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ABSTRACT

In the latest decades, the common perception about the role of robotic
devices in the modern society dramatically changed. In the early
stages of robotics, temporally located in the years of the economic
boom, the development of new devices was driven by the industrial
need of producing more while reducing production time and costs.
The demand was, therefore, for robotic devices capable of substitut-
ing the humans in performing simple and repetitive activities. The ex-
ecution of predefined basic activities in the shortest amount of time,
inside carefully engineered and confined environments, was the mis-
sion of robotic devices.

Beside the results obtained in the industrial sector, a progressive
widening of the fields interested in robotics — such as rehabilitation,
elderly care, and medicine — led to the current vision of the device
role. Indeed, these challenging fields require the robot to be a part-
ner, which works side-by-side with the human. Therefore, the device
needs to be capable of actively and efficiently interacting with hu-
mans, to provide support and overcome their limits in the execution
of shared activities, even in highly unpredictable everyday environ-
ments.

Highly complex and advanced robots, such as surgical robots, reha-
bilitation devices, flexible manipulators, and service and companion
robots, have been recently introduced into the market; despite their
complexity, however, they are still tools to be used to perform, better
or faster, very specific tasks.

The current open challenge is, therefore, to develop a new gen-
eration of symbiotically cooperative robotic partners, adding to the
devices the capability to detect, understand, and adapt to the real in-
tentions, capabilities, and needs of the humans. To achieve this goal, a
bidirectional information channel shall be built to connect the human
and the device. In one direction, the device requires to be informed
about the state of its user; in the other direction, the human needs to
be informed about the state of the whole interacting system.

This work reports the research activities that I conducted during
my PhD studies in this research direction. Those activities led to the
design, development, and assessment on a real application of an in-
novative multilevel framework to close the cooperation loop between
a human and a robotic device, thus promoting and enhancing their
symbiotic interaction.

Three main levels have been identified as core elements to close this
loop: the measure level, the model level, and the extract/synthesize
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level. The former aims at collecting experimental measures from the
whole interacting system; the second aims at estimating and predict-
ing its dynamic behavior; the last aims at providing quantitative infor-
mation to both the human and the device about their performances
and about how to modify their behavior to improve their interaction
symbiosis.

Within the measure level, the focus has been concentrated on inves-
tigating, critically comparing, and selecting the most suitable and ad-
vanced technologies to measure kinematics and dynamics quantities
in a portable and minimally intrusive way. Particular attention has
been paid to new emerging technologies; moreover, useful protocols
and pipelines already recognized as de-facto in other fields have been
successfully adapted to fit the needs of the man-machine interaction
context. Finally, the design of a new sensor has been started to over-
come the lack of tools capable of effectively measuring human-device
interaction forces.

To implement the model level, a common platform to perform in-
tegrated multilevel simulations — i.e. simulations where the device
and the human are considered together as interacting entities — has
been selected and extensively validated. Furthermore, critical aspects
characterizing the modeling of the device, the human, and their inter-
actions have been studied and possible solutions have been proposed.
For example, modeling the mechanics and the control within the se-
lected software platform allowed accurate estimations of their behav-
ior. To estimate human behavior, new methodologies and approaches
based on anatomical neuromusculoskeletal models have been devel-
oped, validated, and released as open-source tools for the commu-
nity, to allow accurate estimates of both kinematics and dynamics at
run-time — i.e. at the same time that the movements are performed.
An inverse kinematics approach has been developed and validated
to estimate human joint angles from the orientation measurements
provided by wearable inertial systems. Additionally, a state of the
art neuromusculoskeletal modeling toolbox has been improved and
interfaced with the other tools of the multilevel framework, to accu-
rately predict human muscle forces, joint moments, and muscle and
joint stiffness from electromyographic and kinematic measures. To es-
timate and predict the interactions, contact models, parameters opti-
mization procedures, and high-level cooperation strategies have been
investigated, developed, and applied.

Within the extract/synthesize level, the information provided by the
other levels has been combined together to develop informative feed-
backs for both the device and the human. In one direction, the device
has been provided with control signals defining how to adjust the pro-
vided support to comply with the task goals and with the human cur-
rent capabilities and needs. In the other direction, quantitative feed-
backs have been developed to inform the human about task execution
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performances, task targets, and support provided by the device. This
information has been provided to the user as visual feedbacks de-
signed to be both exhaustively informative and minimally distractive,
to prevent possible loss of focus. Moreover, additional feedbacks have
been devised to help external observers — therapists in the rehabilita-
tion contexts or task planners and ergonomists in the industrial field
- in the design and refinement of effective personalized tasks and
long-term goals.

The integration of all the hardware and software tools of each level
in a modular, flexible, and reliable software framework, based on a
well known robotic middleware, has been fundamental to handle the
communication and information exchange processes.

The developed general framework has been finally specialized to
face the specific needs of robotic-aided gait rehabilitation. In this con-
text, indeed, the final aim of promoting the symbiotic cooperation
is translatable in maximizing treatment effectiveness for the patients
by actively supporting their changing needs and capabilities while
keeping them engaged during the whole rehabilitation process.

The proposed multilevel framework specialization has been suc-
cessfully used, as valuable answer to those needs, within the context
of the Biomot European project. It has been, indeed, fundamental to
face the challenges of closing the informative loop between the user
and the device, and providing valuable quantitative information to
the external observers.

Within this research project, we developed an innovative compli-
ant wearable exoskeleton prototype for gait rehabilitation capable of
adjusting, at run-time, the provided support according to different co-
operation strategies and to user needs and capabilities. At the same
time, the wearer is also engaged in the rehabilitation process by intu-
itive visual feedbacks about his performances in the achievement of
the rehabilitation targets and about the exoskeleton support.

Both researchers and clinical experts evaluating the final rehabili-
tation application of the multilevel framework provided enthusiastic
feedbacks about the proposed solutions and the obtained results.

To conclude, the modular and generic multilevel framework de-
veloped in this thesis has the potential to push forward the current
state of the art in the applications where a symbiotic cooperation be-
tween robotic devices and humans is required. Indeed, it effectively
endorses the development of a new generation of robotic devices
capable to perform challenging cooperative tasks in highly unpre-
dictable environments while complying with the current needs, in-
tentions, and capabilities of the human.
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SOMMARIO

Negli ultimi anni si e assistito a un radicale cambiamento negli obiet-
tivi della ricerca robotica.

Agli albori della robotica moderna, storicamente collocati nel contesto
del boom economico, lo sviluppo dei dispositivi robotici era guidato
dall’esigenza industriale di ridurre tempi e costi di produzione per
ottenere quantitativi sempre maggiori. Spesso questo coincideva con
I'esigenza di sviluppare dispositivi robotici per sostituire gli uomini
nello svolgimento di mansioni semplici e ripetitive. Questa esigenza
portava poi alla progettazione di ambienti dedicati intorno ai sistemi
robotici.

Piti recentemente vi & stato un progressivo interesse verso la robo-
tica di nuovi settori quali la riabilitazione, 'assistenza agli anziani,
la chirurgia. In questi ambiti il ruolo del dispositivo cambia radical-
mente: non € pilt solo uno strumento da utilizzare, ma diventa un
partner con cui lavorare fianco a fianco. Pertanto, il dispositivo de-
ve essere capace di cooperare attivamente ed efficacemente con le
persone, comprendendone le esigenze ed aiutandole al fine di otte-
nere obiettivi condivisi in ambienti non strutturati come quelli in cui
quotidianamente ci muoviamo.

Lo stato attuale del mercato vede robot utilizzati in diversi campi di
applicazione, come robot chirurgici, dispositivi riabilitativi, manipo-
latori flessibili e robot di servizio e assistenziali ma essi sono ancora
spesso semplici strumenti per svolgere specifici compiti. L’attuale sfi-
da aperta & pertanto quella di sviluppare una nuova generazione di
robot che sappiano invece essere partner, cooperando in simbiosi con
l'uomo. In altre parole, 'obiettivo di ricerca & quello di fornire ai di-
spositivi robotici la capacita di rilevare, comprendere ed adattarsi alle
reali intenzioni, capacita ed esigenze degli esseri umani.

Questa cooperazione simbiotica richiede uno scambio bidireziona-
le di informazioni tra 'uomo e il dispositivo. Da un lato, il disposi-
tivo necessita di essere informato circa le necessita, le capacita e le
intenzioni dell’essere umano. Dall’altro lato, 'uomo deve essere in-
formato circa il proprio stato e le intenzioni del dispositivo con cui
sta cooperando. Da tali considerazioni, tuttavia, emerge chiaramente
la necessita di attingere ed integrare i contributi forniti dalla ricerca
della comunita biomeccanica.

Questi obiettivi sono quelli che hanno guidato le attivita condotte
durante il periodo di studio del mio dottorato e che sono riporta-
te, insieme ai risultati ottenuti, in questo elaborato. Tali attivita han-
no portato a progettare, sviluppare e realizzare un nuovo framework
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multilivello volto a chiudere 'anello di cooperazione tra essere uma-
no e dispositivo robotico, di fatto promuovendo la loro interazione
simbiotica.

Al fine di raggiungere tale obbiettivo, sono stati identificati tre livel-
li principali all’interno del framework multilivello: il livello di misura,
il livello di modellazione ed il livello di estrazione/sintesi delle informazio-
ni. Il primo mira a raccogliere misure sperimentali dall’intero sistema
cooperante; il secondo a stimare e prevedere il suo comportamento
dinamico; 1'ultimo a fornire informazioni quantitative sia all'uomo
che al dispositivo in merito alle loro prestazioni e a come modificare
il loro comportamento per migliorare la loro simbiosi.

