, in that they accept passively the designed objectives, which may differ from

the objectives of the users that operate the devices. Such anapproach may help to design distributed

algorithms, demonstrating and predicting the convergenceof such algorithms, but does not answer

the initial question, i.e., what happens if the algorithm used by a device is manipulated to pursue a

personal benefit?

In the second branch, the devices connected to a wireless network are assumed to followpersonal

objectives, which are aligned with the objectives of the users that operate the devices. In this case

game theory is used to design algorithms that are able to achieve efficient outcomes, despite the fact

that devices seek to optimize their personal objectives. Such an approach allows to design proto-

cols that provide the incentive to follow the rules: it will be in the self-interest of each user not to

manipulate the algorithm.

Except for Chapter 3, in which we follow the first approach, inthis thesis we follow the second

approach, i.e., we assume that devices are autonomous decision makers that pursue their own interest,

and we designincentive schemesto drive the outcome of the system toward an efficient point, covering

aspects related to wireless communications at different levels.

which allows to program and use the desired MAC protocol. Such a capability of modifying protocols results in our

concerns for self-interested users in future wireless networks.
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1.1 Game Theory in Wireless Networks

The application of game theory to the modeling and analysis of wireless communication net-

works has received considerable attention in recent years,and has led to numerous tutorials [3–5]

and books [6, 7] outlining game-theoretic concepts and their usage in wireless networks. Wireless

communication networks are full of scenarios that can be modeled asgames, examples are

• resource allocation [8–12]: sharing of the networks resources, such as channels, bandwidths

and time slots

• power control [13–16]: adjustment of the transmission power

• relay network [17–22]: opportunistic packet forwarding

• flow/congestion control [23–29]: adjustment of the rate tothe available bandwidth of the net-

work

• network routing [30–33]: selection of paths with certain desirable properties

All these scenarios have in common the following features: (1) there is a set of users, (2) each

user takes some actions based on a certain objective, and (3)the achievement of the objective depends

on the actions taken byevery users. As an example, in a flow control scenario each user connected

to a network may decide to modulate its transmission rate to achieve a desired trade-off between its

experienced throughput and delay. However, the delay depends on the total congestion of the network,

which in turn depends on the transmission rates adopted by every user. Thus, the best action for a

user depends on the actions adopted by the others, and it is not trivial to foresee the outcome of this

interaction: game-theoretic tools must be exploited to do it.

The earlier applications of game theory to wireless networks problems were limited to the com-

putation of the outcome of the interaction among selfish users adopting the existing schemes. This

analysis provides insights on how robust the considered scheme is in presence of selfish users. Un-

fortunately, the operation of the network by selfish users usually leads to substantial inefficiencies,

because the considered scheme has not been designed with this issue in mind. For example, [9–12]

shows that the IEEE 802.11, the slotted Aloha and the CSMA/CAMAC protocols can lead to inef-

ficient outcomes, if not to a network collapse. [31] demonstrates that the total latency of the routes

chosen by selfish network users is at most4
3 times the minimum possible total latency if the latency

cost of each edge is a linear function of its congestion, but for general cost function the total latency
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can be arbitrarily larger than the minimum possible. [34] shows that most congestion control schemes

used, such as TCP, encourage a behavior that leads to congestion.

As a consequence, game theory was later applied by wireless engineers to design schemes able

to cope with users who behave selfishly. In these schemes incentives for the users to adopt efficient

actions are provided For example,pricing schemethat charge the users for their resource usage are

used by [35–39] to design efficient slotted-Aloha like random access protocols, and by [30,40,41] to

design efficient flow control management systems.Intervention schemes, in which a device provides

the incentive for the users to adopt efficient actions by threating punishments, are applied to situations

of medium access control [12, 42] and power control [16]. In [43, 44] efficient outcomes in power

control problems are obtained introducing hierarchy in thescheme, allowing some users to move

before others, and this is further advanced in [45] by considering a repeated interaction in which

cooperation among users is obtained by punishing deviatingusers in subsequent stages.

1.2 Organization and Contributions of the Thesis

The rest of this thesis work is organized as follows:

Chapter 2: we introduce some important concepts, notations and tools of game theory that are extensively

used in the dissertation. This chapter provides a useful background information for the remain-

ing part of the thesis, in particular for the reader who is notfamiliar with game theory.

Chapter 3: we propose a novel approach, based on game theory, for radio resource allocation in the down-

link of cellular networks using OFDMA. The reference technology is the LTE of the 3GPP

UTRAN. The main contribution is to identify a model for the allocation objectives, and how to

approach them in a tunable manner. The resource management issue is framed in the context

of spectrum sharing, where multiple entities agree on utilizing the radio access channel simul-

taneously. A trade-off between sum-rate throughput and fairness among the users is identified

and addressed through game theory, i.e., moving the operation of the system towards a stable

Pareto efficient point. Such a methodology can be implemented with low complexity while

ensuring the modularity of the overall system. Numerical results are also shown, to exemplify

the validity of the proposed approach.

Chapter 4: we apply game theory to constructively derive practical network management policies for wire-

less relay networks. We focus on the problem of medium sharing and opportunistic packet
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forwarding in wireless relay networks, and we show how, by properly modeling the agents in-

volved in such a scenario, and enabling simple but effectiveincentives towards cooperation for

the users, we obtain a resource allocation scheme which is meaningful from both perspectives

of game theory and network engineering. Such a result is achieved by introducing throughput

redistribution as a way to transfer utilities, which enables cooperation among the users.

Chapter 5: we analyze a scenario where two wireless ad hoc networks are willing to share some of their

nodes, acting as relays, in order to gain benefits in terms of lower packet delivery delay and

reduced loss probability. Bayesian Network analysis is exploited to compute the correlation

between local parameters and overall performance, whereasthe selection of the nodes to share

is made by means of a game theoretic approach. Our results arethen validated through use

of a system level simulator, which shows that an accurate selection of the shared nodes can

significantly increase the performance gain with respect toa random selection scheme.

Chapter 6: we consider a number of users who compete to gain access to a channel, a slotted-Aloha like

random access protocol and two incentive schemes:pricing andintervention. We provide some

criteria for the designer of the protocol to choose one scheme between them and to design the

best policy for the selected scheme, depending on the systemparameters. Our results show that

intervention can achieve the maximum efficiency in theperfect monitoringscenario. In theim-

perfect monitoringscenario, instead, the performance of the system depends onthe information

held by the different entities and, in some cases, there exists a threshold for the number of users

such that, for a number of users lower than the threshold, intervention outperforms pricing,

whereas, for a number of users higher than the threshold pricing outperforms intervention.

Chapter 7: we study the interaction between a designer and a group of strategic and self-interested users

who possess information the designer does not have. Becausethe users are strategic and self-

interested, they will act to their own advantage, which willoften be different from the interest of

the designer, even if the designer is benevolent and seeks tomaximize (some measure of) social

welfare. In the settings we consider, the designer and the users can communicate (perhaps with

noise), the designer can observe the actions of the users (perhaps with error) and the designer

can commit to (plans of) actions –interventions– of its own. The designer’s problem is to

construct and implement amechanismthat provides incentives for the users to communicate

and act in such a way as to further the interest of the designer– despitethe fact that they are

strategic and self-interested and possess private information. To address the designer’s problem

we propose a general and flexible framework that applies to many scenarios. In an important
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class of environments, we find conditions under which the designer can obtain its benchmark

optimum – the utility that could be obtained if it had all information and could command the

actions of the users – and conditions under which it cannot. More broadly we are able to

characterize the solution to the designer’s problem, even when it does not yield the benchmark

optimum. Because the optimal mechanism may be difficult to construct and implement, we also

propose a simpler and more readily-implemented mechanism that, while falling short of the

optimum, still yields the designer a "good" result. We then apply our framework and results to

design a flow control management system, in both the completeand the incomplete information

scenarios. Illustrative results show that the considered schemes can considerably improve the

efficiency of the network.

Chapter 8: concludes the thesis with some remarks.



Chapter 2
Game Theory Preliminaries

This chapter introduces some important concepts, notations and tools of game theory. This is

not meant to be a comprehensive and in-depth guide of game theory, for which we refer the inter-

ested reader to standard books such as [46–50], rather we laythe mathematical groundwork for the

subsequent sections. The reader who is already familiar with game theory may want to skip this

chapter.

2.1 Basic Concepts

Game theory is a branch of applied mathematics that attemptsto capture rational behaviors in

strategic situations – calledgames– in which an individual’s success in making choices depends

on the choices of others. This interdependence causes each individual – calledplayer – to consider

the other player’s possible decisions – orstrategies– in formulating his own strategy. Traditional

applications of game theory assume that players areself-interestedandstrategic, meaning that they

pursue a personal objective and they are aware of all consequences of their actions, and seek to

find equilibria in these games: a sets of strategies in which players are unlikely to change their

behavior. Many equilibrium concepts have been developed inan attempt to capture this idea. These

equilibrium concepts, although they often overlap or coincide, are motivated differently depending on

the considered scenario and on the game formulation. In the following sections we describe the game

formulations, and the corresponding equilibrium concepts, that are of interest for this dissertation.
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2.2 Static Games with Complete Information

In the most straightforward game formulation, each player selects a singleaction from a set of

feasible actions, and each player evaluates the resulting outcome through autility function quantify-

ing the goodness coming from the adopted actions. If the players play the actions simultaneously

(alternatively, one can think that they play the actions in different instants, but without knowledge of

the actions played by the others), the game is said to bestatic. If the action sets and the utilities of all

players are common knowledge among the players, the game is said to be withcomplete information.

Formally, a static game with complete informationΓ can be represented by the tuple

Γ = (N,A, {Ui}
n
i=1)

in whichN = {1, . . . , n} is the set of players, labeled from1 to n, A = A1 × . . . × An is the set

of action profiles,Ai is the set of actions playeri can take, andUi is playeri’s utility function – or

utility for short. We write(ai, a−i) for the action profile in which playeri chooses actionai ∈ Ai

and other players choose the action profilea−i ∈ A−i = A1 × . . . × Ai−1 × Ai+1 . . . × An; this

is a common notation to specify a characteristic associatedto all players except for playeri, we use

similar notations throughout the thesis. The utilityUi : A→ < depends on the actions ofall players,

thus each player seeking to maximize his own utility has to consider the other player’s possible actions

in selecting his own action.

We say that an actionai is weakly dominated bya′i (equivalently,a′i weakly dominatesai) if

playeri’s utility playing a′i is greater than or equal to playeri’s utility playing ai, for any actions of

the other players, i.e.,

Ui(a
′
i, a−i) ≥ Ui(ai, a−i) , ∀ a−i ∈ A−i

If the inequality is strict, then we say thatai is strictly dominated bya′i (equivalently,a′i strictly

dominatesai). If an action weakly (strictly) dominates every other action, we say that it is a weakly

(strictly) dominant action. It is quite obvious that a selfish and strategic playeri would never adopt

an actionai which is strictly dominated by an actiona′i, because actiona′i alway guarantees him

a higher utility. Thus, from a practical point of view, action ai can be eliminated from the setAi.

This procedure can be iterated and the same playeri or other players can eliminate other strictly

dominated actions1. This procedure is callediterated elimination of strictly dominated strategies, and

1Notice that, in doing so, a playerj 6= i may discover that the actionaj ∈ Aj is strictly dominated by another action

only after having eliminated actionai ∈ Ai. This implicitly extends the notion of common knowledge: not only do players

know the action sets and the utilities of the others, but theyalso know that all players are self-interested and strategic, and

all players know that all players know, etc.
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can be useful to obtain a "smaller" game or, in the rare cases in which only a single action profile is

left, to compute the most likely outcome of a game.

2.2.1 Nash equilibrium

We define thebest response functionhBR
i (though correspondence would be a more suitable

name) of a playeri as the set of playeri’s actions that maximize playeri’s utility for a given action

profile of the other players, i.e.,hBR
i (a−i) = argmaxai Ui(ai, a−i). We say that the actionai is a

best response to the actions profilea−i if ai ∈ hBR
i (a−i).

Now we have the instruments to define one of the most importantand best known concept of

game theory: theNash Equilibrium(NE). A NE is an action profile that corresponds to the mutual

best response: for each playeri, the action selected is a best response to the actions of all others.

Equivalently, a NE is an action profile where no individual player can benefit from unilateral devia-

tion, and for this reason it is said to beself–enforcingor strategically stable. Formally,aNE is a NE

if

Ui(a
NE
i , aNE

−i ) ≥ Ui(ai, a
NE
−i ) , ∀ i ∈ N, ∀ ai ∈ Ai

The action profiles corresponding to the Nash equilibria area consistent prediction of the outcome of

the game, in the sense that if all players predict that a NE will occur then no player has any incentive

to choose a different action. For this reason a NE is commonlyregarded as asolution conceptof a

game.

A Nash equilibrium may not exist, unless particular classesof games are considered2, and there

can be multiple Nash equilibria in a game, resulting in the issue on how players coordinate to a

particular Nash equilibrium.

Another issue related to the NE (and to all equilibrium concepts we will define), which is of

particular importance for this dissertation, is itsefficiency: usually a NE does not correspond to an

efficient outcome for a game.Pareto optimalityis often used as a reference point for the efficiency

of an outcome. An action profile is Pareto optimal if there is no other action profile that makes every

player at least as well off while making at least one player better off. Formally,a = (a1, . . . , an) is

2In some contexts players are allowed torandomizetheir actions, i.e., each playeri adopts an actionai ∈ Ai following

the strategysi ∈ ∆(Ai) which represents a probability distribution over the setAi (if Ai has cardinality|Ai|, ∆(Ai)

denotes the|Ai| − 1 unit simplex). These types of strategies are commonly called mixed strategies. In this case, each

player is assumed to select a strategy that maximizes the expectation of his utility over the random action profile. For this

particular situation the Nash theorem [49], which is an application of the Kakutani fixed-point theorem [51] to the best

response functions, guarantees the existence of a NE.
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Pareto optimal if there exists no other action profilea′ = (a′1, . . . , a
′
n) such thatUi(a

′) ≥ Ui(a)∀ i ∈

N andUj(a
′) > Uj(a) for somej ∈ N . In an attempt to quantify the inefficiency of a game, the

concept ofPrice of Anarchyhas been introduced. After defining an efficiency measure forthe players

utilities (natural candidates are sum of utilities, or minimum utility, or some other measure of fairness

among the utilities), the price of anarchy is defined as the ratio between the "worst" equilibrium and

the "best" action profile – worst and best with respect to the efficiency measure considered. Notice

that if the efficiency measure is increasing in each player utility, then the best action profile must be

Pareto optimal.

2.3 Bayesian Games

There are many familiar situations in which some of the players are not certain about the charac-

teristics of some of the other players. Bayesian games are designed for this purpose, to model static

games withincomplete information. In Bayesian games each player is assumed to maximize his ex-

pected utility with respect to the unknown parameters. Thisimplicitly assumes that each player has a

prior belief about the characteristics of the other players.

Formally, a generic playeri is characterized by an element of a setTi of types; a player’s type

encodes all relevant information about the player, which will include the player’s utility function and

the influence the player’s type has on other players and on thedesigner. We writeT = T1 × . . .× Tn

for the set of possible type profiles. Players know their own type; players and the designer know the

distribution of player typesπ (a probability distribution onT ).3 If player i is of typeti thenπ(· | ti)

is the conditional distribution of types of other players. We allow for the possibility that types are

correlated, which might be the case, for instance, if players have private information about the current

state of the world and not only about themselves.

Finally, we can formalize a Bayesian gameΓ by the tuple

Γ = (N,A, T, π, {Ui}
n
i=1)

in whichN , A andUi are the player set, action profile set and playeri’s utility respectively. Player

i’s utility Ui : A× Ti → < depends on the actions of all players and on playeri’s type.

We define astrategyfor playeri as a functiongi : Ti → Ai that specifies which action to take,

conditional on the type of playeri. We may think of the type as given to the player at the beginning

of the game, and the strategy tells which action he will adoptafter being assigned a type. In general,

3We usually think of the distributionπ as common knowledge but this is not entirely necessary.



2.4. Stackelberg Games 11

a strategy for a player encodes all the strategic aspects of agame, while an action represents only a

particular move (these two concepts coincide only for a static game with complete information).

In a Bayesian game each player is assumed to maximize his expected (with respect to the types of

the other players) utilityEUi, which is a function of the strategy of all players and on player i’s type.

Given a strategy profileg = (g1, . . . , gn) and a typeti, EUi is given by

EUi(g, ti) =
∑

t−i∈T−i

π(t−i | ti)Ui(g(t), ti)

whereg(t) = (g1(t), . . . , gn(t)).

An important solution concept for a Bayesian game is theBayesian Nash equilibrium(BNE),

i.e., the Nash equilibrium applied to the expected utilities. A BNE is the strategy profile where no

individual player can benefit (in terms of expected utility)from unilateral deviation. Formally,gBNE

is a BNE if

EUi(g
BNE
i , gBNE

−i , ti) ≥ EUi(gi, g
BNE
−i , ti) , ∀ i ∈ N, ∀ ti ∈ Ti, ∀ gi : Ti → Ai

2.4 Stackelberg Games

A natural extension of static games aredynamicgames, in which players are allowed to take

actions sequentially. Before analyzing the dynamic games in general, we consider a simple dynamic

game: theStackelberg game.

A Stackelberg game is a2-player game in which players move alternatively: first player 1 – the

leader – then player2 – the follower. As usual, both players are characterized by the action sets

A1 andA2 and the utilitiesU1 : A → < andU2 : A → <, A = A1 × A2. We assume that this

information is common knowledge among the players (i.e., complete information scenario), and we

assume that player2 can observe the move of player1 before selecting his own action (this property

is known asperfect information, we will formally define it in the next section). The strategys1 for

player1 coincides with the action he adopts, while the strategys2 for players2 describes which action

to adopt conditional on the action adopted by player1, s2 : A1 → A2.

A Stackelberg game can conveniently be represented by a tree, as in Fig. 2.1, where the nodes

represent the players allowed to move in that stage of the game and the links represent the actions

the players can adopt. Following a particular path, i.e., given the actions adopted by the players, we

end up in a particular leaf of the three, represented by a pairof numbers, which specify the utilities

obtained by players1 and2 respectively.
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A possible solution concept of a Stackelberg game is represented by a NE. However, Nash Equi-

libria can also include unlikely outcomes. For instance, a NE of the Stackelberg game represented in

Fig. 2.1 iss1 = a1, s2(a1) = a2, ands2(a′1) = a2. Following this strategy player1 and2 obtain a

utility respectively of1 and2. It is easy to see that this is a NE because no player could gainfrom

deviating unilaterally: if player1 changes his strategy (keeping fixed player2’s strategy) he would

obtain a utility of0; if player 2 changes his strategy (keeping fixed player1’s strategy) he would

obtain a utility of2 if s2(a1) = a2 (i.e., he only changess2(a′1)), or 0 if s2(a1) = a′2. However,

this equilibrium is based on thethreat that player2 adopts actiona2 if player 1 adopts actiona′1. In

situations in which player2 cannot commit to a particular strategy, thisthreat is not credible, and this

NE is unlikely to happen. In fact, player1 can foresee that the strategy player2 will probably adopt is

s2(a1) = a2 ands2(a′1) = a′2, and consequently select the actiona′1 which is his best strategy given

the predicted strategy for player2. The strategy profile obtained in this way, which is still a NE, is

calledStackelberg Equilibrium(SE).

A SE is a refinement of a NE in Stackelberg games, and is obtained by means ofbackward in-

duction: first the SE strategy of player2, sSE2 , is computed maximizingU2 for each action of player

1, then the SE strategy of player1, sSE1 , is obtained maximizingU1 given sSE2 . Since this proce-

dure requires a double maximization, the existence (but notthe uniqueness) of the SE is guaranteed.

Stackelberg games are commonly extended to situations in which a player moves first and the others

move later. For the analysis of this type of games we refer thereader to the next section.

2.5 Dynamic Games

A dynamic game involves players moving sequentially. This means that we describe games taking

place throughstages. Dynamic games can conveniently be represented by trees, similarly to Fig. 2.1.

We consider only dynamic games with complete information. If, in each stage of the game, the

acting player knows the history of the game, we say that the game is withperfect information. If

information isimperfectit means that some moves are simultaneous. For this reason wefocus only

on perfect information games, possibly allowing for simultaneous actions in some of the stages.

In a dynamic game, a player’s strategy specifies the action totake in each stage, for each history

of play through previous stages. We can regard any stage of a dynamic game as a static game, chosen

among a number of possible alternatives (one per each game history!). However, the acting players

must take into account how their actions in that stage influence the evolution of the game. Aftert
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Figure 2.1. Representation of a Stackelberg game

stages, asubgametakes place from staget + 1 onwards. The whole game can be considered as a

subgame of itself.

We say that a Nash equilibrium of a dynamic game issubgame-perfectif the players’ strategies

constitute a Nash equilibrium in every subgame. Subgame-Perfect Equilibrium (SPE) is a refinement

of the NE that takes into account the credibility of the threats. It can be seen as an extension of the

SE to more complex dynamic games (the two equilibrium concepts coincide in Stackelberg games).

The backward induction procedure can be applied to compute aSPE: first a NE of the last stage

is computed, then given this a NE of the second-last stage is computed, etc. Since at each step a

NE computation is required, a SPE may not exists. However, ifat each stage of the game only one

player is allowed to play, the NE computation simplifies in a maximization (like in the Stackelberg

game considered in the previous section), and the existence(but not the uniqueness) of the SPE is

guaranteed.
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2.6 Repeated Games

An interesting and well-understood class of dynamic games is that ofrepeated games. In a re-

peated gameΓR the players play thesame stage gameΓ repeatedly, and the player’s overall utility is

a weighted average of the utilities in each stage. Repeated play introduces in general new equilibrium

outcomes with respect to the stage game, because players cancondition their play on the information

they have received in the past. In this way a player has to takeinto account the effect of his current

action on the other players’ future behavior.

There exist two distinct versions of repeated games: finitely repeated games and infinitely re-

peated games. Infinitely repeated gamesthe stage game is played for a fixed number of times. The

arithmetic mean of the utilities in each stage is usually adopted to quantify the overall utility of a

player at the end of the game. If the stage game has a unique NE it is easy to check, using the back-

ward induction, that the finitely repeated game has a unique SPE: to play the NE of the stage game

in every stage. In fact, in the last stage players will play the unique NE of the stage game. In the

second-last stage, given that in the last stage players willfor sure play the unique NE, players will

play again the unique NE of the stage game. And so on. More interesting is the situation if the single

stage game has multiple Nash equilibria. In this case, for example, players can "agree" to play the

"best" NE in the last stage if in the second-last stage they have adopted an efficient action profile

(which might not be a NE of the stage game), to play the "worst"NE otherwise.

In infinitely repeated gamesthe stage game is played infinitely. To quantify the utilityUR
i of a

playeri at the end of the game, the average utilityUR
i = (1− δ) limT→+∞

∑T
t=1 δ

t−1U
(t)
i is usually

adopted, whereU (t)
i is the utility obtained by playeri at staget andδ ∈ (0, 1) is thediscount factor.

The discount factor is introduced mainly for mathematical reasons, but it can be useful to capture

situations in which an imminent reward is better than a future reward, or in which each player can

exit from the game with a certain probability. For infinitelyrepeated games there exists an important

theorem, Friedman’s theorem (also known as folk theorem), which states what the players can obtain

with SPE strategies. We define afeasible utilityas any convex combination of the utility obtainable

in the single stage game, and let(UNE
1 , . . . , UNE

n ) be the utility obtainable with a NE of the single

stage game. Let(U1, . . . , Un) be a feasible utility such thatUi > UNE
i , ∀ i ∈ N . Friedman’s theorem

states that, ifδ is close enough to1, the infinitely repeated game has a SPE in which players obtain

utilitiesEU = (EU1, . . . , EUn) = (U1, . . . , Un). The intuition behind it is the adoption of a dynamic

strategy in which the players adopt by default, for a certainnumber of stages, a certain action profile,

and then change to another action profile, and so on. In this way any convex combination of the utility
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of the stage game can be obtained. As soon as a generic playeri deviates from this "agreement", the

other playerspunishit by adopting the NE action profile of the stage game for a certain number of

stages. The conditionUi > UNE
i guarantees that the final utility foreseen for playeri is higher than

the utility playeri would obtain during the punishment stages. The duration of the punishment can be

set so that the gain obtained during the deviating stage doesnot compensate the loss incurred during

the subsequent stages. Notice that a smallerδ makes the punishment less effective to deter deviations,

from which the condition thatδ must be close enough to1.

2.7 Coalitional Games

Cooperative game theoryis a branch of game theory that provides analytical tools to study the

behavior of self-interested and strategic players when they try to find an "agreement" to cooperate.

The main area of cooperative games is represented by coalitional games [52], defined as a pair

(N, v), whereN = 1, ..., n is a discrete set of players andv is a function that quantifies thevalue

of a coalition in a game. Each coalitionS ⊆ N behaves as a single player, competing against other

coalitions in order to obtain a higher value ofv. A coalitional game may have the following properties:

Property 1. (Characteristic form)The value of a coalitionS depends only on who are the members

of that coalition, regardless of other coalitions

Property 2. (Transferable utility)The value of a coalition is a real number, representing the total

utility achieved by the coalition, and it can be arbitrarilydivided among its members

For coalitional games satisfying properties 1 and 2, the valuev : 2N → < is a function that assigns

to each coalitionS the total utility achieved by it. The utility value can be arbitrarily divided among

the coalition members and the amount of utility that a playeri ∈ S receives,xi, is the player’s payoff.

A payoff allocation is a vectorx ∈ <|S| (where| S | is the cardinality of the setS) whose elements

are the payoffs of players belonging to the coalition; in other words, it represents a redistribution of

the total utility.

Another interesting property that a coalitional game may have is super-additivity, that for a game

with properties 1 and 2 assumes the following form:

Property 3. (Super-additivity)

v(S1 ∪ S2) ≥ v(S1) + v(S2) ∀S1, S2 ⊂ N s.t.S1 ∩ S2 = ∅
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The super-additivity property expresses in mathematical terms that formation of a larger coalition

is always beneficial. Hence, for those games where it holds, the players are encouraged to stick

together, forming the grand coalitionN .

For a game having all properties listed before, the main aspects to analyze are:

• finding a redistribution of the total utilityv(N) such that the grand coalition is stable, i.e., no

group of players has an incentive to leave the grand coalition

• finding fairness criteria for the redistribution of the total utility

• quantifying the gain that the grand coalition can obtain with respect to non cooperative behav-

iors

A payoff allocation isgroup rational if
∑n

i=1 xi = v(N) and it is individually rational if xi ≥

v({i}) ∀i, i.e., if every player does not obtain a lower utility by cooperating than by acting alone. A

payoff allocation having both properties is said to be animputation.

The concept ofcore, C, is also very important. It is defined as the set of imputations that guarantee

that the grand coalition is stable, i.e., all payoff allocations where no group of playersS ⊂ N have an

incentive to refuse the proposed payoff allocation, leaving the grand coalition and forming coalition

S instead. Mathematically,

C=

{

x s.t.
n∑

i=1

xi = v(N) ,
∑

i∈S

xi ≥ v(S) ∀S ⊂ N

}

(2.1)

Indeed, the core may be empty, in which case the grand coalition is not stable. The existence of

the core ought to be checked case by case, possibly exploiting some categories of games where the

existence is guaranteed [47, Ch. 13].



Chapter 3
Exploiting Game Theory for Resource

Allocation in LTE Systems

In this chapter1 we propose a novel approach, based on game theory, for radio resource allocation

in the downlink of cellular networks using OFDMA. The reference technology is the LTE of the

3GPP UTRAN. The main contribution is to identify a model for the allocation objectives, and how

to approach them in a tunable manner. The resource management issue is framed in the context of

spectrum sharing, where multiple entities agree on utilizing the radio access channel simultaneously.

A trade-off between sum-rate throughput and fairness amongthe users is identified and addressed

through game theory, i.e., moving the operation of the system towards a stable Pareto efficient point.

Such a methodology can be implemented with low complexity while ensuring the modularity of the

overall system. Numerical results are also shown, to exemplify the validity of the proposed approach.

3.1 Introduction

Cellular wireless systems have been able to improve their transmission rates, so as to reach “high

speed” communication, thanks to the introduction of channel-aware radio resource allocation. This

means that packet scheduling and the corresponding assignment of physical layer resources are dy-

namically performed according to the channel conditions and Quality of Service (QoS) experienced

by the users.

1The material presented in this chapter has been published in:

[C1] L. Anchora, L. Badia,L. Canzian, and M. Zorzi, “A Characterization of Resource Allocation in LTE Systems Aimed

at Game Theoretical Approaches,” inProc. IEEE CAMAD, Miami, FL, USA, Dec. 3-4, 2010
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An important scenario where this principle finds application is represented by the Long Term

Evolution (LTE) of Third Generation (3G) systems [53]. In this technology, the multiple access

scheme in the downlink uses Orthogonal Frequency Division Multiple Access (OFDMA). Such a

technology exploits multiple orthogonal subcarriers which can be used to take advantage of multi-

user diversity [54]. However, given the key role played by the physical layer and the correlation of

channel quality, the principles of a fair scheduling of multiple users are difficult to harmonize with

the efficient resource allocation aiming at maximizing throughput.

In this chapter, along the lines of [55], we utilize a modularrepresentation of the radio resource

management procedure which is split between two functionalentities, i.e., a credit-based scheduler

and the actual resource allocator, operating at the transport layer and the medium access layer, re-

spectively. The scheduler determines which packets, takenfrom different flows, are candidates to

be served in the next allocation round. The resource allocator associates the packets with groups of

OFDMA subcarriers, also accessed in a time division fashion, so that the resources to allocate are

time/frequency resource blocks. In this choice, the resource allocator exploits a degree of freedom,

represented by the number of packets selected by the scheduler (larger than the number of slots).

The resulting allocation can be regulated according to a trade-off between two contrasting objec-

tives, i.e., that of throughput maximization, which is achieved by selecting the packets only according

to a channel quality rationale, and fairness among the flows,which requires to pursue equity among

the achieved rates. Indeed, this trade-off is reflected by the number of packets selected by the sched-

uler: when it is minimum, i.e., only the packets that fit the OFDMA frame are selected, all packets

are mandatorily allocated, and the resource allocator has no choice. Here the allocation is only de-

termined by the credit-based scheduler, which ensures fairness (the users with higher credits are

allocated). Conversely, if the number of selected packets is high, the resource allocator can restrict

the selection to the packets of the users with the best quality, entirely neglecting any fairness among

flows. Therefore, to solve the trade-off we present an original approach based on game theory which

tries to combine both objectives in an efficient yet easy to implement manner. The key idea is to

treat the scheduler and the resource allocator as two players of a non-cooperative game. The resulting

Nash equilibria are considered as possible solutions to theradio management problem, which exhibit

a low computational cost, yet, under certain conditions, satisfactory performance. After discussing

the proposed approach and its possible implementation, we also present some simple numerical eval-

uations for a two-person game which confirm the goodness of our approach and its ability to regulate

the trade-off in a Pareto efficient allocation point.

Note that the scheduler and the resource allocator are part of a system operated by the same entity,
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that has a unique objective. We remark that in this chapter game theory is used to obtain a non-optimal

but simple to implement algorithm, that preserves the modularity of the system. Conversely, in the

following chapters we will exploit game theory to analyze the interaction between entities having

different objectives.

The outline of the rest of the chapter is as follows. Section 3.1.1 outlines related approaches

presented in the literature. Section 3.2 describes the properties of the LTE technology and discusses

the layered characterization we gave to the resource allocation procedure. Section 3.3 introduces

our proposal, whose rationale is based on game theory, whichis used to determine a trade-off be-

tween throughput efficiency and fairness among the users. Supporting numerical results are shown in

Section 3.4 and we conclude in Section 3.5.

3.1.1 Related work

Adaptive multi-user multi-carrier allocation schemes based on instantaneous channel state in-

formation in OFDMA systems allow significant performance improvements in terms of allocation

efficiency. This happens thanks to the exploitation of themultiuser diversityprinciple, where subcar-

riers are preferably assigned to users experiencing favorable subchannel conditions and higher order

modulation can be used to transport more bits per OFDMA symbol.

In chapter we focus on the resource allocation optimizationproblem in OFDMA downlink sys-

tems with perfect channel state information at the base station. In the literature there is no unique

formulation for this type of problem. The most common formulation is the weighted sum rate maxi-

mization subject to some transmit-power constraints. For any fixed subchannel assignment, the opti-

mal solution is achieved by multilevel waterfilling [56] forthe continuous rate case (channel capacity

is considered) and greedy or bisection allocation algorithms [57] for the integer-bit constellation case

(bit rate constrained to real modulation schemes). When equal weights are considered, the optimal

subchannel assignment is simply obtained by giving each subchannel to the user with the best gain

to noise ratio [56]. This is called the max-sum-capacity rule, which results in the most efficient use

of the resources in terms of throughput but can lead to unfairness and instability, especially for non-

symmetrical channel conditions and non-uniform traffic patterns [54]. However, in the general case,

finding the optimal subchannel assignment is a combinatorial problem whose complexity increases

exponentially with the number of subcarriers. To find an efficient suboptimal algorithm, [56] consid-

ers a convex relaxation method, allowing time sharing in each subchannel. In this way the problem

becomes convex and can be solved in polynomial time using interior-point methods. A further reduc-
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tion in computational complexity is achieved considering aconstant power for the used subchannels.

In [58] a solution of the problem is efficiently computed using Lagrange dual decomposition and

considering that the duality gap is zero when the number of subcarriers tends to infinity. Previously

described works consider continuous rate adaptation. An additional constraint is added in [53] taking

into account that real communication systems rely on integer-bit constellations. Moreover, since LTE

is considered, the modulation and coding scheme for a given user has been considered fixed during

a scheduling period. Also in this case the problem is combinatorial and a sub-optimal algorithm has

been designed to reduce the computational complexity.

Another way of tackling the problem is power minimization subject to rate constraints for each

user. In [58], similar to the weighted sum rate maximization, the Lagrange dual decomposition

method has been proposed. In [59] an integer-bit constellation is considered and the power has been

assumed to be a convex and increasing function of the bit rate(most popular coding and modulation

schemes satisfy this condition). Due to the combinatorial nature of the problem, a convex relaxation

has been used to obtain a sub-optimal solution.

Another approach is proposed in [60] where a fairness constraint is taken into account: the small-

est capacity among all users is maximized, subject to a totaltransmit-power constraint. Variable bit

rate traffic is considered, but the formulation can be slightly modified to consider constant bit rate

traffic. This objective function can lead to inefficiencies if some users experience deeply faded sub-

channels. In [54], in order to support delay-sensitive applications, an approach that maximizes the

total utility with respect to mean queue delays is proposed.Also in these last works, suboptimal

solutions are computed due to the combinatorial nature of the problem. Finally, we cite the propor-

tional fair scheduling [54], that aims at maximizing the logarithm of the average data rates to trade

off spectrum efficiency and fairness among users.

To sum up, it is difficult to formulate the desired optimization goal and constraints for the multi-

user multi-carrier allocation problem, in particular whenmixed traffic with different QoS require-

ments is considered. Also, the set selection nature of the sub-carrier allocation leads to a combinato-

rial problem that requires an exhaustive search, with exponentially increasing complexity. Simplified

approaches must be considered to design real time algorithms exploiting instantaneous subchannel

information. This motivates us to consider an approach thatdoes not claim optimality with respect to

a subjective utility function, but rather is computationally lightweight and able to find a good trade-

off between aggregate performance (in terms of throughput/spectrum efficiency) and fairness among

flows.
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3.2 Overview of LTE and System Model

LTE is a set of improvements to the Universal Mobile Telecommunications System (UMTS)

introduced in the 3rd Generation Partnership Project (3GPP) Release 8 [61]. It represents efficient

packet-based radio access networks allowing high throughput, low latency and low operating costs.

Small enhancements have been introduced on LTE specifications in Release 9 [62]. The next step for

LTE evolution is LTE Advanced which is currently being standardized in Release 10 [63], the major

candidate technology for the so-called International Mobile Telecommunications (IMT)-Advanced.

Rel-8 LTE adopts OFDMA in the downlink for its robustness against multipath interference and

to allow a high spectral efficiency exploiting time and frequency dependent scheduling and Multiple

Input Multiple Output (MIMO) techniques. In the uplink, in order to maintain user orthogonality in

the frequency domain, a Single Carrier Frequency Division Multiple Access (SC-FDMA) is adopted.

Rel-8 LTE supports both Frequency Division Duplexing (FDD)and Time Division Duplexing (TDD)

and uses multiple transmission bandwidths (i.e.,1.4, 3, 5, 10, 15 and20 MHz) and multiple modu-

lation schemes (i.e., QPSK, 16QAM and 64QAM) allowing peak rates of300 Mb/s in downlink and

75 Mb/s in uplink.

We consider now the scheduling degree of freedom for the downlink of Rel-8 LTE. The basic unit

of resource is the resource block, which is made of12 adjacent subcarriers (15 kHz of subcarrier spac-

ing) and has a duration of0.5 ms (one slot), which correspond to6 or 7 OFDM symbols depending

on the cyclic prefix length chosen (4.7 µs or16.7 µs). The scheduling block is the smallest resource

unit that the scheduler can assign. It is made of two consecutive resource blocks, and therefore has

a duration of1 ms (one subframe). During the duration of a scheduling period, which is equal to

the duration of a scheduling block (i.e.,1 ms), the modulation and coding scheme must be fixed for

each user in the non MIMO configuration. For the MIMO configuration, a maximum of two different

modulation and coding schemes can be used for data belongingto two different transport blocks [53].

LTE Advanced is a further evolution of LTE Release 8 and 9 which is supposed to meet the

requirements for IMT-Advanced and enhance them to future operator and user needs. It shall sup-

port a wider transmission bandwidth using both contiguous and non-contiguous carrier aggregation,

achieving flexible spectrum usage while maintaining backward compatibility with Rel-8. Moreover,

it shall enhance multi-antenna and Coordinated Multi-Point transmission/reception techniques. These

improvements are expected to allow peak rates of1 Gb/s in downlink and500 Mb/s in uplink.

Different radio resource management strategies are required for organizing and bringing together

multiple users and letting them receive data in an LTE system(note: we are considering the downlink,
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which is the only direction using OFDMA multiplexing). In particular, multiple flows directed to the

users are to be coordinated, so that a number of packets are selected for possible transmission from

each flow. In the following, this operation will be referred to asscheduling. However, according to

the above discussion, actual transmission requires to match the selected packets to a given resource

block in a channel-aware fashion. Thus, it is necessary to eventually select which resources to utilize

for the selected packets. Such an operation will be referredto asresource allocation.

The design of policies for resource management is intentionally left open in the standards to allow

developers to implement their own strategy of choice. However, in the following we adopt a two-fold

model where scheduling and resource allocation are managedby two different modules: a scheduler,

operating at the transport layer (thereby possibly distinguishing among different kinds of traffic) and

a resource allocator, which actually implements the MediumAccess Control (MAC) sublayer. The

scheduler determines which packets must be passed to the allocator and their order according to an

internal scheduling policy. The allocator selects for transmission a subset of them with the aim of

maximizing the advantages of multiuser diversity. In this case only a loose cross-layer is introduced,

guaranteeing a certain modularity between scheduler and Radio Resource Allocator (RRA).

In particular, we callL the number of resource blocks that the resource allocator isentitled to

assign. This is subject to a constraintL ≤ Lmax, whereLmax is a maximum value which corresponds

to assigning every resource block. For simplicity, we consider that, to limit the interference caused to

the neighboring cells,L is set to a fixed value which is less than or equal toLmax. The value assigned

to L is communicated to the scheduler by the resource allocator.Actually, this represents a form of

cross-layer interaction among the modules, which is intentionally kept to a minimum level, thereby

promoting modularity and tunability of the approach.

Upon knowingL, the scheduler determines a numberD of packets to send to the resource allo-

cator, where in generalD ≥ L. The exact choice ofD influences the entire allocation. As a matter

of fact, if D = L, the resource allocator has no degree of freedom as to which packets to allocate

(while, obviously, it must allocate the packets to the best channels as perceived by the users). By

increasingD, the resource allocator can achieve a higher throughput by selecting onlyL packets out

of D, according to a channel-aware policy, although at the priceof a possibly decreased fairness.

3.3 Proposed Game Theoretic Approach

The choice ofD determines a trade-off between the possible objectives of throughput and fairness.

We now present a game-theoretic approach to setD; we remark that the main point of our discussion
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does not lie in optimizing the performance of the resulting algorithm, which is left for future research.

Rather, our proposed methodology enables a dynamic setup ofD without any need for a preliminary

evaluation, e.g., whereD is set to some arbitrary value, of the possible equilibria ofthe system,

nor it is required to re-compute the system equilibria if thenetwork and channel conditions change.

Instead, the choice ofD is directly derived from the definitions of the contrasting utilities between

which a trade-off is sought (specifically, throughput and fairness). Together with the separation of the

resource management process into two functional entities (scheduler and RRA), this is key to achieve

a computationally efficient online allocation strategy.

