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Abstract

In wireless communication networks, many protocols (¢E€EE 802.11 a/b/g Medium Access
Control (MAC) protocols) have been designed assuming teatsuare compliant with the protocol
rules. Unfortunately, a self-interested and strategic nsght manipulate the protocol to obtain a
personal advantage at the expense of the other users. Thid lwad to socially inefficient outcomes.

In this thesis we address the problem of designing protataisare able to avoid or limit the
inefficiencies occurring when the users act selfishly arategically. To do so, we exploit the tools
offered by Game Theory (GT), the branch of mathematics ttatets and analyzes the interaction
between strategic decision makers.

The dissertation covers aspects related to wireless cofcations at different levels. We start
analyzing the downlink radio resource allocation issue cgbular network based on Orthogonal
Frequency Division Multiple Access (OFDMA). We propose agptimal game theoretic algorithm
able to preserve the modularity of the system and to tradidsetiveen sum-rate throughput and
fairness among the users of the network.

Successively, we address the problem of promoting codparat wireless relay networks. To
give the incentive for the users of a network to relay the pckent by other users, we consider a
dynamic scheduling in which cooperative users are rewandbdmore channel access opportunities.

Infrastructure sharing is another form of cooperation thight be exploit to meet the increasing
rate demands and quality of service requirements in wsalesworks. We analyze a scenario where
two wireless multi-hop networks are willing to share soméheir nodes — acting as relays — in or-
der to gain benefits in terms of lower packet delivery delay seduced loss probability. Bayesian
Network analysis is exploited to compute the correlationvieen local parameters and overall perfor-
mance, whereas the selection of the nodes to share is madednsrof a game theoretic approach.

Afterwards, our analysis focuses on channel access policiavireless ad—hoc networks. We
design schemes based on pricing and intervention to gieatives for the users to access the channel

efficiently.



Xviil Abstract

Finally, we consider another important issue that arisesnathe users are strategic and selfish:
when asked to report relevant information, the users mighiflit is in their individual interest to do
so. For a class of environments that includes many resoliozagon problems in communication
networks, we provide tools to design an efficient system, lnictv the users have the incentive to
report truthfully and to follow the instructions, despitetfact that they are self—interested. We then

apply our framework and results to design a flow control manant system.



Sommario

Nelle reti di comunicazione wireless, molti protocolli (adempio, i protocolli di accesso al
mezzo IEEE 802.11 a/b/g) sono stati progettati assumerlglctitenti rispettino le regole. Purtroppo
un utente, guidato da interessi personali, potrebbe mkmgd protocollo per ottenere un beneficio
a discapito degli altri utenti. Di conseguenza, la rete l@ge sarebbe sfruttata in maniera inefficiente
da un punto di vista sociale.

Questa tesi si occupa della progettazione di protocollraug di prevenire le inefficienze dovute
al comportamento egoistico e strategico degli utenti. Bggiungere questo scopo, vengono sfruttati
gli strumenti offerti dalla teoria dei giochi, la scienzateraatica che modella e analizza I'interazione
tra soggetti che possono prendere delle decisioni in maalionoma.

La tesi copre aspetti legati alla gestione delle comunicaziireless a differenti livelli. Si inizia
analizzando I'allocazione delle risorse radio, in faseadvdlink, di una rete cellulare basata sulla tec-
nologia di accesso al mezzo di multiplazione a divisionergljfienza ortogonale (OFDMA). Viene
proposto un algoritmo sub-ottimo basato sulla teoria deglgiche permette di preservare la mod-
ularita del sistema ed € in grado di trovare un compromessta tmassimizzazione del throughput
totale e un livello equo delle prestazioni degli utenti.

Successivamente, si analizza il problema di incentivamaperazione nelle reti wireless in cui
gli utenti agiscono opportunisticamente da relay. Perntieare gli utenti della rete a inoltrare i
pacchetti spediti da altri utenti viene adottato uno sclieguinamico, in cui gli utenti cooperativi
sono premiati aumentando le loro opportunita di accessearm

La condivisione dell'infrastruttura é un’altra forma diagerazione che potrebbe essere sfruttata
per soddisfare la crescente esigenza di rate e qualita \dizigenelle reti wireless. A tal fine, si
considera uno scenario in cui due reti wireless multi-hosbsposte a condividere alcuni nodi, che
agiscono da relay per entrambe le reti. Un’analisi basdte sati Bayesiane permette di stimare le
prestazioni globali da alcuni parametri locali, mentreamalisi basata sulla teoria dei giochi permette

di selezionare in modo opportuno i nodi da condividere.



XX Sommario

In seguito, la nostra analisi si concentra sulle politichecdesso al mezzo in reti wireless ad—hoc.
Viene progettato un protocollo basato sugli schemi di pge intervention per incentivare gli utenti
ad utilizzare il canale wireless efficientemente.

Infine, si considera un altro importante problema che sogjenomento in cui gli utenti sono
egoisti e strategici: quando viene richiesto di riportae#tedinformazioni rilevanti, gli utenti potreb-
bero mentire, se cio fosse nel loro interesse. Partendoaaagmario generico, comprendente molte
problematiche associate all'allocazione di risorse n@tedi comunicazione, vengono forniti degli
strumenti per progettare un sistema efficiente, in cui gntitsono incentivati a comunicare le infor-
mazioni veritiere e seguire le istruzioni del protocoll@aliBtrumenti e risultati vengono applicati per

progettare un sistema di controllo della congestione inrateadi comunicazione.



Chapter

Introduction

Mobile communications have grown exponentially over trst tavo decades, and will continue
to grow: Cisco projected a 18-fold increase of global moldiga traffic between the end of 2011
and 2016 and over 10 billion mobile-connected devices ir64Q). While this exceptional pace of
growth is exciting, it also presents a whole new set of chglxs. To meet the increasingly high rate
demands and quality of service requirements, future véisetetworks must be reliable, able to inter-
operate and to manage dynamically and efficiently a largefs#g#vices. As a consequence, wireless
communication networks are migrating towards more disteth approaches, shifting network intel-
ligence from the core network towards the edges of the n&tw®his transformation is supported
by the increase of mobile terminals computation capaédiind leads to more scalable, flexible and
reliable networks, decreasing the information exchangeramoving the single point of failure of
completely centralized approaches.

Distributed algorithms, in which each device of the wirglegtwork is capable of independently
adapting its operation based on the current environmewng, Ib@en studied extensively. Most of these
works assume that devices comply with the rules of the algori However, the distribution of the
decision making process leads to a new fundamental issuat vaippens if the algorithm used by a
device is manipulated to pursue a personal benefit? In desttaapproaches, such deviations from a
prescribed protocol are not authorized and can be detdmtedpse every action is dictated by a cen-
tral entity. In decentralized approaches, each devicedras slegree of freedom in setting parameters
or changing the mode of operation. By exploiting such legwagevice might be programmed, by
the manufacturer or by the final user, to accomplish a cedfajective, at the cost of overall network

performance. As a consequence, there is the necessity to design systéentoatope withselfish

1In [2] the 802.11 MAC protocol of a commercial Broadcom chipis replaced with a state machine execution engine
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users

To reach this goal wireless engineers need novel analygjgptoaches to study modern wire-
less networks, which exploit the tools offered pgme theory Game theory is a branch of applied
mathematics that models the interaction amdegision makersach of them pursuing a personal ob-
jective, defines the solution concepts of such interactiah Based on them, provides analytical tools
to predict the outcomes. The ability to model independeaisiten makers, whose actions potentially
affect all other decision makers, renders game theoryqudaitly attractive to analyze networking
issues. The earlier applications of game theory to wireheta/orks problems were limited to the
analysis of the impact of user selfishness on the performaineeisting distributed algorithm. Only

recently have they been used in a constructive wagetign distributed protocals

In this dissertation we present some contributions on tsgydef efficient game-theoretic schemes
in wireless networks. This research field can be divided twmmain branches. In the first one, de-
vices connected to a wireless network are assumed to pursubjectiveassignedy the protocol.
Game theory is used to predict the outcomes for differerst gedbjectives and to design the objec-
tives that allow to achieve the most efficient outcomes. d¢atthat, in this case, devices a@mpliant
with the protocol rules, in that they accept passively th&igfeed objectives, which may differ from
the objectives of the users that operate the devices. Suap@pach may help to design distributed
algorithms, demonstrating and predicting the convergafcich algorithms, but does not answer
the initial question, i.e., what happens if the algorithnrediby a device is manipulated to pursue a

personal benefit?

In the second branch, the devices connected to a wirelessiietre assumed to follopersonal
objectives which are aligned with the objectives of the users that afeethe devices. In this case
game theory is used to design algorithms that are able tealifficient outcomes, despite the fact
that devices seek to optimize their personal objectivesch&un approach allows to design proto-
cols that provide the incentive to follow the rules: it wik ln the self-interest of each user not to

manipulate the algorithm.

Except for Chapter 3, in which we follow the first approachihiis thesis we follow the second
approach, i.e., we assume that devices are autonomougdetiakers that pursue their own interest,
and we desigmcentive schemes drive the outcome of the system toward an efficient pomtgang

aspects related to wireless communications at differerlse

which allows to program and use the desired MAC protocol. hSaicapability of modifying protocols results in our

concerns for self-interested users in future wireless oe¢sv
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1.1 Game Theory in Wireless Networks

The application of game theory to the modeling and analybiwieless communication net-
works has received considerable attention in recent yeai$,has led to numerous tutorials [3-5]
and books [6, 7] outlining game-theoretic concepts and th&age in wireless networks. Wireless

communication networks are full of scenarios that can beetealaggamesexamples are

resource allocation [8—12]: sharing of the networks reses, such as channels, bandwidths

and time slots
» power control [13—-16]: adjustment of the transmission @ow

* relay network [17-22]: opportunistic packet forwarding

flow/congestion control [23—-29]: adjustment of the rat¢h®e available bandwidth of the net-

work
* network routing [30—33]: selection of paths with certagsulable properties

All these scenarios have in common the following featuré3:tifere is a set of users, (2) each
user takes some actions based on a certain objective, atiek(@3hievement of the objective depends
on the actions taken bgvery users As an example, in a flow control scenario each user connected
to a network may decide to modulate its transmission ratehieae a desired trade-off between its
experienced throughput and delay. However, the delay dispmmthe total congestion of the network,
which in turn depends on the transmission rates adopted dny exser. Thus, the best action for a
user depends on the actions adopted by the others, and it isui to foresee the outcome of this
interaction: game-theoretic tools must be exploited totdo i

The earlier applications of game theory to wireless nete@rioblems were limited to the com-
putation of the outcome of the interaction among selfishsuadppting the existing schemes. This
analysis provides insights on how robust the consideredrsehis in presence of selfish users. Un-
fortunately, the operation of the network by selfish usersallg leads to substantial inefficiencies,
because the considered scheme has not been designed wiigstie in mind. For example, [9-12]
shows that the IEEE 802.11, the slotted Aloha and the CSMANDYC protocols can lead to inef-
ficient outcomes, if not to a network collapse. [31] demaist that the total latency of the routes
chosen by selfish network users is at m§)$imes the minimum possible total latency if the latency

cost of each edge is a linear function of its congestion, tugéneral cost function the total latency
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can be arbitrarily larger than the minimum possible. [34jvef that most congestion control schemes
used, such as TCP, encourage a behavior that leads to dongest

As a consequence, game theory was later applied by wiretegseers to design schemes able
to cope with users who behave selfishly. In these schemestines for the users to adopt efficient
actions are provided For examplajcing schemehat charge the users for their resource usage are
used by [35-39] to design efficient slotted-Aloha like ramdaccess protocols, and by [30, 40,41] to
design efficient flow control management systeimgervention schemes which a device provides
the incentive for the users to adopt efficient actions byating punishments, are applied to situations
of medium access control [12, 42] and power control [16]. 48, 44] efficient outcomes in power
control problems are obtained introducing hierarchy in $heeme, allowing some users to move
before others, and this is further advanced in [45] by casig a repeated interaction in which

cooperation among users is obtained by punishing deviatiegs in subsequent stages.

1.2 Organization and Contributions of the Thesis

The rest of this thesis work is organized as follows:

Chapter 2: we introduce some important concepts, notations and tdgarae theory that are extensively
used in the dissertation. This chapter provides a usefldgraand information for the remain-

ing part of the thesis, in particular for the reader who isfaatiliar with game theory.

Chapter 3: we propose a novel approach, based on game theory, for egbance allocation in the down-
link of cellular networks using OFDMA. The reference teclugy is the LTE of the 3GPP
UTRAN. The main contribution is to identify a model for théaslation objectives, and how to
approach them in a tunable manner. The resource managesaeatis framed in the context
of spectrum sharingwhere multiple entities agree on utilizing the radio asogzannel simul-
taneously. A trade-off between sum-rate throughput anddas among the users is identified
and addressed through game theory, i.e., moving the operatithe system towards a stable
Pareto efficient point. Such a methodology can be implendewith low complexity while
ensuring the modularity of the overall system. Numericaules are also shown, to exemplify

the validity of the proposed approach.

Chapter 4: we apply game theory to constructively derive practicaivoek management policies for wire-

less relay networks. We focus on the problem of medium sbaaimd opportunistic packet
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Chapter 5:

Chapter 6:

Chapter 7:

forwarding in wireless relay networks, and we show how, perly modeling the agents in-
volved in such a scenario, and enabling simple but effegtiventives towards cooperation for
the users, we obtain a resource allocation scheme whichasimgful from both perspectives
of game theory and network engineering. Such a result iaetiby introducing throughput

redistribution as a way to transfer utilities, which enaldeoperation among the users.

we analyze a scenario where two wireless ad hoc networks illiregwto share some of their
nodes, acting as relays, in order to gain benefits in termeveéil packet delivery delay and
reduced loss probability. Bayesian Network analysis idatgul to compute the correlation
between local parameters and overall performance, whéreasglection of the nodes to share
is made by means of a game theoretic approach. Our resultbearevalidated through use
of a system level simulator, which shows that an accuraecteh of the shared nodes can

significantly increase the performance gain with respeatrimndom selection scheme.

we consider a number of users who compete to gain access tmaeaiha slotted-Aloha like
random access protocol and two incentive schemesing andintervention We provide some
criteria for the designer of the protocol to choose one sehkbetween them and to design the
best policy for the selected scheme, depending on the sysiemmeters. Our results show that
intervention can achieve the maximum efficiency in plegfect monitoringscenario. In théem-
perfect monitoringscenario, instead, the performance of the system depertis orformation
held by the different entities and, in some cases, therésexighreshold for the number of users
such that, for a number of users lower than the thresholdpiantion outperforms pricing,

whereas, for a number of users higher than the thresholohgrautperforms intervention.

we study the interaction between a designer and a groupaiégic and self-interested users
who possess information the designer does not have. Betisisisers are strategic and self-
interested, they will act to their own advantage, which ofiten be different from the interest of
the designer, even if the designer is benevolent and seekaximize (some measure of) social
welfare. In the settings we consider, the designer and thies @an communicate (perhaps with
noise), the designer can observe the actions of the usatgfmewith error) and the designer
can commit to (plans of) actions interventions— of its own. The designer’s problem is to
construct and implement mechanisnthat provides incentives for the users to communicate
and act in such a way as to further the interest of the desigdespitethe fact that they are
strategic and self-interested and possess private infmmao address the designer’s problem

we propose a general and flexible framework that applies toyreeenarios. In an important
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class of environments, we find conditions under which thégdes can obtain its benchmark
optimum — the utility that could be obtained if it had all infieation and could command the
actions of the users — and conditions under which it cannotreMbroadly we are able to
characterize the solution to the designer’s problem, evsernvit does not yield the benchmark
optimum. Because the optimal mechanism may be difficult tetract and implement, we also
propose a simpler and more readily-implemented mechartisi while falling short of the
optimum, still yields the designer a "good" result. We thpplg our framework and results to
design a flow control management system, in both the compietehe incomplete information
scenarios. lllustrative results show that the considecdeérses can considerably improve the

efficiency of the network.

Chapter 8: concludes the thesis with some remarks.



Chapter

Game Theory Preliminaries

This chapter introduces some important concepts, notatma tools of game theory. This is
not meant to be a comprehensive and in-depth guide of gamoeyttfer which we refer the inter-
ested reader to standard books such as [46-50], rather wiedayathematical groundwork for the
subsequent sections. The reader who is already familidr game theory may want to skip this

chapter.

2.1 Basic Concepts

Game theory is a branch of applied mathematics that attetoptapture rational behaviors in
strategic situations — callegames— in which an individual’s success in making choices depends
on the choices of others. This interdependence causes rdietdiial — calledplayer — to consider
the other player’s possible decisions —strategies— in formulating his own strategy. Traditional
applications of game theory assume that playersalfeinterestecandstrategic meaning that they
pursue a personal objective and they are aware of all coesega of their actions, and seek to
find equilibria in these games: a sets of strategies in which players arketynlio change their
behavior. Many equilibrium concepts have been developethiattempt to capture this idea. These
equilibrium concepts, although they often overlap or cimiecare motivated differently depending on
the considered scenario and on the game formulation. Irotlewing sections we describe the game

formulations, and the corresponding equilibrium concepist are of interest for this dissertation.
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2.2 Static Games with Complete Information

In the most straightforward game formulation, each plagteds a singlaction from a set of
feasible actions, and each player evaluates the resultittgpme through atility function quantify-
ing the goodness coming from the adopted actions. If thegptaplay the actions simultaneously
(alternatively, one can think that they play the actionsiffecent instants, but without knowledge of
the actions played by the others), the game is said &idig If the action sets and the utilities of all
players are common knowledge among the players, the garailigoshe withcomplete information

Formally, a static game with complete informatiBbrcan be represented by the tuple
I'= (Nv A, {UZ}?:l)

in which N = {1,...,n} is the set of players, labeled fromton, A = A; x ... x A, is the set
of action profiles,A; is the set of actions playércan take, and/; is playeri’'s utility function — or
utility for short. We write(a;, a—_;) for the action profile in which player chooses action; € A;
and other players choose the action profile € A_; = Ay x ... x A;_1 X Aj11... X Ay; this

is a common notation to specify a characteristic assoctatedl players except for player we use
similar notations throughout the thesis. The utilify: A — R depends on the actions all players,
thus each player seeking to maximize his own utility has tes@ter the other player’s possible actions
in selecting his own action.

We say that an action; is weakly dominated by, (equivalently,a; weakly dominatesy;) if
playeri’s utility playing a; is greater than or equal to play&s utility playing a;, for any actions of
the other players, i.e.,

Ui(ai,a_;) > Ui(as,a—;) , Va_; € A

If the inequality is strict, then we say that is strictly dominated by, (equivalently,a’ strictly
dominatesy;). If an action weakly (strictly) dominates every other antiwe say that it is a weakly
(strictly) dominant action. It is quite obvious that a sélfend strategic playerwould never adopt
an actiona; which is strictly dominated by an actia#f, because action) alway guarantees him
a higher utility. Thus, from a practical point of view, actia; can be eliminated from the set;.
This procedure can be iterated and the same playerother players can eliminate other strictly

dominated actiorls This procedure is calleiterated elimination of strictly dominated strategiesd

*Notice that, in doing so, a playgr## i may discover that the actian; € A; is strictly dominated by another action
only after having eliminated actian € A;. This implicitly extends the notion of common knowledget anly do players
know the action sets and the utilities of the others, but t#isyg know that all players are self-interested and stretegid

all players know that all players know, etc.
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can be useful to obtain a "smaller" game or, in the rare casesich only a single action profile is

left, to compute the most likely outcome of a game.

2.2.1 Nash equilibrium

We define thebest response functioh”” (though correspondence would be a more suitable
name) of a playef as the set of playefs actions that maximize playéis utility for a given action
profile of the other players, i.eb?"(a_;) = argmax,, U;(a;,a_;). We say that the action, is a
best response to the actions profilg; if a; € hP%(a_;).

Now we have the instruments to define one of the most impogadtbest known concept of
game theory: thé&lash Equilibrium(NE). A NE is an action profile that corresponds to the mutual
best response: for each playierthe action selected is a best response to the actions ofhaliso
Equivalently, a NE is an action profile where no individuay#r can benefit from unilateral devia-
tion, and for this reason it is said to kelf—enforcingor strategically stable Formally,a™¥” is a NE
if

Ui(aNE,aN-E) > Ui(ai,aN-E) , Vie N, Va; € A;

The action profiles corresponding to the Nash equilibriceacensistent prediction of the outcome of
the game, in the sense that if all players predict that a NEowdur then no player has any incentive
to choose a different action. For this reason a NE is commggrded as aolution concepof a
game.

A Nash equilibrium may not exist, unless particular classfegames are considergdand there
can be multiple Nash equilibria in a game, resulting in treuéson how players coordinate to a
particular Nash equilibrium.

Another issue related to the NE (and to all equilibrium cqiseve will define), which is of
particular importance for this dissertation, is é@ficiency usually a NE does not correspond to an
efficient outcome for a gamedRareto optimalityis often used as a reference point for the efficiency
of an outcome. An action profile is Pareto optimal if thereasother action profile that makes every

player at least as well off while making at least one playétebeff. Formally,a = (a1,...,a,) IS

2In some contexts players are allowedandomizetheir actions, i.e., each playéadopts an action; € A; following
the strategys; € A(A;) which represents a probability distribution over the det(if A; has cardinalityl A;|, A(A;)
denotes theéA;| — 1 unit simplex). These types of strategies are commonly dalixed strategies In this case, each
player is assumed to select a strategy that maximizes trexgtpn of his utility over the random action profile. Foisth
particular situation the Nash theorem [49], which is an @pjplon of the Kakutani fixed-point theorem [51] to the best

response functions, guarantees the existence of a NE.
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Pareto optimal if there exists no other action profile= (af, ..., a},) such that;(a") > U;(a)Vi €

N andUj(a’) > Uj(a) for somej € N. In an attempt to quantify the inefficiency of a game, the
concept ofPrice of Anarchyhas been introduced. After defining an efficiency measurthéoplayers
utilities (natural candidates are sum of utilities, or rmnim utility, or some other measure of fairness
among the utilities), the price of anarchy is defined as the ketween the "worst" equilibrium and
the "best" action profile — worst and best with respect to ffieiency measure considered. Notice
that if the efficiency measure is increasing in each playéityuthen the best action profile must be

Pareto optimal.

2.3 Bayesian Games

There are many familiar situations in which some of the pisyge not certain about the charac-
teristics of some of the other players. Bayesian games aigrae for this purpose, to model static
games withncomplete informationin Bayesian games each player is assumed to maximize his ex-
pected utility with respect to the unknown parameters. irhicitly assumes that each player has a
prior belief about the characteristics of the other players.

Formally, a generic playeris characterized by an element of a ggbf types a player’s type
encodes all relevant information about the player, whidhinglude the player’s utility function and
the influence the player’s type has on other players and odebigner. We writd” =T x ... x T,
for the set of possible type profiles. Players know their oyypet players and the designer know the
distribution of player types (a probability distribution of").2 If player i is of typet; thenz(- | t;)
is the conditional distribution of types of other playerse allow for the possibility that types are
correlated, which might be the case, for instance, if play@wve private information about the current
state of the world and not only about themselves.

Finally, we can formalize a Bayesian gainéy the tuple
I'=(N,AT,7n,{U;}} )

in which V, A andU; are the player set, action profile set and playgutility respectively. Player
v's utility U; : A x T; — R depends on the actions of all players and on plagdype.

We define astrategyfor playeri as a functiory; : 1; — A; that specifies which action to take,
conditional on the type of playgr We may think of the type as given to the player at the begmnin

of the game, and the strategy tells which action he will add{gr being assigned a type. In general,

3We usually think of the distributiom as common knowledge but this is not entirely necessary.
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a strategy for a player encodes all the strategic aspectgafe, while an action represents only a
particular move (these two concepts coincide only for acsggme with complete information).

In a Bayesian game each player is assumed to maximize histexig@vith respect to the types of
the other players) utility=U;, which is a function of the strategy of all players and on pla3s type.
Given a strategy profile = (g1, ..., g9,) and a type;, EU; is given by

EU(g,t:) = Y, w(t—i | t)Ui(g(t), t:)
t_;€T_;
whereg(t) = (g1 (1), - gn(t))-

An important solution concept for a Bayesian game isBlagesian Nash equilibriunt(BNE),
i.e., the Nash equilibrium applied to the expected utsitida BNE is the strategy profile where no
individual player can benefit (in terms of expected utility)m unilateral deviation. Formally,?N ¥
is a BNE if

EU(gPNE, gBNE ;) > EUi(gi,gPNF ;) . Yie N,V €Ty, Vg : Ti — A

2.4 Stackelberg Games

A natural extension of static games afgnamicgames, in which players are allowed to take
actions sequentially. Before analyzing the dynamic gamegneral, we consider a simple dynamic
game: theStackelberg game

A Stackelberg game is 2xplayer game in which players move alternatively: first play — the
leader — then player2 — the follower. As usual, both players are characterized by the action sets
A; and A5 and the utilitiesU; : A — RandUs : A — R, A = A; x As. We assume that this
information is common knowledge among the players (i.enmete information scenario), and we
assume that playércan observe the move of playebefore selecting his own action (this property
is known asperfect informationwe will formally define it in the next section). The strategyfor
playerl coincides with the action he adopts, while the strategipr players2 describes which action
to adopt conditional on the action adopted by playef, : A1 — As.

A Stackelberg game can conveniently be represented by jaasda Fig. 2.1, where the nodes
represent the players allowed to move in that stage of theegard the links represent the actions
the players can adopt. Following a particular path, i.eegithe actions adopted by the players, we
end up in a particular leaf of the three, represented by agbaiumbers, which specify the utilities

obtained by player$ and2 respectively.
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A possible solution concept of a Stackelberg game is repteddy a NE. However, Nash Equi-
libria can also include unlikely outcomes. For instance Eadfithe Stackelberg game represented in
Fig. 2.1 iss; = a1, s2(a1) = ag, andsy(a)) = ag. Following this strategy player and2 obtain a
utility respectively ofl and2. It is easy to see that this is a NE because no player couldfigam
deviating unilaterally: if played changes his strategy (keeping fixed plagirstrategy) he would
obtain a utility of0; if player 2 changes his strategy (keeping fixed playér strategy) he would
obtain a utility of2 if sa(a;) = ag (i.e., he only changes,(a})), or 0 if sa(a;) = af). However,
this equilibrium is based on thereatthat player2 adopts actior if player 1 adopts actior]. In
situations in which playe?2 cannot commit to a particular strategy, ttiseat is not credibleand this
NE is unlikely to happen. In fact, playércan foresee that the strategy plagewill probably adopt is
so(a1) = ag andsq(a)) = df, and consequently select the actignwhich is his best strategy given
the predicted strategy for play2r The strategy profile obtained in this way, which is still a,N&
calledStackelberg Equilibriun{SE).

A SE is a refinement of a NE in Stackelberg games, and is olatdiieneans obackward in-
duction first the SE strategy of playex, s57, is computed maximizing/, for each action of player
1, then the SE strategy of playér s7, is obtained maximizing/; given s5¥. Since this proce-
dure requires a double maximization, the existence (buth@tiniqueness) of the SE is guaranteed.
Stackelberg games are commonly extended to situationsishvelplayer moves first and the others

move later. For the analysis of this type of games we referdhder to the next section.

2.5 Dynamic Games

A dynamic game involves players moving sequentially. Thesns that we describe games taking
place througlstages Dynamic games can conveniently be represented by treedady to Fig. 2.1.
We consider only dynamic games with complete informatiof.inl each stage of the game, the
acting player knows the history of the game, we say that tlmeega with perfect information If
information isimperfectit means that some moves are simultaneous. For this reaséocu only

on perfect information games, possibly allowing for sirmokous actions in some of the stages.

In a dynamic game, a player’s strategy specifies the actitek®in each stage, for each history
of play through previous stages. We can regard any stageyfanic game as a static game, chosen
among a number of possible alternatives (one per each gatweyhj. However, the acting players

must take into account how their actions in that stage infleghe evolution of the game. Aftér



2.5. Dynamic Games 13

(1,2) (0,0) (0,0) (2.1)

Figure 2.1. Representation of a Stackelberg game

stages, aubgamedakes place from stage+ 1 onwards. The whole game can be considered as a

subgame of itself.

We say that a Nash equilibrium of a dynamic gamsubgame-perfedf the players’ strategies
constitute a Nash equilibrium in every subgame. Subgamiedd=quilibrium (SPE) is a refinement
of the NE that takes into account the credibility of the tlsedt can be seen as an extension of the
SE to more complex dynamic games (the two equilibrium cotscepincide in Stackelberg games).
The backward induction procedure can be applied to comp@PE: first a NE of the last stage
is computed, then given this a NE of the second-last stagensputed, etc. Since at each step a
NE computation is required, a SPE may not exists. Howevett, éach stage of the game only one
player is allowed to play, the NE computation simplifies in aximization (like in the Stackelberg
game considered in the previous section), and the existgutenot the uniqueness) of the SPE is

guaranteed.
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2.6 Repeated Games

An interesting and well-understood class of dynamic garedkdt ofrepeated gamesin a re-
peated gam&?’ the players play theame stage ganiérepeatedly, and the player’s overall utility is
a weighted average of the utilities in each stage. Repedagdrroduces in general new equilibrium
outcomes with respect to the stage game, because playersrmdition their play on the information
they have received in the past. In this way a player has toitakeaccount the effect of his current

action on the other players’ future behavior.

There exist two distinct versions of repeated games: finitepeated games and infinitely re-
peated games. [finitely repeated gamedbe stage game is played for a fixed number of times. The
arithmetic mean of the utilities in each stage is usuallypéeid to quantify the overall utility of a
player at the end of the game. If the stage game has a uniqueidl&asy to check, using the back-
ward induction, that the finitely repeated game has a unidRe: ® play the NE of the stage game
in every stage. In fact, in the last stage players will plag timique NE of the stage game. In the
second-last stage, given that in the last stage playerdawrifiure play the unique NE, players will
play again the unique NE of the stage game. And so on. Moreestiag is the situation if the single
stage game has multiple Nash equilibria. In this case, famgte, players can "agree" to play the
"best” NE in the last stage if in the second-last stage the laglopted an efficient action profile

(which might not be a NE of the stage game), to play the "wd¥& ‘otherwise.

In infinitely repeated gametbe stage game is played infinitely. To quantify the utilify* of a
playeri at the end of the game, the average utilitf = (1 — ) limz_, 4 oo Zthl 6t‘1Ui(t) is usually
adopted, Wheréfi(t) is the utility obtained by playerat staget andé € (0, 1) is thediscount factor
The discount factor is introduced mainly for mathematiegsons, but it can be useful to capture
situations in which an imminent reward is better than a ®itaward, or in which each player can
exit from the game with a certain probability. For infinitepeated games there exists an important
theorem, Friedman’s theorem (also known as folk theorerhiglwstates what the players can obtain
with SPE strategies. We defindeasible utilityas any convex combination of the utility obtainable
in the single stage game, and (V" ... UNF) be the utility obtainable with a NE of the single
stage game. LéUy, ..., U,) be a feasible utility such thaf; > UN®, Vi € N. Friedman’s theorem
states that, ib is close enough ta, the infinitely repeated game has a SPE in which playersmobtai
utilities EU = (EU4,...,EU,) = (Ui, ...,U,). Theintuition behind itis the adoption of a dynamic
strategy in which the players adopt by default, for a centaimber of stages, a certain action profile,

and then change to another action profile, and so on. In thysawgaconvex combination of the utility
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of the stage game can be obtained. As soon as a generic pldgeates from this "agreement”, the
other playergounishit by adopting the NE action profile of the stage game for aagemumber of
stages. The conditiofi; > UNE guarantees that the final utility foreseen for playé higher than
the utility player: would obtain during the punishment stages. The duratioheptinishment can be
set so that the gain obtained during the deviating stage mimesompensate the loss incurred during
the subsequent stages. Notice that a smélieakes the punishment less effective to deter deviations,

from which the condition thai must be close enough 1o

2.7 Coalitional Games

Cooperative game theorig a branch of game theory that provides analytical toolgudysthe
behavior of self-interested and strategic players whepntityeto find an "agreement"” to cooperate.
The main area of cooperative games is represented by ooalitgames [52], defined as a pair
(N,v), whereN = 1,...,n is a discrete set of players amds a function that quantifies thealue
of a coalition in a game. Each coalitighC N behaves as a single player, competing against other

coalitions in order to obtain a higher valueiofA coalitional game may have the following properties:

Property 1. (Characteristic formYhe value of a coalitiort’ depends only on who are the members

of that coalition, regardless of other coalitions

Property 2. (Transferable utility)The value of a coalition is a real number, representing thalto

utility achieved by the coalition, and it can be arbitraritijvided among its members

For coalitional games satisfying properties 1 and 2, theesat 2" — R is a function that assigns
to each coalitionS the total utility achieved by it. The utility value can be #rérily divided among
the coalition members and the amount of utility that a playerS receivesg;, is the player’s payoff.
A payoff allocation is a vectox € RI°| (where| S | is the cardinality of the sef) whose elements
are the payoffs of players belonging to the coalition; ineottvords, it represents a redistribution of
the total utility.

Another interesting property that a coalitional game mayeha super-additivity, that for a game

with properties 1 and 2 assumes the following form:

Property 3. (Super-additivity)
v(S1US2) > v(S1) +v(S2) VS1,5 C Ns.t.S1NSy=10
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The super-additivity property expresses in mathematerat$ that formation of a larger coalition
is always beneficial. Hence, for those games where it holds ptayers are encouraged to stick
together, forming the grand coalitioN.

For a game having all properties listed before, the mainaspe analyze are:

« finding a redistribution of the total utility(/N') such that the grand coalition is stable, i.e., no

group of players has an incentive to leave the grand coalitio
* finding fairness criteria for the redistribution of theabuitility

« quantifying the gain that the grand coalition can obtaithwespect to non cooperative behav-

iors

A payoff allocation isgroup rationalif """ ; z; = v(N) and it isindividually rationalif z; >
v({i}) Vi, i.e., if every player does not obtain a lower utility by ceogting than by acting alone. A
payoff allocation having both properties is said to bemaputation

The concept otore C, is also very important. It is defined as the set of imputatibat guarantee
that the grand coalition is stable, i.e., all payoff allé@as where no group of playes C N have an
incentive to refuse the proposed payoff allocation, legwive grand coalition and forming coalition

S instead. Mathematically,

C:{x s.t. zn:m =v(N), ) x> v(S)VS C N} (2.1)
=1

icS
Indeed, the core may be empty, in which case the grand @aliii not stable. The existence of

the core ought to be checked case by case, possibly exglatime categories of games where the
existence is guaranteed [47, Ch. 13].



Chapter

Exploiting Game Theory for Resource

Allocation in LTE Systems

In this chaptet we propose a novel approach, based on game theory, for esbiance allocation
in the downlink of cellular networks using OFDMA. The refece technology is the LTE of the
3GPP UTRAN. The main contribution is to identify a model fbetallocation objectives, and how
to approach them in a tunable manner. The resource manageseaa is framed in the context of
spectrum sharingwhere multiple entities agree on utilizing the radio asagsannel simultaneously.
A trade-off between sum-rate throughput and fairness antloagisers is identified and addressed
through game theory, i.e., moving the operation of the systavards a stable Pareto efficient point.
Such a methodology can be implemented with low complexitjemdnsuring the modularity of the

overall system. Numerical results are also shown, to ex@ntpk validity of the proposed approach.

3.1 Introduction

Cellular wireless systems have been able to improve ttaisinission rates, so as to reach “high
speed” communication, thanks to the introduction of ch&amare radio resource allocation. This
means that packet scheduling and the corresponding assigrohphysical layer resources are dy-
namically performed according to the channel conditions$ @nality of Service (QoS) experienced

by the users.

1The material presented in this chapter has been published in
[C1] L. Anchora, L. Badial.. Canzian, and M. Zorzi, “A Characterization of Resource AllocationiTE Systems Aimed
at Game Theoretical Approaches,’®Pmoc. IEEE CAMAD Miami, FL, USA, Dec. 3-4, 2010
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An important scenario where this principle finds applicatis represented by the Long Term
Evolution (LTE) of Third Generation (3G) systems [53]. Insthiechnology, the multiple access
scheme in the downlink uses Orthogonal Frequency Divisiartiple Access (OFDMA). Such a
technology exploits multiple orthogonal subcarriers vahoan be used to take advantage of multi-
user diversity [54]. However, given the key role played by ghysical layer and the correlation of
channel quality, the principles of a fair scheduling of riplét users are difficult to harmonize with
the efficient resource allocation aiming at maximizing tigloput.

In this chapter, along the lines of [55], we utilize a modulgpresentation of the radio resource
management procedure which is split between two functiendties, i.e., a credit-based scheduler
and the actual resource allocator, operating at the trankper and the medium access layer, re-
spectively. The scheduler determines which packets, téken different flows, are candidates to
be served in the next allocation round. The resource atbo@sociates the packets with groups of
OFDMA subcarriers, also accessed in a time division fashsonthat the resources to allocate are
time/frequency resource blocks. In this choice, the resoailocator exploits a degree of freedom,
represented by the number of packets selected by the sehd@uber than the number of slots).

The resulting allocation can be regulated according todetf between two contrasting objec-
tives, i.e., that of throughput maximization, which is ask@d by selecting the packets only according
to a channel quality rationale, and fairness among the flaug;h requires to pursue equity among
the achieved rates. Indeed, this trade-off is reflected &ynthmber of packets selected by the sched-
uler: when it is minimum, i.e., only the packets that fit the[IFA frame are selected, all packets
are mandatorily allocated, and the resource allocator bashaice. Here the allocation is only de-
termined by the credit-based scheduler, which ensuresefsr (the users with higher credits are
allocated). Conversely, if the number of selected pacletdgh, the resource allocator can restrict
the selection to the packets of the users with the best gualitirely neglecting any fairness among
flows. Therefore, to solve the trade-off we present an caigipproach based on game theory which
tries to combine both objectives in an efficient yet easy tplé@ment manner. The key idea is to
treat the scheduler and the resource allocator as two glayernon-cooperative game. The resulting
Nash equilibria are considered as possible solutions teaitie management problem, which exhibit
a low computational cost, yet, under certain conditiontisteatory performance. After discussing
the proposed approach and its possible implementation|segeesent some simple numerical eval-
uations for a two-person game which confirm the goodnessradgoroach and its ability to regulate
the trade-off in a Pareto efficient allocation point.