Nell’ambito del livello di misura, I’attenzione si & concentrata sull’a-
nalisi, sul confronto critico e sulla scelta di tecnologie indossabili e
minimamente invasive per misurare al meglio la cinematica e la dina-
mica. Inoltre, protocolli e procedure gia sviluppati e riconosciuti co-
me standard de-facto in altri campi sono stati adattati con successo alle
esigenze del contesto dell’interazione uomo-macchina. Infine, e stata
avviata la progettazione di un nuovo sensore per colmare la mancan-
za di strumenti in grado di misurare efficacemente le forze emergenti
dall’interazione dinamica tra uomo e dispositivo robotico indossabile.
In tale contesto, infatti, gli attuali dispositivi di misura non risultano
essere utilizzabili senza interferire con 1'interazione stessa.

Al fine di realizzare il livello di modellazione, & stata innanzitutto se-
lezionata ed ampiamente validata una piattaforma software che fosse
in grado di eseguire simulazioni integrate multilivello, cioe¢ simula-
zioni in cui il dispositivo e 1'uvomo sono considerati contemporanea-
mente come entita interagenti. Inoltre, sono stati studiati gli aspetti
critici che caratterizzano la modellazione del dispositivo, dell'umano
e delle loro interazioni e sono state proposte possibili soluzioni per
affrontarli. Ad esempio, la modellazione della meccanica e dei sistemi
di controllo dei dispositivi, realizzata attraverso gli strumenti messi a
disposizione dalla piattaforma software selezionata, ha permesso di
ottenere stime accurate del loro comportamento dinamico. Per stima-
re il comportamento umano, invece, sono state sviluppate, validate e
rilasciate come strumenti open-source alla comunita scientifica nuove
metodologie e nuovi approcci basati su modelli anatomici neuromu-
scoloscheletrici. Tale lavoro ha consentito di ottenere stime accurate
sia della cinematica che della dinamica in tempo reale, cioe nello stes-
so istante in cui i movimenti vengono eseguiti. Al fine di stimare la
cinematica articolare dell'uomo, nel corso del mio dottorato ho svilup-
pato e convalidato un approccio di cinematica inversa basato su un
modello muscoloscheletrico anatomicamente attendibile, che utilizza
come input le misure di orientazione fornite dai sistemi inerziali in-
dossabili. Inoltre, lo strumento di modellazione neuromuscoloschele-
trica che rappresenta l’attuale stato dell’arte in ambito biomeccanico e
stato migliorato ed interfacciato con gli altri strumenti del framework
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multilivello. Il lavoro svolto ha consentito di prevedere con precisione
ed in tempo reale le forze muscolari, le coppie articolari, e la rigidita
muscolare ed articolare dell’essere umano a partire da misure elet-
tromiografiche e cinematiche. Per stimare e prevedere le interazioni,
infine, sono stati studiati, sviluppati ed applicati modelli di contatto,
procedure di ottimizzazione dei parametri e strategie di cooperazio-
ne ad alto livello volte ad incrementare la simbiosi tra essere umano
e dispositivo robotico.

Nell’'ambito del livello di estrazione/sintesi delle informazioni, le mi-
sure e le stime ottenute attraverso gli strumenti realizzati negli altri
livelli sono state combinate per ottenere accurati feedback quantitati-
vi sia per il dispositivo che per le persone. Da un lato, al dispositivo
sono stati forniti segnali di controllo volti a modulare il supporto al
fine di soddisfare al meglio gli obiettivi dellattivita in corso di svolgi-
mento, nel rispetto delle reali capacita ed esigenze umane. Dall’altro
lato, sono stati sviluppati feedback quantitativi per informare 1'uten-
te sulle proprie prestazioni nell’esecuzione dei compiti, sugli obiettivi
delle attivita e sul supporto fornito dal dispositivo. Tali informazioni
sono state fornite all'utente sotto forma di feedback visivi, concepiti
per essere esaustivi senza pero distrarre ’attenzione, al fine di evita-
re eventuali perdite di concentrazione e coinvolgimento. Inoltre, sono
stati definiti ulteriori feedback volti ad aiutare gli osservatori ester-
ni, quali terapisti in contesti riabilitativi o gestionali ed ergonomisti
in campo industriale, nella progettazione e nel perfezionamento di
attivita personalizzate ed obiettivi a lungo termine.

Tutti gli strumenti hardware e software appartenenti ai diversi livel-
li sono stati poi integrati sviluppando un framework software modu-
lare, flessibile ed affidabile, basato su un noto middleware robotico, al
fine di gestire i processi di comunicazione e scambio di informazioni.

Infine, il framework sviluppato nel corso del mio dottorato ¢ sta-
to specializzato per realizzare un’applicazione di riabilitazione della
camminata assistita da un dispositivo esoscheletrico. Questo conte-
sto e stato scelto perché la cooperazione simbiotica & fondamentale
per raggiungere 1’obiettivo finale: massimizzare l'efficacia del percor-
so riabilitativo che deve essere dinamicamente adattato per seguire
al meglio le mutevoli esigenze e capacita del paziente mantenendolo
allo stesso tempo coinvolto e concentrato.

La specializzazione del framework multilivello proposto e stata uti-
lizzata con successo per realizzare gli obiettivi del progetto Europeo
Biomot. All'interno di tale progetto, infatti, abbiamo sviluppato un
innovativo prototipo di esoscheletro indossabile per la riabilitazione
della camminata in grado di modulare in tempo reale il supporto
fornito, seguendo diverse strategie di cooperazione ed in funzione
delle esigenze e capacita dell'utente. Allo stesso tempo, 1'utente risul-
ta essere coinvolto attivamente nel proprio processo di riabilitazione
attraverso accattivanti feedback visivi sulle sue prestazioni nel rag-
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giungimento degli obiettivi di riabilitazione e sul sostegno fornito-
gli dell’esoscheletro. Il framework si € dimostrato fondamentale per
chiudere I'anello di informazioni che collega utente e dispositivo e
per fornire preziosi feedback quantitativi agli osservatori esterni.

Sia i ricercatori che gli esperti clinici che hanno valutato I'appli-
cazione riabilitativa del framework multilivello hanno fornito feed-
back entusiasti in merito alle soluzioni proposte e ai risultati ottenuti.
Pertanto, si puo affermare che il framework multilivello sviluppato
in questa tesi ha le potenzialita di avanzare l'attuale stato dell’arte
nell’ambito dell’interazione simbiotica uomo-macchina. Infatti, tale
framework potra supportare lo sviluppo di una nuova generazione
di dispositivi robotici capaci di cooperare con I'uomo nell’esecuzione
di compiti impegnativi in ambienti non strutturati, nel rispetto delle
reali esigenze, intenzioni e capacita di quest’ultimo.
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INTRODUCTION

In the last few decades, robotics, as many other research fields, has
been deeply influenced by the stream of rapid changes that charac-
terized the rising of the modern society. The most radical aspect of
robotics evolution regards the perception of the role of the robots in
the society.

In the early stages of robotics, robots were perceived as automatic
instruments to substitute the human in heavy and risky tasks, effec-
tively working for him. The term “robot” itself, indeed, contains this
vision; it comes from the Czech word “robota”, which is generally
translated as “hard work”. It was used for the fist time in 1921 in
the play “Rossum’s Universal Robots” by Karel Capek to describe
an army of manufactured industrial slaves. Nowadays, after only few
decades, the society asks to the robotics community to develop robots
able to cooperate with humans, working with them on shared challeng-
ing tasks to be performed in higly unpredictable everyday environ-
ments.

This change in the perception of the role of the robots came along
with the widening of their application fields: originally limited to
the industry, they are now starting to be applied to almost everyday
life contexts — personal assistance, rehabilitation, medicine, manufac-
turing, etc. For this reason, the modern vision of robotics has been
named service-robotics, to endorse the human-centered perspective
that leads the current robotics research, thus underlying the general
aim of getting the robots closer to human social needs [70].

1.1 ROBOTICS: FROM THE ORIGINS TO MODERN CHALLENGES

The beginning of robotics dates back to the late 1940s when servoed
arms were developed in connection with master-slave manipulator
systems, to protect technicians handling nuclear materials [168]. Af-
ter this first application, engineers started to develop automated ma-
chines to handle difficult or dangerous repetitive tasks in both de-
fense and consumer manufacturing. The development was further
promoted by the economic boom that followed the second world
war and culminated around 1960 when industrial robots were for
the first time introduced in production processes, primarily related to
the manufacturing of components for the automotive industry. At the
same time, even academic community started working on robotics, al-
though, at that time, the SAIL project (at the MIT) was the only sizable
academic venture into robotics. The post-war economic boom and
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the consequent industrial mass production philosophy strongly influ-
enced the focus of the recently born robotics community. For about a
decade, the main goal was to develop faster and faster robots, with
good precision performances, neglecting the responsiveness to envi-
ronmental factors. Indeed, robots were designed to work in confined
and carefully engineered environments. Researchers were ambitious
to explore new horizons, refining kinematics, dynamics and control
system theory, and applying them to complex robots. This was also
the basic concept behind mechatronics, a discipline that joins together
mechanics, electronics, and computer science.

In the following decades, the robotics was re-defined as the study
of the intelligent connection between sensing and actuation, with the
systems integration becoming a key aspect of robotic engineering [94].
Vision, tactile, and force sensing systems were investigated in those
years, aiming at developing adequate controls to give to the robots
the capability of being aware of their surrounding.

To further enhance robotics, the interest of scientists was directed in
understanding how the human being “works”. It is undeniable that,
since the early beginning, the robotics community had taken inspira-
tion from human body to realize robots kinematic chains. Indeed, the
robots were intended to substitute humans in performing some basic
tasks; this implied that the best solution was to copy the human body
structure to design the robots (i.e. robotic arms). However, only in the
late 1980s the scientific interest of robotics community was clearly di-
rected at understanding human body, not only from a kinematic point
of view, but in its complex. For this reason, comparative studies of hu-
man and robots led to the development of new approaches to model
human functions.