In our formulation, the scheduler (player 1) and the RRA (player 2) are represented as players of

a game whose aim is the decision of the value forD. Both players make a proposalsj, with j = 1, 2,

respectively. The idea is that, if proposalss1 ands2 coincide,D is selected as their common value.

However, the choice ofs1 ands2 is also done according to the utility of the proposer, i.e., the fairness

for the scheduler and the throughput for the RRA, respectively.

In the following, we introduce some assumptions for the sakeof simplicity in the exposition.

We consider a network scenario with only two users (i.e., twoflows); this is not to be confused

with the two “virtual” players of the game, i.e., the scheduler and the resource allocator. Besides, this

assumption is just made for ease of implementation in the simulator, but can be relaxed quite naturally

to scenarios withn > 2 users. We model the system as a static game with complete information, as

follows:

• the players are the scheduler and the RRA.

• their action spaces are the set of values ofD that can be proposed, i.e.S1 = S2 = {L,L +

1, ..., 2L}.

• both utilities are0 if the proposalss1 ands2 do not coincide, i.e., there is no agreement on the

value ofD.

• whens1 = s2, the utilities are assigned to fairnessF (s1, s2) for the scheduler, measured using

Jain’s index [64] (see Eq. 4.13 for a formal definition of the Jain’s index), and the throughput

T (s1, s2) for the RRA.

The last point is arbitrary, as other definitions can be used;the important requirement is that

F (s, s) andT (s, s) are decreasing and increasing ins, respectively. The game is represented in

Fig. 3.1 through a matrix whose cells contain pairs of real numbers (therefore called a bi-matrix),

representing the utilities obtained by the scheduler and the RRA respectively, for a given action profile
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Resource Allocator

Scheduler

L L+1 .... 2L

L 1, Tmin 0, 0 0, 0 0, 0

L+ 1 0, 0 ... 0, 0 0, 0

... 0, 0 0, 0 ... 0, 0

2L 0, 0 0, 0 0, 0 1
2 , Tmax

Figure 3.1. Bi-matrix representation of the game

– different actions of the scheduler are represented by different rows and different actions of the RRA

are represented by different columns. The fairness is a decreasing function ofD: its maximum value

is 1 while the minimum is1/2 (i.e., 1/n wheren is the number of flows). On the other hand, the

throughput is an increasing function ofD varying in the range[Tmin, Tmax], whereTmin is achieved

when no degree of freedom is given to the allocator, whileTmax is obtained when the RRA has enough

freedom to allocate only the bestL resources. Both maximum throughput and minimum fairness are

reached forD = 2L, under the assumption that there are always at leastL packets available for

selection by the scheduler from each queue. All the strategies along the diagonal are Pareto efficient

Nash equilibria.

To determine a trade-off point, we propose an algorithm which tries to automatically estimate

an efficient value ofD for each frame. The value is chosen considering the past proposals, thus we

change the model into a arepeated game with perfect information. The aim is to reach an acceptable

level for both utilities after a number of repetitions. Notethat this proposed algorithm is just an

example and can be replaced by other analogous procedures.

1) Both scheduler and RRA randomly pick a value forD.

2) If the choices coincide,D is set and the game ends, otherwise a bargaining phase goes onuntil a

common point is chosen. Every time the players disagree, both get zero utility.

3) The goal of each round of the loop is moving towards the diagonal of the bi-matrix step-by-step.

Each player decides whether or not to change its previous proposal based on its level of satisfaction

(i.e., the ratio between the value actually achieved and themaximum achievable). The higher the

satisfaction, the higher the probability that a player changes its choice with a value more convenient

for the other. IfS_D andRRA_D are the proposals forD made by the scheduler and the allocator,

respectively, andS_s andRRA_s the respective levels of satisfaction when the game is played, we
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select the changes as follows.

— If S_D > RRA_D, we are in the lower triangle of the matrix. We can move towards the diagonal

by going up (decrement ofS_D), or right (increment ofRRA_D), or in both directions. For both

players, these options lead to higher values in their own utility function to the detriment of the other’s,

thus the willingness to change should be a decreasing function of the respective satisfaction level.

Thus, we select

Prob{S_D up} = 1− S_s (3.1)

Prob{RRA_D right} = 1−RRA_s (3.2)

— If S_D < RRA_D, we are in the upper triangle of the matrix. The diagonal can be reached by

going down (S_D increment), or left (RRA_D decrement), or in both directions. The situation is

now reversed, as a deviation in its own action implies a reduction in the utility of each player in favor

of the other’s. Therefore, the probability of moving must bean increasing function of the respective

satisfaction, which is obtained for example by choosing

Prob{S_D down} = S_s (3.3)

Prob{RRA_D left} = RRA_s (3.4)

In this manner, we define an algorithm whose goal is to lead thechoice ofD towards an interme-

diate value which offers both good throughput and satisfactory fairness.

3.4 Numerical Results

We ran evaluations within a simple LTE simulator to verify the ability of the proposed approach

to converge towards a trade-off among the utility functionsof the two players. All the performance

indices are characterized by a confidence interval of95% with a maximum relative error of5%.

We developed and used a simple asynchronous event-driven simulator, written in C++, which re-

produces a base station transmitting to two different mobile users. The base station contains a packet

scheduler with two queues (one for each user) and an RRA module. The scheduler is credit-based

and tries to guarantee fairness by selecting packets from the queues according to their residual credit.

Flows are assumed to have always backlogged traffic. The RRA manages the resource allocation ac-

cording to a greedy criterion: slots and packets are matchedin order to maximize the total throughput

given the channel condition of each user, which are assumed to be independent of each other.
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Parameter value

number of flows 2

packet size 500 bytes

Pr{GOOD → GOOD} 0.9

Pr{BAD → BAD} 0.8

number of subcarriers 16

time slots per frame 24

frame duration 1 ms

transmission power per slot 1 mW

Table 3.1. Main system parameters

The radio channel model represents each frequency subchannel by means of a two-state Markov

channel (Gilbert-Elliot model) whose state is updated after each time slot to take into account channel

correlation over time. The number of subcarrier groups is16 while the time slots for each frame are

24, for a total of384 resource blocks. A different average noise power is associated with each of the

two states of the chain, thus different values of capacity can be reached (according to the Shannon

formula). For simplicity, when the Gilbert-Elliot channelis in the good state, interference and noise

power are treated as a random variable with uniform distribution between1 and2 mW; similarly, in

case of bad channel, the interference plus noise power is uniformly distributed between1 and200

mW. The transmission power per slot is fixed to1 mW. The main system parameters are summarized

in Table 3.1.

In Fig. 3.2 and Fig. 3.3 the fairness and the normalized throughput as a function of time are shown

for several values ofD whenL = 300 packets. They confirm what was expected from our analysis:

the fairness is a decreasing function ofD while the throughput increases. WhenD = L, we have

that the fairness is always1, the maximum value according to Jain’s index. On the other hand, the

normalized throughput has its minimum value because the resource allocator has no freedom in the

choice of the packets to transmit and the user diversity cannot be exploited.

WhenD is increased, the two performance indices considered have contrasting behaviors, as

already expressed in the previous section: the fairness undergoes a decrease while the throughput

starts increasing. The introduction of a certain freedom inthe allocation choice shows its effects and
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Figure 3.3. Throughput over time for different values ofD.
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the trade-off among the utility of the two players becomes evident. Figure 3.4 clearly shows this

situation: the points along the curve are the Pareto solutions of the game, one for each value ofD,

and there is no possibility to reach a better solution for oneplayer without worsening the other’s one.

All figures report the outcome of the game theoretic algorithm. Both in Fig. 3.2 and in Fig. 3.3,

the automatic choice ofD leads to an intermediate value of both performance indices.This means

that each player slightly reduces its own utility for the sake of a better joint solution. In Fig. 3.4 it is

shown that this new operating point is localized close to thePareto boundary. Moreover, the proposed

algorithm is quite simple and the convergence to a common value ofD is extremely fast, thus it is

suitable for an online implementation. Indeed, in Figs. 3.2–3.3 the warm-up period is quite short,

about 300 ms.

For completeness, we ran other tests by varyingL in the range[100, 350]. In all these cases

we obtained that the fairness increased with the value ofD while the throughput decreased. The

operation point reached by the proposed algorithm always approximately lies on the Pareto boundary.

3.5 Conclusions

In this chapter we have presented a novel design approach forresource management in OFD-

MA/TDMA cellular networks such as LTE. A cross-layer approach has been explored, where sched-

uler and radio resource allocator exchange a limited amountof information to provide both an ade-

quate level of fairness among flows and a high throughput. A game theoretic model of the system

has been proposed and a feasible algorithm for the dynamic setting of a system parameter has been

evaluated. The results obtained through simulation show that the proposed solution is able to trade-off

fairness requirements and throughput.

Possible future works include the extension to a multicellular network, where several base stations

coexist and share resources trying to minimize mutual interference through a proper resource alloca-

tion. Moreover, we plan to implement the proposed approach in a more detailed network simulator.
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Chapter 4
Promoting Cooperation in Wireless Relay

Networks

In this chapter1 we apply game theory to constructively derive practical network management

policies for wireless relay networks. We focus on the problem of medium sharing and opportunistic

packet forwarding in wireless relay networks, and we show how, by properly modeling the agents

involved in such a scenario, and enabling simple but effective incentives towards cooperation for the

users, we obtain a resource allocation scheme which is meaningful from both perspectives of game

theory and network engineering. Such a result is achieved byintroducing throughput redistribution

as a way to transfer utilities, which enables cooperation among the users.

4.1 Introduction

Cooperation has emerged as a new networking concept that hasa dramatic effect of improving

the performance from the physical layer up to the networkinglayers, and it is considered as one of

the most promising enabling technologies to meet the increasingly high rate demands and quality of

service requirements in wireless networks. In this chapterwe consider the simplest form of physi-

1The material presented in this chapter has been published in:

[C4] L. Canzian, L. Badia, and M. Zorzi, “Relaying in Wireless Networks Modeled through Cooperative Game Theory,”

in Proc. IEEE CAMAD, Kyoto, Japan, Jun. 10-11, 2011

[J1] L. Canzian, L. Badia, and M. Zorzi, “Promoting Cooperation in WirelessRelay Networks through Stackelberg Dy-

namic Scheduling,”to appear in IEEE Trans. Commun.
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cal layer cooperation: an opportunistic relay channel, in which each user connected to the network

forwards the packets of the other users.

We investigate cooperative relaying not only improving thesocial welfare of the network, but also

increasing the individual benefit of each single user, that is assumed to act selfishly and strategically.

The motivation behind this approach is that relaying is possible only if incentives are given to each

user to overcome the disadvantage of consuming energy to forward the packets of the other users. We

first prove the potential gain of cooperation through a cross-layer scheme involving joint routing and

medium access, which is analyzed by means of renewal processtheory [65]. However, such a globally

efficient allocation may not match the allocation equilibrium in a game theoretic sense. To overcome

this difficulty, we first consider a simple2–users case and model users’ interaction as acoalitional

game, introducing throughput redistribution as a way to transfer utilities. This will enable cooperation

among the users. Unfortunately, it is very difficult to generalize such an approach to larger networks,

both because it is computationally expensive to characterize the core for a number of users higher

than3 [52], and because it requires the definition of a proper negotiation protocol to establish the

cooperation roles, an overhead which may considerably limit the cooperation gain in large networks.

Thus, as a main contribution of this chapter, we propose another incentive scheme which follows

the approach of the coalitional game, redistributing the throughput among users through a dynamic

scheduling rule. This scheme involves a coordinator, that triggers cooperative behaviors increasing

the access opportunities of users acting as relays. This kind of approach is framed as a Stackelberg

game involving the coordinator as the leader and the users, whose strategic decision involves whether

to act collaboratively, as followers. It can also be considered as an intervention scheme [66] (which

will be described accurately in Chapters 6 and 7): the coordinator represents the intervention device

and the dynamic scheduling rule represents the intervention rule. However, differently from most of

the intervention schemes in the literature in which the intervention action represents a punishment for

non compliant users, here the scheduling action representsan award for cooperative users.

The rest of this chapter is organized as follows. We describethe scenario under investigation and

the key assumptions in Section 4.2. Then, Section 4.3 formalizes the analysis of cooperative versus

non cooperative schemes by means of renewal process theory.Section 4.4 introduces the throughput

redistribution concept and studies the coalitional game inthe2–users scenario. Section 4.5 represents

the main contribution of this chapter: the dynamic scheduling scheme to provide network incentives

towards cooperation is defined. Numerical results are provided in Section 4.6. We discuss possible

relaxations of some hypotheses in Section 4.7, and Section 4.8 concludes the chapter with some

remarks.
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4.1.1 Related work

Relay networks have been widely studied in information theory [67]. In particular, the relay

channel represents one of the most common scenarios studied. Several theoretical results about the

capacity of this basic network have been available in the literature since long [68], and others keep

being proposed even very recently [69–72]. These studies assume that each user is willing expend

energy in forwarding packets for other users, without having nothing in return. However, relaying is

possible in practice only if incentives are given to the individual users to overcome the disadvantages

of their limited energy budgets. In this spirit, [17] promotes a fair packet forwarding mechanism

balancing the relaying opportunities that each node gives to and receives from other nodes. Similarly,

[18] introduces a virtual currency and mechanism for charging/rewarding service usage/provision.

Both papers assume the application of a tamper-resistant module in each node to store the forwarding

balance or the virtual currency credit. The virtual currency concept is also used in [19], while in

[20] cooperation is reached by using a reputation mechanism. A distributed and scalable acceptance

algorithm was proposed in [21], in order for the nodes of an adhoc network to decide whether to

accept or reject a relaying request. Finally, [22] considers an incentive mechanism where the nodes

flexibly give transmission bandwidth in exchange for forwarding data.

Differently from [17–20], that are based on the exchange on anetwork scale of abstract notions

of worth (e.g., currency and reputation), our opportunistic relaying scheme represents a more tangible

and immediate incentive mechanism. The repeated game formulation considered in [21] is efficient

only if a user asking for a relay service can return the favor in future interactions. Our scheme can

be applied in more general situations, even in strongly asymmetric scenarios where some users only

ask for relay services and other users are only asked to act asrelays. In fact, users acting as relays are

immediately rewarded, independently of the future interactions with the other users. Our approach

is closer in spirit to [22]. The main difference is that, instead of rewarding cooperative users in the

frequency domain, giving them more bandwidth, we reward cooperative users in the time domain,

increasing their access opportunities. Moreover, there are some different hypotheses that make the

analysis of the two schemes very different, e.g., in this chapter we assume that the users can select

their modulation scheme which in turn determines the packetreception probability, while [22] adopts

a more abstract formulation based on channel capacity.
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Figure 4.1. The considered scenario: an access point surrounded by usernodes

4.2 Problem Statement

Consider a scenario as reported in Fig. 4.1, where a setN = {1, 2, . . . , n} of n nodes, hereafter

calledusers, are distributed around a further node callednode 0. This may represent an access point

of a wireless local area network, or a base station of a cellular network. We focus on the uplink

between each user and node0; yet, we assume that node0 is not only the end destination, but also a

resource manager, as explained later.

We denote the signal to noise ratio (SNR) between useri and node0 asγi and the SNR between

usersi andj asγij. Users are labeled in decreasing order of SNR to node0, i.e.,γ1≥γ2≥ . . .≥γn.

We consider time invariant channels and fixed transmission powersPpkt, so that theγi andγij terms

are constant over time. We also assume perfect channel stateknowledge.

A Time Division Multiple Access (TDMA) scheme is adopted, with a fixed slot durationTpkt.

Node0 controls the time shares of the users by selecting, in each slot t, a specific user that is allowed
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to transmit. The probability that useri is selected in slott isP (t)
i . The selected user transmits a single

packet over the entire slot, comprising a number of bits thatdepends on its modulation schemeMi. Mi

is chosen over a finite setM according to the channel quality and in turn determines the probabilities

qi andqij that the packet is correctly received by0 andj. We denote withEpkt = PpktTpkt the energy

consumed by a user for a single packet transmission.

Automatic Repeat reQuest (ARQ) is used as the mechanism to achieve reliable communica-

tion [73]. If the packet transmitted by useri is not correctly received by node0, the packet is re-

transmitted the next time useri is scheduled, until the packet is received or the maximum number

of retransmissions is reached. For the sake of simplicity, we consider at most one retransmission per

packet, although the extension to multiple retransmissions would be conceptually straightforward.

Users are assumed to be backlogged, i.e., they always have packets to transmit. In the following,

we will start by considering that retransmissions of a packet are only performed by the node that

has originated that packet, i.e., the node that performed the first transmission attempt. We will refer

to this situation as theno cooperationcase and denote its corresponding quantities with a super-

scriptN . P
(t)
i can be set as a constant/static value for allt, which makes the selection process

independent and identically distributed (iid). The scheduling policy can be described by a vector

P = (P1, P2, . . . , Pn), where
∑n

i=1 Pi = 1, so thatP (t)
i = Pi for all t; for example, a fair sharing is

represented byP = (1/n, 1/n, . . . , 1/n).

We will also consider two evolutions of this scheme, where retransmissions of faulty packets may

not be carried out by the same node performing the first attempt. This is enabled by assuming that

during the transmission phase of a generic nodei the other nodes listen to the channel and storei’s

packet if they have correctly received it. Thus, they can retransmit it if needed. If more than one user

can retransmit the packet, node0 selects the one with the best channel.

In the first scheme, calledforced cooperation(denoted by superscriptF), we assume that the

users have no say in deciding whether or not to cooperate, butmust follow node0’s directions when

instructed to do so, hence the name. Since cooperation does not come from a free decision, there is

no need for rewarding the collaborative users with a higher access probability. Thus, similarly to the

no cooperation case, the access probabilitiesP
(t)
i stay the same for everyt. However, their physical

meaning changes: they represent the event that the packet originated fromi is transmitted during slot

t; if it is the first transmission attempt, it will be performedby i, while this is not necessarily true for

a retransmission.

Finally, we will consider a further cooperative case, called voluntary cooperation(denoted by

superscriptV), where the users freely decide whether or not they want to cooperate in the retrans-
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Figure 4.2. Non-cooperative transmission process of a packet of useri

mission process of other users. In this case, node0 rewards them with a higher access probability,

decreasing by the same amount the access probability of the users being helped. Thus,P (t)
i changes

over time. Suppose nodei cooperates with nodej in slot t, retransmitting a packet originated from

nodej. We defineKij as the number of scheduling instants, after slott, where the scheduling policy

is changed, and∆P (s)
ij > 0 as the variation of the scheduling policy, with respect to the reference

policy P = (P1, P2, . . . , Pn), in slots, i.e.,

P
(s)
j = Pj −∆P

(s)
ij ; P

(s)
i = Pi +∆P

(s)
ij ; s = t+ 1, . . . , t+Kij (4.1)

To compare the three cases, we define the bit rate of useri in slot t as

BR
(t)
i =







Ni

Tpkt
i’s packet correctly received by0 in slot t

0 otherwise

whereNi is the number of bits in useri’s packet, which depends on the chosen modulation scheme

Mi. Finally, we define the asymptotic bit rate of useri as

BRi = lim
T→∞

1

T

T−1∑

t=0

BR
(t)
i

4.3 Renewal Theory Analysis

In the no cooperation scheme, the transmission process of a generic packet originated from useri

can be represented by the Markov Chain of Fig. 4.2. The successful reception probabilitiesqi andqij

depend on the modulation schemeMi and the SNR valuesγi andγij . In the following we will omit

all these dependencies in favor of a clearer notation.
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The initial state of the Markov Chain is1i, which means that the next time useri is scheduled

it will transmit the packet for the first time. Analogously, state2i implies that by scheduling useri

the packet will be transmitted for the second time. State2i is entered if the first attempt failed. The

termPi that influences the transition probabilities results from the scheduling process. The absorbing

statesRi andNRi represent the events that useri’s packet is eventually received or not, respectively,

by node0. When either of the absorbing states is entered, the transmission process of another packet

of nodei is considered, restarting again from state1i.

The time intervals of the packet transmission processes arepositive, independent, identically dis-

tributed random variables. These variables define a renewalprocess which can be studied exploiting

renewal theory results [65]. The asymptotic metrics of the network can be obtained studying the

(statistical) average behavior of the Markov process. In particular, the asymptotic throughput of each

user is equal to the average number of received bits divided by the average time to be absorbed in the

Markov chain associated to that user.

We denote withPN
Ri

the probability to be absorbed in stateRi and withvNi the average number

of time slots to be absorbed starting from state1i. Therefore,

PN
Ri

= qi + (1− qi) qi = qi (2− qi)

vNi =
1

Pi
+

1

Pi
(1− qi) =

2− qi
Pi

Thus,i’s asymptotic bit rate for the no cooperation case is

BRN
i =

PN
Ri
Ni

vNi Tpkt
= Piqi

Ni

Tpkt
(4.2)

The best modulation scheme for useri is simply obtained maximizing its throughput

MN
i = argmax

Mi∈M
qiNi (4.3)

Recall that bothNi andqi depend onMi. Finally, the asymptotic bit rate of the network for the no

cooperation scenario is

BRN =

n∑

i=1

BRN
i =

1

Tpkt

n∑

i=1

PiqiNi

where the modulation scheme for each user is selected according to (4.3).

In the forced cooperation scheme, the packet transmission process of useri follows the Markov

Chain in Fig. 4.3. Differently from the no cooperation case,the retransmission ofi’s packet is

performed by the best userk among those that have received the packet duringi’s first attempt,k < i,
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Figure 4.3. Transmission process of a packet of useri in the forced cooperation scheme

otherwise the retransmission is performed byi itself. In the retransmission,k will use the same

modulation order used byi,Mi. In fact, although the optimal modulationMk for k may be higher,i’s

packet dimension cannot be increased.2 We defineqik as the correct reception probability of a packet

transmitted byk using the same modulation scheme ofi. Sincek < i, we haveqik ≥ qi.

The probabilityPF
Ri

to be absorbed inRi and the mean number of stepsvFi to absorption are

PF
Ri

= qi + (1− qi)
i∑

k=1

qik

k−1∏

j=1

(1− qij) q
i
k = qi (2− qi) +

i−1∑

k=1

(1− qi) qik

k−1∏

j=1

(1− qij) (q
i
k − qi)

vFi =
2− qi
Pi

where we took
∏0

j=1 (1− qij) = 1 andqii = 1. In particular,(1− qi) qik
∏k−1

j=1 (1− qij) (q
i
k − qi)

2Actually, nodek can even improve its amount of transmitted data by stuffingi’s packet with its own data up toNk−Ni

bits. We neglect this further advantage which, however, would be immediate to include.
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is the probability that0 has not correctly receivedi’s packet in the first attempt whilek has received

it but no user better thank has received it, multiplied by the difference between the probabilities that

the packet is correctly retransmitted byk andi. It represents the contribution ofk to the probability

thati’s packet is eventually received by0.

Considering for the moment that useri is adopting the same modulation schemeMN
i as in the

no cooperation case, we have obtainedPF
Ri
≥ PN

Ri
andvFi = vNi . The latter is a consequence of

considering a single retransmission (for the multiple retransmission case,vFi ≤ v
N
i in general).

Similar to (4.2), the asymptotic bit rate of useri in the cooperative scenario is

BRF
i = Pi

[

qi +
1−qi
2−qi

i−1∑

k=1

qik

k−1∏

j=1

(1−qij) (q
i
k−qi)

]
Ni

Tpkt

and the best modulation schemeMF
i for the cooperative case is

MF
i = argmax

Mi∈M

[

qi +
1−qi
2−qi

i−1∑

k=1

qik

k−1∏

j=1

(1−qij) (q
i
k−qi)

]

Ni (4.4)

Finally, for the aggregate throughput we obtain

BRF =
1

Tpkt

n∑

i=1

Pi

[

qi +
1−qi
2−qi

i−1∑

k=1

qik

k−1∏

j=1

(1−qij) (q
i
k−qi)

]

Ni (4.5)

where the modulation scheme for each user is selected according to (4.4). Comparing this result with

the no cooperation case, if in both cases users are adopting the modulation schemes according to

(4.3), we obtainBRF ≥ BRN . This relation is further enforced if we calculateBRF considering

the best modulation schemes for the forced cooperation case, according to (4.4).

To study thevoluntary cooperationscheme, we need to introduce a game theoretic framework

modeling interactions among selfish users and their decision to cooperate / not to cooperate. In

Section 4.4 we will study this interaction as a transferableutility coalitional game, in which the users

can redistribute among them the total gain obtained throughcooperation. We carry on this analysis

considering a simple2–user case in which users are interested in maximizing theirthroughput, and

the redistribution of the throughput is physically possible by changing the access opportunities of the

users – of course each user is free to decide if such an agreement is convenient for him or if it is better

to leave the coalition and refuse to cooperate with the otheruser. Then, in Section 4.5, following the

idea of the throughput redistribution, we give an active role to node0, assuming that it can modify

the access opportunities of each user following a dynamic scheduling rule which is a function of each

user’s decision to cooperate or not to cooperate with the other users. This kind of approach is framed
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as a Stackelberg game, in which node0 is the leader and the users are the followers. In this case we

consider a more realistic scenario in whichn users are interested in maximizing their throughput and

minimizing their energy consumption.

4.4 Coalitional Game and Throughput Redistribution

In this section we study the interaction of2 users through a coalitional game, assuming that they

can form a coalition in which they agree to cooperate with each other, and to redistribute the total

throughput obtained in order to get a higher throughput compare to the no cooperation scenario. We

assume that the coalitional game satisfies properties 1 and 2of Section 2.7. Note that in the2–user

case the former property is automatically satisfied. However, the property still holds true even if the

analysis is extended to a network with more than two users, since the TDMA approach guarantees that

different coalitions do not interact: each coalition triesto obtain the maximum throughput by using

the slots assigned exclusively to it. For what concerns property 2, the problem of the throughput

redistribution is addressed at the end of this section.

The valuev(·) of the coalitional game is the throughput obtained by each coalition. In a2–user

case, three coalitions are possible: the two coalitions formed by the single users,1 and2, and the

coalition formed by both users, i.e., the grand coalitionN = {1, 2}. The value of each coalition is:

v({1}) = BRN
1 , v({2}) = BRN

2 , v(N) = BRF ≥ BRN = v({1}) + v({2})

Therefore the game satisfies also property 3 of Section 2.7.

Now we want to find a utility allocation that belongs to the core and is fair under certain parame-

ters. Note that, for a super-additive two player game, the core is not empty and coincides with the set

of imputations. In the considered game, the set of imputations is given by:

x1 = BRN
1 + w(BRF

2 −BR
N
2 ) , x2 = BRN

2 + (1− w)(BRF
2 −BR

N
2 ) (4.6)

where thecooperation weightw belongs to the interval[0, 1]. It is immediate to see thatx1 + x2 =

v(N), x1 ≥ v({1}), andx2 ≥ v({2}), ∀w ∈ [0, 1].

The cooperation weight determines the throughput share that each user gets. Ifw = 0 (i.e., the

throughput is not redistributed) we obtainx1 = v({1}), hence only user2, whose channel quality to

node0 is worse, can directly benefit from being helped by user1’s cooperative relaying. Ifw > 0,

also user1 can benefit from the cooperation. The greaterw, the greater the incentive for user1 to
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cooperate. Forw = 1, x2 = v({2}), hence only user1 can benefit from the cooperation3. Thus, by

setting the value ofw we decide the right level of fairness of the subdivision.

So far we have supposed that the total throughput can be divided by users rather arbitrarily. From

a practical point of view, the only thing that can be controlled is the allocation policy,P1 andP2. We

suppose therefore that the allocation policy is changed fromP1 andP2 toP ′
1 andP ′

2 in order to satisfy

the subdivision proposed. Is the new allocation policy feasible? That is, isP ′
1 + P ′

2 ≤ 1? It is easy to

show that the new allocation policy is feasible. In fact, we have to increase the allocation probability

of the cooperating user1 and decreasing the allocation probability of2, while keeping constant the

total bit ratev(N). Since1 has a better channel, it results that the increaseP ′
1 − P1 is lower than the

decreaseP2 − P
′
2 in order to keep the total bit rate constant. Therefore:

P ′
1 − P1 < P2 − P

′
2 ⇒ P ′

1 + P ′
2 < P1 + P2 = 1

This means that the allocation is feasible and that there is apositive probability that some slots are not

assigned to anybody, which would not be meaningful. Therefore, the quantityP ′ = 1− P ′
1 − P

′
2 can

be divided among users, increasing for example bothP ′
1 andP ′

2 by the same amount, or increasing

them by a weighted amount ofP ′, where we can use again the cooperation weightw. Finally, this

means that both users have a further benefit in obtaining an even higher bit rate compared to the

subdivision proposed.

4.5 Dynamic Scheduling Scheme

It is very difficult to generalize the approach of Section 4.4to larger networks, both because it

is computationally expensive to characterize thecore for a number of users higher than3 [52], and

because it requires the definition of a proper negotiation protocol to establish the cooperation roles,

an overhead which may considerably limit the cooperation gain in large networks. Thus, as a main

contribution of this chapter, we propose in this section a dynamic scheduling scheme which follows

the idea of redistributing the throughput among users, awarding cooperative users.

In the voluntary cooperation scheme we allow the user to freely choose whom to cooperate with,

as well as its own modulation scheme. We model their interaction as a static game with complete

info and, for the time being, we consider that the strategy4 of useri consists only in choosing the set

of users it cooperates with, which we denote asai ⊆ N (i.e., the action setAi is the power set of

3Actually, in this case user2 can still benefit in that it saves energy, because some of its packets are retransmitted by

user1. We will introduce the energy consumption in the users’ utilities in Section 4.5.
4In static games the user strategy coincides with the user action. In this chapter we keep using the word strategy.
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N ). Since each user can cooperate only with users having a worse channel,ai is actually a subset of

{i + 1, . . . , n}. The choice of the modulation scheme can be added in a later step as a superposition

to the choice ofai, and it does not represent a strong interaction factor amongusers. Also, denote

with Wi the set of users that cooperate withi, i.e.,Wi = {j ∈ N : i ∈ aj}.

We represent the preference of each useri through a utility functionΨi(Bi, Ei) which depends on

the number of transmitted bitsBi and on the energy spentEi per unit time. Actually, for the analysis

of the game we use theincremental utilityψi(∆Bi,∆Ei) representing the increase inΨi with respect

to the no cooperation case5, i.e.,

ψi(∆Bi,∆Ei) = Ψi(B
N
i +∆Bi, E

N
i +∆Ei)−Ψi(B

N
i , E

N
i )

By definition, ψi(0, 0) = 0. Also, it is reasonable to assume thatψi is a continuous and in-

creasing (respectively, decreasing) function of the variation of transmitted bits (respectively, energy

consumption) per unit time,∆Bi (respectively,∆Ei).

Note that∆Bi and∆Ei can be split into the contributions due to the individual interactions with

other users:∆Bi =
∑

j∈N\{i} ∆Bij and∆Ei =
∑

j∈N\{i} ∆Eij, where∆Bij and∆Eij are the

variations, per unit time, of transmitted bits and energy expenditure ofi due to the interaction withj.

Now, we assume that the incremental utilityψi(∆Bi,∆Ei) can be additively split as a sum of local

contributionsψij(∆Bij ,∆Eij), each due to the interaction betweeni andj, withψij having the same

characteristics ofψi (continuity and monotonicity). Then we can write:

ψi(∆Bi,∆Ei) =
∑

j∈N\{i}

ψij(∆Bij ,∆Eij) =
∑

j∈Wi

ψij(∆Bij ,∆Eij) +
∑

j∈ai

ψij(∆Bij ,∆Eij) (4.7)

where we exploited the fact that ifj /∈Wi∪ai, i.e.,j has no interaction withi, thenψij(∆Bij ,∆Eij) =

0.6 In (4.7),ψi is re-arranged in two sum terms. The former involves the users of setWi offering their

cooperation toi; therefore, in the corresponding terms,∆Bij and∆Eij are positive (as we will see in

Section 4.5.1) and negative, respectively. This means thatuseri will always benefit from cooperation

by another userj with a better channel; however, the strategic choice whether to cooperate or not is

left to userj. The latter term includes instead the variation ofψi due toi offering cooperation to other

nodes belonging to setai, which is where the decision ofi comes into play.

The termψij can therefore be regarded as the specific utility of useri in a simple2-player game

betweeni andj, i < j, where the only user who can make a non-trivial decision isi. It will cooperate

5The game’s outcomes are invariant to this choice. In fact, they depend only on the ranking of the preference of each

user, which is preserved if a (user-dependent) constant is subtracted from the utility of each user.
6A linear ψi(·, ·) will satisfy (4.7). In particular, ifψi(·, ·) is linear thenψi(·, ·) = ψij(·, ·),∀i, j. Moreover, the

converse is also true: ifψi(·, ·) satisfies (4.7) andψi(·, ·) = ψij(·, ·),∀i, j, thenψi(·, ·) is a linear function.
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with j if and only if ψij ≥ 0 (it is not restrictive to assume cooperation in the equalitycase). Note

thati’s strategy has no influence on the utilities of lower index users and, therefore, on their decision

process. Hence,i’s decision to cooperate or not withj, with i < j, can be made by maximizing just

the partial utilityψij . In this way, the originaln-player game is decoupled into
(
n
2

)
2-player games

whose outcomes can be easily predicted.

In particular, without any incentive mechanism, the optionof relaying packets for another node

would never be advantageous. In fact, in this case∆Bij = 0 and∆Eij > 0, hence,ψij is negative.

Thus, no node would ever relay a packet. This is why we also include node0 that can provide

incentives for cooperation, through a reshaping of the transmission probabilities. In this way, users

can now get a positive utility when they act as relays, since they may have higher energy consumption

but also higher throughput.

4.5.1 Stackelberg formulation

In light of the above discussion, we consider node0 as an active player in the game, which, to

promote cooperation in the network, can change the scheduling policies of users, with respect to

the reference scheduling policyP = (P1, P2, . . . , Pn), according to (4.1). We want that, after this

intervention by node0, the users exploiting a collaborative relay still have a throughput improvement,

i.e., if j ∈ ai then∆Bji ≥ 0; note that they always have an energy saving, i.e.,∆Eji < 0, sincei

performs a retransmission inj’s stead. Moreover, as cooperation rewards are granted by node0, the

transmission probability ofi can be increased according to (4.1) only if node0 correctly received the

packet retransmitted byi. In order to reach both objectives, we impose the following change in the

allocation conditioned on the event that the packet retransmitted byi is correctly received by node0

Kij∑

s=1

∆P
(t+s)
ij qNj N

N
j = wij

qjiNj − q
N
j N

N
j

qji
(4.8)

wherewij ∈ [0, 1] is thecooperation weightof i with respect toj. The left hand side represents

the average decrease of the number of bits transmitted byj during the followingKij slots, given

thatP (t+s)
j = Pj − ∆P

(t+s)
ij , s = 1, . . . ,Kij . Therefore, the average (non conditioned) decrease

of the number of bits is obtained multiplying it by the probability that the packet retransmitted by

i is correctly received by node0, and we have imposed it equal towij

(

qjiNj − q
N
j N

N
j

)

. Since

wij ∈ [0, 1], the average increase in the number of bits transmitted byj during slott, qjiNj− q
N
j N

N
j ,

is higher than the average decrease of the number of bits transmitted byj during the subsequentKij

slots, hence,∆Bji ≥ 0 as we wanted.
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The cooperation weightwij is a tunable parameter describing how valuable it is to reward coop-

eration byi towardsj. If wij is equal to1, during theKij + 1 time slots fromt to t + Kij userj

transmits an average number of bits equal to what it would have transmitted during the same interval

in the no cooperation case. The lowerwij, the higher the throughput of userj, but at the same time

the lower the incentives given to useri, until wij = 0, where no incentives are given to useri.

The cooperation weightwij , ∀i, j : i < j, represents the strategy of node0, i.e., the strength of

incentives given to cooperating users. We suppose thatwij are fixed by node0 at the beginning of

the communication and are transmitted to all users. In this way, any user knows in advance the gain

it obtains by cooperating with each other user and can selectits best strategy. This type of interaction

between node0 and other users can be cast in the framework of the Stackelberg games, where node

0 plays first and the users act afterwards. The player moving first can predict the behavior of other

players and optimize its own strategy.

We can rewrite (4.8) as

Kij∑

s=1

∆P
(t+s)
ij =

wij

qji

(

qjiNj

qNj N
N
j

− 1

)

under the constraint∆P (t+s)
ij ≤ Pj , s = 1, . . . ,Kij .

There are infinitely many solutions
{

Kij ,∆P
(t+s)
ij , s = 1, . . . ,Kij

}

that satisfy the above equa-

tion. However, cooperating users should be rewarded as early as possible, so as to enable faster

convergence to the asymptotic throughput. ThusKij is set as the lowest integer such that

KijPj ≥
wij

qji

(

qjiNj

qNj N
N
j

− 1

)

which results in the following scheduling policy variation:

∆P
(s)
ij = Pj ; s = t+ 1, . . . , t+Kij − 1

∆P
(t+Kij)
ij =

wij

qji

(

qjiNj

qNj N
N
j

− 1

)

− (Kij − 1)Pj (4.9)

4.5.2 User strategies

Now, we study the interaction between users considering generic cooperation weightswij and

introducing the selection of the modulation schemeMi.

In the voluntary cooperation scheme, the packet transmission process of useri follows the Markov

Chain in Fig. 4.4, which is conceptually similar to Fig. 4.3 with the difference that only users

belonging toWi cooperate withi and the scheduling is dynamic according to (4.1). The access
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probability of useri at the beginning of a slot depends on the usersi has cooperated with and on the

users that have relayedi’s packets in the preceding slots. In order to derive the exact metrics associated

to the voluntary cooperation scheme, the Markov chain of Fig. 4.4 should be expanded to take into

account thati might cooperate with other users when it is not scheduled. The transition associated

to the probability1 − P (t)
i should be divided into a number of transitions equal to the cardinality of

ai plus 1, representing the events thati is not scheduled and it does not act as a relay or it acts as

a relay for one of the users belonging toai. These transitions would end in as many chains, all of

them similar to the lower chain of Fig. 4.4, with the only difference that the access probabilities of

useri are different. To obtain simple analytical expressions of the asymptotic metrics of the voluntary

cooperation scheme, instead of exactly tracing the temporal variation of the scheduling probability

we consider an approximate approach that takes into consideration just the average valueP i of the

scheduling probability of a generic useri. This allows us to obtain the following results

PV
Ri
=qi (2−qi) +

∑

k∈Wi

(1−qi) qik

[
∏

j∈Wi,j<k

(1−qij)

]

(qik−qi)

vVi =(2− qi) /P i

BRV
i =P i

[

qi +
1−qi
2−qi

∑

k∈Wi

qik
∏

j∈Wi,j<k

(1−qij) (q
i
k−qi)

]
Ni

Tpkt

BRV=

n∑

i=1

BRV
i =

1

Tpkt

n∑

i=1

P i

[

qi +
1−qi
2−qi

∑

k∈Wi

qik
∏

j∈Wi,j<k

(1−qij) (q
i
k−qi)

]

Ni (4.10)

As per (4.1)

P
(t)
i = Pi +

∑

j∈ai

∆P
(t)
ij −

∑

k∈Wi

∆P
(t)
ki

where∆P (t)
ij ,∆P

(t)
ki ≥ 0 are according to (4.9).∆P (t)

ij > 0 if and only if i cooperated withj during

one of the precedingKij slots. ∆P
(t)
ki > 0 if and only if k cooperated withi during one of the

precedingKki slots. As per (4.9),∆Pki depends onqik andNi that in turn depend on the modulation

schemeMi. This must be taken into account when optimizingMi. In particular, since the access

opportunity of useri is decreased after being helped, thenet average increase ofi’s transmitted bits

due to the cooperation of userk is scaled by a factor(1−wik). We define

Di = qi+
1−qi
2−qi

∑

k∈Wi

(1−wik) qik

[
∏

j∈Wi,j<k

(1−qij)

]

(qik−qi)

Then, the optimal modulation scheme of useri can be computed as

MV
i = argmax

Mi∈M
DiNi (4.11)
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Figure 4.4. Transmission process of a packet of useri in the voluntary cooperation scheme
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where bothDi andNi depend onMi. If i cooperates withj, the average variation∆Bij > 0 and

∆Eij > 0 of i’s transmitted bits and energy consumption per unit time areequal to

∆Bij=q
j
i

Kij∑

s=1

∆P
(t+s)
ij Di

Ni

KijTpkt
= wij

(

qjiNj

qNj N
N
j

−1

)

Di
Ni

KijTpkt

∆Eij=

[

1 + qji

Kij∑

s=1

∆P
(t+s)
ij

]
Epkt

(Kij + 1)Tpkt
=

[

1 + wij

(
qjiNj

qNj N
N
j

−1

)]
Epkt

(Kij + 1)Tpkt
(4.12)

whereMV
i is chosen according to (4.11). Thus, the evaluation of the partial utility ψij(∆Bij ,∆Eij)

depends (throughDi) on Wi, i.e., the cooperation choices adopted towardsi by users with lower

indices.