Note that the scheduler and the resource allocator are fadystem operated by the same entity,
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that has a unique objective. We remark that in this chaptaeghaeory is used to obtain a non-optimal
but simple to implement algorithm, that preserves the naxityl of the system. Conversely, in the
following chapters we will exploit game theory to analyze fhteraction between entities having
different objectives.

The outline of the rest of the chapter is as follows. Sectidnl3outlines related approaches
presented in the literature. Section 3.2 describes theepiiep of the LTE technology and discusses
the layered characterization we gave to the resource &bbocprocedure. Section 3.3 introduces
our proposal, whose rationale is based on game theory, vidiicked to determine a trade-off be-
tween throughput efficiency and fairness among the usep@ting numerical results are shown in

Section 3.4 and we conclude in Section 3.5.

3.1.1 Related work

Adaptive multi-user multi-carrier allocation schemesdth®n instantaneous channel state in-
formation in OFDMA systems allow significant performancepnovements in terms of allocation
efficiency. This happens thanks to the exploitation ofrthdtiuser diversityprinciple, where subcar-
riers are preferably assigned to users experiencing fal@sbchannel conditions and higher order
modulation can be used to transport more bits per OFDMA symbo

In chapter we focus on the resource allocation optimizaicblem in OFDMA downlink sys-
tems with perfect channel state information at the basenstatn the literature there is no unique
formulation for this type of problem. The most common foratidn is the weighted sum rate maxi-
mization subject to some transmit-power constraints. Rgrfixed subchannel assignment, the opti-
mal solution is achieved by multilevel waterfilling [56] ftite continuous rate case (channel capacity
is considered) and greedy or bisection allocation algoviti57] for the integer-bit constellation case
(bit rate constrained to real modulation schemes). Whealegeights are considered, the optimal
subchannel assignment is simply obtained by giving eachhauinel to the user with the best gain
to noise ratio [56]. This is called the max-sum-capacite yuvhich results in the most efficient use
of the resources in terms of throughput but can lead to urdag and instability, especially for non-
symmetrical channel conditions and non-uniform traffidgrats [54]. However, in the general case,
finding the optimal subchannel assignment is a combindtprablem whose complexity increases
exponentially with the number of subcarriers. To find an effitsuboptimal algorithm, [56] consid-
ers a convex relaxation method, allowing time sharing irheatchannel. In this way the problem

becomes convex and can be solved in polynomial time usiegiantpoint methods. A further reduc-
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tion in computational complexity is achieved consideringpastant power for the used subchannels.
In [58] a solution of the problem is efficiently computed wgsibagrange dual decomposition and
considering that the duality gap is zero when the number lofauwiers tends to infinity. Previously
described works consider continuous rate adaptation. Aiiadal constraint is added in [53] taking
into account that real communication systems rely on imtbgeconstellations. Moreover, since LTE
is considered, the modulation and coding scheme for a gigen has been considered fixed during
a scheduling period. Also in this case the problem is contbiie and a sub-optimal algorithm has

been designed to reduce the computational complexity.

Another way of tackling the problem is power minimizatiorbgct to rate constraints for each
user. In [58], similar to the weighted sum rate maximizatitime Lagrange dual decomposition
method has been proposed. In [59] an integer-bit consteilgs considered and the power has been
assumed to be a convex and increasing function of the bi{mabst popular coding and modulation
schemes satisfy this condition). Due to the combinatorélire of the problem, a convex relaxation

has been used to obtain a sub-optimal solution.

Another approach is proposed in [60] where a fairness cainsis taken into account: the small-
est capacity among all users is maximized, subject to a ti@asmit-power constraint. Variable bit
rate traffic is considered, but the formulation can be dightodified to consider constant bit rate
traffic. This objective function can lead to inefficienci€some users experience deeply faded sub-
channels. In [54], in order to support delay-sensitive i@pfibns, an approach that maximizes the
total utility with respect to mean queue delays is proposAtko in these last works, suboptimal
solutions are computed due to the combinatorial natureeptbblem. Finally, we cite the propor-
tional fair scheduling [54], that aims at maximizing the doihm of the average data rates to trade

off spectrum efficiency and fairness among users.

To sum up, it is difficult to formulate the desired optimizatigoal and constraints for the multi-
user multi-carrier allocation problem, in particular wherixed traffic with different QoS require-
ments is considered. Also, the set selection nature of thesarrier allocation leads to a combinato-
rial problem that requires an exhaustive search, with exptially increasing complexity. Simplified
approaches must be considered to design real time algarigxploiting instantaneous subchannel
information. This motivates us to consider an approachdbeas not claim optimality with respect to
a subjective utility function, but rather is computatidgdightweight and able to find a good trade-
off between aggregate performance (in terms of througgpettrum efficiency) and fairness among

flows.
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3.2 Overview of LTE and System Model

LTE is a set of improvements to the Universal Mobile Telecamioations System (UMTS)
introduced in the 3rd Generation Partnership Project (3GRease 8 [61]. It represents efficient
packet-based radio access networks allowing high thrautgthmwv latency and low operating costs.
Small enhancements have been introduced on LTE specifisatidRelease 9 [62]. The next step for
LTE evolution is LTE Advanced which is currently being stardized in Release 10 [63], the major

candidate technology for the so-called International Mobelecommunications (IMT)-Advanced.

Rel-8 LTE adopts OFDMA in the downlink for its robustnessiagamultipath interference and
to allow a high spectral efficiency exploiting time and freqay dependent scheduling and Multiple
Input Multiple Output (MIMO) techniques. In the uplink, imaer to maintain user orthogonality in
the frequency domain, a Single Carrier Frequency Divisiaritidle Access (SC-FDMA) is adopted.
Rel-8 LTE supports both Frequency Division Duplexing (FDy Time Division Duplexing (TDD)
and uses multiple transmission bandwidths (ilet, 3, 5, 10, 15 and20 MHz) and multiple modu-
lation schemes (i.e., QPSK, 16QAM and 64QAM) allowing peatles 0f300 Mb/s in downlink and
75 Mb/s in uplink.

We consider now the scheduling degree of freedom for the tiokvof Rel-8 LTE. The basic unit
of resource is the resource block, which is mad&Xdidjacent subcarrierd§ kHz of subcarrier spac-
ing) and has a duration 0f5 ms (one slot), which correspond ¢cor 7 OFDM symbols depending
on the cyclic prefix length chosed.{ us or16.7 us). The scheduling block is the smallest resource
unit that the scheduler can assign. It is made of two consecrgsource blocks, and therefore has
a duration ofl ms (one subframe). During the duration of a scheduling pemdhich is equal to
the duration of a scheduling block (i.¢.ms), the modulation and coding scheme must be fixed for
each user in the non MIMO configuration. For the MIMO confidiora a maximum of two different

modulation and coding schemes can be used for data belottging different transport blocks [53].

LTE Advanced is a further evolution of LTE Release 8 and 9 Whi supposed to meet the
requirements for IMT-Advanced and enhance them to futueraipr and user needs. It shall sup-
port a wider transmission bandwidth using both contiguows reon-contiguous carrier aggregation,
achieving flexible spectrum usage while maintaining backveampatibility with Rel-8. Moreover,
it shall enhance multi-antenna and Coordinated Multi-Pmansmission/reception techniques. These
improvements are expected to allow peak rates @b/s in downlink and00 Mb/s in uplink.

Different radio resource management strategies are estjfor organizing and bringing together

multiple users and letting them receive data in an LTE sygteste: we are considering the downlink,
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which is the only direction using OFDMA multiplexing). In pigcular, multiple flows directed to the
users are to be coordinated, so that a number of packetslaotesefor possible transmission from
each flow. In the following, this operation will be referremlasscheduling However, according to
the above discussion, actual transmission requires tomtlagécselected packets to a given resource
block in a channel-aware fashion. Thus, it is necessaryeatelly select which resources to utilize
for the selected packets. Such an operation will be reféoedresource allocation

The design of policies for resource management is inteallipfeft open in the standards to allow
developers to implement their own strategy of choice. Heren the following we adopt a two-fold
model where scheduling and resource allocation are mariaged different modules: a scheduler,
operating at the transport layer (thereby possibly disiisigng among different kinds of traffic) and
a resource allocator, which actually implements the MedAouess Control (MAC) sublayer. The
scheduler determines which packets must be passed to ticatall and their order according to an
internal scheduling policy. The allocator selects for srarssion a subset of them with the aim of
maximizing the advantages of multiuser diversity. In thise&only a loose cross-layer is introduced,
guaranteeing a certain modularity between scheduler adibResource Allocator (RRA).

In particular, we call. the number of resource blocks that the resource allocatentifed to
assign. This is subject to a constralnK L,.x, WhereL ., IS @ maximum value which corresponds
to assigning every resource block. For simplicity, we cdesthat, to limit the interference caused to
the neighboring celld, is set to a fixed value which is less than or equal.ig... The value assigned
to L is communicated to the scheduler by the resource allocAwiually, this represents a form of
cross-layer interaction among the modules, which is imeatly kept to a minimum level, thereby
promoting modularity and tunability of the approach.

Upon knowingL, the scheduler determines a numligof packets to send to the resource allo-
cator, where in generdd > L. The exact choice ab influences the entire allocation. As a matter
of fact, if D = L, the resource allocator has no degree of freedom as to whickefs to allocate
(while, obviously, it must allocate the packets to the béstnoiels as perceived by the users). By
increasingD, the resource allocator can achieve a higher throughputlegting onlyLL packets out

of D, according to a channel-aware policy, although at the i@epossibly decreased fairness.

3.3 Proposed Game Theoretic Approach

The choice ofD determines a trade-off between the possible objectivdgofighput and fairness.

We now present a game-theoretic approach tdsete remark that the main point of our discussion
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does not lie in optimizing the performance of the resultifggpathm, which is left for future research.
Rather, our proposed methodology enables a dynamic setlpndthout any need for a preliminary
evaluation, e.g., wher® is set to some arbitrary value, of the possible equilibrighaf system,
nor it is required to re-compute the system equilibria if tleéwork and channel conditions change.
Instead, the choice ab is directly derived from the definitions of the contrastingities between
which a trade-off is sought (specifically, throughput aridiss). Together with the separation of the
resource management process into two functional entgesefiuler and RRA), this is key to achieve
a computationally efficient online allocation strategy.

In our formulation, the scheduler (player 1) and the RRAY(pia?) are represented as players of
a game whose aim is the decision of the value/foBoth players make a proposal, with j = 1,2,
respectively. The idea is that, if proposalsandss coincide, D is selected as their common value.
However, the choice of, andss, is also done according to the utility of the proposer, itee,fairness
for the scheduler and the throughput for the RRA, respdygtive

In the following, we introduce some assumptions for the sakkeimplicity in the exposition.
We consider a network scenario with only two users (i.e., flows); this is not to be confused
with the two “virtual” players of the game, i.e., the schezfudnd the resource allocator. Besides, this
assumption is just made for ease of implementation in thalsitor, but can be relaxed quite naturally
to scenarios withh > 2 users. We model the system as a static game with completenafion, as

follows:
* the players are the scheduler and the RRA.

* their action spaces are the set of valuedothat can be proposed, i.; = So = {L,L +
1,..,2L}.

* both utilities are) if the proposals;; ands, do not coincide, i.e., there is no agreement on the

value ofD.

» whens; = so, the utilities are assigned to fairneB$s,, s,) for the scheduler, measured using
Jain’s index [64] (see Eq. 4.13 for a formal definition of tland index), and the throughput
T(s1,s2) for the RRA.

The last point is arbitrary, as other definitions can be usled;important requirement is that
F(s,s) andT(s,s) are decreasing and increasingsinrespectively. The game is represented in
Fig. 3.1 through a matrix whose cells contain pairs of reahbers (therefore called a bi-matrix),

representing the utilities obtained by the scheduler aadRiRA respectively, for a given action profile
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Resource Allocator

L L+1 .. 2L

L 1,Tmin | 0,0 | 0,0 0,0

Scheduler L 4+1 | 0,0 .. 10,0 0,0

0,0 | 0,0 ... | 00

2L | 0,0 | 0,0 | 0,0 |3, Tinax

Figure 3.1. Bi-matrix representation of the game

— different actions of the scheduler are represented bgreiit rows and different actions of the RRA
are represented by different columns. The fairness is adsitrg function ofD: its maximum value

is 1 while the minimum isl/2 (i.e., 1/n wheren is the number of flows). On the other hand, the
throughput is an increasing function Bfvarying in the rang€7 yin, Tmax|, WhereTy,;, is achieved
when no degree of freedom is given to the allocator, whilg, is obtained when the RRA has enough
freedom to allocate only the bektresources. Both maximum throughput and minimum fairness ar
reached forD = 2L, under the assumption that there are always at [Bgsackets available for
selection by the scheduler from each queue. All the strasegjiong the diagonal are Pareto efficient
Nash equilibria.

To determine a trade-off point, we propose an algorithm tvhiges to automatically estimate
an efficient value ofD for each frame. The value is chosen considering the pasbpatq thus we
change the model into arapeated game with perfect informatiohhe aim is to reach an acceptable
level for both utilities after a number of repetitions. Ndkat this proposed algorithm is just an
example and can be replaced by other analogous procedures.

1) Both scheduler and RRA randomly pick a value for

2) If the choices coincideD is set and the game ends, otherwise a bargaining phase goesilcan
common point is chosen. Every time the players disagreé, doettzero utility.

3) The goal of each round of the loop is moving towards theahagjof the bi-matrix step-by-step.
Each player decides whether or not to change its previoysoped based on its level of satisfaction
(i.e., the ratio between the value actually achieved andrtheimum achievable). The higher the
satisfaction, the higher the probability that a player ¢feanits choice with a value more convenient
for the other. IfS_D and RRA_D are the proposals fab made by the scheduler and the allocator,

respectively, and_s and RRA_s the respective levels of satisfaction when the game is gdlaye
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select the changes as follows.

—If S_D > RRA_D, we are in the lower triangle of the matrix. We can move towdh# diagonal
by going up (decrement &§_D), or right (increment ofRRA_D), or in both directions. For both
players, these options lead to higher values in their owityuiunction to the detriment of the other’s,
thus the willingness to change should be a decreasing mdfi the respective satisfaction level.

Thus, we select

Prob{S_Dup}=1-S_s (3.1)
Prob{RRA_D right} =1 — RRA_s (3.2)

—If S_D < RRA_D, we are in the upper triangle of the matrix. The diagonal camdached by
going down §_D increment), or left RRA_D decrement), or in both directions. The situation is
now reversed, as a deviation in its own action implies a rédimdn the utility of each player in favor
of the other’s. Therefore, the probability of moving mustareincreasing function of the respective

satisfaction, which is obtained for example by choosing

Prob{S_D down} = S_s (3.3)
Prob{ RRA_D left} = RRA_s (3.4)

In this manner, we define an algorithm whose goal is to leadlibée of D towards an interme-

diate value which offers both good throughput and satisfgdairness.

3.4 Numerical Results

We ran evaluations within a simple LTE simulator to verifg thbility of the proposed approach
to converge towards a trade-off among the utility functiohshe two players. All the performance
indices are characterized by a confidence intervab®t with a maximum relative error ¢i%.

We developed and used a simple asynchronous event-drivertasor, written in C++, which re-
produces a base station transmitting to two different nealdlers. The base station contains a packet
scheduler with two queues (one for each user) and an RRA modiie scheduler is credit-based
and tries to guarantee fairness by selecting packets fremqubues according to their residual credit.
Flows are assumed to have always backlogged traffic. The RR#ages the resource allocation ac-
cording to a greedy criterion: slots and packets are matcheder to maximize the total throughput

given the channel condition of each user, which are assualed independent of each other.
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Parameter value
number of flows 2
packet size 500 bytes
Pr{GOOD — GOOD} 0.9
Pr{BAD — BAD} 0.8
number of subcarriers 16
time slots per frame 24
frame duration 1 ms
transmission power per slot 1 mwW

Table 3.1. Main system parameters
The radio channel model represents each frequency subEhaynmeans of a two-state Markov

channel (Gilbert-Elliot model) whose state is updatedra&eh time slot to take into account channel
correlation over time. The number of subcarrier groupksisvhile the time slots for each frame are
24, for a total 0f384 resource blocks. A different average noise power is as=utiaith each of the
two states of the chain, thus different values of capacity lwareached (according to the Shannon
formula). For simplicity, when the Gilbert-Elliot channislin the good state, interference and noise
power are treated as a random variable with uniform didiobubetweenl and2 mW; similarly, in
case of bad channel, the interference plus noise power fisromy distributed between and 200
mW. The transmission power per slot is fixedltmW. The main system parameters are summarized
in Table 3.1.

In Fig. 3.2 and Fig. 3.3 the fairness and the normalized tjinput as a function of time are shown
for several values oD when L = 300 packets. They confirm what was expected from our analysis:
the fairness is a decreasing function/ofwhile the throughput increases. Whén= L, we have
that the fairness is alwayls the maximum value according to Jain’s index. On the othedhthe
normalized throughput has its minimum value because thmures allocator has no freedom in the
choice of the packets to transmit and the user diversity aaoe exploited.

When D is increased, the two performance indices considered hewiasting behaviors, as
already expressed in the previous section: the fairnessrgoés a decrease while the throughput

starts increasing. The introduction of a certain freedoriénallocation choice shows its effects and
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the trade-off among the utility of the two players becomesi@vt. Figure 3.4 clearly shows this
situation: the points along the curve are the Pareto solsitad the game, one for each valueof
and there is no possibility to reach a better solution for plager without worsening the other’s one.

All figures report the outcome of the game theoretic algoritiBoth in Fig. 3.2 and in Fig. 3.3,
the automatic choice ab leads to an intermediate value of both performance indi¢éss means
that each player slightly reduces its own utility for the esak a better joint solution. In Fig. 3.4 it is
shown that this new operating point is localized close td?reto boundary. Moreover, the proposed
algorithm is quite simple and the convergence to a commamevaf D is extremely fast, thus it is
suitable for an online implementation. Indeed, in Figs—3.3 the warm-up period is quite short,
about 300 ms.

For completeness, we ran other tests by varyinm the range[100, 350]. In all these cases
we obtained that the fairness increased with the valu® afhile the throughput decreased. The

operation point reached by the proposed algorithm alwagesopmately lies on the Pareto boundary.

3.5 Conclusions

In this chapter we have presented a novel design approaategource management in OFD-
MA/TDMA cellular networks such as LTE. A cross-layer appbdas been explored, where sched-
uler and radio resource allocator exchange a limited amoimformation to provide both an ade-
quate level of fairness among flows and a high throughput. eagtheoretic model of the system
has been proposed and a feasible algorithm for the dynarttingsef a system parameter has been
evaluated. The results obtained through simulation shewtli® proposed solution is able to trade-off
fairness requirements and throughput.

Possible future works include the extension to a multitatloetwork, where several base stations
coexist and share resources trying to minimize mutualfertence through a proper resource alloca-

tion. Moreover, we plan to implement the proposed approaehmore detailed network simulator.
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Chapter

Promoting Cooperation in Wireless Relay

Networks

In this chaptet we apply game theory to constructively derive practicalvoek management
policies for wireless relay networks. We focus on the probtg medium sharing and opportunistic
packet forwarding in wireless relay networks, and we show, iy properly modeling the agents
involved in such a scenario, and enabling simple but effedticentives towards cooperation for the
users, we obtain a resource allocation scheme which is mgfahifrom both perspectives of game
theory and network engineering. Such a result is achieveidtbyducing throughput redistribution

as a way to transfer utilities, which enables cooperationragrihe users.

4.1 Introduction

Cooperation has emerged as a new networking concept that dia@snatic effect of improving
the performance from the physical layer up to the networkaygrs, and it is considered as one of
the most promising enabling technologies to meet the isangly high rate demands and quality of

service requirements in wireless networks. In this chapteiconsider the simplest form of physi-

1The material presented in this chapter has been published in
[C4] L. Canzian, L. Badia, and M. Zorzi, “Relaying in Wireless Networks Madeie through Cooperative Game Theory,”
in Proc. IEEE CAMADKYyoto, Japan, Jun. 10-11, 2011
[J1] L. Canzian, L. Badia, and M. Zorzi, “Promoting Cooperation in Wireld®slay Networks through Stackelberg Dy-

namic Scheduling,to appear in IEEE Trans. Commun.
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cal layer cooperation: an opportunistic relay channel, lmctv each user connected to the network
forwards the packets of the other users.

We investigate cooperative relaying not only improvingsbeial welfare of the network, but also
increasing the individual benefit of each single user, thassumed to act selfishly and strategically.
The motivation behind this approach is that relaying is fdsnly if incentives are given to each
user to overcome the disadvantage of consuming energyvi@idrthe packets of the other users. We
first prove the potential gain of cooperation through a ctagsr scheme involving joint routing and
medium access, which is analyzed by means of renewal prtessy [65]. However, such a globally
efficient allocation may not match the allocation equilifoniin a game theoretic sense. To overcome
this difficulty, we first consider a simplg-users case and model users’ interaction asaditional
game, introducing throughput redistribution as a way todfer utilities. This will enable cooperation
among the users. Unfortunately, it is very difficult to gedizie such an approach to larger networks,
both because it is computationally expensive to charaetdlie core for a number of users higher
than 3 [52], and because it requires the definition of a proper natoh protocol to establish the
cooperation roles, an overhead which may considerably threicooperation gain in large networks.
Thus, as a main contribution of this chapter, we proposehananhcentive scheme which follows
the approach of the coalitional game, redistributing thheughput among users through a dynamic
scheduling rule. This scheme involves a coordinator, thggeérs cooperative behaviors increasing
the access opportunities of users acting as relays. Thisd€iapproach is framed as a Stackelberg
game involving the coordinator as the leader and the uséssevstrategic decision involves whether
to act collaboratively, as followers. It can also be congdeas an intervention scheme [66] (which
will be described accurately in Chapters 6 and 7): the coatdr represents the intervention device
and the dynamic scheduling rule represents the interventi@. However, differently from most of
the intervention schemes in the literature in which therimetion action represents a punishment for
non compliant users, here the scheduling action repreaardasvard for cooperative users.

The rest of this chapter is organized as follows. We deschibescenario under investigation and
the key assumptions in Section 4.2. Then, Section 4.3 fazegmthe analysis of cooperative versus
non cooperative schemes by means of renewal process ti8=mton 4.4 introduces the throughput
redistribution concept and studies the coalitional ganthér2—users scenario. Section 4.5 represents
the main contribution of this chapter: the dynamic schedusicheme to provide network incentives
towards cooperation is defined. Numerical results are gealin Section 4.6. We discuss possible
relaxations of some hypotheses in Section 4.7, and Sect®brahcludes the chapter with some

remarks.
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41.1 Related work

Relay networks have been widely studied in information thg67]. In particular, the relay
channel represents one of the most common scenarios stusis@ral theoretical results about the
capacity of this basic network have been available in tlegditre since long [68], and others keep
being proposed even very recently [69-72]. These studmsas that each user is willing expend
energy in forwarding packets for other users, without hgwiothing in return. However, relaying is
possible in practice only if incentives are given to the widlial users to overcome the disadvantages
of their limited energy budgets. In this spirit, [17] prorasta fair packet forwarding mechanism
balancing the relaying opportunities that each node givesitl receives from other nodes. Similarly,
[18] introduces a virtual currency and mechanism for chreyfygewarding service usage/provision.
Both papers assume the application of a tamper-resistatitilen each node to store the forwarding
balance or the virtual currency credit. The virtual curgeoncept is also used in [19], while in
[20] cooperation is reached by using a reputation mechamsdistributed and scalable acceptance
algorithm was proposed in [21], in order for the nodes of arhad network to decide whether to
accept or reject a relaying request. Finally, [22] consider incentive mechanism where the nodes

flexibly give transmission bandwidth in exchange for fordiag data.

Differently from [17—20], that are based on the exchange oetevork scale of abstract notions
of worth (e.g., currency and reputation), our opportuaigtiaying scheme represents a more tangible
and immediate incentive mechanism. The repeated game [@tioruconsidered in [21] is efficient
only if a user asking for a relay service can return the famduture interactions. Our scheme can
be applied in more general situations, even in strongly asgtric scenarios where some users only
ask for relay services and other users are only asked to agliegs. In fact, users acting as relays are
immediately rewarded, independently of the future inteoas with the other users. Our approach
is closer in spirit to [22]. The main difference is that, el of rewarding cooperative users in the
frequency domain, giving them more bandwidth, we rewardpecative users in the time domain,
increasing their access opportunities. Moreover, thezesame different hypotheses that make the
analysis of the two schemes very different, e.g., in thiptd#rawe assume that the users can select
their modulation scheme which in turn determines the pa@aeption probability, while [22] adopts

a more abstract formulation based on channel capacity.
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Figure 4.1. The considered scenario: an access point surrounded bynoies

4.2 Problem Statement

Consider a scenario as reported in Fig. 4.1, where &'set{1,2,...,n} of n nodes, hereafter
calledusers are distributed around a further node caltemtle O This may represent an access point
of a wireless local area network, or a base station of a eglinétwork. We focus on the uplink
between each user and ndtleyet, we assume that nodds not only the end destination, but also a
resource manager, as explained later.

We denote the signal to noise ratio (SNR) between tised node) as+; and the SNR between
users; andj as~;;. Users are labeled in decreasing order of SNR to ripde., y1>v2> ... >,.
We consider time invariant channels and fixed transmisstveps P, so that they; and-;; terms
are constant over time. We also assume perfect channekstatdedge.

A Time Division Multiple Access (TDMA) scheme is adopted,thva fixed slot duratior¥;.

Node0 controls the time shares of the users by selecting, in eath, €l specific user that is allowed
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to transmit. The probability that useis selected in slatis Pi(t). The selected user transmits a single
packet over the entire slot, comprising a number of bitsdeaends on its modulation schemg. M;

is chosen over a finite s@¥! according to the channel quality and in turn determines thbabilities

¢; andg;; that the packet is correctly received bynd;. We denote witht,,; = P11 the energy
consumed by a user for a single packet transmission.

Automatic Repeat reQuest (ARQ) is used as the mechanismhievacreliable communica-
tion [73]. If the packet transmitted by useiis not correctly received by nodg the packet is re-
transmitted the next time useiis scheduled, until the packet is received or the maximumbasm
of retransmissions is reached. For the sake of simplicieycansider at most one retransmission per
packet, although the extension to multiple retransmissiwnuld be conceptually straightforward.
Users are assumed to be backlogged, i.e., they always haketpdo transmit. In the following,
we will start by considering that retransmissions of a paeke only performed by the node that
has originated that packet, i.e., the node that performedirst transmission attempt. We will refer
to this situation as th@o cooperationcase and denote its corresponding quantities with a super-
script V. Pz.(t) can be set as a constant/static value fortalivhich makes the selection process
independent and identically distributed (iid). The scHiedupolicy can be described by a vector
P=(P,P,...,P,),where}_"" | P, =1,s0 thatPZ.(t) = P; for all ¢; for example, a fair sharing is
represented by = (1/n,1/n,...,1/n).

We will also consider two evolutions of this scheme, whetearesmissions of faulty packets may
not be carried out by the same node performing the first atteffigs is enabled by assuming that
during the transmission phase of a generic notlee other nodes listen to the channel and sitare
packet if they have correctly received it. Thus, they cararemit it if needed. If more than one user
can retransmit the packet, nodselects the one with the best channel.

In the first scheme, callefbrced cooperation(denoted by superscripf), we assume that the
users have no say in deciding whether or not to cooperatenbsit follow noded’s directions when
instructed to do so, hence the name. Since cooperation dbesmme from a free decision, there is
no need for rewarding the collaborative users with a higleess probability. Thus, similarly to the
no cooperation case, the access probabiIiBZét% stay the same for every However, their physical
meaning changes: they represent the event that the padieiated from: is transmitted during slot
t; if it is the first transmission attempt, it will be performbg ¢, while this is not necessarily true for
a retransmission.

Finally, we will consider a further cooperative case, achl®luntary cooperatior(denoted by

superscript)), where the users freely decide whether or not they want epeate in the retrans-
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Figure 4.2. Non-cooperative transmission process of a packet of iiser

mission process of other users. In this case, ribdmvards them with a higher access probability,
decreasing by the same amount the access probability os#rs being helped. ThuE’i(t) changes
over time. Suppose nodecooperates with nodgin slot ¢, retransmitting a packet originated from
nodej. We definek;; as the number of scheduling instants, after slethere the scheduling policy
is changed, anahPZ.(jS) > 0 as the variation of the scheduling policy, with respect ® téference

policy P = (Py, P»,..., P,), inslots, i.e.,
PP =P —APY ; PP =P 1 APY . s=t+1,... t+K; (4.1)
7 — 4 ij ) i — 4 i ’ - yr 1) .

To compare the three cases, we define the bit rate ofiuseslott as

BRZ(t) = Tkt
0 otherwise

1's packet correctly received lyin slot¢

where NN; is the number of bits in useis packet, which depends on the chosen modulation scheme

M;. Finally, we define the asymptotic bit rate of users
=7 Z 2R

4.3 Renewal Theory Analysis

In the no cooperation scheme, the transmission processefexig packet originated from user
can be represented by the Markov Chain of Fig. 4.2. The ssftdesception probabilitieg; andg;;
depend on the modulation schem& and the SNR values; and~;;. In the following we will omit

all these dependencies in favor of a clearer notation.
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The initial state of the Markov Chain i, which means that the next time useis scheduled
it will transmit the packet for the first time. Analogouslyate 2; implies that by scheduling user
the packet will be transmitted for the second time. Skatis entered if the first attempt failed. The
term P, that influences the transition probabilities results frbim $cheduling process. The absorbing
statesR; and N R; represent the events that ugerpacket is eventually received or not, respectively,
by node0. When either of the absorbing states is entered, the trasgmiprocess of another packet
of nodei is considered, restarting again from state

The time intervals of the packet transmission processegaaigve, independent, identically dis-
tributed random variables. These variables define a ren@awaéss which can be studied exploiting
renewal theory results [65]. The asymptotic metrics of teemork can be obtained studying the
(statistical) average behavior of the Markov process. htiqdar, the asymptotic throughput of each
user is equal to the average number of received bits divigigbléaverage time to be absorbed in the
Markov chain associated to that user.

We denote withPﬁZ/_ the probability to be absorbed in stafe and witthN the average number

of time slots to be absorbed starting from stateTherefore,

Py =g+(1—g¢)a=a2—q)
1 1 2—q
i (1-q) ="

TTRTR P,

Thus,i’s asymptotic bit rate for the no cooperation case is

PN N; N;
. = Pigi— 4.2
U'ZN Tpkzt ‘ ZT’pkt ( )

BRY =
The best modulation scheme for ugés simply obtained maximizing its throughput
N _ N
M;" = argmax ¢;N; (4.3)
M;eM
Recall that bothV; and¢; depend onl/;. Finally, the asymptotic bit rate of the network for the no
cooperation scenario is
n 1 n
BRY =% BRY = — > PaN,

T
i=1 Pkt 24

where the modulation scheme for each user is selected @&ogdod(4.3).
In the forced cooperation scheme, the packet transmissamesgs of user follows the Markov
Chain in Fig. 4.3. Differently from the no cooperation cad® retransmission ofs packet is

performed by the best uskramong those that have received the packet durgyst attempt/ < 7,
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Figure 4.3. Transmission process of a packet of usarthe forced cooperation scheme

otherwise the retransmission is performedbiyself. In the retransmissiork will use the same
modulation order used hy M;. In fact, although the optimal modulatiaviy, for k£ may be higher;’s
packet dimension cannot be increased/e defineg!, as the correct reception probability of a packet
transmitted byt using the same modulation scheme.obincek < i, we haveq’,i > q;.

The probabilityP}; to be absorbed if®; and the mean number of step§ to absorption are

7 k—1 1—1 k—1
Ph=g+0-a)) a [[0-ap)di=a@—a)+> 0 —a)an [[ 01— a)) (g —a)
k=1 =1 k=1 j=1

2—4qi

where we tooK]_, (1 — g;;) = 1 andg;; = 1. In particular,(1 — ¢;) gix [T/=1 (1 — gi;) (¢} — @:)

2Actually, nodek can even improve its amount of transmitted data by stuifingacket with its own data up &, — N;

bits. We neglect this further advantage which, however,ld/be immediate to include.
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is the probability thad has not correctly receiveis packet in the first attempt while has received
it but no user better thakh has received it, multiplied by the difference between ttabpbilities that
the packet is correctly retransmitted byand:. It represents the contribution &fto the probability
thati’s packet is eventually received By

Considering for the moment that useis adopting the same modulation scheMg\/ as in the
no cooperation case, we have obtairgd > Pﬁf andv/ = vVN. The latter is a consequence of
considering a single retransmission (for the multipleaiesmission case; < vZN in general).

Similar to (4.2), the asymptotic bit rate of ugan the cooperative scenario is

i—1
—Gi ; Ni
BR] = P, [qz‘ Z ik H (1—qi5) (qilc—qz')] T—Z

pkt

and the best modulation schem&” for the cooperative case is

i—1 k—1
Mf—argmax[ H (1— ql-j)(q,i—qi)]Ni (4.4)
M;eM j=1

Finally, for the aggregate throughput we obtain

i—1

- j ZP [QZ L qu H (1=4:5) (QIZ;:—%‘)} N; (4.5)
hr j=

where the modulation scheme for each user is selected awgdod(4.4). Comparing this result with

the no cooperation case, if in both cases users are adopgénmodulation schemes according to
(4.3), we obtainBR” > BRN. This relation is further enforced if we calculai2R” considering
the best modulation schemes for the forced cooperation aaserding to (4.4).

To study thevoluntary cooperatiorscheme, we need to introduce a game theoretic framework
modeling interactions among selfish users and their decimiocooperate / not to cooperate. In
Section 4.4 we will study this interaction as a transferaitilgy coalitional game, in which the users
can redistribute among them the total gain obtained thraagiperation. We carry on this analysis
considering a simplé—user case in which users are interested in maximizing thesughput, and
the redistribution of the throughput is physically possiby changing the access opportunities of the
users — of course each user is free to decide if such an agneeswenvenient for him or if it is better
to leave the coalition and refuse to cooperate with the aiker. Then, in Section 4.5, following the
idea of the throughput redistribution, we give an activeeria node0, assuming that it can modify
the access opportunities of each user following a dynantiediding rule which is a function of each

user’s decision to cooperate or not to cooperate with theratbers. This kind of approach is framed
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as a Stackelberg game, in which ndils the leader and the users are the followers. In this case we
consider a more realistic scenario in whiclisers are interested in maximizing their throughput and

minimizing their energy consumption.

4.4 Coalitional Game and Throughput Redistribution

In this section we study the interaction Ddiisers through a coalitional game, assuming that they
can form a coalition in which they agree to cooperate wittheather, and to redistribute the total
throughput obtained in order to get a higher throughput @mfo the no cooperation scenario. We
assume that the coalitional game satisfies properties 1 afdG2ction 2.7. Note that in thg-user
case the former property is automatically satisfied. Howete property still holds true even if the
analysis is extended to a network with more than two userseshe TDMA approach guarantees that
different coalitions do not interact: each coalition triesobtain the maximum throughput by using
the slots assigned exclusively to it. For what concerns gntgp2, the problem of the throughput
redistribution is addressed at the end of this section.

The valueu(-) of the coalitional game is the throughput obtained by eaetiitcan. In a2—-user
case, three coalitions are possible: the two coalitionséal by the single users,and2, and the

coalition formed by both users, i.e., the grand coalithén= {1, 2}. The value of each coalition is:
o({1}) = BRY | v({2}) = BRY . w(N)=BR” > BRN =u({1}) +v({2})

Therefore the game satisfies also property 3 of Section 2.7.
Now we want to find a utility allocation that belongs to theecand is fair under certain parame-
ters. Note that, for a super-additive two player game, the sonot empty and coincides with the set

of imputations. In the considered game, the set of imputatis given by:
21 = BRY + w(BR} — BRY) , a3=BRY + (1 —w)(BR} — BRY) (4.6)

where thecooperation weightv belongs to the intervgD, 1]. It is immediate to see that; + zo =
v(N), z1 > v({1}), andzy > v({2}), Yw € [0, 1].

The cooperation weight determines the throughput shateetieh user gets. b = 0 (i.e., the
throughput is not redistributed) we obtain = v({1}), hence only use2, whose channel quality to
node0 is worse, can directly benefit from being helped by ussrcooperative relaying. v > 0,

also userl can benefit from the cooperation. The greaterthe greater the incentive for usérto
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cooperate. Fow = 1, z5 = v({2}), hence only uset can benefit from the cooperattinThus, by
setting the value ofv we decide the right level of fairness of the subdivision.

So far we have supposed that the total throughput can beedivagl users rather arbitrarily. From
a practical point of view, the only thing that can be congdlis the allocation policy?; and P,. We
suppose therefore that the allocation policy is changed # and P, to P{ andP; in order to satisfy
the subdivision proposed. Is the new allocation policyifda8 That is, isP] + P; < 1? Itis easy to
show that the new allocation policy is feasible. In fact, vagdnto increase the allocation probability
of the cooperating usdrand decreasing the allocation probability2pfwhile keeping constant the
total bit ratev(V). Sincel has a better channel, it results that the incredse P is lower than the

decreasé”, — P in order to keep the total bit rate constant. Therefore:
Pl—P<P—-Py=P+P,<P+P=1

This means that the allocation is feasible and that therpdsgive probability that some slots are not
assigned to anybody, which would not be meaningful. Theegfihe quantity?’ =1 — P{ — P, can
be divided among users, increasing for example tRjtland P; by the same amount, or increasing
them by a weighted amount @, where we can use again the cooperation weighfinally, this
means that both users have a further benefit in obtaining @n leigher bit rate compared to the

subdivision proposed.

4.5 Dynamic Scheduling Scheme

It is very difficult to generalize the approach of Section th4arger networks, both because it
is computationally expensive to characterize tbee for a number of users higher th&n52], and
because it requires the definition of a proper negotiatiatogol to establish the cooperation roles,
an overhead which may considerably limit the cooperatian gelarge networks. Thus, as a main
contribution of this chapter, we propose in this section matyic scheduling scheme which follows
the idea of redistributing the throughput among users, dwgrcooperative users.