Around 1980s and 1990s, together with the first steps of artificial
intelligence promoted by the increasing computational capabilities,
academic research started to investigate the development of intelli-
gent robotic machines with a more general purpose. However, little
space was given to this research by the industries, already satisfied by
the high productivity reachable with the available robots, designed
on purpose for specific tasks. Indeed, only few research programs,
mainly related to space or underwater explorations, seemed to be
interested in this stream of research.

Advancements on intelligent robotics led, in the late 1990s, to the
opening of a new field of research in robotics: the humanoids. This
step caused the beginning of a complete new era for robotics: the so-
called human-centered robotics [168]. Indeed, from the old concept of
robots as substitute for humans in simple tasks to be completed in
highly structured environments, the community switched to a more
challenging vision, where robots interact with humans in normal ac-
tivities of everyday life. Until this moment, robots were separated
from humans for safety sake, whereas, in this new view of robotics,
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humans are service takers who live and work beside robots, taking all
the possible advantages from this coexistence. This new paradigm led
to the goal of developing robots able to be general-purpose mechan-
ical workers, entertainers, social companions for elderly people, and
test-bed to experiments theories from neuroscience and psychology.

From this vision arose also the consideration that everyday environ-
ment is “designed” to be lived by humans; therefore the best solution
for robots designers is to take inspirations from humans, in terms of
kinematics, dynamics, sensing skills, and behavior.

Originally introduced to answer to the specific need of the indus-
try to keep the pace with mass production required by the economic
boom, the industrial robotics has been recently obliged to move its
focus on the development of solutions compatible with product cus-
tomization and small production lots. If this well represents the in-
dustrial point of view, a large set of completely different applications
are nowadays looking forward to the new generation of human-like
robots.

The development of human-like robots, able to work in hazardous
environments with the goal of handling inspections, collecting mea-
surements, performing search and rescue operations, and other pos-
sibly harmful tasks, is one of the most popular requests directed to
robotics community by specialists of these fields [50].

On the contrary, a completely different set of challenges emerges
from the needs of healthcare specialists. Indeed, the rapidly aging of
the society causes an increasing demand for social and medical cares
that, however, corresponds to a decreasing offer of human specialists
able to provide them. An interesting index to understand the situa-
tion could be found in the field of rehabilitation. Given the number
of physiotherapists in the US, an average service of 40 minutes per
day could be provided to each stroke patient. However, from several
studies emerges that to maximize the restoration of motor functions
after a stroke, about 6 hours per day of therapy should be provided to
the patient [17, 201]. In the rehabilitation field, therefore, the demand
is for robots able to act as physical therapists to help patients in their
everyday rehabilitation process to regain lost motor functions.

Enlarging the focus to a more general perspective, robots should
enable individuals to be autonomous as long as possible, even in
elderly age, by effectively assisting them — for example compensating
for lost bodily functions —, helping them in their everyday routine,
and monitoring their physiological conditions [154].

All these applications share the same vision of robots as multi-
purpose devices that strictly cooperate with humans in highly un-
predictable environments. To move forward in the implementation of
this challenging vision, a very wide horizon of scientific disciplines
are asked for contributions.
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The biomechanical community is asked to face one of the most
wide challenges: to provide the tools to assess and understand hu-
mans behavior in terms of kinematics, dynamics, motion intentions,
and human-environment interactions. Moreover, for each of these
aspects, accurate and effective models should be developed and in-
tegrated to the future generation of smart robotic devices. This ex-
pertise is indeed mandatory for robotics researchers to take inspira-
tion when designing robots architecture, to provide robots with new
“smart” capabilities, and to develop advanced controls for achieving
a symbiotic human-robot cooperation.

Neuroscience, psychology, biomechanics, and robotics contribu-
tions are mandatory to guarantee the safeness of the interaction be-
tween human and robot, mainly due to the robot awareness about
its surrounding. Indeed, the robot should be able to respond in pre-
dictable, compliant, and human-like ways to unforeseeable events,
generated by both the environment and the human.

Finally, basic sciences and micro-electronics contributions are re-
quired in order to provide to the robots new advanced sensing capa-
bilities.

1.2 BIOMECHANICS: HOW HUMAN MOVES

As discussed in the previous section, understanding and accurately
modeling the mechanisms that underlie human motion are the core
requirements to advance human-centered robotics.

Despite the quite recent interest in this research field by the robotics
community, human motion has always fascinated researchers. Two fa-
mous pioneers in investigating human anatomy from an engineering
point of view were Leonardo da Vinci and Galileo Galilei, just to cite
two among the others. The efforts of those pioneers contributed to
the rise of a new discipline of research: the biomechanics.

Biomechanics is the study of the continuum mechanics (i.e. the
study of loads, motion, stress and strain of solids and fluids) of biolog-
ical systems and of their mechanical effects on the body movement,
size, shape and structure. This field of research, therefore, spaces from
the microscopic cellular level to the system level of the neuromuscu-
loskeletal apparatus and its movement [118]. Human movement, in-
deed, is the outer effect of highly coordinated and complex mechani-
cal interactions of bones, muscles, ligaments and joints (i.e. the mus-
culoskeletal system) under the control of the nervous system [212].
Standing the scope of this dissertation, only the biomechanics of hu-
man motion will be considered in the following, intended as the
inter-discipline that describes, analyzes, and assesses human move-
ments [214].

Historically, the beginning of the systematic study of biomechan-
ics as a scientific discipline is dated back to the middle of the 18th
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century, when Wilhelm and Eduard Friedrich Weber published the
results of their research on the mechanism of human walking [213].
Later on, in the 19th century, Etienne-Jules Marey correlated some hu-
man movements, acquired using cinematographic instruments, with
the forces exerted on the ground recorded using instrumented shoes
[103, 144]. This study was the first step of the process that shifted
human motion analysis from a descriptive science to the modern
one, based on quantitative measurements. Marey’s technical solution
for the recording of ground reaction forces was refined few years
later by Carlet, enabling the recording of foot pressure separately at
the forefoot and the heel. Around the same years, Eadweard Muy-
bridge realized that traditional cameras were not sufficient to acquire
fast limb motion. To solve the problem he created a camera with a
shutter speed of up to 1/100 of a second and recorded the move-
ments of men, women, children, animals and birds [103]. Further im-
provements to this newly born technology culminated in the work
of Carl Pulfrich, considered “the father of stereophotogrammetry”,
the technique that allows to record in numerical form the 3D co-
ordinates of physical landmarks [161]. By the end of the 19th cen-
tury, Christian Wilhelm Braune and Otto Fischer applied an inno-
vative mathematical algorithm, based on Newtonian mechanics, to
study the biomechanics of human gait under different conditions of
load starting from stereophotogrammetric data and ground reaction
forces measurements [184]. Their work is considered a major mile-
stone in motion analysis, indeed the mathematical methodology they
developed remained essentially unchanged and is the base of mod-
ern approaches. Moreover, they focused also on the study of human
anatomy developing a set of regression equations to estimate body
segment parameters from subject height and mass.

From the beginning of 20th century to present days, technological
progress continuously provided better systems to record human mo-
tion, enabling high quality recordings at very high frequencies. The
availability of high-speed computers and video camera systems en-
abled 3D motion analysis. This progress, combined with a deeper
knowledge of human anatomy and mechanics, further enhanced hu-
man motion analysis. However, its debuts in clinical practice could
be only dated back to after the second world war with the goal of
assessing the effects of rehabilitations of retired soldiers with limb
injuries.

The first contact with the mechanical world started around these
years with Verne Thompson, who applied mechanical engineering
theory to clinical practices to design prostheses for amputees. Further-
more, his works revealed a key factor of human gait having a critical
impact on gait rehabilitation: he managed to prove the assumption
that gait efficiency could be maximized by focusing the rehabilitation
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on minimizing the lateral displacement of the center of mass of the
human body.

In the same decades, a significant amount of effort was spent
on the automation of processing and analyzing procedures of 3D
motion analysis. Those efforts were finalized by the research group
leaded by Prof. John P. Paul. in the first generation of Vicon motion
capture system. The most innovative feature of this system was the
capability of capturing and storing the data in numeric form while
all the previous systems used analog images. This innovation was
a real breakthrough that enabled the widespread adoption of 3D
motion analysis.

However, the simple analysis of motion from a kinematics point
of view started being limiting in the middle of the 20th century.
Indeed, some research streams began to focus their attentions to the
problem of assessing muscle activity to get insights on muscle forces
and joint torques. Given that it was impossible to directly measure
those quantities, those groups started to investigate the feasibility
to record muscle activations using non invasive instruments. The
first researcher to pioneer this path was Dr. J. Robert Close, by using
the microphone of a video camera to record the sound produced
by subject’s muscles [42, 43]. With this study, he was the first to
synchronously record kinesiological electromyography of one muscle
and kinematics data. Later on, Jacqueline Perry pioneered the use
of fine-wire surface electrodes to record electromyographic (EMG)
signals during gait [153]. As muscles are the “motors” of the human
body, therefore fundamental to produce movements, EMG signals
are extremely useful to assess not only the electrical activity of
muscles but also, as a consequence, their contribution to the motion.
Following this path, EMGs have been used, together with 3D ground
reaction forces and kinematics data, to study human motion, moving
forward in the establishment of “modern” motion analysis science.

A good definition of “modern” human motion analysis has been
provided by Cappozzo et al. They defined human motion analysis
as the science that “aims at gathering quantitative information about
the mechanics of the musculoskeletal system during the execution of
a motor task” [32].

The joint kinematics, one of the key descriptors of human motion,
are nowadays routinely measured in laboratory settings, where a
set of stereophotogrammetric cameras track the 3D position of pas-
sive reflective markers placed on well-defined subject’s boney land-
marks [31, 216]. In decades of use of stereophotogrammetric systems,
experimental protocols [64], data processing pipelines [48, 99], and
joint kinematics estimation techniques [78] contributed to the success
of this technology that became the de facto standard in biomechanics.
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Moreover, model-based simulations further enhanced the accuracy of
joint kinematics estimation. The use of accurate skeletal models that
implement kinematics constraints, indeed, proved to be useful in the
reduction of the effects of experimental sources of errors [41, 57, 109].