Proposition 1. Assuming that users cooperate in case their utility is flat with respect to this choice,

the sub-game between users admits one and only one NE,aNE = {aNE
1 , . . . aNE

n }.

Proof. The proof follows a constructive and iterative procedure. Let us consider user1, which can

not be helped by any other node:W1 = ∅, PW1
R1

= PN
R1

andD1 = PN
R1
/ (2− q1). Since the

probability error functionq1 varies with continuity, the set of allocation policies thatoptimizes (4.11)

is a singleton, therefore user1 can uniquely select its best modulation schemeMV
1 . Then user1

can compute the optimal set of users to cooperate with, i.e.,its best strategyaNE
1 , depending on the

modulation selected by each user. This can be done by calculating ∆B1j and∆E1j according to

(4.12) and evaluatingψ1j , ∀j 6= 1, ∀Mj ∈ M.

This procedure can be repeated for any other user. For a generic useri and for each modulation

schemeMi, if we know the strategies of users1, 2, . . . , i−1, we can uniquely calculateWi, MV
i ,

PWi

R1
, ∆Bij , and∆Eij, ∀j > i, ∀Mj ∈ M; from these, we obtainψij, depending on the modulation

selected by the users with worse channels. In the end, we obtain the best modulation scheme for all

users and the unique NE strategy profileaNE .

Corollary 1. The Nash Equilibrium is Pareto Efficient.

Proof. The utility of user1 is the highest possible since it is not affected by other users’ strategies

and it selects its own strategy to maximize its own utility. In the same way, the utility of user2 is the

highest possible given the strategy of user1. Moreover, if we change the strategy of user1 we make

user1 worse off, except for the case in which user1’s utility is flat in its choice to cooperate with user

2. However, in this case we have assumed that1 chooses to cooperate with2, hence, if1 changes its

strategy, the utility of2 can not increase. This procedure can be repeated for any other user.
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4.5.3 Access point strategy

Theorem 1 states that the sub-game between the users has onlyone possible outcome. Moreover,

the constructive proof provides an algorithm to calculate this outcome. The access point can predict,

for each strategyw = (wij)ij ∈ [0, 1](
n
2), the strategies of all users. Therefore, it can choose its best

strategyw∗ = (w∗
ij)ij to drive the network performance toward a desired outcome.

Assume that the network performance is quantified by a utility functionu0 : [0, 1](
n

2) → <, whose

argument is the strategy selected by node0. It can be thought as the composition of two functionsf

andg, i.e.,u0 = g ◦ f , such thatf : [0, 1](
n
2) → <n gives the utility of the users as a function of0’s

strategy andg : <n → < gives the utility of0 as a function of all users’ utilities. It is reasonable to

assume thatg is a continuous function.

Takewth
ij as the value such thatψij(∆Bij,∆Ei) = 0, which can be derived from (4.12). It

is the minimumwij such thati cooperates withj. The only interesting case is whenwth
ij exists and

wth
ij ∈ [0, 1], otherwise it is not possible to triggeri’s cooperation with respect toj without decreasing

the throughput ofj. Sinceψij are continuous, thenf is continuous in[0, 1] except inwth
ij . Indeed,

useri changes its cooperation behavior towardsj atwth
ij . However, from a practical point of view,

if wij ∈ [wth
ij , 1] the utility of both usersi and j increases. In fact, userj achieves at least the

same throughput, while decreasing its energy consumption,whereas the increase in throughput ofi

compensates the additional energy spent to cooperate withj. That is, promoting cooperation under

this scheme is always beneficial for both users involved. Forthis reason, it is reasonable to assume

thatu0 is upper semi-continuous.

Proposition 2. If u0 is upper semi-continuous then there exists at least one Stackelberg Equilibrium

(SE). Moreover, all SEs are equivalent from a network performance point of view.

Proof. The utility u0 can be maximized since the sub-game NE exists and is unique. The strategy

space of node0 is closed and bounded, andu0(·) is upper semi-continuous. An SE can be found by

combining the best strategyw∗ of node0 and the NE strategy profile of the sub-game among the users

when the strategy of node0 is w∗. There may be more than one optimalw∗, but they all achieve the

same maximum utility of node0.

Finally, for result comparison, we consider the following access point strategy

w∗
ij =







wth
ij if 0 ≤ wth

ij ≤ 1

0 otherwise.
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We chose this strategy to promote cooperation, i.e., increase network performance while keeping a

high level of fairness (fairness metrics will be defined in the following section).

Note thatwth
ij 6∈ [0, 1] means that it is impossible, with the considered scheme, to provide an

incentive for useri to cooperate withj. In this case the system functionality is independent ofw∗
ij,

and we have arbitrarily chosenw∗
ij = 0.

4.6 Performance Evaluation

Prior to comparing the3 cooperation schemes, we introduce some performance metrics.

For any vector ofn real numbers,x = (x1, . . . , xn), we define a fairness metricJ(x) over x,

called Jain index [64], as

J(x) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(4.13)

We will evaluate this index for the vectors of throughput (BR = (BR1, . . . BRn)) and utility values

(Ψ = (Ψ1, . . .Ψn)). We use superscriptsN , F , andV to relate these metrics to the no cooperation,

forced cooperation and voluntary cooperation schemes, respectively.

A scenario withn users uniformly placed within a400 meters radius from an access point has

been simulated in Matlab. We consider a time slotTpkt = 1 ms and a symbol period ofTsym = 1

µs, that is, each packet is made of1000 symbols. The number of bits per packet for a generic user

depends on the number of bits per symbol, i.e., on the modulation scheme selected by that user. We

considerM = {BPSK, QPSK, 16−QAM, 64−QAM}, that correspond to the rates represented

in Fig. 4.5.

Each user transmits with a fixed power ofPpkt = 100 mW. The time invariant channel attenuation

coefficient is given by the superposition of two effects: a power law decay with exponent equal to3

and a Rayleigh distributed coefficient. The signal to noise ratio obtained at a reference distance of

10 m considering a unit-power Rayleigh coefficient is10. We consider the initial allocation policy

P = (1/n, 1/n, . . . , 1/n).

We takeΨi(Bi, Ei) = Bi − ciEi, i.e., ψi(∆Bi,∆Ei) = ∆Bi − ci∆Ei, which satisfies (4.7)

with ψij(∆Bij,∆Eij) = ∆Bij − ci∆Eij, ∀i, j, whereci > 0 is a measure on how important the

throughput is for useri with respect to its power expenditure. We considerci =
qiNi

2Epkt
whereqi

andNi are calculated with a modulation scheme according to (4.3),i.e.,ci is equal to halfi’s energy

efficiency (rate divided by power consumption) in the non cooperative case. In this way, users having

a low non cooperative rate are more inclined to cooperate with other users, consuming their energy



50 Chapter 4. Promoting Cooperation in Wireless Relay Networks

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

SNR

R
at

e 
[k

bp
s]

Reachable Rate

 

 

BPSK Rate
QPSK Rate
16−QAM Rate
64−QAM Rate

Figure 4.5. Reachable rate varying the modulation depending on the SNR

to obtain a higher throughput, with respect to users having already a high non cooperative rate. We

obtain

wth
ij =

ciEpkt
(

qjiNj

qNj N
N
j

− 1

)

(DiNi − ciEpkt)

We first present some results for a specific topology withn = 10, which is actually the one in

Fig. 4.1. Fig. 4.6 shows the evolution of throughput over time for user10 (the one with lowest SNR),

for the3 different schemes. The dashed lines represent the average throughput of no cooperation and

forced cooperation schemes according to (4.2) and (4.5). The cumulative throughput asymptotically

converges to these average values. This convergence is quite fast, as the curves are already stable after

few iterations and become practically indistinguishable from the asymptotic value within10 seconds.

Fig. 4.7 compares the asymptotic throughput reached by eachuser. Roughly speaking, this spe-

cific topology includes some users (with indices1-3) that are able to reach a maximal throughput

of 600 kb/s already under the no cooperation scheme, by using the highest modulation (64-QAM )

without ever incurring in packet retransmission. Conversely, users7-10 have very poor channel con-

ditions (lower modulation scheme, and possibly frequent retransmissions), and users4-6 are in an

intermediate condition. Interestingly, in the forced cooperation scheme the users with the highest

indices obtain the greatest benefit. They know that users1, 2 and3 are forced to act as relays. Thus,

since they have a good channel towards at least one of these relays, they select the highest modulation
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Figure 4.6. Cumulative throughput of user10

and their packets are transmitted in two hops exploiting therelays, allowing them to reach a bit-rate

of about300 kb/s. On the contrary, the cooperating users do not obtain any improvement. Instead,

the voluntary cooperation scheme increases the throughputof cooperating users as well. Especially,

users7 and8 are not helped since none of the users with good quality finds aworthwhile incremental

advantage in doing so.

Fig. 4.8 represents the incremental utilityψ of each user and emphasizes even more the differ-

ences between the forced and voluntary cooperation schemes. For the forced cooperation case, the

utility of high index users considerably increases, thoughat the expense of low index users which have

no reward in their cooperating behavior. When cooperation is forced by node0, users7-10 signifi-

cantly increase their own throughput and at the same time cutin half the transmission power because

retransmissions are performed by users1-3, which in turn only suffer higher power expenditures. The

voluntary cooperation scheme improves this situation, since no user worsens its incremental utility

ψ. The highest index users improve their utility, even thoughby a smaller extent than with forced

cooperation, and no user is worse off than before. Indeed, this happens because cooperation is of-

fered even in the marginal case where the incremental utility is equal to0; however, setting a higher

requirement for cooperation would yield similar results, i.e., a utility value which is higher for some

users, lower for none. In this sense, the voluntary cooperation schemePareto dominatesthe no coop-

eration scheme [49]. Moreover, the figure suggests that the voluntary cooperation scheme achieves

a more fair distribution of the utility function among the users. Finally, Fig. 4.8 validates the analy-
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Figure 4.7. Asymptotic throughput of each user

sis carried out in Section 4.5. In fact, even though the incentives to cooperative users are calculated

using the approximate equations (4.10), thereal throughput gain for cooperative users is just enough

to compensate thereal additional energy consumption to relay the packets of the other users, as we

wanted.

To obtain general results, not constrained over a particular network topologies and channel real-

ization, we ran a simulation campaign over many network topologies drawn at random with a variable

number of users, and averaged the results. Fig. 4.9 represents the average throughput increase of the

whole network thanks to cooperation, for both forced and voluntary cooperation schemes. The values

are normalized to the total throughput obtained in the no cooperation scenario. Both forced and vol-

untary cooperation schemes obtain a significant gain; for50 users, they improve the total throughput

by more than25% and35%, respectively. Remarkably, voluntary cooperation performs better than

forced cooperation; this is due to the better redistribution of additional resources gained through co-

operation, which in the forced cooperation scheme are givenjust to the users with bad channel quality,

while in the voluntary cooperation scheme are distributed more evenly. It is also worth noting that

the cooperation gain increases in the number of users, whichis due to multi-user diversity, i.e., with

more users it is just more likely to find a suitable relay. However, the voluntary cooperation scheme

does better in this sense, i.e., it increases more rapidly inthe number of users, in fact it is more likely

to find a suitable relay which is also willing to cooperatively participate in the retransmissions.

Fig. 4.10 shows the Jain index related to the throughput vector, i.e., J(BR). Clearly, the no
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Figure 4.8. Incremental utilityψ of each user
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Figure 4.10. Average throughput fairness

cooperation case just reports what is the average situationfor what concerns fairness in the considered

scenario if no cooperation is applied. Apparently, the forced cooperation scheme achieves the best

value of fairness for throughput. In fact, users with lower throughput are helped by collaborative

relays which have no other choice, therefore throughput gaps are smoothed out. After an initial

decrease, the Jain index becomes even larger as the number ofusers increases. In fact, the higher

the number of users, the higher the probability of finding a suitable relay (not necessarily a willing

one, since cooperation is forced). The fairness decreases quite rapidly for the voluntary cooperation

scheme. This is due to the fact that users with good channel conditions, which already have a higher

throughput than others, are rewarded by the access point if they cooperate, which means that they

further increase their throughput. This pulls fairness even below the no cooperation case. However,

it is worth noting that, although fairness is decreased, throughput is never decreased for anybody.

Moreover, evaluating fairness over throughput just gives avery partial picture. Even though users with

good channel increase their throughput, they also have to pay this gain in terms of power consumption,

since they retransmit packets on behalf of bad users (which in turn can save energy); even their reward

in terms of increased scheduling probabilities also implies more transmissions and therefore higher

energy consumption.

Fig. 4.11 shows the Jain index related to the utility vector,i.e., J(Ψ). The situation is inverted

with respect to the preceding case. As the number of users increases, the fairness rapidly decreases

for the forced cooperation scheme. This is due to the fact that a small subset of users, i.e., those
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Figure 4.11. Average utility fairness

having a very good channel quality and able to act as relays for a large area, are more and more

forced to cooperatively relay packets. This pulls their utility much more below the utility of users that

are exploiting them as relays, decreasing the total fairness of the network to values even below the

no cooperation case. On the other hand, in the voluntary cooperation scheme users acting as relays

do not experience a decrease in their utility while helped users can increase their own utility, which

results in smoother utility gaps. Note that, if the utility fairness is considered as the social welfare

metric, Fig. 4.11 gives a representation of the Price of Anarchy, defined as the ratio between the

overall system welfare in the worst Nash equilibrium and in the best Pareto efficient case. In fact, the

highest value of the utility fairness is1, obtained when the users’ utilities are equal, while the worst

Nash equilibrium coincides with the unique equilibrium of the game under consideration.

To sum up, the comparison between the three schemes shows that voluntary cooperation is able

to significantly improve the network performance over the case without cooperation. In all the com-

parisons, the forced cooperation scheme is to be regarded asa theoretical upper bound, as it implies a

centralized scheduling determined a priori with full system knowledge, to which all the users adhere.

Conversely, the voluntary cooperation scheme may be applied dynamically (based on transmission

outcomes) and in a distributed manner, since each user decides freely whether to cooperate or not.

The goal of the coordinator is just to set the system in an NE, for which the exchange of information

required is rather limited and the convergence is pretty fast. Note also that the forced cooperation

scheme does not operate in a stable point, i.e., at a NE. Thus,with the same system conditions of
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rational decision and distributed action the forced cooperation scheme will become identical to the

no cooperation scheme. On the contrary, the voluntary cooperation scheme is robust toward strategic

and self-interested users. Moreover, the performance of the voluntary cooperation scheme can be re-

garded as an improvement not only over the basic case withoutcooperation, but even over the forced

cooperation scheme, especially since it achieves a higher total throughput and a more fair overall

utility distribution.

4.7 Discussions and Future Works

The results obtained in this chapter have been derived considering a simplified model of a wireless

communication network. In this section we discuss possiblerelaxations of some hypotheses we have

made.

First, we consider the time invariant channels and the perfect channel state knowledge hypothe-

ses, that allow to calculate the performance of each user andof the system by means of an analysis

based on renewal process theory. If channels are time varying, the asymptotic performance is not

longer equivalent to the statistical mean. However, for slowly varying channels, there is enough time

for the physical quantities under investigation (i.e., throughput and energy consumption) to approach

the statistical means, as Fig. 4.6 confirms. Hence, our formulation can be applied to the slowly vary-

ing channels scenario as well, by considering adaptive estimates. This work can also be extended to

highly varying channels and imperfect channel state knowledge, assuming that the entities involved

aim at maximizing the statistical mean of their performance, which might not coincide with their

asymptotic performance. In this case, the statistics of thechannel evolution and of the channel esti-

mates are needed.

As frequently considered in many game theoretic studies, weassumed thateveryuser is self-

interested and strategic. In a network there might be some users that act individually or cooperatively

independently of their personal advantage. Our framework and results can be easily extended assum-

ing that a mix of no cooperation and forced cooperation nodesare present in the network of voluntary

cooperation nodes. The former might receive the cooperation of the other users, but never offer their

cooperation. Thus, the indices of such nodes do not belong tosetWi and do not appear in the sum-

mation and multiplication of Eq. (4.10). The latter always offer their cooperation, hence, there is no

need to give them incentives by increasing their access opportunities, i.e., their cooperation weights

can be set to0. Thus, the indices of such nodes belong to setWi and appear in the summation and

multiplication of Eq. (4.10). It is straightforward to demonstrate that Theorems 1 and 2 and Corollary
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1 are still valid, excluding the no cooperation and forced cooperation nodes from the sub-game (they

do not play a game since their actions are fixed).

Another aspect which may be worth looking at is the evaluation of the overhead introduced by the

forced and voluntary cooperation schemes with respect to the no cooperation scheme. This point is

key to translate the theoretical framework proposed in thischapter into an effective and realistic MAC

protocol. However, it can be shown through simple computations that such an additional overhead is

minimal and can be neglected. We do not consider the overheadfor the estimation and communication

of the channel states (which is needed in every scheme) and the computation of the cooperation

weights (which is needed for the voluntary cooperation scheme), as these operations are performed

sparsely since channels are slowly varying. Instead, we investigate the overhead to schedule different

users, to identify eligible relays and to select one of them.

For the no cooperation scheme, at the beginning of each time slot, we assume that node0 broad-

casts a short packet indicating the user scheduled in that slot. Such a user, after a short time interval7,

sends the data packet. Finally, after another short time interval, node0 sends an ACK to the user if it

has received the packet correctly.

We modify such a simple MAC protocol to support the forced cooperation and voluntary cooper-

ation schemes. In this case, during the scheduling phase, node0 has to indicate not only the packet

to transmit, but also who has to perform such a transmission,in case a relay service is required.

Moreover, the user that transmits the packet adds, at the endof the packet data, a series of bits, one

for each node, to communicate to node0 the users for which it is available to act as a relay. This

MAC protocol is not suitable if there are some users that are scheduled rarely, as in this case node0

might not be updated about the relay opportunities offered by such users. In this case another option

should be considered to inform node0 about relay opportunities, e.g., a short contention windowcan

be added after the ACK.

The additional overhead introduced in the considered MAC protocol can be easily quantified.

Consider a time slotTpkt = 1 ms, a symbol period ofTsym = 1 µs and a network of50 users. Hence,

the additional number of bits needed in the scheduling packet is equal to6while the additional number

of bits needed in the data packet is equal to50. Assuming, in the worst case, aBPSK modulation,

the additional overhead is equal to56 µs over1 ms, i.e., about5%, that is very low compared to the

throughput gain of the forced cooperation and voluntary cooperation scheme that are equal to25%

and35% in such a scenario (see Fig. 4.9).

7In the802.11 g/n/ac standards the SIFS (short inter-frame space), defined as thesum of the RX/TX turnaround time,

MAC processing delay and total receive delay from the antenna, is equal to16µs
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Finally, in this chapter we have not considered the cost incurred by every node to listen and store

the transmission of all the other nodes. Even though the power spent in reception is typically lower

than the transmission power, such an effect might become predominant for a high number of users.

Moreover, in the worst case each user might have to store up ton− 1 additional packets, requiring a

large buffer. These problems might be counteracted considering a simplified version of the proposed

schemes, where we limit, for each user, the number of users toask for a relay service and to cooperate

with. Such a simplified version is motivated by the high gain that the voluntary cooperation scheme

is able to obtain for a high number of users, as shown in Fig. 4.9. Such a potential gain might not

be completely exploited if we limit the relay opportunities, but at the same time the scheme becomes

more practical as the number of users increases. We will takeinto consideration the study of such a

scheme in our future work.

4.8 Conclusions

We tackled the problem of promoting cooperative relaying ina wireless network with coordinated

time-division access, by giving the following contributions. First, we outlined mathematical models,

based on Markov chains and renewal theory, to quantify the achievable throughput. Moreover, we

modeled the cooperation option of the single users through game theory and we proposed an incentive

scheme for voluntary cooperation that gives transmission resources to cooperating users when they

retransmit a packet on behalf of other users. We modeled thisaccess scheme as a Stackelberg game,

where a network unit plays the role of access coordinator. Wepresented a constructive approach to

determine the NE of the sub-game, proven to be unique. We alsoproved the existence of a Stackelberg

equilibrium, which results in the best incentive strategy that the coordinator can adopt.

Finally, we numerically compared the three schemes of no cooperation, forced cooperation, and

voluntary cooperation. A careful analysis of these resultsjustifies the voluntary cooperation scheme

as a valid solution to increase the network performance in a viable manner from an implementation

standpoint.



Chapter 5
Inter-Network Cooperation exploiting

Game Theory and Bayesian Networks

In this chapter1 we analyze a scenario where two wireless ad hoc networks are willing to share

some of their nodes, acting as relays, in order to gain benefits in terms of lower packet delivery delay

and reduced loss probability. Bayesian Network analysis isexploited to compute the correlation

between local parameters and overall performance, whereasthe selection of the nodes to share is

made by means of a game theoretic approach. Our results are then validated through use of a system

level simulator, which shows that an accurate selection of the shared nodes can significantly increase

the performance gain with respect to a random selection scheme.

5.1 Introduction

We consider two wireless multi–hop networks deployed in thesame region, but operated by dif-

ferent entities, that are willing to share some of their nodes, acting as relays for the other network.

In such a scenario, cooperation can leverage the benefits of multi–path diversity, since more paths

connecting two nodes will be available, obtaining a considerable gain in the efficiency of shared re-

sources. Sharing the whole set of nodes provides the highestnumber of paths available for each of

1The material presented in this chapter has been published in:

[C5] G. Quer, F. Librino,L. Canzian, L. Badia, and M. Zorzi, “Using Game Theory and Bayesian Networks to Optimize

Cooperation in Ad Hoc Wireless Networks,” inProc. IEEE ICC, Ottawa, Canada, Jun. 10-15, 2012

[J2] G. Quer, F. Librino,L. Canzian, L. Badia, and M. Zorzi, “Inter-Network Cooperation exploiting Game Theory and

Bayesian Networks,”Submitted to IEEE Trans. Commun.
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the two networks. However, this comes at the cost of increased traffic that should be handled by some

of the shared nodes. In a realistic environment, an operatormay not be willing to share too many

nodes to improve the traffic of another operator, e.g., for security or privacy reasons. Therefore, both

operators may decide to share only a limited number of nodes.If this is the case, an efficient choice

of the shared nodes, according to certain criteria, is needed. Indeed, some nodes deployed in crucial

positions may be particularly suited for helping the other network; on the contrary, nodes placed close

to the network border are likely to be less useful or even useless. Furthermore, sharing a node implies

that a higher amount of traffic will be routed through it, which results in a higher latency for the traffic

of its own network.

We assume that each node of each network is sending packets toevery other node in the same

network. In the case of no cooperation, the two coexisting networks perform their operations sepa-

rately: each network only uses its own resources to deliver the data packets generated by its nodes.

Clearly, since they are assumed to share the same spectrum resources, cross–network interference

may limit the overall performance. For such a scenario, we select a set of local parameters: some

of them are directly observable (i.e., we can assume that each network knows their values), and de-

pend only on the topology of the network (topological parameters), like the number of neighbors at a

given node. Some other parameters are not observable and depend on the link characteristics and on

the traffic load (performance parameters). We exploit Bayesian network analysis to estimate the joint

probability distribution of this set of parameters, and to predict, given the evaluation of the observable

parameters, the values of the other parameters that will be used to calculate a cost metric. Then we

use this information to model the interaction between the two networks through game theory and to

select the best nodes to be used as relays, assuming that bothnetworks are interested in optimizing

their performance.

5.1.1 Related work

In multi–hop wireless networks, the use of relays can be seenas a form of cooperation, since

they create new multi–hop routes. Several protocols have been designed to balance the enhanced link

reliability and the increased number of transmissions [74–77]. Coded cooperation is developed in [74]

and [76], whereas an implementation based on hybrid automatic repeat request is introduced in [77].

The use of relays shows how cooperation can be also exploitedfor routing purposes, as investigated

in [78–80]. The choice of the best relay, based on the channelconditions, is discussed in [78], whereas

several relays, chosen according to topological criteria,simultaneously cooperate in forwarding a
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packet in the scheme described in [79]. Finally, a cross-layer approach, where cooperation is exploited

in ad hoc networks together with the opportunistic routing paradigm, has been shown in [80].

Although a wide literature is available about cooperation among terminals of the same network,

fewer works have instead been focused on cooperation between different networks. In most of them,

the idea behind a cooperative behavior of two coexisting networks is to share the spectrum resources.

Such a paradigm, known as spectrum sharing, is exploited by primary/secondary cognitive radio

networks: an unlicensed network is allowed to exploit the same spectrum assigned to a licensed one,

provided that a given QoS is guaranteed to the latter. The spectrum can be shared through strategies

exploiting different levels of awareness and coordination, whose performance has been analyzed and

discussed in [81] and [82]. In [83], the authors investigated the case where two cellular networks share

their own spectrum resources and cooperate in order to minimize the mutual interference, observing

a gain inversely proportional to the cardinality of the networks. Also infrastructure sharing has been

considered as a promising cooperation technique for cellular networks; in [84] the sharing of some

parts of the network structure is described from a business and regulatory perspective.

To enable the use of cooperation, it is necessary to infer thenetwork gain and cost in advance,

thus choosing whether or not it is worth to perform cooperation. Other choices, which require some

knowledge about the network, must be made, like which nodes to select as relays. An effective tool

to exploit the available information and make a real-time estimation of the expected performance is

given by probabilistic graphical models [85]. The use of this probabilistic tool is very promising

for wireless network optimization, and it has been recentlyexploited, e.g., in [86] where a Bayesian

Network approach is adopted for predicting the occurrence of congestion in a multi-hop wireless

network. The use of Bayesian prediction in a game theoretic framework to allow cooperation is

discussed in [87].

In spite of the considerable gain allowed by cooperative transmission, modeling the involved

agents as selfish decision-makers usually leads to inefficient non-cooperative outcomes. In this chap-

ter we formulate the problem as a repeated game, in which agents must account for the consequences

of their current actions on the evolution of the game, and cooperation is obtained by punishing de-

viating users in subsequent stages. Repeated interactionshave already been applied to the study of

cooperative relaying. A packet forwarding mechanism balancing the relaying opportunities that each

node gives to and receives from other nodes is proposed in [17]. A virtual currency and a mech-

anism to charge/reward a player that asks/provides a relay service are introduced in [18] and [19].

Finally, [20] considers a reputation mechanism, where a user gains reputation acting as relay and can

choose not to serve users having low reputation.
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Figure 5.1. Logical structure of the proposed approach.

5.1.2 Problem statement and outline of the proposed approach

In the scenario proposed in this chapter, two multi–hop networks share the same wireless re-

sources and compete to access the channel. Each network can share with the other network a limited

number of nodes for packet relaying, with the goal to minimize a given cost metric.

The logical structure of the proposed approach is detailed in Fig. 5.1. During a learning phase,

we observe some localPerformance Parameters(PP) of the two networks in many different train-

ing topologies, each of them characterized by some localTopological Parameters(TP). We use the

observed data to build the probabilistic relationships among all the parameters, summarized in a

Bayesian Network (BN). Then we consider the scenario of interest, we observe the TP in such a

scenario, and we use the BN to infer the PP. Through our game theoretic approach we promote the

cooperation among networks and we choose the best nodes to beshared in order to minimize the

chosen cost metric that is obtained from the PP. We measure through simulation the performance

improvement due to cooperation. Note that we do not need to repeat the learning phase every time

the topology changes, since the BN learned from the observation of the training topologies can be

reused for every topology of interest. This makes our approach suitable to be implemented also in the
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presence of a fast changing topology, since it allows to choose the best nodes to be shared based only

on observable TP, without the need for an initial setup.

In brief, the main contributions of this chapter are:

• the use of BN theory to learn the probabilistic relationships among a set of parameters in the

network, in order to infer the network performance from the observable topological parameters;

• the definition of the cooperation problem between two networks sharing the same spectrum

resources as a strategic game;

• the implementation of the BN predictor and the strategic game in an actual wireless network

simulator that evaluates the network behavior at the physical, MAC and network layers;

• a performance comparison showing the effectiveness of ouralgorithm, which achieves the same

performance of a fully cooperative approach by sharing onlyfew selected nodes.

The rest of the chapter is divided as follows. In Section 5.2 we introduce the BN approach. In

Section 5.3 we describe our network scenario. In Section 5.4we define three performance metrics and

we detail how to compute them. In Section 5.5 we describe the considered game theoretic approach.

In Section 5.6 we present the simulation setup and show the main results. Section 5.7 concludes the

chapter.

5.2 Bayesian Networks Preliminaries

A Bayesian Network is a probabilistic graphical model [85] describing conditional independence

relations among a set ofM random variables through a Directed Acyclic Graph (DAG), which is

composed of vertices and directed edges. A vertexi in the graph represents a random variablexi,

while a directed edge from vertexi to vertexj represents a direct probabilistic relation between the

corresponding variablesxi andxj. In this case, we say thati is a parent ofj, and we writexi ∈ pa(xj).

The absence of a direct edge between two variables implies that the variables are independent, given

certain conditions on the other variables.

Learning the DAG is equivalent to calculating an approximate structure of the joint probability

distribution amongM variables. This structure is used to calculate the parameters of such joint

probability distribution with a limited number of samples,see [85] for further details. The technique

to learn the approximate joint probability distribution through a BN is divided into two phases, the

structure learning and the parameter learning phases.
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5.2.1 Structure learning

This is a procedure to define the DAG that represents the qualitative relationships between the

random variables, i.e., the presence of a direct connectionbetween a couple of variables, not condi-

tioned by other variables. We follow a score based method [88], i.e., we do not assume any a priori

knowledge on the data, but we just analyze the realizations of the variables and we score each possible

DAG with the Bayesian Information Criterion (BIC) [89] thatwe have chosen as a score function.

The BIC is easy to compute and is based on the maximum likelihood criterion, i.e., how well the

data suits a given structure, and penalizes DAGs with a higher number of edges. If each variable

is distributed according to a discrete probability distribution, i.e., it has a finite number of possible

outcomes, then the BIC becomes very simple to compute, involving only summations for all possible

outcomes of the variables and all possible outcomes of the parents of each variable, see [88]. As an

example, suppose that we apply the BIC score based method to alimited number of realizations of

the variablesxh, xi andxj , and we obtain a DAG such thath is a parent ofi andi is a parent ofj.

Using this approximation, the joint probability of the corresponding variables can be written as

P (xh, xi, xj) = P (xh)P (xi|xh)P (xj |xi)

that is simpler than a general joint probability among threevariables.

5.2.2 Parameter learning

This phase consists in estimating the parameters of the simplified joint distribution according to

the probability structure defined by the DAG chosen in the structure learning phase. To obtain the

joint distribution, it suffices to estimate the probabilityof each variable conditioned by the variables

that correspond to its parent nodes in the graph. Coherentlywith the choice of the BIC as a scoring

function, we use the maximum likelihood estimation technique also to determine all the conditional

probabilities for each variable considered.

5.3 System Model

In this section, we describe the network scenario under investigation from the physical up to the

routing layer. In our scenario, two ad hoc wireless networkscoexist and share the common spectrum

resource. Each network consists ofn terminals randomly deployed, and each node is a source of traf-

fic, which generates packets according to a Poisson process with intensityλ packets/s/node. The end
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destination is chosen at random, for each packet, among the other nodes in the network. Furthermore,

time is divided in slots and slot synchronization is assumedacross the whole network.

5.3.1 Physical layer

At the physical layer Code Division Multiple Access (CDMA) with fixed spreading factor is

employed to separate simultaneous transmissions, since both networks share the same spectrum re-

sources, and a training sequence for channel estimation is added at the beginning of each transmission.

The receiving node,D(0), uses a simple iterative interference cancellation schemeto retrieve the de-

sired packet whenM simultaneous communications, namelyT (1), . . . , T (M), are received. We define

the Signal to Interference plus Noise Ratio (SINR) atD(0) for the incoming transmissionT (i) from

nodeD(i) as

Γ(i) =
SfP

(i)

N0 +
∑

j 6=i P
(j)

whereN0 is the noise power andSf is the spreading factor.P (j) indicates the incoming power due

to T (j), i.e., for allj = 1, . . . ,M :

P (j) =
PT |hD(j),D(0) |2d−α

j

χ

wherePT is the transmission power, which is considered to be the samefor all the nodes in the

network,χ is a fixed path-loss term,dj is the distance between the receiving node and the source of

T (j), α is the path loss exponent, andhD(j),D(0) is a complex zero mean and unit variance Gaussian

random variable, which represents the effect of multi-pathfading. More precisely, in our scenario,

we consider a time correlated block fading. Therefore, for the channel between nodesD(j) andD(0),

the multi-path fading coefficient in time slott is

hD(j),D(0)(t) = ρ hD(j),D(0)(t− 1) +
√

1− ρ2 ξ

whereρ is the time-correlation factor andξ is an independent complex Gaussian random variable

with zero mean and unit variance. The iterative interference cancellation scheme works as follows:

• the destination nodeD(0) sorts theM incoming transmissions according to the received SINR,

in decreasing order (for simplicity, assumeΓ(1) ≥ · · · ≥ Γ(M));

• starting from transmissionT (1),D(0) tries to decode the corresponding packet, with a decoding

probability that is a function ofΓ(1) and of the modulation scheme;

• if the packet is correctly received, its contribution is subtracted from the total incoming signal;
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• D(0) attempts to decode the transmission with the next highest SINR, T (2), and goes on until

the transmission being decoded is the packet of interest.

5.3.2 MAC layer

At the MAC layer, we implement a simple transmission protocol based on a Request-To-Send/Clear-

To-Send handshake. Every time nodeD(i) wants to send a packet to nodeD(j), it checks the desti-

nation availability by sending an Request-To-Send packet;if D(j) is not busy, it replies with a Clear-

To-Send packet so thatD(i) can start transmitting the packet. Correct reception is acknowledged by

means of an ACK packet. In the case of decoding failure, aftera random backoff time, nodeD(i)

schedules a new transmission attempt, unless the maximum number of retransmissionsMtx has been

reached, in which case it discards the packet. Signaling packets are very short, i.e., they are transmit-

ted within a single time slot, and are protected by a simple repetition code of rate1/2. Instead, data

packets may span several time slots, so error detection coding is used to verify their correct reception,

i.e., redundancy bits are added at the end of each packet.

5.3.3 Network layer

The source and destination nodes are not necessarily withincoverage range of each other, so we

consider multi-hop transmissions. Two nodes can communicate directly if their distance is less than

or equal to the transmission ranger. To transmit to destinations that are not within coverage, nodes

use static routing tables, which are built using Optimized Link State Routing (OLSR) [?]. Each time

a node generates a new packet, or receives a packet to be forwarded, it puts it in the node queue, with

first-in-first-out policy. The buffer sizeb is fixed and equal for all nodes. If a new packet arrives when

the buffer is full, it is discarded.

5.4 Definition and Estimation of the Network Performance

In this section, we define three different cost metrics that can be used as performance indicators

by the two networks and we show how to compute such cost metrics starting from link parameters,

which in turn can be decomposed in local PP that can be estimated, through a Bayesian approach,

from observable TP. In Section 5.5 the cost metrics are used to build a game theoretic model for a

careful selection of the sharing nodes and to provide an incentive for both networks to cooperate.
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5.4.1 Cost metrics

We consider three different cost metrics because we do not focus on a particular network appli-

cation, thus, the three cost metrics can be thought as the performance indicators of three different

scenarios. Moreover, we want to remark that the approach we use is transparent to the considered

performance metric, and different metrics can be easily accommodated.

Given the path fromD(i) to D(j), we first define the delivery delayζ(i,j) as the average end-

to-end delay of a packet sent along the path, given that the packet is received, and the packet loss

probability p(i,j)pl as the probability that a packet is lost along the path. Notice that no end-to-end

packet retransmission mechanism is implemented in our network. These link parameters are taken

into account by each of the three cost metrics. In fact, ignoring lost packets (i.e., computing the delay

statistics only on correctly delivered packets) may lead toan optimistic evaluation of the network

performance under heavy traffic, where few packets actuallyreach the destination. In this case, a

high-loss path might end up being considered better than a more reliable path with a slightly higher

delivery delay. The other extreme, i.e., defining the delay contribution of a lost packet as infinite,

makes the delay evaluation meaningless. Clearly, neither option is desirable in our case. In the

following, we describe the three cost metrics considered, that give a finite bias to the average delay in

case of a packet loss.

Weighted delivery delay: PWD

In this metric, when a packet is lost in the path fromD(i) to D(j), we increase the delay of the

following packet in the same path by the time to generate another packet routed on that path2. This

additional delay is given byτ = (n− 1)/λ, i.e., the inverse of the per-path average traffic intensity3.

Accordingly, we recursively define the averageweighted delivery delayof a packet sent via multi-hop

transmission by nodeD(i) to nodeD(j) as:

PWD(i, j) =
(

1− p
(i,j)
pl

)

ζ(i,j) + p
(i,j)
pl

(

τ + P
(i,j)
WD

)

In this calculation, the channel and interference conditions, and thus the loss probability, are assumed

to be independent for different packets. This is due to the fact that the time between two subsequent

2Equivalently, we assign to lost packets a delay contribution equal to the interarrival time and to received packets the

actual delay incurred; then we divide the sum of all contributions by the number of correctly received packets only.
3Each packet generated atD(i) has a randomly chosen destination among the remaining nodesof the network, so that

the per-node trafficλ needs to be divided by the number of possible destinations,n − 1. Notice that it would be easy to

extend our model considering different traffic intensitiesfor different paths, however, this would lead to a more cumbersome

notation without adding any relevant aspect to the final results.
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packet transmissions over the same path is deemed to be long enough. From (5.1) we obtain:

P
(i,j)
WD = τ

p
(i,j)
pl

1− p
(i,j)
pl

+ ζ(i,j)

Lost or not in-time packet rate: PIT

In many applications, the packets are relevant if they are delivered within a given maximum delay,

dmax. If a packet successfully reaches the destination after a delay longer thandmax, it is considered

obsolete and discarded. In this scenario, to calculate a cost metric we must estimate the probability

p̂
(i,j)
IT of in-time delivery of a packet in the path fromD(i) toD(j), given that the packet is correctly

received. ConsideringK successful transmissions, with packet delivery delayζ
(i,j)
k , k = 1, . . . ,K,

we can estimate

p̂
(i,j)
IT =

K∑

k=1

1(ζ(i,j)k ≤ dmax

)

K

where1(·) is the indicator function. Thus, the in-time packet arrivalrate is

λIT =
(

1− p
(i,j)
pl

)

p̂
(i,j)
IT

λ

n− 1

and the lost or not in-time packet rate can be written as:

P
(i,j)
IT =

(

p
(i,j)
pl +

(

1− p
(i,j)
pl

)

(1− p̂
(i,j)
IT )

) λ

n− 1

Information obsolescence: PIO

In a monitoring application, we assume that each node is tracking a specific signal and we are inter-

ested in calculating the average time interval since the last correctly received packet was generated,

i.e., the average obsolescence of the information from nodeD(i) at the receiving nodeD(j). We

recursively define it as:

P
(i,j)
IO =

(

1− p
(i,j)
pl

)(

ζ(i,j) +
τ

2

)

+ p
(i,j)
pl

(

τ + P
(i,j)
IO

)

where the two terms account for the obsolescence of the information in case of correctly received and

lost packets, respectively. In the case of a packet correctly received, we consider that the obsolescence

of the last correctly received packet linearly varies fromζ(i,j) at the moment in which the packet is

received, toζ(i,j) + τ , immediately before the next packet is received. Thus, the average information

obsolescence is given byζ(i,j) + τ/2. In the case of a packet loss, an additional time intervalτ is
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added to the information obsolescence every time a packet islost.4 Similarly to (5.1), we can write:

P
(i,j)
IO = τ

p
(i,j)
pl

1− p
(i,j)
pl

+ ζ(i,j) +
τ

2
(5.1)

Notice that the expressions ofP (i,j)
WD andP (i,j)

IO are similar, however, we believe it is worth to describe

both metrics because they can be applied in different scenarios. Nevertheless, in Section 5.6.3, we

discuss only the results obtained consideringP (i,j)
WD , since withP (i,j)

IO we would obtain the same

performance gains.

We define the cost metric of the whole network,P , as the average of a cost metric (chosen among

PWD,PIT andPIO) over all the couples of nodes belonging to the network. The aim of each network

is to (selfishly) adopt a cooperation action that minimizes its cost metricP , this issue is addressed in

Section 5.5. In the following subsections, we propose a method to decomposeζ(i,j) andp(i,j)pl , needed

for the computation ofP, into local PP, and to estimate the PP from TP which can be easily observed.

5.4.2 Computation ofζ (i,j) and p
(i,j)
pl

The delivery delayζ(i,j) is determined by the number of retransmissions in each link on the path.