In the voluntary cooperation scheme we allow the user tdyfrelgoose whom to cooperate with,
as well as its own modulation scheme. We model their intemaas a static game with complete
info and, for the time being, we consider that the strateafyuseri consists only in choosing the set

of users it cooperates with, which we denotezgas- N (i.e., the action se#; is the power set of

3Actually, in this case use can still benefit in that it saves energy, because some ohitkgts are retransmitted by

userl. We will introduce the energy consumption in the usersitigd in Section 4.5.
“In static games the user strategy coincides with the usimadh this chapter we keep using the word strategy.
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N). Since each user can cooperate only with users having a@wbesnelg; is actually a subset of
{i+1,...,n}. The choice of the modulation scheme can be added in a larsta superposition
to the choice ofi;, and it does not represent a strong interaction factor anosegs. Also, denote
with W; the set of users that cooperate withe., W; = {j € N :i € a;}.

We represent the preference of each uslerough a utility function?; (B;, E;) which depends on
the number of transmitted bi#8; and on the energy speh} per unit time. Actually, for the analysis
of the game we use thecremental utility:);(AB;, AE;) representing the increaseUn with respect

to the no cooperation caye.e.,
Vi(AB;, AE;) = W, (BN + AB;, EN + AE;) — vy (BN, EN)

By definition, ¢;(0,0) = 0. Also, it is reasonable to assume thatis a continuous and in-
creasing (respectively, decreasing) function of the Viamaof transmitted bits (respectively, energy
consumption) per unit time) B; (respectivelyAE;).

Note thatA B; and A E; can be split into the contributions due to the individuakmarctions with
other usersAB; = > ..y ABij andAE; = 3.\ ;3 AEy;, whereAB;; and AE;; are the
variations, per unit time, of transmitted bits and energyegxditure ofi due to the interaction with.
Now, we assume that the incremental utility A B;, AE;) can be additively split as a sum of local
contributionsy;; (AB;;, AE;;), each due to the interaction betweeandj, with ¢;; having the same
characteristics ofy; (continuity and monotonicity). Then we can write:

$i(AB;, AE) = Y 5(ABij, AEy) = Y ¢i;(ABij, AE;) + Y ¥i(ABi;, AE;)  (4.7)

JEN\{i} JEW; j€a;

where we exploited the fact thatjif¢ 1W;Ua;, i.e.,j has no interaction with theny;;(AB;;, AE;;) =
0.8 In (4.7),7; is re-arranged in two sum terms. The former involves thesusksetlV; offering their
cooperation ta; therefore, in the corresponding termdsi;; and A E;; are positive (as we will see in
Section 4.5.1) and negative, respectively. This meansuet will always benefit from cooperation
by another usej with a better channel; however, the strategic choice whetheooperate or not is
left to user;j. The latter term includes instead the variationpfue to: offering cooperation to other
nodes belonging to set, which is where the decision efcomes into play.

The termy;; can therefore be regarded as the specific utility of usera simple2-player game

between andj, ¢ < j, where the only user who can make a non-trivial decisian liswill cooperate

>The game’s outcomes are invariant to this choice. In faet ttepend only on the ranking of the preference of each

user, which is preserved if a (user-dependent) constaobisasted from the utility of each user.
®A linear 1, (-, -) will satisfy (4.7). In particular, ify; (-, -) is linear theny;(-,-) = vi;(-,-),Vi,j. Moreover, the

converse is also true: if; (-, -) satisfies (4.7) andh; (-, -) = v4; (-, -), Vi, 7, theny; (-, -) is a linear function.
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with j if and only if ¢;; > 0 (it is not restrictive to assume cooperation in the equalége). Note
thati's strategy has no influence on the utilities of lower indegrasand, therefore, on their decision
process. Hence's decision to cooperate or not wigh with i < j, can be made by maximizing just
the partial utilitys);;. In this way, the originah-player game is decoupled in(@) 2-player games
whose outcomes can be easily predicted.

In particular, without any incentive mechanism, the optidmelaying packets for another node
would never be advantageous. In fact, in this cadg;; = 0 andAE;; > 0, hencey);; is negative.
Thus, no node would ever relay a packet. This is why we alstludiecnode0 that can provide
incentives for cooperation, through a reshaping of thestrassion probabilities. In this way, users
can now get a positive utility when they act as relays, siheg tnay have higher energy consumption

but also higher throughput.

4.5.1 Stackelberg formulation

In light of the above discussion, we consider nodas an active player in the game, which, to
promote cooperation in the network, can change the scmegdplblicies of users, with respect to
the reference scheduling polidy = (P, P, ..., P,), according to (4.1). We want that, after this
intervention by nodé, the users exploiting a collaborative relay still have atighput improvement,
i.e., if j € a; thenAB;; > 0; note that they always have an energy saving, i,;; < 0, sinces:
performs a retransmission ji's stead. Moreover, as cooperation rewards are granted dy(hdhe
transmission probability af can be increased according to (4.1) only if n@d=orrectly received the
packet retransmitted by In order to reach both objectives, we impose the followihgrge in the
allocation conditioned on the event that the packet reitnéttesd by is correctly received by node

Z APUFIGN NN — N — g N _jqﬂN N (4.8)

4;

wherew;; € [0, 1] is thecooperation weighof i with respect toj. The left hand side represents
the average decrease of the number of bits transmittegl diyring the following K;; slots, given
that Pj(t+s) = P - APi(j”s), s = 1,...,K;;. Therefore, the average (non conditioned) decrease
of the number of bits is obtained multiplying it by the probigp that the packet retransmitted by
i is correctly received by node, and we have imposed it equal t@; (qu —q;j NN). Since
w;j € [0, 1], the average increase in the number of bits transmittedduwying slott, qZ].Nj — qj’.VNJN,
is higher than the average decrease of the number of bisnitted by; during the subsequer;;

slots, henceAB;; > 0 as we wanted.
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The cooperation weight;; is a tunable parameter describing how valuable it is to réwaop-
eration by: towardsj. If w;; is equal tol, during theK;; + 1 time slots from¢ to ¢t + K;; user;
transmits an average number of bits equal to what it woule li@nsmitted during the same interval
in the no cooperation case. The lowey;, the higher the throughput of usgrbut at the same time
the lower the incentives given to usguntil w;; = 0, where no incentives are given to user

The cooperation weight;;, Vi, j : i < j, represents the strategy of nadle.e., the strength of
incentives given to cooperating users. We supposeuhaare fixed by nodé at the beginning of
the communication and are transmitted to all users. In tlaig &ny user knows in advance the gain
it obtains by cooperating with each other user and can sigdduest strategy. This type of interaction
between nod® and other users can be cast in the framework of the Stackefjaanes, where node
0 plays first and the users act afterwards. The player movisgdan predict the behavior of other
players and optimize its own strategy.

We can rewrite (4.8) as

iAP(t’LS) =4 <—q’?NJ = 1)
i NNN
s=1 g \% *Y;

under the constrairmPZ.(j”s) <Pj,s=1,...,Kj.
There are infinitely many sqution%Kij, APZ.(;*S), s=1,... ,Kij} that satisfy the above equa-
tion. However, cooperating users should be rewarded ag aarpossible, so as to enable faster

convergence to the asymptotic throughput. Thijsis set as the lowest integer such that

j
wi; [ q;N;
Kz“PJZ—j< NN N —1>
G \9 Y

which results in the following scheduling policy variation

j

(t+Kij) _ Wij [ N

AFR; 7 =—F —1) = (K — 1P (4.9)
J qu' <qjNN]N ) J

4.5.2 User strategies

Now, we study the interaction between users considering@rgecooperation weights;; and
introducing the selection of the modulation scheiig

In the voluntary cooperation scheme, the packet transomgsiocess of uséirfollows the Markov
Chain in Fig. 4.4, which is conceptually similar to Fig. 4.3tlwthe difference that only users

belonging tolW; cooperate withi and the scheduling is dynamic according to (4.1). The access



4.5. Dynamic Scheduling Scheme 45

probability of useri at the beginning of a slot depends on the usdras cooperated with and on the
users that have relayéd packets in the preceding slots. In order to derive thetaxatrics associated
to the voluntary cooperation scheme, the Markov chain of Big should be expanded to take into
account that might cooperate with other users when it is not schedulec tfdmsition associated
to the probabilityl — Pl.(t) should be divided into a number of transitions equal to thdinality of
a; plus 1, representing the events thais not scheduled and it does not act as a relay or it acts as
a relay for one of the users belongingdp These transitions would end in as many chains, all of
them similar to the lower chain of Fig. 4.4, with the only difénce that the access probabilities of
user; are different. To obtain simple analytical expressiondefasymptotic metrics of the voluntary
cooperation scheme, instead of exactly tracing the terhparation of the scheduling probability
we consider an approximate approach that takes into coasioie just the average value; of the
scheduling probability of a generic usefThis allows us to obtain the following results
PR=q;(2—q:)+ Y (1—%‘)%‘1@[ 1T (1—%')](%2;;—%)
keW; JEW;,j<k
=(2-q) / P,
BRY=P; [ L Z ar ] (1-ay) (q/i—qz')} 1{\[—2
k

YkeW,  jeWiji<k pht
BR'=Y BRY = - Zp[qz 2w ] G-ap@ow)|N @10
=1 pkt LkeW:  jeWij<k
As per (4.1)

=P+ APY - Y APRY

Jjea; keW;

whereAPZ(f), AP( ) > 0 are according to (4.9)APZ.(jt) > 0 if and only if i cooperated withy during
one of the precedindy;; slots. AP,S) > 0 if and only if k£ cooperated with during one of the
precedingk; slots. As per (4.9)APy; depends or}, andN; that in turn depend on the modulation
schemeM;. This must be taken into account when optimizihg. In particular, since the access
opportunity of uset is decreased after being helped, tiet average increase 0% transmitted bits
due to the cooperation of usklis scaled by a factofl —w;; ). We define

D; Zqz’-l-;:ZZ: > (1—wik)Qik[ 11 (1—%3')}(%2—%)

' kew; JEW;,j<k

Then, the optimal modulation scheme of usean be computed as

MY = arg max D;N; (4.11)
M;eM
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P (1) (1-qi)j€1|"/|I/(1-qij)

1 _(t+1)

Figure 4.4. Transmission process of a packet of user the voluntary cooperation scheme
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where bothD; and N; depend onV;. If ¢ cooperates witly, the average variatiodhB;; > 0 and

AE;; > 0 of i's transmitted bits and energy consumption per unit timeegreal to

N; @ N, N;
AB;i=¢’ AP () 21| py——
g Z DT~ Y NNN 'Ky T
K .
AE; =|1+¢ Y API™ T PR 7 Eipkt 4.12
C Z &+ Ve |7 VNN ) (K + 1) T (412

P pkt

where M is chosen according to (4.11). Thus, the evaluation of téabatility Vi (AB;j, AE;j)
depends (througtD;) on W, i.e., the cooperation choices adopted towartly users with lower

indices.

Proposition 1. Assuming that users cooperate in case their utility is flabhwespect to this choice,

the sub-game between users admits one and only one’NE= {a'Z, ... aYE}.

Proof. The proof follows a constructive and iterative proceduret s consider usdr, which can
not be helped by any other nodél; = 0, ngl = PI{%{ and D; = Pﬁf/(Q —q1). Since the
probability error functiony; varies with continuity, the set of allocation policies toatimizes (4.11)
is a singleton, therefore usércan uniquely select its best modulation schehdg. Then userl
can compute the optimal set of users to cooperate withjtseogst strategy'”, depending on the
modulation selected by each user. This can be done by cthgula B,; and AE;; according to
(4.12) and evaluating;, Vj # 1, VM; € M.

This procedure can be repeated for any other user. For aigerser: and for each modulation
scheme)M;, if we know the strategies of usets2,...,i—1, we can uniquely calculat¥/;, M),
PIZKZ‘, AB;;, andAE;;, Vi > i, VM; € M, from these, we obtaig;;, depending on the modulation
selected by the users with worse channels. In the end, windh&abest modulation scheme for all

users and the unique NE strategy profile”. O
Corollary 1. The Nash Equilibrium is Pareto Efficient.

Proof. The utility of userl is the highest possible since it is not affected by othersistrategies
and it selects its own strategy to maximize its own utilitytthe same way, the utility of us@ris the
highest possible given the strategy of useMoreover, if we change the strategy of userve make
userl worse off, except for the case in which udé utility is flat in its choice to cooperate with user
2. However, in this case we have assumed theltooses to cooperate with hence, ifl changes its

strategy, the utility oR can not increase. This procedure can be repeated for anyustbie O
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4.5.3 Access point strategy

Theorem 1 states that the sub-game between the users hamerppssible outcome. Moreover,
the constructive proof provides an algorithm to calculate butcome. The access point can predict,
for each strategy = (wy;)i; € [0, 1](3), the strategies of all users. Therefore, it can choose gt be
strategyw™ = (w;*j)ij to drive the network performance toward a desired outcome.

Assume that the network performance is quantified by ayfiiactionu, : [0, 1](75) — R, whose
argument is the strategy selected by nodé& can be thought as the composition of two functighs
andg, i.e.,up = g o f, such thatf : [0, 1](3) — R™ gives the utility of the users as a function(@$
strategy angy : R — R gives the utility of0 as a function of all users’ utilities. It is reasonable to
assume thag is a continuous function.

TakewZ-’ as the value such that;;(AB;;, AE;) = 0, which can be derived from (4.12). It
is the minimumuw;; such thati cooperates witlj. The only interesting case is Wharj;? exists and
wf? € [0, 1], otherwise it is not possible to triggés cooperation with respect gowithout decreasing
the throughput ofi. Since;; are continuous, theffi is continuous ino, 1] except inw%’. Indeed,
useri changes its cooperation behavior towaydst wf;‘ However, from a practical point of view,
if w;; € [U’Z‘L’ 1] the utility of both users and j increases. In fact, userachieves at least the
same throughput, while decreasing its energy consumptibereas the increase in throughput; of
compensates the additional energy spent to cooperatejwithat is, promoting cooperation under
this scheme is always beneficial for both users involved. titisrreason, it is reasonable to assume

thatug is upper semi-continuous.

Proposition 2. If ug is upper semi-continuous then there exists at least on&k&targ Equilibrium

(SE). Moreover, all SEs are equivalent from a network pentmce point of view.

Proof. The utility ug can be maximized since the sub-game NE exists and is unigoe.sffategy
space of nod@ is closed and bounded, ang(-) is upper semi-continuous. An SE can be found by
combining the best strategy* of node0 and the NE strategy profile of the sub-game among the users
when the strategy of nodeis w*. There may be more than one optimal, but they all achieve the

same maximum utility of node. O

Finally, for result comparison, we consider the followirggass point strategy

th th
w10 <wi <1

0 otherwise.
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We chose this strategy to promote cooperation, i.e., isere&twork performance while keeping a
high level of fairness (fairness metrics will be defined ia tbllowing section).

Note thath? ¢ [0,1] means that it is impossible, with the considered schemerdeige an
incentive for usei to cooperate witly. In this case the system functionality is independentdf

and we have arbitrarily choseu; = 0.

4.6 Performance Evaluation

Prior to comparing th8 cooperation schemes, we introduce some performance metric

For any vector of: real numbersx = (z1,...,z,), we define a fairness metri¢(x) overx,
called Jain index [64], as

J(x) = iz ) i) (4.13)
nyolg x}
We will evaluate this index for the vectors of throughpBtK = (BR;, ... BR,,)) and utility values
(P = (¥q,...7,)). We use superscript§’, F, and) to relate these metrics to the no cooperation,
forced cooperation and voluntary cooperation schemegectsely.

A scenario withn users uniformly placed within 400 meters radius from an access point has
been simulated in Matlab. We consider a time §lgt; = 1 ms and a symbol period df,,,, = 1
us, that is, each packet is made W00 symbols. The number of bits per packet for a generic user
depends on the number of bits per symbol, i.e., on the madalatheme selected by that user. We
considetM = {BPSK, QPSK,16—QAM, 64—QAM }, that correspond to the rates represented
in Fig. 4.5.

Each user transmits with a fixed powerRf,; = 100 mW. The time invariant channel attenuation
coefficient is given by the superposition of two effects: apolaw decay with exponent equal 30
and a Rayleigh distributed coefficient. The signal to no&@robtained at a reference distance of
10 m considering a unit-power Rayleigh coefficientlis We consider the initial allocation policy
P=(1/n,1/n,...,1/n).

We takeV,(B;, E;) = B; — ¢;E;, i.e,,v;(AB;, AE;) = AB; — ¢;AE;, which satisfies (4.7)

with 1;;(AB;;, AE;;) = AB;j — ¢;AE;;, Vi, j, wheree; > 0 is a measure on how important the
qiIN;

pkt
andN; are calculated with a modulation scheme according to (4€8)¢; is equal to hali’'s energy

throughput is for usef with respect to its power expenditure. We consider= whereg;

efficiency (rate divided by power consumption) in the nonparative case. In this way, users having

a low non cooperative rate are more inclined to cooperate @itier users, consuming their energy
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Figure 4.5. Reachable rate varying the modulation depending on the SNR

to obtain a higher throughput, with respect to users havirgady a high non cooperative rate. We

obtain
& Epkt

th __

<q],\27NJN - 1) (DiN; — ¢iEpiy)
i 4V

We first present some results for a specific topology witk- 10, which is actually the one in
Fig. 4.1. Fig. 4.6 shows the evolution of throughput ovetifor userl0 (the one with lowest SNR),
for the 3 different schemes. The dashed lines represent the avédmagyeghput of no cooperation and

forced cooperation schemes according to (4.2) and (4.5.cuimulative throughput asymptotically
converges to these average values. This convergenceedaglitas the curves are already stable after
few iterations and become practically indistinguishalbderf the asymptotic value withit) seconds.

Fig. 4.7 compares the asymptotic throughput reached by @sehh Roughly speaking, this spe-
cific topology includes some users (with indices) that are able to reach a maximal throughput
of 600 kb/s already under the no cooperation scheme, by using giesti modulation6d-Q AM)

without ever incurring in packet retransmission. Convgrsesers7-10 have very poor channel con-
ditions (lower modulation scheme, and possibly frequetransmissions), and usetst are in an
intermediate condition. Interestingly, in the forced cergtion scheme the users with the highest
indices obtain the greatest benefit. They know that use2sand3 are forced to act as relays. Thus,
since they have a good channel towards at least one of tHags,rhey select the highest modulation
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Figure 4.6. Cumulative throughput of usén

and their packets are transmitted in two hops exploiting éheys, allowing them to reach a bit-rate
of about300 kb/s. On the contrary, the cooperating users do not obtajriraprovement. Instead,
the voluntary cooperation scheme increases the througlimatoperating users as well. Especially,
users7 and8 are not helped since none of the users with good quality fivdsrethwhile incremental
advantage in doing so.

Fig. 4.8 represents the incremental utilityof each user and emphasizes even more the differ-
ences between the forced and voluntary cooperation schefeeghe forced cooperation case, the
utility of high index users considerably increases, thoaighe expense of low index users which have
no reward in their cooperating behavior. When cooperaisoioiiced by nodé), users7-10 signifi-
cantly increase their own throughput and at the same timmdalf the transmission power because
retransmissions are performed by uskefs which in turn only suffer higher power expenditures. The
voluntary cooperation scheme improves this situationgesimo user worsens its incremental utility
1. The highest index users improve their utility, even thobgha smaller extent than with forced
cooperation, and no user is worse off than before. Indeéslhtppens because cooperation is of-
fered even in the marginal case where the incrementalyusliequal to0; however, setting a higher
requirement for cooperation would yield similar results, ia utility value which is higher for some
users, lower for none. In this sense, the voluntary coojperathemdareto dominatethe no coop-
eration scheme [49]. Moreover, the figure suggests thatghetary cooperation scheme achieves

a more fair distribution of the utility function among theews. Finally, Fig. 4.8 validates the analy-
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sis carried out in Section 4.5. In fact, even though the itiees to cooperative users are calculated
using the approximate equations (4.10), its&l throughput gain for cooperative users is just enough
to compensate theeal additional energy consumption to relay the packets of theratsers, as we
wanted.

To obtain general results, not constrained over a particwdéwork topologies and channel real-
ization, we ran a simulation campaign over many networkltmpes drawn at random with a variable
number of users, and averaged the results. Fig. 4.9 repsebenaverage throughput increase of the
whole network thanks to cooperation, for both forced andntary cooperation schemes. The values
are normalized to the total throughput obtained in the ngeoation scenario. Both forced and vol-
untary cooperation schemes obtain a significant gairfjdarsers, they improve the total throughput
by more thar5% and35%, respectively. Remarkably, voluntary cooperation penfobetter than
forced cooperation; this is due to the better redistributsd additional resources gained through co-
operation, which in the forced cooperation scheme are gugro the users with bad channel quality,
while in the voluntary cooperation scheme are distributentenevenly. It is also worth noting that
the cooperation gain increases in the number of users, vididhe to multi-user diversity, i.e., with
more users it is just more likely to find a suitable relay. Hegrethe voluntary cooperation scheme
does better in this sense, i.e., it increases more rapidtyeimumber of users, in fact it is more likely
to find a suitable relay which is also willing to cooperatywehrticipate in the retransmissions.

Fig. 4.10 shows the Jain index related to the throughputovece., J(BR). Clearly, the no
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cooperation case just reports what is the average situitiavhat concerns fairness in the considered
scenario if no cooperation is applied. Apparently, the éddrcooperation scheme achieves the best
value of fairness for throughput. In fact, users with lowmmotighput are helped by collaborative
relays which have no other choice, therefore throughpus gap smoothed out. After an initial
decrease, the Jain index becomes even larger as the numbgersfincreases. In fact, the higher
the number of users, the higher the probability of finding itable relay (not necessarily a willing
one, since cooperation is forced). The fairness decreastsrgpidly for the voluntary cooperation
scheme. This is due to the fact that users with good chanmelittans, which already have a higher
throughput than others, are rewarded by the access poimeyf dooperate, which means that they
further increase their throughput. This pulls fairnessndvelow the no cooperation case. However,
it is worth noting that, although fairness is decreasedyufhput is never decreased for anybody.
Moreover, evaluating fairness over throughput just givesrg partial picture. Even though users with
good channel increase their throughput, they also haveytthisagain in terms of power consumption,
since they retransmit packets on behalf of bad users (whittrin can save energy); even their reward
in terms of increased scheduling probabilities also ingpireore transmissions and therefore higher

energy consumption.

Fig. 4.11 shows the Jain index related to the utility veater, J(¥). The situation is inverted
with respect to the preceding case. As the number of usersases, the fairness rapidly decreases

for the forced cooperation scheme. This is due to the fadtalamall subset of users, i.e., those
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Figure 4.11. Average utility fairness

having a very good channel quality and able to act as relaya farge area, are more and more
forced to cooperatively relay packets. This pulls theilitytmuch more below the utility of users that
are exploiting them as relays, decreasing the total fasrioéshe network to values even below the
no cooperation case. On the other hand, in the voluntaryaratipn scheme users acting as relays
do not experience a decrease in their utility while helpestsisan increase their own utility, which
results in smoother utility gaps. Note that, if the utiligirhess is considered as the social welfare
metric, Fig. 4.11 gives a representation of the Price of Almardefined as the ratio between the
overall system welfare in the worst Nash equilibrium anchim best Pareto efficient case. In fact, the
highest value of the utility fairness is obtained when the users’ utilities are equal, while thestvor

Nash equilibrium coincides with the unique equilibrium loétgame under consideration.

To sum up, the comparison between the three schemes shawsliingary cooperation is able
to significantly improve the network performance over theecaithout cooperation. In all the com-
parisons, the forced cooperation scheme is to be regardethasretical upper bound, as it implies a
centralized scheduling determined a priori with full systenowledge, to which all the users adhere.
Conversely, the voluntary cooperation scheme may be applii@amically (based on transmission
outcomes) and in a distributed manner, since each useredefreely whether to cooperate or not.
The goal of the coordinator is just to set the system in an NEwhich the exchange of information
required is rather limited and the convergence is pretty fBbte also that the forced cooperation

scheme does not operate in a stable point, i.e., at a NE. Ththsthe same system conditions of
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rational decision and distributed action the forced coaf@n scheme will become identical to the
no cooperation scheme. On the contrary, the voluntary catipa scheme is robust toward strategic
and self-interested users. Moreover, the performanceeofdgluntary cooperation scheme can be re-
garded as an improvement not only over the basic case witoayteration, but even over the forced
cooperation scheme, especially since it achieves a higltalr throughput and a more fair overall

utility distribution.

4.7 Discussions and Future Works

The results obtained in this chapter have been derivedaemsiy a simplified model of a wireless
communication network. In this section we discuss possadkexations of some hypotheses we have
made.

First, we consider the time invariant channels and the pedeannel state knowledge hypothe-
ses, that allow to calculate the performance of each usepftit system by means of an analysis
based on renewal process theory. If channels are time arifie asymptotic performance is not
longer equivalent to the statistical mean. However, fowblovarying channels, there is enough time
for the physical quantities under investigation (i.e.ptighput and energy consumption) to approach
the statistical means, as Fig. 4.6 confirms. Hence, our flaton can be applied to the slowly vary-
ing channels scenario as well, by considering adaptivenastis. This work can also be extended to
highly varying channels and imperfect channel state kndgde assuming that the entities involved
aim at maximizing the statistical mean of their performaneiich might not coincide with their
asymptotic performance. In this case, the statistics otti@nel evolution and of the channel esti-
mates are needed.

As frequently considered in many game theoretic studiesasseimed tha¢veryuser is self-
interested and strategic. In a network there might be somes tisat act individually or cooperatively
independently of their personal advantage. Our framewodkrasults can be easily extended assum-
ing that a mix of no cooperation and forced cooperation natdegresent in the network of voluntary
cooperation nodes. The former might receive the cooperatithe other users, but never offer their
cooperation. Thus, the indices of such nodes do not belosgtid’; and do not appear in the sum-
mation and multiplication of Eq. (4.10). The latter alway&ptheir cooperation, hence, there is no
need to give them incentives by increasing their accessrapptes, i.e., their cooperation weights
can be set t@). Thus, the indices of such nodes belong toldgtand appear in the summation and

multiplication of Eq. (4.10). Itis straightforward to demsirate that Theorems 1 and 2 and Corollary
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1 are still valid, excluding the no cooperation and forcedpsration nodes from the sub-game (they
do not play a game since their actions are fixed).

Another aspect which may be worth looking at is the evaluaticthe overhead introduced by the
forced and voluntary cooperation schemes with respecteimthcooperation scheme. This point is
key to translate the theoretical framework proposed indhapter into an effective and realistic MAC
protocol. However, it can be shown through simple componatithat such an additional overhead is
minimal and can be neglected. We do not consider the overfbe#te estimation and communication
of the channel states (which is needed in every scheme) andaimputation of the cooperation
weights (which is needed for the voluntary cooperation s@)e as these operations are performed
sparsely since channels are slowly varying. Instead, westigate the overhead to schedule different
users, to identify eligible relays and to select one of them.

For the no cooperation scheme, at the beginning of each tohere assume that nodebroad-
casts a short packet indicating the user scheduled in tiatSilich a user, after a short time intefyal
sends the data packet. Finally, after another short tineeviat, node) sends an ACK to the user if it
has received the packet correctly.

We modify such a simple MAC protocol to support the forcedpmration and voluntary cooper-
ation schemes. In this case, during the scheduling phasle,Onas to indicate not only the packet
to transmit, but also who has to perform such a transmissiocase a relay service is required.
Moreover, the user that transmits the packet adds, at thefetheé packet data, a series of bits, one
for each node, to communicate to ndeli¢he users for which it is available to act as a relay. This
MAC protocol is not suitable if there are some users that elneduled rarely, as in this case ndide
might not be updated about the relay opportunities offegeduzh users. In this case another option
should be considered to inform nod@bout relay opportunities, e.g., a short contention windaw
be added after the ACK.

The additional overhead introduced in the considered MA@qmol can be easily quantified.
Consider a time sldf,;; = 1 ms, a symbol period df,,,, = 1 us and a network o0 users. Hence,
the additional number of bits needed in the scheduling gaskegual ta5 while the additional number
of bits needed in the data packet is equab@o Assuming, in the worst case, /aP.S K modulation,
the additional overhead is equali6 us overl ms, i.e., abou5%, that is very low compared to the
throughput gain of the forced cooperation and voluntarypeoation scheme that are equaks

and35% in such a scenario (see Fig. 4.9).

"In the802.11 g/n/ac standards the SIFS (short inter-frame space), defined asithef the RX/TX turnaround time,

MAC processing delay and total receive delay from the argeiznequal ta.6 us
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Finally, in this chapter we have not considered the costriecuby every node to listen and store
the transmission of all the other nodes. Even though the pspant in reception is typically lower
than the transmission power, such an effect might beconwoprimant for a high number of users.
Moreover, in the worst case each user might have to store up-td@ additional packets, requiring a
large buffer. These problems might be counteracted cormsgla simplified version of the proposed
schemes, where we limit, for each user, the number of useskttor a relay service and to cooperate
with. Such a simplified version is motivated by the high gaiattthe voluntary cooperation scheme
is able to obtain for a high number of users, as shown in F&. 8uch a potential gain might not
be completely exploited if we limit the relay opportunitiésit at the same time the scheme becomes
more practical as the number of users increases. We willita&econsideration the study of such a

scheme in our future work.

4.8 Conclusions

We tackled the problem of promoting cooperative relaying wireless network with coordinated
time-division access, by giving the following contribuis First, we outlined mathematical models,
based on Markov chains and renewal theory, to quantify théeaable throughput. Moreover, we
modeled the cooperation option of the single users throagiegheory and we proposed an incentive
scheme for voluntary cooperation that gives transmissésiources to cooperating users when they
retransmit a packet on behalf of other users. We modeleddusss scheme as a Stackelberg game,
where a network unit plays the role of access coordinator.pk¥sented a constructive approach to
determine the NE of the sub-game, proven to be unique. Weedsed the existence of a Stackelberg
equilibrium, which results in the best incentive stratdugttthe coordinator can adopt.

Finally, we numerically compared the three schemes of npe@tion, forced cooperation, and
voluntary cooperation. A careful analysis of these reguksfies the voluntary cooperation scheme
as a valid solution to increase the network performance ible’ manner from an implementation

standpoint.



Chapter

Inter-Network Cooperation exploiting

Game Theory and Bayesian Networks

In this chaptel we analyze a scenario where two wireless ad hoc networks iliregvio share
some of their nodes, acting as relays, in order to gain beriefierms of lower packet delivery delay
and reduced loss probability. Bayesian Network analysiesxjgoited to compute the correlation
between local parameters and overall performance, whéheaselection of the nodes to share is
made by means of a game theoretic approach. Our resultsear@dlidated through use of a system
level simulator, which shows that an accurate selectioh@&hared nodes can significantly increase

the performance gain with respect to a random selectiomsehe

5.1 Introduction

We consider two wireless multi-hop networks deployed insdw@e region, but operated by dif-
ferent entities, that are willing to share some of their pdeting as relays for the other network.
In such a scenario, cooperation can leverage the benefitalbif-path diversity, since more paths
connecting two nodes will be available, obtaining a considie gain in the efficiency of shared re-

sources. Sharing the whole set of nodes provides the higlheshber of paths available for each of

1The material presented in this chapter has been published in
[C5] G. Quer, F. LibrinoL. Canzian, L. Badia, and M. Zorzi, “Using Game Theory and Bayesian Neks to Optimize
Cooperation in Ad Hoc Wireless Networks,” Rroc. IEEE ICG Ottawa, Canada, Jun. 10-15, 2012
[J2] G. Quer, F. LibrinoL. Canzian, L. Badia, and M. Zorzi, “Inter-Network Cooperation expgiog Game Theory and

Bayesian Networks Submitted to IEEE Trans. Commun.
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the two networks. However, this comes at the cost of incaeasdfic that should be handled by some
of the shared nodes. In a realistic environment, an operagy not be willing to share too many
nodes to improve the traffic of another operator, e.g., fousw or privacy reasons. Therefore, both
operators may decide to share only a limited number of nddiésis is the case, an efficient choice
of the shared nodes, according to certain criteria, is reeelteleed, some nodes deployed in crucial
positions may be particularly suited for helping the othetwork; on the contrary, nodes placed close
to the network border are likely to be less useful or evenasselFurthermore, sharing a node implies
that a higher amount of traffic will be routed through it, winresults in a higher latency for the traffic

of its own network.

We assume that each node of each network is sending packetsrip other node in the same
network. In the case of no cooperation, the two coexistingvorks perform their operations sepa-
rately: each network only uses its own resources to delherdata packets generated by its nodes.
Clearly, since they are assumed to share the same spectsonrges, cross—network interference
may limit the overall performance. For such a scenario, viecsa set of local parameters: some
of them are directly observable (i.e., we can assume thét eatevork knows their values), and de-
pend only on the topology of the network (topological parters), like the number of neighbors at a
given node. Some other parameters are not observable aaddlep the link characteristics and on
the traffic load (performance parameters). We exploit Bayesetwork analysis to estimate the joint
probability distribution of this set of parameters, anditedict, given the evaluation of the observable
parameters, the values of the other parameters that wilkbd to calculate a cost metric. Then we
use this information to model the interaction between the etworks through game theory and to
select the best nodes to be used as relays, assuming thatdiatbrks are interested in optimizing

their performance.

5.1.1 Related work

In multi-hop wireless networks, the use of relays can be ssea form of cooperation, since
they create new multi-hop routes. Several protocols hage besigned to balance the enhanced link
reliability and the increased number of transmissions T73—Coded cooperation is developed in [74]
and [76], whereas an implementation based on hybrid automegdeat request is introduced in [77].
The use of relays shows how cooperation can be also expl@iteduting purposes, as investigated
in [78-80]. The choice of the best relay, based on the chammmelitions, is discussed in [78], whereas

several relays, chosen according to topological critesilaultaneously cooperate in forwarding a
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packet in the scheme described in [79]. Finally, a crossflapproach, where cooperation is exploited
in ad hoc networks together with the opportunistic routiagaaigm, has been shown in [80].

Although a wide literature is available about cooperatiotoag terminals of the same network,
fewer works have instead been focused on cooperation betditierent networks. In most of them,
the idea behind a cooperative behavior of two coexisting/ors is to share the spectrum resources.
Such a paradigm, known as spectrum sharing, is exploitedrinyapy/secondary cognitive radio
networks: an unlicensed network is allowed to exploit thesapectrum assigned to a licensed one,
provided that a given QoS is guaranteed to the latter. Thetrgpe can be shared through strategies
exploiting different levels of awareness and coordingtishose performance has been analyzed and
discussed in [81] and [82]. In [83], the authors investiddtee case where two cellular networks share
their own spectrum resources and cooperate in order to rizieithe mutual interference, observing
a gain inversely proportional to the cardinality of the netks. Also infrastructure sharing has been
considered as a promising cooperation technique for eellutworks; in [84] the sharing of some
parts of the network structure is described from a businedsegulatory perspective.

To enable the use of cooperation, it is necessary to infenéteork gain and cost in advance,
thus choosing whether or not it is worth to perform cooperatiOther choices, which require some
knowledge about the network, must be made, like which nodlsslect as relays. An effective tool
to exploit the available information and make a real-timgnestion of the expected performance is
given by probabilistic graphical models [85]. The use okthrobabilistic tool is very promising
for wireless network optimization, and it has been receexloited, e.g., in [86] where a Bayesian
Network approach is adopted for predicting the occurrerfceongestion in a multi-hop wireless
network. The use of Bayesian prediction in a game theoresiméwork to allow cooperation is
discussed in [87].

In spite of the considerable gain allowed by cooperativasm@ssion, modeling the involved
agents as selfish decision-makers usually leads to ineffin@n-cooperative outcomes. In this chap-
ter we formulate the problem as a repeated game, in whichtgarst account for the consequences
of their current actions on the evolution of the game, ancpeaation is obtained by punishing de-
viating users in subsequent stages. Repeated interattimesalready been applied to the study of
cooperative relaying. A packet forwarding mechanism batanthe relaying opportunities that each
node gives to and receives from other nodes is proposed |n A ¥irtual currency and a mech-
anism to charge/reward a player that asks/provides a relayce are introduced in [18] and [19].
Finally, [20] considers a reputation mechanism, where age@s reputation acting as relay and can

choose not to serve users having low reputation.



62 Chapter 5. Inter-Network Cooperation exploiting Gamedrl and Bayesian Networks

Bayesian Network Learning

L T
E @g """ Q " Topological ' @
5 = ' P ters
E—-8 @ N
training topologies # e % e
_ ) PP g
g g & ' Performance : G @ e
A a ! Parameters ;
A ' (Pg Pul) |

Observe Infere Performance
topology of Interest L TP -’( PP »@
" -

T e Game Theoretic
Strategy Selection

Figure 5.1. Logical structure of the proposed approach.

5.1.2 Problem statement and outline of the proposed appro&ac

In the scenario proposed in this chapter, two multi-hop ogt® share the same wireless re-
sources and compete to access the channel. Each networkaranigth the other network a limited

number of nodes for packet relaying, with the goal to mingrazgiven cost metric.

The logical structure of the proposed approach is detafldeig. 5.1. During a learning phase,
we observe some loc#lerformance Parameter@P) of the two networks in many different train-
ing topologies, each of them characterized by some [dopblogical Parameter§TP). We use the
observed data to build the probabilistic relationships ragnall the parameters, summarized in a
Bayesian Network (BN). Then we consider the scenario ofréste we observe the TP in such a
scenario, and we use the BN to infer the PP. Through our gaeweédtic approach we promote the
cooperation among networks and we choose the best nodesstoabed in order to minimize the
chosen cost metric that is obtained from the PP. We meastoadgih simulation the performance
improvement due to cooperation. Note that we do not needpeatethe learning phase every time
the topology changes, since the BN learned from the obsenvaft the training topologies can be

reused for every topology of interest. This makes our aggtrcaitable to be implemented also in the
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presence of a fast changing topology, since it allows to shdle best nodes to be shared based only
on observable TP, without the need for an initial setup.