Despite more than two centuries have passed since the first stud-
ies of human motion, the challenge of gathering insights on mus-
culoskeletal systems during movement is still far from being fully
addressed.

If for kinematics estimates the accuracy level obtained with modern
technologies, pipelines, and models could be considered adequate,
for dynamics estimates a state-of-art solution still needs to be reached.
Even nowadays, like in the past century, muscle forces, joint moments,
and internal joint loads cannot be directly measured without invasive
surgical interventions aiming at inserting sensors in human limbs.
The only case in which this kind of interventions could be pursued
is when combined to other necessary surgeries: for example, during
a total knee replacement procedure, it is possible to insert pressure
sensors in the prosthesis to collect information on knee loads. How-
ever, apart from those special and limited cases, dynamic quantities
like muscle forces, joint moments, and internal joint loads need to
be estimated using inverse dynamics approaches or forward simula-
tions. Inverse dynamics simulations estimates the neural activation
and the muscle forces that caused a certain motion, known in terms
of kinematics and external forces measured with non-invasive ap-
proaches [52]. On the contrary, forward simulations estimate muscle
forces, joint moments and internal loads using kinematics and EMG
data as inputs [159].

Both the approaches rely on mathematical models that describe
the human neuromusculoskeletal (NMS) system. Traditionally, those
models only described musculoskeletal systems from the mechanical
point of view (i.e. multi-link chains with ideal joints connecting the
segments). Model parameters like segment lengths and masses, joint
center positions, and muscles and tendons internal parameters were
originally retrieved by means of measurements taken from human ca-
davers. More recently, to account for intra-subject variability, calibra-
tion procedures were developed to tune those parameters on subject’s
characteristics, leading to the introduction of the term subject-specific
models. However, modeling something always implies some assump-
tions to simplify the model and to reduce the computational power
required. A huge collection of models have been developed during
the last decades, each one characterized by different complexity lev-
els and working assumptions. The accuracy of those models is highly
influenced mainly by two factors: the validity of the assumptions (i.e.
human joints are far from being ideal hinge joints, etc. ) and the qual-
ity of the experimental data.
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In general terms, model-based simulations are the only way to
retrieve some insights on musculoskeletal functions [9] and internal
quantities such as muscle lengths and muscle forces [52, 174]. Some
recent implementations allow to obtain those estimates even in
real-time, allowing to provide feedbacks to the subjects in a broad
range of applications [160, 200].

The last decades were characterized by major advancements in hu-
man motion analysis, both from a technological and a computational
point of view. However, a wide range of challenges still needs to be
pursued by the biomechanics community.

For the computational aspect, modeling approaches and process-
ing pipelines are still too cumbersome to be routinely used in clinical
and industrial daily practices. Despite the good balance between ac-
curacy and usability is probably application-dependent, the research
community needs to continue to develop more and more accurate
models but, at the same time, to work side by side with users to be
sure to address properly their usability concerns.

Moreover, a proper validation of the estimates provided by those
tools is still partial or, in the worst cases, missing.

Finally, from a technological point of view, a major challenge is to
develop instruments to free motion analysis from the constrains given
by the laboratory settings. Indeed, current state-of-art practices could
be applied only in laboratory settings, requiring trained personnel,
dedicated spaces, and high cost instruments. Those constraints are
the major issue that needs to be solved to address the demands of the
robotics community for wearable systems to estimate the motion of
users during their cooperation with robots in everyday environments.

1.3 SYMBIOTIC COOPERATION: INTERFACING HUMANS AND
ROBOTS

As emerged clearly from the brief historical overview of the previ-
ous sections, in the latest decades the robotics community started to
look into the work of the biomechanical one and to take inspiration
form its findings. The two communities indeed are required to work
side by side to achieve the highly challenging goal of developing a
new generation of robotic devices capable to symbiotically cooperate
with humans in shared higly challenging environments and tasks. A
broad range of application fields, such as manufacturing, healthcare,
personal assistance, and many others, might benefit from this chal-
lenge. Despite each application is characterized by specific needs, the
leitmotiv that all the fields shares is the capability of the device to be
aware of the human and behave consequently, achieving a complex
and safe symbiotic cooperation.
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The strong cooperation between robotics and biomechanics
communities culminates in the birth of the biomechatronics.
Biomechatronics is defined as the discipline that combines together
robotics, neuroscience, electronics, and mechanics, aiming at devel-
oping mechatronic devices (i.e. robots, prostheses, exoskeletons, etc.
) inspired by the human body and capable of a close interaction
with humans. For example, in rehabilitation, the high-level goal is to
develop a new generation of exoskeletons able to interact with the
patient, to understand in real-time his/her physiological state, and to
adjust accordingly their behavior, thus maximizing the rehabilitation
treatment effectiveness. In prosthetics, instead, the goal is to design
orthoses able to effectively replace human limbs functionalities and
to efficiently integrate themselves with the subject’s NMS system. In
industrial applications, the high level goal is to develop new robots
capable of safely sharing the environment with human operators
while working on a common task.

Leading back to the general perspective, an important aspect to
keep in mind of the human-robot interaction is its impact: the strong
modification of both human and device standalone behavior. Indeed,
despite humans are used to cooperate with their similar since the be-
ginning of their life, they are definitely not familiar with robots capa-
ble of understanding human intentions and modifying consequently
their behavior. Indeed, robots could never think as humans, there-
fore their reaction is likely to appear to users eyes not the most in-
tuitive, despite being, probably, the most “logic” or efficient. On the
other hand, robots have always been statically programmed to follow
a strict chain of cause-effect sequential operations, possibly synchro-
nized with the ones of other robots. However, to cooperate with hu-
mans, robots need to be aware not only of their surroundings but
also of the humans. The achievement of this challenging goal has two
main requirements: a complex network of different sensors capable
of “sensing” the modifications of everything around the robot, and a
powerful artificial intelligence able to fuse those pieces of information
together and consequently take behavioral decisions.

Several decades of research and industrial practices endorsed the
development of more and more advanced and accurate sensors, capa-
ble to collect measurements in different domains (i.e. distances, ori-
entations, shapes, sounds, etc). Those sensors, combined with algo-
rithms and pipelines to process the measurements in real time, pro-
vided researchers and robotics companies with a wide spectrum of
options for giving the devices the capabilities to “feel” the environ-
ment. However, only recently the robotics community started to face
the problem of sensing the human presence and his behavior when
sharing the “workspace” with the robot. Standard sensors and algo-
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rithms used to “sense” the environment revealed their limitations,
thus, the need of new sensors and approaches emerged clearly.

Since the main focus of this thesis is the interaction between
the robotic device and the human, the following of this work will
concentrate on that topic.

A proper symbiotic cooperation between the human and the
robotic devices passes through two strongly interconnected interfaces:
a physical one and a cognitive one. The former could be intended as
the mechanical layer where the interaction forces are exchanged. The
latter, instead, is the “place” where information about “the other” (i.e.
the robot for the human and vice versa) are exchanged. This interface
is the most challenging to define and to develop solutions for.

The study of the mechanisms that regulate each interface from
an engineering perspective and the development of hardware and
software tools to promote and enhance the symbiotic cooperation be-
tween the human and the robotic device are two of the core focuses
of the biomechatronics. On one hand, the knowledge of the interac-
tion forces exchanged in the physical interface is mandatory to adjust
the device controller in order to maximize the efficacy of the coopera-
tion. On the other hand, proper estimates of both device and human
dynamics state should be provided to a feedback systems for inform-
ing human and device about “the other”, in order to promote their
cooperation, preventing unsafe and undesirable interferences.

In the following of this chapter, a brief overview of the complete
interconnected hardware and software framework developed during
my PhD will be presented. A complete description of each block will
be demanded to the following chapters of this dissertation.

1.4 A MULTILEVEL APPROACH TO THE SYMBIOTIC COOPERA-
TION DEVELOPMENT

The core focus of my PhD has been the development of a modular,
robust, and efficient multilevel framework, capable of enabling, pro-
moting, and enhancing the symbiotic cooperation between a robotic
device and its user. Despite being mainly tailored to rehabilitation
context, the proposed framework could fit any case of cooperation
between a human and a robotic device.

Miming a largely accepted software engineering approach, the
structure of the framework has been defined using the multilevel
paradigm. This approach consists in dividing a complex problem into
different levels, then connecting each level with the others through a
common infrastructure that relies on standardized interfaces and ef-
ficient communication protocols. The multilevel paradigm is formal-
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ized to be applied in a hierarchical structure so that each level is
broken into interconnected sub-levels and so on.

One of the main benefits provided by this approach is the reduc-
tion of problem complexity. Indeed, each level could be seen by the
others as a black-box — an image that describe the concept of hiding
the internal functionality — which simply takes inputs and provides
outputs. Another major benefit of using this approach, strictly
related to the previous one, is the separation of the competences
required to the developers. Generally, when the problem is wide and
multidisciplinary a broad range of different competences is required.
For example, in our case, to effectively promote the symbiotic
cooperation between a human and a robotic device, developers
are asked to have a strong background and advanced competences
in biomechanics, robotics, hardware development, and computer
science. Thanks to the adopted approach, each level (or sub-level)
requires a smaller sub-set of specific competences. For example,
sensors development does not require an high level of knowledge in
biomechanics; however, a basic level is still mandatory to develop the
interfaces to communicate with the other levels.

A diagram showing the main levels and sub-levels which composes
the developed multilevel framework is reported in Fig. 1.1.

Within the developed framework, three main levels have been de-
fined: a measure level, a model level, and an extract/synthesize level.