Indeed, for multi-hop routes, a packet has to wait at each relay node until all the packets ahead in

the queue have been sent. The loss of a packet can be caused either by an excessive number of

retransmissions, which lead to a packet drop, or by a buffer overflow, i.e., the packet is discarded

if the next relay has a full queue. Thus, both the delivery delay ζ(i,j) and the loss probabilityp(i,j)pl

depend on the channel and interference conditions in each link of the path, that in turn depend on the

nodes that the routing protocol selects as relays.

In a static network, it is possible to estimateζ(i,j) and p(i,j)pl during a training period, which

on the other hand is impractical if the network is dynamic (mobile nodes or time-varying traffic

statistics). We propose a different way of estimating the delay and the loss probability, based only on

instantaneous topological and routing information. Sincea packet sent over a multi-hop path has to

traverse a number of nodes before reaching the destination,we decompose the overall path delivery

delay and the overall path loss probability into contributions given by the various traversed nodes,

and we assume that such contributions are independent. Moreprecisely, the overall delivery delay

is given by the sum of the average delays required to traverseevery single node (time in queue plus

transmission time), whereas the overall loss probability is obtained from the loss probabilities at every

4Notice that in our network scenario the packets are receivedat the destination node in the same order they are trans-

mitted.
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node (probability of too many transmission failures and probability of buffer overflow). IfR(i,j) is

the set of nodes belonging to the path betweenD(i) andD(j) (excludingD(i) andD(j)), we have:

ζ(i,j) = ζ(i) +
∑

h∈R(i,j)

ζ(h)

whereζ(h) is the average time between the arrival of a packet at nodeD(h) and its reception at the

next hop. This delay depends on the next relay; indeed, whilethe time needed for traversing the queue

is the same for all packets, the time required for a successful transmission depends on the channel

condition, and hence on the next hop chosen. We considerζ(h) as averaged over all the packets sent

by nodeD(h) to the next-hop relays.

The packet loss in the multi-hop path is calculated in a similar way, i.e.,

p
(i,j)
pl = 1− (1− p

(i)
tf )(1− p

(j)
qo )

∏

h∈R(i,j)

(1− p
(h)
tf )(1− p(h)qo )

wherep(h)tf is the probability that a transmission from nodeh to the next hop fails because the maxi-

mum number of retransmissions is reached, andp
(h)
qo is the probability that a packet correctly received

at nodeD(h) is discarded due to buffer overflow. Furthermore, we notice that p(h)qo depends on the

queue of the receiving nodeD(h), while p(h)tf depends also on which node is used as next hop. For

this reason, similarly toζ(h), we consider a value averaged over all the neighbors ofD(h).5

The parametersζ(i), p(i)tf , andp(i)qo are the PP we need to estimate to compute the cost metricP of

the whole network.

5.4.3 A Bayesian network approach to infer PP from TP

We want to use some TP, that can be easily observed at each nodeD(i), to estimate the PPζ(i),

p
(i)
tf , andp(i)qo . We decide to consider the number of neighborsN (i) and the number of flowsF (i),

that can be easily calculated from the routing table. The BN approach can be summarized in the

following three steps: (1) we measure TP and PP for each node in simulations run over several

training topologies, as a function of the traffic loadλ; (2) we build a DAG with nodesN , F , ζ, ptf ,

andpqo, describing qualitatively the probabilistic relationships among them (see Subsection 5.2.1);

and (3) we estimate the joint distribution according to the probability structure defined by the DAG

(see Subsection 5.2.2).

5The underlying assumption is that the probabilitiesp(h)qo and p(h)tf , with h ∈ R(i,j), are all independent. This is

a reasonable assumption since there are multiple flows that contribute to the queue length in each node, and the fading

considered is spatially uncorrelated.
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Figure 5.2. Bayesian Network showing the probabilistic relationshipsamong the5 parameters of interest:

ζ, pt, pq F , andN .

We remark that this procedure is different from using a training period to directly derive the

parameters in the scenario of interest. In fact, in this casea training period would be needed every

time the topology changes, so as to evaluate their value for each specific node or path. On the contrary,

with our procedure we can estimate the general joint probability distribution among these parameters,

that does not depend on the specific topology.

The DAG results the same for all values ofλ, and is represented in Fig. 5.2, while quantitatively

the probabilistic relationships change withλ. Note thatN does not influence, to a first approximation,

the values of the three PP, once the value ofF is observed. In other words, once we calculate from

the routing table the value ofF , we can estimate the PPζ, pt, andpq, and from these estimated

parameters we can calculate also the overall cost for the network,P .
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5.5 Game Theoretic Approach

In spite of the social gain allowed by cooperation, each network has to individually decide if it

is beneficial for it to cooperate, and possibly to accuratelyselect the set of nodes to share. To do

this, each network can estimate, through the framework introduced in Section 5.4, the performance

obtainable for each cooperation possibility, andplay a gamewith the other network.

For the time being we model the interaction of the two networks as astatic game with complete

information. We label the nodes of the networks from1 to 2n, where the nodes in the setsS1 =

{1, ..., n} andS2 = {n + 1, ..., 2n} belong to network1 and2, respectively. We formally define

the gameΓ = (N,A1, A2, U1, A2), in which the players are the two networks,N = {1, 2}, and the

actionsa1 ∈ A1 anda2 ∈ A2 represent the set of nodes network1 and2 want to share. In general,

an operator may not be willing to share too many nodes or some important nodes (e.g., for security

or privacy reasons), thus the action setsA1 andA2 are a subset of the power set ofSk, Ak ⊆ 2Sk ,

k = 1, 2. The utility Uk : A1 × A2 → < can be any decreasing function ofPk(a1, a2), k = 1, 2,

which denotes the cost metric referred to networkk given the shared nodesa1 anda2. Givena1 and

a2 the routing tables calculated via OLSR change accordingly,the number of flows for each node

can be computed,Pk(a1, a2) can be estimated, and finally the utilityUk(a1, a2) can be obtained. In

particular,Uk(∅, ∅) is the utility of networkk when no nodes are shared.

We say that an actionak is non trivial is the shared nodes are exploited by the other network to

obtain more efficient paths. Except for theno cooperation actionak = ∅, we consider only non trivial

actions. In fact, a trivial action is perfectly equivalent to the no cooperation action∅.

Proposition 3. ak = ∅ is a strictly dominant action of the gameΓ, for each networkk = 1, 2.

Proof. Given the strategy of the other network, networkk strictly prefers not to share any node. In

fact, shared nodes strictly increase the traffic handled by the network, which in turns strictly increases

the cost metric and strictly decreases the utility, with respect to the no cooperation case.

Corollary 2. The unique NE of the gameΓ is aNE
1 = aNE

2 = ∅.

In the static game formulation it is not possible to provide incentives for the networks to cooperate

because, whatever the other network decides to do, a networknever wants to manage additional flows

of packets belonging to the other network. However, we arguethat the static formulation is not

a proper model for the scenario we have in mind, in which the interaction among the networks is

sustained over the time. In this case, arepeated gameformulation seems more reasonable.
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5.5.1 Repeated game

We define the infinitely repeated gameΓR in which the two networks play the stage gameΓ

infinitely, obtaining the average utility

UR
k = (1− δ) lim

T→+∞

T∑

t=1

δt−1U
(t)
k

whereU (t)
k is the utility obtain by networki at staget andδ ∈ (0, 1) is the discount factor.

We want to design acooperation strategy profiles∗ = (s∗1, s
∗
2) in which both network have the

incentive to cooperate. The key idea is the adoption of atrigger strategyin which the two networks

adopt by default thecooperation action profilea∗ = (a∗1, a
∗
2) and, as soon as one of the two networks

deviates from this action profile, the other networkpunishesit by adopting the no cooperation action

∅ forever.6 An issue related to this approach is the selection of an appropriatea∗. In fact, the two

networks have in general different preferences: each of them would like to choose ana∗ that allows

it to obtain the highest gain, that does not usually coincidewith thea∗ in which the other network

obtains the highest gain. Inspired by the Nash bargaining solution [49], we select a cooperation action

profilea∗ as a solution of the following problem

argmax
a∈A

(

U1(a)− U
(
1∅, ∅)

)

(U2(a)− U2(∅, ∅))

subject to:

Uk(a)− Uk(∅, ∅) > 0, k = 1, 2 (5.2)

This corresponds to the solution that an impartial arbitrator would recommend to increase in a fair

way the utilities of both networks. We obtain the following results.

Proposition 4. If (5.2) has no solution, there exist no cooperation action profile a∗ 6= (∅, ∅) and

trigger strategys∗ such thats∗ is a Nash equilibrium ofΓR.

Proof. Let assume (5.2) has no solution and there existsa∗ 6= (∅, ∅) and a trigger strategys∗ such that

s∗ is a NE ofΓR. Since (5.2) has no solution, there exist a networkk such thatUk(a
∗)−Uk(∅, ∅) ≤ 0.

Without loosing generality we assume thatk = 1. If both networks adopt the trigger strategy the

6More complex strategies in which the networks synchronously change, from stage to stage, the cooperative action

profile are possible. Though these strategies may achieve better theoretical results, we argue that they are very complex

and computationally expensive to implement in practice, since they require frequently updates of the routing tables and

introduce the problem of readdressing packets that were transmitted along paths which do not exists anymore. Thus, we

prefer to consider more simple strategies.
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average utility for network1 is UR
1 (s∗1, s

∗
2) = U1(a

∗). If network 2 adopts the trigger strategy and

network1 always adopts the no cooperation action∅ the average utility for network1 is

UR
1 (∅, s∗2) = (1− δ)U1(∅, a

∗
2) + (1− δ) lim

T→+∞

T∑

t=2

δt−1U1(∅, ∅) > U1(∅, ∅) ≥ U
R
1 (s∗1, s

∗
2)

where the first inequality, i.e.,U1(∅, a
∗
2) > U1(∅, ∅), is valid because network1 can exploit the node

shared by network2 to find better paths (remember that we consider non-trivial actions), and the last

inequality is valid for hypothesis. Hence, network1 has the incentive to deviate from the trigger

strategys∗1 and adopt always the no cooperation action∅, contradicting the initial hypothesis thats∗

is a NE ofΓR.

Since a Subgame-Perfect Equilibrium (SPE) is a refinement ofa NE, if (5.2) has no solution

neither a trigger strategy SPE exits. In this case we assume that the networks never cooperate ((∅, ∅)

is a NE of the stage gameΓ, hence it is also a SPE ofΓR). Notice that (5.2) is without solution if

it does not exist an action profilea 6= (∅, ∅) such that both network can benefit from cooperation.

This possibility happens very rarely (precisely, when for each sharing choice one network would not

exploit a lot the shared nodes of the other network and, at thesame time, the other network would

exploit a lot its shared nodes), and corresponds to situations in which cooperation does not provide a

high gain.

Proposition 5. If a∗ is a solution of (5.2) andδ is close enough to1, then the trigger strategys∗ is a

subgame-perfect equilibrium ofΓR.

Proof. We need to show that the strategys∗1 is a best response to the strategys∗2, in each subgame of

ΓR (if so, for symmetrys∗2 will be a best response tos∗1). Assume network2 adoptss∗2. Network1

knows that, if the outcome ever differs from(a∗1, a
∗
2), network2 will play ∅ forever. Thus, from that

point on, also for network1 is optimal to play∅ forever. Sos∗1 is a NE in all the subgames ofΓR in

which a deviation from(a∗1, a
∗
2) has occurred in the past. Now let consider the subgame ofΓR in a

generic staget in which a deviation has not occurred in the past (this includes also the caset = 1, i.e.,

the subgame coincides withΓR). We just need to show that, at staget, it is not beneficial for network

1 to deviate from the trigger strategys∗1, playing an action different froma∗1. In fact, if it does not

deviate in staget, then for the same reason it will not deviate in staget+1, and so on. The past utility

and the discount factor at the instantt, δt−1, are constants and do not play any role in the equilibrium

analysis. Hence, we can simply imposet = 1 and evaluate network1’s best first move. If network1

adoptss∗1 from the initial stage its average utility isUR
1 (s∗1, s

∗
2) = U1(a

∗). Every strategy resulting
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in an action different froma∗1 in the first stage is dominated by the strategy in which∅ is always

played, in fact∅ allows to obtain the highest utility possible in every stagegiven that user2 plays

a∗2 in the first stage and∅ in the subsequent stages. If network1 always play∅ achieves an average

utility of UR
1 (∅, s∗2) = (1− δ)U1(∅, a

∗
2) + δ U1(∅, ∅). We obtainUR

1 (s∗1, s
∗
2) ≥ U

R
1 (∅, s∗2) if and only

if δ ≥
U1(∅, a

∗
2)− U1(a

∗)

U1(∅, a∗2)− U1(∅, ∅)
. Notice thatU1(∅, a

∗
2) > U1(a

∗) > U1(∅, ∅), where the first inequality

is valid because network1 can exploit the node shared by network2 to find better paths (remember

that we consider non-trivial actions), and the last inequality is valid becausea∗ is a solution of (5.2).

Thus, the threshold onδ is lower than1.

Notice that the trigger strategy can be substituted with a strategy in which, as soon as a deviation

from the cooperation action profile is detected, a network adopts the punishment action∅ only for a

finite amount of stages. The duration of the punishment must be set so that the gain obtained during

the deviating stage does not compensate the loss incurred during the subsequent stages.

5.6 Results

5.6.1 Simulation setup

To assess the effectiveness of our approach, we developed a network simulator which encom-

passes the layers from physical to routing, as described in Section 5.3. The system parameters are

reported in Table 5.1. Each simulation run is performed withrandomly generated connected net-

works, and lasts for10000 time slots. With the given parameters setup, we first identified, through

simulation, the valueλt of packet generation intensity which results in an end–to–end packet loss

probability of0.1. This can be seen as a threshold value between a lightly loaded and an overloaded

network. Different values of the normalized traffic generation intensityλn = λ/λt were considered,

from λn = 0.4 up toλn = 2. For each value,500 simulation runs were performed to collect the

data required for the BN inference (training topologies). Based on this information, the empirical

distributions and the average values ofζq, ptf andpqo, conditioned onF , were derived.

In the subsequent steps, a new set of500 simulation runs was performed for each value ofλn.

In each run, two networks are again randomly deployed. We investigate the average performance

of the networks when (1) no nodes are shared, namelyNo Coop; (2) 2 nodes randomly chosen are

shared, namely2 Rand; (3) 2 nodes selected through the proposed game theoretic approach are shared,

namely2 GT; (4) all nodes are shared, namelyFull Coop. To adopt the game theoretic approach we

assume that the utility function of each network is the reciprocal of the average cost for that network,
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Table 5.1. Simulation parameters

Number of nodes per network 10

Network area side [m] 200

Transmission range,r[m] 75

Transmission power [dBm] 24

Chip rate [chip/s] 7.5× 106

Noise floor [dBm] −103

Path loss exponent 4

Path loss fixed term 1000

Fading correlation factor,ρ 0.9

Modulation type BPSK

Time slot duration [ms] 1

Spreading factorSf 32

Packet length [bit] 4096

Packet transmission time [slots] 6

Transmission rate,λ [pkts/s/node] 1 to 5

Buffer sizeb [pkts] 16

Maximum number of MAC retransmissions 5

Initial backoff window [slots] 16

Routing algorithm OLSR

Simulation duration [slots] 10000
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Uk(a1, a2) = [Pk(a1, a2)]
−1, δ is close enough to1, and the networks can share either no nodes or

exactly2 nodes. Although our approach can be extended to a larger number of cooperating nodes,

our results show that a large fraction of the available cooperation gain is already achieved with this

choice.

5.6.2 Bayesian network estimation

Exploiting the stochastic estimation of local parameters we can evaluate the expected value of the

three parameters of interest, namely the average delivery delayζq, the probability of buffer overflow

pqo and the probability of transmission failureptf , as a function of the number of flowsF passing

through the node and of the normalized traffic intensityλn. The expected values ofζq, pqo, andptf

are shown in Figs. 5.3, 5.4 and 5.5, respectively. The highest number of flows through a single node

is reached when that node becomes the only connection among five separate clusters of nodes.7 If

these groups have similar cardinalities, we have that the maximum number of flows through a single

node is

Nf < 2(n − 1)

(

n−
n− 1−Nc

Nc

)

whereNc is the number of clusters in which the two networks are divided, andn is the number of

nodes in each network. In our case, due to the small number of nodes in each network (n = 10), we

reasonably assume that in the worst case the nodes can be divided in three separate clusters of nodes,

thusNf < 144. This explains why the number of flowsF is limited in the figures. We also observe

in Fig. 5.3 that for very high values ofF andλn, the average delivery delay decreases. We conjecture

that this happens for two reasons: (1) the queue of these nodes are always almost full, so the time to

traverse them cannot grow much further, and (2) a node traversed by a high number of flows is often

chosen as receiver by most of its neighbors. For these reasons, when it transmits, a lower number of

communications can interfere, thus leading to a lower time needed to deliver a packet to the next hop.

5.6.3 Performance

In Fig. 5.6, we present the actual gain, in terms of delay reduction for the metricPWD, offered

by the considered scenarios. The curves are obtained by averaging over500 random topologies, each

consisting of two networks withn = 10 nodes each. The system parameters are reported in Tab. 5.1.

7A single node can be the only connecting node of no more than5 clusters of nodes, since in a plane it is impossible to

have more than5 points with distance less than or equal tor from a central point, such that each couple of points have a

distance bigger thanr.
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Figure 5.3. BN estimation of the average delivery delayζ as a function of the number of flowsF passing

through the node.

It can be observed that, as intuition suggests, full cooperation grants the highest benefits, due to

the higher spatial diversity. Hence, this is the maximum achievable gain for the scenario investigated.

This gain is more pronounced when the networks are heavily loaded, since congested paths are more

frequent, and adding new routes becomes more advantageous.When only two nodes can be shared,

the choice of the shared nodes makes the difference. In fact,Fig. 5.6 shows that a careful selection

of the resources to be shared can significantly increase the achievable gain when compared to a blind

random selection. A random selection can not offer a significant gain for lightly loaded networks,

while, for heavily loaded networks, it can offer only one third of the gain granted by full cooperation.

On the contrary, if the shared nodes are chosen by means of ourgame-theoretic approach, the maxi-

mum achievable gain is fully obtained for lightly loaded networks and closely approached for heavily

loaded networks.

The same performance gains are obtained also by using the cost metric PIO, the information
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Figure 5.4. BN estimation of the probability of buffer overflowpqo as a function of the number of flowsF

passing through the node.

obsolescence, sincePWD andPIO differ only by a constant termτ/2, see (5.1) and (5.1).

In Fig. 5.7 and in Fig. 5.8 we adopt the cost metricPIT and we show the performance of the four

cooperation strategies in terms of in-time packet arrival rate,λIT . In Fig. 5.7-(a) we showλIT as a

function of the normalized packet generation intensityλn for a maximum allowed delaydmax = 100

slots, and in Fig. 5.7-(b) we showλIT for dmax = 600 slots. We notice that also in this case, adopting

the cost metricPIT , an accurate choice of the cooperating nodes made by our cooperation strategy,

2 GT, allows to reach the same performance of the case in whichall nodes are shared, namely Full

Coop. Instead, the random choice of the nodes to share, 2 Rand, provide only a third or less of the

total gain achievable with full cooperation.

In Fig. 5.8, adopting again the cost metricPIT , we showλIT as a function of the maximum

allowed delaydmax for a packet generation intensityλn = 1.2 andλn = 2, in Fig. 5.8-(a) and

in Fig. 5.8-(b), respectively. We observe that varying the maximum allowed delaydmax with our
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Figure 5.5. BN estimation of the probability of transmission failureptf as a function of the number of

flowsF passing through the node.

cooperation strategy we obtain the same gain as with full cooperation, while with a random choice of

the cooperative nodes we obtain less than a third of the totalgain achievable with full cooperation.

5.7 Conclusions

In this chapter we develop a framework which can be used to select the cooperation strategy

between two coexisting wireless networks sharing some of their nodes. To sum up, our framework is

represented in Fig. 5.1 and follows the following steps:

(1) we learn the network behavior by measuring the TP and PP ofinterest over several random training

topologies;

(2) we use the BN method to infer the joint distribution amongTP and PP;

(3) in the scenario of interest we observe the TP, we infer thePP, and we estimate the utility function



5.7. Conclusions 81

of each network for all possible choices of the sharing nodes;

(4) we select the nodes to be shared based on a game theoretic approach in which each network

shares the nodes only if it obtains a benefit in doing that, incentives towards cooperation are provided

through a simple trigger strategy which takes into account the actions adopts by the another network

in the past.

Finally, we develop a wireless network simulator showing that, even when only a small fraction

of the nodes is shared, we obtain a significant gain. In particular, both for lightly and heavily loaded

scenarios, the selection scheme based on game theory can achieve almost the same performance as a

full cooperation scheme, for all the three performance metrics considered.
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Figure 5.6. Weighted delivery delayPWD as a function of the normalized packet generation intensity

λn = λ/λt, for the four compared scenarios.
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Figure 5.7. In-time packet arrival rateλIT as a function of the normalized packet generation intensityλn

for a value of the maximum allowed delay (a)dmax= 100 and (b)dmax= 600, in number of slots.
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Figure 5.8. In-time packet arrival rateλIT as a function of the maximum allowed delaydmax for a nor-

malized packet generation intensity (a)λn = 1.2 and (b)λn = 2.





Chapter 6
Designing and Selecting MAC Protocols

With Selfish Users

In this chapter1 we consider a number of users who compete to gain access to a channel, a slotted-

Aloha like random access protocol and two incentive schemes: pricing andintervention. We provide

some criteria for the designer of the protocol to choose one scheme between them and to design

the best policy for the selected scheme, depending on the system parameters. Our results show that

intervention can achieve the maximum efficiency in theperfect monitoringscenario. In theimperfect

monitoringscenario, instead, the performance of the system depends onthe information held by the

different entities and, in some cases, there exists a threshold for the number of users such that, for a

number of users lower than the threshold, intervention outperforms pricing, whereas, for a number of

users higher than the threshold pricing outperforms intervention.

6.1 Introduction

In wireless communication networks, multiple users often share a common channel and contend

for access. Many distributed Medium Access Control (MAC) protocols, some of them being used in

current international standards (e.g., IEEE 802.11 a/b/g/n), have been designed assuming that users

are compliant with the protocol rules. Unfortunately, a self-interested and strategic user might ma-

1The material presented in this chapter has been published in:

[J3] L. Canzian, Y. Xiao, M. Zorzi, and M. van der Schaar, “Game Theoretic Design of MAC Protocols: Pricing and

Intervention in Slotted-Aloha,”Submitted to IEEE/ACM Trans. Networking
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nipulate the protocol in order to obtain a larger share of thechannel resource at the expense of that of

the other users.

We consider a slotted-Aloha like random access protocol, where each user transmits within a

slot according to some user-chosen probability. Without any further mechanism, self-interested users

would implement thealways transmitstrategy, resulting in the network collapse. To make the network

robust to selfish users, it is fundamental to design a scheme that provides to the users the incentives

to adopt a better (from the network designer point of view) strategy.

In the past decade a lot of research was dedicated to the development of such incentive schemes

for slotted-Aloha like random access protocols. Some of this research, such as [35–39], adopts pricing

schemes that charge the users for their resource usage.2 In this way, it is in the self-interest of each

user to limit its access probability. Such pricing schemes may achieve the goal of efficient use of

network resources. However, they suffer from the followingdrawbacks: (1) the designer has to know

how the prices affect the users’ utilities to design an efficient scheme; (2) it is not clear what do to

with the collected money, unless the network is managed by a profit-making enterprise; (3) a secure

infrastructure to collect the money is needed.

Recently, a new incentive scheme, calledintervention, has been proposed in [66] and has been

applied to MAC problems [12, 42]. In this scheme, anintervention deviceis placed in the network.

Such a device can monitor the users’ behavior and intervene affecting the users’ resource usage. The

action of the intervention device depends on the actions of the users. The intervention device provides

the incentives for the users to obey a given access probability rule by threateningpunishmentsif users

disobey. Intervention is more robust than pricing because users cannot avoid intervention as long as

they use network resources, but they might be able to avoid monetary charges. The implementation

of an intervention scheme requires to place an additional device, i.e., the intervention device, in the

network.

Repeated games can also encourage cooperative behaviors [90]. In this case users are forced to

take into account how their current actions can influence thefuture actions of the other users. A

cooperative behavior is induced by punishing deviating users in the future. Differently from the pre-

viously considered methods, this scheme does not require the presence of a central entity. However,

it requires a repeated interaction among users and the usersmust keep track of their past observations

2Notice that in the literature pricing schemes may refer alsoto distributed schemes in which the users are cooperative

andfictitiousprices are used to obtain an efficient distributed algorithm. In our case, we consider strategic and selfish users,

thus, to be effective, the pricing scheme requires the usersto pay real money.
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and be able to detect deviations and to coordinate their actions in order to punish deviating users. We

exclude incentive schemes based on repeated games because of these difficulties.

In this chapter we provide the tools to design pricing and intervention schemes to make a random

access protocol robust against strategic users. As in most of the previous works in pricing and inter-

vention, we consider onlylinear interventionandlinear pricing schemes, because they are simple to

implement and yet efficient enough to achieve high performance (or even optimality in some cases).

Simple rules are important in particular for pricing schemes, because the users might not accept to

pay for their resource usage following complex rules. It is difficult to argue between different incen-

tive schemes in general: depending on the particular deployment scenario, the performance criterion,

and the implementation issues, each one of the incentive schemes can be better than the others. The

problem of the network designer is to identify the scheme that best fits its requirements and to design

the best policy for the selected scheme.

The complexity of the design process and the performance achievable depend on various features

of the system, such as the number of users, the users’ heterogeneity, the capability of monitoring the

users’ actions and the information held by the designer and the users. To the best of our knowledge,

this is the first work that compares intervention and pricingin terms of the network environment, the

knowledge of the designer and the knowledge of the users. We focus on a simple MAC protocol,

slotted-Aloha, because it makes it possible to formulate a simple game in which the outcomes can be

computed analytically, to highlight the consequence of nottaking into account the strategic nature of

some users when designing a MAC protocol, and to obtain important insights about possible solutions

to such a problem. For these features slotted-Aloha is widely used in game theoretic studies [8, 12,

35–39, 42]. The extension of this work to more realistic MAC protocols will be considered in future

works.

This chapter is divided into two main parts. In the first part,we consider theperfect monitoring

scenario, i.e., we assume that the users’ actions are estimated without errors. We show that interven-

tion can achieve the maximum efficiency, i.e., the maximum social welfare, while pricing is able to

reach an efficient use of the network resources but the positive payments subtracted from the users’

utilities prevent it to achieve the maximum social welfare

In the second part, we consider animperfect monitoringscenario, assuming that a uniformly dis-

tributed noise term is added to the estimated actions. We derive the optimal pricing and intervention

schemes and quantify the performance achievable in this scenario, assuming that (1) neither the de-

signer nor the users are aware of the estimation errors (i.e., they believe that the designer is able

to observe the users’ actions perfectly), (2) only the designer is aware of the estimation errors, and
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(3) both the designer and the users are aware of the estimation errors. In the imperfect monitoring

scenario, the performance of the intervention scheme degrades considerably as the number of users

increases and the information held by the designer and the users plays an important role. In particular,

for case (3) there exists a threshold for the number of users such that, for a number of users lower

than the threshold, the intervention scheme outperforms the pricing scheme, while for a number of

users higher than the threshold the pricing scheme outperforms the intervention scheme. In the other

cases intervention allows to obtain higher performance than pricing. The analysis in this chapter can

serve as a guideline for a designer of a MAC protocol to selectbetween pricing and intervention and

to design the best policy for the selected scheme, dependingon some system parameters such as the

number of users, the statistics of the monitoring noise and the information held by the designer and

the users.

Despite its practical importance, very few works address the impact of the monitoring errors and

the information heterogeneity on the design and performance of an incentive scheme. To the best of

our knowledge, no prior work on pricing considers the issue of imperfect monitoring on users’ actions.

As to the intervention scheme, both [12] and [42] consider the imperfect monitoring scenario. [12]

adopts the same noise model we use, but it simplifies the analysis limiting the users’ action space,

whereas [42] considers a different type of imperfect monitoring, whose distribution depends on the

length of the time the intervention device takes to estimateusers’ actions. However, in both works it

is assumed that the designer and the users are aware of the imperfect monitoring model. In our work

we analyze the effect of the information heterogeneity, considering also the cases in which nobody

is aware of the estimation errors and in which only the designer is aware of the estimation errors.

This provides understanding on how robust the considered incentive schemes are with respect to the

heterogeneity of information.

The remainder of this chapter is organized as follows. In Section 6.2 we describe the considered

MAC protocol. We introduce the games that model the interaction between strategic users and we

formulate the problem of designing efficient incentive schemes in Section 6.3. In Section 6.4 we

derive the optimal pricing and intervention schemes to adopt in the perfect monitoring scenario and

we quantify the performance achievable. We consider the imperfect monitoring scenario in Section

6.5, for three different cases, depending on who is aware of the imperfect monitoring model. Section

6.6 concludes with some remarks.
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6.2 System Model

We consider a wireless network ofn users that share a common channel and we make the follow-

ing assumptions for the contention model:

• Time is slotted and slots are synchronized;

• Users always have packets to transmit in every slot;

• If a packet is received, the receiver immediately sends an acknowledgment (ACK) packet;

• The transmission of a packet and the (possible) corresponding ACK is completed within a slot;

• A packet is received successfully if and only if it does not collide with other transmissions;

• Each useri selects a transmission probabilityai ∈ [0 1] at the beginning of the communication

and will transmit with the same probabilityai in every time slot, i.e., there are no adjustments

in the transmission probabilities. This excludes coordination among users, for example, using

time division multiplexing.

Notice that ACK packets are always successfully received because they are transmitted over idle

channels.

Denoting witha = (a1, . . . , an) the transmission probability vector, the average throughput (in

packets per slot) of useri is given by

Ti(a) = ai

n∏

j=1,j 6=i

(1− aj)

The resource usage of useri is therefore proportional toi’s transmission probability.

We assume that the utility of useri is given by

Ui(a) = θi lnTi(a) (6.1)

where the parameterθi > 0 allows to differentiate between different classes of users. The higherθi,

the higher useri’s valuation for the throughput. The logarithm makes the utility a concave function,

which models the fact that the users usually have more desireto increase their own throughput when

it is low than when it is high.

We define the social welfare of the network as the sum of all users’ utilities:

U(a) =
n∑

i=1

Ui(a) (6.2)
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Finally, the network is said to operate optimally if the users choose the transmission probabilities

that maximize Eq. (6.2). It is straightforward to check thatthe Hessian ofU(a) is a diagonal matrix

with strictly negative diagonal entries, therefore it is negative definite. Imposing the partial derivatives

equal to0, the unique transmission probability vectora∗ = (a∗1, . . . , a
∗
n) that maximizes Eq. (6.2) is

given by

a∗k =
θk

∑n
i=1 θi

, k = 1, . . . , n (6.3)

U(a∗) represents the maximum social welfare achievable.

In order to adopt the optimal transmission probability, theusers need to know the sum of the

valuationsθi of the other users. This information must be spread in the network at the beginning of

the communication. This can be done either in a distributed way or in a centralized way. In particular,

in the last case an entity (e.g., a predetermined user or the access point) might collect the users’

valuations and broadcast to all users the value
∑n

i=1 θi. Once the users have this information, they

can locally compute their optimal transmission probabilities according to Eq. (6.3) and adopt them.

6.3 Game Model and Design Problem Formulation

While the network optimal transmission policya∗ is easy to compute, the actual transmission

probability selected by each user depends on the objective of that user. If the users are compliant with

the optimal policy, then they compute and adopta∗ and the network operates optimally. However,

if the users are self-interested and strategic, instead of complying with the optimal policy they will

adopt the transmission probabilities that optimize their own utility. Since the interests of individual

users are different from the interests of the group of users as a whole, the network might (and usually

will) operate inefficiently.

To analyze the interaction between strategic decision-makers, we define the contention game

Γ = (N,A, {Ui(·)}
n
i=1)

whereN = {1, 2, · · · , n} denotes the set of users,A = ×n
i=1 [0, 1]

n denotes the action space and

Ui : A→ < is the utility of a generic useri, defined by Eq. (6.1). The action for useri represents the

transmission probabilityai chosen by useri. Throughout the chapter, we will use the terms action and

transmission probability interchangeably, and similarlyfor action profile and transmission probability

vector.

The NEs of the contention gameΓ can be easily characterized considering the following cases.
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1) Assume that all user, except for useri, adopt a transmission probability strictly smaller than1.

Then the utility of useri is increasing inai: the higher the transmission probability chosen by

i the higheri’s throughput. Thus,i choosesai = 1.

2) Assume that there is at least a userj 6= i that adopts a transmission probability equal to1.

Then the channel is always busy and useri obtains a throughput equal to0, regardless of its

transmission probability.

In case 1)ai = 1, in case 2)aj = 1 Thus,a is a Nash Equilibrium of the contention gameΓ if

and only if at least one user adopts a transmission probability equal to1. Notice thatai = 1 is a

weakly dominant strategyfor every useri, i.e.,ui(1, a−i) ≥ ui(a), for every action profilea. In our

contention game each user has an incentive to adopt thealways transmitstrategy, resulting in network

collapse.

Here we ask if it is possible to design the network to make it robust against strategic users. We

want to introduce some mechanism to deter the users from adopting high transmission probabilities.

The incentive schemes we consider belong to two classes:

• Pricing: users are charged depending on their transmission probabilities

• Intervention: the users’ resource usage is affected by theintervention device, in a way that

depends on the users’ transmission probabilities

The interaction between the designer, the users and the system can be roughly summarized into

three stages, (1) the design stage, (2) the information exchange stage, and (3) the transmission stage.

In the design stagethe designer designs the pricing or intervention scheme. Specifically, the

designer predicts strategic users’ actions given any pricing or intervention scheme, and chooses the

pricing or intervention scheme that results in the most desired outcome. This is done once, then the

designer leaves the system forever. Notice that, to efficiently design these schemes, the designer has to

know how pricing or intervention affect the users’ utilities. This might be easier for the intervention

scheme, in which the users’ throughput is altered. In this case the designer has to know only the

relation between the throughput and the utility of each user. Differently, in the pricing schemes users

are charged for their resource usage. Hence, the designer has to know how throughput and payments

are connected to the utility of each user. In this work we implicitly assume that the designer knows

these dependencies, because we focus on a particular relation between the utilities, the throughput,

and the payments.
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In the information exchange stagesome useful information is collect and, possibly, distributed.

The intervention device (or the device that manages the payments in the pricing scheme) has to iden-

tify the users that are connected to the network, has to inform them about the adopted intervention

or pricing scheme, and has to learn the action they select. For the latter point, as an example, it can

count the number of correct transmissions of each user in a certain time interval. However, since this

time interval must be finite, the estimation might be affected by errors. To consider the impact of this

imperfect estimation we will denote bŷai the estimated action of useri, by â the estimated action

profile and byπi(âi | ai) the probability density function ofi’s estimated action, given thati’s action

is ai. We say that the monitoring isperfectif the users’ actions are estimated without errors, i.e.,âi

coincides withai.3 We say that the monitoring isimperfectif the estimates are affected by errors, i.e.,

there is a positive probability that̂ai is different fromai.

In thetransmission stagethe users transmit the packets adopting the same transmission probability

and, in the meantime, they have to pay for their resource usage based on the pricing scheme, or their

resource usage is affected based on the intervention scheme.

In this chapter we play the role of a benevolent designer thatseeks to design the pricing and

intervention rules to maximize the social welfare of the system in the transmission stage. We neglect

the social welfare obtained in the information exchange stage because we assume that the transmission

stage length is much longer than that of the information exchange stage.

6.3.1 Pricing

Pricing schemes use monetary charges to deter users’ greediness. Ifi’s payment is increasing in

i’s resource usage, userimight find it convenient to limit its transmission probability. In general, user

i is charged according to thepricing rule fPi : [0, 1]→ <, which is a function ofi’s estimated action

âi. Assuming that the payments affect additively the users’ utilities, i’s expected utility is given by

UP
i (a) = E

[
θi lnTi(a)− f

P
i (âi)

]
= θi lnTi(a)−

∫ 1

0
πi(âi | ai)f

P
i (âi)∂âi (6.4)

whereE [·] is the expectation operator.

Once a pricing scheme is selected and communicated to the users, the interaction among users

can be modeled through the game

ΓP =
(

N,A,
{
UP
i (·)

}n

i=1

)

(6.5)

3In this caseπi(âi | ai) might be thought as a Dirac delta function centered inai.
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Among all the possible pricing rules, there is one class of rules that is particularly interesting,

namely, the class oflinear pricing rules, in which users are charged linearly with respect to their

transmission probabilities, i.e.,

fPi (âi) = ciâi

whereci ≥ 0 is the unit price. We restrict our attention to the linear pricing rules, as done in most

of the pricing literature, because they are computationally simple to implement and we do not lose

much, in term of performance, in doing so.

Once the pricesc = (c1, . . . , cn) are fixed, since we will prove the existence and uniqueness of

the NE of the gameΓP , the social welfare can be uniquely determined. The goal of the designer

is to choose the unit pricesc = (c1, . . . , cn) to maximize the social welfare, i.e., it has to solve the

following Pricing Design (PD) problem:

PD argmax
c

∑

i∈N

UP
i (aNE)

subject to:

ci ≥ 0 , ∀ i ∈ N

UP
i (aNE) ≥ UP

i (ai, a
NE
−i ) , ∀ ai ∈ [0, 1] , ∀ i ∈ N

6.3.2 Intervention

In the intervention framework the designer deploys in the network an intervention device that

monitors the users’ actions and can intervene adopting itself an action that affects the users’ resource

usage. In our case, we assume that the intervention device isable to correctly recognize the packets

transmitted by different users and to estimate the users’ actions. If the packet of a generic useri is

correctly received, the intervention device may choose to jam its ACK4 depending on the estimate of

its action. Specifically, the intervention device jams the ACK sent to useri with a probability that is

given by theintervention rulef Ii : [0, 1]→ [0, 1], which is a function of the estimated actionâi.

The intervention levelf Ii (âi) must be interpreted as apunishmentto useri after having deviated

from a recommended (socially-beneficial) action. Such punishments are a threat to users, and must be

designed such that the users find in their self-interest to adopt the recommended actions. At the same

time, when users adopt the recommended actions, the intervention level must be minimized (possibly,

nullified), to avoid to decrease the users’ utilities.

4Many works on security, such as [91–93], take into consideration the possibility of performing intelligent jamming in

which the jamming signal is concentrated on control packets.
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Different from pricing, intervention changes the structure of the utility of each user affecting

directly their resource usage. In fact, the average throughput of useri is now given by

T I
i (a) = E



ai
(
1− f Ii (âi)

)
n∏

j=1,j 6=i

(1− aj)



 = ai

(

1−

∫ 1

0
πi(âi | ai)f

I
i (âi)∂âi

) n∏

j=1,j 6=i

(1− aj)

(6.6)

where
∫ 1
0 πi(âi | ai)f

I
i (âi)∂âi represents the average intervention level.

The utility of useri is modified accordingly

U I
i (a) = θi lnT

I
i (a) (6.7)

Once the intervention rules are selected and communicated to the users, the interaction among the

users can be modeled through the game

ΓI =
(

N,A,
{
U I
i (·)

}n

i=1

)

(6.8)

We say that the intervention rulesf I =
(
f I1 , . . . , f

I
n

)
sustainan action profilea, if a is a NE ofΓI .

Among all the possible intervention rules, there is one class of rules that is particularly interesting,

namely, the class ofaffine intervention rules. f Ii : [0, 1]→ [0, 1] is an affine intervention rule if

f Ii (âi) = [ri(âi − ãi)]
1
0

for certain parameters̃ai ∈ [0, 1] andri ≥ 0, where[·]ba = min {max {a, ·} , b}.

In an affine intervention rule,̃ai represents a target action for useri while ri represents the rate of

increase of the intervention level due to an increase ini’s action. If the estimated action̂ai is lower

than or equal to the target actionãi, then the intervention level is equal to0. If the estimated action

âi is higher than the target actioñai, then the intervention level is proportional tôai − ãi, until it

saturates to1.

For ri → +∞, the intervention device jams the ACKs sent to useri whenever it detects thati

is adopting an action higher than the target one. Such a rule,which we refer to as anextreme rule,

represents the strongest punishment that the interventiondevice can adopt.

We restrict our attention to the affine intervention rules because they are computationally simple

to implement and we do not lose much, in term of performance, in doing so (as we will see, in some

cases such rules are even able to achieve the benchmark optimum).

Once the parameters̃a = (ã1, . . . , ãn) andr = (r1, . . . , rn) are fixed, and assuming that the

users coordinate to the best (from the social welfare point of view) NE of the gameΓI 5, the social
5The existence of NEs will be proved for the considered scenarios and it is easy to coordinate the users to the best NE.