In brief, the main contributions of this chapter are:

 the use of BN theory to learn the probabilistic relatiopshamong a set of parameters in the

network, in order to infer the network performance from thearvable topological parameters;

* the definition of the cooperation problem between two netwesharing the same spectrum

resources as a strategic game;

 the implementation of the BN predictor and the strategimgan an actual wireless network

simulator that evaluates the network behavior at the palidAC and network layers;

+ aperformance comparison showing the effectiveness ddlgarithm, which achieves the same

performance of a fully cooperative approach by sharing tewyselected nodes.

The rest of the chapter is divided as follows. In Section 5&2imtroduce the BN approach. In
Section 5.3 we describe our network scenario. In Sectiowsd.define three performance metrics and
we detail how to compute them. In Section 5.5 we describe dhsidered game theoretic approach.
In Section 5.6 we present the simulation setup and show tlie r@sults. Section 5.7 concludes the

chapter.

5.2 Bayesian Networks Preliminaries

A Bayesian Network is a probabilistic graphical model [8Bkdribing conditional independence
relations among a set df/ random variables through a Directed Acyclic Graph (DAG),akihis
composed of vertices and directed edges. A veitiexthe graph represents a random variabje
while a directed edge from vertéxo vertex; represents a direct probabilistic relation between the
corresponding variables andz;. In this case, we say thais a parent of, and we writer; € pa(x;).
The absence of a direct edge between two variables impltghea variables are independent, given
certain conditions on the other variables.

Learning the DAG is equivalent to calculating an approxenstructure of the joint probability
distribution amongM variables. This structure is used to calculate the parasmetiesuch joint
probability distribution with a limited number of samplege [85] for further details. The technique
to learn the approximate joint probability distributiorragbhgh a BN is divided into two phases, the

structure learning and the parameter learning phases.
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5.2.1 Structure learning

This is a procedure to define the DAG that represents thetgtinadi relationships between the
random variables, i.e., the presence of a direct connebbween a couple of variables, not condi-
tioned by other variables. We follow a score based metho}] [#8, we do not assume any a priori
knowledge on the data, but we just analyze the realizatibtieo/ariables and we score each possible
DAG with the Bayesian Information Criterion (BIC) [89] thate have chosen as a score function.
The BIC is easy to compute and is based on the maximum likeditwiterion, i.e., how well the
data suits a given structure, and penalizes DAGs with a highmber of edges. If each variable
is distributed according to a discrete probability digitibn, i.e., it has a finite number of possible
outcomes, then the BIC becomes very simple to compute Mimgobnly summations for all possible
outcomes of the variables and all possible outcomes of ttenpaof each variable, see [88]. As an
example, suppose that we apply the BIC score based metholiniited number of realizations of
the variablesr,, z; andz;, and we obtain a DAG such thatis a parent of and: is a parent ofj.

Using this approximation, the joint probability of the aesponding variables can be written as
P(xp, xi, x5) = Pan) Paion)P(x|:)

that is simpler than a general joint probability among thragables.

5.2.2 Parameter learning

This phase consists in estimating the parameters of thdiedgoint distribution according to
the probability structure defined by the DAG chosen in thaecstire learning phase. To obtain the
joint distribution, it suffices to estimate the probabilafeach variable conditioned by the variables
that correspond to its parent nodes in the graph. Cohereritiythe choice of the BIC as a scoring
function, we use the maximum likelihood estimation techmei@lso to determine all the conditional

probabilities for each variable considered.

5.3 System Model

In this section, we describe the network scenario undestigeagion from the physical up to the
routing layer. In our scenario, two ad hoc wireless netwadexist and share the common spectrum
resource. Each network consistsmoferminals randomly deployed, and each node is a sourcefof tra

fic, which generates packets according to a Poisson proadsgensity A packets/s/node. The end



5.3. System Model 65

destination is chosen at random, for each packet, amongdtieemodes in the network. Furthermore,

time is divided in slots and slot synchronization is assua&dss the whole network.

5.3.1 Physical layer

At the physical layer Code Division Multiple Access (CDMA)itiv fixed spreading factor is
employed to separate simultaneous transmissions, sirthenbtworks share the same spectrum re-
sources, and a training sequence for channel estimatiadldéedzat the beginning of each transmission.
The receiving nodeD(©), uses a simple iterative interference cancellation schemetrieve the de-
sired packet whe/ simultaneous communications, namély). ..., 7 are received. We define
the Signal to Interference plus Noise Ratio (SINRYAY for the incoming transmissiofr() from

nodeD as

@ — SfP(Z) :
No+ 4 PU)
whereNj is the noise power anél; is the spreading factor?) indicates the incoming power due
toTU), e, forallj=1,...,M:

PU) _ Prlhpu po*d;®
X
where Pr is the transmission power, which is considered to be the damall the nodes in the
network, x is a fixed path-loss term; is the distance between the receiving node and the source of
T, « is the path loss exponent, ahgh) po is a complex zero mean and unit variance Gaussian
random variable, which represents the effect of multi-gatling. More precisely, in our scenario,
we consider a time correlated block fading. Therefore, ierchannel between nod&s?) and D),

the multi-path fading coefficient in time slois

hpa po () =p hpo pot—1)+ V91— p2¢

wherep is the time-correlation factor anglis an independent complex Gaussian random variable

with zero mean and unit variance. The iterative interfeeecencellation scheme works as follows:

« the destination nod®(® sorts thel incoming transmissions according to the received SINR,

in decreasing order (for simplicity, assué) > ... > (M)

« starting from transmissiofi(!), D) tries to decode the corresponding packet, with a decoding

probability that is a function of V) and of the modulation scheme;

« if the packet is correctly received, its contribution i$sacted from the total incoming signal;



66 Chapter 5. Inter-Network Cooperation exploiting Gamedrl and Bayesian Networks

« DO attempts to decode the transmission with the next high@$RSI'), and goes on until

the transmission being decoded is the packet of interest.

5.3.2 MAC layer

Atthe MAC layer, we implement a simple transmission prottased on a Request-To-Send/Clear-
To-Send handshake. Every time nabBé) wants to send a packet to nod®?), it checks the desti-
nation availability by sending an Request-To-Send padké®?) is not busy, it replies with a Clear-
To-Send packet so thd2(!) can start transmitting the packet. Correct reception inastedged by
means of an ACK packet. In the case of decoding failure, aftemdom backoff time, nod®®
schedules a new transmission attempt, unless the maximorhearof retransmission&l;,. has been
reached, in which case it discards the packet. Signalinggtaare very short, i.e., they are transmit-
ted within a single time slot, and are protected by a simppetiton code of raté /2. Instead, data
packets may span several time slots, so error detectiongalused to verify their correct reception,

i.e., redundancy bits are added at the end of each packet.

5.3.3 Network layer

The source and destination nodes are not necessarily veitigrage range of each other, so we
consider multi-hop transmissions. Two nodes can commtenidigectly if their distance is less than
or equal to the transmission rangeTo transmit to destinations that are not within coverageles
use static routing tables, which are built using OptimizétklState Routing (OLSR)7. Each time
a node generates a new packet, or receives a packet to bededyi puts it in the node queue, with
first-in-first-out policy. The buffer sizgis fixed and equal for all nodes. If a new packet arrives when

the buffer is full, it is discarded.

5.4 Definition and Estimation of the Network Performance

In this section, we define three different cost metrics tlaat loe used as performance indicators
by the two networks and we show how to compute such cost raedtasting from link parameters,
which in turn can be decomposed in local PP that can be estiim#irough a Bayesian approach,
from observable TP. In Section 5.5 the cost metrics are uséditd a game theoretic model for a

careful selection of the sharing nodes and to provide amtieefor both networks to cooperate.
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5.4.1 Cost metrics

We consider three different cost metrics because we do eosfon a particular network appli-
cation, thus, the three cost metrics can be thought as thierpemce indicators of three different
scenarios. Moreover, we want to remark that the approachseedsutransparent to the considered
performance metric, and different metrics can be easilpmocodated.

Given the path fromD® to DU, we first define the delivery dela(*/) as the average end-
to-end delay of a packet sent along the path, given that thkepds received, and the packet loss
probability ple ) as the probability that a packet is lost along the path. Natimt no end-to-end
packet retransmission mechanism is implemented in ourarktwrl hese link parameters are taken
into account by each of the three cost metrics. In fact, igigdost packets (i.e., computing the delay
statistics only on correctly delivered packets) may leadricoptimistic evaluation of the network
performance under heavy traffic, where few packets actuwalgh the destination. In this case, a
high-loss path might end up being considered better thanra nebable path with a slightly higher
delivery delay. The other extreme, i.e., defining the delaytrdbution of a lost packet as infinite,
makes the delay evaluation meaningless. Clearly, neithBorois desirable in our case. In the
following, we describe the three cost metrics considelteat, dive a finite bias to the average delay in
case of a packet loss.

Weighted delivery delay Py p

In this metric, when a packet is lost in the path fram? to DY), we increase the delay of the
following packet in the same path by the time to generatehamqiacket routed on that pathThis
additional delay is given by = (n — 1)/), i.e., the inverse of the per-path average traffic intefsity
Accordingly, we recursively define the averageighted delivery delagf a packet sent via multi-hop

transmission by nod®(® to nodeD") as:
Pun(isi) = (1=p5") ¢4+ (r+P)

In this calculation, the channel and interference conatj@nd thus the loss probability, are assumed

to be independent for different packets. This is due to tbetfeat the time between two subsequent

2Equivalently, we assign to lost packets a delay contrilbutiqual to the interarrival time and to received packets the

actual delay incurred; then we divide the sum of all contiins by the number of correctly received packets only.
3Each packet generated A" has a randomly chosen destination among the remaining rdes network, so that

the per-node traffic\ needs to be divided by the number of possible destinations,1. Notice that it would be easy to
extend our model considering different traffic intensifasdifferent paths, however, this would lead to a more cush@e

notation without adding any relevant aspect to the finalltesu
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packet transmissions over the same path is deemed to berongle From (5.1) we obtain:
péi’j)

1— pgfl,] )

P&i}jD) —r + ()
Lost or not in-time packet rate: Pjr
In many applications, the packets are relevant if they aligaded within a given maximum delay,
dmaz- If @ packet successfully reaches the destination aftefesy dlenger thaninax, it is considered
obsolete and discarded. In this scenario, to calculate tanoetsic we must estimate the probability
ﬁy’j) of in-time delivery of a packet in the path from(*) to DY), given that the packet is correctly
received. Considering successful transmissions, with packet delivery dej;%\}), k=1,...,K,
we can estimate

K

>0 1 (G < dmay)

~(1,5) k=1
P = K

wherel(-) is the indicator function. Thus, the in-time packet arrrate is

DN i) A
AT = (1—1?;17])) p%)m

and the lost or not in-time packet rate can be written as:

Pl _ (P;(fz’j) . (1 _ pff[j)) (1-— ﬁ%ﬂ)) %
Information obsolescence Pro
In a monitoring application, we assume that each node i&itrg@ specific signal and we are inter-
ested in calculating the average time interval since theclasectly received packet was generated,
i.e., the average obsolescence of the information from foe at the receiving nod®). We
recursively define it as:

P}io’j) _ <1 _p](DZ'lJ)) (C(z’,j) i %) +p§)il,j) <7_ _1_7;%3’))

where the two terms account for the obsolescence of thenaftion in case of correctly received and
lost packets, respectively. In the case of a packet coyresxtkived, we consider that the obsolescence
of the last correctly received packet linearly varies frofiv) at the moment in which the packet is
received, ta’"7) 4+ 7, immediately before the next packet is received. Thus, ¥eesge information

obsolescence is given ) + 7/2. In the case of a packet loss, an additional time intervisl
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added to the information obsolescence every time a pachatis Similarly to (5.1), we can write:

i) s (i) . T
PIO = Tﬁ + C W =

(5.1)

Notice that the expressions B&’/g andP}gj ) are similar, however, we believe it is worth to describe
both metrics because they can be applied in different smenakevertheless, in Section 5.6.3, we
discuss only the results obtained consider })) since withP}iO’j) we would obtain the same
performance gains.

We define the cost metric of the whole netwdFk,as the average of a cost metric (chosen among
Pw b, Prr andPjo) over all the couples of nodes belonging to the network. Timeoheach network
is to (selfishly) adopt a cooperation action that minimizesost metricP, this issue is addressed in
Section 5.5. In the following subsections, we propose a atkth decomposé(®7) andp;"/j), needed

for the computation oP, into local PP, and to estimate the PP from TP which can béyesisserved.

5.4.2 Computation of¢*/) and péé’j)

The delivery delay; (+7) is determined by the number of retransmissions in each linihe path.
Indeed, for multi-hop routes, a packet has to wait at eactyrebde until all the packets ahead in
the queue have been sent. The loss of a packet can be causadbgitan excessive number of
retransmissions, which lead to a packet drop, or by a bufferflow, i.e., the packet is discarded
if the next relay has a full queue. Thus, both the deliveragel*7) and the loss probabilityagl’j)
depend on the channel and interference conditions in eaklofithe path, that in turn depend on the
nodes that the routing protocol selects as relays.

In a static network, it is possible to estimaté~) and p;i[j) during a training period, which
on the other hand is impractical if the network is dynamic Ilfifeo nodes or time-varying traffic
statistics). We propose a different way of estimating thaydand the loss probability, based only on
instantaneous topological and routing information. Siagecket sent over a multi-hop path has to
traverse a number of nodes before reaching the destinat®idecompose the overall path delivery
delay and the overall path loss probability into contribos given by the various traversed nodes,
and we assume that such contributions are independent. Mecesely, the overall delivery delay
is given by the sum of the average delays required to trawmseg single node (time in queue plus

transmission time), whereas the overall loss probabgithitained from the loss probabilities at every

“Notice that in our network scenario the packets are receivéde destination node in the same order they are trans-

mitted.
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node (probability of too many transmission failures ancbptulity of buffer overflow). IfR () is

the set of nodes belonging to the path betw&éh and DY) (excludingD( andD¥)), we have:

C(i,j) _ C(i) + Z C(h)
heR(i:1)
where¢(™ is the average time between the arrival of a packet at ¢ and its reception at the
next hop. This delay depends on the next relay; indeed, weléme needed for traversing the queue
is the same for all packets, the time required for a succkssfasmission depends on the channel
condition, and hence on the next hop chosen. We conglieas averaged over all the packets sent
by nodeD" to the next-hop relays.

The packet loss in the multi-hop path is calculated in a similay, i.e.,

i’ =1--pHa ) I a-pha-nl)
heR(E:5)

wherepgﬁ) is the probability that a transmission from noldéo the next hop fails because the maxi-

mum number of retransmissions is reached, ;éﬁbis the probability that a packet correctly received
at nodeD™ is discarded due to buffer overflow. Furthermore, we noﬂira&gﬁg}é) depends on the
queue of the receiving nod@™, while pgf) depends also on which node is used as next hop. For
this reason, similarly tqg(®), we consider a value averaged over all the neighboi3(6f.>

The parameterg(?, pg}), andp((fo) are the PP we need to estimate to compute the cost nietfc

the whole network.

5.4.3 A Bayesian network approach to infer PP from TP

We want to use some TP, that can be easily observed at eachii8déo estimate the PP,
pg?, andp'l). We decide to consider the number of neighhaf§) and the number of flowsg (@,
that can be easily calculated from the routing table. The Bpr@ach can be summarized in the
following three steps: (1) we measure TP and PP for each nod#&mulations run over several
training topologies, as a function of the traffic loap(2) we build a DAG with nodesV', 7, ¢, p;f,
andp,,, describing qualitatively the probabilistic relationshiamong them (see Subsection 5.2.1);
and (3) we estimate the joint distribution according to thebpbility structure defined by the DAG

(see Subsection 5.2.2).

>The underlying assumption is that the probabilitjaézg) andpi;”, with h € R, are all independent. This is
a reasonable assumption since there are multiple flows tmitiloute to the queue length in each node, and the fading

considered is spatially uncorrelated.
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Figure 5.2. Bayesian Network showing the probabilistic relationstapsong thes parameters of interest:

C, Pty pg F,andN.

We remark that this procedure is different from using a trgjrperiod to directly derive the
parameters in the scenario of interest. In fact, in this easaining period would be needed every
time the topology changes, so as to evaluate their valueafdr gpecific node or path. On the contrary,
with our procedure we can estimate the general joint prdibabistribution among these parameters,

that does not depend on the specific topology.

The DAG results the same for all values)yfand is represented in Fig. 5.2, while quantitatively
the probabilistic relationships change wikhNote that\" does not influence, to a first approximation,
the values of the three PP, once the value~dt observed. In other words, once we calculate from
the routing table the value of, we can estimate the PR p;, andp,, and from these estimated

parameters we can calculate also the overall cost for tiveonietP.
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5.5 Game Theoretic Approach

In spite of the social gain allowed by cooperation, each agtvhas to individually decide if it
is beneficial for it to cooperate, and possibly to accuraselect the set of nodes to share. To do
this, each network can estimate, through the frameworkdiited in Section 5.4, the performance
obtainable for each cooperation possibility, gutaly a gamewith the other network.

For the time being we model the interaction of the two netwag astatic game with complete
information We label the nodes of the networks franto 2n, where the nodes in the sefs =
{1,..,n} andSy = {n + 1,...,2n} belong to networkl and2, respectively. We formally define
the gamd” = (N, A, A2, Uy, As), in which the players are the two network¥,= {1, 2}, and the
actionsa; € A; anday € A, represent the set of nodes netwarland2 want to share. In general,
an operator may not be willing to share too many nodes or samperiant nodes (e.g., for security
or privacy reasons), thus the action sdtsand A, are a subset of the power set$)f, 4, C 25,

k = 1,2. The utility U, : A; x Ay — R can be any decreasing functionﬁ(al,ag), k=12,
which denotes the cost metric referred to netwlbdiven the shared nodes anda,. Givena, and
as the routing tables calculated via OLSR change accordirtgl,number of flows for each node
can be computed?®(a;, as) can be estimated, and finally the utili§;, (a1, a2) can be obtained. In
particular,U (0, 0) is the utility of networkk when no nodes are shared.

We say that an actioay, is non trivial is the shared nodes are exploited by the other network to
obtain more efficient paths. Except for the cooperation actiom; = (), we consider only non trivial

actions. In fact, a trivial action is perfectly equivaleatthe no cooperation actidh
Proposition 3. a; = () is a strictly dominant action of the ganig for each network = 1, 2.

Proof. Given the strategy of the other network, netwarktrictly prefers not to share any node. In
fact, shared nodes strictly increase the traffic handledhéyetwork, which in turns strictly increases

the cost metric and strictly decreases the utility, wittpees to the no cooperation case. O

Corollary 2. The unique NE of the ganigis a}? = a)’F = (.

In the static game formulation it is not possible to providesntives for the networks to cooperate
because, whatever the other network decides to do, a netwwgt wants to manage additional flows
of packets belonging to the other network. However, we aithaé the static formulation is not
a proper model for the scenario we have in mind, in which therattion among the networks is

sustained over the time. In this caseepeated gamé&rmulation seems more reasonable.
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5.5.1 Repeated game

We define the infinitely repeated gariié’ in which the two networks play the stage gaie
infinitely, obtaining the average utility
T
UR=(1-4) lim > U

T—
Tl

whereU,Et) is the utility obtain by network at staget andé € (0, 1) is the discount factor.

We want to design aooperation strategy profile* = (s7, s3) in which both network have the
incentive to cooperate. The key idea is the adoption toigger strategyin which the two networks
adopt by default theooperation action profile* = (a7, a3) and, as soon as one of the two networks
deviates from this action profile, the other netwptknishest by adopting the no cooperation action
() forever® An issue related to this approach is the selection of an @piate o*. In fact, the two
networks have in general different preferences. each of tiveuld like to choose an* that allows
it to obtain the highest gain, that does not usually coineitté the o* in which the other network
obtains the highest gain. Inspired by the Nash bargainihgisno [49], we select a cooperation action

profile a* as a solution of the following problem

argmax (Ul(a) - Uf@, @)) (Ua(a) — Us(0,0))

acA
subject to:
Ug(a) — Uk(@, @) >0, k=1,2 (5.2)

This corresponds to the solution that an impartial arlmtratould recommend to increase in a fair

way the utilities of both networks. We obtain the followirgsults.

Proposition 4. If (5.2) has no solution, there exist no cooperation actisofife a* # (0,0) and

trigger strategys* such thats* is a Nash equilibrium of %.

Proof. Let assume (5.2) has no solution and there existg ((), ) and a trigger strategy* such that
s*is a NE ofl"'%. Since (5.2) has no solution, there exist a netweskich that/,, (a*) — Uy (0, #) < 0.
Without loosing generality we assume thiat= 1. If both networks adopt the trigger strategy the

®More complex strategies in which the networks synchronoubbnge, from stage to stage, the cooperative action
profile are possible. Though these strategies may achidter bleeoretical results, we argue that they are very comple
and computationally expensive to implement in practiceceithey require frequently updates of the routing tables an
introduce the problem of readdressing packets that wensrrdted along paths which do not exists anymore. Thus, we

prefer to consider more simple strategies.
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average utility for network is Uf¥(s%, s3) = Uy (a*). If network 2 adopts the trigger strategy and
network1 always adopts the no cooperation actfbtine average utility for network is

UR0,s3) = (1= 6)UL(0,a}) + (1 —0) TETOOZ‘St LU (0,0) > UL(0,0) > U (s3, s3)

where the first inequality, i.el/; (0, a%) > U1(0, 0), is valid because networkcan exploit the node
shared by networR to find better paths (remember that we consider non-trigabas), and the last
inequality is valid for hypothesis. Hence, netwarlhas the incentive to deviate from the trigger
strategys} and adopt always the no cooperation actipeontradicting the initial hypothesis thait

is a NE of "%, O

Since a Subgame-Perfect Equilibrium (SPE) is a refinemeiat NE, if (5.2) has no solution
neither a trigger strategy SPE exits. In this case we assoatéhe networks never cooperaté, ()
is a NE of the stage ganig, hence it is also a SPE &f). Notice that (5.2) is without solution if
it does not exist an action profile # (0, ()) such that both network can benefit from cooperation.
This possibility happens very rarely (precisely, when factesharing choice one network would not
exploit a lot the shared nodes of the other network and, asdhnge time, the other network would
exploit a lot its shared nodes), and corresponds to situgiiowhich cooperation does not provide a

high gain.

Proposition 5. If a* is a solution of (5.2) and is close enough td, then the trigger strategy” is a

subgame-perfect equilibrium ¥

Proof. We need to show that the strategjyis a best response to the strategyin each subgame of
I'E (if so, for symmetrys; will be a best response tg). Assume networkR adoptss;. Network 1
knows that, if the outcome ever differs frofa;, %), network2 will play @ forever. Thus, from that
point on, also for network is optimal to play) forever. Sos? is a NE in all the subgames &f* in
which a deviation from{a}, a3) has occurred in the past. Now let consider the subganigtdh a
generic stagéin which a deviation has not occurred in the past (this inetualso the case= 1, i.e.,
the subgame coincides wiilf?). We just need to show that, at stagé is not beneficial for network
1 to deviate from the trigger strategy, playing an action different fromj. In fact, if it does not
deviate in stagé, then for the same reason it will not deviate in stagel, and so on. The past utility
and the discount factor at the instdns’—!, are constants and do not play any role in the equilibrium
analysis. Hence, we can simply impase 1 and evaluate networks best first move. If network

adoptss; from the initial stage its average utility $/%(s%, s3) = Uy (a*). Every strategy resulting
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in an action different fromu] in the first stage is dominated by the strategy in wHicis always
played, in fact) allows to obtain the highest utility possible in every staijeen that usee plays
a} in the first stage and in the subsequent stages. If netwdrklways playl) achieves an average
utility of UE (0, s5) = (1 —8) U1(0, a3) + 5 U1 (0, 0). We obtainU{ (3, s3) > U (0, s3) if and only
if & > U0, a3) = Ur(e® . Notice thatl; (0, a%) > Ui (a*) > Uy (0,0), where the first inequality

- Ul((b,a;) — Ul((b,@)
is valid because network can exploit the node shared by netwarko find better paths (remember

that we consider non-trivial actions), and the last ineityi& valid because* is a solution of (5.2).
Thus, the threshold ofis lower thanl. O

Notice that the trigger strategy can be substituted witliaesgy in which, as soon as a deviation
from the cooperation action profile is detected, a netwodpgithe punishment actidghonly for a
finite amount of stages. The duration of the punishment meisiel so that the gain obtained during

the deviating stage does not compensate the loss incurregydbe subsequent stages.

5.6 Results

5.6.1 Simulation setup

To assess the effectiveness of our approach, we developetivark simulator which encom-
passes the layers from physical to routing, as describeedtich 5.3. The system parameters are
reported in Table 5.1. Each simulation run is performed wéthdomly generated connected net-
works, and lasts fot 0000 time slots. With the given parameters setup, we first idextifthrough
simulation, the value\; of packet generation intensity which results in an end-fid+gacket loss
probability of0.1. This can be seen as a threshold value between a lightly doanid an overloaded
network. Different values of the normalized traffic genenmaintensity\,, = A/\; were considered,
from )\, = 0.4 up to\, = 2. For each value500 simulation runs were performed to collect the
data required for the BN inference (training topologiesjas@&d on this information, the empirical
distributions and the average values gfp; s andp,,, conditioned onF, were derived.

In the subsequent steps, a new seb@j simulation runs was performed for each value\gf
In each run, two networks are again randomly deployed. Westiyate the average performance
of the networks when (1) no nodes are shared, nafel\Coop (2) 2 nodes randomly chosen are
shared, namelg Rand (3) 2 nodes selected through the proposed game theoreticagh are shared,
namely2 GT; (4) all nodes are shared, namélyll Coop. To adopt the game theoretic approach we

assume that the utility function of each network is the nexpl of the average cost for that network,
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Table 5.1. Simulation parameters

Number of nodes per network 10
Network area side [m] 200
Transmission range[m] 75
Transmission power [dBm] 24
Chip rate [chip/s] 7.5 x 106
Noise floor [dBm] —103
Path loss exponent 4
Path loss fixed term 1000
Fading correlation factop 0.9
Modulation type BPSK
Time slot duration [ms] 1
Spreading factof; 32
Packet length [bit] 4096
Packet transmission time [slots] 6
Transmission rate) [pkts/s/node] 1to5
Buffer sizeb [pkis] 16
Maximum number of MAC retransmissions 5
Initial backoff window [slots] 16
Routing algorithm OLSR
Simulation duration [slots] 10000
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Uk(ai,as) = [P*(a1,a2)]71, ¢ is close enough td, and the networks can share either no nodes or
exactly2 nodes. Although our approach can be extended to a larger eruoflzooperating nodes,
our results show that a large fraction of the available ccapen gain is already achieved with this

choice.

5.6.2 Bayesian network estimation

Exploiting the stochastic estimation of local parameteescan evaluate the expected value of the
three parameters of interest, namely the average deliaay d,, the probability of buffer overflow
Pqo @nd the probability of transmission failugg;, as a function of the number of flows passing
through the node and of the normalized traffic intensity The expected values qf, pq,, andp; s
are shown in Figs. 5.3, 5.4 and 5.5, respectively. The highasber of flows through a single node
is reached when that node becomes the only connection amangeiparate clusters of nodest
these groups have similar cardinalities, we have that thémmen number of flows through a single

node is

Ny <2(n—1) (n—u>

Ne¢

where N, is the number of clusters in which the two networks are djcendn is the number of
nodes in each network. In our case, due to the small numbeyd#sin each network(= 10), we
reasonably assume that in the worst case the nodes can teddimithree separate clusters of nodes,
thus N; < 144. This explains why the number of flows is limited in the figures. We also observe
in Fig. 5.3 that for very high values ¢f and\,,, the average delivery delay decreases. We conjecture
that this happens for two reasons: (1) the queue of thesesravdaalways almost full, so the time to
traverse them cannot grow much further, and (2) a node saddry a high number of flows is often
chosen as receiver by most of its neighbors. For these reaaten it transmits, a lower number of

communications can interfere, thus leading to a lower tiseied to deliver a packet to the next hop.

5.6.3 Performance

In Fig. 5.6, we present the actual gain, in terms of delay cgodn for the metricPy, p, offered
by the considered scenarios. The curves are obtained bggngrover500 random topologies, each

consisting of two networks with = 10 nodes each. The system parameters are reported in Tab. 5.1.

A single node can be the only connecting node of no more Stausters of nodes, since in a plane it is impossible to
have more thai points with distance less than or equaktérom a central point, such that each couple of points have a

distance bigger than
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Figure 5.3. BN estimation of the average delivery delags a function of the number of flows passing

through the node.

It can be observed that, as intuition suggests, full codjperagrants the highest benefits, due to
the higher spatial diversity. Hence, this is the maximume@ble gain for the scenario investigated.
This gain is more pronounced when the networks are heawalgdd, since congested paths are more
frequent, and adding new routes becomes more advantagéten only two nodes can be shared,
the choice of the shared nodes makes the difference. InFart5.6 shows that a careful selection
of the resources to be shared can significantly increasectiievable gain when compared to a blind
random selection. A random selection can not offer a sigmifigain for lightly loaded networks,
while, for heavily loaded networks, it can offer only onerthof the gain granted by full cooperation.
On the contrary, if the shared nodes are chosen by means gama-theoretic approach, the maxi-
mum achievable gain is fully obtained for lightly loadedweiks and closely approached for heavily

loaded networks.

The same performance gains are obtained also by using thenebsc P;o, the information
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Figure 5.4. BN estimation of the probability of buffer overflgwy, as a function of the number of flows

passing through the node.

obsolescence, sind®; p andP;o differ only by a constant term/2, see (5.1) and (5.1).

In Fig. 5.7 and in Fig. 5.8 we adopt the cost me®ig- and we show the performance of the four
cooperation strategies in terms of in-time packet arrigg,f\;7. In Fig. 5.7-(a) we show\ ;7 as a
function of the normalized packet generation intengityfor a maximum allowed delaynax = 100
slots, and in Fig. 5.7-(b) we shod for dmax = 600 slots. We notice that also in this case, adopting
the cost metricP;r, an accurate choice of the cooperating nodes made by oueam strategy,

2 GT, allows to reach the same performance of the case in vdilicitodes are shared, namely Full
Coop. Instead, the random choice of the nodes to share, 2 Remdde only a third or less of the
total gain achievable with full cooperation.

In Fig. 5.8, adopting again the cost metfigr, we showA;r as a function of the maximum
allowed delaydnax for a packet generation intensity, = 1.2 and A\,, = 2, in Fig. 5.8-(a) and

in Fig. 5.8-(b), respectively. We observe that varying thexmmum allowed delaylnhax with our
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Figure 5.5. BN estimation of the probability of transmission failyrg: as a function of the number of

flowsF passing through the node.

cooperation strategy we obtain the same gain as with fulbedion, while with a random choice of

the cooperative nodes we obtain less than a third of thegaialachievable with full cooperation.

5.7 Conclusions

In this chapter we develop a framework which can be used &ck#he cooperation strategy
between two coexisting wireless networks sharing someedf ttodes. To sum up, our framework is
represented in Fig. 5.1 and follows the following steps:

(1) we learn the network behavior by measuring the TP and HRewest over several random training
topologies;
(2) we use the BN method to infer the joint distribution amdiiyand PP;

(3) in the scenario of interest we observe the TP, we infePReand we estimate the utility function
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of each network for all possible choices of the sharing npdes
(4) we select the nodes to be shared based on a game theqatimeh in which each network
shares the nodes only if it obtains a benefit in doing thagritices towards cooperation are provided
through a simple trigger strategy which takes into accoltactions adopts by the another network
in the past.

Finally, we develop a wireless network simulator showinattleven when only a small fraction
of the nodes is shared, we obtain a significant gain. In paaticboth for lightly and heavily loaded
scenarios, the selection scheme based on game theory daneaalmost the same performance as a

full cooperation scheme, for all the three performance icgtionsidered.
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Figure 5.6. Weighted delivery delagy,p as a function of the normalized packet generation intensity

An = A/ A, for the four compared scenarios.
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Chapter

Designing and Selecting MAC Protocols
With Selfish Users

In this chapteY we consider a number of users who compete to gain access émaeiha slotted-
Aloha like random access protocol and two incentive scheprésng andintervention We provide
some criteria for the designer of the protocol to choose aherme between them and to design
the best policy for the selected scheme, depending on thiensysarameters. Our results show that
intervention can achieve the maximum efficiency in pleefect monitoringscenario. In thémperfect
monitoringscenario, instead, the performance of the system depenitie amformation held by the
different entities and, in some cases, there exists a thic$br the number of users such that, for a
number of users lower than the threshold, interventioneritpms pricing, whereas, for a number of

users higher than the threshold pricing outperforms ietetion.

6.1 Introduction

In wireless communication networks, multiple users ofteare a common channel and contend
for access. Many distributed Medium Access Control (MAQ)tpcols, some of them being used in
current international standards (e.g., IEEE 802.11 ail/dfave been designed assuming that users

are compliant with the protocol rules. Unfortunately, d-sslerested and strategic user might ma-

1The material presented in this chapter has been published in
[J3] L. Canzian, Y. Xiao, M. Zorzi, and M. van der Schaar, “Game Theoretic iDesof MAC Protocols: Pricing and
Intervention in Slotted-Aloha,Submitted to IEEE/ACM Trans. Networking
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nipulate the protocol in order to obtain a larger share ottiennel resource at the expense of that of

the other users.

We consider a slotted-Aloha like random access protocokrevteach user transmits within a
slot according to some user-chosen probability. Withoytfarther mechanism, self-interested users
would implement thalways transmistrategy, resulting in the network collapse. To make thevoek
robust to selfish users, it is fundamental to design a scheatetovides to the users the incentives

to adopt a better (from the network designer point of viewgtsgy.

In the past decade a lot of research was dedicated to theogeveht of such incentive schemes
for slotted-Aloha like random access protocols. Some afrésearch, such as [35-39], adopts pricing
schemes that charge the users for their resource dshgthis way, it is in the self-interest of each
user to limit its access probability. Such pricing schemey mchieve the goal of efficient use of
network resources. However, they suffer from the followangwbacks: (1) the designer has to know
how the prices affect the users’ utilities to design an effitischeme; (2) it is not clear what do to
with the collected money, unless the network is managed bypfa{making enterprise; (3) a secure

infrastructure to collect the money is needed.

Recently, a new incentive scheme, callatkrvention has been proposed in [66] and has been
applied to MAC problems [12,42]. In this scheme,iatervention devicés placed in the network.
Such a device can monitor the users’ behavior and intervifeetiag the users’ resource usage. The
action of the intervention device depends on the actionseofisers. The intervention device provides
the incentives for the users to obey a given access protyatile by threateninggunishment# users
disobey. Intervention is more robust than pricing becassgsucannot avoid intervention as long as
they use network resources, but they might be able to avoitetaoy charges. The implementation
of an intervention scheme requires to place an additiondteei.e., the intervention device, in the

network.

Repeated games can also encourage cooperative behawbrsn®his case users are forced to
take into account how their current actions can influencefuh@e actions of the other users. A
cooperative behavior is induced by punishing deviatingsusethe future. Differently from the pre-
viously considered methods, this scheme does not requarprsence of a central entity. However,

it requires a repeated interaction among users and themsisitkeep track of their past observations

Notice that in the literature pricing schemes may refer &dsdistributed schemes in which the users are cooperative
andfictitiousprices are used to obtain an efficient distributed algorithmour case, we consider strategic and selfish users,

thus, to be effective, the pricing scheme requires the ueqray real money.
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and be able to detect deviations and to coordinate thewratn order to punish deviating users. We
exclude incentive schemes based on repeated games betthesedifficulties.

In this chapter we provide the tools to design pricing andrirgntion schemes to make a random
access protocol robust against strategic users. As in masé @revious works in pricing and inter-
vention, we consider onlnear interventionandlinear pricing schemes, because they are simple to
implement and yet efficient enough to achieve high perfooador even optimality in some cases).
Simple rules are important in particular for pricing schemgecause the users might not accept to
pay for their resource usage following complex rules. ItifBalilt to argue between different incen-
tive schemes in general: depending on the particular deoy scenario, the performance criterion,
and the implementation issues, each one of the incentivenses can be better than the others. The
problem of the network designer is to identify the schemeltlat fits its requirements and to design
the best policy for the selected scheme.

The complexity of the design process and the performande\adiie depend on various features
of the system, such as the number of users, the users’ hetegitg the capability of monitoring the
users’ actions and the information held by the designer hadisers. To the best of our knowledge,
this is the first work that compares intervention and prigmterms of the network environment, the
knowledge of the designer and the knowledge of the users. ddlesfon a simple MAC protocol,
slotted-Aloha, because it makes it possible to formulaienale game in which the outcomes can be
computed analytically, to highlight the consequence oftaking into account the strategic nature of
some users when designing a MAC protocol, and to obtain itapbinsights about possible solutions
to such a problem. For these features slotted-Aloha is wideéd in game theoretic studies [8, 12,
35-39,42]. The extension of this work to more realistic MAGtpcols will be considered in future
works.

This chapter is divided into two main parts. In the first pam, consider thgerfect monitoring
scenario, i.e., we assume that the users’ actions are éstiméthout errors. We show that interven-
tion can achieve the maximum efficiency, i.e., the maximugiadavelfare, while pricing is able to
reach an efficient use of the network resources but the pegiiyments subtracted from the users’
utilities prevent it to achieve the maximum social welfare

In the second part, we consider iamperfect monitoringscenario, assuming that a uniformly dis-
tributed noise term is added to the estimated actions. Weeditre optimal pricing and intervention
schemes and quantify the performance achievable in thisasog assuming that (1) neither the de-
signer nor the users are aware of the estimation errors ey believe that the designer is able

to observe the users’ actions perfectly), (2) only the desigs aware of the estimation errors, and
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(3) both the designer and the users are aware of the estimatiors. In the imperfect monitoring
scenario, the performance of the intervention scheme degreonsiderably as the number of users
increases and the information held by the designer and @rs ptays an important role. In particular,
for case (3) there exists a threshold for the number of users that, for a number of users lower
than the threshold, the intervention scheme outperformgtiting scheme, while for a number of
users higher than the threshold the pricing scheme outpesfthe intervention scheme. In the other
cases intervention allows to obtain higher performance grecing. The analysis in this chapter can
serve as a guideline for a designer of a MAC protocol to sddetween pricing and intervention and
to design the best policy for the selected scheme, depemdirspme system parameters such as the
number of users, the statistics of the monitoring noise aedrtformation held by the designer and

the users.