The measure level could be defined, intuitively, as the level at
which, using state-of-art sensors, direct measurements of physical
quantities are collected. This level could be alternatively named ex-
perimental, since measurements are obtained by instrumenting both
the device and the human with different types of sensors.

The measure level could be further divided into three sub-levels: the
device sub-level, the human sub-level, and, lastly, the interface
sub-level.

For the device sub-level, there are many sensors which allow
to directly measure the large majority of the quantities of interest
- such as external forces acting on the device, joint torques, and joint
kinematics (i.e. joint angles and position in the space). However, cost
reduction policies and reliability issues often limit the practical col-
lectability of some quantities — for example, torque sensors are deli-
cate and expensive, therefore their integration in the devices should
be carefully evaluated case by case. Therefore, unmeasured quanti-
ties should be estimated in the model level from measurements that
are easier and cheaper to perform — for example, joint torques could
be estimated, with some approximations, from motor input currents
and joint speeds, the latter obtained by numerical differentiation of
the measured joint angles.

11
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sub-levels are reported together with some examples of their

goals.
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In the human sub-level, collecting experimental measures is way
more complicated, indeed, only a very limited set of quantities is di-
rectly measurable using non-invasive methods. The human sub-level
could be further broken down into two minor sub-levels depending
on the type of quantity it aims to measure.

The kinematics sub-level measures quantities related to the orienta-
tion and position of each human body segment in space. In the ideal
case, the minimal set of measurement would be composed by joint
angles and body position in the space. However, directly measuring
those quantities is, in most of the cases, not feasible. Only in some lim-
ited cases, accepting a modest accuracy, it is possible to directly mea-
sure joint angles by using electro-goniometers. In the large majority
of the cases, instead, it is possible to measure only kinematics-related
quantities and then provide those measures to the model level to ob-
tain an estimate of the body pose — i.e. joint angles and body position
in space. The de-facto standard to collect kinematics-related quantities
is the optoelectronic technique. This methodology, better described
in the prologue of this dissertation, measures the three-dimensional
(3D) position in the space of reflective markers, attached to the sub-
ject’s body segments, through a set of synchronous high definition
cameras. However, it is a very expensive system both for its cost
and for the requirement of being used inside a dedicated laboratory
by trained personnel. Moreover, it has the drawback of being very
sensitive to lightning conditions, reflections, and markers occlusions
phenomena. A relatively new but very promising candidate to over-
come these limitations is the inertial motion capture system. A sys-
tem based on the simultaneous use of several inertial measurement
units (IMUs) — small sensors which (indirectly) measure their orien-
tation with respect to an Earth-fixed reference frame'. Once rigidly
attached to the human body segment, IMU orientation expresses also
the the orientation of the segment itself. Wearable, cheap, easy to use
for untrained users, well adaptable to almost every environment —
there are still few limitations due to magnetic interferences that are
going to be solved in a short-time horizon by the producers —, and
promisingly accurate, IMU systems could enable the measurement of
kinematic-related quantities almost everywhere at a very limited cost.

The dynamics sub-level, instead, is in charge of collecting measure-
ments related to the dynamics of human motion. Since non-invasive
sensors capable of directly measure human muscle forces and joint
torques are not available, those quantities should be estimated in the
model level from measures of dynamics-related quantities.

A dynamics-related quantity that nowadays is routinely measured in
both clinical practice and biomechanics research is the ground reac-
tion force (GRF) — i.e. the force exerted by something in contact with

The meaning of the term indirectly will be explained in the details later on, here
it is just used to indicate that the orientation of the IMU is retrieved by fusing the
measurements provided by the sensors it integrates.
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the ground. GRFs are measured by force platforms, instrumented
rigid iron plates mounted on the floor — definitely not portable due
to size and weight — capable of measuring the 3D force and the 3D
moment exerted by everything pushing on their surface. A valuable
wearable alternative to these devices, capable of measuring the same
quantities, is still far from being available despite lot of research ef-
forts are focused on the development of instrumented shoes and pres-
sure insoles. While the latter have recently become commercial prod-
ucts, despite limited to the measurement of the vertical component of
the force, the former are gaining attentions thanks to the availability
of quite small and reliable 6-axis force-torque sensors. Another com-
monly measured quantity related to human motion dynamics is the
electrical activity of the muscles. Electromyographic systems, indeed,
measures electrical muscle activity using conductive probes sticked
to human skin over the muscle belly. Accurate and relatively afford-
able, those systems provide electromyographic signals that, within
the model level, are used to estimate, feeding appropriate NMS mod-
els, muscle forces, joint moments, and joint internal loads.

Finally, the interface sub-level, started to be investigated with
the aim of measuring the forces exchanged at the interface between
two objects that comes in contact. Few wearable prototypes, followed
by even fewer commercial products, have been developed in the latest
decades thanks to the technological progresses in materials, manu-
facturing, and device miniaturization to face the specific needs of
measuring those forces. However, the currently available prototypes
are still far from the commercial stage since based on too expensive
technologies and manufacturing processes. Moreover, the even more
challenging problem of developing an ad-hoc adequate sensor is still
far from being solved. Indeed, the perfect “interaction” sensor should
be flexible and thin enough to minimize its impact on the interaction
phenomena itself while being, at the same time, large enough to sense
forces in large and shape-changing surfaces such as the human limbs.

The second level of the proposed framework, the model level, is
composed by all the algorithms and software tools required to pro-
cess the measurements provided by the measure level in order to
gather insights on the mechanisms that underlies the dynamics of the
whole system. The outputs of this level are the dynamics quantities
researchers are interested in estimating and/or predicting, indepen-
dently from the reasons of this interest. As mentioned in the descrip-
tion of the measure level, in a completely ideal case, all the quantities
researchers are interested in could be measured. In such an ideal sce-
nario, the scope of this level would be limited to the prediction of the
quantities required to implement feedforward control actions on the
device. Indeed, feedforward actions requires to approximately know
in advance the future value of the quantity (i.e. at time t it would be
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necessary to have an estimate of the value at time t + 1).

In the real context, however, the model level is mandatory not only to
provide predictions but also to estimate the unmeasurable quantities
from the measurable ones. This goal is achieved through modeling
and simulating the behavior of the system. Different models, charac-
terized by different levels of detail and complexity, could be devel-
oped; however, the choice of the most appropriate model to use is
the result of a challenging trade-off between computational demands
and reachable estimations accuracy. As for the measure level, also for
the model level three sub-levels could be defined: device, human, and
interface.

At device sub-level, different models are generally used for dif-
ferent purposes. Typically, two device models are developed and rou-
tinely used: one for the controller and another one for the mechatron-
ics assembly of the device. The model of the controller is typically
used in simulation to tune the parameters to be used in the real con-
troller as initial values for the controller fine-tuning procedure. The
purpose of the device mechatronics model, instead, depends on its us-
age scenario: to perform in-silco simulations or paired with the real
device. In simulation it is used in combination with the controller
model to study how different control strategies and device parame-
ters affect the device dynamical behavior. Paired with the real device,
instead, it allows to estimate and/or to predict unmeasurable quanti-
ties by using the available measures.

The human sub-level, instead, aims at estimating human kinemat-
ics and dynamics from the experimentally available measurements.
This sub-level could be further divided into two sub-levels: the kine-
matics sub-level and the dynamics sub-level.

The kinematics sub-level estimates joint and segment kinematics dur-
ing human movements and it is fundamental for the subsequent dy-
namics investigations. It is based on (musculo)skeletal models and
provides human joint angles — and optionally human location in the
3D space — by processing motion capture data — i.e. marker trajecto-
ries in the space recorded through stereophotogrammetric systems
or inertial sensors orientations. The dynamics sub-level takes as input
the outputs of the kinematics sub-levels and dynamics-related experi-
mental measures — such as ground reaction forces or EMGs. Then, by
using subject-specific anatomical neuromusculoskeletal models tuned
to match subject’s physiological and anthropometric characteristics,
it estimates internal quantities such as muscle forces, joint moments,
muscles and joints stiffness, and internal joint loads.

The last sub-level that composes to the model level is the interface
sub-level. This is the sub-level where researchers interested in study-
ing and enhancing human-device cooperation are concentrating their
efforts. The rationale behind developing interface models is the need
of being able to understand and predict the mechanisms that regu-
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late the interaction between the device and the human. This requires
to develop models belonging to two different sub-levels: the physical
sub-level and the cooperation sub-level.

The physical sub-level groups all the models capable of describing
the physical contacts between the human and the device. For example,
in wearable exoskeletons, the areas where the contacts occur are con-
fined to the locations where the cuffs are tightened to user limbs. In
the common practice, these contacts have always been assumed rigid
and concentrated in known locations. This practice hides a strong
assumption: the device is, indeed, considered rigidly attached (i.e.
screwed) to the user bones. However, this is a rough approximation;
indeed, both the attachment cuffs and the human soft tissues (i.e.
muscles, skin, and fat layers) change their shape and stiffness prop-
erties during the movements, leading to mutable contact areas and
variable surface properties. One of the main advantages in removing
the rigid attachment hypothesis is the capability to assess the inter-
action forces exchanged at the interface, taking into account also the
dissipative phenomena. This capability could enable the development
of control strategies capable of reducing device power consumption
and, at the same time, maximizing the comfort of the user (by reduc-
ing, for example, the share forces). Moreover, the knowledge of the
interaction forces could also lead to new mechanical designs for de-
vices, actuators, and attachments to enhance their effectiveness, thus
promoting a stronger symbiotic cooperation. For scenarios involving
humanoids or industrial robots, the physical interaction is even more
variable, both in terms of surfaces properties and locations where the
contact occurs. Indeed, the human and the device are not linked to-
gether, therefore the contact may occur in different locations depend-
ing on the task execution. However, independently from the appli-
cation scenario, creating models capable to describe the contacts be-
tween the human and the device requires to have the models of both
the “actors” and then link them together through a contact model,
thus leading to a single multilevel model.