In fact, we will prove that the best NE is uniquely determinedby ã.
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welfare can be determined. The goal of the designer is to choose the parameters̃a andr to maximize

the social welfare, i.e., it has to solve the following Intervention Design (ID ) problem:

ID argmax
ã,r

[

max
aNE

∑

i∈N

U I
i (a

NE)

]

subject to:

ãi ∈ [0, 1] , ri ≥ 0 , ∀ i ∈ N

U I
i (a

NE) ≥ U I
i (ai, a

NE
−i ) , ∀ ai ∈ [0, 1] , ∀ i ∈ N

Differently from thePD problem, theID problem requires a maximization with respect to the NEs

because of the non uniqueness of the NE.

6.4 Perfect Monitoring

In this section we assume that the estimated actions are equal to the real actions, i.e.,̂ai = ai,

for every useri ∈ N . Hence, in Eqs. (6.4) and (6.6) the integrals must be substituted, respectively,

with fPi (ai) andf Ii (ai). In the following we compute the optimal linear pricing scheme and affine

intervention rule that a designer should adopt to maximize the social welfare if the monitoring is

perfect.

6.4.1 Pricing design

Given a linear pricing schemeci, i ∈ N , the interaction between users in the perfect monitoring

scenario adopting pricing is modeled with the game

ΓP =
(

N,A,
{
UP
i (·)

}n

i=1

)

(6.9)

where

UP
i (a) = θi ln



ai

n∏

j=1,j 6=i

(1− aj)



− ciai (6.10)

The goal of the designer is to design the unit pricesc to maximize the social welfare in the presence

of strategic users, solving thePD problem with the utilities given by Eq. (6.10).

Lemma 1. The unique NE of the gameΓP is aNE
k =

θk
ck

, k ∈ N .

Proof. To compute the best response function of usersk, we use the first order condition. First, we

check thatUP
k (a) is concave inak (i.e., the second derivative with respect toak is negative). Then,
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we set to0 the first derivative ofUP
k (a), with respect toak.

∂UP
k (a)

∂ak
=
θk
ak
− ck ,

∂2UP
k (a)

∂a2k
= −

θk
a2k

< 0 ,
∂UP

k (a)

∂ak
= 0 −→ ak =

θk
ck

Proposition 6. The optimal pricing scheme to adopt isc∗k =
∑

i θi.

Proof. We want to find the unit pricesck, k ∈ N , so that the social welfareU(a) =
∑n

i=1 U
P
i (a) is

maximized, assuming that the users adopt theNE action profile (i.e., we have to substituteck with
θk
ak

into the expression ofU(a)). We first prove thatU(a) is a (multivariable) concave function, by

checking its Hessian.

∂U(a)

∂ak
=
θk
ak
−

∑

i 6=k θi

1− ak
,

∂2U(a)

∂a2k
= −

θk
a2k
−

∑

i 6=k θi

(1− ak)2
< 0 ,

∂2U(a)

∂akdpi
= 0 , i 6= k

The Hessian ofU(a) is negative definite (it is a diagonal matrix with strictly negative diagonal en-

tries), soU(a) is concave. Thus, the global maximizer ofU(a) can be obtained with the first order

condition

∂U(a)

∂ak
= 0 −→ ak =

θk
∑

i θi
−→ ck =

∑

i

θi , k ∈ N

Notice that the transmission probabilities adopted by the users in the optimal pricing policy are

equal to the transmission probabilities adopted by compliant users to maximize the social welfare,

i.e.,aNE
k =

θk
c∗k

= a∗, wherea∗ is defined in Eq. (6.3).

6.4.2 Intervention design

Given an affine intervention ruleri and ãi, i ∈ N , the interaction between users in the perfect

monitoring scenario adopting intervention is modeled withthe game

ΓI =
(

N,A,
{
U I
i (·)

}n

i=1

)

(6.11)

where

U I
i (a) = θi ln



ai

(

1− [ri(ai − ãi)]
1
0

) n∏

j=1,j 6=i

(1− aj)



 (6.12)

The goal of the designer is to design the intervention rule tomaximize the social welfare in the

presence of strategic users, solving theID problem with the utilities given by Eq. (6.12).
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Notice theãk = 1 and ãk = 0 represent trivial cases. If̃ak = 1 the intervention device never

jams the ACK sent to userk, ∀ ak, and in this caseak = 1 represents a weakly dominant strategy, as

discussed in Section 6.3. Ifãk = 0 userk is punished whenever it transmits with positive probability.

However, the aim of the designer is to maximize the social welfare, hence, it must first guarantee

a positive throughput to every user. Thus, it is always more beneficial to consider ãak slightly

higher than0 instead of0. For this reason, in the following we focus on intervention rules in which

ãk ∈ (0, 1), ∀ k.

Lemma 2. ã = (ã1, . . . , ãn) is a NE of the gameΓI if and only ifrk ≥
1

ãk
, for every userk ∈ N .

Moreover, oncẽa andrk ≥
1

ãk
are fixed, among all the NEs ofΓI , ã is (individually and socially) the

best.

Proof. We can writerk =
1

ãk + δ
, for some constantδ > −ãk. Then

U I
k (ak, ã−k) =







θk ln
[

ak
∏

j 6=k(1 − ãj)
]

if ak < ãk

θk ln

[
−a2k + 2ãkak + δak

ãk + δ

∏

j 6=k(1− ãj)

]

if ãk ≤ ak ≤ 2ãk + δ

−∞ if ak > 2ãk + δ

We study the sign of
∂U I

k (ak, ã−k)

∂ak
in the interval[0, 2ãk + δ] to obtain the best action for userk.

∂U I
k (ak, ã−k)

∂ak
=







θk
ak

if ak < ãk

θk
2 (ãk − ak) + δ

ak (2ãk − ak + δ)
if ãk ≤ ak ≤ 2ãk + δ

If δ ≤ 0 (i.e, rk ≥
1

ãk
), U I

k (ak, ã−k) is continuous, increasing inak for ak < ãk and decreasing

otherwise. Thus,̃ak is the best action for userk.

If δ > 0 (i.e, rk <
1

ãk
), U I

k (ak, ã−k) is continuous, increasing inak for ak < ãk +
δ

2
and

decreasing otherwise. Thus,ãk +
δ

2
(> ãk) is the best action for userk.

Hence,ã is a NE if and only ifrk ≥
1

ãk
, ∀ k. Notice also that, in this situation,̃a is a weakly

dominant strategy: it is in the self interest of each userk to adopt̃ak, independently of the strategies

of the other users. Thus, the users will coordinate to such NE.

Finally, notice that other NEs ofΓI can only be obtained when at least two users transmit with

probability 1. In fact, in this situation no user can increase its utility changing its action. Actually,

the utility can not decrease either: it is constant and it is the worst (individually and socially) possible

utility, corresponding to the situation in which the throughput of each user is equal to0.
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Proposition 7. The optimal affine intervention rule to adopt isrk ≥
1

a∗k
and ãk = a∗k, for every user

k, wherea∗k is defined in Eq. (6.3).

Proof. Given the actions of the users, the utility of a user and the social welfare are decreasing as

the intervention level for that user increases. However, using the intervention rulerk ≥
1

a∗k
and

ãk = a∗k, ∀ k, the users have the incentive to adopt the action profilea = a∗ and, at the same time,

the intervention level they are subjected to is equal to0. Thus, the outcome of the system is equal to

the benchmark optimum. Finally, this implies thatrk ≥
1

a∗k
andãk = a∗k defines an optimal affine

intervention rule, and, more specifically, it defines also anoptimal intervention rule within the class

of all intervention rules.

Corollary 3. The optimal affine intervention rule is optimal in the class of all intervention rules.

6.4.3 Comparison between pricing and intervention and someresults

By adopting either pricing or intervention the designer canprovide the incentive for strategic

users to choose the optimal action profile of Eq. (6.3). The efficiency of the utilization of the channel

resource is optimized with respect to the valuationsθi, i ∈ N , of the users. However, there is a big

difference between pricing and intervention. Intervention schemes reach this objective by threatening

the users to intervene if they do not follow the recommendations, although at the equilibrium the

intervention is not triggered and therefore the resource usage is not affected. Conversely, pricing

schemes charge each user that transmits with a positive probability, thus affecting its utility and the

social welfare. Hence, only the intervention scheme is ableto achieve the optimal social welfare that

can be obtained when users behave cooperatively, i.e., whenthey comply to a prescribed protocol that

maximizes the social welfare.

In Fig. 6.1 the social welfare and the total throughput in theperfect monitoring scenario are

plotted as a function of the number of users in the system, both assuming that the users behave

cooperatively, and adopting the pricing and intervention schemes derived in Sections 6.4.1 and 6.4.2

to enforce the users’ actions. A symmetric case is considered, i.e.,θi = 1, ∀ i ∈ N . Thus, the optimal

transmission policy in the cooperative scenario, defined byEq. (6.3), isa∗k =
1

n
, for every userk.

The results confirm the above discussion: both schemes are able to obtain the same total through-

put of the cooperative case, but only the intervention scheme is able to maximize the (total) users’

satisfaction. In fact, there is a finite gap, which increasesas the number of users increases, between

the optimal social welfare and the one achievable with the pricing scheme. Finally, notice that the

social welfare always decreases as the number of users increases because there are more collisions



6.5. Imperfect Monitoring 99

2 4 6 8 10 12 14 16 18 20
−120

−100

−80

−60

−40

−20

0

Number of users

S
um

 u
til

ity

Perfect monitoring, θ
i
 = 1

 

 

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

Number of users

S
um

 th
ro

ug
hp

ut

Perfect monitoring, θ
i
 = 1

 

 

Cooperation
Pricing
Intervention

Cooperation
Pricing
Intervention

Figure 6.1. Social welfare and total throughput vs. number of users, in the perfect monitoring scenario

and the number of unexploited slots increases, resulting inan inefficient utilization of the channel;

this is an unavoidable consequence of the lack of coordination.

6.5 Imperfect Monitoring

We now study whether the qualitative results obtained for the perfect monitoring scenario still

hold for the imperfect monitoring case. In this section we will see that there is a substantial difference

for the intervention scheme when the monitoring is imperfect. The intuition behind it is related to

the possibility that the estimation errors trigger the intervention even though the users are adopting

the recommended actions. As for the pricing scheme, if the expectations of the estimated actions are

equal to the real actions, each user might be overcharged or undercharged. On average, it is charged

correctly, therefore the performance is not strongly affected.

The imperfect monitoring model we consider for the estimation of useri’s action is an additive

noise term that is uniformly distributed in[−εi, εi], with 0 < εi � 1, i.e.,

âi = [ai + ni]
1
0 , ni ∼ U [−εi, εi]

In the following we compute the best linear pricing scheme and affine intervention rule that a

designer should adopt to maximize the social welfare for different scenarios, depending on the infor-

mation that the designer and the users have about the imperfect monitoring. In particular, we consider

the following cases:



100 Chapter 6. Designing and Selecting MAC Protocols With Selfish Users

1) Nobody is aware of the estimation errors: neither the designer nor the users know about the

existence of the noise, and think that the designer can estimate perfectly the users’ actions.

2) The designer is aware of the estimation errors: the designer knows about the existence and the

distribution of the noise, while the users think that the designer can estimate perfectly their

actions.

3) Everybody is aware of the estimation errors: both the designer and the users know about the

existence and the distribution of the noise.

6.5.1 Nobody is aware of the estimation errors

In this scenario both the designer and the users believe thatthe users’ estimated actions,â, are

equal to the real ones,a. The additive noiseni might be caused by a physical phenomenon which is

not predicted by the designer and the users. As an example, the intervention device (or the device that

manages the payments in the pricing scheme) might have, at a certain point, a malfunctioning that is

not revealed and introduces noise in the measurements.

Both the designer and the users have a wrong perception of thereality: they both believe that the

utilities are as in the perfect monitoring scenario even though their real utilities are affected by the

noise. Since the users select their actions based on their beliefs, once the pricing and the intervention

rules are fixed, their interaction can still be modeled through the games (6.9) and (6.11), as in the

perfect monitoring case. Analogously, the designer designs the pricing or the intervention rule based

on its beliefs. Hence, it has no reason to select rules different from the optimal (with respect to its

beliefs) rules derived in Sections 6.4.1 and 6.4.2. The onlydifference with respect to the perfect

monitoring case is that the real performance of the system isdifferent from the one expected by the

users and the designer.

Notice that both users and designer might update their beliefs observing the real performance of

the system. However, this might not be easy to do due to the lack of information. On one hand,

the designer designs an intervention rule and implements itin the intervention device, then it leaves

the system. If the estimation errors are not correctly predicted in the design stage they affect the

system, unless the designer implements a mechanism in the intervention device to reveal such errors.

However, it might be difficult to discriminate between an estimation error and a real deviation of a

user trying to increase its own utility.

On the other hand, the users might not be able to recognize theeffect of an estimation error. As an

example, in the intervention scheme the estimation error triggers, occasionally, the intervention, with
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the consequent decrease of the throughput of a generic useri. However, useri’s throughput decreases

if another user increases its transmission probability as well. Thus,i is not able to understand if its

utility has decreased due to the presence of the estimation errors or for some other reasons, and is not

able to update its belief correctly.

This scenario has been considered in order to analyze how robust to an unknown noise the

schemes derived in Sections 6.4.1 and 6.4.2 are.

6.5.2 The designer is aware of the estimation errors

In this scenario the users are not aware about the estimationnoise, while the designer knows

the distribution of the noise and knows that the users’ beliefs are wrong. Once the pricing and the

intervention rules are given, the interaction between users can still be modeled through the games

(6.9) and (6.11), in which the users act believing that theirutilities are not affected by the estimation

noise. When designing the pricing or the intervention rule,the designer has to take into account both

that the users act strategically, according to their mismatched perceptions, and that the social welfare

is affected by the noise. It has to solve thePD and ID problems using the expectation of the noisy

utilities given by Eq. (6.4) and (6.7) in the maximization and using the non-noisy utilities given by

Eq. (6.10) and (6.12) in the constraints. In fact, the set of constraints represents the NEs of the

game played by the users, in which the users select their action to maximize the utilities they believe

to receive, i.e., the non-noisy utilities; while the maximization reflects the choice of the designer,

that wants to maximize the real satisfaction of the users, represented by the expectation of the noisy

utilities.

Finally notice that, as described in Subsection 6.5.1, it might be difficult for the users to reveal

the presence of the estimation errors by observing the real performance of the system.

6.5.2.1 Pricing design

Let ak,1 denote the unique solution of equation

θka
3
k −

(

θk + 4εk

n∑

i=1

θi

)

a2k +
(
4εkθk − ε

2
kθk
)
ak + ε2kθk = 0

in (0, εk), assuming
θk

∑n
i=1 θi

< εk. Let ak,2 denote the unique solution of equation

−θka
3
k +

(

θk − 4εk

n∑

i=1

θi

)

a2k +
(

4εkθk + (1− εk)
2 θk

)

ak − (1− εk)
2 θk = 0
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in (1− εk, 1), assuming
θk

∑n
i=1 θi

> 1− εk.

In the proof of the following result, it is shown thatak,1 andak,2 exist and are unique.

Proposition 8. The optimal unit priceck to adopt is,∀ k ∈ N ,

ck =







θk
ak,1

if
θk

∑n
i=1 θi

< εk

∑n
i=1 θi if εk ≤

θk
∑n

i=1 θi
≤ 1− εk

θk
ak,2

if
θk

∑n
i=1 θi

> 1− εk

Proof. See Appendix A.1.

6.5.2.2 Intervention design

To design an intervention rule able to sustain the target action profileã, the designer has to satisfy

the conditionrk ≥
1

ãk
, ∀ k, provided by Lemma 2. The best option for the designer is to select

rk =
1

ãk
, ∀ k, in order to sustaiña and, at the same time, to minimize the punishment adopted against

k when intervention is triggered by estimation errors. Finally, the designer has to select the bestãk,

for every userk.

Let ak,3 denote the unique solution of equation



−θk −
n∑

j=1

θj



 a2k +



2θk − 2εk

n∑

j=1

θj



 ak + 2εkθk = 0

in (0, εk). In the proof of the following result, it is shown thatak,3 exists and is unique.

Proposition 9. The optimal affine intervention rule to adopt is, for every user k, rk =
1

ãk
and

ãk =







ak,3 if εk >
4θk

4
∑n

j=1 θj −
∑n

j=1,j 6=k θj
4θk + εk

∑n
j=1,j 6=k θj

4
∑n

j=1 θj
if εk ≤

4θk
4
∑n

j=1 θj −
∑n

j=1,j 6=k θj

Proof. See Appendix A.2.
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6.5.3 Everybody is aware of the estimation errors

In this scenario both the designer and the users are aware of the estimation errors and they know

their distribution. The interaction between users must be modeled through the games (6.5) and (6.8)

considering the real distribution of the noise in Eq. (6.4) and (6.6). The designer has to solve thePD

andID problems using the utilities given by Eq. (6.4) and (6.7).

6.5.3.1 Pricing design

Once the pricing scheme is given, the interaction between users can be modeled with the game in

Eq. (6.5), where

UP
i (a) = θi ln



ai

n∏

j=1,j 6=i

(1− aj)



−
ci
2εi

∫ εi

−εi

[ai + x]10 ∂x

Denote

C (ε) =

{

x :
1

2
≤ x ≤ 1− ε and x lnx− x ≥

ε

4
− 1

}

ak =







−
εk
2

+
1

2

√

ε2k +
8εkθk
ck

if
θk
ck

< εk

θk
ck

if εk ≤ ak ≤
1

2
or ak ∈ C (εk)

1 otherwise

(6.13)

Lemma 3. ak is the unique NE of the gameΓP .

Proof. See Appendix A.3.

Consider the following notation:

ak,4 =
θk(2− εk)

4
∑

i θi
+

1

2

√
[
θk(2− εk)

2
∑

i θi

]2

+ 4
θkεk

2
∑

i θi

ak,5 = max C (εk)

Proposition 10. The optimal unit priceck to adopt is,∀ k ∈ N ,

ck =







2εkθk
ak,4(ak,4 + εk)

if ak,4 < εk

θk
εk

if ak,4 ≥ εk and
θk
∑

i θi
≤ εk

∑

i θi if εk ≤
θk
∑

i θi
≤

1

2
or

θk
∑

i θi
∈ C (εk)

θk
ak,5

otherwise

(6.14)
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Proof. See Appendix A.4.

6.5.3.2 Intervention design

Once the intervention scheme is given, the interaction between users can be modeled with the

game in Eq. (6.8), where

U I
i (a) = θi ln



aiE
[

[ri (ai + ni − ãi)]
1
0

] n∏

j=1,j 6=i

(1− aj)





Lemma 4. Assume2εk ≤ ak ≤ 1 − εk, ak is the unique NE of the gameΓI if rk → +∞ and

ãk = ak + εk.

Proof. See Appendix A.5.

Lemma 4 states that, using an extreme rule, each userk has the incentive to adopt a transmission

probability ak which is εk lower thanãk, to avoid the possibility of an intervention triggered by the

estimation errors. This is true as long asãk is not too low, otherwise for userk it is convenient to

adopt a transmission probability closer toãk, accepting the risk of an intervention triggered by the

estimation errors.

Proposition 11. If a∗k =
θk

∑n
i=1 θi

≥ 2εk, for every userk, then the intervention rulerk → +∞ and

ãk = a∗k + εk is an optimal affine intervention.

Proof. According to Lemma 4, users have the incentive to adopta∗ = (a∗1, . . . , a
∗
n). In this case the

intervention level is equal to0 because the estimation errors can not be higher thanε = (ε∗1, . . . , ε
∗
n).

Thus, the outcome of the system is equal to the benchmark optimum. Finally, this implies thatrk →

+∞ andãk = a∗k + εk define an optimal affine intervention rule, and, more specifically, also define

an optimal intervention rule within the class of all intervention rules.

Corollary 4. If a∗k =
θk

∑n
i=1 θi

≥ 2εk, the optimal affine intervention rule is optimal in the classof

all intervention rules.

We consider the following affine intervention rule, for every userk

rk → +∞

ãk =







a∗k + εk if a∗k ≥ 2εk

3εk otherwise
(6.15)
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Eq. (6.15) defines an optimal intervention rule ifa∗k ≥ 2εk, for every userk. If a∗k < 2εk, for

some userk, the intervention rule might not be optimal. This rule is designed with the objective to

minimize the intervention level. In fact, each useri has the incentive to adopt the actionãi−εi, which

results in an intervention level equal to0.

6.5.4 Comparison between pricing and intervention and someresults

In the following we investigate how the social welfare and the total throughput vary increasing

the number of users in the system, for the imperfect monitoring scenario, adopting both the pricing

and the intervention schemes. We consider the symmetric case, i.e.,θi = θj andεi = εj , ∀ i, j ∈ N .

Thus, the optimal transmission policy in the cooperative scenario, defined by Eq. (6.3), isa∗k = 1
n

,

for every userk.

First we assume that nobody, neither the designer nor the users, is aware of the estimation errors.

As discussed in Subsection 6.5.1, the designer adopts the schemes derived in Section 6.4 and the

users, consequently, have the incentive to adopt the actiona∗k = 1
n

. Fig 6.2 shows that the estimation

errors have different effects in the two schemes. In the pricing scheme they do not affect the total

throughput, and the social welfare is slightly affected only when the number of users exceeds1
εi
= 10

(corresponding to the conditiona∗k < εi). In fact, if the number of users is less than or equal to10,

each user is (on average) charged correctly. Conversely, ifthe number of users exceeds10, the ex-

pectation of the estimated transmission probabilityâk is higher than the real transmission probability

a∗k and each user is (on average) slightly overcharged, resulting in a social welfare slightly lower than

the one obtainable in the perfect monitoring scenario (see Fig. 6.1). In the intervention scheme the

effect of the estimation errors is stronger. In fact, they occasionally trigger intervention, which de-

creases both the throughput and the utility experienced by each user. Nevertheless, the social welfare

adopting intervention is still higher than the social welfare adopting pricing.

Now we consider the imperfect monitoring scenario assumingthat only the designer is aware of

the estimation errors. In this case, the designer can adopt the optimal pricing and intervention schemes

derived in Subsection 6.5.2. The social welfares obtainable with both schemes, shown in Fig. 6.3,

are only slightly higher than the social welfares obtainable when nobody is aware of the estimation

errors, shown in Fig. 6.2 (such differences will be clearer in Figs. 6.6 and 6.7). This means that

the designer can not gain much with the additional information on the presence of estimation errors,

and knowing their statistics. In particular, for the pricing scheme such information is useless if the
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Figure 6.2. Social welfare and total throughput vs. number of users, in the imperfect monitoring scenario,

assuming nobody is aware of the estimation errors

number of users is less than10, because the best pricing schemes derived in Subsections 6.5.2 and

6.4.2 are identical in this situation.

Now we investigate the performance achievable in the imperfect monitoring scenario assuming

that everyone is aware of the estimation errors. In this casethe users, knowing that the noise might

bias the payments (pricing) or the punishments (intervention), adopt a different NE action profile.

Since the designer can foresee the users’ behavior, it can adopt the pricing and intervention schemes

derived in Subsection 6.5.3. Fig. 6.4 shows that the performance attainable with the pricing scheme is

very similar to the preceding cases, only slightly worse. Conversely, the performance achievable with

the intervention scheme is completely different from the preceding cases. The intervention scheme

is able to achieve the optimal social welfare as long as the number of users is less than or equal

to 5 (corresponding to the conditiona∗k ≥ 2εk), as predicted by Proposition 11). If the number of

users is higher than5, both the total throughput and the social welfare decrease rapidly as the number

of users increases. This trend is a consequence of the actionadopted by the users in this situation,

which is constant and equal to2εk instead of scaling with the number of users. This causes a rapid

increase of the number of collisions. Finally, this trend determines a threshold in the number of users

such that, for a number of users lower than the threshold, intervention outperforms pricing, whereas,

for a number of users higher than the threshold, pricing outperforms intervention. The value of the

threshold for the considered system parameters is equal to15.

In Fig. 6.5 the value of the threshold is plotted varyingεk, the maximum intensity of the noise.
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Figure 6.3. Social welfare and total throughput vs. number of users, in the imperfect monitoring scenario,

assuming that only the designer is aware of the estimation errors
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Figure 6.4. Social welfare and total throughput vs. number of users, in the imperfect monitoring scenario,

assuming everybody is aware of the estimation errors
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Figure 6.5. Threshold vs. noise in the imperfect monitoring scenario, assuming everybody is aware of the

estimation errors

The threshold decreases asεk increases, because the intervention scheme is more sensitive to the esti-

mation errors than the pricing scheme. For the highest noiseconsidered, i.e.,εi = 0.2, the intervention

scheme outperforms the pricing scheme as long as the number of users is less than9.

In order to have a quantitative comparison between the different scenarios, in Figs. 6.6 and 6.7 we

plot the social welfare and the total throughput achievablefor all considered cases, adopting pricing

and intervention respectively. In both Figures, we see thatthe system achieves the best performance

if the monitoring is perfect. In case it is not, for the pricing scheme the best case is when only the

designer is aware of the estimation errors, whereas the worst case is when also the users are aware of

the estimation errors. It is not surprising that, in a strategic setting, the more information the selfish

users have the worse the efficiency of the equilibrium point.Conversely, for the intervention scheme

we notice that when the users are aware of the estimation errors the social welfare might be higher

than when they are not. This result does not contradict the previous one, in fact it is caused by the

additional information that the designer has as well: it knows that the users know that estimation errors

exist, thus, it can design different intervention rules. Inparticular, it can adopt a more severe rule (e.g.,

the extreme rule, withrk → +∞) that forces the users to keep their transmission probabilities low

in order to avoid that the intervention is occasionally triggered by the estimation errors. Fig. 6.7

shows that there is a threshold in the number of users such that, for a number of users lower than

the threshold, it is socially convenient that the users are aware of the estimation errors, while for a
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Figure 6.6. Social welfare and total throughput vs. number of users adopting pricing, for different scenar-

ios

number of users higher than the threshold it is not.

Finally, in Figs. 6.8 and 6.9 we consider the imperfect monitoring scenario assuming that ev-

eryone is aware of the estimation errors, and we compare the considered intervention scheme of Eq.

(6.15) with the optimal affine intervention rule. The optimal affine intervention rule is computed

adopting an exhaustive search algorithm. Notice that this is possible because we consider a sym-

metric scenario. In asymmetric scenarios the calculation of the optimal rule through an exhaustive

search algorithm would be computationally too expensive. Fig. 6.8 shows the action selected by the

users and the average intervention level varying the numberof users, while Fig. 6.9 shows the so-

cial welfare and the total throughput varying the number of users. Proposition 11 guarantees that the

considered intervention rule is optimal for a number of users equal or lower than5 (corresponding to

the conditiona∗k ≥ 2εk). However, as we can see, the considered intervention rule is optimal until9

users. If the number of users exceeds9, it is preferable to be more aggressive with the intervention

rule, using ãak lower than3εk and forcing the users to decrease their transmission probability as well,

even though this means that the intervention is occasionally triggered.

6.6 Conclusions

In this chapter we tackle the problem of designing pricing and intervention schemes to provide

incentives for the users to exploit efficiently the channel resource in a contention game. The design
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Figure 6.7. Social welfare and total throughput vs. number of users adopting intervention, for different

scenarios
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Figure 6.8. The users’ actions and the average level of intervention vs.number of users in the imperfect

monitoring scenario, assuming everybody is aware of the estimation errors, adopting the considered policy
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Figure 6.9. Social welfare and total throughput vs. number of users in the imperfect monitoring scenario,

assuming everybody is aware of the estimation errors, adopting the considered policy and the optimal one

of the optimal schemes strongly depends on the parameters ofthe system, such as the statistics of the

estimation errors, and on the information held by the designer and by the users.

In this work we have considered both the perfect monitoring and the imperfect monitoring scenar-

ios, assuming, for the latter case, that (1) neither the designer nor the users are aware of the estimation

errors, (2) only the designer is aware of the estimation errors, and (3) both the designer and the users

are aware of the estimation errors. The optimal linear pricing and affine intervention schemes have

been analytically computed (for the case (3), the considered intervention scheme is optimal only in

some conditions).

The analysis shows that the intervention scheme, differently from the pricing scheme, is able

to achieve the optimal performance in the perfect monitoring scenario. On the other hand, in the

imperfect monitoring scenario intervention might be triggered even when the users adopt the recom-

mended actions, resulting in a degradation of the system performance. Nevertheless, we noticed that

intervention outperforms pricing in cases (1) and (2), while for case (3), as a rough general princi-

ple, intervention achieves greater efficiency than pricingwhen the number of users is small and the

opposite is true when the number of users is large.

Another interesting result is related to the effect of the information held by the different entities.

While it is always desirable for the designer to have as much information as possible, the effect of

the information held by the selfish users is not trivial. In many cases it is preferable that the users are

uninformed, but, sometimes, the information held by the users allows the designer to design better



112 Chapter 6. Designing and Selecting MAC Protocols With Selfish Users

rules. In our particular case, we have seen that the intervention can achieve the benchmark optimum

if the users are aware of the estimation errors and the numberof users is not too high. This suggests

the idea, that might be true also in other settings, of hidingsome system parameters from the users in

determinate conditions.

Finally, the analysis in this chapter can serve as a guideline for a designer to select between pricing

and intervention and to design the best policy for the selected scheme, depending on some system

parameters such as the number of users, the statistics of themonitoring noise and the information

held by the designer and the users.



Chapter 7
Information Revelation and Intervention

with an Application to Flow Control

In this chapter1 we study the interaction between a designer and a group of strategic and self-

interested users who possess information the designer doesnot have. Because the users are strategic

and self-interested, they will act to their own advantage, which will often be different from the interest

of the designer, even if the designer is benevolent and seeksto maximize (some measure of) social

welfare. In the settings we consider, the designer and the users can communicate (perhaps with

noise), the designer can observe the actions of the users (perhaps with error) and the designer can

commit to (plans of) actions –interventions– of its own. The designer’s problem is to construct and

implement amechanismthat provides incentives for the users to communicate and act in such a way

as to further the interest of the designer –despitethe fact that they are strategic and self-interested

and possess private information. To address the designer’sproblem we propose a general and flexible

framework that applies to many scenarios. In an important class of environments, we find conditions

under which the designer can obtain its benchmark optimum – the utility that could be obtained if

it had all information and could command the actions of the users – and conditions under which it

cannot. More broadly we are able to characterize the solution to the designer’s problem, even when it

does not yield the benchmark optimum. Because the optimal mechanism may be difficult to construct

1The material presented in this chapter has been published in:

[J4] L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar, “Intervention with Private Information, Imperfect

Monitoring and Costly Communication: Design Framework,”Submitted to IEEE Trans. Commun.

[J5] L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar, “Intervention with Complete and Incomplete

Information: Application to Flow Control,”Submitted to IEEE Trans. Commun.
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and implement, we also propose a simpler and more readily-implemented mechanism that, while

falling short of the optimum, still yields the designer a "good" result. We then apply our framework

and results to design a flow control management system, in both the complete and the incomplete

information scenarios. Illustrative results show that theconsidered schemes can considerably improve

the efficiency of the network.

7.1 Introduction

We study the interaction between a group of users and a designer. If the users are compliant

or the designer can command the actions of the users, then thedesigner is faced with an optimal

control problem of the sort that is well-studied. Little changes if the users have private information

(about themselves or about the environment) that the designer does not have but the designer can

communicate with the users, because the designer can simplyask or instruct the users to report that

information. However, a great deal changes if the users are not compliant but rather are self-interested

and strategic and the designer can not command the actions and reports of the users. In that case, the

users may take actions and/or provide reports that are in their own self-interest but not necessarily in

the interest of the designer. The objective of this work is tounderstand the extent to which the designer

can provide incentives to the users to take actions and provide reports that further the objectives of the

designer, be those selfish or benevolent. (The case of a benevolent designer is probably the one of most

interest, but the problem faced by a benevolent designer is no easier than the problem faced by a selfish

designer: the goal of a benevolent designer is to maximize some measure of social welfare – which

might include both total utility and some measure of fairness – but the goal of an individual user is to

maximize its own utility; hence the incentives of the designer and of the individual user are no more

aligned when the designer is benevolent than when the designer is selfish, so the same incentives to

misrepresent and misbehave are present in both circumstances. Such incentives frequently lead to the

over-use of resources and to substantial inefficiencies [9,11].) Here, we are specifically interested in

settings in which the users can send reports to the designer and the designer in turn can send messages

to the users before the users act, after which the designer may take actions of its own –interventions.

Our use of intervention builds on [12, 16, 42, 66], but we go beyond that work in considering private

information, imperfect monitoring and costly communication – in addition to intervention.

Our work has something in common with the economic theory ofmechanism designin the tra-

dition of [94–98]. Indeed, our general framework builds on that of [99], and the abstract theory of

mechanism design – in particular the revelation principle –does play a role. However, [99] does not
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solve any of our problems because after we use the revelationprinciple to restrict our attention to

incentive compatible direct mechanisms we must stillconstruct the optimal mechanism, which is a

non-trivial undertaking.2 Moreover, when we admit physical (and other) constraints, noisy communi-

cation and imperfect monitoring, the revelation principledoes not help because it entirely obscures all

of these complications. Finally, the revelation principlesimply does not hold when communication is

costly.

We treat settings in which the users have private information but (perhaps limited and imperfect)

communication between the users and the designer – more precisely, thedeviceemployed by the de-

signer – is possible. The users have the opportunity to send reports about their private information,

and the device can in turn send messages to the users; in both cases, we allow for the possibility that

communication is noisy so that the report/message sent is not necessarily the report/message received.

After this exchange of information, the users take actions.Finally, the device, having (perhaps im-

perfectly) observed these actions, also has the opportunity to act. Generalizing a construction of [99],

we formalize this setting as acommunication mechanism. The device the designer employs plays two

roles: first tocoordinatethe actions of the usersbeforethey take them and second todiscipline the

usersafterwards. Because users are self-interested and strategic, their reports and actions will only

serve the interest of the designer if they also serve their own interests. Thus we are interested in strat-

egy profiles for the users that each user finds optimal, given the available information, the strategies

of others and the nature of the given device; we refer to theseascommunication equilibria. Note that

the device is not strategic – it is a device after all – butthe designer behaves strategically in choos-

ing the device. Because we focus here on the problem of the designer, we are interested in finding

devices that support equilibria that the designer finds optimal. (If the designer is benevolent – i.e.,

intends to maximize social welfare, perhaps constrained bysome notion of fairness – these devices

will also serve the interests of the users as a whole, but if the designer is self-interested they may not.)

We are particularly interested in knowing when the designercan find a device so as to achieve his

benchmark optimum – the outcome he could achieve if he knew all relevant information and users

were fully compliant – despite the fact that information is in fact private and users are in fact self-

interested. For a class of environments that includes many engineering environments of interest (e.g.,

power control [15, 16], medium access control (MAC) [12, 25], and flow control [24–28]) we find

2Proposition 1 in [99] shows that the problem of choosing the optimal incentive compatible direct mechanism is a linear

programming problemprovidedthat type sets and action sets are finiteand fixedand that the designer can send arbitrary

messages – but in our context the action sets may not be finite,the action set of the designer is definitely not fixed, and the

designer’s choice of messages may be constrained, so our problem is different, and much more complicated.
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conditions under which there exist mechanisms that achievethe benchmark optimum and conditions

under which such mechanisms do not exist. In case they do not exist, we find conditions such that the

problem of finding an optimal protocol can be decoupled. Because the optimal protocol may still be

difficult to compute, we also provide a simple algorithm thatconverges to a protocol that, although

perhaps not optimal, still yields a ‘good’ outcome for the designer. We then apply our framework

and results to design a flow control management system, in both the complete and the incomplete

information scenarios. First, we analytically compute theNE and the BNE of the complete and in-

complete information flow control games without intervention, quantifying its inefficiency. Then, we

apply the intervention scheme in the complete information setting and we design the device that can

achieve the optimal performance. Finally, we apply our theoretical framework to design schemes able

to deal with the incomplete information scenario as well. Illustrative results show that the considered

schemes can considerably improve the efficiency of the network.

Throughout, we assume that the designer cancommitto a choice of a device that is pre-programmed

to carry out a particular plan of actionafter the reports and actions of the users. In mechanical terms,

such commitment is possible precisely because the designerdeploys a device – hardware or software

or both –and then leaves. Indeed, the desire of the designer to commit is one reason that it em-

ploys a device. Although other assumptions are possible, this assumption seems most appropriate for

the settings we have in mind, in which the designer is a long-lived and experienced entity who has

learned the relevant parameters (user utilities and distribution of user types) over time, but the users

are short-lived, come and go but do not interact repeatedly:in a particular session they are not playing

a repeated game and are not forward-looking.

The remainder of this chapter is organized as follows. Section 7.2 introduces our framework of

devices and mechanisms and the notion of equilibrium. Section 7.3 presents an example to illustrate

how private information, information revelation and intervention all matter. Section 7.4 asks when

some devices achieve the benchmark optimum. Section 7.5 studies the properties of the optimal de-

vices and Section 7.6 offers a constructive procedure for choosing devices that are simple to compute

and implement – if not necessarily optimal. Section 7.7 introduces the flow control problem. Section

7.8 studies flow control games without incentive schemes andshow their inefficiency. Section 7.9

designs the incentive schemes for the complete and incomplete information scenarios and quantifies

the improvement in the network efficiency. Section 7.10 concludes with some remarks.
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7.1.1 Related work

There is by now a substantial communication engineering literature that addresses the problem

of providing incentives for strategic users to obey a particular resource allocation scheme. Such

incentives might be provided in a number of different ways. [12, 16, 42, 66] provide incentives via

intervention in the absence of private information. A rather different literature, including [37, 39,

41, 100], adopts literal pricing schemes: users are required to make monetary payments for resource

usage.3 Literal pricing schemes require the designer to have specific knowledge (the value of money

to the users) and require a technology for making monetary transfers, which is missing in many

settings, such as wireless communication. Moreover, it does not necessarily solve the problem of a

benevolent designer since monetary payments are by definition costly for the user making them and

hence wasteful. An additional difficulty in employing literal payment schemes is that it is debatable

whether users would agree to a pricing scheme that dynamically varies with the state of the system,

in particular if users have to pay for a service that had hitherto been free. A smaller literature [38,

102, 103] addresses environments in which users have private information – their private monetary

valuations for access to the resource – and uses ideas from mechanism design and auction theory [104]

to create protocols in which users are asked to report their private monetary valuations, after which

access to the resource is apportioned and users make monetary payments according to their access and

the reports of valuations. For very detailed comparison of pricing, intervention and other approaches,

see [105].

7.2 Framework

We consider adesignerand a collection ofusers. The designer chooses anintervention deviceand

then leaves – the designer itself takes no further actions. In a singlesessionthe device interacts with

a fixed number of usersn, labeled from1 to n. We will write N = {1, . . . , n} for the set of users.

We think of the users in a particular session as drawn from a pool of potential users, so users may

be (and typically will be) different in each session. We allow for the possibility that users are drawn

from different pools – e.g., occupy different geographicallocations or utilize different channels.

Useri is characterized by an element of a setTi of types, which encodes all relevant information

3A different literature, which includes [13,15,101] but is quite far from the work here, uses pricing in scenarios where

users are compliant, rather than self-interested and strategic. In those scenarios, however, the function of pricing is de-

centralization: prices induce utility functions for the users that lead them to take the desired actions without the need for

centralized control. In these scenarios pricing is figurative rather than literal: monetary payments are not actually required.
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about the user. WriteT = T1 × . . . × Tn for the set of possible type profiles. Users know their own

type; users and the designer know the distribution of user typesπ (a probability distribution onT ). In

each session, useri chooses anaction from the setAi of actions. We writeA = A1 × . . . × An for

the set of possible action profiles and(ai, a−i) for the action profile in which useri chooses action

ai ∈ Ai and other users choose the action profilea−i ∈ A−i = A1 × . . . × Ai−1 × Ai+1 . . . × An;

we use similar notation for types, etc.

The designer is characterized by its utility function and the setD of devicesit might use. A

device – which might consist of hardware or software or both –has four features: 1) it can receive

communications from users, 2) it can send communications tousers, 3) it can observe the actions

of users, and 4) it can take actions of its own. As in [66], we interpret the actions of the device as

interventions. We formalize a device as a tupleD = 〈(Ri), (Mi), µ,X,Φ, ε
R, εM , εA〉, where:

• Ri is the set ofreportsthat useri might send; writeR = R1 × . . . × Rn for the set of report

profiles;

• Mi is the set ofmessagesthat the device might send; writeM =M1 × . . .×Mn for the set of

message profiles;

• µ : R→ ∆(M) is themessage rule, which specifies the (perhaps random) profile of messages

to be sent to the users as a function of the reports received from all users; ifr is the profile of

observed reports we writeµr for the corresponding probability distribution onM , andµr(m)

for the probability that the messagem is chosen when the observed report isr;4

• X is the set ofinterventions(actions) the device might take;

• Φ : R × M × A → ∆(X) is the intervention rule, which specifies the (perhaps random)

intervention the device will take given the received reports, the transmitted messages and the

observed actions; ifr are the observed reports,m the transmitted messages anda the observed

actions, we writeΦr,m,a for the corresponding probability distribution onX;

• εR : R → ∆(R) encodes the noise in receiving reports: users send the report profile r but the

designer observes a random profiler̂ distributed according toεRr ;

• εM : M → ∆(M) encodes the noise in receiving messages: the device sends the message

profilem but users observe a random profilem̂ distributed according toεMm ;
4If the messagem is always chosen given the observed report profiler, µr is point mass atm, i.e.,µr(z) = 1 if z = m,

µr(z) = 0 otherwise. However, in this case we usually prefer to abuse notation and writeµ(r) = m. Below, we will make

similar notational abuses without further comment.
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• εA : A → ∆(A) encodes the error in monitoring actions: the users choose anaction profilea

but the device observes a random profileâ distributed according toεAa .