Despite its practical importance, very few works addresdsntpact of the monitoring errors and
the information heterogeneity on the design and performafi@n incentive scheme. To the best of
our knowledge, no prior work on pricing considers the issumperfect monitoring on users’ actions.
As to the intervention scheme, both [12] and [42] considerithperfect monitoring scenario. [12]
adopts the same noise model we use, but it simplifies the siadigniting the users’ action space,
whereas [42] considers a different type of imperfect mamity whose distribution depends on the
length of the time the intervention device takes to estinigexs’ actions. However, in both works it
is assumed that the designer and the users are aware of tedagstpnonitoring model. In our work
we analyze the effect of the information heterogeneity,sagring also the cases in which nobody
is aware of the estimation errors and in which only the desigs aware of the estimation errors.
This provides understanding on how robust the considem@shiive schemes are with respect to the

heterogeneity of information.

The remainder of this chapter is organized as follows. IrtiSe®.2 we describe the considered
MAC protocol. We introduce the games that model the inteadbetween strategic users and we
formulate the problem of designing efficient incentive soke in Section 6.3. In Section 6.4 we
derive the optimal pricing and intervention schemes to adofhe perfect monitoring scenario and
we quantify the performance achievable. We consider theifapt monitoring scenario in Section
6.5, for three different cases, depending on who is awaresoiniperfect monitoring model. Section

6.6 concludes with some remarks.
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6.2 System Model

We consider a wireless network ofusers that share a common channel and we make the follow-

ing assumptions for the contention model:
» Time is slotted and slots are synchronized;
» Users always have packets to transmit in every slot;
* If a packet is received, the receiver immediately sendscknavledgment (ACK) packet;
» The transmission of a packet and the (possible) correspgmCK is completed within a slot;
» A packet is received successfully if and only if it does naltide with other transmissions;

» Each usei selects a transmission probability € [0 1] at the beginning of the communication
and will transmit with the same probability in every time slot, i.e., there are no adjustments
in the transmission probabilities. This excludes cooriitimaamong users, for example, using

time division multiplexing.

Notice that ACK packets are always successfully receivezhlige they are transmitted over idle
channels.

Denoting witha = (ay,...,ay) the transmission probability vector, the average througlip
packets per slot) of useiis given by

n

Ti(a)=a; [] (1-ay)

j=1,57#
The resource usage of ugds therefore proportional tés transmission probability.

We assume that the utility of usérs given by
Ui(a) = 0;InT;(a) (6.1)

where the paramet#; > 0 allows to differentiate between different classes of usére higher;,
the higher usei’s valuation for the throughput. The logarithm makes thétyta concave function,
which models the fact that the users usually have more desinerease their own throughput when
it is low than when it is high.

We define the social welfare of the network as the sum of alistisdilities:

U(a) =) _Ui(a) (6.2)
1=1
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Finally, the network is said to operate optimally if the sselnoose the transmission probabilities
that maximize Eq. (6.2). It is straightforward to check ttreg Hessian ot/ (a) is a diagonal matrix

with strictly negative diagonal entries, therefore it igatve definite. Imposing the partial derivatives

equal to0, the unique transmission probability vector= (a7, ..., a}) that maximizes Eq. (6.2) is
given by
O
a*:ni 5 k‘ZI,...,n (63)
g Z¢:1 0;

U(a*) represents the maximum social welfare achievable.

In order to adopt the optimal transmission probability, tsers need to know the sum of the
valuationst; of the other users. This information must be spread in thevorétat the beginning of
the communication. This can be done either in a distributag av in a centralized way. In particular,
in the last case an entity (e.g., a predetermined user ordbtessa point) might collect the users’
valuations and broadcast to all users the valiie , 6,. Once the users have this information, they

can locally compute their optimal transmission probabksitaccording to Eq. (6.3) and adopt them.

6.3 Game Model and Design Problem Formulation

While the network optimal transmission policy is easy to compute, the actual transmission
probability selected by each user depends on the objedtiabuser. If the users are compliant with
the optimal policy, then they compute and adaptand the network operates optimally. However,
if the users are self-interested and strategic, insteadmptying with the optimal policy they will
adopt the transmission probabilities that optimize thainatility. Since the interests of individual
users are different from the interests of the group of useeswhole, the network might (and usually
will) operate inefficiently.

To analyze the interaction between strategic decisionemsakve define the contention game
I'= (N7 A, {UZ()}?:I)

whereN = {1,2,--- ,n} denotes the set of userd, = x!_, [0, 1]" denotes the action space and
U; : A — Ris the utility of a generic user, defined by Eg. (6.1). The action for usaepresents the
transmission probability; chosen by useir Throughout the chapter, we will use the terms action and
transmission probability interchangeably, and similéolyaction profile and transmission probability
vector.

The NEs of the contention ganiecan be easily characterized considering the followingsase
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1) Assume that all user, except for useadopt a transmission probability strictly smaller tHan
Then the utility of usei is increasing iru;: the higher the transmission probability chosen by

1 the higheri’s throughput. Thusj chooses:; = 1.

2) Assume that there is at least a uge# i that adopts a transmission probability equall to
Then the channel is always busy and usebtains a throughput equal @ regardless of its

transmission probability.

In case 1)a; = 1, in case 2)a; = 1 Thus,a is a Nash Equilibrium of the contention gareif
and only if at least one user adopts a transmission probabitjual tol. Notice thata; = 1 is a
weakly dominant stratedipr every uset, i.e.,u;(1,a_;) > u;(a), for every action profile:. In our
contention game each user has an incentive to adoptwsg/s transmistrategy, resulting in network
collapse.

Here we ask if it is possible to design the network to makebusb against strategic users. We
want to introduce some mechanism to deter the users frontiagdpgh transmission probabilities.

The incentive schemes we consider belong to two classes:
 Pricing: users are charged depending on their transmigsmbabilities

* Intervention: the users’ resource usage is affected bynieevention device, in a way that

depends on the users’ transmission probabilities

The interaction between the designer, the users and thensystn be roughly summarized into
three stages, (1) the design stage, (2) the informationaagshstage, and (3) the transmission stage.
In the design stagehe designer designs the pricing or intervention schemescisgally, the
designer predicts strategic users’ actions given anyngior intervention scheme, and chooses the
pricing or intervention scheme that results in the mostrddsbutcome. This is done once, then the
designer leaves the system forever. Notice that, to effigidesign these schemes, the designer has to
know how pricing or intervention affect the users’ utilgieThis might be easier for the intervention
scheme, in which the users’ throughput is altered. In thgedhe designer has to know only the
relation between the throughput and the utility of each.uséferently, in the pricing schemes users
are charged for their resource usage. Hence, the desigaén kaow how throughput and payments
are connected to the utility of each user. In this work we iaihy assume that the designer knows

these dependencies, because we focus on a particulaometegiween the utilities, the throughput,

and the payments.
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In the information exchange staggome useful information is collect and, possibly, distidol
The intervention device (or the device that manages the paigiin the pricing scheme) has to iden-
tify the users that are connected to the network, has torimtibiern about the adopted intervention
or pricing scheme, and has to learn the action they selectthEdatter point, as an example, it can
count the number of correct transmissions of each user intaiicéime interval. However, since this
time interval must be finite, the estimation might be affddig errors. To consider the impact of this
imperfect estimation we will denote hy; the estimated action of usérby a the estimated action
profile and byr;(a; | a;) the probability density function afs estimated action, given thés action
is a;. We say that the monitoring gerfectif the users’ actions are estimated without errors, &g.,
coincides witha;.3 We say that the monitoring imperfectif the estimates are affected by errors, i.e.,
there is a positive probability that is different froma;.

In thetransmission staghe users transmit the packets adopting the same tranemggsibability
and, in the meantime, they have to pay for their resourceeusaged on the pricing scheme, or their
resource usage is affected based on the intervention scheme

In this chapter we play the role of a benevolent designer $baks to design the pricing and
intervention rules to maximize the social welfare of theteysin the transmission stage. We neglect
the social welfare obtained in the information exchanggesteecause we assume that the transmission

stage length is much longer than that of the information arge stage.

6.3.1 Pricing

Pricing schemes use monetary charges to deter users’ gessdilfi’s payment is increasing in
'S resource usage, usemight find it convenient to limit its transmission probatyiliin general, user
i is charged according to thgicing rule f7 : [0, 1] — R, which is a function of’s estimated action

a;. Assuming that the payments affect additively the useilties, i's expected utility is given by
1
U (a) = E [6;nTi(a) — f{(a)] = 6:InTy(a) — / mia | ai) £} ()0 (6.4)
0

whereE [-] is the expectation operator.
Once a pricing scheme is selected and communicated to thg tise interaction among users
can be modeled through the game

P = (N, A{UF O ) (6.5)

i=1

®In this caser; (a; | a;) might be thought as a Dirac delta function centered;in
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Among all the possible pricing rules, there is one class dsrthat is particularly interesting,
namely, the class dinear pricing rules in which users are charged linearly with respect to their
transmission probabilities, i.e.,

(@) = ciaq
wherec; > 0 is the unit price. We restrict our attention to the lineacimg rules, as done in most
of the pricing literature, because they are computatigrsithple to implement and we do not lose
much, in term of performance, in doing so.

Once the prices = (cq,...,c,) are fixed, since we will prove the existence and uniqueness of
the NE of the gamé&”’, the social welfare can be uniquely determined. The goahefdesigner
is to choose the unit prices= (cy,...,¢,) to maximize the social welfare, i.e., it has to solve the

following Pricing Design PD) problem:

PD argmaxz UF (aVE)
T
subject to:
>0, VieN
Ul (a?) > Ul (a;,a™F) , Ya; €]0,1] , Vie N

—1

6.3.2 Intervention

In the intervention framework the designer deploys in thievogk an intervention device that
monitors the users’ actions and can intervene adoptinlf &@seaction that affects the users’ resource
usage. In our case, we assume that the intervention devat#dago correctly recognize the packets
transmitted by different users and to estimate the usetirac If the packet of a generic useis
correctly received, the intervention device may choosarnoits ACK* depending on the estimate of
its action. Specifically, the intervention device jams thekAsent to usef with a probability that is
given by theintervention rulef/ : [0, 1] — [0, 1], which is a function of the estimated actién

The intervention levef/ (a;) must be interpreted aspaunishmento useri after having deviated
from a recommended (socially-beneficial) action. Suchglunients are a threat to users, and must be
designed such that the users find in their self-interest eptathie recommended actions. At the same
time, when users adopt the recommended actions, the inte@rdevel must be minimized (possibly,

nullified), to avoid to decrease the users’ utilities.

“Many works on security, such as [91-93], take into constitEtahe possibility of performing intelligent jamming in

which the jamming signal is concentrated on control packets
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Different from pricing, intervention changes the struetwf the utility of each user affecting
directly their resource usage. In fact, the average thrpugbf useri is now given by

n n

() — (1 _ £10s. _._._1,&.,1&& o
/(@) =E [a; (1 - fl@) [ @ %)—m<1u£m@lwﬂ@ﬁw 1 -a)

J=15#i J=15#i
(6.6)
wherefo1 mi(a; | a;) f1(a;)0a; represents the average intervention level.
The utility of useri is modified accordingly
U/ (a) = 0, n T} (a) (6.7)

Once the intervention rules are selected and communicatbe users, the interaction among the

users can be modeled through the game

T = (N, A, {U{(.)}L) (6.8)

We say that the intervention rulgd = (f{, ..., f!) sustainan action profiles, if a is a NE of['/.

Among all the possible intervention rules, there is onesctdsules that is particularly interesting,
namely, the class dffine intervention rulesf? : [0, 1] — [0, 1] is an affine intervention rule if

fH@) = [ri(a; — @)l
for certain parameter; € [0, 1] andr; > 0, where[-]> = min {max {a, -} , b}.

In an affine intervention ruley; represents a target action for usevhile r; represents the rate of
increase of the intervention level due to an increasssiaction. If the estimated actiaiy is lower
than or equal to the target actiar, then the intervention level is equal @o If the estimated action
a; is higher than the target actian, then the intervention level is proportional &@ — a;, until it
saturates ta.

Forr; — +o0, the intervention device jams the ACKs sent to usethenever it detects that
is adopting an action higher than the target one. Such awlleEh we refer to as aextreme rule
represents the strongest punishment that the intervedévice can adopt.

We restrict our attention to the affine intervention rulesaaese they are computationally simple
to implement and we do not lose much, in term of performanteping so (as we will see, in some
cases such rules are even able to achieve the benchmarkuoptim

Once the parameteis = (aq,...,a,) andr = (ry,...,r,) are fixed, and assuming that the

users coordinate to the best (from the social welfare pdintesv) NE of the gamd™/ °, the social

The existence of NEs will be proved for the considered séesiand it is easy to coordinate the users to the best NE.

In fact, we will prove that the best NE is uniquely determitg.
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welfare can be determined. The goal of the designer is tosghtiee parametetsandr to maximize

the social welfare, i.e., it has to solve the following InEmtion DesigniD) problem:

~ NE
a,r a .
) €N

ID  argmax [max Z UZ-I(aNE)]
subject to:
ael0,1] , >0, VieN

Uf (a"") > Uf(a;,a™F) , Yaie[0,1] , VieN

Differently from thePD problem, thelD problem requires a maximization with respect to the NEs

because of the non uniqueness of the NE.

6.4 Perfect Monitoring

In this section we assume that the estimated actions are teqthee real actions, i.eq; = a;,
for every useri € N. Hence, in Egs. (6.4) and (6.6) the integrals must be subetiif respectively,
with £ (a;) and f{(a;). In the following we compute the optimal linear pricing seteeand affine
intervention rule that a designer should adopt to maximiee docial welfare if the monitoring is

perfect.

6.4.1 Pricing design

Given a linear pricing scheme, i € N, the interaction between users in the perfect monitoring

scenario adopting pricing is modeled with the game

7 = (N, A {UFO},) (6.9)
where
UF(a) = 6;1n |a; H (1—aj)| —cia; (6.10)
J=1j#i

The goal of the designer is to design the unit pricés maximize the social welfare in the presence

of strategic users, solving theD problem with the utilities given by Eq. (6.10).
. : 0
Lemma 1. The unique NE of the gam#” is )’ ¥ = c—k k€ N.
k

Proof. To compute the best response function of ugense use the first order condition. First, we

check thatU,f (a) is concave imy (i.e., the second derivative with respectafpis negative). Then,



96 Chapter 6. Designing and Selecting MAC Protocols WittigelUsers

we set ta) the first derivative ot/ (a), with respect ta.

UL (a) _ O PUT@) _ b o U@ _

8ak ag aai a% ’ aak Ck

Proposition 6. The optimal pricing scheme to adoptds= >, ¢;.

Proof. We want to find the unit prices,, k € N, so that the social welfar€(a) = >, U (a) is
maximized, assuming that the users adoptthe action profile (i.e., we have to substitutg with
% into the expression df/ (a)). We first prove thal/(a) is a (multivariable) concave function, by

ag
checking its Hessian.

U(a) O iz ¥ PU(a) O Db ~0 0%U (a)

0,i#k

Oay, arp 1—ap daz a1 —ap)? " Oaydp; -
The Hessian ot/ (a) is negative definite (it is a diagonal matrix with strictlygagive diagonal en-

tries), soU (a) is concave. Thus, the global maximizer@{a) can be obtained with the first order

condition

O

Notice that the transmission probabilities adopted by tersiin the optimal pricing policy are
equal to the transmission probabilities adopted by complisers to maximize the social welfare,

ie.,alt = 0_5 = a*, wherea* is defined in Eq. (6.3).
C

k

6.4.2 Intervention design

Given an affine intervention rule, anda;, i € NN, the interaction between users in the perfect

monitoring scenario adopting intervention is modeled \hig game

! — (N, A, {U{(.)}?:l) (6.11)

where
Ul(a) = 6;1n | a; (1— i (a; _amg) I1 t-a) (6.12)
j=1,j#i
The goal of the designer is to design the intervention rulenaximize the social welfare in the

presence of strategic users, solving Beproblem with the utilities given by Eq. (6.12).
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Notice thea, = 1 andag = 0 represent trivial cases. ify = 1 the intervention device never
jams the ACK sent to usét, V a, and in this case; = 1 represents a weakly dominant strategy, as
discussed in Section 6.3.df, = 0 userk is punished whenever it transmits with positive probayilit
However, the aim of the designer is to maximize the sociafase] hence, it must first guarantee
a positive throughput to every user. Thus, it is always maeeficial to consider a; slightly
higher thar) instead of0. For this reason, in the following we focus on interventiakes in which
ar € (0,1), Vk.

. . . 1
Lemma?2. a = (ai,...,d,) is a NE of the gam&’ if and only ifr;, > — for every usek € N.
k

1 . e .
Moreover, once andr, > — are fixed, among all the NEs bf , a is (individually and socially) the
ag
best.

Proof. We can writer, =

1
5 for some constant > —a;. Then

ap +
01 In [ak Hj7ék(1 — dj)} if ap < ay
. —ai + 2a ) ,
Ul(ag,a—1) = { 6pln [ %k +dka’f§ + 0% [10(1 —d)| if < ap <28 +6
—00 if ap > 2a;+9
. Ulag,a_y) . , . .
We study the sign o?k(gaﬂ in the intervall0, 2a;, + J] to obtain the best action for uskr
k
O , N
8U]£(ak, d—k) a—k if ap < ag
- 2 (ax — o .
Oay, G20k ZaR) T e G < g+ 0

ay (2a, — ax + 9)

. 1 _ . . . L _ .
Ifo<0(.er,>—), U,g(ak,a_k) is continuous, increasing iy, for a; < a; and decreasing
ag
otherwise. Thusg; is the best action for usér.

. 1 . . . N 0
If 6 >0(e r < —), U,f(ak,d_k) is continuous, increasing iay for a; < ax + 3 and
ag
. . 0 . .
decreasing otherwise. Thug, + 3 (> ag) is the best action for useér.

Hence,a is a NE if and only ifr, > &i, V k. Notice also that, in this situatios, is a weakly
dominant strategy: it is in the self interesltC of each us&r adopta,, independently of the strategies
of the other users. Thus, the users will coordinate to such NE

Finally, notice that other NEs df! can only be obtained when at least two users transmit with
probability 1. In fact, in this situation no user can increase its utilihacging its action. Actually,
the utility can not decrease either: it is constant and hésworst (individually and socially) possible

utility, corresponding to the situation in which the thropgt of each user is equal @ O
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Proposition 7. The optimal affine intervention rule to adoptris > — anda;, = aj, for every user
A
k, wherea;, is defined in Eq. (6.3).

Proof. Given the actions of the users, the utility of a user and tlwgatovelfare are decreasing as
the intervention level for that user increases. Howevenguthe intervention rule, > ai* and

a, = aj, Vk, the users have the incentive to adopt the action profite «* and, at the sarr]%e time,
the intervention level they are subjected to is equadl. tdhus, the outcome of the system is equal to
the benchmark optimum. Finally, this implies that > é anda; = aj defines an optimal affine
intervention rule, and, more specifically, it defines als@ptimal intervention rule within the class

of all intervention rules. O

Corollary 3. The optimal affine intervention rule is optimal in the clagalbintervention rules.

6.4.3 Comparison between pricing and intervention and someesults

By adopting either pricing or intervention the designer paovide the incentive for strategic
users to choose the optimal action profile of Eq. (6.3). Theiency of the utilization of the channel
resource is optimized with respect to the valuatiGns € NV, of the users. However, there is a big
difference between pricing and intervention. Intervemschemes reach this objective by threatening
the users to intervene if they do not follow the recommedati although at the equilibrium the
intervention is not triggered and therefore the resour@gess not affected. Conversely, pricing
schemes charge each user that transmits with a positivalpiiityy thus affecting its utility and the
social welfare. Hence, only the intervention scheme is ttbéehieve the optimal social welfare that
can be obtained when users behave cooperatively, i.e., thiegrcomply to a prescribed protocol that
maximizes the social welfare.

In Fig. 6.1 the social welfare and the total throughput in pleefect monitoring scenario are
plotted as a function of the number of users in the systemf)y Besuming that the users behave
cooperatively, and adopting the pricing and interventicimesnes derived in Sections 6.4.1 and 6.4.2
to enforce the users’ actions. A symmetric case is congsidere,0; = 1,Vi € N. Thus, the optimal
transmission policy in the cooperative scenario, defineBdpy(6.3), isaj, = % for every usetk.

The results confirm the above discussion: both schemes leréoatibtain the same total through-
put of the cooperative case, but only the intervention sehenable to maximize the (total) users’
satisfaction. In fact, there is a finite gap, which increasethe number of users increases, between
the optimal social welfare and the one achievable with then scheme. Finally, notice that the

social welfare always decreases as the number of userasssdecause there are more collisions
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Perfect monitoring, Bi =1 Perfect monitoring, ei =1
0 0.5
—— Cooperation —— Cooperation
N - = =Pricing - - ~Pricing
_ool SONG Intervention | | N == Intervention
N 0.4F
-40 -
>
> So3r
= [=)]
E 3
= -60 g
>
2 (% 0.2
_80 L
0.1f
-100
~120 ; ; ; ; ; ; ; ; i o ; ; ; ; ; ; ; ; i
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of users Number of users

Figure 6.1. Social welfare and total throughput vs. number of usershégerfect monitoring scenario

and the number of unexploited slots increases, resultimnimefficient utilization of the channel;

this is an unavoidable consequence of the lack of coordinati

6.5 Imperfect Monitoring

We now study whether the qualitative results obtained ferghrfect monitoring scenario still
hold for the imperfect monitoring case. In this section wk sge that there is a substantial difference
for the intervention scheme when the monitoring is imperfdte intuition behind it is related to
the possibility that the estimation errors trigger the iméation even though the users are adopting
the recommended actions. As for the pricing scheme, if tipe@ations of the estimated actions are
equal to the real actions, each user might be overchargeddercharged. On average, it is charged
correctly, therefore the performance is not strongly a#ec

The imperfect monitoring model we consider for the estioratf useri’s action is an additive

noise term that is uniformly distributed [r-¢;, €;], with0 < ¢; < 1, i.e.,
a; = la; + 0o, ni~U[—e, €

In the following we compute the best linear pricing scheme afiine intervention rule that a
designer should adopt to maximize the social welfare fderdht scenarios, depending on the infor-
mation that the designer and the users have about the inoperémitoring. In particular, we consider

the following cases:
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1) Nobody is aware of the estimation errors: neither thegiesi nor the users know about the

existence of the noise, and think that the designer can a&iperfectly the users’ actions.

2) The designer is aware of the estimation errors: the desigmws about the existence and the
distribution of the noise, while the users think that theigiesr can estimate perfectly their

actions.

3) Everybody is aware of the estimation errors: both thegiesiand the users know about the

existence and the distribution of the noise.

6.5.1 Nobody is aware of the estimation errors

In this scenario both the designer and the users believefibaisers’ estimated actions, are
equal to the real ones, The additive nois@; might be caused by a physical phenomenon which is
not predicted by the designer and the users. As an exampl@térvention device (or the device that
manages the payments in the pricing scheme) might have eataarcpoint, a malfunctioning that is
not revealed and introduces noise in the measurements.

Both the designer and the users have a wrong perception ofality: they both believe that the
utilities are as in the perfect monitoring scenario everugjiotheir real utilities are affected by the
noise. Since the users select their actions based on thieifshbence the pricing and the intervention
rules are fixed, their interaction can still be modeled tgiothe games (6.9) and (6.11), as in the
perfect monitoring case. Analogously, the designer dssiige pricing or the intervention rule based
on its beliefs. Hence, it has no reason to select rules diftefrom the optimal (with respect to its
beliefs) rules derived in Sections 6.4.1 and 6.4.2. The diffgrence with respect to the perfect
monitoring case is that the real performance of the systedfiffesent from the one expected by the
users and the designer.

Notice that both users and designer might update theirfbalieserving the real performance of
the system. However, this might not be easy to do due to thedamformation. On one hand,
the designer designs an intervention rule and implemeimstlte intervention device, then it leaves
the system. If the estimation errors are not correctly ptedi in the design stage they affect the
system, unless the designer implements a mechanism intdrgention device to reveal such errors.
However, it might be difficult to discriminate between anirestion error and a real deviation of a
user trying to increase its own utility.

On the other hand, the users might not be able to recognizftet of an estimation error. As an

example, in the intervention scheme the estimation eriggers, occasionally, the intervention, with
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the consequent decrease of the throughput of a generi¢.usewever, usei’s throughput decreases
if another user increases its transmission probability @ Whus,: is not able to understand if its
utility has decreased due to the presence of the estimatiorser for some other reasons, and is not
able to update its belief correctly.

This scenario has been considered in order to analyze howstrdb an unknown noise the

schemes derived in Sections 6.4.1 and 6.4.2 are.

6.5.2 The designer is aware of the estimation errors

In this scenario the users are not aware about the estimatise, while the designer knows
the distribution of the noise and knows that the users’ lelee wrong. Once the pricing and the
intervention rules are given, the interaction betweenssan still be modeled through the games
(6.9) and (6.11), in which the users act believing that thgiities are not affected by the estimation
noise. When designing the pricing or the intervention rtile,designer has to take into account both
that the users act strategically, according to their mishet perceptions, and that the social welfare
is affected by the noise. It has to solve BB andID problems using the expectation of the noisy
utilities given by Eq. (6.4) and (6.7) in the maximizatiordamsing the non-noisy utilities given by
Eqg. (6.10) and (6.12) in the constraints. In fact, the setarfstraints represents the NEs of the
game played by the users, in which the users select theareictimaximize the utilities they believe
to receive, i.e., the non-noisy utilities; while the maxzation reflects the choice of the designer,
that wants to maximize the real satisfaction of the usemesented by the expectation of the noisy
utilities.

Finally notice that, as described in Subsection 6.5.1, ghinbe difficult for the users to reveal

the presence of the estimation errors by observing the ssfdimance of the system.

6.5.2.1 Pricing design

Letay; denote the unique solution of equation

Qka% — <9k + 4ey, Z 9i> CL% + (4€k9k — E%Gk) ar + ezﬁk =0
=1

. ) 0 ) . )
in (0, €x), assumin < €. Letag o denote the unique solution of equation
(0, ex) gm k .2 q q

_Hka% + <0k — 4ep Z@Z> CL% + (4€k0k + (1 — ek,)z 01@) ap — (1 — ek,)2 0. =0

=1
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. . 0
in (1— e, 1), assummgﬁ > 1 — .
1=1"

In the proof of the following result, it is shown that ; anda; » exist and are unique.

Proposition 8. The optimal unit pricey, to adopt is,V k € N,

Ok . O

— if —=—— <e¢

ag,1 S0
n : k

=19 Jimi b i a <=5 <1—¢

9 ! 9 Zi:l 9i
k k

— if =5 >1—c¢

g2 > izt 0i g

Proof. See Appendix A.1. O

6.5.2.2 Intervention design

To design an intervention rule able to sustain the targ@&raprofilea, the designer has to satisfy

the conditionry, > Ni V k, provided by Lemma 2. The best option for the designer is lkecse
ay

r, = —, YV k, in order to sustaia and, at the same time, to minimize the punishment adoptedsiga
ag

k when intervention is triggered by estimation errors. Hindhe designer has to select the b&st

for every uselk.

Let a3 denote the unique solution of equation

n n
—0k — > 0; | ai + [ 20k — 260 Y _0; | ax + 260, =0
i=1 j=1

in (0, ). In the proof of the following result, it is shown thaf ; exists and is unique.

Proposition 9. The optimal affine intervention rule to adopt is, for evergrus, r;, = " and
k

if e, > A0
a3 €k
- " 4 Z?:l 9]' - Z?:L#k 9]'
R R DY N i e < 46,
S
4 E?:l 93’ 4 Z?:l 9]' - Z?:L#k 9]'

Proof. See Appendix A.2. O
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6.5.3 Everybody is aware of the estimation errors

In this scenario both the designer and the users are awadne estimation errors and they know
their distribution. The interaction between users must bdeted through the games (6.5) and (6.8)
considering the real distribution of the noise in Eq. (6.4d é6.6). The designer has to solve #B
andID problems using the utilities given by Eq. (6.4) and (6.7).

6.5.3.1 Pricing design

Once the pricing scheme is given, the interaction betweersiwmn be modeled with the game in
Eqg. (6.5), where

j=1,j#i

UF(a) = 6;1n {ai H (laj)] —20—;/ a; + z]§ Oz

Denote

1
C(e):{:z: : §§a:§1—e andxlnx—xzi—l}

9 8er by, 0y,

€ 1 .
—E + 5 €1 + o if a < €k
ay = 9—k if e < ap < 1 orap €C (Ek) (613)
Cl 2
1 otherwise

Lemma 3. @y, is the unique NE of the gani&’.

Proof. See Appendix A.3. O

Consider the following notation:

o2-a) 1\/[9142 - ek>r Ly e

WA e, 2\ | e 6 25..0;

a5 = maxC (eg)

Proposition 10. The optimal unit pricey, to adopt is,V k € N,
2¢1.0;

—  ifapy<e
ag4(ap 4+ €x) A ;
7k if Qap 4 > €L and K < €
@ | 2% 6.14
o 0 if o< Ok o1 LI ©19
-0 < < — Oor
Zz IT € ZZ 02 5 ZZ HZ S (Ek
9—’“ otherwise

a5
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Proof. See Appendix A.4. O

6.5.3.2 Intervention design

Once the intervention scheme is given, the interaction éebtwsers can be modeled with the

game in Eq. (6.8), where

n
Ul(a) = 6;In | a;E [[n (a; +ni — ai)](ﬂ I] (t-ap
j=1,j#i
Lemma 4. Assumee;, < a, < 1 — ¢, G is the unique NE of the gani® if r, — +oo and

ar = Qi + €g.
Proof. See Appendix A.5. O

Lemma 4 states that, using an extreme rule, eachiukas the incentive to adopt a transmission
probability @, which is e lower thanay, to avoid the possibility of an intervention triggered b th
estimation errors. This is true as longagsis not too low, otherwise for usér it is convenient to
adopt a transmission probability closerdp, accepting the risk of an intervention triggered by the

estimation errors.

0 . .
K > 2¢p, for every uset, then the intervention rule, — +oo and

>

2

. . 7':1. . .
ar = aj, + € is an optimal affine intervention.

Proposition 11. If aj =

Proof. According to Lemma 4, users have the incentive to adopt (aj,...,a). In this case the
intervention level is equal t0 because the estimation errors can not be higherdharge;, ... €}).
Thus, the outcome of the system is equal to the benchmankopti Finally, this implies that, —
+oo anday = aj, + ¢, define an optimal affine intervention rule, and, more spedificalso define

an optimal intervention rule within the class of all intentien rules. O

nk > 2¢, the optimal affine intervention rule is optimal in the clags

2 i1 Y

Corollary 4. If aj, =

all intervention rules.

We consider the following affine intervention rule, for eveserk

rp — +00

a¥ +e. if aFf > 2e
=4 " =T (6.15)
3€k otherwise
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Eq. (6.15) defines an optimal intervention rule:jf > 2¢;, for every useik. If a; < 2¢;, for
some usek, the intervention rule might not be optimal. This rule isidasd with the objective to
minimize the intervention level. In fact, each uséias the incentive to adopt the action- ¢;, which

results in an intervention level equal@o

6.5.4 Comparison between pricing and intervention and someesults

In the following we investigate how the social welfare and thtal throughput vary increasing
the number of users in the system, for the imperfect momigpsicenario, adopting both the pricing
and the intervention schemes. We consider the symmetré; cast; = 0; ande; = ¢;, Vi,j € N.
Thus, the optimal transmission policy in the cooperativenseio, defined by Eq. (6.3), ig = L

n
for every user.

First we assume that nobody, neither the designer nor this,useaware of the estimation errors.
As discussed in Subsection 6.5.1, the designer adopts tieenes derived in Section 6.4 and the
users, consequently, have the incentive to adopt the acfien % Fig 6.2 shows that the estimation
errors have different effects in the two schemes. In thengischeme they do not affect the total
throughput, and the social welfare is slightly affectedyamhen the number of users exceejlel& 10
(corresponding to the conditiar}, < ¢;). In fact, if the number of users is less than or equal(p
each user is (on average) charged correctly. Converselye ihumber of users exceetly, the ex-
pectation of the estimated transmission probabilitys higher than the real transmission probability
ay, and each user is (on average) slightly overcharged, neguitia social welfare slightly lower than
the one obtainable in the perfect monitoring scenario ($ge@:1). In the intervention scheme the
effect of the estimation errors is stronger. In fact, thegasionally trigger intervention, which de-
creases both the throughput and the utility experiencedbly aser. Nevertheless, the social welfare

adopting intervention is still higher than the social wedfadopting pricing.

Now we consider the imperfect monitoring scenario assurthiagonly the designer is aware of
the estimation errors. In this case, the designer can adepidtimal pricing and intervention schemes
derived in Subsection 6.5.2. The social welfares obtagahth both schemes, shown in Fig. 6.3,
are only slightly higher than the social welfares obtairalthen nobody is aware of the estimation
errors, shown in Fig. 6.2 (such differences will be cleareFigs. 6.6 and 6.7). This means that
the designer can not gain much with the additional infororatin the presence of estimation errors,

and knowing their statistics. In particular, for the prigischeme such information is useless if the
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Figure 6.2. Social welfare and total throughput vs. number of usersh@iiperfect monitoring scenario,

assuming nobody is aware of the estimation errors

number of users is less thdn, because the best pricing schemes derived in Subsectibrsahd

6.4.2 are identical in this situation.

Now we investigate the performance achievable in the inggérhonitoring scenario assuming
that everyone is aware of the estimation errors. In this taseisers, knowing that the noise might
bias the payments (pricing) or the punishments (intereajtiadopt a different NE action profile.
Since the designer can foresee the users’ behavior, it agut #tk pricing and intervention schemes
derived in Subsection 6.5.3. Fig. 6.4 shows that the pedaia attainable with the pricing scheme is
very similar to the preceding cases, only slightly worsenveosely, the performance achievable with
the intervention scheme is completely different from thecpding cases. The intervention scheme
is able to achieve the optimal social welfare as long as thebeu of users is less than or equal
to 5 (corresponding to the conditios, > 2¢;), as predicted by Proposition 11). If the number of
users is higher thah, both the total throughput and the social welfare decresgsiely as the number
of users increases. This trend is a consequence of the admpted by the users in this situation,
which is constant and equal fa;, instead of scaling with the number of users. This causesid rap
increase of the number of collisions. Finally, this trentedmines a threshold in the number of users
such that, for a number of users lower than the thresholepiahtion outperforms pricing, whereas,
for a number of users higher than the threshold, pricingenfipms intervention. The value of the

threshold for the considered system parameters is equél to

In Fig. 6.5 the value of the threshold is plotted varyigthe maximum intensity of the noise.
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Figure 6.5. Threshold vs. noise in the imperfect monitoring scenagsuaing everybody is aware of the
estimation errors

The threshold decreaseseasncreases, because the intervention scheme is more gensithe esti-
mation errors than the pricing scheme. For the highest moissidered, i.e¢; = 0.2, the intervention
scheme outperforms the pricing scheme as long as the nurhbsers is less thaf.

In order to have a quantitative comparison between therdiftescenarios, in Figs. 6.6 and 6.7 we
plot the social welfare and the total throughput achievédnell considered cases, adopting pricing
and intervention respectively. In both Figures, we seettimsystem achieves the best performance
if the monitoring is perfect. In case it is not, for the prigischeme the best case is when only the
designer is aware of the estimation errors, whereas thet wase is when also the users are aware of
the estimation errors. It is not surprising that, in a sgateetting, the more information the selfish
users have the worse the efficiency of the equilibrium pddunversely, for the intervention scheme
we notice that when the users are aware of the estimationseire social welfare might be higher
than when they are not. This result does not contradict teeiquis one, in fact it is caused by the
additional information that the designer has as well: itkathat the users know that estimation errors
exist, thus, it can design different intervention rulespémticular, it can adopt a more severe rule (e.g.,
the extreme rule, withr, — +o0) that forces the users to keep their transmission proliasiliow
in order to avoid that the intervention is occasionally deged by the estimation errors. Fig. 6.7
shows that there is a threshold in the number of users suthftihaa number of users lower than

the threshold, it is socially convenient that the users a@ra of the estimation errors, while for a
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Figure 6.6. Social welfare and total throughput vs. number of users &dgypricing, for different scenar-

ios

number of users higher than the threshold it is not.

Finally, in Figs. 6.8 and 6.9 we consider the imperfect nmiig scenario assuming that ev-
eryone is aware of the estimation errors, and we compareoth&dered intervention scheme of Eq.
(6.15) with the optimal affine intervention rule. The optinadfine intervention rule is computed
adopting an exhaustive search algorithm. Notice that thigossible because we consider a sym-
metric scenario. In asymmetric scenarios the calculatiotme optimal rule through an exhaustive
search algorithm would be computationally too expensivg. €.8 shows the action selected by the
users and the average intervention level varying the nurobesers, while Fig. 6.9 shows the so-
cial welfare and the total throughput varying the numbers#ra. Proposition 11 guarantees that the
considered intervention rule is optimal for a number of sg=ual or lower thafi (corresponding to
the conditiona; > 2¢;). However, as we can see, the considered interventionsuptimal until9
users. If the number of users exce&d# is preferable to be more aggressive with the interventio
rule, using ai; lower than3e; and forcing the users to decrease their transmission pititpas well,

even though this means that the intervention is occasioiraigered.

6.6 Conclusions

In this chapter we tackle the problem of designing pricing amervention schemes to provide

incentives for the users to exploit efficiently the chanmslaurce in a contention game. The design
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assuming everybody is aware of the estimation errors, adgphe considered policy and the optimal one

of the optimal schemes strongly depends on the parametéie ejstem, such as the statistics of the

estimation errors, and on the information held by the desigmd by the users.

In this work we have considered both the perfect monitorimgjthe imperfect monitoring scenar-
ios, assuming, for the latter case, that (1) neither thegdesinor the users are aware of the estimation
errors, (2) only the designer is aware of the estimationrgriend (3) both the designer and the users
are aware of the estimation errors. The optimal linear pgi@nd affine intervention schemes have
been analytically computed (for the case (3), the consitlgrervention scheme is optimal only in

some conditions).