The cooperation sub-level focuses on the creation of models de-
scribing and/or defining the cooperative laws that regulate the
execution of shared tasks. Models belonging to this sub-level aim at
adapting, at run time, the behavior of the device to fulfill the real
needs and capabilities of the user, thus maximizing the efficacy of
the cooperation. This means developing models that, taking as input
human and device status estimates (provided by the other sub-levels)
together with the outputs of the physical sub-level, compute, accord-
ing to the defined cooperation control strategy, the high-level control
target to be provided to the device. Examples of information that
could be fundamental to feed those models are human kinematics
and positioning in the environment, predicted muscle forces and
joint moments to understand subject intentions, and joint stiffness.
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Moreover, device joint torques and stiffnesses should be provided
as well. The availability of those information is indeed fundamental
to effectively compute an adaptation strategy that adjust device’s
behavior to comply with user needs and capabilities and to take
advantages from user actions. The integration of such models in the
whole multilevel framework changes the way the device “perceive”
the human. Indeed, the human actions would not be perceived
anymore as an unknown disturbance to avoid and to compensate
for; on the contrary, the human becomes a partner to collaborate
with, taking all the possible advantages from his presence and from
his actions. This capability would be potentially a break-through in
the development of a new generation of “smart” devices. Indeed, it
would lead to a significant reduction of device’s power consumption
— which is a critical factor for wearable devices since it constrains
batteries capacity and thus device size and weight — and, at the same
time, to a decrease in the risk of potentially harmful situations for
the human operator.

Finally, the extract/synthesize level groups the tools required to
translate the outputs of the measure and the model levels into mean-
ingful information to be provided to the user, to the device, and to
potential external observers. Intuitively, human and device requires
different feedbacks (both in terms of contents and format) to gain
perception about their task execution performances and to under-
stand how to modify their behavior to maximize the benefits arising
from an effective cooperation. This difference leads to the further de-
composition of this level into the human sub-level and the device
sub-level. The classification of the tools in one or in the other sub-
level, in this context, is based on the addressee of the feedback and
not on the entities taken into account. Both the sub-levels, indeed,
take into account, at the same time, human and device measure, es-
timated, and/or predicted quantities to create informative feedback
messages.

For the human sub-level, another distinction should be made, de-
pending on the addressees and on the usage scenario of the feedback.
In the online sub-level scenario, the information are intended to be
used online while the task is performed. In this sub-level, the ad-
dressee is the subject who is cooperating with the device to perform
the shared task. The feedback must be kept simple and intuitive
enough to be exhaustive and informative but minimally distractive;
indeed, the user must keep his focus on the task to minimize errors
and to avoid possible dangerous situations. The contents to include in
the feedbacks strongly depend on the scenario —i.e. industrial, health-
care, rehabilitation, etc. — and, within the same scenario, on the task
characteristics — i.e. in rehabilitation different feedbacks should be
provided depending on the specific goal of the treatment. Commonly
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used formats are, for example, graphs with target zones, semaphores,
auditory hints, vibrations with different power levels related to the
“distance” from a specified target, etc.

In the offline sub-level, instead, the addressee of the information is an
external observer which needs to gather insights on how the tasks
have been performed by the subject. Those insights could be indeed
extremely useful to plan future activities, both in terms of improving
current tasks execution and defining new tasks. Within a rehabilita-
tion scenario, for example, the intended addressee is a therapist or
a doctor that needs to be informed with quantitative insights about
patient conditions and tasks execution performances. The availability
of such information could strongly enhance the processes of design-
ing the long term rehabilitation goals and evaluating the treatment
efficacy for the specific patient. The feedbacks generated by this level,
therefore, should respond to the need of knowing the insights of sub-
ject dynamic behavior like, for example, muscle forces, kinematics
impairments, joint and tissue loading conditions, and fatigue indica-
tors. Technical reports with standard indicator scores, graphic com-
parisons between the performances of the patient and the ones of an
healthy mean subject (or by the mean subject affected by the same dis-
ease), and multimedia attachments (i.e. videos, picture, etc.) are the
output of this sub-level. In the industrial context, it is more difficult
to define the intended addressee and a standardized format for the
information to deliver, since strongly dependent on the specific case
characteristics. A possible addressee could be the task-planning engi-
neer who needs to be informed about task execution performances
and working conditions of the operators. Using these pieces of in-
formation, it could be possible for him to fine tune the workload,
minimizing the time required to perform each task, thus increasing
productivity. At the same time, however, the planner needs to be
quantitatively aware of the physical stress and fatigue induced to the
operators. He needs, therefore, to find an optimal balance between
productivity and sustainability for the operators. The latter could also
be improved by providing feedbacks about operators” stress and fa-
tigue to ergonomics experts, allowing them to optimize the working
spaces.

Inputs and outputs of the device sub-level strongly depend on
the device type (i.e. humanoid, industrial robot or exoskeleton) since
characterized by different capabilities and purposes. The leitmotif of
this sub-level is providing to the middle- and low-level controllers of
the device a target coming from the high-level control implemented
within the cooperation modeling sub-level.

1.5 PLAN OF THE THESIS

The thesis is organized as follows:
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CHAPTER 2 describes of the tools used to enable the practical devel-
opment of the proposed approach. The two main selected tools
are presented: the common software platform for modeling the
human, the device, and their interaction and the software archi-
tecture used to handle the interconnection between the compo-
nents of the framework. The former is OpenSim, a well-known
simulator largely used and validated in biomechanics. The latter
is ROS, a middleware taken from robotics community practice.
A sort of “software intermediator” used to structure and stan-
dardize the interfaces and to handle the communication pro-
cesses among all the framework components.

CHAPTER 3 provides a brief overview of the currently available tech-
nologies to measure behavior of the human, the device, and
their dynamic interaction. The chapter is structured to reflect
the formalization given to the developed approach, thus is di-
vided into three main sections, respectively about the problem
of measuring the human, the device, and their dynamic interac-
tion. Particular attention is dedicated to the measuring technolo-
gies investigated and used for developing the proposed mul-
tilevel integrated framework - i.e. electromyographic measur-
ing and preprocessing, wearable solutions for ground reaction
forces and torques measuring, and interaction forces sensing.

CHAPTER 4 gives a detailed description of the efforts spent to model
the devices. Since the chosen software platform was not val-
idated for mechatronics devices, the first part of the chapter
presents its validation as multi-body system simulator. The sec-
ond part reports the accomplishment in the implementation of
different control systems, characterized by crescent complexity
levels, within the chosen software platform. The performances
of the developed controllers were assessed and are reported in
two different test cases: a simple pendulum example and a com-
mon mechatronics device, the Furuta pendulum. Finally, the
last section of the chapter presents the model of a commercially
available lower-limb exoskeleton for gait rehabilitation.

CHAPTER 5 moves the focus on the challenge of modeling human
kinematics and dynamics. Those aspects, corresponding to the
different sub-levels identified in the framework definition, are
presented in the two main sections. The former presents a new
approach to estimate human kinematics based on the orienta-
tion measurements provided by wearable inertial systems. The
latter describes a state of the art subject-specific neuromuscu-
loskeletal model to estimate and predict human muscle forces
and joint moments. Within this section, particular attentions are
reserved to the neural activation dynamics model and the mus-
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cle and joint stiffness computation algorithm, both of them di-
rectly developed during my PhD studies.

CHAPTER 6 presents the research activities conducted to model the
interaction between the human and the device. The first part
refers to the physical sub-level of the multilevel framework and
reports the achievements obtained in the development of de-
scriptive contact models within the selected common software
platform. The assessment of the performances was conducted
on two test cases: a simple bouncing ball problem and the over-
ground walking of a small-size humanoid robot. The second
part, instead, relates to the cooperation sub-levels. Two differ-
ent high-level interaction control strategies aiming at enhancing
the symbiosis between the human and the device are presented.

CHAPTER 7 focuses on presenting the work conducted to special-
ize the proposed multilevel framework to face the challenges
proposed by Biomot, an innovative research project framed into
the European Framework FP7, aiming at pushing forward the
robotic rehabilitation state of the art by the enhancement of the
human-robot symbiotic cooperation. Upon presenting the major
research questions of the project, the solutions adopted to spe-
cialize the framework in the rehabilitation context are detailed.
However, this chapter does not limit its focus to the targeted
application but is also in charge of describing the extract/syn-
thesize level. Differently from the other levels, indeed, this one
strongly depends on the specific application needs, therefore
any attempt of describing it in a general fashion would end in
overcomplicating the concepts, thus confusing the reader.

CHAPTER 8, finally, presents a simplified version of framework, de-
veloped to enhance the device-aided self-rehabilitation by tak-
ing advantages from the outcomes of the multilevel modeling.
In particular, in this chapter a valuable solutions is proposed
for modeling the EMG signals in order to limit the experimen-
tal acquisition of EMGs to periodic clinical assessments, while
allowing continuous at-home autonomous rehabilitation for pa-
tients.

CHAPTER 9 draws the conclusions of this dissertation discussing the
faced challenges, the proposed solutions, and the open research
questions that still needs to be answered.
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2.1 INTRODUCTION

As described in the introduction of this dissertation, the core focus of
my PhD has been the development of a multilevel framework capa-
ble of promoting and enhancing the symbiotic cooperation between
the user and the robotic device when “working” on a shared task.
The complexity of this research problem emerged clearly from the
application scenarios and the framework formalization proposed in
Sec. 1.4.

The aim of this multilevel framework, indeed, is to integrate in a
single network all the components required to achieve a proper co-
operation between human and robotic device. In other words, this
means developing the instruments necessary to facilitate the achieve-
ment of the following high-level goals: mutual physical perception,
intentions comprehension, and capabilities and tasks sharing strate-
gies knowledge.