The set of all conceivable devices is very large, but in practice the designer will need to choose a de-

vice from some prescribed (perhaps small) subsetD, so we assume this throughout. In this generality,

reports and messages could be entirely arbitrary but typically reports will provide (perhaps incom-

plete) information about types, and messages will provide (perhaps incomplete) recommendations for

actions, and we will frequently use this language.

If the report spaces are singletons then reports are meaningless, so singleton report spacesRi

express the absence of reporting. Similarly, a singleton message spaceM expresses the absence of

messaging and a singleton intervention spaceX expresses the absence of intervention. The absence

of noise/error with regard to reports, messages or actions can be expressed by requiring that the

corresponding mapping(s) be the identity; e.g,εRr is point mass atr and sor̂ = r for all report

profiles, etc. However, in any of these cases we would usuallyprefer to abuse notation and omit the

corresponding component of the tuple that describes the device.

The utility Ui(a, t, ri, x) of useri depends on the actionsa and typest of all users, the reportri

chosen by useri, and the interventionx of the designer. The utilityU(a, t, r,m, x) of the designer

depends on the actionsa and typest of all the users, on the reportsr, the messagesm and intervention

x of the designer. The dependence of utility on reports and messages allows for the fact that commu-

nication may be costly. Note that the utility of a user depends only on the report that user sends, but

the utility of the designer depends on the messages it sendsand on the reports of the users. If this

seems strange, keep in mind that if the designer is benevolent and seeks to maximize social utility, he

certainly cares about the reporting costs of users.

A communication mechanism, or mechanismfor short, is a tupleC = 〈N, (Ti, Ai, Ui), π, U,D〉

that specifies the setN of users, the setsTi of user types, the setsAi of user actions, the utility

functionsUi of users, the distributionπ of types, the utility functionsUi of users, the utility function

U of the designer, and the deviceD. We view the designer as choosing the device, which is pre-

programmed, but otherwise taking no part: the users choose and execute plans and the device carries

out its programming.

The operation of a communication mechanismC is as follows.

• users make reports to the device;

• the device “reads” the reports (perhaps with error) and sends messages to the users (perhaps

depending on the realization of the random rule);
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• users “read” the messages5 (perhaps with error) and take actions;

• the device “monitors” the actions of the users (perhaps imperfectly) and, following the rule,

makes an intervention (perhaps depending on the realization of the random rule).

A strategyfor useri is a pair of functionsfi : Ti → Ri, gi : Ti ×Mi → Ai that specify which

report to make, conditional on the type of useri, and which action to take, conditional on the type of

useri and the message observed. We do not specify a strategy for thedevice because the device is not

strategic; its behavior is completely specified by the message rule and the intervention rule – but the

designer behaves strategically in choosing the device. Given a profile(f, g) of user strategies, and

the intervention deviceD, the expected utility of a useri whose type isti is obtained by averaging

over all random variables involved, i.e.,6:

EUi(f, g, ti,D) =
∑

t−i∈T−i

π(t | ti)
∑

r̂∈R

εRr (r̂)
∑

m∈M

µr̂(m)
∑

m̂∈M

εMm (m̂)
∑

â∈A

εAa (â)
∑

x∈X

Φr̂,m,â(x)Ui(a, t, ri, x)

whererj = fj(tj) andaj = gj(tj, m̂j), ∀ j ∈ N , are the reports sent and the actions taken by users.

Similarly, the expected utility of the designer is

EU(f, g,D) =
∑

t∈T

π(t)
∑

r̂∈R

εRr (r̂)
∑

m∈M

µr̂(m)
∑

m̂∈M

εMm (m̂)
∑

â∈A

εAa (â)
∑

x∈X

Φr̂,m,â(x)U(a, t, r,m, x)

The strategy profile(f, g) is anequilibrium if each user is optimizing given the strategies of other

users and the deviceD; that is, for each useri we have

EUi(fi, f−i, gi, g−i, ti,D) ≥ EUi(f
′
i , f−i, g

′
i, g−i, ti,D)

for all strategiesf ′i : Ti → Ri, g′i : Ti ×Mi → Ai.7 We often say that the deviceD sustainsthe

profile (f, g). We remark that the existence of such an equilibrium is not always guaranteed without

additional assumptions and needs to be explicitly addressed in the specific case at hand.

Note that the action of the device is fixed and not strategic – in particular, the interventions planned

by the device but not executed with positive probability – that is, threats that are not carried out – need

5Note that we assume that each useri can only read its own messagemi. However, our framework is suitable to model

also situations in which useri is able to hear the messagemj intended for userj. In this case it is sufficient to focus on

devices in which the message sent to userj is part of the message sent to useri.
6We have tacitly assumed that all the probability distributions under consideration have finite or countably infinite

support – which will certainly be the case if the spaces underconsideration are themselves finite or countably infinite; in a

more general context we would need to replace summations by integrals and to be careful about measurability, etc.
7The notion of equilibrium defined here is that of a Bayesian Nash equilibrium of the Bayesian game induced by the

communication mechanism. For simplicity, we have restricted attention to equilibrium inpure strategies; we could also

allow for equilibria inmixed strategies.



7.2. Framework 121

not be optimal. This reflects our assumption that the designer can commit to using the device. Again:

the device does not behave strategically,the designer behaves strategically in choosing the device.

The designer seeks to optimize his own utility by choosing a deviceD from some prescribed

classD of physically feasible devices. Because users are strategic, the designer must assume that,

whatever deviceD is chosen, the users will follow some equilibrium strategy profile (f, g). Since

the designer will typically recommend actions, we assume that, if more than one equilibrium strategy

profile exists, the users choose (because they are are coordinated to) the equilibrium that the designer

most prefers (in case of a benevolent manager, it usually coincides with the equilibrium that the users

prefer). Hence, the designer has to solve the following Optimal Device (OD) problem8:

OD argmax
D∈D

maxf,gEU(f, g,D)

subject to:

EUi(fi, f−i, gi, g−i, ti,D) ≥ EUi(f
′
i , f−i, g

′
i, g−i, ti,D)

∀ i ∈ N , ∀ ti ∈ Ti , ∀ f
′
i : Ti → Ri , ∀ g

′
i : Ti ×Mi → Ai

We say that a solutionD of the above problem is anoptimal device. To maintain parallelism with

some other literature, we sometimes abuse language and refer to the designer’s problem as choosing

anoptimal mechanism– even though the designer only chooses the device and not thetypes of users,

their utilities, etc. Note that optimality is relative to the prescribed setD of considered devices.

Moreover, the expected utility the designer obtains choosing the optimal device must not be confused

with thebenchmark optimumutility the designer could achieves if users were compliant, which is in

general higher. If they coincide, we say that the deviceD is amaximum efficiency device.

7.2.1 Null reports, messages and interventions

In many (perhaps most) concrete settings, it is natural to presume that users might sometimes

choose not to make reports and that the device might sometimes not send messages or make an in-

tervention. The easiest way to allow for these possibilities is simply to assume the existence of null

reports, null messages and null actions. In particular, we can assume that for each useri there is

a distinguished reportr∗i which is to be interpreted as ‘not sending a report’. (On the device side,

observingr∗i should be interpreted as ‘not receiving a report’.) Becausenot making a report should

8Because the utility functions of users depend on reports, and the utility function of the designer depends on messages

and reports, which are parameters of the device chosen, thistacitly assumes that utility functions are defined on a domain

sufficiently large to encompass all the possibilities that may arise when any deviceD ∈ D is chosen.



122 Chapter 7. Information Revelation and Intervention with an Application to Flow Control

be costless, we should assume that – fixing types, reports of others to the device, actions by the users

and intervention by the device –r∗i yields utility at least as great as any other report:Ui(a, t, r
∗
i , x) ≥

Ui(a, t, ri, x) andU(a, t, r∗i , r−i,m, x) ≥ U(a, t, ri, r−i,m, x), for all a, t, x, ri, r−i,m. Given this

assumption, and using utility when sending the reportr∗i as the baseline, we can interpret the dif-

ferencesUi(a, t, r
∗
i , x) − Ui(a, t, ri, x) andU(a, t, r∗i , r−i,m, x) − U(a, t, ri, r−i,m, x) as the cost

of sending the reportri to the useri and to the designer, respectively. In this generality, the cost of

sending a report might depend on all other variables. We remark that this cost does not take into

consideration the impact of the communication on the interaction among the users and the interven-

tion device: in deciding whether or not to send a report, a user must take into account the fact that

sending a report may alter the messages sent by the device andhence the actions of the users and the

intervention of the device. So sending a report may well leadto higher utility because it influences

the strategic choices of others.

Similarly, we could assume that for each useri there is a distinguished messagem∗
i that the

device might send but which we interpret as ‘not sending a message’. (On the user side, we interpret

receipt of the messagem∗
i as ‘not receiving a message’.) Because not sending a messagem∗

i should

be costless, we assume thatU(a, t, r,m∗
i ,m−i, x) ≥ U(a, t, r,mi,m−i, x) for all a, t, r,m−i, x,mi,

and so interpret the differenceU(a, t, r,m∗
i ,m−i, x) − U(a, t, r,mi,m−i, x) as the cost of sending

the messagemi, which might depend on all other variables.

Finally, we could assume that there is a distinguished interventionx∗ that we interpret as ‘not mak-

ing an intervention’. If (as we usually do) we want to interpret an intervention as apunishment, we

should assume thatx∗ yields utility at least as great as any other intervention for each user and the de-

signer:Ui(a, t, ri, x
∗) ≥ Ui(a, t, ri, x) andU(a, t, r,m, x∗) ≥ U(a, t, r,m, x) for all i, a, t, r,m, x,

and we interpret the differencesUi(a, t, ri, x
∗)−Ui(a, t, ri, x) andU(a, t, r,m, x∗)−U(a, t, r,m, x)

as the cost of the intervention to the useri and to the designer, respectively, which might depend on

all other variables.

If the sets of reports (respectively, messages, interventions) are singletons, then by default there

are no possible reports (respectively, messages, interventions).

If D is a device for which ‘not making an intervention’ is possible and(f, g) is an equilibrium

with the property thatΦr̂,m,â(x
∗) = 1, for all type profilest, observed reportŝr, sent messagesm and

observed actionŝa (with r̂,m andâ occurring with positive probability), we say thatD sustains(f, g)

without intervention. The most straightforward interpretation is that the device threatens punishments

for deviating from the recommended actions and that the threats are sufficiently severe that they do

not need to be executed. Again, this is natural in context: byusing the intervention device, the
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designercommitsto meting out punishments for deviation, even if those punishments are costly for

the designer as well as for the users.

7.2.2 Direct mechanisms

To be consistent with [99], we say that the mechanismCd is adirect mechanismif Ri = Ti for

all i (users report their types, not necessarily truthfully) andM = A (the device recommends action

profiles), there are no errors, and reports and messages are costless (i.e., utility does not depend

on reports or messages). IfCd is a direct mechanism we write(f∗, g∗) = (f∗1 , . . . , f
∗
n, g

∗
1 , . . . g

∗
n)

for the strategy profile in which users are honest (report their true types) and obedient (follow the

recommendations of the device); that is,f∗i (ti) = ti andg∗i (ti, ai) = ai for every useri, typeti, and

recommendationai = µi(ti). If (f∗, g∗) is an equilibrium, we say thatCd is incentive compatible.

If a device is such that the resulting mechanism is an incentive compatible direct mechanism, we say

that the device is incentive compatible.

Incentive compatible direct mechanisms play a special rolebecause of the following general-

ization of the revelation principle. (We omit the proof, which is almost identical to the proof of

Proposition 2 in [99].)

Proposition 12. If C is a mechanism for which reports and messages are costless and (f, g) is an

equilibrium of the mechanismC, then there is an incentive compatible direct mechanismCd with the

same action and intervention spaces for which the honest andobedient strategy profile(f∗, g∗) yields

the same probability distribution over outcomes as the profile (f, g).

As we shall see later (this version of) the revelation principle is useful but its usefulness is limited

for a number of reasons. The first reason is that, although it restricts the class of mechanisms over

which we must search to find the designer’s most preferred outcome, we still have to find the optimal

device in this class, which is not always an easy task. The second reason is that in practice there

will often be physical limitations on the devices that the designer can employ (because of limits

to the device’s monitoring capabilities, for instance) andhence limitations on the communication

mechanisms that should be considered, but these may not translate into limitations on a corresponding

direct mechanism. For instance, in a flow control scenario, it will often be the case that the device can

observe total flow but not the flow of individual users and can only observe this flow with errors; no

such restrictions occur in direct mechanisms. Finally, as noted before, the revelation principle does

not hold when communication is costly.
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7.2.3 Special cases

The framework we have described is quite general so it is worth noting that many, perhaps more

familiar, frameworks are simply special cases:

• If T , R, M andX are all singletons, then our framework reduces to an ordinary static game

with complete information and our equilibrium notion reduces to Nash equilibrium.

• If R, M andX are all singletons, then our framework reduces to an ordinary Bayesian game

and our equilibrium notion reduces to Bayesian Nash equilibrium.

• If T ,R andX are all singletons, then our framework reduces to a game witha mediation device

and our equilibrium notion reduces to correlated equilibrium.

• If T , R andM are all singletons, then our framework reduces to the intervention framework

of [66] and our equilibrium notion reduces to intervention equilibrium.

• If there are no errors, and reports and messages are costless, then our framework reduces to a

communication game in the sense of [99] and our equilibrium notion reduces to communication

equilibrium.

7.3 Why Intervention and Information Revelation Matter

To illustrate our framework, we give a simple example to showthat strategic behavior matters,

intervention matters, and communication plus intervention matters – in the sense that they all change

the outcomes that can be achieved.

We consider the problem of access to two channelsA andB (e.g., two different bandwidths, or

two different time slots). In each session, two users (identified as user1 and user2, but drawn from

the same pool of users) can access either or both channels; weuseA,B,AB to represent the obvious

actions. Each user seeks to maximize its utility, which is the sum of its own goodput in the two

channels.

Potential users are of four types:HL,ML, LM andLH; the probability that a user is of a given

type is1/4. We interpret a user’s typexy as the quality of channelsA,B to that user: channelA has

quality x (Low, Medium or High), channelB has qualityy (Low, Medium or High).9 The goodput

9Note that the quality to a user is correlated across channels: each user finds one channel to be of Low quality and the

other to be of Medium or High quality. This is not at all essential – the qualitative comparisons would be unchanged if we

assumed quality to a user was uncorrelated across channels –but the calculation would be much messier.
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obtained by useri = 1, 2 from a given channel depends on the user’s type and on which user(s) access

the channel.

• if useri does not access the channel it obtains goodput= 0

• if both users access the channel they interfere with each other and both obtain goodput= uI

• if useri is the only user to access channelA and its type isxy then it obtains goodputux (where

x = L,M,H)

• if useri is the only user to access channelB and its type isxy then it obtains goodputuy (where

y = L,M,H)

We assume2uI < uL < uM < uH .

We consider five scenarios: (I) no intervention or communication, (II) communication but no

intervention, (III) intervention but no communication, (IV) intervention and communication, and

(V) the benchmark setting in which the designer has perfect information and users are obedient.

For simplicity, we assume that the devices available to the designer are very restricted: reports and

messages are costless, there are no errors and the actions are eitherx∗ = “take no action” orx1 =

“access both channels”. If the device takes no action, user utilities are as above; if the device accesses

both channels then each user’s goodput isuI on each channel the user accesses.10 The designer is

benevolent and hence seeks to maximize social utility – the expected sum of user utilities.

I No communication, No Intervention Independently of the user’s type, the other user’s type,

and the other user’s action, it is always strictly better foreach user to access both channels,

so in the unique (Bayesian Nash) equilibrium both users always choose actionAB , and (in

obvious and suggestive notation), (expected) social utility isEU(I) = 4uI .

II Communication, No Intervention Nothing changes from scenarioI : no matter what the users

report and the device recommends, it is strictly better for each user to access both channels, so

in the unique equilibrium both users always choose actionAB , and social utility isEU(II) =

4uI .

10Note that in this model the utility obtained when accessing achannel in the presence of interference does not depend

on the number of interferers present and on their channel qualities, which may not be realistic in certain scenarios. This

assumption is made here in order to keep the discussion simple, but could be easily relaxed at the price of a much more

cumbersome discussion in terms of notation and number of cases to be considered. In addition, in most reasonable scenarios

(i.e., when the goodput obtained in the presence of any amount of interference is significantly lower than that obtained in

its absence), the qualitative conclusions we draw here would be maintained.
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III Intervention, No Communication The setsRi of reports andM of messages are singletons,

so the device obtains no information about the users and can suggest no actions to the users.

The best the designer can do is to use an intervention rule that coordinates the two users to

different resources; given the restriction on device actions an optimal rule is:

Φ (a1, a2) =







x∗ if a1 = A and a2 = B

x1 otherwise

wherea1 anda2 are the actions adopted by the two users. Given this intervention rule, the

best equilibrium strategy profile (i.e., the one that yieldshighest social utility) is for user1 to

access channelA and user2 to access channelB, so that there is never a conflict.11 Given the

distribution of types, social utility isEU(III) = (uH/2) + (uM/2) + uL.

IV Communication, Intervention We consider a direct mechanism in which the users report

their types (Ri = Ti) and the deviceD recommends actions (M = A). The device uses the

following message and intervention rules:

µ(r1, r2) =







(A,B) if r1 = HL or r1 =ML or r2 = LH or r2 = LM

(B,A) otherwise

Φ(r1, r2, a1, a2) =







x∗ if (a1, a2) = µ(r1, r2)

x1 otherwise

wherer1, r2 are the reports anda1, a2 are the actions. This is an incentive compatible direct

mechanism. To see this we must show that the honest and obedient strategy(f∗1 , g
∗
1) is the

most preferred strategy for all types of user1, given that user2 follows its honest and obedient

strategy(f∗2 , g
∗
2), and conversely for user2. We will describe the calculations for user1, from

which those for user2 can be derived by the symmetry of the problem.

Assume user1 is of typeHL. If it is honest and obedient, it obtains a utility ofuH because it

accesses its preferred channel. This utility is always higher than the utility it obtains not being

obedient, i.e., if it does not follow the recommendation. Infact in this case it never obtains

a utility higher than2uI because the channels are interfered by the device. Now let assume

user1 is obedient but not honest. If it reports typeML it can still access its preferred channel,

obtaining a utility ofuH , the same as if it were honest. If it reports typeLM orLH, it accesses

half of the time its preferred channel and half of the time itsless preferred channel (depending

11This is not the only equilibrium but it is the best, both for the designer and the users. In the other equilibrium the users

access both channels.
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on the type of user2), obtaining an expected utility of(uH + uL)/2 which is lower thanuH .

These considerations translate mathematically in the following relations, stating that user1 has

an incentive to be honest and obedient if it is of typeHL,

EU1(f
∗, g∗,HL,D) =







uH > 2uI ≥ EU1(f1, f
∗
2 , g1, g

∗
2 ,HL,D) ∀ f1, if g1(HL, a1) 6= a1

uH = EU1(f1, f
∗
2 , g

∗,HL,D) if f1(HL) =ML

uH > (uH + uL)/2 = EU1(f1, f
∗
2 , g

∗,HL,D) if f1(HL) = LM orLH

Analogously, if user1 is of typeML, LM orLH we obtain:

EU1(f
∗, g∗,ML,D) =







uM > 2uI ≥ EU1(f1, f
∗
2 , g1, g

∗
2 ,ML,D) ∀ f1, if g1(ML, a1) 6= a1

uM = EU1(f1, f
∗
2 , g

∗,ML,D) if f1(ML) = HL

uM > (uH + uL)/2 = EU1(f1, f
∗
2 , g

∗,ML,D) if f1(ML) = LM orLH

EU1(f
∗, g∗, LM,D) =







(uM + uL)/2 > 2uI ≥ EU1(f1, f
∗
2 , g1, g

∗
2 , LM,D) ∀ f1, if g1(LM, a1) 6= a1

(uM + uL)/2 = EU1(f1, f
∗
2 , g

∗, LM,D) if f1(LM) = LH

(uM + uL)/2 > uL = EU1(f1, f
∗
2 , g

∗, LM,D) if f1(LM) = HL orML

EU1(f
∗, g∗, LH,D) =







(uH + uL)/2 > 2uI ≥ EU1(f1, f
∗
2 , g1, g

∗
2 , LH,D) ∀ f1, if g1(LH, a1) 6= a1

(uH + uL)/2 = EU1(f1, f
∗
2 , g

∗, LH,D) if f1(LH) = LM

(uH + uL)/2 > uL = EU1(f1, f
∗
2 , g

∗, LH,D) if f1(LH) = HL orML

Notice that following this mechanism never leads to interference (users always access different

channels) and users are “assigned” to the most efficient channels7/8 of the time. However,

users are notalwaysassigned to the most efficient channels: if type profiles are(t1, t2) =

(ML,HL) or (t1, t2) = (LH,LM) then user1 is assigned to channelA and user2 is assigned

to channelB, which is inefficient. This inefficiency is an unavoidable consequence of incentive

compatibility: if user2 were always assigned to his preferred channelA when he reported

HL (for instance) then he would never be willing to reportML when that was his true type.

Expected social utility under this mechanism is

EU(IV ) = (1/16) [2(uH + uH) + 4(uH + uM ) + 4(uH + uL) + 2(uM + uM ) + 4(uM + uL)]

= (3uH/4) + (3uM/4) + (uL/2)

V Benchmark Social Optimum: Public Information, Perfect Cooperation The social opti-

mum is obtained by assigning the user with the best channel quality to his favorite channel and
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never assigning two users to the same channel. Expected social utility is

EU(V ) = (1/16) [2(uH + uH) + 4(uH + uM ) + 6(uH + uL) + 2(uM + uM ) + 2(uM + uL)] =

= (7uH/8) + (5uM/8) + (uL/2)

Direct calculation shows that social utilities in four of the five scenarios are strictly ranked:

EU(I) = EU(II) < EU(III) < EU(IV ) < EU(V )

In words: in comparison to the purely Bayesian scenario (no intervention), communication without

intervention achieves nothing, intervention without communication improves social utility by damp-

ening destructive competition, intervention with communication improves social utility even more

by extracting some information and using that information to promote a more efficient coordination

across types, but even intervention with communication does not achieve the benchmark social op-

timum under full cooperation. It is possible to show that thesame conclusions would be obtained

in an environment withn users andm channels (for arbitraryn,m), provided thatm ≥ n and

muI < uL < uM < uH .

It is worth noting that similar comparisons across scenarios could be made in many environments

and the ordering of expected social utility would be as above:

EU(I) ≤ EU(II) ≤ EU(III) ≤ EU(IV ) ≤ EU(V )

In general, any of these inequalities might be strict.

7.4 Resource Allocation Games in Communication Engineering

In the following we explore the designer’s problem in a classof abstract environments that exhibit

some features common to many resource sharing situations incommunication networks, including

power control [15, 16], medium access control (MAC), [12, 25], and flow control [24–28]. We char-

acterize the direct communication mechanisms that are optimal among all mechanisms. We provide

conditions on the environment under which it ispossiblefor the designer to achieve its benchmark

optimum – the outcome it could achieve if users were compliant – and conditions under which it is

impossiblefor the designer to achieve its benchmark optimum. Althoughwe can characterize the

optimal device, other mechanisms are also of interest, for several reasons. The optimal device may be

very difficult to compute. It is therefore of some interest toconsider mechanisms that are sub-optimal

but easy to compute, and we provide a simple algorithm that converges to such a mechanism.
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7.4.1 The considered environment

In this subsection we formalize the particular (but, at the same time, quite general) environment

we consider from now on, motivating each assumption with examples of its application in resource

sharing situations in communication networks.

We consider a finite and discrete type set made by real numbersTi = {τi,1, τi,2, ..., τi,vi} ⊂

<, vi ∈ N, in which the elements are labeled in increasing order,τi,1 < τi,2 <, ..., < τi,vi . We

interpret the type of a user as the valuation of a particular resource for the user (e.g., different types

may represent different quality of service classes). We assume that every type profile has a positive

probability to occur, i.e.,π[t] > 0, ∀ t. We allow the users to take actions in a continuous interval

Ai =
[
amin
i , amax

i

]
⊂ <, which we interpret as the level of resource usage (e.g., it may represent

the adopted transmission power, which is positive and upperbounded). We assume that the devices

available to the designer are such that reports and messagesare costless, there are no errors, and there

exists the intervention actionx∗ ∈ X which we interpret as “no intervention”. In this case we can

simply writeUi(a, t, x) for the utility of useri andU(a, t, x) for the utility of the designer and we

can restrict our attention to incentive compatible direct mechanism. That is, we consider only the

incentive compatible devicesD = 〈(Ti), (Ai), µ,X,Φ〉 in whichx∗ ∈ X.

We assume that the designer’s utility satisfies the following assumptions,∀ t ∈ T ,

A1: U(a, t, x∗) > U(a, t, x), ∀ a ∈ A, ∀X, ∀x ∈ X, x 6= x∗

A2: gM (t) = argmaxa U(a, t, x∗) is unique

A3: gM (t) is differentiable with respect toti and ∂gMi (t)
∂ti

> 0 12

AssumptionA1 states that the “no intervention” action is the strictly preferred action of the de-

signer, regardless of users’ actions and types. Interpreting interventions as punishments, assumption

A1 asserts that the designer is not happy if the users are punished.

AssumptionA2 states that, for every type profilet ∈ T , the users’ joint action profile that max-

imizes the designer’s utility is unique, and by assumptionA3, each component ingM is continuous

and increasing in the type of that user. If actions representthe level of resource usage and types rep-

resent resource valuations, assumptionA3 asserts that the higheri’s valuation the higher should be

i’s level of resource usage.

12This assumption requires the designer utility to be defined over a continuous interval that includes the finite type setT .
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Under these assumptions, the benchmark optimum for the designer can be easily determined

EU ben =
∑

t∈T

π(t)U(gM (t), t, x∗) (7.1)

For each type profilet ∈ T , we define the complete information game

Γ0
t = (N,A, {Ui(·, t, x

∗)}ni=1)

Γ0
t is the complete information game (users know the type of everybody) that can be derived from our

general framework assuming that sets of typesTi, reportsRi, messagesMi and interventionsX are

singleton (in particular,X = {x∗}). It can be thought as the game that models users’ interaction in

the absence of an intervention device and when the type profile is known.

The strategy of useri in this context is represented by the functiongi : T → Ai (notice that we

can omit the dependence on the messages), since the functionf : T → R is automatically defined

(users do not send reports or receive messages, or equivalently, always send the report ‘no report’

and receive the message ‘no message’). We denote bygNE0
(t) =

(

gNE0

1 (t), . . . , gNE0

n (t)
)

a Nash

Equilibrium (NE) of the gameΓ0
t , which is an action profile so that each user obtains its maximum

utility given the actions of the other users, i.e.,

Ui

(

gNE0
(t), t, x∗

)

≥ Ui

(

gi(t), g
NE0

−i (t), t, x∗
)

, ∀ i ∈ N , gi : T × {m
∗} → Ai

We assume that users’ utilitiesUi(a, t, x
∗) are twice differentiable with respect toa and,∀ a ∈ A,

∀ t ∈ T , ∀ i, j ∈ N , i 6= j,

A4: Ui(a, t, x
∗) is quasi-concave inai and there exists a unique best response functionhBR

i (a−i, t) =

argmaxai Ui(a, t, x
∗)

A5: ∂2Ui(a,t,x
∗)

∂ai∂aj
≤ 0

A6: There existsgNE0
such thatgNE0

(t) ≥ gM (t) 13 andgNE0

k (tk, t−k) > g∗k(tk, t−k) for some

userk ∈ N and typetk ∈ Tk

Since forA4 the users’ utilities are quasi concave (thus the gameΓ0
t is a quasi-concave game)

and the best response functionhBR
i (a−i, t) that maximizesUi(a, t, x

∗) is unique, eitheri’s utility is

monotonic with respect toai, or it increases withai until it reaches a maximum forhBR
i (a−i, t), and

decreases for higher values. As a consequence, a NEgNE0
(t) of Γ0

t exists. In fact, the best response

13Throughout the chapter, inequalities between vectors are intended component-wise.
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functionhBR(a, t) =
(
hBR
1 (a−1, t), . . . , h

BR
n (a−n, t)

)
is a continuous function from the convex and

compact setA toA itself, therefore Brouwer’s fixed point theorem assures that a fixed point exists.

AssumptionA5 asserts thatΓ0
t is a submodular game and ensures thathBR

i (a−i, t) is a non in-

creasing function ofaj, j 6= i. Interpretingai asi’s level of resource usage, this situation reflects

resource allocation games where it is in the interest of a user not to increase its resource usage if

the total level of use of the other users increases, in order to avoid an excessive use of the resource.

Nevertheless, assumptionA6 says that strategic users use the resources more heavily compared to the

optimal (from the designer’s point of view) usage level.

The class of games satisfying assumptionsA1-A6 includes the linearly coupled games [25] and

many resource allocation games in communication networks,such as the MAC [12,25], power control

[15,16] and flow control [24–28] games, assuming that the designer’s utility is increasing in the users’

utilities (i.e., a benevolent designer).

7.4.2 Intervention in the complete information setting

Before analyzing the designer’s problem in the general framework, we first introduce formally the

special case of intervention in the complete information setting, though the main focus of this chapter

is the design of a mechanism dealing with both information revelation and action enforcement. In fact,

some properties of the general mechanism are linked to the properties of the complete information

setting defined in this subsection.

For each type profilet ∈ T and intervention ruleΦ : A → ∆(X) (we can omit the dependence

on reports and messages), we define the complete informationgame

Γt = (N,A, {Ui(·, t,Φ(·))}
n
i=1)

Γt is the complete information game (users and designer know the type of everybody) that can be

derived from our general framework assuming that sets of typesTi, reportsRi and messagesMi are

singletons. Our general framework reduces in this case to the intervention framework of [66] and our

equilibrium notion reduces to intervention equilibrium.

As in the gameΓ0
t , the strategy of useri is represented only by the functiongi : T → Ai. How-

ever, in this case each user has to take into account the effect of the intervention action chosen follow-

ing the distributionΦa, which depends on the adopted action profilea. Accordingly to the notions

introduced in the general framework, we say that a deviceD, defined by the set of interventionsX and

the intervention ruleΦ, sustains (without intervention) the strategy profileg(t) = (g1(t), . . . , gn(t))
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in Γt if g is an equilibrium ofΓt (andΦg(t)(x
∗) = 1). If there exists a deviceD able to sustain

(without intervention) the profileg in Γt, we say thatg is sustainable (without intervention) inΓt.

7.5 Optimal Devices

In this section we study the class of environments introduced in Section 7.4 with the general

framework proposed in Section 7.2. In particular, we take the part of a designer seeking to maximize

his own expected utility in the presence of self-interestedand strategic users, choosing an optimal

device in the class of available devicesD specified in Section 7.4 .

First of all we wonder if the designer can choose a maximum efficiency deviceD ∈ D to obtain

his benchmark utility despite the fact that the users are strategic. We characterize the existence and the

computation of maximum efficiency devices based on some properties of the complete information

setting. Moreover, we prove that a necessary condition for the existence of a maximum efficiency

device requires the type sets to besufficiently sparse.

Even for cases in which a maximum efficiency device does not exist, the designer is still interested

in obtaining the best he can, choosing an optimal device. Forthis reason we study the problem of

finding the optimal device and we prove that, under some properties of the complete information

setting, the original problem can be decoupled into two sub-problems easier to solve.

7.5.1 Properties of a maximum efficiency device

In this subsection we address the problem of the existence and the computation of a maximum

efficiency incentive compatible device.

The first result we derive asserts that a maximum efficiency device exists if and only if, for every

type profilet, the optimal (for the designer) strategy profilegM (t) is sustainable without intervention

in Γt, and users have incentives to reveal their real type given that they will adoptgM and the inter-

vention device does not intervene. If this is the case, we arealso able to characterize all maximum

efficiency devices.

Proposition 13. D = 〈(Ti), (Ai), µ,X,Φ〉 is a maximum efficiency device if and only if,∀ t ∈ T ,

1: the optimal action profilegM (t) is sustainable without intervention inΓt;

2: each useri having typeti prefers the action profilegM (t) with respect to the action profile
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gM (t′i, t−i), for every alternative typet′i useri might have, i.e,

∑

t−i∈T−i

π[t | ti]Ui

(
gM (t), t, x∗

)
≥

∑

t−i∈T−i

π[t | ti]Ui

(
gM (t′i, t−i), t, x

∗
)

∀ i ∈ N, ∀ ti ∈ Ti, ∀ t
′
i ∈ Ti

3: the suggested action profile is the optimal action profile ofgameΓt, i.e.,µ(t) = gM (t);

4: the restriction of the intervention rule inr = t andm = gM (t), i.e.,Φ′
a = Φt,gM (t),a, sustains

without interventiongM (t) in Γt.

Proof. See Appendix B.1

Condition1 is related to what is achievable by the designer in the complete information setting,

condition2 is related to the structure of the environment (which is not controllable by the designer),

while conditions3-4 say how to obtain a maximum efficiency direct mechanism once1-2 are satisfied.

In the second result we combine condition2 of Proposition 13 with assumptionsA3-A6 to derive a

sufficient condition on the type set structures under which amaximum efficiency incentive compatible

direct mechanism does not exist. We define the bin sizeβk of userk’s type set,Tk, as the maximum

distance between two consecutive elements ofTk: βk = maxs∈{1,...,vk−1} (τk,s+1 − τk,s). We define

the bin sizeβ as the maximum among the bin sizes of all users:β = maxk∈N βk.

Proposition 14. There exists a threshold bin sizeζ > 0 so that ifβ ≤ ζ then a maximum efficiency

incentive compatible direct mechanism does not exist.

Proof. Let k ∈ N andtk ∈ Tk be such thatgNE0

k (t) > gMk (t), ∀ t−i ∈ T−i. We rewrite condition2

of Proposition 13 for usersk and typetk:

∑

t
−k∈T−k

π[t | tk]Ui

(
gM (tk, t−k), t, x

∗
)
≥

∑

t
−k∈T−k

π[t | tk]Ui

(
gM (t′k, t−k), t, x

∗
)
, ∀ t′k ∈ Tk (7.2)

We havehBR
k (gM−k(t), t) ≥ hBR

k (gNE0

−k (t), t) = gNE0

k (t) > gMk (t), where the first inequality is valid

because of the submodularity.

Let t̃k(t−k) be the value of userk’s type so thatgM (t̃k(t−k), t−k) = hBR
k (gM−k(t̃k(t−k), t−k), t)

if it exists (in this caseA3 guarantees it is greater thantk); and t̃k(t−k) = τk,vk otherwise. Let̃tk =

mint
−k
t̃k(t−k). If

(
tk, t̃k

]⋂
Tk 6= ∅ (in particular, this is true ifβ ≤ t̃k − tk), ∀ t′k ∈

(
tk, t̃k

]⋂
Tk

and∀ t−k ∈ T−k we obtain

Uk

(
gM (t′k, t−k), t, x

∗
)
> Uk

(
gM (tk, t−k), t, x

∗
)

contradicting Eq. (7.2).
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Interpretation: when userk’s type istk, k’s resource usage that maximizes the designer’s utility,

gMk (t), is lower than the one that maximizesk’s utility, hBR
k (gM−k(t), t), ∀ t−k ∈ T−k. If k reports a

typet′k slightly higher thantk, then the intervention device suggests a slightly higher resource usage,

allowingk to obtain a higher utility. Hence,k has an incentive to cheat and resources are not allocated

as efficiently as possible. To avoid this situation, the intervention device might decrease the resources

given to a typet′k. In this case the loss of efficiency occurs when the real type of k is t′k and it does not

receive the resources it would deserve. These two cases are such that at least one of them corresponds

to a non-zero inefficiency. Since both occur with positive probability, a positive overall inefficiency

is unavoidable.

It is worth noting that we consider finite type sets and a finiteintervention rule set mainly to

simplify the logical exposition. However, all results might be derived also with infinite and continuous

sets. In particular, if type sets are continuous Proposition 14 implies that a maximum efficiency

incentive compatible direct mechanism never exists.

7.5.2 Properties of an optimal device

If a maximum efficiency device exists, the set of optimal devices inD coincides with the set of

maximum efficiency devices inD, that is characterized in Proposition 13. If a maximum efficiency

device does not exists, the designer seeks to obtain the besthe can, minimizing the loss of efficiency.

He has to choose the optimal device solving theOD problem. However, this may be computationally

hard.

In this subsection we consider some additional conditions to simplify theOD problem. First, we

assume that the designer’s utility is a function of the users’ utilities (this is the case, for example, of a

benevolent designer that seeks to maximize some measure of social welfare). Moreover, we suppose

that, for each type profilet ∈ T , every action profileg(t) lower thangNE0
(t) is sustainable without

intervention inΓt. Finally, we assume that the utility of a useri adopting the lowest actionamin
i is

always equal to0, i.e.,Ui(a
min
i , a−i, t, x) = 0, ∀ a−i, t, x. Interpretingamin

i as no resource usage,

this means that, independently of types and other users’ actions, a user that does not use resources

obtains no utility. In particular, this last assumption implies that:

Lemma 5. The utility of useri is non increasing in the actions of the other users.

Proof.

Ui(a, t, x) = Ui(a
min
i , a−i, t, x) +

∫ ai

amin
i

∂Ui(z, a−i, t, x)

∂z
∂z =

∫ ai

amin
i

∂Ui(z, a, t, x)

∂z
∂z
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∂Ui(a, t, x)

∂aj
=

∫ ai

amin
i

∂2Ui(z, a−i, t, x)

∂z∂aj
∂z ≤ 0

where the inequality is valid because of the submodularity (seeA5).

Under the additional assumptions of this subsection, we canprove the following result that allows

the designer to further restrict the class of mechanisms to take into consideration.

Lemma 6. There exists an optimal device such that, for every type profile t ∈ T , the recommended

action profileã(t) is unique (i.e.,µ is point mass at̃a(t)) and the restriction of the intervention rule

in r = t andm = ã(t), i.e.,Φ′
a = Φt,ã(t),a, sustains without interventioña(t) in Γt.

Proof. See Appendix B.2

Lemma 6 suggests the idea to decouple the original problem into two sub-problems. First, we

can calculate the optimal message ruleµ̃ under the constraint that users adopting the recommended

actions have the incentive to report their real type. Then, it is sufficient to identify an intervention rule

Φ̃ able to sustaiñµ(t) without intervention inΓt, ∀ t. This is formalized in the following.

Consider the devicẽD = 〈(Ti), (Ai), µ̃,X, Φ̃〉, where

µ̃ = argmax
µ

∑

t∈T

π(t)U (µ(t), t, x∗)

subject to:
∑

t−i∈T−i

π(t | ti)Ui (µ(t), t, x
∗) ≥

∑

t−i∈T−i

π(t | ti)Ui

(
µ(t′i, t−i), t, x

∗
)

∀ i ∈ N, ∀ ti ∈ Ti, ∀ t
′
i ∈ Ti

and,∀ t ∈ T , Φ′
a = Φ̃t,µ(t),a sustains without interventionµ(t) in Γt.

Proposition 15. D̃ is an optimal device.

Proof. Lemma 6 guarantees that there exists an optimal device inside the class of devices in which,

∀ t, the recommended action profileµ(t) is unique and the restriction of the intervention rule inr = t

andm = µ(t), i.e., Φ′
a = Φt,µ(t),a, sustains without interventionµ(t) in Γt. Among all devices

belonging to such class,̃D is selected to maximize the designer’s expected utility. Thus, D̃ is an

optimal device.
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7.6 Algorithm that Converges to an Incentive Compatible Device

In this section we provide a practical tool for the designer to choose an efficient device. Because

the optimal device may be very difficult to compute, even in the decoupled version of Proposition

15, we provide a simple algorithm that converges to an incentive compatible deviceD in which µ

is point mass (i.e., given a report the recommended action profile is unique) and, although perhaps

not optimal, still yields a ‘good’ outcome for the designer.More precisely,D will sustainwithout

interventionthe honest and obedient strategy profile. The algorithm has been designed with the idea

to minimize the distance between the optimal action profilegM (t) and the suggested action profile

µ(t), for each possible type profilet. Such algorithm is run off-line by the designer to choose an

efficient device and can be used when, for every type profilet and at each step of the algorithm,

the designer is able to identify a device for the complete information setting that sustains without

intervention the suggested action profileµ(r) in Γr. (Note that the suggested action profile will never

be lower than the optimal action profilegM (t) or higher than the NE action profilegNE0
(t) of Γ0

t .)