The analysis shows that the intervention scheme, diffgréram the pricing scheme, is able
to achieve the optimal performance in the perfect monigpsoenario. On the other hand, in the
imperfect monitoring scenario intervention might be teged even when the users adopt the recom-
mended actions, resulting in a degradation of the systeforpesince. Nevertheless, we noticed that
intervention outperforms pricing in cases (1) and (2), whdr case (3), as a rough general princi-
ple, intervention achieves greater efficiency than prisiigen the number of users is small and the
opposite is true when the number of users is large.

Another interesting result is related to the effect of tHerimation held by the different entities.
While it is always desirable for the designer to have as mua@drination as possible, the effect of
the information held by the selfish users is not trivial. Innpaases it is preferable that the users are

uninformed, but, sometimes, the information held by theusdows the designer to design better
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rules. In our particular case, we have seen that the intdorenan achieve the benchmark optimum
if the users are aware of the estimation errors and the nuofhesers is not too high. This suggests
the idea, that might be true also in other settings, of hidmge system parameters from the users in
determinate conditions.

Finally, the analysis in this chapter can serve as a guieléina designer to select between pricing
and intervention and to design the best policy for the setestheme, depending on some system
parameters such as the number of users, the statistics ofidhgoring noise and the information

held by the designer and the users.



Chapter

Information Revelation and Intervention

with an Application to Flow Control

In this chapter we study the interaction between a designer and a group aiegtc and self-
interested users who possess information the designemdbésve. Because the users are strategic
and self-interested, they will act to their own advantageictvwill often be different from the interest
of the designer, even if the designer is benevolent and geeksximize (some measure of) social
welfare. In the settings we consider, the designer and thesusan communicate (perhaps with
noise), the designer can observe the actions of the usatsafewith error) and the designer can
commit to (plans of) actions interventions- of its own. The designer’s problem is to construct and
implement anechanisnthat provides incentives for the users to communicate anshacich a way
as to further the interest of the designedespitethe fact that they are strategic and self-interested
and possess private information. To address the desigmmeldem we propose a general and flexible
framework that applies to many scenarios. In an importaagscobf environments, we find conditions
under which the designer can obtain its benchmark optimutre-utility that could be obtained if
it had all information and could command the actions of thersis- and conditions under which it
cannot. More broadly we are able to characterize the solitithe designer’s problem, even when it

does not yield the benchmark optimum. Because the optimethamsm may be difficult to construct

1The material presented in this chapter has been published in
[J4] L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar, “Intenientwith Private Information, Imperfect
Monitoring and Costly Communication: Design Framewofkjbmitted to IEEE Trans. Commun.
[J5] L. Canzian, Y. Xiao, W. Zame, M. Zorzi, and M. van der Schaar, “Interventwith Complete and Incomplete

Information: Application to Flow Control,Submitted to IEEE Trans. Commun.
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and implement, we also propose a simpler and more readiyeimented mechanism that, while
falling short of the optimum, still yields the designer a 6g result. We then apply our framework
and results to design a flow control management system, imthet complete and the incomplete
information scenarios. lllustrative results show thatdbesidered schemes can considerably improve

the efficiency of the network.

7.1 Introduction

We study the interaction between a group of users and a dagsighthe users are compliant
or the designer can command the actions of the users, thetetligner is faced with an optimal
control problem of the sort that is well-studied. Little cgas if the users have private information
(about themselves or about the environment) that the desidpes not have but the designer can
communicate with the users, because the designer can saslplgr instruct the users to report that
information. However, a great deal changes if the usersa@reampliant but rather are self-interested
and strategic and the designer can not command the actidngparts of the users. In that case, the
users may take actions and/or provide reports that are indiva self-interest but not necessarily in
the interest of the designer. The objective of this work isriderstand the extent to which the designer
can provide incentives to the users to take actions andgeaeports that further the objectives of the
designer, be those selfish or benevolent. (The case of addenedesigner is probably the one of most
interest, but the problem faced by a benevolent designeressier than the problem faced by a selfish
designer: the goal of a benevolent designer is to maximingesmeasure of social welfare — which
might include both total utility and some measure of faime$ut the goal of an individual user is to
maximize its own utility; hence the incentives of the desigand of the individual user are no more
aligned when the designer is benevolent than when the dasigselfish, so the same incentives to
misrepresent and misbehave are present in both circunestaBach incentives frequently lead to the
over-use of resources and to substantial inefficienciekl]9, Here, we are specifically interested in
settings in which the users can send reports to the desigdeha designer in turn can send messages
to the users before the users act, after which the designetakea actions of its own #terventions
Our use of intervention builds on [12,16, 42, 66], but we ggdoel that work in considering private
information, imperfect monitoring and costly communioati- in addition to intervention.

Our work has something in common with the economic theorsne€hanism desigim the tra-
dition of [94-98]. Indeed, our general framework builds battof [99], and the abstract theory of

mechanism design — in particular the revelation principtioes play a role. However, [99] does not
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solve any of our problems because after we use the revelptioniple to restrict our attention to
incentive compatible direct mechanisms we must stiistruct the optimal mechanism, which is a
non-trivial undertaking. Moreover, when we admit physical (and other) constrairgsyncommuni-
cation and imperfect monitoring, the revelation princigtees not help because it entirely obscures all
of these complications. Finally, the revelation princigimply does not hold when communication is

costly.

We treat settings in which the users have private informatiat (perhaps limited and imperfect)
communication between the users and the designer — morsglyethedeviceemployed by the de-
signer — is possible. The users have the opportunity to sspats about their private information,
and the device can in turn send messages to the users; inds®h, ave allow for the possibility that
communication is noisy so that the report/message sent regessarily the report/message received.
After this exchange of information, the users take actidfigally, the device, having (perhaps im-
perfectly) observed these actions, also has the oppartiméct. Generalizing a construction of [99],
we formalize this setting as@mmunication mechanisrihe device the designer employs plays two
roles: first tocoordinatethe actions of the usetseforethey take them and second descipline the
usersafterwards Because users are self-interested and strategic, tipeirtseand actions will only
serve the interest of the designer if they also serve theirioterests. Thus we are interested in strat-
egy profiles for the users that each user finds optimal, giveravailable information, the strategies
of others and the nature of the given device; we refer to taesemmunication equilibriaNote that
the device is not strategic — it is a device after all — et designer behaves strategically in choos-
ing the device Because we focus here on the problem of the designer, watarested in finding
devices that support equilibria that the designer findsnogdti (If the designer is benevolent — i.e.,
intends to maximize social welfare, perhaps constraineddoye notion of fairness — these devices
will also serve the interests of the users as a whole, bugifigsigner is self-interested they may not.)
We are patrticularly interested in knowing when the desigizar find a device so as to achieve his
benchmark optimum — the outcome he could achieve if he knkvelalant information and users
were fully compliant — despite the fact that informationnsfact private and users are in fact self-
interested. For a class of environments that includes magiyeering environments of interest (e.g.,
power control [15, 16], medium access control (MAC) [12,,2&7d flow control [24—28]) we find

%Proposition 1 in [99] shows that the problem of choosing thignaal incentive compatible direct mechanism is a linear
programming problenprovidedthat type sets and action sets are figitel fixedand that the designer can send arbitrary
messages — but in our context the action sets may not be fimt@ction set of the designer is definitely not fixed, and the

designer’s choice of messages may be constrained, so dalepras different, and much more complicated.
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conditions under which there exist mechanisms that aclilevéenchmark optimum and conditions
under which such mechanisms do not exist. In case they doisdt we find conditions such that the
problem of finding an optimal protocol can be decoupled. Bsedahe optimal protocol may still be
difficult to compute, we also provide a simple algorithm tbahverges to a protocol that, although
perhaps not optimal, still yields a ‘good’ outcome for thesigaer. We then apply our framework
and results to design a flow control management system, imthet complete and the incomplete
information scenarios. First, we analytically compute iie and the BNE of the complete and in-
complete information flow control games without interventi quantifying its inefficiency. Then, we
apply the intervention scheme in the complete informatiettirsg and we design the device that can
achieve the optimal performance. Finally, we apply our tegcal framework to design schemes able
to deal with the incomplete information scenario as wellistirative results show that the considered

schemes can considerably improve the efficiency of the m&two

Throughout, we assume that the designerazanmitto a choice of a device that is pre-programmed
to carry out a particular plan of acti@iter the reports and actions of the users. In mechanical terms,
such commitment is possible precisely because the dedigpéoys a device — hardware or software
or both —and then leavesindeed, the desire of the designer to commit is one reasanittem-
ploys a device. Although other assumptions are possilikadsumption seems most appropriate for
the settings we have in mind, in which the designer is a loregland experienced entity who has
learned the relevant parameters (user utilities and bligian of user types) over time, but the users
are short-lived, come and go but do not interact repeat@ulyparticular session they are not playing

a repeated game and are not forward-looking.

The remainder of this chapter is organized as follows. 8ecti2 introduces our framework of
devices and mechanisms and the notion of equilibrium. &3 presents an example to illustrate
how private information, information revelation and intention all matter. Section 7.4 asks when
some devices achieve the benchmark optimum. Section destthe properties of the optimal de-
vices and Section 7.6 offers a constructive procedure foosing devices that are simple to compute
and implement — if not necessarily optimal. Section 7.7ouhiices the flow control problem. Section
7.8 studies flow control games without incentive schemesstiosv their inefficiency. Section 7.9
designs the incentive schemes for the complete and incoenipiermation scenarios and quantifies

the improvement in the network efficiency. Section 7.10 ages with some remarks.
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7.1.1 Related work

There is by now a substantial communication engineerimgditre that addresses the problem
of providing incentives for strategic users to obey a paldic resource allocation scheme. Such
incentives might be provided in a number of different way®, [L6, 42, 66] provide incentives via
intervention in the absence of private information. A rattdferent literature, including [37, 39,
41,100], adopts literal pricing schemes: users are redjiirenake monetary payments for resource
usage® Literal pricing schemes require the designer to have spdaifiwledge (the value of money
to the users) and require a technology for making monetanysters, which is missing in many
settings, such as wireless communication. Moreover, is chag necessarily solve the problem of a
benevolent designer since monetary payments are by defirmtistly for the user making them and
hence wasteful. An additional difficulty in employing lisgpayment schemes is that it is debatable
whether users would agree to a pricing scheme that dyndgnicaies with the state of the system,
in particular if users have to pay for a service that had hithbeen free. A smaller literature [38,
102, 103] addresses environments in which users have @iinetrmation — their private monetary
valuations for access to the resource — and uses ideas frohamism design and auction theory [104]
to create protocols in which users are asked to report thisiatp monetary valuations, after which
access to the resource is apportioned and users make nygpmeyanents according to their access and
the reports of valuations. For very detailed comparisorricinm, intervention and other approaches,
see [105].

7.2 Framework

We consider @esignerand a collection ofisers The designer chooses eatervention devicand
then leaves — the designer itself takes no further actiona.slinglesessiorthe device interacts with
a fixed number of users, labeled froml to n. We will write N = {1,...,n} for the set of users.
We think of the users in a particular session as drawn fromch giopotential users, so users may
be (and typically will be) different in each session. We allior the possibility that users are drawn
from different pools — e.g., occupy different geographloahtions or utilize different channels.

Useri is characterized by an element of a gbf types which encodes all relevant information

3A different literature, which includes [13, 15, 101] but isitg far from the work here, uses pricing in scenarios where
users are compliant, rather than self-interested andegicat In those scenarios, however, the function of pricexde-
centralization: prices induce utility functions for theeus that lead them to take the desired actions without the faze

centralized control. In these scenarios pricing is figueatather than literal: monetary payments are not actuatiyired.
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about the user. Writé" = T x ... x T, for the set of possible type profiles. Users know their own
type; users and the designer know the distribution of ugersy (a probability distribution of"). In
each session, uséchooses aactionfrom the setd; of actions We write A = A; x ... x A, for

the set of possible action profiles ag, a_;) for the action profile in which userchooses action
a; € A; and other users choose the action prafile € A_; = Ay x ... x A;—1 X Ajr1... X Ap;

we use similar notation for types, etc.

The designer is characterized by its utility function and setD of devicesit might use. A
device — which might consist of hardware or software or bottas four features: 1) it can receive
communications from users, 2) it can send communicationsséos, 3) it can observe the actions
of users, and 4) it can take actions of its own. As in [66], weripret the actions of the device as

interventions We formalize a device as a tuple = ((R;), (M;), pu, X, ®, e, M e4), where:

* R; is the set ofeportsthat useri might send; writeR = Ry x ... x R, for the set of report

profiles;

e M, is the set oimessagethat the device might send; writel = M; x ... x M, for the set of

message profiles;

* u: R— A(M) is themessage rulewvhich specifies the (perhaps random) profile of messages
to be sent to the users as a function of the reports received il users; ifr is the profile of
observed reports we write. for the corresponding probability distribution dd, and,.(m)

for the probability that the messageis chosen when the observed report;fs
* X is the set ointerventiong(actions) the device might take;

e d: Rx M x A — A(X) is theintervention rule which specifies the (perhaps random)
intervention the device will take given the received repotthe transmitted messages and the
observed actions; if are the observed reports, the transmitted messages anthe observed

actions, we writeb,. ,,, , for the corresponding probability distribution ofy

+ ¢®: R — A(R) encodes the noise in receiving reports: users send thet f@odite » but the

designer observes a random profildistributed according tef?;

« M . M — A(M) encodes the noise in receiving messages: the device semdsettsage

profile m but users observe a random profitedistributed according te/;

“If the messagen is always chosen given the observed report prefije. is point mass atn, i.e.,u,.(z) = 1if z = m,
ur(z) = 0 otherwise. However, in this case we usually prefer to abosation and writeu(r) = m. Below, we will make

similar notational abuses without further comment.
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« ¢ . A — A(A) encodes the error in monitoring actions: the users choosetion profilea

but the device observes a random praiildistributed according te;;.

The set of all conceivable devices is very large, but in itadhe designer will need to choose a de-
vice from some prescribed (perhaps small) subbseto we assume this throughout. In this generality,
reports and messages could be entirely arbitrary but tipicgports will provide (perhaps incom-
plete) information about types, and messages will provpgeh@aps incomplete) recommendations for
actions, and we will frequently use this language.

If the report spaces are singletons then reports are mdasigo singleton report spacBs
express the absence of reporting. Similarly, a singletossage spacé/ expresses the absence of
messaging and a singleton intervention spacexpresses the absence of intervention. The absence
of noise/error with regard to reports, messages or actiansbe expressed by requiring that the
corresponding mapping(s) be the identity; efj,is point mass at and so# = r for all report
profiles, etc. However, in any of these cases we would uspadifer to abuse notation and omit the
corresponding component of the tuple that describes thieelev

The utility U;(a, t, r;, z) of useri depends on the actionsand typeg of all users, the report;
chosen by uset, and the intervention: of the designer. The utility/(a, ¢, r, m, x) of the designer
depends on the actiomsand typeg of all the users, on the reportsthe messages and intervention
x of the designer. The dependence of utility on reports andages allows for the fact that commu-
nication may be costly. Note that the utility of a user depeodly on the report that user sends, but
the utility of the designer depends on the messages it semdien the reports of the users. If this
seems strange, keep in mind that if the designer is benevenhehseeks to maximize social utility, he
certainly cares about the reporting costs of users.

A communication mechanisrar mechanisnfor short, is a tupl&€ = (N, (T;, A;, U;), 7, U, D)
that specifies the seV of users, the set$; of user types, the setd; of user actions, the utility
functionsU; of users, the distribution of types, the utility functiong/; of users, the utility function
U of the designer, and the devide2. We view the designer as choosing the device, which is pre-
programmed, but otherwise taking no part: the users chauexecute plans and the device carries
out its programming.

The operation of a communication mechaniSns as follows.
 users make reports to the device;

* the device “reads” the reports (perhaps with error) andisenessages to the users (perhaps

depending on the realization of the random rule);
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« users “read” the messaggperhaps with error) and take actions;

« the device “monitors” the actions of the users (perhapseiriggtly) and, following the rule,

makes an intervention (perhaps depending on the realizafithe random rule).

A strategyfor useri is a pair of functionsf; : T; — R;, g; : T; x M; — A; that specify which
report to make, conditional on the type of useand which action to take, conditional on the type of
useri and the message observed. We do not specify a strategy fdeviee because the device is not
strategic; its behavior is completely specified by the ngssale and the intervention rule — but the
designer behaves strategically in choosing the devisen a profile( f, g) of user strategies, and
the intervention devicé, the expected utility of a useérwhose type ig; is obtained by averaging
over all random variables involved, i&.,

EU;(f,g,ti, D) = Z m(t]t) Zfﬁ(f) Z pi(m) Z €m (1) Zef(d) Z P o) Ui(a, t, i, @)
t_; €T PER meM meM acA reX
wherer; = f;(t;) anda; = g;(t;,m;),Vj € N, are the reports sent and the actions taken by users.
Similarly, the expected utility of the designer is
EU(f,g,D) =) w(t) > e (F) > melm) Y em (i) > €i(@) Y Ppmal(z)Ula,t,r,m,z)
teT PER meM meM acA reX
The strategy profil¢ f, ¢) is anequilibriumif each user is optimizing given the strategies of other

users and the devicB; that is, for each userwe have
EU(fi, f=is 9ir 9—ir tis D) > EU(f], f—i, Giy g—i, tis D)

for all strategiesf! : T; — R;, g, : T; x M; — A;.” We often say that the devid® sustainsthe
profile (f, g). We remark that the existence of such an equilibrium is neagb guaranteed without
additional assumptions and needs to be explicitly adddeissthe specific case at hand.

Note that the action of the device is fixed and not strategigpatrticular, the interventions planned

by the device but not executed with positive probability attis, threats that are not carried out — need

°Note that we assume that each usean only read its own message. However, our framework is suitable to model
also situations in which useris able to hear the message; intended for usey. In this case it is sufficient to focus on

devices in which the message sent to ysirpart of the message sent to user
®We have tacitly assumed that all the probability distribmsi under consideration have finite or countably infinite

support — which will certainly be the case if the spaces urdasideration are themselves finite or countably infiniteg i

more general context we would need to replace summationsteégrals and to be careful about measurability, etc.
"The notion of equilibrium defined here is that of a BayesiastNequilibrium of the Bayesian game induced by the

communication mechanism. For simplicity, we have resdcttention to equilibrium ipure strategieswe could also

allow for equilibria inmixed strategies
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not be optimal. This reflects our assumption that the desiggre commit to using the device. Again:
the device does not behave strategicadhlig designer behaves strategically in choosing the device

The designer seeks to optimize his own utility by choosingeaia D from some prescribed
classD of physically feasible devices. Because users are stcatégg designer must assume that,
whatever deviceD is chosen, the users will follow some equilibrium strateggfite (f, g). Since
the designer will typically recommend actions, we assurag thmore than one equilibrium strategy
profile exists, the users choose (because they are are catadito) the equilibrium that the designer
most prefers (in case of a benevolent manager, it usualhcio#s with the equilibrium that the users
prefer). Hence, the designer has to solve the following i@@itDevice QD) problen?:

OD  argmaxmazysgEU(f,9,D)
DeD

subject to:
EU;(fi, f=is 9ir9—ir tis D) > EU(f], f—i, Ghy g—i, ti, D)
Vie N, YVt €Ty, Vfl:T— Ry, Vg : Ty x My — A

We say that a solutio® of the above problem is awptimal device To maintain parallelism with
some other literature, we sometimes abuse language amdaehe designer’'s problem as choosing
anoptimal mechanism even though the designer only chooses the device and niyjpige of users,
their utilities, etc. Note that optimality is relative toetlprescribed seD of considered devices.
Moreover, the expected utility the designer obtains chap#ie optimal device must not be confused
with the benchmark optimuratility the designer could achieves if users were compliafitich is in

general higher. If they coincide, we say that the devics amaximum efficiency device

7.2.1 Null reports, messages and interventions

In many (perhaps most) concrete settings, it is natural ésyme that users might sometimes
choose not to make reports and that the device might sometimtesend messages or make an in-
tervention. The easiest way to allow for these possibdliteesimply to assume the existence of null
reports, null messages and null actions. In particular, &re assume that for each usethere is
a distinguished report; which is to be interpreted as ‘not sending a report’. (On teeiak side,

observingr; should be interpreted as ‘not receiving a report’.) Becautenaking a report should

8Because the utility functions of users depend on reports tla utility function of the designer depends on messages
and reports, which are parameters of the device chosentattitly assumes that utility functions are defined on a domai

sufficiently large to encompass all the possibilities thayrarise when any devic® € D is chosen.
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be costless, we should assume that — fixing types, reportheifsoto the device, actions by the users
and intervention by the devicers yields utility at least as great as any other repbifta, ¢, 7, x) >
Ui(a,t,ri,z) andU (a, t, 5, r—;j,m,x) > Ula,t,ri,7—;,m,x), for all a,t, z,r;,r_;, m. Given this
assumption, and using utility when sending the reppras the baseline, we can interpret the dif-
ferencedU;(a,t,r},x) — Uj(a,t,r;, ) andU(a, t, v, r—ij,m,x) — U(a,t,r;,7—;, m, x) as the cost
of sending the report; to the user and to the designer, respectively. In this generality, ts of
sending a report might depend on all other variables. We neithat this cost does not take into
consideration the impact of the communication on the itesa among the users and the interven-
tion device: in deciding whether or not to send a report, & osest take into account the fact that
sending a report may alter the messages sent by the devideand the actions of the users and the
intervention of the device. So sending a report may well kalligher utility because it influences
the strategic choices of others.

Similarly, we could assume that for each ugehere is a distinguished messagg that the
device might send but which we interpret as ‘not sending ssags. (On the user side, we interpret
receipt of the message; as ‘not receiving a message’.) Because not sending a mesgasjeould
be costless, we assume thhata, t,r, m;,m_;,x) > U(a,t,r,m;, m_;,z) forall a,t,r,m_;, x,m;,
and so interpret the differendé(a, t,r,m}, m_;,x) — U(a,t,r,m;, m_;, z) as the cost of sending
the message:;, which might depend on all other variables.

Finally, we could assume that there is a distinguishedvetgionz* that we interpret as ‘not mak-
ing an intervention’. If (as we usually do) we want to intexpan intervention as jpunishmentwe
should assume that* yields utility at least as great as any other interventiaorefh user and the de-
signer:U;(a, t,r;,z*) > U;(a,t,r;,x) andU (a,t,r,m,x*) > U(a,t,r,m,x) for all i,a,t,r,m,x,
and we interpret the differencég(a, ¢, r;, *) — U;(a, t,r;, ) andU (a, t,r,m, x*) —Ul(a, t,r,m, )
as the cost of the intervention to the usemnd to the designer, respectively, which might depend on
all other variables.

If the sets of reports (respectively, messages, interwesitiare singletons, then by default there
are no possible reports (respectively, messages, intioueh

If D is a device for which ‘not making an intervention’ is possilaind( f, g) is an equilibrium
with the property tha®; ,,, »(z*) = 1, for all type profiles, observed reports, sent messages and
observed actiong (with 7, m anda occurring with positive probability), we say thAtsustaing £, g)
without intervention The most straightforward interpretation is that the deviceatens punishments
for deviating from the recommended actions and that theathrare sufficiently severe that they do

not need to be executed. Again, this is natural in contextusing the intervention device, the
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designercommitsto meting out punishments for deviation, even if those gunisnts are costly for

the designer as well as for the users.

7.2.2 Direct mechanisms

To be consistent with [99], we say that the mechani¥his adirect mechanisnif R; = T; for
all i (users report their types, not necessarily truthfully) amd= A (the device recommends action
profiles), there are no errors, and reports and messagesttess (i.e., utility does not depend
on reports or messages). df is a direct mechanism we writef*, g*) = (ff,..., 5 95,---g5)
for the strategy profile in which users are honest (repoiit tinge types) and obedient (follow the
recommendations of the device); thatf$(¢;) = t; andg; (¢;, a;) = a; for every uset, typet;, and
recommendation; = p;(t;). If (f*,¢*) is an equilibrium, we say that? is incentive compatible
If a device is such that the resulting mechanism is an ineertmpatible direct mechanism, we say
that the device is incentive compatible.

Incentive compatible direct mechanisms play a special beleause of the following general-
ization of the revelation principle. (We omit the proof, whiis almost identical to the proof of
Proposition 2 in [99].)

Proposition 12. If C is a mechanism for which reports and messages are costles§fan) is an
equilibrium of the mechanis®, then there is an incentive compatible direct mechar@énwith the
same action and intervention spaces for which the honesbbadient strategy profilef*, ¢*) yields

the same probability distribution over outcomes as the ler¢fi, g).

As we shall see later (this version of) the revelation ppleis useful but its usefulness is limited
for a number of reasons. The first reason is that, althougtstiticts the class of mechanisms over
which we must search to find the designer’'s most preferrecbout, we still have to find the optimal
device in this class, which is not always an easy task. Thenseceason is that in practice there
will often be physical limitations on the devices that thesigaer can employ (because of limits
to the device’s monitoring capabilities, for instance) drhce limitations on the communication
mechanisms that should be considered, but these may nslati@imto limitations on a corresponding
direct mechanism. For instance, in a flow control scenarigillioften be the case that the device can
observe total flow but not the flow of individual users and caly @bserve this flow with errors; no
such restrictions occur in direct mechanisms. Finally, @ead before, the revelation principle does

not hold when communication is costly.
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7.2.3 Special cases

The framework we have described is quite general so it ishwaoting that many, perhaps more

familiar, frameworks are simply special cases:

* If T, R, M and X are all singletons, then our framework reduces to an orgistatic game

with complete information and our equilibrium notion redado Nash equilibrium.

e If R, M and X are all singletons, then our framework reduces to an orgiBayesian game

and our equilibrium notion reduces to Bayesian Nash edqjiifii.

* If T, Rand X are all singletons, then our framework reduces to a gameawitlediation device

and our equilibrium notion reduces to correlated equilitori

* If T, R and M are all singletons, then our framework reduces to the ietgion framework

of [66] and our equilibrium notion reduces to interventiau#ibrium.

* If there are no errors, and reports and messages are spstlea our framework reduces to a
communication game in the sense of [99] and our equilibrition reduces to communication

equilibrium.

7.3 Why Intervention and Information Revelation Matter

To illustrate our framework, we give a simple example to shibat strategic behavior matters,
intervention matters, and communication plus interventimtters — in the sense that they all change
the outcomes that can be achieved.

We consider the problem of access to two chandetnd B (e.g., two different bandwidths, or
two different time slots). In each session, two users (ifledtas used and user, but drawn from
the same pool of users) can access either or both channelsexe B, AB to represent the obvious
actions. Each user seeks to maximize its utility, which i $hm of its own goodput in the two
channels.

Potential users are of four type&. L, M L, LM and L H; the probability that a user is of a given
type is1/4. We interpret a user’s typey as the quality of channeld, B to that user: channel has
quality = (Low, Medium or High), channeB has qualityy (Low, Medium or High).® The goodput

°Note that the quality to a user is correlated across chaneath user finds one channel to be of Low quality and the
other to be of Medium or High quality. This is not at all essa&nt the qualitative comparisons would be unchanged if we

assumed quality to a user was uncorrelated across chanbetshe calculation would be much messier.
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obtained by user = 1, 2 from a given channel depends on the user’s type and on whefs)siccess

the channel.

« if useri does not access the channel it obtains gooept

if both users access the channel they interfere with edwr @ind both obtain goodptt

* if useri is the only user to access chandeand its type iscy then it obtains goodput, (where
x=1L,M,H)

if user is the only user to access chaniizand its type iscy then it obtains goodput, (where
y=L,M, H)

We assum@u; < uy, < upyr < uUg.

We consider five scenarios: (I) no intervention or commuioca (II) communication but no
intervention, (Ill) intervention but no communicationVjlintervention and communication, and
(V) the benchmark setting in which the designer has perfgcirination and users are obedient.
For simplicity, we assume that the devices available to #sgmer are very restricted: reports and
messages are costless, there are no errors and the actogitherz* = “take no action” orz, =
“access both channels”. If the device takes no action, usities are as above; if the device accesses
both channels then each user’s goodputi®n each channel the user acces8e3he designer is

benevolent and hence seeks to maximize social utility —xpeaed sum of user utilities.

I No communication, No Intervention Independently of the user’s type, the other user’s type,
and the other user’s action, it is always strictly betterdach user to access both channels,
so in the unique (Bayesian Nash) equilibrium both usersya@vehoose actiomd B , and (in

obvious and suggestive notation), (expected) sociatytdi£EU (1) = 4u;.

Il Communication, No Intervention Nothing changes from scenationo matter what the users
report and the device recommends, it is strictly better &mheuser to access both channels, so
in the unique equilibrium both users always choose actigh, and social utility isEU (I1) =

duyg.

1ONote that in this model the utility obtained when accessimfhannel in the presence of interference does not depend
on the number of interferers present and on their channditiggawhich may not be realistic in certain scenarios. sThi
assumption is made here in order to keep the discussionesitpt could be easily relaxed at the price of a much more
cumbersome discussion in terms of notation and number efdase considered. In addition, in most reasonable sesnari
(i.e., when the goodput obtained in the presence of any anudunterference is significantly lower than that obtainad i

its absence), the qualitative conclusions we draw heredvoelmaintained.
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Il Intervention, No Communication The setsR; of reports and\/ of messages are singletons,
so the device obtains no information about the users anduggest no actions to the users.
The best the designer can do is to use an intervention rutectimadinates the two users to
different resources; given the restriction on device astian optimal rule is:

¥ ifag=A anday =B

O (ar,a2) = _
z1 otherwise

wherea; andas are the actions adopted by the two users. Given this intéorenule, the
best equilibrium strategy profile (i.e., the one that yidhifghest social utility) is for uset to
access channel and user to access channé?, so that there is never a conflict.Given the

distribution of types, social utility i€U (I11) = (ug/2) + (uprr/2) 4+ up.

IV Communication, Intervention We consider a direct mechanism in which the users report
their types R; = T;) and the device) recommends actionsi{ = A). The device uses the

following message and intervention rules:

(A,B) ifry=HLorr;=MLorry=LHoOrro=LM
(B,A) otherwise

plrira) =

¥ if (ay,a9) = p(ry, ra)
@(7"1,7’2,&1,&2) —

x1 otherwise

wherery, ro are the reports and,, a; are the actions. This is an incentive compatible direct
mechanism. To see this we must show that the honest and obetliategy( /7, ¢7) is the
most preferred strategy for all types of usegiven that use? follows its honest and obedient
strategy( f5, g5), and conversely for us€: We will describe the calculations for usgrfrom

which those for use2 can be derived by the symmetry of the problem.

Assume uset is of type H L. If it is honest and obedient, it obtains a utility @f; because it
accesses its preferred channel. This utility is alwayséridghan the utility it obtains not being
obedient, i.e., if it does not follow the recommendation.fdaot in this case it never obtains
a utility higher than2u; because the channels are interfered by the device. Nowdatres
userl is obedient but not honest. If it reports typéL it can still access its preferred channel,
obtaining a utility ofuz, the same as if it were honest. If it reports tyip&/ or LH, it accesses

half of the time its preferred channel and half of the timdets preferred channel (depending

UThis is not the only equilibrium but it is the best, both foe thesigner and the users. In the other equilibrium the users
access both channels.
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on the type of use?), obtaining an expected utility dfuz + uz)/2 which is lower thanu.
These considerations translate mathematically in thevigtig relations, stating that uséihas

an incentive to be honest and obedient if it is of tyjpé&,
Uy > 2UI > EUl(flvfékvgbg;?HLvD) vflv if gl(HLyal) # ai

EUl(f*7g*7HLJD): UH:EUl(flyfék»g*vHL»D) Iffl(HL):ML
ug > (ug +ur)/2 = EUL(f1, f5, g%, HL, D) if fi{(HL) = LM or LH

Analogously, if usetl is of type M L, LM or L H we obtain:

uy > 2ur > EUL(f1, f5, 01,95, ML, D) V fi,if gt (ML,a1) # aq
EUL(f*,g",ML,D) =< wy = EU\(f1, f5,9%, ML, D) if fi(ML)=HL
uM>(uH+uL)/2:EUl(fl,fS,g*,ML,D) iffl(ML) LMorLH

(upr +ur)/2 > 2ur > EUL(f1, f5, 91,95, LM, D) ¥ f1,if g1(LM,a1) # a;
EU(f*,g", LM, D) = (up +ur)/2 = EU(f1, f5,9*, LM, D) if fi(LM)=LH
(unr + ur)/2 > ug = EUL(f1, fi.g", LM, D) if fi(LM) = HLor ML

(UH —|—UL)/2 > 2“[ > EUl(fl»fék?gl?g;?LH?D) vfblf gl(LHa (11) 75 aj
EUL(f*,9",LH,D) = § (upg +ur)/2 = EU\(f1, f3,9",LH, D) if fi(LH) = LM
(ug +ur)/2 >u, = EU(f, f5,9",LH, D) if fi(LH)=HLorML

Notice that following this mechanism never leads to intemfiee (users always access different
channels) and users are “assigned” to the most efficientneei/8 of the time. However,
users are noalwaysassigned to the most efficient channels: if type profiles(&argls) =
(ML,HL)or(t,ts) = (LH,LM) then usei is assigned to channdl and usee is assigned

to channelB, which is inefficient. This inefficiency is an unavoidablensequence of incentive
compatibility: if user2 were always assigned to his preferred chantievhen he reported
H L (for instance) then he would never be willing to repdft, when that was his true type.

Expected social utility under this mechanism is
EU(IV) = (1/16) [2(uH +up) +4(ug +upr) + 4(ug +up) + 2(uns + upr) + 4(ups + uL)]

= (Bug/4) + (Buar/4) + (ur/2)

V Benchmark Social Optimum: Public Information, Perfect Cooperation The social opti-

mum is obtained by assigning the user with the best chanrditgto his favorite channel and
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never assigning two users to the same channel. Expecteal atlify is

EU(V) = (1/16) [Z(UH + uH) =+ 4(uH + UM) + 6(uH + uL) + 2(uM + UM) + Z(UM =+ uL)] =

= (Tur /8) + (bupr/8) + (ur/2)
Direct calculation shows that social utilities in four oktfive scenarios are strictly ranked:
EU(I)=FEU(II) < EU(III) < EU(IV) < EU(V)

In words: in comparison to the purely Bayesian scenario iit@rvention), communication without
intervention achieves nothing, intervention without coamigation improves social utility by damp-
ening destructive competition, intervention with comnuation improves social utility even more
by extracting some information and using that informatiomptomote a more efficient coordination
across types, but even intervention with communicatiorsda® achieve the benchmark social op-
timum under full cooperation. It is possible to show that siaene conclusions would be obtained
in an environment withn users andn channels (for arbitrary:, m), provided thatm > n and
mur <up < upy < Up.

It is worth noting that similar comparisons across scesaraild be made in many environments

and the ordering of expected social utility would be as above
EU(I) < EU(II)<EU(III) <EU(IV) < EU(V)

In general, any of these inequalities might be strict.

7.4 Resource Allocation Games in Communication Engineerm

In the following we explore the designer’s problem in a clafsabstract environments that exhibit
some features common to many resource sharing situatioosnimunication networks, including
power control [15, 16], medium access control (MAC), [13, 2d flow control [24—28]. We char-
acterize the direct communication mechanisms that arenapamong all mechanisms. We provide
conditions on the environment under which itpiessiblefor the designer to achieve its benchmark
optimum — the outcome it could achieve if users were comphaand conditions under which it is
impossiblefor the designer to achieve its benchmark optimum. Althowghcan characterize the
optimal device, other mechanisms are also of interest gizgral reasons. The optimal device may be
very difficult to compute. Itis therefore of some interestémsider mechanisms that are sub-optimal

but easy to compute, and we provide a simple algorithm thaterges to such a mechanism.
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7.4.1 The considered environment

In this subsection we formalize the particular (but, at thee time, quite general) environment
we consider from now on, motivating each assumption withmgdas of its application in resource
sharing situations in communication networks.

We consider a finite and discrete type set made by real nunmiets {7; 1,7, 2, ..., Tio, } C
R, v; € N, in which the elements are labeled in increasing order, < 7,2 <,...,< Tj,,. We
interpret the type of a user as the valuation of a particidaource for the user (e.g., different types
may represent different quality of service classes). Waraesthat every type profile has a positive
probability to occur, i.e.x[t] > 0, V¢. We allow the users to take actions in a continuous interval
A; = [a™™, a™**] C R, which we interpret as the level of resource usage (e.g.ajt represent
the adopted transmission power, which is positive and uppended). We assume that the devices
available to the designer are such that reports and mesasgesstless, there are no errors, and there
exists the intervention action* € X which we interpret as “no intervention”. In this case we can
simply write U;(a, t, ) for the utility of useri andU (a, ¢, x) for the utility of the designer and we
can restrict our attention to incentive compatible direeictranism. That is, we consider only the
incentive compatible deviced = ((T;), (A;), u, X, ®) in whichz* € X.

We assume that the designer’s utility satisfies the follgndaasumptionsyt € T,
Al: U(a,t,z*) > U(a,t,z),Vae A VX,V e X,z #z*
A2: g™ (t) = argmax, U(a,t,x*) is unique
A3: ¢gM(t) is differentiable with respect t and%ﬁiw > 012

AssumptionAl states that the “no intervention” action is the strictlyfpreed action of the de-
signer, regardless of users’ actions and types. Intergétiterventions as punishments, assumption
Al asserts that the designer is not happy if the users are @ahish

AssumptionA2 states that, for every type profitec T', the users’ joint action profile that max-
imizes the designer’s utility is unique, and by assump#@®) each component i is continuous
and increasing in the type of that user. If actions repretfentevel of resource usage and types rep-
resent resource valuations, assumptidhasserts that the high&s valuation the higher should be

i's level of resource usage.

12This assumption requires the designer utility to be definea a continuous interval that includes the finite typeZaet
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Under these assumptions, the benchmark optimum for thgrirstan be easily determined

EUY™ =Y " a(t)U (g™ (t),t, %) (7.1)

teT

For each type profile € T', we define the complete information game
F? = (N7 A, {UZ(7 t, ‘T*)}?:l)

I'Y is the complete information game (users know the type ofybeety) that can be derived from our
general framework assuming that sets of typgseportsR;, messaged/; and interventionsX are
singleton (in particularX = {z*}). It can be thought as the game that models users’ interattio
the absence of an intervention device and when the type g@isfiinown.