The development process requires to draw, from both the robotics
and biomechanics communities, state-of-the-art models and method-
ologies to assess the internal dynamics of, respectively, the robotic de-
vice and the human. Those models needs to be then integrated into
a single multilevel model where there are no single entities anymore
but human and device models coexist and are connected through a
proper interaction model. The development of such multilevel mod-
els would allow researchers to gain quantitative insights on the un-
derlying mechanisms that regulate the symbiotic cooperation. More-
over, the availability of tools capable of simulating, throughout those
multilevel models, the whole system behavior during a shared per-
formance could provide the basis to understand how the behavior of
each single “actor” deviates from the standalone case and how this
affects the cooperation.

The proposed approach, therefore, requires to select a suitable soft-
ware platform capable of achieving accurate and reliable simulations
of such complex multilevel models. Several reasons support the use of
a common modeling platform instead of single ones specific for each
component. Among the others, four main motivations were found to
be the most relevant in the evaluation process we performed.

* The black-box effect. When dealing with highly complex prob-
lems, it comes natural to isolate components and encapsulate
them into sub-blocks characterized by a defined set of input and
outputs. The same approach is endorsed by the use of a com-
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mon software platform for multilevel modeling. Indeed, human
and robot models could be considered as two black boxes, con-
nected by an adequate contact model. This could be also used,
without losing consistency, within each model in order to isolate
subcomponents —i.e. actuators, controllers, mechanisms, and so
on — with the aim of reducing the expertise required to create
and run the simulations.

* The models assumptions consistency. Every software platform and
every model is based on some assumptions, more or less re-
strictive depending on the final aim: it stands in the definition
of model itself. The use of a common platform, however, en-
sures that all the software-related assumptions are the same for
all the components of the multilevel model. Moreover, despite
robot, human, and contacts models might be based on different
assumptions, framing them into the same context promotes the
consistency and the coherence. Indeed, the model specific as-
sumptions should be formalized using the same approach and
language.

* The workflow standardization. When dealing with simulations, ev-
ery researcher has his own personally-tuned workflows, result-
ing from years of experiences and attempts. However, adopting
a common software platform, which provides reliable tools that
could be chained to perform the desired analysis, could effec-
tively enhance the repeatability of the results.

* The common assessment tools availability. Finally, once created the
multilevel models and performed the simulations, the quanti-
ties of interest can be extracted. To this aim, the availability,
within the same software platform, of common metrics and
plug-ins to retrieve those quantities is fundamental for reliable
result comparisons and interpretations.

The selected software platform has been originally developed to face
the problem of human modeling and nowadays is widely used from
the whole biomechanics community. Section 2.2 reports its main
characteristics and a brief overview of its workflow.

As described in Sec. 1.4, in spite of the fact the model level covers a
central role in the proposed framework, it should be interfaced with
the other two levels in order to maximize the benefits it could provide.
The measure level, indeed, provides the experimental data required
to drive the simulations while the extract/synthesize level formats
and disseminates the estimates computed by the model level.

Very useful in offline processing of pre-recorded data to enable in-
silico assessments of the effects of different cooperation strategies, the
proposed framework is even more powerful when used online. Indeed,
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it closes the cooperation loop by providing to both the human and the
device quantitative information about “themselves” and “the other”
and, therefore, it gives them what they need to modify their behavior
while performing the task, thus maximizing the cooperation efficacy.

To tailor the online use, the interfaces and the communications be-
tween all the levels and among their sub-levels should be carefully
evaluated, as they are critical factors. Their inadequacy could, in-
deed, cause severe negative impacts on the whole system. Indeed,
communication delays and interferences, missing information parts,
and network failures could frustrate all the benefits of the framework
or, in the worst case scenario, even lead to disruptive effects. Mislead-
ing or wrongly timed information, indeed, could lead to situations
where the robot and the human play one against the other, with a
cooperation efficacy lower than the one achievable without closing
the loop. These factors, together with the others — like, for example,
modularity, efficiency, support from the community, availability of
already validated interfaces — brought us to adopt a middleware to
handle the communications between all the components of the frame-
work. Moreover, this choice enhanced the flexibility of the whole sys-
tem, allowing the use of different experimental setups — i.e. different
measuring devices or configurations — and/or feedback solutions in
a plug-and-play fashion. The selected middleware, coming from the
robotic field where it is largely used and adopted in a broad range of
applications, is described in Sec. 2.3.

2.2 A COMMON SOFTWARE PLATFORM FOR THE MODEL LEVEL

In the process of selecting a common software platform for the de-
velopment and the simulation of multilevel models, several candi-
dates were evaluated: ADAMS [143], PhysX [145], Gazebo [71], Sim-
body [181], and OpenSim [149]. Despite each of them has distinguish-
ing features that could have fit our problem, our final pick has been
OpenSim [52], an open-source software platform coming from the
biomechanics field. Mainly developed and maintained by the Neuro-
muscular Biomechanics Lab at Stanford University, it quickly gained
the role of reference in the field, with a community that, nowadays,
counts more than thirty thousand users.

Several reasons motivated our choice, some of them more tech-
nical, others coming from an higher perspective. Starting from the
high-perspective ones, the first is its field of origin, the biomechanics.
Within this field, it is well known and it has been validated by one
decade of use in research laboratories and clinics all over the world.
This unique characteristic ensured that, at least for the human mod-
els part, the software was reliable, relieving us from the heavy, costly,
and time consuming work of validating its performances. The draw-
back of its biomechanics roots is that a proper validation of OpenSim
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when used to model and simulate robotic devices was still missing.
Actually, since it is build upon Simbody [178] libraries, a good behav-
ior as mechanical simulator was expected. However, its performances
has been assessed and evaluated through the simulation of dedicated
benchmarking problems. This work will be presented into the details
in Ch. 4.

The second motivation arises from its software architecture. Open-
Sim is built upon Simbody, an open-source C++ multi-body dynam-
ics engine developed to create mathematical models of biological sys-
tems. At this point, it might come natural to ask why not to use
directly Simbody; however, the answer stands on the high-level tools
provided by OpenSim. Some of these tools, for example, allow to sim-
ulate and analyze biomechanical models that include complicated ac-
tuators, as the muscles, and kinematics structures, such as ligaments
and complex articulations. Thanks to the integration of the two soft-
wares, the OpenSim models are directly and automatically translated
into the dynamic equations systems to be solved by Simbody.

The third motivation stands in the open-source collaborative ap-
proach given to the project by its founders. The source code of each
feature of both Simbody and OpenSim is publicly available for free
under Apache 2.0 License'. This means not only having access to the
internal implementation of each tool and functionality, but also that
everyone could help the developers in the process of finding bugs.
The collaborative framework, indeed, promotes an active participa-
tion of the users encouraging them to share ideas and best practices,
to ask for support through the public forum, and to share with the
community new features and pipelines. Moreover, a software project
with such a widespread use is unlikely to be closed. This guaran-
tees the continuity of the support and, therefore, the longevity of the
projects based on OpenSim.

Finally, the most technical reason is its implementation. It is entirely
written in C++, one of the most efficient high-level programming lan-
guages. Despite OpenSim has not been tailored for real-time applica-
tions, its software architecture and efficient implementation enables
its use in (soft) real-time contexts.

Concluding, OpenSim libraries provide tools and algorithms re-
quired not only to simulate the human but also to model and sim-
ulate robotic devices and dynamic interactions. This capability is par-
ticularly relevant when modeling the latest generation of devices, the
goal of which is to achieve more efficient locomotion inspired by bio-
logical system studies. Moreover, both inverse and forward dynamics
simulations could be performed using OpenSim capabilities.

All the presented consideration led to the choice of OpenSim as
common software platform to perform multilevel dynamic simula-

1 http://www.apache.org/licenses/LICENSE-2.0.html
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tions.

The typical OpenSim workflow is composed by five consecutive
steps:

1. Create the model. The fist step of the workflow is the creation of
the model which firstly requires to define the kinematic model
— i.e. the kinematics chain of rigid bodies connected through
joints. Then, actuators of different kinds could be connected to
the model. Finally, contact models could be added to account
for the physical interaction between the model and the environ-
ment — like the interaction between the human and the ground
during walking for example. However, since creating an accu-
rate human model from scratch requires lot of efforts and deep
expertise in biomechanics, several standard models, with differ-
ent complexity levels, are already provided with OpenSim.

2. Import pre-recorded experimental data. The general use of Open-
Sim is to perform simulations driven by experimental data
previously recorded. Examples of data directly importable are
marker trajectories or joint angles from motion capture systems,
external forces and ground reaction forces from force/torque
sensors, and muscle activity from electromyographic systems.

3. Scale the model. The third crucial step of OpenSim typical work-
flow is the scaling of the developed model. The scaling prob-
lem is characteristics of biomechanics since the large majority of
models are created by means of measurements taken from ca-
davers, therefore they represent only the “average” human sub-
ject. Numerous parameters of those generic models — like bones
sizes, muscles and tendons properties, and so on — need there-
fore to be tuned to fit the anthropometric characteristics of the
specific subject. However, this step is not mandatory if a subject-
specific model is created from the information provided by com-
puter tomography (CT) or magnetic resonance (MR) techniques.
The scaling procedure, with few simplifications, is also useful to
adapt the model to fit the configuration of the adjustable com-
ponents of the robotic devices — like the length of the links of a
wearable exoskeleton.

4. Run the simulation. As mentioned before, OpenSim allows its
users to perform simulations formulated according to two dif-
ferent problems: the inverse dynamics and the forward dynam-
ics. The aim of the former is to compute kinematics and kinet-
ics of the model using experimental measures of subject motion
and external forces. The forward dynamic formulation, instead,
uses as input the actuator control signals — like, for example,
muscle excitations — to estimate the motion of the model.
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5. Perform the analyses. This is the last step of the workflow and
it allows the user dig into the state of the model estimated
through the performed simulation. Given the software structure
of OpenSim, every dynamic quantity could be directly retrieved,
through the provided APIs, by writing the appropriate analysis.
However, to facilitate the users less skilled in programming and
to promote simulation results sharing and replicating, different
predefined analysis tools are already shipped with OpenSim for
the most investigated dynamics quantities.