Given a deviceD in whichµ is point mass, we denote byWi(ti, t
′
i) the expected utility that user

i, with typeti, obtains reporting typet′i and adopting the suggested action, when the other users are

honest and obedient and the intervention device does not intervene, i.e.,

Wi(ti, t
′
i) =

∑

t−i∈T−i

π(t | ti)Ui(µ(t
′
i, t−i), t, x

∗)

Moreover, we say thatX andΦr,m,a are inducedby µ if the device defined byX andΦ′
a(x) =

Φr,µ(r),a(x) sustainsµ(r) without intervention inΓr, ∀ r ∈ T . If the designer is able to identify the

device defined byX andπ′a in the complete information setting, then he can easily computeX and

Φr,m,a induced byµ, obtaining a device for the general framework that, by construction, gives the

users the incentive to always adopt the recommended actions(i.e., users are obedient) and does not in-

tervene (threats of punishments do not need to be executed since users follow the recommendations).

The algorithm initializes the deviceD in the following way:µ(r) = gM (r),X andΦ induced by

µ. This means that, given the report profiler, the device recommends the optimal (for the designer

and if user types arer) action profilegM (r) and the users will adopt it. However, this does not

guarantee that the users are honest: the reported type profile may be different from the real one, i.e.,

r 6= t. To give an incentive for the users to be honest, in each step of the algorithm the recommended

action profileµ(r) is modified to increase the utility the users obtain if they are honest (or to decrease

the utility they obtain when they are dishonest). Wheneverµ(r) is modified, alsoX andΦ must be

modified accordingly, selectingX andΦ induced byµ such that users remain obedient.
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To explain the idea behind the algorithm we exploit Fig. 7.1,wherei’s utility is plotted with

respect toi’s action, for a fixed type profilet, when all users are honest (i.e.,r = t) and the other users

are obedient (i.e.,gj(tj , µj(t)) = µj(t), ∀ j 6= i). Each sub-picture refers to different recommended

actions (i.e., differentµ), and in each sub-picture four points are marked (some of which may possible

coincide) representing the following cases: (1)i adopts the best (for the designer) actiongMi (t); (2)

i adopts the recommended actionµi(t); (3) i adopts the NE actiongNE0

i (t) (notice that it is not the

best action for useri because the other users do not adoptgNE0

−i (t)); and (4)i adopts the best action

hBR
i (µ−i(t), t).

The initialization case, in which (1) and (2) coincide, is represented by the upper-left Fig. 7.1.

By assumptionA6 gMi (t) ≤ gNE0

i (t) and by assumptionA5 gNE0

i (t) ≤ hBR
i (µ−i(t), t), because

µ−i(t) ≤ gNE0

−i (t). If Wi(ti, ti) ≥ Wi(ti, t
′
i), for every alternativei’s reported typet′i, then useri

has an incentive to report its true typeti. If, at a certain iteration of the algorithm, this is valid for all

users and for all types they may have, then the algorithm stops and we obtain a device that sustains

without intervention the honest and obedient strategy profile.14

Conversely, suppose there exists a useri and typesti and t′i such thatWi(ti, ti) < Wi(ti, t
′
i),

i.e., useri has an incentive to reportt′i when its type isti. In this case the algorithm increases the

recommended actionµi(t) by a quantity equal toεi, moving it in the direction of the best response

functionhBR
i (µ−i(t), t), for every possible combination of typest−i of the other users, andX andΦ

must be modified accordingly such that users remain obedient. This has the effect, as represented by

upper-right Fig. 7.1, to increase the utility of useri when it is honest,∀ t−i, which in turn implies that

the expected utility of usersi when it is honest (i.e.,W (ti, ti)) increases. This procedure is repeated

as long asWi(ti, ti) < Wi(ti, t
′
i) andµi(t) ≤ gNE0

i (t).

In casei’s suggested actionµi(t) reachesgNE0

i (t) and still Wi(ti, ti) < Wi(ti, t
′
i), then the

suggested action of userk, µk(t), is increased by a quantity equal toεk, ∀ k ∈ N , k 6= i, ∀ t−i ∈ T−i.

As we can see from lower-left Fig. 7.1, this means to change the shape of the curve representing

i’s utility with respect toi’s action. In particular, by assumptionA5, the best response function

hBR
i (µ−i(t), t) is moved in the direction of the recommended actionµi(t).

If µk(t) reachesµNE0

k (t) as well,∀ k ∈ N , thenµi(t) coincides with the best response function

hBR
i (µ−i(t), t), as represented in the lower-right Fig. 7.1. In fact, by definition, the NE is the action

profile such that every user is playing its best action against the actions of the other users. Sinceµi(t)

14Notice that, if a maximum efficiency incentive compatible direct mechanism exists, since it must satisfy the conditions

of Proposition 13, then the initialization of the algorithmcorresponds to a maximum efficiency incentive compatible direct

mechanism and the algorithm stops after the first iteration.
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coincides withhBR
i (µ−i(t), t), ∀ t−i ∈ T−i, useri is told to play its best action for every possible

combination of the types of the other users. Hence, useri cannot increase its utility reporting typet′i,

i.e., it must beWi(ti, ti) ≥Wi(ti, t
′
i).

The algorithm stops the first time every user has an incentiveto declare its real type. Since at

each iteration the suggested action profiles are increased by a fixed amount, the algorithm converges

after a finite number of iterations. The higher the stepsεi, i ∈ N , the lower the convergence time of

the algorithm. On the other hand, the lower the steps, the closer the suggested action profile to the

optimal one.15

Algorithm 1 General algorithm.

1: Initialization : µ(t) = gM (t), ∀ t ∈ T ,X andΦ induced byµ

2: For each useri ∈ N and each pair of typesti, t′i ∈ Ti

3: If Wi(ti, ti) < Wi(ti, t
′
i)

4: If µi(t) < gNE0

i (t) for somet−i ∈ T−i

5: µi(t)←min
{

µi(t) + εi, g
NE0

i (t)
}

, ∀ t−i ∈ T−i,X andΦ induced byµ

6: Else

7: µk(t)←min
{

µk(t) + εk, g
NE0

k (t)
}

, ∀k ∈ N , k 6= i, ∀ t−i ∈ T−i,X andΦ induced byµ

8: Repeat from2 until 3 is unsatisfied∀ i, ti, t−i
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Figure 7.1. Useri’s utility vs. useri’s action, for different suggested actions

15Notice that, since no assumption such as convexity is made for the designer’s expected utility, an action profile closer

to the optimal one does not necessarily imply a better outcome for the designer.
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7.7 Introduction to Flow Control

In this section, we introduce the congestion problem in a store-and-forward node of a network,

namely, the server. Each user connected to the server, represented by a traffic flow that enters the

server, sends its packets with Poisson arrival rate. The server serves the packets, following a first-in-

first-out policy, with exponentially distributed service time. The system can be modeled as an M/M/1

queue. We take into account the possibility that users belong to different classes of traffic, requiring

different quality of service. The class of traffic a user belongs to is represented by the type of the

user. We assume that each user can independently set its transmission rate to maximize its own utility

represented by thepower, defined in [106] as the ratio between the throughput and the delay and later

extended in [107] to take into account multiple classes of traffic.

In the subsequent sections, we study the interaction between users in two different scenarios: (1)

in the complete informationscenario every user is aware of the types of the other users and their

interaction can be modeled with a complete information game; (2) in the incomplete information

scenario the users are not aware of the types of the other users, but a common probability distribution

of the types of the other users exists, and the interaction can be modeled with aBayesiangame. We

show that the self-interested and strategic nature of the users leads to the overuse of the resources

and to substantial inefficiencies in both cases, which are quantified using as performance criterion the

geometric mean of the users’ utilities. To improve the efficiency of the network, we use a standard

intervention scheme for the complete information scenarioand we exploit our framework for the

incomplete information scenario.

7.7.1 Related work

Flow control is a necessary operation to make a service accessible to many users. Several met-

rics have been considered as performance indicators. The power was proposed in [106] as a way to

trade-off between throughput and delay. This concept was later extended in [107] to take into account

multiple classes of traffic. To obtain distributed flow control algorithms, [108–110] model the flow

control problem as a network utility maximization problem,and interpret the Lagrangian multipliers

as prices. These approaches derive efficient distributed algorithms, however they assume that users

are obedient in that they maximize the utilities designed bythe designer, instead of their own utilities.

Thus, they can not be compared with this work, in which we assume that users are strategic. The ear-

lier applications of game theory to flow control problems were limited to the computation of the Nash

equilibria of existing congestion schemes, to quantify their performance in the presence of strategic
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Obedient

users

Strategic

users

Incentive

scheme

Incomplete

Information

Information

revelation

[108–110] X

[25,27,28,34,111] X

[24,30,40,41] X X

[112,113] X X X

our work X X X X

Table 7.1. Comparison among different flow control works

users. Examples of this approach include [27,28,111] whichuse the power as the performance metric,

and [34] that shows that most congestion control schemes used, such as TCP, encourage a behavior

that leads to congestion. [25] characterizes the Nash equilibrium and the Pareto Boundary for linearly

coupled communication games, leading to the same result as [28] for the particular case of the flow

control game. In addition, [25] investigates the properties of an alternative solution concept named

conjectural equilibrium, in which users compensate for their lack of information by forming internal

beliefs about the other users. Later, with the same philosophy of our work, game theory was used to

design practical schemes to deal with selfish and strategic users. [30, 40] consider pricing schemes,

in which users are charged based on their resource usage, andshow that if appropriate cost function

and pricing mechanism are used, one can find an efficient Nash equilibrium. [41] designs the pricing

scheme that maximizes the service provider’s revenue instead of the users’ satisfaction. [24] uses a

packet-dropping scheme – a particular instance of intervention schemes – to improve the efficiency

of the Nash equilibrium, allowing to arbitrarily approach the optimal social welfare. None of the

above works has addressed the flow control problem in the incomplete information setting. To the

best of our knowledge, the only works dealing with incomplete information, such as [112,113], adopt

a Bayesian approach, in which the expected – with respect to the unknown information – utilities are

maximized. Our work differs from them in that we introduce the ideas of mechanism design [94–99]

and intervention [66] to create protocols that elicit the private information of the users. Table 7.1

summarizes the differences between the described literature.
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Figure 7.2. Representation of a flow control application as an M/M/1 queue

7.7.2 Formulation of the flow control problem

We considern flows with Poisson arrival rates ofa1, a2, ...,an that are serviced by a single server

with exponentially distributed service times with mean1
C

. Since we assume that all packets have the

same length, we will talk interchangeably of arrival rate (pkt
s

) and transmission rate (Mbps), andC

can be seen as the channel capacity, inpkt
s

, after the server.16 We refer to each stream of packets as

a user. We assume that each useri can control its own traffic (e.g., by adjusting the coding quality of

its communication), i.e., it can select its transmission rate (action)ai ∈ Ai = [0, C]. As represented

by Fig. 7.2, the system is an M/M/1 queue with an input arrivalrateλ =
∑n

i=1 ai.

In most cases a user is faced with two conflicting objectives,i.e., to maximize its throughput17 and

to minimize its average delay. The conflict between throughput and delay is obvious since as more

traffic enters the server queue the delays become larger. In order to incorporate these two measures

in a single performance metric, the concept of power has beenproposed in [106] and later extended

in [107]. It is defined as the ratio between the throughput andthe average delay, where the exponent

of the throughput is a positive constant. We can therefore write i’s utility as

Ui(a, ti) = atii (C − λ) = atii

(

C −
n∑

i=1

ai

)

(7.3)

wherea = (a1, . . . , an) denotes the transmission rate (action) profile and the parameter ti > 0

represents useri’s type.

16We consider packets of the same length to keep a simple notation and because the qualitative results are not affected

by this assumption. However, the model and the analysis can be easily extended to take into account packets of different

lengths.
17Here the throughput refers to the traffic the server is able toservice, i.e., the transmission rate available to the user,and

does not take into account the packets lost due to physical layer transmission errors.
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The value ofti may depend, for example, on the quality of service of the application correspond-

ing to thei-th stream of packets. As we will see in Eqs. (7.4) and (7.5), that consider compliant users

and strategic users respectively, the rate adopted by a useris increasing in its type. This consideration

suggests the idea that the higher the type of a user, the higher the importance of the rate, with respect

to the delay, for that user. As an example, streams of packetsassociated to delay dependent applica-

tions should have a low type while streams of packets associated to delay tolerant applications should

have a high type.

In general, the applications a server has to deal with may change over time. For this reason it

is useful to define the type setTi, for every useri, whose elements represent all the possible types

useri may have. We assume that the type set is the same for all users and is finite, i.e.,Ti = T1 =

{τ1, τ2, ..., τv}, v ∈ N, τk ∈ <, τ1 < τ2 < ... < τv, for every useri ∈ N . Suppose that at the

beginning of a communication session the types of the users connected to the system are unknown.

We assume that a common probability distribution exists andthat user types are independent and

identically distributed (i.i.d.) withπ(ti) denoting the probability that a user has typeti, ti ∈ T1, and

π(t) =
∏n

i=1 π(ti) the probability that the type profile ist, t ∈ T = T n
1 . π(ti) can be thought as the

average fraction of applications having typeti that require services to the server.

The network must be designed to operate efficiently following the manager’s objective, which can

be quantified by a utility function. We assume that the manager’s utility is the geometric mean of the

users’ utilities:

U(a, t) = n

√
√
√
√

n∏

i=1

U+
i (a, ti) = (C − λ)+

n∏

i=1

a
ti
n

i

where(x)+ = max {x , 0}.18 This choice allows to maintain a balance between two competing

interests a benevolent manager might have: to maximize the social welfare of the network (defined

as the sum utility) and to allocate resources fairly, givingto users similar utilities. Notice that max-

imizing U(a, t) with respect to users’ actions is equivalent to maximizing aproportional fairness of

users’ utilities, i.e.,
∑n

i=1 lnU
+
i (a, ti), and the optimal solutiongM (t) =

(
gM1 (t), . . . , gMn (t)

)
, as a

function of users’ types, is given by (see [25])

gMi (t) =
tiC

n+
∑n

k=1 tk
(7.4)

18We considerU+
i instead ofUi for mathematical reasons, because utilities as defined in Eq. (7.3) may also be negative,

and the geometric mean would lose meaning with negative quantities. Anyway, notice that it is in the interest of both the

users and the manager to haveλ ≤ C, i.e., working in the sub-space of the original domain such thatU+
i = Ui.
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We denote byEUi(g, ti) andEU(g) the expected (with respect to the types) utilities of useri

having typeti and of the manager, whereg(t) = (g1(t), . . . , gn(t)) represents the actions adopted by

the users when the type profile ist, i.e.,

EUi(g, ti) =
∑

t−i∈T−i

π(t−i)Ui(g(t), t) , EU(g) =
∑

t∈T

π(t)U(g(t), t)

The benchmark optimum for the manager – the maximum expectedutility he could achieve if

users were compliant to a prescribed scheme – is therefore equal toEU ben = EU(gM (t)).

7.8 Flow Control Games Without Intervention

In this Section we compute the outcome of a flow control problem considering self-interested

and strategic users, for both the complete and the incomplete information scenarios. Moreover, we

quantify the loss of efficiency of the manager’s utility withrespect to the maximum efficiency utility.

7.8.1 Complete information scenario

We define the complete information game

Γ0
t = (N,A, {Ui}

n
i=1)

where each useri selects its actiongi(t) strategically, knowing the typest−i of all the other users.

We denote bygNE0
(t) =

(

gNE0

1 (t), . . . , gNE0

n (t)
)

a Nash Equilibrium(NE) of the gameΓ0
t .

The unique NEgNE0

i (t) of Γ0
t is, ∀ i ∈ N , (see [25])

gNE0

i (t) =
tiC

1 +
∑n

k=1 tk
(7.5)

Notice that strategic users use the resources more heavily with respect to compliant users, i.e.,gNE0

i (t) >

gMi (t), ∀ i ∈ N and∀ t ∈ T (excluding the trivial casen = 1).

The manager’s expected utility in the complete informationscenario is equal toEU(gNE0
(t)).

7.8.2 Incomplete information scenario

We define the incomplete information game

Γ0 = (N,A, T, π, {Ui}
n
i=1)

where each useri selects its actiongi(ti) strategically, knowing its own typeti and the probability

distribution of the types of the other users,π(t−i).



144 Chapter 7. Information Revelation and Intervention with an Application to Flow Control

We denote bygBNE(t) =
(

gBNE
1 (t1), . . . , g

BNE0

n (tn)
)

a Bayesian Nash Equilibrium(BNE) of

the gameΓ0.

Proposition 16. There exists a unique Bayesian Nash EquilibriumgBNE(t) of Γ0 which can be

obtained by solving a linear systemAgBNE = b. In addition, the inverse ofA,A−1, can be computed

analytically.19

Proof. See Appendix B.3.

The manager’s expected utility in the incomplete information scenario is equal toEU(gBNE(t)).

7.8.3 Illustrative results

Fig. 7.3 shows the manager’s expected utility with respect to the number of users, considering

C = 5Mbps and a type setT1 = {0.1, 1} with uniformly distributed types. The upper curve repre-

sents the benchmark optimum, while the dashed and the dottedlines represent the manager’s expected

utility when users are strategic, in the complete and incomplete information cases, respectively. The

manager’s utility when users act strategically, for both the complete and the incomplete information

scenarios, is far below the benchmark optimum. Notice that the manager can obtain a higher utility

in the incomplete information scenario with respect to the complete information scenario, at least

when there are more than three users in the system. This agrees with the results of [114,115] where,

in a strategic setting, the less closely related the agents’goals the lower the quantity of information

they prefer to exchange. In our case, the objective of the manager becomes less closely related to the

objective of a single user as the number of total users increases. In fact, the manager’s objective is to

increase the utility of all users in a fair way, while the goalof a user is to improve only its own utility,

at the cost of the utility of all the other users. Hence, as thenumber of users increases, the selfishness

of a single user has a higher negative impact on the manager’sobjective.

7.9 Flow Control Games with Intervention

Fig. 7.2 shows that the manager’s expected utility in strategic settings (for both the complete

and the incomplete information scenarios) is much lower than the benchmark optimum. Here we ask

whether the manager can do something to make the system robust against strategic users, filling, at

least partially, the gap between the benchmark optimum and the manager’s expected utility in strategic

settings.

19The expressions ofb, A andA−1 can be found in Appendix B.3
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Figure 7.3. Intervention device utility with respect to the number of users

We assume that the manager can choose and deploy adevicein the system that (1) can receive

communications from users, (2) can send communications to users, (3) can monitor the actions of

users, and (4) can transmit a stream of packetx ∈ X = [0, x] to the server, which we interpret as an

intervention. The intervention action increases the incoming traffic of the serverλ =
∑n

i=1 ai + x,

and the users’ and the manager’s utilities change accordingly:

U I
i (a, ti, x) = atii (C − λ) = atii

(

C −
n∑

i=1

ai − x

)

(7.6)

U I(a, t, x) = n

√
√
√
√

n∏

i=1

U I+
i (a, ti, x) = (C − λ)+

n∏

i=1

a
ti
n

i

It is straightforward to check that the users’ and the manager’s utilities satisfy assumptionsA1-A6.

In particular, the manager’s preferred action isx∗ = 0 (i.e., no intervention), and the gameΓ0
t defined

in Subsection 7.8.2 coincides with the gameΓ0
t defined in Subsection 7.4.1.

In the complete information scenario, the intervention device is a tool the manager employs to in-

struct the users on how to behave, giving them the incentive to adopt efficient actions bythreatening

punishmentswhich arenot executedif users follow the recommendations. In addition, in the incom-

plete information scenario, the device is also used to retrieve the relevant information from the users,

i.e., their types. First, we formalize a device in the more general scenario of incomplete information

20, and we will then discuss the natural simplifications for thecomplete information scenario.
20The formalization will be similar to the one introduced in Section 7.2, but here we assume there are no errors, reports
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A device is a tupleD = 〈µ, x,Φ〉 where

• µ : T → A is themessage rule, which specifies the recommendations to be sent to the users

as a function of the reported types. Ifr ∈ T are the reports we writem = µ(r) for the

recommended actions,m = (m1, . . . ,mn) ∈ A;

• x represents the maximum rate the intervention device is ableto transmit;

• Φ : T × A ×A → X is theintervention rule, which specifies the transmission rate the device

will adopt given the received reports, the transmitted messages and the users’ adopted actions.

If r are the reports,m the transmitted messages anda the users’ adopted actions, we write

Φ(r,m, a) for the adopted intervention action.

In the incomplete information scenario, a strategic useri selects its reportri and its actionai

in order to maximize its expected utility given the information and the beliefs it has. Specifically, a

strategy for useri consists of a pair of functions(fi, gi), in whichfi : T1 → T1 specifies the report of

useri based on its type, andg : T1 × Ai → Ai specifies the action of useri based on its type and on

the recommendation received. As usual, we denote byf andg the profiles of the two strategies.

In the following, we summarize the different stages of the interaction between the users and the

intervention device in the incomplete information scenario.

Stage 1: each useri sends the reportri = fi(ti) to the intervention device

Stage 2: the intervention device sends the recommended actionmi = µ(r) to each useri

Stage 3: each useri takes the actionai = gi(ti,mi)

Stage 4: the intervention device monitors the users’ action profile21 a and adopts the intervention action

x = Φ(r,m, a)

Here we restrict the attention to the class ofaffine interventiondevicesD, in which the interven-

tion level increases linearly with the users’ actions. It may seem restrictive to only consider such a

and messages are costless and we do not considerrandomizedrules because, as we will see,pure rules are sufficient to

obtain optimal results in the complete information case andto satisfy the conditions we need to use the algorithm in the

incomplete information case.
21The device can estimate the users’ rates by counting in real time the number of packets that each user has sent since the

beginning of the communication session. Such estimates maybe inaccurate, in particular in the first phases of the session.

Here we neglect this issue, implicitly assuming that the session is long enough (with respect to the users’ rates) to converge

very soon to accurate estimations. We will take into consideration an extension of this work in which we analyze in more

detail the impact of imperfect monitoring.
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simple class of devices. However,D will turn out to be optimal, i.e., it is not possible to increase the

manager’s expected utility by considering more complex devices.

D = 〈µ, x,Φ〉 is an affine intervention device if the intervention ruleΦ is of the form

Φ(r,m, a) =

[
n∑

i=1

ci(r,m) (ai − ãi(r,m))

]x

0

where ãi(r,m) ≥ 0 represents a target action for useri, ci(r,m) ≥ 0 is the rate of increase of

the intervention level due to an increase ofi’s action, and[·]ba = min {max {a, ·} , b}. Though in

this abstract definitioñai(r,m) might be different from the recommended actionmi = µ(r), in the

schemes we will propose in the following we will haveãi(r,m) = mi, ∀ r, m−i, i.e., ã(r,m) will

represent the recommended action profile.

Fig. 7.4 shows how the intervention ruleΦ changes the relation betweeni’s utility and i’s action,

for given type, report and message profiles and assuming thatthe other users adopt the target action

profile ã−i(r,m). The utility of useri is plotted for three different values of the parameterci(r,m)

(ci(r,m) = 0 means that the intervention device never intervenes). For an actionai lower than the

target actioñai, i’s utility is as if the device did not exist. However, for an action ai higher than

the target actioñai(r,m), i’s utility is lower compared to the utility it would have obtained without

the device, and the gap increases asci increases. In fact, if the users adopt the target action profile

ã(r,m) the intervention level is0, but if a single useri deviates from the recommendation adopting

an actionai > ãi(r,m), the intervention device reacts transmitting a flow of packets with a positive

ratex = Φ(r,m, a), that is increasing inci(r,m) and affects the utility of every user. This agrees

with our view of intervention as a threat of punishments which are not executed if all users follow the

recommendations.

As noted before, in the complete information scenario the interaction between the users and the

device can be simplified, because the type profilet is known by everybody. In particular, since the

device already knowst, the reports do not play any role and we can considerfi(ti) = ti, ∀ i (or,

alternatively, we can skipStage 1). Moreover, the users know in advance the messages they will

receive because messages are a deterministic function of the type profile (hence, alsoStage 2can be

skipped). Finally, since reports and messages are given, the intervention rule can simply be written

as a function of the users’ actions:Φ(a) = Φ(t, µ(t), a). In particular, for an affine device the

parametersci = ci(t, µ(t)) and ãi = ãi(t, µ(t)) are constant. Thus, in the complete information

scenario a device is simply described byx andΦ. In this context, each useri has to select an action

ai to maximize its utility.
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Figure 7.4. Manager’s expected utility vs. number of users for the complete and incomplete information

scenarios

Given a deviceD, in both the complete and the incomplete information cases,the interaction

among users can be modeled as a game. In the following we provide the tools for the manager to

choose a device in the classD, for both the complete and the incomplete information scenarios.

7.9.1 Complete information scenario

In the complete information scenario, given a deviceD = 〈x,Φ〉, the interaction among users is

modeled with the game

Γt =
(

N,A,D,
{
U I
i

}n

i=1

)

in which each useri strategically selects the actiongi(t) (the dependence ont shows that if the type

profile t changes, the gameΓt changes as well and the users may decide to take different actions) to

maximize its utilityU I
i , see Eq. (7.6).

The outcome of such interaction is represented by the NE. Themanager faces the problem of

choosing a deviceD so that there exists a NE of the gameΓt that gives it the highest utilityU I

among what is achievable with all possible NEs.

Lemma 7. Consider the affine deviceD such that,∀ i ∈ N ,

ci ≥
ti (C −

∑n
k=1 ãk)− ãi
ãi

, x ≥
ci [ti (C −

∑n
k=1 ãk)− ãi]

1 + ti(1 + ci)
(7.7)

If ã ≤ gNE0
, thenã is a NE ofΓt.
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Proof. See Appendix B.4

Interpretation: If a ci high enough is selected, and if the device is able to transmitwith a large

enough transmission rate, the threat of punishment discourages the users from adopting actions higher

than the target. This situation is shown in Fig. 7.4 forci = 2. Hence, if the utility of useri is

increasing before the target actionãi (in particular, this is valid if̃ai ≤ gNE0

i ), as in Fig. 7.4, the

target actioñai becomes the best response action for useri.

Proposition 17. ∀ t ∈ T , the optimal profilegM (t) is sustainable without intervention inΓt, adopting

the devicex ≥
C

1 + τ1
, ã = gM (t) andci ≥ n− 1, i ∈ N .

∀ t ∈ T , every strategy profilea ≤ gNE0
(t) is sustainable without intervention inΓt, adopting

the devicex ≥ C, ã = a andci high enough (i.e.,ci ≥
τv(C−

∑n
k=1 ãk)−ãi

ãi
), i ∈ N .

Proof. First, consider the second affirmation. The condition of Eq.(7.7) onx is automatically sat-

isfied if the right hand side is lower than0. Moreover, if it is higher than0, the right hand side is

increasing inci. In fact, the functionh(ci) = aci
b+aci

, with a, b ≥ 0, is increasing inci, because

h′(ci) =
ab

(b+aci)2
> 0. Thus, the condition of Eq. (7.7) onx becomes stricter asci increases. Taking

the limit for ci → +∞ we can find the following stricter condition onx that does not depend onci:

x ≥
ti (C −

∑n
k=1 ãk)− ãi
ti

= C −
n∑

k=1

ãk −
ãi
ti

In order to obtain conditions that are independent of users’types and action profiles to sustain, we

can consider the following stricter conditions:

x ≥ C −
n∑

k=1

ãk −
ãi
τv

, x ≥ C −
n∑

k=1

ãk , x ≥ C (7.8)

As for ci, we can find a stricter condition independent of users’ typessubstitutingti with τv. Thus,

once the action profile to sustain is fixed, it is sufficient to select aci satisfying

ci ≥
τv (C −

∑n
k=1 ãk)− ãi
ãi

(7.9)

Now consider the first affirmation. Substitutingã = gM (t) we obtain

ci ≥
ti (C −

∑n
k=1 ãk)

ãi
− 1 = n+

n∑

k=1

tk −
tiC

∑n
k=1 tk

tiC
− 1 = n− 1

As tox, substituting̃a = gM (t) into the second condition of Eq. (7.8) we obtain

x ≥
nC

n+
∑n

k=1 tk
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Finally, since the right hand side is decreasing in
∑n

k=1 tk, a stricter condition can be obtained sub-

stituting tk = τ1, ∀k ∈ N , obtaining

x ≥
C

1 + τ1

If the device is able to transmit a stream of packets with a rate higher than a certain threshold (that

is upper-bounded byC), if ã = gM (t) and if ci ≥ n − 1, the threat of punishments is an incentive

for the users to adopt the optimal action profilegM (t). Note that, in this case, thepunishments are

not executed. Thus, the manager can extract the maximum utility from the gameΓt. The following

corollary is an implication of this consideration.

Corollary 5. The class of affine intervention rulesD is optimal (i.e., it is not possible to gain more

by considering more complex devices) in the complete information scenario.

Finally, the manager’s expected utility for the complete information scenario with intervention

device is equal to the maximum efficiency utilityEU(gM (t)).

7.9.2 Incomplete information scenario

In the incomplete information scenario, given a deviceD = 〈µ, x,Φ〉, the interaction among

users is modeled with the Bayesian game

Γ =
(

N,A, T, π,D,
{
U I
i

}n

i=1

)

in which each useri strategically adopts the functionsfi : T1 → T1 (which specifies the report of

useri based on its type) andg : T1 ×Ai → Ai (which specifies the action of useri based on its type

and on the recommendation received) to maximize its expected utility

EU I
i (f, g, ti,D) =

∑

t−i∈T−i

π(t−i)U
I
i (a, t, x)

where,∀ i ∈ N ,

ri = fi(ti) , m = µ(r) , ai = gi(ti,mi) , x = Φ(r,m, a)

The outcome of such interaction is represented by the BNE. The manager faces the problem of

choosing a deviceD so that there exists a BNE of the gameΓ that gives it the highest expected utility

EU I(f, g,D) =
∑

t∈T

π(t)U I(a, t, x)
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among what is achievable with all possible BNEs.

In the following we apply the results derived in Subsection 7.5.1 to find the conditions for the

existence and to compute a maximum efficiency device, that allows the manager to achieve its bench-

mark optimum. In case such device does not exist, the networkcannot operate as efficiently as in

the compliant users scenario. Moreover, in this case the optimal device is hard to compute. For this

reason, we consider two suboptimal devices which are easierto compute than the optimal device.

7.9.2.1 Existence and calculation of a maximum efficiency device

We wonder if there are some conditions under which the manager can select a device to obtain

the same utility it would achieve with compliant users. The following result provides an answer to

this question.

Proposition 18. If ∀ l = {1, . . . , v − 1} and∀ t−i ∈ T−i,

(

n+
∑

j 6=i tj + τl+1

n+
∑

j 6=i tj + τl

)τl+1(
τl
τl+1

)τl

≥ 1 (7.10)

then the affine deviceµ(t) = gM (t), x ≥
C

1 + τ1
, ãi(r,m) = m andci ≥ n−1, i ∈ N , is a maximum

efficiency incentive compatible device.

Proof. See Appendix B.5

Notice that all maximum efficiency incentive compatible devices must be of the formµ(t) =

gM (t), x ≥
C

1 + τ1
, ãi(r,m) = m andci ≥ n − 1, i ∈ N . However, if condition (7.10) is not

satisfied, the device might not be able to give to the users theincentive to report truthfully.

7.9.2.2 Algorithm that converges to an incentive compatible device

Here we specialize, for the flow control application, the general algorithm proposed in Subsection

7.6 that converges to an incentive compatible device. Prop.17 guarantees that, at each step of the

algorithm, the considered device sustains without intervention the suggested action profileµ(r) in Γr

(note that the suggested action profile will never be higher thangNE0
(t)).

The algorithm has been designed with the idea of minimizing the distance between the optimal

action profilegM (t) and the suggested action profileµ(t), for each possible type profilet. If a maxi-

mum efficiency device exists, the initialization of the algorithm corresponds to a maximum efficiency

incentive compatible device and the algorithm stops after the first iteration. If a useri having typeτs
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can benefit by pretending to be of typeτl , for each type profileτ = (τl, t−i) the algorithm increases

the recommended action for useri – if it is lower thangNE0

i (τ) – or the recommended actions for

the other users. In both cases, the new device is selected such that the new suggested action profile

µ(τ) is sustained without intervention inΓτ . Proceeding in this way, the algorithm will converge to a

device in which no user can benefit by pretending to be of another type.

Algorithm 2 Flow control algorithm.

1: Initialization : ∀ r ∈ T , x ≥ C, µ(r) = gM (r), ã(r, µ(r)) = µ(r), ci(r, µ(r)) ≥ n− 1

2: For s = 1 : v andl = 1 : v

3: If Wi(τs, τs) < Wi(τs, τl)

4: For t−i ∈ T−i

5: τ ← (τl, t−i)

6: If µi(τ) < gNE0

i (τ)

7: µi(τ)← min
{

µi(τ) + εi, g
NE0

i (τ)
}

, ã(τ, µ(τ)) = µ(τ), ci(τ, µ(τ)) satisfying (7.9)

8: Else for k = 1 : m, k 6= i

9: µk(τ)← min
{

µk(τ) + εk, g
NE0

k (τ)
}

, ã(τ, µ(τ)) = µ(τ), ck(τ, µ(τ)) satisfying (7.9)

10: Repeat from2 until 3 is unsatisfied∀ s, l

7.9.2.3 Communication-free device

In this Subsection we define a new type of device, calledcommunication-free device, in which

reports do not play any role for the final outcome, i.e., the message and intervention rules do not

depend on reports. This is particularly useful in situations where it is not possible for the users to

communicate with the device, or where communication is veryexpensive. However, also for scenarios

where users can send reports, a communication-free device might represent a good sub-optimal device

that is efficient and easy to compute.

Consider the communication-free deviceD that, independently of users’ types, suggests action

profilea,

a = argmin
a

[

− ln

(

C −
n∑

i=1

ai

)

Et

[
n∏

i=1

a
ti
n

i

]]

ai ≥ 0 , ai ≤ C , ∀i ∈ N (7.11)

Proposition 19. Eq. (7.11) defines a convex problem ifτv ≤ n. Moreover, if the deviceD sustainsa
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without intervention inΓ, thenD is an optimal communication-free incentive compatible device and

the manager’s expected utility isEU(a).

Proof. See Appendix B.6

Corollary 6. Consider the communication-free deviceD such that,∀ r ∈ T and∀ i ∈ N ,

µ(r) = a , Φ(r, a, a) =

[
n∑

i=1

ci(a)(ai − ai)

]x

0

, ci(a) ≥
τv (C −

∑n
k=1 ak)− ai
ai

, x ≥ C

(7.12)

If a ≤ gNE0
(t), ∀ t ∈ T , thenD is an optimal communication-free incentive compatible device and

the manager’s expected utility isEU(a).

Proof. It is sufficient to show thatD sustainsa without intervention inΓ. Notice thatΦ(r, a, a) = 0,

so it is sufficient to show thata is an equilibrium inΓ. Notice thatD satisfies the conditions of Lemma

7, ∀ t ∈ T , thereforeD sustainsa in Γt, i.e.,∀ t ∈ T , ∀ i ∈ N , ∀ ti ∈ T1 , ∀ âi ∈ Ai,

Ui

(
f , a, t

)
≥ Ui

(
f , âi, a−i, t

)

As a consequence,∀ i ∈ N , ∀ ti ∈ T1 , ∀ âi ∈ Ai,

∑

t−i∈T−i

π(t−i)Ui (f, a, t) ≥
∑

t−i∈T−i

π(t−i)Ui (f, âi, a−i, t)

Hence,a in an equilibrium inΓ.

Notice thata ≤ gNE0
(t), ∀ t ∈ T , is a sufficient condition such thatD is an optimal communication-

free incentive compatible mechanism, but it is not necessary. In fact, D might sustaina without

intervention inΓ even ifa � gNE0
(t) for somet ∈ T .

7.9.3 Illustrative results

In the following we are going to quantify the manager’s expected utility and the expected through-

put and delay for each type of user in different scenarios. WeconsiderC = 5Mbps and a common

type setT1 = {0.1, 1}. Except for Fig. 7.6, we assume that the types are uniformly distributed, i.e.,

P (0.1) = P (1) = 0.5, and we plot the results varying the number of users from2 to 16.

We first look at how the manager’s expected utility varies increasing the number of users, in

the complete and incomplete information scenarios. The left side of Fig. 7.5 refers to the complete

information scenario. The overlapped upper lines represent the manager’s expected utility when users
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are compliant and when they are strategic with the device derived in Subsection 7.9.1. The manager’s

expected utility is decreasing in the number of users because, as the number of users increases, the

total congestion experienced by every user increases as well. However, it is remarkable that with the

intervention scheme the manager can completely fill the gap between the benchmark optimum and

its expected utility when the users are strategic but no incentive scheme is adopted (dotted line). The

right side of Fig. 7.5 refers to the incomplete information scenario. In this scenario the manager is

guaranteed to achieve the benchmark optimum using the device derived from the algorithm (dashed

line) if the number of users is sufficiently small. In fact, for a number of users less than or equal to

3, it is straightforward to check that the sufficient condition (7.10) is satisfied, hence, a maximum

efficiency device exists and the algorithm converges to it. For a larger number of users, there is

no guarantee of optimality, and in fact the results of Fig. 7.5 show that in this case the manager’s

expected utility is lower than what could be obtained with compliant users. However, the manager

can still considerably increase its expected utility compared to the case of strategic users and no

incentive scheme (dotted line), by adopting the device derived from the algorithm for a number of

users lower than8 and the communication-free device (dash-dot line) for a number of users greater

than or equal to8 (f defined in (7.12) turns out to sustain the solution of (7.11) without intervention

in Γ). It is not surprising that the communication-free device is able to obtain good performance for

a large number of users, in fact in this situation the manageris able to foresee more accurately the

fraction of users of a certain type, hence the information about users’ types becomes less important.

Now we investigate how the results depend on the type probability distribution for the incomplete

information scenario. In Fig. 7.6 we fix the number of users to4 and we vary the probability of the

low type,P (0.1), from 0 to 1, which is equivalent to varyingP (1) from 1 to 0. We can see that the

gap between the benchmark optimum and the manager’s expected utility achievable with the device

derived from the algorithm is not strongly dependent on the type probability distribution. In fact, such

a mechanism provides incentives for each type of user to be honest and obedient, even though some

user types rarely occur. Notice that in the algorithm the recommended action profile for a certain

type profile is increased by a finite amountε if the users do not have an incentive to report truthfully,

which has the effect to produce the little step visible in Fig. 7.6 (the lowerε, the smoother the step).

On the contrary, the communication-free device is stronglydependent on the probability distribution

of user types. In fact, the recommended and enforced action profile depends exclusively on the type

probability distribution. As an example, if the low type occurs rarely, the device will suggest to

the users to adopt an action profile that is close to the objective of the users with high type, that will

probably be the majority of the users in the network. In the extreme case, if low type users are for sure
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Figure 7.5. Manager’s expected utility vs. number of users for the complete and incomplete information

scenarios

not present in the network (i.e., P(0.1) = 0), than the adopted action profile will maximize the interests

of the users having high type and the communication-free device is able to achieve the benchmark

optimum. Notice that in this situation the manager has no uncertainty about the types of the users in

the network, which is the reason why it is able to extract the maximum utility. In some sense, the

uniform probability distribution represents the worst case for the communication-free device because

the manager has the highest uncertainty over the types of theusers in the network.

So far we have only considered the utility as performance indicator. However, the utility includes

the two real performance metrics, throughput and delay. Nowwe investigate the expected through-

put and delay achievable with the considered schemes in the complete and incomplete information

scenarios, for each type of user.22 Fig. 7.7 shows the expected throughput (left-side) and delay (right-

side) for the complete information scenario. Continuous lines refer to the high type users, while

dashed lines refer to the low type users. Notice that the hightype users obtain a higher expected

throughput and a higher expected delay compared to the low type users (this will be true also for the

incomplete information scenario), confirming that the higher the type the higher the user’s preference

for throughput with respect to delay. In both pictures, the upper (continuous and dashed) lines refer

22Notice that all users in the network experience the same delay. However, such delay depends on the type profile: the

higher the number of high type users with respect to the number of low type users, the higher the delay. Thus, the expected

delay for a low type user is lower than the expected delay for ahigh type user.