The strategy of userin this context is represented by the functign: T — A; (notice that we
can omit the dependence on the messages), since the furfctidh — R is automatically defined
(users do not send reports or receive messages, or eqtiyakdways send the report ‘no report’
and receive the message ‘no message’). We denoté'By(t) = (g{VEO t),...,gNE" (t)) a Nash
Equilibrium (NE) of the gamé&'?, which is an action profile so that each user obtains its manim

utility given the actions of the other users, i.e.,
Ui (6% (1), t,0") 2 Ui (00,95 (0 12%) L Vi€ N, gi: T x {m"} = A,

We assume that users’ utilitié§ (a, ¢, *) are twice differentiable with respectécand,Va € A,
VteT,Vi,j e N,i#j,

A4: Uj(a,t,z*)is quasi-concave im; and there exists a unique best response funétftf(a_;, t) =

argmax, Uj(a,t,z")

. 0%Ui(at,x*)
e (

A6: There existg/'*" such thatg™?’ (t) > ¢ (¢) B and g’ (ty,t_x) > g (tr,t_s) for some

userk € N and typet; € Tk

Since forA4 the users’ utilities are quasi concave (thus the g&thés a quasi-concave game)
and the best response functibfif(a_;,t) that maximizedJ;(a, t, z*) is unique, eithei’s utility is
monotonic with respect ta;, or it increases with; until it reaches a maximum fdt?%(a_;, t), and

decreases for higher values. As a consequence, gl\i‘@ﬁ(t) of I'Y exists. In fact, the best response

3Throughout the chapter, inequalities between vectorseaded component-wise.
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functionhB%(a,t) = (WPR(a_1,t),...,hB%(a_,,t)) is a continuous function from the convex and
compact setd to A itself, therefore Brouwer’s fixed point theorem assures dfaed point exists.

AssumptionA5 asserts thaly is a submodular game and ensures #f&f (a_;, t) is a non in-
creasing function ofi;, j # 7. Interpretinga; asi’s level of resource usage, this situation reflects
resource allocation games where it is in the interest of a mseto increase its resource usage if
the total level of use of the other users increases, in omlavaid an excessive use of the resource.
Nevertheless, assumptié® says that strategic users use the resources more heavipacedito the
optimal (from the designer’s point of view) usage level.

The class of games satisfying assumpti&isA6 includes the linearly coupled games [25] and
many resource allocation games in communication netwstld) as the MAC [12,25], power control
[15,16] and flow control [24—28] games, assuming that theydes's utility is increasing in the users’

utilities (i.e., a benevolent designer).

7.4.2 Intervention in the complete information setting

Before analyzing the designer’s problem in the general éaank, we first introduce formally the
special case of intervention in the complete informatidtiregg though the main focus of this chapter
is the design of a mechanism dealing with both informatiamelieion and action enforcement. In fact,
some properties of the general mechanism are linked to thigepies of the complete information
setting defined in this subsection.

For each type profile € T' and intervention rul@ : A — A(X) (we can omit the dependence

on reports and messages), we define the complete inforngdioe
Iy = (N> A> {Ul(v L, (I)())}ZLZI)

I'; is the complete information game (users and designer knewyjte of everybody) that can be
derived from our general framework assuming that sets @4¥p reportsk; and message$/; are
singletons. Our general framework reduces in this casestmtervention framework of [66] and our
equilibrium notion reduces to intervention equilibrium.

As in the gamd"?, the strategy of userris represented only by the functign: 7 — A;. How-
ever, in this case each user has to take into account the effine intervention action chosen follow-
ing the distribution®,, which depends on the adopted action pradileAccordingly to the notions
introduced in the general framework, we say that a delicdefined by the set of interventions and

the intervention ruleb, sustains (without intervention) the strategy profil¢) = (g1 (), ..., gn(t))
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in ' if g is an equilibrium ofl; (and @, (z*) = 1). If there exists a devicé) able to sustain

(without intervention) the profile in I';, we say thay is sustainable (without intervention) Iny.

7.5 Optimal Devices

In this section we study the class of environments introduceSection 7.4 with the general
framework proposed in Section 7.2. In particular, we taleeghrt of a designer seeking to maximize
his own expected utility in the presence of self-interesiad strategic users, choosing an optimal
device in the class of available devicBsspecified in Section 7.4 .

First of all we wonder if the designer can choose a maximuraieffcy deviceD € D to obtain
his benchmark utility despite the fact that the users aategjic. We characterize the existence and the
computation of maximum efficiency devices based on someeptieg of the complete information
setting. Moreover, we prove that a necessary conditionhfereixistence of a maximum efficiency
device requires the type sets toddficiently sparse

Even for cases in which a maximum efficiency device does nst,déke designer is still interested
in obtaining the best he can, choosing an optimal device.tlitsreason we study the problem of
finding the optimal device and we prove that, under some ptiegeof the complete information

setting, the original problem can be decoupled into two pudblems easier to solve.

7.5.1 Properties of a maximum efficiency device

In this subsection we address the problem of the existende¢hencomputation of a maximum
efficiency incentive compatible device.

The first result we derive asserts that a maximum efficiengjcdeexists if and only if, for every
type profilet, the optimal (for the designer) strategy profit¥ (¢) is sustainable without intervention
in T';, and users have incentives to reveal their real type givanttiey will adopty™ and the inter-
vention device does not intervene. If this is the case, weabse able to characterize all maximum

efficiency devices.
Proposition 13. D = ((T;), (A;), i, X, @) is a maximum efficiency device if and onlyvif, € T,
1: the optimal action profilg/ (t) is sustainable without intervention Iry;

2: each useri having typet; prefers the action profilg? () with respect to the action profile
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gM(t:,t_;), for every alternative typé useri might have, i.e,
Z wlt | 6U; (g™ (), t,2*) > Z wlt [ 6U; (g™ (67, t-0),t, %)
€T t_;eT_;

Vie N, Vt, €T, Vt,eT,
3. the suggested action profile is the optimal action profilgamel;, i.e.,u(t) = g™ (t);

4: the restriction of the intervention rule in=t andm = g™ (t), i.e., ®,, = Dy gr(4),00 SUSHAINS

without interventiory™ (¢) in T';.
Proof. See Appendix B.1 O

Condition1 is related to what is achievable by the designer in the camptéormation setting,
condition2 is related to the structure of the environment (which is mottillable by the designer),
while conditions3-4 say how to obtain a maximum efficiency direct mechanism dr2zare satisfied.

In the second result we combine condit@af Proposition 13 with assumptio#-A6 to derive a
sufficient condition on the type set structures under whictagimum efficiency incentive compatible
direct mechanism does not exist. We define the bin Sjzef userk’s type setT}, as the maximum
distance between two consecutive elementsof; = max,e(i ., —1} (Ths41 — Th,s). We define

the bin sizes as the maximum among the bin sizes of all usérs: maxgen Ok.

Proposition 14. There exists a threshold bin size> 0 so that if 5 < ¢ then a maximum efficiency

incentive compatible direct mechanism does not exist.

Proof. Letk € N andt; € Ty be such thay V=" (t) > gM(t),Vt_; € T_;. We rewrite conditior?
of Proposition 13 for userk and typety:

Z wlt | te) Ui (9™ (t,t—p), t,2*) > Z it | e Ui (g™ (tot—p), t %), Vi, €Ty (7.2)
t_p€ET g t_p€eT g
We havehBE (g™ (t),t) > hBR(gNE (1), t) = gNVE’ (t) > g} (t), where the first inequality is valid
because of the submodularity.

Let#x(t_x) be the value of usel’s type so thay™ (tx(t_x),t_x) = hPE(g™ (tr(t—k),t—k), 1)

if it exists (in this case\3 guarantees it is greater thap); andiy (t_x) = 7%, Otherwise. Let;, =
ming , i (tk). If (t, 1] N Tk # 0 (in particular, this is true i3 < &, — tx), Vt}, € (tr, t] N Tk

andvt_; € T_; we obtain
Up (6™ (s t—r), t. ) > Uy (g™ (tt_i), . 2%)

contradicting Eq. (7.2). O
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Interpretation: when userk’s type isty, k's resource usage that maximizes the designer’s utility,
gM (t), is lower than the one that maximizes utility, hP% (g™ (t),t),Vt_y € T_y. If k reports a
typet, slightly higher thart;, then the intervention device suggests a slightly higheouece usage,
allowing & to obtain a higher utility. Hence; has an incentive to cheat and resources are not allocated
as efficiently as possible. To avoid this situation, therwgation device might decrease the resources
given to a type; . In this case the loss of efficiency occurs when the real tygei®t; and it does not
receive the resources it would deserve. These two casesdrdéist at least one of them corresponds
to a non-zero inefficiency. Since both occur with positivelability, a positive overall inefficiency
is unavoidable.

It is worth noting that we consider finite type sets and a fimtervention rule set mainly to
simplify the logical exposition. However, all results midfe derived also with infinite and continuous
sets. In particular, if type sets are continuous Propaosifid implies that a maximum efficiency

incentive compatible direct mechanism never exists.

7.5.2 Properties of an optimal device

If a maximum efficiency device exists, the set of optimal desiinD coincides with the set of
maximum efficiency devices i, that is characterized in Proposition 13. If a maximum efficy
device does not exists, the designer seeks to obtain thédesin, minimizing the loss of efficiency.
He has to choose the optimal device solving@i2 problem. However, this may be computationally
hard.

In this subsection we consider some additional conditiorsrplify theOD problem. First, we
assume that the designer’s utility is a function of the useilities (this is the case, for example, of a
benevolent designer that seeks to maximize some measuoeiaf welfare). Moreover, we suppose
that, for each type profile € T, every action profilgy() lower thang™ B (t) is sustainable without
intervention inl';. Finally, we assume that the utility of a useadopting the lowest action"" is
always equal td), i.e., U;(a™",a_;,t,z) = 0, Va_;,t,x. Interpretinga™™ as no resource usage,
this means that, independently of types and other userngnacta user that does not use resources

obtains no utility. In particular, this last assumption ifap that:
Lemma 5. The utility of user: is non increasing in the actions of the other users.

Proof.

Ui(a>t7x) = Ui(a?nnva—ivt7x) +/ 0z

amin 8z
%

Y QUi(z,a—;,t,x) az_/‘” oU;(z,a,t,x)

T
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) a; 277. )
oU;(a,t,x) :/ 0°Ui(z,a—;,t,x) 92 <0
aaj a;nin 82:8&]'
where the inequality is valid because of the submodulasigeh5). O

Under the additional assumptions of this subsection, weoawe the following result that allows

the designer to further restrict the class of mechanismaki® into consideration.

Lemma 6. There exists an optimal device such that, for every typelemwf 7', the recommended
action profilea(t) is unique (i.e.u is point mass aifi(¢)) and the restriction of the intervention rule

inr =tandm = a(t), i.e.,, ®, = ¢, 51, Sustains without interventioa(t) in T';.

Proof. See Appendix B.2 O

Lemma 6 suggests the idea to decouple the original problémtwo sub-problems. First, we
can calculate the optimal message rialander the constraint that users adopting the recommended
actions have the incentive to report their real type. Thiaa sufficient to identify an intervention rule
® able to sustairi(t) without intervention irl'y, v ¢. This is formalized in the following.

Consider the devic® = ((T}), (4;), i, X, ®), where

= arg?ax Z (U (u(t), t,z*)

teT
subject to:
STowlt | U (ut). ta®) > S w6 (uthtoi). ta”)
t—i€T—i €T

VieN, Vt, €T;, VYt eT,
andVteT, d, = ét,u(t)ﬂ sustains without intervention(t) in T';.
Proposition 15. D is an optimal device.

Proof. Lemma 6 guarantees that there exists an optimal deviceeitis&lclass of devices in which,
Vt, the recommended action profilét) is unique and the restriction of the intervention rule is ¢
andm = pu(t), i.e., ®, = ®, ) 4, SUStains without intervention(t) in T';. Among all devices
belonging to such clasd) is selected to maximize the designer’s expected utilityusTt is an

optimal device. O
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7.6 Algorithm that Converges to an Incentive Compatible Deice

In this section we provide a practical tool for the desigmectioose an efficient device. Because
the optimal device may be very difficult to compute, even ia tiecoupled version of Proposition
15, we provide a simple algorithm that converges to an ineemmompatible device in which
is point mass (i.e., given a report the recommended actiofilgois unique) and, although perhaps
not optimal, still yields a ‘good’ outcome for the designdfore precisely,D will sustainwithout
interventionthe honest and obedient strategy profile. The algorithm basa designed with the idea
to minimize the distance between the optimal action prafifg) and the suggested action profile
u(t), for each possible type profile Such algorithm is run off-line by the designer to choose an
efficient device and can be used when, for every type profded at each step of the algorithm,
the designer is able to identify a device for the completerimftion setting that sustains without
intervention the suggested action profile) in T',.. (Note that the suggested action profile will never
be lower than the optimal action profilé’ (¢) or higher than the NE action profite"2” () of I').)

Given a deviceD in which 4 is point mass, we denote BY;(¢;, t;) the expected utility that user
i, with typet;, obtains reporting typ€ and adopting the suggested action, when the other users are
honest and obedient and the intervention device does reavente, i.e.,

Wit t;) = Y w(t | t)Us(ut;, t-),t, a%)

t_ €T,

Moreover, we say thaX and @, ,, , areinducedby . if the device defined byX and &/ (z) =
D, (r),a(z) sustaingu(r) without intervention inl’,,, Vo € T If the designer is able to identify the
device defined byX and~/, in the complete information setting, then he can easily agmi and
®, .. induced by, obtaining a device for the general framework that, by aoiesibn, gives the
users the incentive to always adopt the recommended agtiensisers are obedient) and does not in-
tervene (threats of punishments do not need to be executeel ssers follow the recommendations).

The algorithm initializes the devick in the following way: () = ¢ (r), X and® induced by
1. This means that, given the report profilethe device recommends the optimal (for the designer
and if user types are) action profileg? (r) and the users will adopt it. However, this does not
guarantee that the users are honest: the reported typeepradyl be different from the real one, i.e.,
r # t. To give an incentive for the users to be honest, in each $td@@lgorithm the recommended
action profilen(r) is modified to increase the utility the users obtain if they lamnest (or to decrease
the utility they obtain when they are dishonest). Wheneumer is modified, alsaX and® must be

modified accordingly, selecting and® induced byu such that users remain obedient.
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To explain the idea behind the algorithm we exploit Fig. Twvhereq’s utility is plotted with
respect ta’s action, for a fixed type profile when all users are honest (i.e = t) and the other users
are obedient (i.eg;(t;, u;(t)) = n;(t), Vj # 4). Each sub-picture refers to different recommended
actions (i.e., different), and in each sub-picture four points are marked (some afhwiay possible
coincide) representing the following cases: {Rdopts the best (for the designer) act'gj\di(t); 2)

i adopts the recommended actiar(t); (3) i adopts the NE actiopZ’ (¢) (notice that it is not the
best action for user because the other users do not acgiﬁ?o (t)); and (4)i adopts the best action
BBR(u_y(t), 1).

The initialization case, in which (1) and (2) coincide, ipnesented by the upper-left Fig. 7.1.
By assumptiomA6 ¢ (t) < gNE’(t) and by assumptiods gNE" (1) < hBE(u_(t),t), because
u—i(t) < gﬂEO (t). If Witi,t;) > Wi(t;,t;), for every alternative’s reported type!, then user
has an incentive to report its true type If, at a certain iteration of the algorithm, this is valid fall
users and for all types they may have, then the algorithnssdop we obtain a device that sustains
without intervention the honest and obedient strategy lttfi

Conversely, suppose there exists a usand types; andt, such thatiV;(¢;,t;) < W;(t;,t,),
i.e., useri has an incentive to repotf when its type ig;. In this case the algorithm increases the
recommended actiop;(¢) by a quantity equal te;, moving it in the direction of the best response
function hP%(11_;(t), ), for every possible combination of types; of the other users, andl and®
must be modified accordingly such that users remain obedidrig has the effect, as represented by
upper-right Fig. 7.1, to increase the utility of ugevhen it is honesty ¢t _;, which in turn implies that
the expected utility of userswhen it is honest (i.e}V (¢;,¢;)) increases. This procedure is repeated
as long adV;(t;, t;) < Wi(t;, t}) and;(t) < gV (t).

In casei's suggested actiop;(t) reachesy™E’ (t) and still W;(t;,t;) < Wi(t;,t)), then the
suggested action of uskr u(t), is increased by a quantity equaldg Vk € N, k #i,Vit_;, € T;.

As we can see from lower-left Fig. 7.1, this means to changeshiape of the curve representing
i's utility with respect toi’s action. In particular, by assumptioh5, the best response function
hBE(u_;(t),t) is moved in the direction of the recommended actigft).

If pug () reaches,u{fE(J (t) as well,Y k € N, thenp;(t) coincides with the best response function
hBE(u_;(t),t), as represented in the lower-right Fig. 7.1. In fact, by dédin, the NE is the action

profile such that every user is playing its best action ag#iesactions of the other users. Singét)

Notice that, if a maximum efficiency incentive compatibleedt mechanism exists, since it must satisfy the conditions
of Proposition 13, then the initialization of the algorittoorresponds to a maximum efficiency incentive compatitieadi

mechanism and the algorithm stops after the first iteration.
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coincides withh P2 (1u_;(t),t), Yt_; € T_;, useri is told to play its best action for every possible
combination of the types of the other users. Hence, iisannot increase its utility reporting typg
.e., it must beWV;(t;,t;) > Wi(t;, t}).

The algorithm stops the first time every user has an incembiwdeclare its real type. Since at
each iteration the suggested action profiles are increasadiked amount, the algorithm converges
after a finite number of iterations. The higher the stgps € NV, the lower the convergence time of

the algorithm. On the other hand, the lower the steps, theecltine suggested action profile to the

optimal onet®

Algorithm 1 General algorithm.
1: Initialization : u(t) = g™ (t),Vt € T, X and® induced byu

2: For each usef € N and each pair of types, t; € T;

30 I Wit ti) < Wity t})

4 If pui(t) < gNE°(t) for somet_; € T

5: ,uz-(t)<—min{,ui(t) + €, gZNEO (t)}, Vit_; € T_;, X and® induced byu

6: Else

uk(t)emin{uk(t) + €x, g,iVEO(t)}, Vke N, k#i,Vt_; € T_;, X and® induced by

~

8: Repeat fron? until 3 is unsatisfied’ 7, t;, t_;
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Figure 7.1. Useri’s utility vs. useri’s action, for different suggested actions

Notice that, since no assumption such as convexity is madhéadesigner’s expected utility, an action profile closer

to the optimal one does not necessarily imply a better ouécfumthe designer.
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7.7 Introduction to Flow Control

In this section, we introduce the congestion problem in eesémd-forward node of a network,
namely, the server. Each user connected to the serversesyeel by a traffic flow that enters the
server, sends its packets with Poisson arrival rate. Thesserves the packets, following a first-in-
first-out policy, with exponentially distributed servigee. The system can be modeled as an M/M/1
gueue. We take into account the possibility that users lpelorifferent classes of traffic, requiring
different quality of service. The class of traffic a user bgl® to is represented by the type of the
user. We assume that each user can independently set gstsson rate to maximize its own utility
represented by theower, defined in [106] as the ratio between the throughput andéleydnd later
extended in [107] to take into account multiple classesatfitr.

In the subsequent sections, we study the interaction batwsers in two different scenarios: (1)
in the complete informatiorscenario every user is aware of the types of the other usershair
interaction can be modeled with a complete information gafBgin the incomplete information
scenario the users are not aware of the types of the othes, imsgra common probability distribution
of the types of the other users exists, and the interactiarbeamodeled with 8ayesiangame. We
show that the self-interested and strategic nature of teesusads to the overuse of the resources
and to substantial inefficiencies in both cases, which aa@fified using as performance criterion the
geometric mean of the users’ utilities. To improve the edficy of the network, we use a standard
intervention scheme for the complete information scenarid we exploit our framework for the

incomplete information scenario.

7.7.1 Related work

Flow control is a necessary operation to make a service sibbe$o many users. Several met-
rics have been considered as performance indicators. Werpgas proposed in [106] as a way to
trade-off between throughput and delay. This concept viasdéxtended in [107] to take into account
multiple classes of traffic. To obtain distributed flow cahtalgorithms, [108—110] model the flow
control problem as a network utility maximization probleamd interpret the Lagrangian multipliers
as prices. These approaches derive efficient distribuggatiims, however they assume that users
are obedient in that they maximize the utilities designethieydesigner, instead of their own utilities.
Thus, they can not be compared with this work, in which we m&sthat users are strategic. The ear-
lier applications of game theory to flow control problems eviamited to the computation of the Nash

equilibria of existing congestion schemes, to quantifyirtherformance in the presence of strategic
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Obedient | Strategic | Incentive | Incomplete | Information
users users scheme | Information | revelation
[108-110] X
[25,27,28,34,111] X
[24, 30, 40, 41] X
[112,113] X
our work X X

Table 7.1. Comparison among different flow control works

users. Examples of this approach include [27,28,111] wirgghthe power as the performance metric,
and [34] that shows that most congestion control schemes gseh as TCP, encourage a behavior
that leads to congestion. [25] characterizes the Nashilbduih and the Pareto Boundary for linearly
coupled communication games, leading to the same resubBa$dr the particular case of the flow
control game. In addition, [25] investigates the properté an alternative solution concept named
conjectural equilibrium, in which users compensate foirttaek of information by forming internal
beliefs about the other users. Later, with the same philogsop our work, game theory was used to
design practical schemes to deal with selfish and stratesgicsu[30, 40] consider pricing schemes,
in which users are charged based on their resource usagshawdhat if appropriate cost function
and pricing mechanism are used, one can find an efficient Naslibeium. [41] designs the pricing
scheme that maximizes the service provider’s revenueddsiéthe users’ satisfaction. [24] uses a
packet-dropping scheme — a patrticular instance of intéiserschemes — to improve the efficiency
of the Nash equilibrium, allowing to arbitrarily approadietoptimal social welfare. None of the
above works has addressed the flow control problem in thermiptzie information setting. To the
best of our knowledge, the only works dealing with incompieformation, such as [112,113], adopt
a Bayesian approach, in which the expected — with respebetariknown information — utilities are
maximized. Our work differs from them in that we introduce teas of mechanism design [94—99]
and intervention [66] to create protocols that elicit thivge information of the users. Table 7.1

summarizes the differences between the described literatu
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Figure 7.2. Representation of a flow control application as an M/M/1 cgieu

7.7.2 Formulation of the flow control problem

We considemn flows with Poisson arrival rates af, ao, ..., a, that are serviced by a single server
with exponentially distributed service times with meém Since we assume that all packets have the
same length, we will talk interchangeably of arrival ra@éﬁ[ and transmission ratél(bps), andC
can be seen as the channel capacitfi—fﬁ') after the servef® We refer to each stream of packets as
a user. We assume that each usean control its own traffic (e.g., by adjusting the codinglqyaf
its communication), i.e., it can select its transmisside (action)a; € A; = [0, C]. As represented
by Fig. 7.2, the system is an M/M/1 queue with an input armaé\ = > """ | a;.

In most cases a user is faced with two conflicting objectives,to maximize its throughptftand
to minimize its average delay. The conflict between througlamd delay is obvious since as more
traffic enters the server queue the delays become largerdér to incorporate these two measures
in a single performance metric, the concept of power has pegrosed in [106] and later extended
in [107]. Itis defined as the ratio between the throughputthecaverage delay, where the exponent

of the throughput is a positive constant. We can thereforevis utility as

Ui(a,t;) = al (C — \) = al (c -3 al-) (7.3)
i=1
wherea = (aq,...,a,) denotes the transmission rate (action) profile and the petearty > 0

represents useis type.

18We consider packets of the same length to keep a simple ootatid because the qualitative results are not affected
by this assumption. However, the model and the analysis eaabily extended to take into account packets of different

lengths.
"Here the throughput refers to the traffic the server is absetuice, i.e., the transmission rate available to the aset,

does not take into account the packets lost due to physipad teansmission errors.
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The value oft; may depend, for example, on the quality of service of theiegbn correspond-
ing to thei-th stream of packets. As we will see in Eqgs. (7.4) and (7k&)t, ¢consider compliant users
and strategic users respectively, the rate adopted by asugereasing in its type. This consideration
suggests the idea that the higher the type of a user, therhigh@nportance of the rate, with respect
to the delay, for that user. As an example, streams of paelsstsciated to delay dependent applica-
tions should have a low type while streams of packets agedlcia delay tolerant applications should
have a high type.

In general, the applications a server has to deal with mapgdhaver time. For this reason it
is useful to define the type s#&t, for every useri, whose elements represent all the possible types
useri may have. We assume that the type set is the same for all usgis finite, i.e.,7; = T} =
{r,72, ..}, v E Ny € R, 11 < 70 < ... < 7, fOr every useri € N. Suppose that at the
beginning of a communication session the types of the usemsected to the system are unknown.
We assume that a common probability distribution exists thadl user types are independent and
identically distributed (i.i.d.) withr(¢;) denoting the probability that a user has type; € 71, and
n(t) = [[i=, 7 (¢;) the probability that the type profile ist € T' = T7". =(t;) can be thought as the
average fraction of applications having tyfehat require services to the server.

The network must be designed to operate efficiently follgatre manager’s objective, which can
be quantified by a utility function. We assume that the marisgdility is the geometric mean of the

users’ utilities:

where (z)" = max {x, 0}.18 This choice allows to maintain a balance between two comgeti
interests a benevolent manager might have: to maximizedtialsvelfare of the network (defined
as the sum utility) and to allocate resources fairly, giviogisers similar utilities. Notice that max-
imizing U (a, t) with respect to users’ actions is equivalent to maximizing@portional fairness of
users’ utilities, i.e.)>""" ; InU;" (a,t;), and the optimal solutiop™ () = (g1 (t),...,g} (t)), as a
function of users’ types, is given by (see [25])

t;:C

e 7.4

gt (t) =

Bwe considel;" instead oft; for mathematical reasons, because utilities as defined.if7E8) may also be negative,
and the geometric mean would lose meaning with negativetijigan Anyway, notice that it is in the interest of both the

users and the manager to have< C, i.e., working in the sub-space of the original domain stei/;” = U;.
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We denote byFU;(g,t;) and EU (g) the expected (with respect to the types) utilities of user
having typet; and of the manager, whegét) = (g1 (¢), . .., gn(t)) represents the actions adopted by
the users when the type profiletid.e.,

EUi(g,ti) = Y w(t-)Uig(t),) , EU(g) =Y m()U(g(t),t)
t_€T; teT
The benchmark optimum for the manager — the maximum expediéty he could achieve if

users were compliant to a prescribed scheme — is therefai B U = EU (gM (t)).

7.8 Flow Control Games Without Intervention

In this Section we compute the outcome of a flow control pnobt®nsidering self-interested
and strategic users, for both the complete and the incompiéirmation scenarios. Moreover, we

quantify the loss of efficiency of the manager’s utility wittspect to the maximum efficiency utility.

7.8.1 Complete information scenario
We define the complete information game
Pg = (N7 A, {UZ}?:l)

where each userselects its actio; (t) strategically, knowing the types ; of all the other users.
We denote by VE" (1) = <g{VE° t),...,gNvE" (t)) a Nash Equilibrium(NE) of the gamd™?.
The unique NEzN*"(¢) of IV is, Vi € N, (see [25])
B t;C
L+ itk

Notice that strategic users use the resources more heatlilyagpect to compliant users, i.e2 B (t) >

g (1) (7.5)

gM(t),Vi e N andVt € T (excluding the trivial case = 1).
The manager's expected utility in the complete informatoanario is equal t&U (¢VE" (1)).
7.8.2 Incomplete information scenario
We define the incomplete information game
FO = (Nv Av T> ™, {UZ}?:I)

where each userselects its actiow;(¢;) strategically, knowing its own typg and the probability

distribution of the types of the other usersgz_;).



144 Chapter 7. Information Revelation and Interventiorhvaih Application to Flow Control

We denote by VF (1) = <ngNE(t1), ..., gBNE? (tn)) aBayesian Nash EquilibriurtBNE) of
the gamd™.

Proposition 16. There exists a unique Bayesian Nash Equilibrigfi¥” (¢) of I'° which can be
obtained by solving a linear systeAy V¥ = b. In addition, the inverse ok, A—!, can be computed

analytically!®

Proof. See Appendix B.3. O

The manager’s expected utility in the incomplete informtscenario is equal tBU (¢BVE (1)).

7.8.3 lllustrative results

Fig. 7.3 shows the manager’s expected utility with resped¢hé number of users, considering
C = 5 Mbps and a type sef; = {0.1, 1} with uniformly distributed types. The upper curve repre-
sents the benchmark optimum, while the dashed and the dotésdepresent the manager’s expected
utility when users are strategic, in the complete and indetepnformation cases, respectively. The
manager’s utility when users act strategically, for both tomplete and the incomplete information
scenarios, is far below the benchmark optimum. Notice thattanager can obtain a higher utility
in the incomplete information scenario with respect to theplete information scenario, at least
when there are more than three users in the system. Thissagitethe results of [114, 115] where,
in a strategic setting, the less closely related the agego@ls the lower the quantity of information
they prefer to exchange. In our case, the objective of theagembecomes less closely related to the
objective of a single user as the number of total users isegedn fact, the manager’s objective is to
increase the utility of all users in a fair way, while the gokh user is to improve only its own utility,
at the cost of the utility of all the other users. Hence, asitiaber of users increases, the selfishness

of a single user has a higher negative impact on the manauge€stive.

7.9 Flow Control Games with Intervention

Fig. 7.2 shows that the manager’'s expected utility in sgiatsettings (for both the complete
and the incomplete information scenarios) is much lowen tha benchmark optimum. Here we ask
whether the manager can do something to make the systent ammisst strategic users, filling, at
least partially, the gap between the benchmark optimumlamoheinager’s expected utility in strategic

settings.

19The expressions @f A andA ! can be found in Appendix B.3
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Figure 7.3. Intervention device utility with respect to the number afrgs

We assume that the manager can choose and depleyieein the system that (1) can receive
communications from users, (2) can send communicationséosu (3) can monitor the actions of
users, and (4) can transmit a stream of paeketX = [0, 7] to the server, which we interpret as an
intervention The intervention action increases the incoming traffichef servet\ = " | a; + z,

and the users’ and the manager’s utilities change accdyding

Chat) =t (€= = (€= Y] 76
1=1

nooy

SN

Ula,t,z) = 7| [JU (a,ti2) = (C = N)*
=1 =1

—

It is straightforward to check that the users’ and the marsgdilities satisfy assumption&1-A6.
In particular, the manager’s preferred actionis= 0 (i.e., no intervention), and the garhig¢ defined
in Subsection 7.8.2 coincides with the gahfedefined in Subsection 7.4.1.

In the complete information scenario, the interventionickeis a tool the manager employs to in-
struct the users on how to behave, giving them the incemiaelopt efficient actions biyireatening
punishmentsvhich arenot executedf users follow the recommendations. In addition, in theoime
plete information scenario, the device is also used toenadrthe relevant information from the users,
i.e., their types. First, we formalize a device in the moreegal scenario of incomplete information

20 and we will then discuss the natural simplifications for¢benplete information scenario.

20The formalization will be similar to the one introduced inc8en 7.2, but here we assume there are no errors, reports



146 Chapter 7. Information Revelation and Interventiorhvaih Application to Flow Control

A device is a tupleD = (u, 7, ®) where

e u: T — Alisthemessage rulewhich specifies the recommendations to be sent to the users
as a function of the reported types. fife T are the reports we writen = pu(r) for the

recommended actionsy = (my,...,m,) € A;
* T represents the maximum rate the intervention device istalifansmit;

* &:T x Ax A— X istheintervention rule which specifies the transmission rate the device
will adopt given the received reports, the transmitted mgss and the users’ adopted actions.
If r are the reportsyn the transmitted messages amdhe users’ adopted actions, we write

®(r,m, a) for the adopted intervention action.

In the incomplete information scenario, a strategic usselects its report; and its actiona;
in order to maximize its expected utility given the informoatand the beliefs it has. Specifically, a
strategy for usei consists of a pair of functionsf;, g;), in which f; : 77 — T} specifies the report of
user; based on its type, ang: 77 x A; — A; specifies the action of usébased on its type and on
the recommendation received. As usual, we denot¢ dydg the profiles of the two strategies.

In the following, we summarize the different stages of theraction between the users and the

intervention device in the incomplete information scemari
Stage 1 each usef sends the report; = f;(t;) to the intervention device
Stage 2 the intervention device sends the recommended aetios () to each usei
Stage 3 each usef takes the action; = g;(t;, m;)

Stage 4 the intervention device monitors the users’ action préfiteand adopts the intervention action

x=®(r,m,a)

Here we restrict the attention to the classafifne interventiordevicesD, in which the interven-

tion level increases linearly with the users’ actions. Itynsaem restrictive to only consider such a

and messages are costless and we do not considdomizedrules because, as we will sgayre rules are sufficient to
obtain optimal results in the complete information case tanshtisfy the conditions we need to use the algorithm in the

incomplete information case.
2IThe device can estimate the users’ rates by counting inirealthe number of packets that each user has sent since the

beginning of the communication session. Such estimatesmayaccurate, in particular in the first phases of the sessio
Here we neglect this issue, implicitly assuming that theisesis long enough (with respect to the users’ rates) toegay
very soon to accurate estimations. We will take into consitilen an extension of this work in which we analyze in more
detail the impact of imperfect monitoring.



7.9. Flow Control Games with Intervention 147

simple class of devices. Howevép,will turn out to be optimal, i.e., it is not possible to inceeathe
manager’s expected utility by considering more complexadsy

D = (u,z, ) is an affine intervention device if the intervention rdigs of the form

n T

O(r,m,a) = Zci(r, m) (a; — a;(r,m))

=1 0
wherea;(r,m) > 0 represents a target action for userc;(r,m) > 0 is the rate of increase of
the intervention level due to an increaseisfaction, and[-]z = min {max {a,-},b}. Though in
this abstract definitiom; (r, m) might be different from the recommended actien = p(r), in the
schemes we will propose in the following we will haigr, m) = m;, Vr, m_;, i.e.,a(r,m) will
represent the recommended action profile.

Fig. 7.4 shows how the intervention rulechanges the relation betwegs utility and’s action,
for given type, report and message profiles and assuminghibaitther users adopt the target action
profile a_;(r,m). The utility of useri is plotted for three different values of the parametgr, m)
(ci(r,m) = 0 means that the intervention device never intervenes). F@actona; lower than the
target actiona,, ¢'s utility is as if the device did not exist. However, for antiao a; higher than
the target actior; (r, m), ¢'s utility is lower compared to the utility it would have olmad without
the device, and the gap increases:amcreases. In fact, if the users adopt the target actionlgrofi
a(r,m) the intervention level i, but if a single usei deviates from the recommendation adopting
an actiona; > a;(r,m), the intervention device reacts transmitting a flow of péketh a positive
ratex = ®(r,m,a), that is increasing im;(r, m) and affects the utility of every user. This agrees
with our view of intervention as a threat of punishments \utace not executed if all users follow the
recommendations.

As noted before, in the complete information scenario theraction between the users and the
device can be simplified, because the type prdafieknown by everybody. In particular, since the
device already knows, the reports do not play any role and we can consjlér,) = t;, Vi (or,
alternatively, we can skijgtage ). Moreover, the users know in advance the messages they will
receive because messages are a deterministic functioe tffh profile (hence, alstage 2can be
skipped). Finally, since reports and messages are giverintervention rule can simply be written
as a function of the users’ action®(a) = ®(¢, u(t),a). In particular, for an affine device the
parameters; = c¢;(t,u(t)) anda; = a;(t,u(t)) are constant. Thus, in the complete information
scenario a device is simply describedwand®. In this context, each useérhas to select an action

a; to maximize its utility.
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Figure 7.4. Manager's expected utility vs. number of users for the cetepind incomplete information

scenarios

Given a deviceD, in both the complete and the incomplete information cafesjnteraction
among users can be modeled as a game. In the following wederdie tools for the manager to

choose a device in the clags for both the complete and the incomplete information sgesa

7.9.1 Complete information scenario

In the complete information scenario, given a devize= (z, ®), the interaction among users is
modeled with the game
r = (N, 4,0, {Uf}1))

in which each usef strategically selects the actigr(¢) (the dependence arshows that if the type
profile ¢ changes, the ganig changes as well and the users may decide to take differaahgrto
maximize its utilityU?, see Eq. (7.6).

The outcome of such interaction is represented by the NE.r&eager faces the problem of
choosing a device) so that there exists a NE of the garfigthat gives it the highest utility/!

among what is achievable with all possible NEs.

Lemma 7. Consider the affine devic@ such thatVi: € N,

G (C = Y Ag) — d ci [t (C = Yopy k) — )
' = a; 1+t2(]—+cz)

T >

(7.7)

)

If & < gVE°, thena is a NE ofT;.
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Proof. See Appendix B.4 O

Interpretation: If a ¢; high enough is selected, and if the device is able to tranatfita large
enough transmission rate, the threat of punishment diagesrthe users from adopting actions higher
than the target. This situation is shown in Fig. 7.4 éor= 2. Hence, if the utility of user is
increasing before the target actiap (in particular, this is valid ifa; < gZNEO), as in Fig. 7.4, the

target actiorz; becomes the best response action for user

Proposition 17.Vt € T, the optimal profile;" (¢) is sustainable without intervention Iy, adopting

. C
the devicer > va=gM(t)ande; >n—1,i € N.
1+7
Vt € T, every strategy profile < ¢V B (t) is sustainable without intervention in,, adopting

the devicer > C, @ = a andc¢; high enough (i.e; > T”(C_Zgzld’“)_&i),i € N.

aj

Proof. First, consider the second affirmation. The condition of Ef7) onT is automatically sat-
isfied if the right hand side is lower than Moreover, if it is higher thar, the right hand side is
increasing inc;. In fact, the functiona(c;) = 3ft-, with a,b > 0, is increasing inc;, because
h'(¢;) = % > 0. Thus, the condition of Eq. (7.7) ahbecomes stricter as increases. Taking

the limit for ¢; — 400 we can find the following stricter condition anthat does not depend @1

g i@ Z 2k ) — 0 Zak__

In order to obtain conditions that are independent of usgpes and action profiles to sustain, we

can consider the following stricter conditions:

n

k=1 Tv
As for ¢;, we can find a stricter condition independent of users’ tyqdsstitutingt; with 7,,. Thus,

once the action profile to sustain is fixed, it is sufficientetest ac; satisfying

o> (C = 2l Or) — (7.9)

%

Now consider the first affirmation. Substitutiag= ¢ () we obtain

ti(C =S " t;C t
ciz’( ?k—la’“ 1_n+Zt—@ l=n—1

%

As to 7, substitutinga = ¢ () into the second condition of Eq. (7.8) we obtain

> nC
T n+ ZZ:I i
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Finally, since the right hand side is decreasingii{_, ¢x, a stricter condition can be obtained sub-
stituting ¢, = 71, Vk € N, obtaining

C

T >
= 1+7

O

If the device is able to transmit a stream of packets withemagher than a certain threshold (that
is upper-bounded bg)), if @ = ¢ (t) and if¢; > n — 1, the threat of punishments is an incentive
for the users to adopt the optimal action profjé (¢). Note that, in this case, thgunishments are
not executed Thus, the manager can extract the maximum utility from theagl’;. The following

corollary is an implication of this consideration.

Corollary 5. The class of affine intervention rul@sis optimal (i.e., it is not possible to gain more

by considering more complex devices) in the complete irgtbom scenario.

Finally, the manager’s expected utility for the completioimation scenario with intervention

device is equal to the maximum efficiency utiligt (¢ (¢)).

7.9.2 Incomplete information scenario

In the incomplete information scenario, given a devige= (u,z, @), the interaction among

users is modeled with the Bayesian game
r— <N, AT, D, {U{}:;l)

in which each usef strategically adopts the functionfs : 73 — T3 (which specifies the report of
useri based on its type) ang: 77 x A; — A; (which specifies the action of usebased on its type
and on the recommendation received) to maximize its expeuthkty
EUZI(fvgvtlaD) = Z F(t—i)UiI(C%tv'r)
t_;€T_;

whereVi € N,
Ty = fl(tl) , T = ,U'(T) y A = gl(t’nml) y T = ¢(T7m7a)

The outcome of such interaction is represented by the BNE.manager faces the problem of

choosing a devic® so that there exists a BNE of the gaméhat gives it the highest expected utility

EU'(f,9,D) =) _w(t)U'(a,t,x)

teT
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among what is achievable with all possible BNEs.

In the following we apply the results derived in Subsectiob.Z to find the conditions for the
existence and to compute a maximum efficiency device, tlatvaithe manager to achieve its bench-
mark optimum. In case such device does not exist, the neteamkot operate as efficiently as in
the compliant users scenario. Moreover, in this case thenaptlevice is hard to compute. For this

reason, we consider two suboptimal devices which are e@sgampute than the optimal device.

7.9.2.1 Existence and calculation of a maximum efficiency gize

We wonder if there are some conditions under which the marnzageselect a device to obtain
the same utility it would achieve with compliant users. Thkofving result provides an answer to

this question.

Proposition 18. If VI = {1,...,v — 1} andVt_; € T,

71+1
n —+ ot + T [ Tl
( 2jtils ”1> <_” > >1 (7.10)

n+dti +m Ti41
, . Moo — c . , .
then the affine device(t) = ¢ (t), T > T ,a;(r,m) =mand¢; >n—1,7 € N,isamaximum
T1
efficiency incentive compatible device.
Proof. See Appendix B.5 O

Notice that all maximum efficiency incentive compatible ideg must be of the formu(t) =

gM(t), T >

C . " .
, a;(r,m) = mande¢; > n— 1,7 € N. However, if condition (7.10) is not
T1

satisfied, the device might not be able to give to the userst@ative to report truthfully.

7.9.2.2 Algorithm that converges to an incentive compatile device

Here we specialize, for the flow control application, theerahalgorithm proposed in Subsection
7.6 that converges to an incentive compatible device. Pigpguarantees that, at each step of the
algorithm, the considered device sustains without inteiee the suggested action profjlér) in T,
(note that the suggested action profile will never be higheng™V "’ (¢)).

The algorithm has been designed with the idea of minimizirggdistance between the optimal
action profileg () and the suggested action profilét), for each possible type profite If a maxi-
mum efficiency device exists, the initialization of the aigum corresponds to a maximum efficiency

incentive compatible device and the algorithm stops affteffirst iteration. If a user having typers
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can benefit by pretending to be of type, for each type profile = (7;,¢_;) the algorithm increases

the recommended action for user if it is lower thang¥ %’ (7) — or the recommended actions for
the other users. In both cases, the new device is selectbdisaicthe new suggested action profile
w(T) is sustained without intervention In.. Proceeding in this way, the algorithm will converge to a

device in which no user can benefit by pretending to be of @mayipe.

Algorithm 2 Flow control algorithm.
1: Initialization : Vr € T, % > C, u(r) = g™ (r), a(r, u(r)) = p(r), ci(r, p(r)) > n —1

22 Fors=1:vandl=1:v

3 I Wilrs, ) < Wi7s,m)

4. Fort_, eT_;

5: T < (1,t—)

6: If pi(1) < gZNEO (1)

pi(r) & min {pi(r) + i, g% (1)}, (7, (7)) = (7). ci(r, () satisfying (7.9)
8: Elsefork=1:m,k #i

o () e min {pu(r) + e, g (1)}, alr, w(r)) = (), k(7. (7)) satisfying (7.9)
10: Repeat fron2 until 3 is unsatisfied’ s, [

~

7.9.2.3 Communication-free device

In this Subsection we define a new type of device, catlechmunication-free devicén which
reports do not play any role for the final outcome, i.e., thessage and intervention rules do not
depend on reports. This is particularly useful in situaievhere it is not possible for the users to
communicate with the device, or where communication is egpensive. However, also for scenarios
where users can send reports, a communication-free devgte rapresent a good sub-optimal device
that is efficient and easy to compute.

Consider the communication-free devitethat, independently of users’ types, suggests action

profile @,

o
3|

@ = argmin [— In (C’ — Z a,'> E,

i=1

14|

>0, a;<C , Yie N (7.11)

Proposition 19. Eq. (7.11) defines a convex problemjf< n. Moreover, if the devicé® sustainsz
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without intervention i, then D is an optimal communication-free incentive compatibleickand

the manager’s expected utility 18U (a).
Proof. See Appendix B.6 O

Corollary 6. Consider the communication-free devibesuch thatyr € T andvi € N,

,u(r) =a , 6(7“,5, a) = [Z Ci(a)(ai — El)] , CZ'(E) > T (C _ Zg:l ak) — % , T 2> C
i=1 0 ‘
(7.12)

Ifa < gNE(J (t),Vt € T, thenD is an optimal communication-free incentive compatibleickeand

the manager’s expected utility 1sU (a).

Proof. It is sufficient to show thaD sustainsz without intervention il Notice that®(r,a,a) = 0,
so itis sufficient to show thatis an equilibrium inl. Notice thatD satisfies the conditions of Lemma

7,Vt € T, thereforeD sustainsiinI'y,i.e,VteT ,Vie N,Vt,eTy, Va; € A;,
Ui (f.a,t) > U (f,a5,a—i,t)
As a consequenc®,i € N, Vt, €Ty, Va; € A,
S o wlt DU (fat) = Y w(t)Ui (faia,t)

t_, €T, t_; €T,

Hencea in an equilibrium inl". O

Notice tha < gNEO (t),Vt € T,is asufficient condition such that is an optimal communication-
free incentive compatible mechanism, but it is not necgsshr fact, D might sustaina without

intervention inl" even ifa ¢ g™ =’ (t) for somet € T.

7.9.3 lllustrative results

In the following we are going to quantify the manager’s expdaitility and the expected through-
put and delay for each type of user in different scenarios.civisiderC' = 5 Mbps and a common
type setl}7 = {0.1,1}. Except for Fig. 7.6, we assume that the types are unifornstyiduted, i.e.,
P(0.1) = P(1) = 0.5, and we plot the results varying the number of users f2adm16.

We first look at how the manager’'s expected utility varieseasing the number of users, in
the complete and incomplete information scenarios. Thesldé of Fig. 7.5 refers to the complete

information scenario. The overlapped upper lines reptedbermanager’s expected utility when users
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are compliant and when they are strategic with the deviceattm Subsection 7.9.1. The manager’s
expected utility is decreasing in the number of users begasthe number of users increases, the
total congestion experienced by every user increases ashiglever, it is remarkable that with the
intervention scheme the manager can completely fill the gdywden the benchmark optimum and
its expected utility when the users are strategic but nonitie scheme is adopted (dotted line). The
right side of Fig. 7.5 refers to the incomplete informati@ersario. In this scenario the manager is
guaranteed to achieve the benchmark optimum using thealdeigved from the algorithm (dashed
line) if the number of users is sufficiently small. In factr @number of users less than or equal to
3, it is straightforward to check that the sufficient conditi(¥.10) is satisfied, hence, a maximum
efficiency device exists and the algorithm converges to ibr & larger number of users, there is
no guarantee of optimality, and in fact the results of Figo §how that in this case the manager’s
expected utility is lower than what could be obtained witimptiant users. However, the manager
can still considerably increase its expected utility coredato the case of strategic users and no
incentive scheme (dotted line), by adopting the devicevddrirom the algorithm for a number of
users lower thal and the communication-free device (dash-dot line) for almemof users greater
than or equal t@ (f defined in (7.12) turns out to sustain the solution of (7.1itheut intervention

in T'). Itis not surprising that the communication-free devEeable to obtain good performance for
a large number of users, in fact in this situation the man&gable to foresee more accurately the

fraction of users of a certain type, hence the informatiooualbisers’ types becomes less important.

Now we investigate how the results depend on the type prbtyatiistribution for the incomplete
information scenario. In Fig. 7.6 we fix the number of userg smd we vary the probability of the
low type, P(0.1), from 0 to 1, which is equivalent to varying (1) from 1 to 0. We can see that the
gap between the benchmark optimum and the manager’s edpatiity achievable with the device
derived from the algorithm is not strongly dependent on e robability distribution. In fact, such
a mechanism provides incentives for each type of user to bedt@nd obedient, even though some
user types rarely occur. Notice that in the algorithm theomemended action profile for a certain
type profile is increased by a finite amournit the users do not have an incentive to report truthfully,
which has the effect to produce the little step visible in.Fid (the lower, the smoother the step).
On the contrary, the communication-free device is strongigendent on the probability distribution
of user types. In fact, the recommended and enforced actadfilgpdepends exclusively on the type
probability distribution. As an example, if the low type acs rarely, the device will suggest to
the users to adopt an action profile that is close to the abgeof the users with high type, that will

probably be the majority of the users in the network. In thiesgre case, if low type users are for sure
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Figure 7.5. Manager's expected utility vs. number of users for the cetepind incomplete information

scenarios

not present in the network (i.e., P(0.1) = 0), than the adbpttion profile will maximize the interests
of the users having high type and the communication-freecdes able to achieve the benchmark
optimum. Notice that in this situation the manager has ne&rtamty about the types of the users in
the network, which is the reason why it is able to extract tteximum utility. In some sense, the
uniform probability distribution represents the worsteés the communication-free device because

the manager has the highest uncertainty over the types ok#rs in the network.

So far we have only considered the utility as performanceatdr. However, the utility includes
the two real performance metrics, throughput and delay. Wewnvestigate the expected through-
put and delay achievable with the considered schemes inatimplete and incomplete information
scenarios, for each type of ugérFig. 7.7 shows the expected throughput (left-side) andydeight-
side) for the complete information scenario. Continuougdirefer to the high type users, while
dashed lines refer to the low type users. Notice that the tyigh users obtain a higher expected
throughput and a higher expected delay compared to the jogvugers (this will be true also for the
incomplete information scenario), confirming that the leigthe type the higher the user’s preference

for throughput with respect to delay. In both pictures, tppar (continuous and dashed) lines refer

ZNotice that all users in the network experience the sameydelawever, such delay depends on the type profile: the
higher the number of high type users with respect to the nuwidew type users, the higher the delay. Thus, the expected
delay for a low type user is lower than the expected delay fogh type user.
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Figure 7.6. Manager’s expected utility vs. low type probability for iheomplete information scenario

to the strategic scenario without intervention device, ol the users adopt the NE action profile,
while the overlapped lower (continuous and dashed) lingesent the optimal action policy, obtain-
able with compliant users or with strategic users with theéaederived in Subsection 7.9.1. With
no incentive scheme, strategic users tend to overuse tbaroes of the network, transmitting with
higher rates compared to the optimal ones. This translatesmuch higher delays, that increase
quickly as the number of users increases. Conversely, thmalptransmission policy is such that
the expected delay is almost constant with respect to thébauwof users. This means that also the

aggregate throughput is almost constant, and the rate bfiesses scales a}?‘

Fig. 7.8 shows the expected throughput (left-side) andydeight-side) for the incomplete infor-
mation scenario. Continuous lines refer to the high typesséhile dashed lines refer to the low type
users, with the exception of the performance obtainablptatpthe communication-free device, rep-
resented by the dash-dot line, in which different types efsisdopt the same action and experience
the same throughput and delay. In both pictures, the uppetti(mous and dashed) lines refer to
the strategic scenario without intervention device, inahiithe users adopt the BNE action profile,
while the lower (continuous and dashed) lines represenpplienal action policy. The performance
obtainable adopting the device derived from the algoriti@sih between. The lines that represent the
expected delay for the BNE action profile are truncated farrater of users equal ®and5 because
for more users the system might become unstable. In fadigiBNE the expected utility of a user is

maximized, given that the other users adopt the BNE. Howéwesome type profile instances, the
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Figure 7.7. Total expected throughput and delay vs. number of userbéramplete information scenario

utility might be equal t®, i.e., the delay might diverge. Thus, the expected delagrdas as well. In
words, there is a positive probability that the network lmees congested. The device derived from
the algorithm allows to improve this situation, limitingetldelay experienced by each user. However,
such a delay increases almost linearly as the number of igesmses. This is the reason why the
communication-free device, at a certain point, even thatghnot able to differentiate the service
given to different classes of traffic, is able to obtain adrgberformance (from the manager’s utility
point of view) than the mechanism derived from the algorithim the communication-free device
each user, independently of its type, adopts a rate whichtigden the optimal rates adopted by the
low type users and the high type users, and this situatioactsfln the expected delay. This allows to

keep a very low and constant delay with respect to the nunhesears.

7.10 Conclusion

In this chapter we extend the intervention framework inticet by [66] to take into account
situations of private information, imperfect monitoringdacostly communication — in addition to
intervention. We allow the designer to use a device that camncunicate with users and intervene
in the system. The goal of the designer is to choose the dévidellows him to obtain the highest
possible utility in the considered scenario. For a classwirenments that includes many engineer-

ing scenarios of interest (e.g., power control [15, 16], imedaccess control (MAC) [12, 25], and
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Figure 7.8. Expected throughput and delay per user vs. number of usethddncomplete information

scenario

flow control [24—28]) we find conditions under which therestxdevices that achieve the benchmark
optimum and conditions under which such devices do not.existase they do not exist, we find
conditions such that the problem of finding an optimal dec&e be decoupled. Because the optimal
device may still be difficult to compute, we also provide ageralgorithm that converges to a device
that, although perhaps not optimal, still yields a ‘goodtamme for the designer.

Then we consider the design of a flow control managementraysteboth the complete and the
incomplete information scenarios. We quantify the inediiciy of the NE of the complete information
game and the BNE of the incomplete information game. We desigintervention scheme for the
complete information scenario able to provide the incentor the users to adopt the optimal trans-
mission rate, by threatening punishments if they deviateehS&cheme is able to obtain the optimal
performance achievable when the users act cooperativelythE incomplete information scenario,
we designs two devices: the first one is able to retrieve thaterinformation from the users giving
them the incentive to report it truthfully; the second onbased only on the a priori information that
the device has about the users. lllustrative results shatwthiese devices can considerably increase

the efficiency of the network in the incomplete informati@esario as well.



Chapter

Conclusions

This thesis discusses the application of game theory to éisgyd of wireless network proto-
cols which are robust against self-interested and stiateggrs. To reach this goal, the designer has
to provide to the users an incentive to follow the protocdésu On one hand, this constrains the
choice of the protocol and results in schemes which are, mergd less efficient than optimal cen-
tralized schemes. On the other hand, this allows to obtairerstable protocols, not vulnerable to
strategic users. As networks become more decentralizeds’usrminals become more autonomous,
programmable and (computationally) powerful, this desagproach is fundamental to avoid high
unforeseen inefficiencies.

This dissertation presents the following contributionghe design of efficient game-theoretic
schemes in wireless networks. In Chapter 3 a virtual gamengntioe radio resources allocator
and the scheduler is proposed to manage the resources inEasyistem, trading off fairness and
throughput, while ensuring the modularity of the overa#itsyn.

In Chapter 4 we address the problem of promoting cooperatiegging in a wireless network.
This objective is reached with a dynamic scheduling rulecwlimcreases the access opportunities of
cooperative users. We model this access scheme as a Stagkgtime, where a network unit plays
the role of access coordinator, and we prove the existeneeStéckelberg equilibrium. A careful
analysis of the numerical results justifies our scheme adia salution to increase the network
performance in a viable manner from an implementation gtaimdl

In Chapter 5 we develop a framework which can be used to ssteue nodes to be shared
between two coexisting wireless networks. We consider aless network simulator that evaluates
the network behavior at the physical, MAC and network lay@rBayesian network approach is used

by the two networks to evaluate their performance based sareable topological parameters. The
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interaction among the two networks is then modeled as ategpgame, and a trigger strategy is used
to promote cooperation. Numerical results show that, eveenvonly a small fraction of the nodes is

shared, our scheme approaches the performance of a fuk@@m scheme, in which the networks

are assumed to share all their nodes.

In Chapter 6 we use two incentive schemes, pricing and ietdion, to design a random access
protocol robust against strategic users. We compare thes¢ivemes in terms of the network envi-
ronment, the knowledge of the designer and the knowledgheotisers. Our results show that the
intervention scheme, differently from the pricing scheme@ble to achieve the optimal performance
if the user actions are perfectly observable. On the othed hiithey are not, the intervention scheme
may punish the users even if they follow the recommendati@ssilting in a degradation of the sys-
tem performance. Nevertheless, we notice that interverdgigperforms pricing if the users are not
aware that their actions are imperfectly observed. Whithefy are aware of it, as a rough general
principle, intervention achieves greater efficiency thaaipg when the number of users is small and
the opposite is true when the number of users is large.

In Chapter 7 we extend the intervention framework to take adcount situations of private in-
formation, imperfect monitoring and costly communicationwhich a device is adopted to provide
to the users an incentive to report truthfully their infotiroa and to follow the instructions. For a
class of environments that include many resource allaca@ames in communication networks, we
provide tools for the designer to design an efficient systéman abstracted environment, we find
conditions under which the designer can achieve the sanceroetit could if users were compliant,
and conditions under which it can not. We also provide a strafjorithm that converges to a scheme
that, although perhaps not optimal, still yields a good ontte for the designer. Then we consider
the design of a flow control management system, in both theptimand the incomplete informa-
tion scenarios. In the former we design a scheme which istabddtain the optimal performance
achievable when the users act cooperatively; in the lateeprepose two mechanisms that, though

not optimal, can considerably increase the efficiency ohistavork.
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8.1 Future Directions

The application of game theory to design robust protocolsiieless networks is a challenging
topic. Game theory can be applied to a variety of wireless/oding problems at different levels:
power control, interference avoidance, resource allonatelaying, flow/congestion control, network
routing, network formation, content distribution, setyretc. Here we want to focus on the adopted
methodologies, rather than on a particular application.

To derive analytical results, game theory is usually apiditesimple models, which only partially
capture the real problems. This analysis may provide use$ights about the inefficiencies that
may occur in the presence of strategic users and about f@ssilitions. However, such solutions
cannot be directly applied to the real problems, becausd peréurbations (derived from unrealistic
assumptions) may significantly change the equilibrium. \Bleele that game theoretic schemes must
getrid of such simplified assumptions to be adopted in resiksys. In particular, we tried to highlight
the role ofinformationin game theoretic approaches. The last three chapterssodiidgertation are
focused on this aspect.

Specifically, in Chapter 5 we used a Bayesian network apprt@estimatesome performance
parameters, which are then used by the two networks — in pfabereal non observable valuesto
make the decisions. In Chapter 6 we showed that the equilibgfficiency strongly depends on the
observabilityof the user actions and on tidormation heterogeneityin Chapter 7 we developed a
framework and derived some resultgétrieve the unknown informatidinom the users.

We believe that these types of approaches must be explonexideeply in game theoretic studies.
In fact, in real wireless systems users do not usually hageszcto all the information. They may
not (perfectly) know the other users’ objectives. They may (perfectly) observe the other users’
actions. They may not even (perfectly) know the number ofsusethe system. In these cases, the
users must act based on thelief they have about the missing information, and mechanisngdesi
or learning based schemes — to elicit or estimate the migsfogmation — can be used to form and
update the beliefs. Learning based techniques can beyarticuseful when the number of users is
large and it is expensive to keep track of each single uséeimétwork and to exchange information.
In this context, users are assumed to be aware of the envaminamd to dynamically adapt to it,
learning from outcomes of past decisions. Finally, if thenber of users is very largenean-field
learning technique$116] may provide a suitable framework to model and analyeeinteraction

among them.
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Finally, notice that the solutions found are consistenhithie case considered and
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A.4 Proof of Proposition 10

Proof. Considering that users adopt the NE action profile (6.13)waet to maximizel/ (a) with
respect tay,, Yk € N. The optimala, must be lower than, therefore we can consider only the first

three cases listed at the end of Appendix A.3.
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which is equivalent to Eq. (6.14).

A.5 Proof of Lemma 4

Proof. We studysi’s utility, U/ (a), varyingi’s action,a;. To do so, we first analyze the average
intervention levelE := E HTZ ([ai + gy — @ — ezﬂ(j , for r; — +o0.

If a; < @;, the term that multiplies; is always negative (notice that; + ni](l) < a; + ¢) and,
consequently, the intervention level is always equdl &md £/ = 0.

If a; > @; + 2¢;, the term that multiplies; is always positive (notice thad,; + ni](l) > a; — €)
and, consequently, the intervention level is always equéland £ = 1.

If a; < a; < a; + 2¢;, the intervention might be or 1, depending on the value of the estimation
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B.1 Proof of Proposition 13

Proof. We prove=- by contradiction.
Let D = ((T3), (A;), u, X, @) be a maximum efficiency device (remember that we focus only on
incentive compatible devices). Supp&#s not valid, i.e., there exists a type proflsuch that the

non-optimal action profile # g (%) is suggested with positive probabilify(z) > 0. Then

EU(f,9.D) =Y ()Y mi(a) Y ®raa(@) Ula,t,x) =V + W+

teT acA reX
B g B M7\ 7 % ben
+15(2) S Onatie (@) Uz, E0) < VAW 4 p1g(2)U (g™ (1), ,2%) < BU
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where
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teT t#t acA zeX
W= 77(5) Z :ut(a) Z (I)tﬂ,a(m) U(a’7 t~7 ‘T)
a€A,a#z reX

which contradicts the fact thd® is a maximum efficiency device.
Now supposé is not valid, i.e., tha®; = ®, ;) , does not sustain without interventigh (¢)
in T';. If ®, does not sustaip™ (¢) in Ty, then there exists a useand an actior; # g (¢) such
that useti prefers to adopt; when told to use (¢), i.e., the strategy; (t;, g (t)) = a; allows user
i to obtain a higher utility with respect to the obedient stggtg;; this contradicts the fact that the

device is incentive compatible. &, sustaing;™ (t) in T'; “with intervention”, then there existisand
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T # «* such that; juj 17 (2) > 0. Then

EU(f,g9,D —Z Z@th(t M (z)Ul(yg M(t),t,l‘)=V—|—W—|—

teT zeX

+ Tr({)q)ugM(t),gM(t) (Ii’) U(QM(t), t, 53) <V+W+ F(f)(l)t7gl\/l(t)7gM(t) (Ii’) U(gM (t), t, {L’*) < EUben
where

= N w(t) Y @y gugp gy (@) UlgM (2),,2)

teT t4t zeX

) D Prgr g @) UM (1)t 2)
xGXx;ém

which contradicts the fact thd® is a maximum efficiency device.

Finally, if 1 is not satisfied thed can not be satisfied either (becaugé(t) is not sustainable
without intervention), thus we obtain a contradiction2 i not satisfied then eith&is not satisfied
or the device is not incentive compatible (because, gBehis a particular case of the incentive-
compatibility constraints), thus, in both cases, we obtafiontradiction.

<« It is straightforward to verify that il — 4 are satisfied the resulting mechanism is incentive

compatible and the utility of the designer is equal to thechemark optimum (7.1). O

B.2 Proof of Lemma6

Proof. Let D = ((T;), (A;), u, X, @) be an optimal device (remember that we focus only on incentiv

compatible devices). The expected utility of usbaving typet; can be written as

EU(f,9,t:, D)= > 7t | t:]V; = (@)Y Praal@) Uila,t, x)

t_,€T_; acA reX

Denote bya™"(t) the minimum possible action suggested to usehen the type profile ig,

i.e.,a™"(t) = min{a; € A; : u(a;,a_;) > 0,a_; € A_;}. We define the following intervals

7

Ii(t) = [a;"m, mm{amm( ), gZNEO(t)}] , 1={1,...,n}

and we use the notatiaf(¢) and_;(¢) in the usual way.

We define the functiod;(a_;) in the domain/_;(¢) as follows:

EZ‘((I_Z') = {(IZ' c Iz'(t) such thatU; (a,t,l‘*) = Vz(t)}
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The function/; is a non-empty set-valued function from;(t) to the power set of;(¢). In fact,
Va' ;(t) e I_(t),

Us (an, !y t,0%) = 0 < Vilt) < 3 @) Us(a, t,2%) < 3 uela) Uslas, aly(),t,5%) (B.1)
acA acA

The second inequality of Eq. (B.1) is valid becaud'seutility is non increasing with respect to the
intervention level, i.e.lU; (a,t,x) < U; (a,t,z*), Ya,t,z. The last inequality of Eq. (B.1) is valid
because’s utility is non increasing in the actions of the other usand, from the definition of the set
I_;(t),ad ;(t) <a_;,Vd ; € I_;(t). Eq. (B.1) and the continuity afs utility imply that an action
a;(t) € 1;(t) satisfyingU; (a, t,z*) = V;(t) exists,V a_; € I_;(t). Moreover, by definitior?;(a_;)
has a closed graph (i.e., the graph/giz_;) is a closed subset df(t)) and, since’s utility is non

decreasing ir{az””'" gNE® (t)] ,li(a_;)is convexYa_; € I_;(t).

We define the functiod(a) = (¢1(a—1), -+ ,¢n(a—yn)), Va € I(t). The function/ is defined
from the non-empty, compact and convex &g} to the power set of (¢). Thanks to the properties of
¢;, ¢ has a closed graph ari¢k) is non-empty and convex. Therefore we can apply Kakutandfixe
point theorem [51] to affirm that a fixed point exists, i.eerexists an action profilgt) € I(t) such
thatU; (a, t, z*) = Vi(t), Vi € N. Notice thata(t) < gVE’ (t), thereforei(t) is sustainable without
intervention inl';, and we denote by’ the intervention rule that sustains without interventign)

in T;.

Finally, the original optimal devic® = ((T;), (A;), 1, X, ®) can be substituted with the device
D = ((T;), (A), i, X, ®) in which, V¢, i(t) = a(t) and ®, 5y, = ®,. With the new device
D the users are obedient (because the restriction of thevémtéon rule, ®/,, sustainsa(t)) and
honest (because the utilities they obtain for each combimatf reports are the same as in the initial
deviceD that sustains the honest and obedient strategy profile)e Bfmecifically,D sustains without
intervention the honest and obedient strategy profile. kh@e in the equilibrium path the users’
expected utilities usingp coincide with the users’ expected utilities usiBgthus, also the designer’s

utility (which is a function of users’ utilities) remainsetsame, and this implies thatis optimal. [



174 Appendix B. Proofs Chapter 7

B.3 Proof of Proposition 16

Proof.

EUi(g,t:) = By, [Ui(g(t), t:)] = gi(t:)"Ee_, [(C = V)] = gi(t:)"

(ng‘(ti) > E, [gj(tj)])]
j=Lii

8lnEUi(g,t2-) N tz' _ 1
dgi(t:) 9i(t:)  C—gi(ti) = 2271 j 2 Ee; [9(t5)]
82 In EUi(g,ti) ti 1
D) _ <0
dg? (t:) ?

9: (t:) (C = giti) = 2j1zi By, [gj(tj)])

Imposing that the first derivative is equal @ we obtain that the Bayesian Nash Equilibrium
gPNE must satisfyyi € Nandvi=1,...,uv,

n v

A+m) g () +n Y > w(mw)glNF () = Cn (B.2)
j=1,j%i k=1

The system of equations defined by (B.2) can be written as axnegfuation of the form

AgBNE:b
where
e P () zs cn
gPNE = Lo, gPNE = : b=, b= :
goNE BNE (7 b o
[ A 7P 7P ]
P A 7P
A= ,
P 7P A
Tl
A=diag(1+7,...,1+7,), 7= s P=w(n) ... W(Tv)]
Ty

Finally, we want to analytically compute the inverse of thatrix A. We can writeA as

A—7 P 1
+li| [P ... 7P| (B.3)
A—7-P I
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wherel is the identity matrix ifR™>"™,

The matrix inversion Lemma states that
(E+BCD) ' =E'—-E'B(C"'+DE'B) ' DE! (B.4)

Applying the matrix inversion Lemma tA ~! we obtain

-1 -1 r

A—-7-P A-7-P I
A—1: .. _
A-7-P A-7-P |
-1
-1 -
A-7-P I
I_1+|:T~P T P]
A-7-P I
Y
—1
A-7-P
TP ... T-P]' (B.5)
A-7-P

First, we calculate

A-7-P)' = AP A (-14P AT ) TP AT

1
— Al _ Al T‘—l‘f‘Z;}:lP(Tz’)% P.AL
= At—-At 7.3 P-ATE (B.6)
whereg = Ul —
—L+ 2 Py
Now we calculatéy —!. We rewriteY as
[ A—7-P T
Y = I+|:T'P T'P]'
I A-71-P 1
[ A1~ BA-17PA! 1
= I+{T'P T-P]'
I Al - BA"LTPA! I
= I+n-7- P (A" =BATYPA ) =I+7-[n- (1-PA'78)] - PA™!
= I4+7- " _ . PA! (B.7)

-y, Plr)
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Applying the matrix inversion Lemma % —! we obtain

-1
1-— P(r;
Y! = 1'-1'7. ( Liz P )1+TZ+P A~ 1-1—1-T> P-ATL T
n
1
= I-7- P-AL
-2, P(ri) i
ln 1+ +ZZ IP(Tl)l-‘rT
— 1- " . PA! (B.8)

L+ (n =130 P(r) s

Finally, we can calculata ! as

-1 1-1

A-7-P A-1-P 1
A—l — .. o
A—-7-P A—-7-P I
n B}
= |I- — . sPA | P . P
( 1+ (n—l)zZ IP(TZ)H_T ) [ J
-1
A-7-P B Cc ... C
= = (B.9)
A—7-P B Cc ... C
where

B=A"-pBA'7PA!

L+ (n =130 P

C=(A"-BA'7PATY)- (I — TPA_1> TP (A7 = BATITPATY)

O

B.4 Proof of Lemma 7

Proof. For a generic user we want to prove thai; is the best action given that the other users adopt

a_;. We study the sign of the derivative of the logarithmi’sfutility with respect toi's action

t; 1 <a
“o_ _ a; < Q;
a; C— Ek# ap — a; ‘ ‘ B
OUf(aia-itiz) _ ) 4 _ Lta i < a; < @ + —
Oa; ai O =3 pzan —a; —ci(ai — a;) ci
t; 1 S a4 T
b - _ > a4 L
a; C’—zk#ak—ai—x ’ Y



B.5. Proof of Proposition 18 177

We denote by:?f(a_;) the best response function of usei.e., i's action that maximizes's
utility when the action vector of the other userais. Since the users’ utilities satisfy the assumptions
] Ulla: a_: t;
A4-A6 of Subsection 7.4.1; (a“g bt )

"

(]
respect tay; in [0, aP%(a_;)) anda; < a]VF’ = aPP(aNF") < aPB(a_;), where the first inequality

> 0 for a; < ;. InfactU/ (a, t;, ) is increasing with

is an assumption of the Lemma and the last inequality is \@ichuse of the submodularity of the

game.
. . OUNa;, a_;,t;, o .z .
Imposing the condition—_ (azaa irti, 7) <0ina; < a; < a; + 2 we find
a; Cj

t; <C - ZZ:L]?#Z' ELk - CLZ'> — ay
C; >

B.1
- t; (ai — CNLZ‘) —+ a; ( O)

The right hand side term of (B.10) is decreasingiintherefore the condition is valid i, < a; <
a; + x if and only if it is valid in a;, obtaining

Ci
ti (C — > = Gk) — @i

¢ > =
a;

Notice that the condition og; is a necessary condition fag to be a NE. In fact if it is not satisfied
then U{(ai,d_i,ti,x) is strictly increasing inz; and, for the continuity oUiI(ai,a_i,ti,x) with
respect taz;, we can find an action; > @, such thatU; (a;, a_;, t;,z) > Ul (a;,a—;, ti, ).

Ila: G . s
Finally, imposing the conditiort. (0, i, i, T)

<0ina; >&i+£,wefind
Oa; G
ci[ti (C =3 hoy ax) — i

x>
- 1+t2(]—+cz)

Notice that, given the condition o, this last condition is sufficient fofi; to be a global maxi-
mizer. In fact in this wayJ{(al-, a—i,t;, x) becomes quasi-concavedst increasing fow; < a; and
decreasing fot; > a;.

]

B.5 Proof of Proposition 18

Proof. Conditionsl, 3 and4 of Proposition 13 are satisfied. It remains to verify tBas satisfied,

i.e.,Vti,f,' e Ty,

Z m(t_;)al (C - Zak> > Z m(t_;)al <C— de> (B.11)
k=1 -

t_;€T_; t_,€T_;
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where,Vj # i,
t;:C t;C . t;C . t;C
a; = , a5 = , Q; = ~ 5, G; = =
n"‘zk#tk‘i‘ti n‘f‘zk#tk‘f‘ti n-l-zk#tk—l-ti n—l—Zk#tk-l-ti
(B.12)

In particular, Eq. (B.11) is valid ifyt_; € T_;,

ali (0 —~ Zak> > ali <0 - ak> (B.13)
k=1 1

k=

Substituting Eq. (B.12) into Eq. (B.13) we obtain:

N\ i+l )
(”Jrzk;éitk”i) <E>tl >1 (B.14)

n + Zk;ﬁi tp +t; 2?2

We use the notatioh = n+ 3, ,; t, andy = i— We want to find the condition ofy andy such
that

b tzy titl —t
hiy) = P>
(y) < b+t > Yy

Notice thath(1) = 1. We take the derivative df with respect ta,

o (b+ty\ (y—b
h/ :tl ti—1 1
(v) = tiy <b+ti> <b+ti

Hy)>06y>be b>n+ Y b

f(%j) is decreasing irt; until {; = ¢; (n + Zk# tk), then it is increasing. This implies that
for t; < t; Eq. (B.13) is satisfied, i.e., uséhas no incentive to report a lower type. However, if
ti — tj, sinceh/(1) < 0, then user has an incentive to communicate a higher type (this result is
linked to Proposition 14). In fact Eq. (B.13) is not satisfietl ; € 7_;, and therefore Eq. (B.12)
is unsatisfied. Since the functidﬂ%) increases for; > (n + D ks tk), the only way for Eq.
(B.13) to be satisfied is that the functigity) will eventually reach the valué for a valuez! = Tti
and all the types higher thapare higher than the threshold vali@. Notice that it is sufficient that
this condition is verified by the type that follows Substitutingt; with 7, and#; with 7, into Eq.
(B.14) we obtain Eqg. (7.10).
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B.6 Proof of Proposition 19

Proof. First, we demonstrate that Eq. (7.11) describes a convedegnif 7, < n. The constraints

describe a convex set. We can rewrite the objective funatidhe following way

fla) =

£
- (C—Z)

n

> H]:

teT i=1

ZIDZT('

N

=

1

We calculate the partial derivatives ffa)

9f(a) _ 1

_ 2T (mga)

7

1

8aj C - Z?:l @ Zl:l 7"-(’77)6%
<Z;}:1 m(n)% (7 -

0 f(a) B 1

"'l

(C’ — Zai> HZ W(Tl)ai%]

1=1[=1

da;  (C -2 a)

*f(a) 1

daj0a,  (C -1, ai)2

Pfla) 2@

We have
da3  ~ Oajoay,

> 0, where the first inequality is valid if, < n.

Before concluding, we state and prove the following Lemma.

Lemma 8. The matrix

wherea; > 3 > 0,Vi = {1,2,--

also positive definite.

Proof.

a; B
B

5B

,n}, is positive semidefinite. If the first inequality is strictis

0

(679

Oél—ﬁ 0

az — 3

ap — 3
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Therefore
n 2
wT-H'w:(al—ﬂ)w%—k---—l—(an—ﬂ)w%—%ﬂ(Zwi>
=1
wl' H-w>0Vwifa; >B>0Vi.w! -H-w>0Vw#0if oy > 5> 0Vi. O

Applying Lemma 8 to the Hessian of the functigiia) we obtain that the Hessian is positive
semidefinite, therefore the functigifa) is convex.

As for the optimality of the communication-free incentivengpatible deviceD, we have

i ﬁ Uj(aihm*)} =
i=1

maxqE;
i=1

TJ H U (a,t;, @(r,m,a))‘ < mazxEy

n + n n ti
= max (C — E a2-> E, = max (C — E az-) E; H ai"]
a a
i=1 i=1 i=1

Thus, if D sustainsz, D is an optimal communication-free incentive compatibleickev
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