156 Chapter 7. Information Revelation and Intervention with an Application to Flow Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

Low type probability

M
an

ag
er

’s
 u

til
ity

n = 4 , C = 5 Mbps , T
i
 = [ 0.1 1]

 

 

Benchmark optimum
Algorithm
Communication−free device
BNE

Figure 7.6. Manager’s expected utility vs. low type probability for theincomplete information scenario

to the strategic scenario without intervention device, in which the users adopt the NE action profile,

while the overlapped lower (continuous and dashed) lines represent the optimal action policy, obtain-

able with compliant users or with strategic users with the device derived in Subsection 7.9.1. With

no incentive scheme, strategic users tend to overuse the resources of the network, transmitting with

higher rates compared to the optimal ones. This translates into much higher delays, that increase

quickly as the number of users increases. Conversely, the optimal transmission policy is such that

the expected delay is almost constant with respect to the number of users. This means that also the

aggregate throughput is almost constant, and the rate of each user scales as1
n

.

Fig. 7.8 shows the expected throughput (left-side) and delay (right-side) for the incomplete infor-

mation scenario. Continuous lines refer to the high type users, while dashed lines refer to the low type

users, with the exception of the performance obtainable adopting the communication-free device, rep-

resented by the dash-dot line, in which different types of users adopt the same action and experience

the same throughput and delay. In both pictures, the upper (continuous and dashed) lines refer to

the strategic scenario without intervention device, in which the users adopt the BNE action profile,

while the lower (continuous and dashed) lines represent theoptimal action policy. The performance

obtainable adopting the device derived from the algorithm lies in between. The lines that represent the

expected delay for the BNE action profile are truncated for a number of users equal to3 and5 because

for more users the system might become unstable. In fact, in the BNE the expected utility of a user is

maximized, given that the other users adopt the BNE. However, for some type profile instances, the
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Figure 7.7. Total expected throughput and delay vs. number of users for the complete information scenario

utility might be equal to0, i.e., the delay might diverge. Thus, the expected delay diverges as well. In

words, there is a positive probability that the network becomes congested. The device derived from

the algorithm allows to improve this situation, limiting the delay experienced by each user. However,

such a delay increases almost linearly as the number of usersincreases. This is the reason why the

communication-free device, at a certain point, even thoughit is not able to differentiate the service

given to different classes of traffic, is able to obtain a better performance (from the manager’s utility

point of view) than the mechanism derived from the algorithm. In the communication-free device

each user, independently of its type, adopts a rate which is between the optimal rates adopted by the

low type users and the high type users, and this situation reflects in the expected delay. This allows to

keep a very low and constant delay with respect to the number of users.

7.10 Conclusion

In this chapter we extend the intervention framework introduced by [66] to take into account

situations of private information, imperfect monitoring and costly communication – in addition to

intervention. We allow the designer to use a device that can communicate with users and intervene

in the system. The goal of the designer is to choose the devicethat allows him to obtain the highest

possible utility in the considered scenario. For a class of environments that includes many engineer-

ing scenarios of interest (e.g., power control [15, 16], medium access control (MAC) [12, 25], and
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Figure 7.8. Expected throughput and delay per user vs. number of users for the incomplete information

scenario

flow control [24–28]) we find conditions under which there exist devices that achieve the benchmark

optimum and conditions under which such devices do not exist. In case they do not exist, we find

conditions such that the problem of finding an optimal devicecan be decoupled. Because the optimal

device may still be difficult to compute, we also provide a simple algorithm that converges to a device

that, although perhaps not optimal, still yields a ‘good’ outcome for the designer.

Then we consider the design of a flow control management system, in both the complete and the

incomplete information scenarios. We quantify the inefficiency of the NE of the complete information

game and the BNE of the incomplete information game. We design an intervention scheme for the

complete information scenario able to provide the incentive for the users to adopt the optimal trans-

mission rate, by threatening punishments if they deviate. Such scheme is able to obtain the optimal

performance achievable when the users act cooperatively. For the incomplete information scenario,

we designs two devices: the first one is able to retrieve the private information from the users giving

them the incentive to report it truthfully; the second one isbased only on the a priori information that

the device has about the users. Illustrative results show that these devices can considerably increase

the efficiency of the network in the incomplete information scenario as well.



Chapter 8
Conclusions

This thesis discusses the application of game theory to the design of wireless network proto-

cols which are robust against self-interested and strategic users. To reach this goal, the designer has

to provide to the users an incentive to follow the protocol rules. On one hand, this constrains the

choice of the protocol and results in schemes which are, in general, less efficient than optimal cen-

tralized schemes. On the other hand, this allows to obtain more stable protocols, not vulnerable to

strategic users. As networks become more decentralized, users’ terminals become more autonomous,

programmable and (computationally) powerful, this designapproach is fundamental to avoid high

unforeseen inefficiencies.

This dissertation presents the following contributions tothe design of efficient game-theoretic

schemes in wireless networks. In Chapter 3 a virtual game among the radio resources allocator

and the scheduler is proposed to manage the resources in an LTE system, trading off fairness and

throughput, while ensuring the modularity of the overall system.

In Chapter 4 we address the problem of promoting cooperativerelaying in a wireless network.

This objective is reached with a dynamic scheduling rule which increases the access opportunities of

cooperative users. We model this access scheme as a Stackelberg game, where a network unit plays

the role of access coordinator, and we prove the existence ofa Stackelberg equilibrium. A careful

analysis of the numerical results justifies our scheme as a valid solution to increase the network

performance in a viable manner from an implementation standpoint.

In Chapter 5 we develop a framework which can be used to selectsome nodes to be shared

between two coexisting wireless networks. We consider a wireless network simulator that evaluates

the network behavior at the physical, MAC and network layers. A Bayesian network approach is used

by the two networks to evaluate their performance based on observable topological parameters. The
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interaction among the two networks is then modeled as a repeated game, and a trigger strategy is used

to promote cooperation. Numerical results show that, even when only a small fraction of the nodes is

shared, our scheme approaches the performance of a full cooperation scheme, in which the networks

are assumed to share all their nodes.

In Chapter 6 we use two incentive schemes, pricing and intervention, to design a random access

protocol robust against strategic users. We compare the twoschemes in terms of the network envi-

ronment, the knowledge of the designer and the knowledge of the users. Our results show that the

intervention scheme, differently from the pricing scheme,is able to achieve the optimal performance

if the user actions are perfectly observable. On the other hand, if they are not, the intervention scheme

may punish the users even if they follow the recommendations, resulting in a degradation of the sys-

tem performance. Nevertheless, we notice that intervention outperforms pricing if the users are not

aware that their actions are imperfectly observed. While ifthey are aware of it, as a rough general

principle, intervention achieves greater efficiency than pricing when the number of users is small and

the opposite is true when the number of users is large.

In Chapter 7 we extend the intervention framework to take into account situations of private in-

formation, imperfect monitoring and costly communication, in which a device is adopted to provide

to the users an incentive to report truthfully their information and to follow the instructions. For a

class of environments that include many resource allocation games in communication networks, we

provide tools for the designer to design an efficient system.In an abstracted environment, we find

conditions under which the designer can achieve the same outcome it could if users were compliant,

and conditions under which it can not. We also provide a simple algorithm that converges to a scheme

that, although perhaps not optimal, still yields a good outcome for the designer. Then we consider

the design of a flow control management system, in both the complete and the incomplete informa-

tion scenarios. In the former we design a scheme which is ableto obtain the optimal performance

achievable when the users act cooperatively; in the latter we propose two mechanisms that, though

not optimal, can considerably increase the efficiency of thenetwork.
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8.1 Future Directions

The application of game theory to design robust protocols inwireless networks is a challenging

topic. Game theory can be applied to a variety of wireless networking problems at different levels:

power control, interference avoidance, resource allocation, relaying, flow/congestion control, network

routing, network formation, content distribution, security, etc. Here we want to focus on the adopted

methodologies, rather than on a particular application.

To derive analytical results, game theory is usually applied to simple models, which only partially

capture the real problems. This analysis may provide usefulinsights about the inefficiencies that

may occur in the presence of strategic users and about possible solutions. However, such solutions

cannot be directly applied to the real problems, because small perturbations (derived from unrealistic

assumptions) may significantly change the equilibrium. We believe that game theoretic schemes must

get rid of such simplified assumptions to be adopted in real systems. In particular, we tried to highlight

the role ofinformation in game theoretic approaches. The last three chapters of this dissertation are

focused on this aspect.

Specifically, in Chapter 5 we used a Bayesian network approach to estimatesome performance

parameters, which are then used by the two networks – in placeof thereal non observable values– to

make the decisions. In Chapter 6 we showed that the equilibrium efficiency strongly depends on the

observabilityof the user actions and on theinformation heterogeneity. In Chapter 7 we developed a

framework and derived some results toretrieve the unknown informationfrom the users.

We believe that these types of approaches must be explored more deeply in game theoretic studies.

In fact, in real wireless systems users do not usually have access to all the information. They may

not (perfectly) know the other users’ objectives. They may not (perfectly) observe the other users’

actions. They may not even (perfectly) know the number of users in the system. In these cases, the

users must act based on thebelief they have about the missing information, and mechanism design

or learning based schemes – to elicit or estimate the missinginformation – can be used to form and

update the beliefs. Learning based techniques can be particularly useful when the number of users is

large and it is expensive to keep track of each single user in the network and to exchange information.

In this context, users are assumed to be aware of the environment and to dynamically adapt to it,

learning from outcomes of past decisions. Finally, if the number of users is very large,mean-field

learning techniques[116] may provide a suitable framework to model and analyze the interaction

among them.
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A.1 Proof of Proposition 8
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where the second and third inequalities are valid because
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> 1 − εk (as we will see, the

optimal transmission probabilityak is higher than1− εk if and only if
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andεk � 1 respectively. Hence, the Hessian ofU(a) is negative definite (it is a diagonal matrix with

strictly negative diagonal entries), soU(a) is concave. The global maximizer ofU(a) can be obtained

with the first order condition.
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Finally, notice that the solutions found are consistent with the case considered and
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A.2 Proof of Proposition 9

Proof. Given the intervention rulẽak and rk =
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Now we want check ifU(ã) is concave analyzing its Hessian. To do so, we first compute the
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∂ãi
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the best target action for useri is close to1 if and only if there are few users in the network and the

conditions are strongly asymmetric (i.e.,θi � θj , ∀ j 6= i). On the contrary, we are interested in the
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2εiãi + ã2i
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2 if ãi < εi

−θi
(
ãi −

εi
4

)2 −

∑

j 6=i θj

(1− ãi)
2 if ãi ≥ εi

∂2U

∂ai∂aj
= 0 , ∀ i 6= j

∂2U(ã)

∂ã2i
< 0. Hence, the Hessian ofU(ã) is negative definite (it is a diagonal matrix with strictly

negative diagonal entries), soU(ã) is concave. The global maximizer ofU(ã) can be obtained with

the first order condition, i.e., imposing∂U(ã)
∂ãi

= 0. Notice that ∂U(ã)
∂ãi

is continuous, decreasing

(because∂
2U(ã)
∂ã2i

< 0), and tends to+∞ for ãi → 0+ and to−∞ for ãi → 1−. Thus, there exists one

and only onẽai such that∂U(ã)
∂ãi

= 0.

Imposing∂U(ã)
∂ãi

= 0 for ãi < εi, we obtain


−θi −
n∑

j=1

θj



 ã2i +



2θi − 2εi

n∑

j=1

θj



 ãi + 2εiθi = 0

Imposing∂U(ã)
∂ãi

= 0 for ãi ≥ εi, we obtain

ãi =
4θi + εi

∑n
j=1,j 6=i θj

4
∑n

j=1 θj

This results is compatible with the conditionãi ≥ εi if and only if

εi ≤
4θi

4
∑n

j=1 θj −
∑n

j=1,j 6=i θj

A.3 Proof of Lemma 3

Proof.

E
[

[ai + ni]
1
0

]

=







(ai + εi)
2

4εi
if ai ≤ εi

ai if εi < ai ≤ 1− εi
−a2i + 2(εi + 1)ai + 2εi − ε

2
i − 1

4εi
if ai > 1− εi
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Ui(a) =







θi ln
[

ai
∏

j 6=i(1− aj)
]

− ci
(ai + εi)

2

4εi
if ai < εi

θi ln
[

ai
∏

j 6=i(1− aj)
]

− ciai if εi ≤ ai ≤ 1− εi

θi ln
[

ai
∏

j 6=i(1− aj)
]

− ci
−a2i + 2(εi + 1)ai + 2εi − ε

2
i − 1

4εi
if ai > 1− εi

∂Ui(a)

∂ai
=







θi
ai
− 2ci

ai + εi
4εi

if ai < εi

θi
ai
− ci if εi ≤ ai ≤ 1− εi

θi
ai
− ci
−ai + εi + 1

2εi
if ai > 1− εi

To compute the best response function of useri, we impose the first derivative ofU(a) equal to0

and we analyse the concavity ofU(a), with respect toai.

∂Ui(a)

∂ai
= 0 −→ ai =







−εi
2

+
1

2

√

ε2i +
8εiθi
ci

if
θi
ci
< εi

θi
ci

if εi ≤
θi
ci
≤ 1− εi

εi + 1

1
+

1

2

√

(εi + 1)2 −
8εiθi
ci

if
1

2
<
θi
ci
< 1− εi

∂2Ui(a)

∂a2i
=







−
θi
a2i
−

ci
2εi

if ai < εi

θi
a2i

if εi ≤ ai ≤ 1− εi

−
θi
a2i

+
ci
2εi

if ai > 1− εi

∂2Ui(a)

∂a2i
< 0 for ai ∈

[

0, max

(√
2εiθi
ci

, 1− εi

)]

and inmax

(√
2εiθi
ci

, 1− εi

)

there is a

change in the concavity. If
1

2
<
θi
ci
≤ 1− εi then, after the change of concavity, the function reaches

a local minimum inai =
εi + 1

2
+

1

2

√

(εi + 1)2 −
8εiθi
ci

and then restarts to increase. Hence, in

this case there are 2 local maxima:ai =
θi
ci

and ai = 1. Comparing the2 maxima we obtain

Ui(
θi
ci
, a−i) ≥ Ui(1, a−1)⇐⇒

θi
ci

ln
θi
ci
−
θi
ci
≥
εi
4
− 1.

Summarizing:

Case 1) if
θi
ci

< εi then there is one local maximum which is the global maximum:ai =
−εi
2

+

1

2

√

ε2i +
8εiθi
ci

Case 2) Ifεi ≤
θi
ci
≤

1

2
then there is one local maximum which is the global maximum:ai =

θi
ci
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Case 3) If
1

2
<
θi
ci
≤ 1− εi and

θi
ci

ln
θi
ci
−
θi
ci
≥
εi
4
− 1 then there are two local maxima and the global

one isai =
θi
ci

Case 4) If
1

2
<
θi
ci
≤ 1− εi and

θi
ci

ln
θi
ci
−
θi
ci
<
εi
4
− 1 then there are two local maxima and the global

one isai = 1

Case 5) if
θi
ci
> 1− εi then the function is increasing and the maximum is obtained for ai = 1

A.4 Proof of Proposition 10

Proof. Considering that users adopt the NE action profile (6.13), wewant to maximizeU(a) with

respect toak, ∀k ∈ N . The optimalak must be lower than1, therefore we can consider only the first

three cases listed at the end of Appendix A.3.

We obtain:

∂U(a)

∂ak
=







θk
ak
−

∑

i 6=k θi

1− ak
+
θkεk
2a2k

if ak < εk

θk
ak
−

∑

i 6=k θi

1− ak
if εk ≤ ak ≤ ak,5

∂U(a)

∂ai
= 0 −→ ai =







ak,4 if ak < εk
θk

∑

i 6=k θi
if εk ≤ ak ≤ ak,5

∂2U(a)

∂a2k
=







−θk
a2k
−

∑

i 6=k θi

(1− ak)2
−
θkεk
a3k

if ak < εk

−θk
a2k
−

∑

i 6=k θi

(1− ak)2
if εk ≤ ak ≤ ak,5

d2G(a)

dakdpi
= 0 , i 6= k

The Hessian ofU(a) is negative definite in[0, ak,5]. U(a) is a continuous and concave function

in [0, ak,5], increasing inak = 0. However, its first partial derivative is not continuous inak = εk.

In particular, if there exists a userk such that
∂G(a)

∂ak
6= 0 in [0, ak,5], then either (1)

∂U(a)

∂ak
> 0

for ak < εk and
∂U(a)

∂ak
< 0 for ak > εk, or (2)U(a) increases inak until reaching a maximum in

ak = ak,5. Finally, the global maximum is located where partial derivatives are equal to0 or, in case

this condition is not satisfied for some usersk, in ak = εk if
∂G(a)

∂ak
> 0 for ak < εk and

∂G(a)

∂ak
< 0

for ak > εk, or in ak,5 otherwise; i.e.,
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ak =







ak,4 if ak,4 < εk

εk if ak,4 ≥ εk and
θk
∑

i θi
≤ εk

θk
∑

i θi
if εk ≤

θk
∑

i θi
≤

1

2
or

θk
∑

i θi
∈ C (εk)

ak,5 otherwise

which is equivalent to Eq. (6.14).

A.5 Proof of Lemma 4

Proof. We studyi’s utility, U I
i (a), varying i’s action, ai. To do so, we first analyze the average

intervention levelE := E

[[

ri

(

[ai + ni]
1
0 − ai − εi

)]1

0

]

, for ri → +∞.

If ai < ai, the term that multipliesri is always negative (notice that[ai + ni]
1
0 ≤ ai + εi) and,

consequently, the intervention level is always equal to0 andE = 0.

If ai > ai + 2εi, the term that multipliesri is always positive (notice that[ai + ni]
1
0 ≥ ai − εi)

and, consequently, the intervention level is always equal to 1 andE = 1.

If ai ≤ ai ≤ ai + 2εi, the intervention might be0 or 1, depending on the value of the estimation

errorni. Notice that, in this case,ai + ni ≥ 0. Thus, wheneverni is higher thanai + εi − ai, the

intervention is1, and the average intervention level is equal to

E =
1

2εi

∫ εi

ai+εi−ai

∂x =
1

2εi
(ai − ai)

Hence, we obtain

Ui(a) =







θi ln ai + θi ln
[
∏

j 6=i (1− aj)
]

if ai < ai

θi ln

[

ai

(

1−
1

2εi
(ai − ai)

)]

+ θi ln
[
∏

j 6=i (1− aj)
]

if ai ≤ ai ≤ ai + 2εi

−∞ if ai > ai + 2εi

To predict the best action for useri, we study the trend ofUi(a) varying ai in the interval

[0, ai + 2εi). To do so, we calculate
∂Ui(a)

∂ai
and

∂2Ui(a)

∂a2i
. and we study their sign.

∂Ui(a)

∂ai
=







θi
ai

if ai < ai

θi
1 + 1

2εi
ai −

1
εi
ai

(

1 + 1
2εi
ai

)

ai −
1
2εi
a2i

if ai ≤ ai ≤ ai + 2εi
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∂2Ui(a)

∂a2i
=







−
θi
a2i

if ai < ai

θi

1
εi
(ai − ai)− 1 + ai

2ε2
i

(ai − ai)−
a2i
2ε2

i

−
a2i
4ε2

i
[(

1 + 1
2εi
ai

)

ai −
1
2εi
a2i

]2 if ai ≤ ai ≤ ai + 2εi

∂2Ui(a)

∂a2i
< 0 for ai ≤ ai ≤ ai + 2εi. In fact, forai ≤ ai ≤ ai + εi

1

εi
(ai − ai)− 1 +

ai
2ε2i

(ai − ai)−
a2i
2ε2i
−
a2i
4ε2i
≤ 1− 1 + 0

a2i
2ε2i
−
a2i
4ε2i
≤ 0

Forai + εi ≤ ai ≤ ai + 2εi

1

εi
(ai − ai)− 1 +

ai
2ε2i

(ai − ai)−
a2i
2ε2i
−
a2i
4ε2i
≤ 2− 1−

ai
2εi
−
a2i
2ε2i
≤ 1−

ai + εi
2εi

−
(ai + εi)

2

2ε2i
=

= 1−
1

2
−
ai
2εi
−
a2i + 2aiεi + ε2i

2ε2i
= −

ai
2εi
−
a2i
2ε2i
−
ai
εi
≤ 0

Thus,
∂Ui(a)

∂ai
is decreasing in[ai, ai + 2εi]. Since

∂Ui(a)

∂ai
> 0 in [0, ai, ), a necessary and

sufficient condition such thatai is a global maximum is that
∂Ui(a)

∂ai
≤ 0 for ai → a+i . Imposing

such a condition we obtainai ≥ 2εi, which concludes the proof.
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B.1 Proof of Proposition 13

Proof. We prove⇒ by contradiction.

LetD = 〈(Ti), (Ai), µ,X,Φ〉 be a maximum efficiency device (remember that we focus only on

incentive compatible devices). Suppose3 is not valid, i.e., there exists a type profilet̃ such that the

non-optimal action profilez 6= gM (t̃) is suggested with positive probabilityµt̃(z) > 0. Then

EU(f, g,D) =
∑

t∈T

π(t)
∑

a∈A

µt(a)
∑

x∈X

Φt,a,a(x)U(a, t, x) = V +W+

+ µt̃(z)
∑

x∈X

Φhatt,z,z(x)U(z, t̃, x) < V +W + µt̃(z)U(gM (t̃), t̃, x∗) ≤ EU ben

where

V =
∑

t∈T,t6=t̃

π(t)
∑

a∈A

µt(a)
∑

x∈X

Φt,a,a(x)U(a, t, x)

W = π(t̃)
∑

a∈A,a6=z

µt(a)
∑

x∈X

Φt,a,a(x)U(a, t̃, x)

which contradicts the fact thatD is a maximum efficiency device.

Now suppose4 is not valid, i.e., thatΦ′
a = Φt,gM (t),a does not sustain without interventiongM (t)

in Γt. If Φ′
a does not sustaingM (t) in Γt, then there exists a useri and an actionai 6= gMi (t) such

that useri prefers to adoptai when told to usegMi (t), i.e., the strategygi(ti, gMi (t)) = ai allows user

i to obtain a higher utility with respect to the obedient strategy g∗i ; this contradicts the fact that the

device is incentive compatible. IfΦ′
a sustainsgM (t) in Γt “with intervention”, then there exists̃t and
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x̃ 6= x∗ such thatΦt̃,gM (t̃),gM (t̃)(x̃) > 0. Then

EU(f, g,D) =
∑

t∈T

π(t)
∑

x∈X

Φt,gM (t),gM (t)(x)U(gM (t), t, x) = V +W+

+ π(t̃)Φt,gM (t),gM (t)(x̃)U(gM (t), t, x̃) < V +W + π(t̃)Φt,gM (t),gM (t)(x̃)U(gM (t), t, x∗) ≤ EU ben

where

V =
∑

t∈T,t6=t̃

π(t)
∑

x∈X

Φt,gM (t),gM (t)(x)U(gM (t), t, x)

W = π(t̃)
∑

x∈X,x 6=x̃

Φt,gM (t),gM (t)(x)U(gM (t), t, x)

which contradicts the fact thatD is a maximum efficiency device.

Finally, if 1 is not satisfied then4 can not be satisfied either (becausegM (t) is not sustainable

without intervention), thus we obtain a contradiction. If2 is not satisfied then either3 is not satisfied

or the device is not incentive compatible (because, given3, 2 is a particular case of the incentive-

compatibility constraints), thus, in both cases, we obtaina contradiction.

⇐ It is straightforward to verify that if1− 4 are satisfied the resulting mechanism is incentive

compatible and the utility of the designer is equal to the benchmark optimum (7.1).

B.2 Proof of Lemma 6

Proof. LetD = 〈(Ti), (Ai), µ,X,Φ〉 be an optimal device (remember that we focus only on incentive

compatible devices). The expected utility of useri having typeti can be written as

EUi(f, g, ti,D) =
∑

t−i∈T−i

π[t | ti]Vi(t) , Vi(t) =
∑

a∈A

µt(a)
∑

x∈X

Φt,a,a(x)Ui(a, t, x)

Denote byamin
i (t) the minimum possible action suggested to useri when the type profile ist,

i.e.,amin
i (t) = min {ai ∈ Ai : µt(ai, a−i) > 0, a−i ∈ A−i}. We define the following intervals

Ii(t) =
[

amin
i , min

{

amin
i (t) , gNE0

i (t)
}]

, i = {1, . . . , n}

and we use the notationI(t) andI−i(t) in the usual way.

We define the functioǹi(a−i) in the domainI−i(t) as follows:

`i(a−i) = {ai ∈ Ii(t) such thatUi (a, t, x
∗) = Vi(t)}
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The function`i is a non-empty set-valued function fromI−i(t) to the power set ofIi(t). In fact,

∀ a′−i(t) ∈ I−i(t),

Ui

(
amin
i , a′−i, t, x

∗
)
= 0 ≤ Vi(t) ≤

∑

a∈A

µt(a)Ui(a, t, x
∗) ≤

∑

a∈A

µt(a)Ui(ai, a
′
−i(t), t, x

∗) (B.1)

The second inequality of Eq. (B.1) is valid becausei’s utility is non increasing with respect to the

intervention level, i.e.,Ui (a, t, x) ≤ Ui (a, t, x
∗), ∀ a, t, x. The last inequality of Eq. (B.1) is valid

becausei’s utility is non increasing in the actions of the other usersand, from the definition of the set

I−i(t), a′−i(t) ≤ a−i, ∀ a′−i ∈ I−i(t). Eq. (B.1) and the continuity ofi’s utility imply that an action

ãi(t) ∈ Ii(t) satisfyingUi (a, t, x
∗) = Vi(t) exists,∀ a−i ∈ I−i(t). Moreover, by definitioǹ i(a−i)

has a closed graph (i.e., the graph of`i(a−i) is a closed subset ofI(t)) and, sincei’s utility is non

decreasing in
[

amin
i gNE0

i (t)
]

, `i(a−i) is convex,∀ a−i ∈ I−i(t).

We define the functioǹ(a) = (`1(a−1), · · · , `n(a−n)), ∀ a ∈ I(t). The function` is defined

from the non-empty, compact and convex setI(t) to the power set ofI(t). Thanks to the properties of

`i, ` has a closed graph and`(a) is non-empty and convex. Therefore we can apply Kakutani fixed-

point theorem [51] to affirm that a fixed point exists, i.e., there exists an action profilẽa(t) ∈ I(t) such

thatUi (ã, t, x
∗) = Vi(t), ∀ i ∈ N . Notice that̃a(t) < gNE0

(t), thereforẽa(t) is sustainable without

intervention inΓt, and we denote byΦ′
a the intervention rule that sustains without interventionã(t)

in Γt.

Finally, the original optimal deviceD = 〈(Ti), (Ai), µ,X,Φ〉 can be substituted with the device

D̃ = 〈(Ti), (Ai), µ̃,X, Φ̃〉 in which, ∀ t, µ̃(t) = ã(t) and Φ̃t,ã(t),a = Φ′
a. With the new device

D̃ the users are obedient (because the restriction of the intervention rule,Φ′
a, sustains̃a(t)) and

honest (because the utilities they obtain for each combination of reports are the same as in the initial

deviceD that sustains the honest and obedient strategy profile). More specifically,D̃ sustains without

intervention the honest and obedient strategy profile. Moreover, in the equilibrium path the users’

expected utilities using̃D coincide with the users’ expected utilities usingD; thus, also the designer’s

utility (which is a function of users’ utilities) remains the same, and this implies thatD̃ is optimal.
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B.3 Proof of Proposition 16

Proof.

EUi(g, ti) = Et−i
[Ui(g(t), ti)] = gi(ti)

tiEt−i
[(C − λ)] = gi(ti)

ti







C − gi(ti)−
n∑

j=1,j 6=i

Etj [gj(tj)]









∂ lnEUi(g, ti)

∂gi(ti)
=

ti
gi(ti)

−
1

C − gi(ti)−
∑n

j=1,j 6=iEtj [gj(tj)]

∂2 lnEUi(g, ti)

∂g2i (ti)
= −

ti
g2i (ti)

−
1

(

C − gi(ti)−
∑n

j=1,j 6=iEtj [gj(tj)]
)2 < 0

Imposing that the first derivative is equal to0, we obtain that the Bayesian Nash Equilibrium

gBNE must satisfy,∀ i ∈ N and∀ l = 1, . . . , v,

(1 + τl) g
BNE
i (τl) + τl

n∑

j=1,j 6=i

v∑

k=1

π(τk)g
BNE
j (τk) = Cτl (B.2)

The system of equations defined by (B.2) can be written as a matrix equation of the form

AgBNE = b

where

gBNE =








gBNE
1

...

gBNE
n







, gBNE

i =








gBNE
i (τ1)

...

gBNE
i (τv)







, b =








b̂
...

b̂







, b̂ =








Cτ1
...

Cτv







,

A =











Λ τ ·P · · · τ ·P

τ ·P Λ · · · τ ·P
...

...
. . .

...

τ ·P τ ·P · · · Λ











,

Λ = diag (1 + τ1, . . . , 1 + τv) , τ =








τ1
...

τv







, P =

[

π(τ1) . . . π(τv)
]

Finally, we want to analytically compute the inverse of the matrix A. We can writeA as

A =








Λ− τ ·P
. . .

Λ− τ ·P







+








I

...

I







·
[

τ ·P . . . τ ·P
]

(B.3)
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whereI is the identity matrix inRm×m.

The matrix inversion Lemma states that

(E+BCD)−1 = E
−1 −E

−1
B
(
C

−1 +DE
−1

B
)−1

DE
−1 (B.4)

Applying the matrix inversion Lemma toA−1 we obtain

A
−1 =








Λ− τ ·P
. . .

Λ− τ ·P








−1

−








Λ− τ ·P
. . .

Λ− τ ·P








−1

·








I

...

I







·













I
−1 +

[

τ ·P . . . τ ·P
]

·








Λ− τ ·P
. . .

Λ− τ ·P








−1 






I

...

I








︸ ︷︷ ︸

Y













−1

·

[

τ ·P . . . τ ·P
]

·








Λ− τ ·P
.. .

Λ− τ ·P








−1

(B.5)

First, we calculate

(Λ− τ ·P)−1 = Λ
−1 −Λ

−1 · τ ·
(
−1 +P ·Λ−1 · τ

)−1
·P ·Λ−1

= Λ
−1 −Λ

−1 · τ ·
1

−1 +
∑v

i=1 P (τi)
τi

1+τi

·P ·Λ−1

= Λ
−1 −Λ

−1 · τ · β ·P ·Λ−1 (B.6)

whereβ =
1

−1 +
∑v

i=1 P (τi)
τi

1+τi

.

Now we calculateY−1. We rewriteY as

Y = I+
[

τ ·P . . . τ ·P
]

·








Λ− τ ·P
.. .

Λ− τ ·P








−1 






I

...

I








= I+
[

τ ·P . . . τ ·P
]

·








Λ
−1 − βΛ−1τPΛ

−1

.. .

Λ
−1 − βΛ−1τPΛ

−1







·








I

...

I








= I+ n · τ ·P ·
(
Λ

−1 − βΛ−1τPΛ
−1
)
= I+ τ ·

[
n ·
(
1−PΛ

−1τβ
)]
·PΛ

−1

= I+ τ ·
n

1−
∑v

i=1 P (τi)
τi

1+τi

·PΛ
−1 (B.7)
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Applying the matrix inversion Lemma toY−1 we obtain

Y
−1 = I

−1 − I
−1τ ·

(

1−
∑v

i=1 P (τi)
τi

1+τi

n
+P ·Λ−1 · I−1 · τ

)−1

·P ·Λ−1 · I−1

= I− τ ·






1
1−

∑v
i=1 P (τi)

τi
1+τi

n
+
∑v

i=1 P (τi)
τi

1+τi




 ·P ·Λ−1

= I−
n

1 + (n− 1)
∑v

i=1 P (τi)
τi

1+τi

· τPΛ
−1 (B.8)

Finally, we can calculateA−1 as

A
−1 =








Λ− τ ·P
. ..

Λ− τ ·P








−1

−








Λ− τ ·P
. . .

Λ− τ ·P








−1

·








I

...

I







·

=

(

I−
n

1 + (n− 1)
∑v

i=1 P (τi)
τi

1+τi

· τPΛ
−1

)

·
[

τ ·P . . . τ ·P
]

·








Λ− τ ·P
. ..

Λ− τ ·P








−1

=








B

. . .

B







−








C . . . C

...
. . .

...

C . . . C








(B.9)

where

B = Λ
−1 − βΛ−1τPΛ

−1

C =
(
Λ

−1 − βΛ−1τPΛ
−1
)
·

(

I−
n

1 + (n− 1)
∑v

i=1 P (τi)
τi

1+τi

· τPΛ
−1

)

· τP ·
(
Λ

−1 − βΛ−1τPΛ
−1
)

B.4 Proof of Lemma 7

Proof. For a generic useri, we want to prove that̃ai is the best action given that the other users adopt

ã−i. We study the sign of the derivative of the logarithm ofi’s utility with respect toi’s action

∂ lnU I
i (ai, ã−i, ti, x)

∂ai
=







ti
ai
−

1

C −
∑

k 6=i ãk − ai
ai < ãi

ti
ai
−

1 + ci
C −

∑

k 6=i ãk − ai − ci(ai − ãi)
ãi < ai < ãi +

x

ci
ti
ai
−

1

C −
∑

k 6=i ãk − ai − x
ai > ãi +

x

ci



B.5. Proof of Proposition 18 177

We denote byaBR
i (a−i) the best response function of useri, i.e., i’s action that maximizesi’s

utility when the action vector of the other users isa−i. Since the users’ utilities satisfy the assumptions

A4-A6 of Subsection 7.4.1,
U I
i (ai, ã−i, ti, x)

∂ai
≥ 0 for ai < ãi. In factU I

i (a, ti, x) is increasing with

respect toai in
[
0, aBR

i (ã−i)
)

andãi ≤ aNE0

i = aBR
i (aNE0

−i ) ≤ aBR
i (ã−i), where the first inequality

is an assumption of the Lemma and the last inequality is validbecause of the submodularity of the

game.

Imposing the condition
∂U I

i (ai, ã−i, ti, x)

∂ai
≤ 0 in ãi < ai < ãi +

x

ci
, we find

ci ≥
ti

(

C −
∑n

k=1,k 6=i ãk − ai
)

− ai

ti (ai − ãi) + ai
(B.10)

The right hand side term of (B.10) is decreasing inai, therefore the condition is valid iñai < ai <

ãi +
x

ci
if and only if it is valid in ãi, obtaining

ci ≥
ti (C −

∑n
k=1 ãk)− ãi
ãi

Notice that the condition onci is a necessary condition for̃ai to be a NE. In fact if it is not satisfied

thenU I
i (ai, ã−i, ti, x) is strictly increasing iñai and, for the continuity ofU I

i (ai, ã−i, ti, x) with

respect toai, we can find an action̂ai > ãi such thatU I
i (âi, ã−i, ti, x) > U I

i (ãi, ã−i, ti, x).

Finally, imposing the condition
∂U I

i (ai, ã−i, ti, x)

∂ai
≤ 0 in ai > ãi +

x

ci
, we find

x ≥
ci [ti (C −

∑n
k=1 ãk)− ãi]

1 + ti(1 + ci)

Notice that, given the condition onci, this last condition is sufficient for̃ai to be a global maxi-

mizer. In fact in this wayU I
i (ai, ã−i, ti, x) becomes quasi-concave inai: increasing forai < ãi and

decreasing forai > ãi.

B.5 Proof of Proposition 18

Proof. Conditions1, 3 and4 of Proposition 13 are satisfied. It remains to verify that2 is satisfied,

i.e.,∀ ti, t̂i ∈ T1,

∑

t−i∈T−i

π(t−i)a
ti
i

(

C −
n∑

k=1

ak

)

≥
∑

t−i∈T−i

π(t−i)â
ti
i

(

C −
n∑

k=1

âk

)

(B.11)
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where,∀j 6= i,

ai =
tiC

n+
∑

k 6=i tk + ti
, aj =

tjC

n+
∑

k 6=i tk + ti
, âi =

t̂iC

n+
∑

k 6=i tk + t̂i
, âj =

tjC

n+
∑

k 6=i tk + t̂i

(B.12)

In particular, Eq. (B.11) is valid if,∀ t−i ∈ T−i,

atii

(

C −
n∑

k=1

ak

)

≥ âtii

(

C −
n∑

k=1

âk

)

(B.13)

Substituting Eq. (B.12) into Eq. (B.13) we obtain:

(

n+
∑

k 6=i tk + t̂i

n+
∑

k 6=i tk + ti

)ti+1(
ti

t̂i

)ti

≥ 1 (B.14)

We use the notationb = n+
∑

k 6=i tk, andy = t̂i
ti

. We want to find the condition onti andy such

that

h(y) =

(
b+ tiy

b+ ti

)ti+1

y−ti ≥ 1

Notice thath(1) = 1. We take the derivative ofh with respect toy

h′(y) = tiy
−ti−1

(
b+ tiy

b+ ti

)ti
(
y − b

b+ ti

)

h′(y) ≥ 0⇔ y ≥ b⇔ t̂i
ti
≥ n+

∑

k 6=i tk.

f( t̂i
ti
) is decreasing in̂ti until t̂i = ti

(

n+
∑

k 6=i tk

)

, then it is increasing. This implies that

for t̂i < ti Eq. (B.13) is satisfied, i.e., useri has no incentive to report a lower type. However, if

t̂i → t+i , sinceh′(1) < 0, then useri has an incentive to communicate a higher type (this result is

linked to Proposition 14). In fact Eq. (B.13) is not satisfied∀ t−i ∈ T−i, and therefore Eq. (B.12)

is unsatisfied. Since the functionh( t̂i
ti
) increases for̂ti > ti

(

n+
∑

k 6=i tk

)

, the only way for Eq.

(B.13) to be satisfied is that the functionf(y) will eventually reach the value1 for a valuexth = τ th

ti

and all the types higher thanti are higher than the threshold valueτ th. Notice that it is sufficient that

this condition is verified by the type that followsti. Substitutingti with τl and t̂i with τl+1 into Eq.

(B.14) we obtain Eq. (7.10).
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B.6 Proof of Proposition 19

Proof. First, we demonstrate that Eq. (7.11) describes a convex problem if τv ≤ n. The constraints

describe a convex set. We can rewrite the objective functionin the following way

f(a) = − ln

[(

C −
n∑

i=1

ai

)
∑

t∈T

π(t)
n∏

i=1

a
ti
n

i

]

= − ln

[(

C −
n∑

i=1

ai

)
n∏

i=1

v∑

l=1

π(τl)a
τl
n

i

]

=

= − ln

(

C −
n∑

i=1

ai

)

−
n∑

i=1

ln
v∑

l=1

π(τl)a
τl
n

i

We calculate the partial derivatives off(a)

∂f(a)

∂aj
=

1

C −
∑n

i=1 ai
−

∑v
l=1 π(τl)

τl
n
a

τl
n
−1

i

∑v
l=1 π(τl)a

τl
n

i

∂2f(a)

∂a2j
=

1

(C −
∑n

i=1 ai)
2 −

(
∑v

l=1 π(τl)
τl
n

(
τl
n
− 1
)
a

τl
n
−2

i

)(
∑v

l=1 π(τl)a
τl
n

i

)

−

(
∑v

l=1 π(τl)
τl
n
a

τl
n
−1

i

)2

(
∑v

l=1 π(τl)a
τl
n

i

)2

∂2f(a)

∂aj∂ak
=

1

(C −
∑n

i=1 ai)
2

We have
∂2f(a)

∂a2j
≥
∂2f(a)

∂aj∂ak
≥ 0, where the first inequality is valid ifτv ≤ n.

Before concluding, we state and prove the following Lemma.

Lemma 8. The matrix

H =











α1 β . . . β

β α2 . . . β
...

. . .
...

β β . . . αn











whereαi ≥ β ≥ 0, ∀ i = {1, 2, · · · , n}, is positive semidefinite. If the first inequality is strict,it is

also positive definite.

Proof.

H = β











1 1 . . . 1

1 1 . . . 1
...

. . .
...

1 1 . . . 1











+











α1 − β 0 . . . 0

0 α2 − β . . . 0
...

.. .
...

0 0 . . . αn − β










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Therefore

wT ·H · w = (α1 − β)w
2
1 + · · ·+ (αn − β)w

2
n + β

(
n∑

i=1

wi

)2

wT ·H · w ≥ 0 ∀w if αi ≥ β ≥ 0 ∀ i. wT ·H · w > 0 ∀w 6= 0 if αi > β ≥ 0 ∀ i.

Applying Lemma 8 to the Hessian of the functionf(a) we obtain that the Hessian is positive

semidefinite, therefore the functionf(a) is convex.

As for the optimality of the communication-free incentive compatible deviceD, we have

maxaEt



 n

√
√
√
√

n∏

i=1

U+
i (a, ti,Φ(r,m, a))



 ≤ maxaEt



 n

√
√
√
√

n∏

i=1

U+
i (a, ti, x∗)



 =

= max
a

(

C −
n∑

i=1

ai

)+

Et



 n

√
√
√
√

n∏

i=1

atii



 = max
a

(

C −
n∑

i=1

ai

)

Et

[
n∏

i=1

a
ti
n

i

]

Thus, ifD sustainsa,D is an optimal communication-free incentive compatible device.
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