® Body kinematics reporter. Provides the 3D kinematics
of the specified body. Reported quantities are positions,
orientations, and linear and angular velocities and accel-
erations.

* Point kinematics reporter. Provides position, velocity,
and acceleration in the 3D space of the specified point on
a body.

* Muscle analysis. Reports internal dynamics of the mus-
cle model in terms of fiber length and velocity, normalized
fiber length, pennation angle, active-fiber force, passive-
fiber force, and tendon force.

* Joint reactions reporter. Provides the forces acting in-
side the joint during the motion.

e Induced accelerations reporter. Provides the contribu-
tion of each force to the total acceleration of a point. A
common point of interest is the center of mass.

* Force reporter. Reports forces and moments acting on
the model, both internal and external.

2.3 A MIDDLEWARE FOR STANDARDIZED INTERFACES AND IN-
FORMATION EXCHANGE

Several slightly different definitions have been provided, in the latest
decades, for the term “middleware”, depending on the research focus
of who was answering to the question “What is a middleware?”. One
of the most complete definition relies on a metaphor, stating that the
middleware is the software glue that intermediates between the com-
ponents of a complex system, being them hardware or software [5].
In other words, every software that takes care of the interaction be-
tween different parts of the same system could be considered a mid-
dleware [136].

The middleware can be, therefore, considered as a layer that glues
together hardwares, operating systems, network stacks, and software
applications. A complete middleware solution should contain a run-
time environment that supports and coordinates multiple applica-
tions and a set of standardized system services — such as data aggre-
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gation, control, and management policies and mechanisms to achieve
an adaptive and efficient use of the system resources [80].

Originally developed to face the increasing complexity of robotic
devices in the early ‘8os, middlewares quickly became a fundamental
resource for the robotics community. Indeed, the use of a middleware
within a complex framework composed by many different compo-
nents which need to interact could provide several benefits. In [59]
authors identified the most relevant ones with particular reference to
robotic applications; however, they well fits also the case of the pro-
posed multilevel framework.

A middleware, indeed:

* manages the complexity and heterogeneity of hardware and
software components;

e promotes the integration of new components as plug and play
modules;

* simplifies software design processes by providing standardized
interfaces;

* hides the complexity of low-level communications and the het-
erogeneity of acquisition devices and software components in a
black-box fashion.

e improves software quality, reliability, and maintainability by al-
lowing to isolate the blocks which needs to be tested and vali-
dated;

¢ prevents duplicates promoting the reuse of the modules across
multiple projects, thus reducing development and maintenance
costs and efforts.

The remaining part of this section reports the analysis conducted
to select the most suitable middleware for gluing the components
of the proposed multilevel framework together with the reasons of
our final pick. Nowadays, a quite long list of middleware is avail-
able. While Player [73], ROS [163], YARP [67, 134], OROCOS [24],
Urbi [198], MIRO [199], LCM [91], and MIRA [58] are mostly ded-
icated to robotics, ICE [219], CORBA [148], and oMQ [93] have a
more general scope. Several attempts of comparing them using the
perspective of their users are available in the literature [58, 106, 139].
However, as clearly underlined by Fitzpatrick et al. in [66], while this
perspective can be considered adequate for short-term projects (up
to few years), for longer time scales it can be more suitable to com-
pare them from an external point of view. A critical factor to consider
when choosing which middleware to adopt is the broadness of its
community of users. Indeed, largely adopted and used middlewares
can count, generally, on a better support from both developers and
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community, a more extensive documentation, a lager availability of
test cases and already developed modules, and a more responsive
forum.

Among the others, we shortlisted two suitable candidates for
implementing the multilevel framework: ROS — Robotic Operating
System — from the Open Source Robotics Foundation and YARP - Yet
Another Robotic Platform — from the Istituto Italiano di Tecnologia.
Both of them come from the robotic field, the former is well known
and is becoming one of the most used middleware, the latter is
less known and adopted but with the huge advantage of being
fully multi-platform - it works without limitations on Windows,
Linux, and MACOS. Since their features are very similar, its larger
availability of resources and its wider community of users, made the
final score in the choice of ROS as middleware for the multilevel
framework.

The homepage of the ROS community [167] clearly states, in or-
der to describe what ROS is: “ROS is an open-source, meta-operating
system for robots. It provides the services expected from an operat-
ing system, including hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing be-
tween processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across
multiple computers.”.

ROS was originally developed in 2007 under the name Switchyard
by the Stanford Artificial Intelligence Laboratory in support of the
STAIR (STanford AI Robot) project. From 2008 to 2013, its develop-
ment was performed primarily from the Willow Garage, a robotics re-
search institute /incubator. During that period, researchers from more
than twenty institutions collaborated with Willow Garage engineers
in a federated development model. Finally, in February 2013, ROS
stewardship transitioned to the Open Source Robotics Foundation.

Without descending deep into the technical details of ROS, in the
rest of the section an overview of its architecture is provided.

The architecture of a ROS-based system follows the peer-to-peer
schema. Each component (hardware or software) is defined as a node
of the network and potentially it could be hosted by a different com-
puting device (i.e. laptop, workstation, server, or embedded system).
Each node has its own implementation and characteristics, with dif-
ferent inputs and outputs sent through dedicated topics, each of
them reserved to a specific type input or output. The peer-to-peer
topology, however, requires a mechanism that allows the nodes to
find each other at runtime. This role is covered by the name service,
more commonly named master, which works as a look-up table up-
dated at run-time. The master is a program that continuously runs on
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a computer, accessed through the network, to provide to each node
the list of the nodes currently available on the network and the list of
their topics. Each node can connect to the topics of the nodes it needs
to communicate with. Once the communication is established, infor-
mation is sent, at every time frame, as a message having a predefined
structure specific for the type of information it hosts.

The main limitation of ROS stands in the limited support it offers
to Windows-based devices; indeed, only basic functionalities are
indeed available under Windows operative system. Despite not being
a severe limitation in the robotics fields, which extensively use Linux,
this affects its usability in contexts where acquisition devices works
only on Windows. An example of such a context is biomechanics,
where the state of the art acquisition devices support the connection
only with Windows machines.

The lack of usability of ROS under Windows operative system,
however, represented an issue for the implementation of our multi-
level framework since it uses both biomechanics and robotics tools
and devices. To overcome this problem, we decided to rely on YARP,
fully working on Windows, which provides powerful tools to interact
with ROS-based networks [218]. Since the workflow of YARP is very
similar to ROS one and we used it basically as a wrapper between
the Windows APIs of some devices and the ROS network, its details
are not reported here. Interested readers are referred to the scientific
literature on YARP [66, 67, 134].

29






MEASURING THE HUMAN, THE DEVICE, AND
THEIR DYNAMIC INTERACTION

3.1 INTRODUCTION

The measure level is the first level of the multilevel framework pre-
sented in Chapter 1. This level is directly interfaced with the real sys-
tem and represents the sensory component of the whole framework.
Indeed, through the use of several measurement devices, it provides
measures of the physical quantities that define the dynamic behavior
of the real system.

Mainly two measurement approaches could be defined: direct and
indirect. A direct measurement provides information about the ex-
act quantity we are interested in knowing, that we will refer to as A.
Being the most suitable since it directly provides the current value
of A, it is not always feasible due to economic or physiologic con-
straints; the latter is particularly relevant when dealing with human
in-vivo measurements. To overcome these limitations, the solution
stands in relying on indirect measurement approaches which sense
not the quantities we need (A) but directly measurable related ones
(B and/or C). It comes intuitive that those approaches needs to be
coupled with adequate models in order to use B and/or C to esti-
mate A.

Given this classification, where the discriminant stands in the avail-
ability of instruments compatible — in terms of physical capability
and/or economic, ethic, reliability concerns — with the accessibility
of the quantity to measure, another classification should be made
depending on the application scenario. Indeed, a quantity that is
measurable in laboratory environments might not be measurable in
everyday contexts, where usability and portability considerations
arise.

This chapter provides an overview of the most commonly used so-
lutions to address the problem of measuring the “state” of the whole
real system in terms of kinematics and dynamics of the human, of
the device, and of their symbiotic interaction. It is divided into three
main sections, each of them corresponding to a different sub-level:
the human sub-level (Sec. 3.2), the device sub-level (Sec. 3.3), and
the interface sub-level (Sec. 3.4). Each section presents the main
constraints given by the specific context and describes the most rel-
evant available solutions to assess the “state” of the specific “actor”.
Indeed, each “actor” has different characteristics that prevent the us-

31



32

MEASURING THE HUMAN, THE DEVICE, AND THEIR DYNAMIC INTERACTION

age of common measuring devices — for example, it is not feasible
to use the same technology to measure joint kinematics for both the
robotic device and the human.

Particular attentions are reserved to the techniques directly used in
the developed multilevel framework and to the ones not yet fully in-
tegrated but that I directly developed and assessed during my PhD.

3.2 MEASURING THE HUMAN MOVEMENTS
3.2.1  Measuring human kinematics

The final objective of measuring the kinematics is to retrieve the angu-
lar values assumed by each joint of the subject that results in his/her
pose at a certain instant of time. Indeed, from the knowledge of the
joint angles, within the model level, it is possible to retrieve all the
other information about the musculoskeletal kinematics.

The first classification that can be made regards the approach used
to obtain information about joint angles.

Direct measurements are obtainable through mechanical or electri-
cal goniometers sticked on subject’s links across the joint that needs
to be assessed. The mechanical goniometers are pretty simple instru-
ments, composed by two rigid links connected by a pin joint. On the
pin joint, a graduated angular scale allows to read of the angle be-
tween the two links. By manual aligning the goniometer links with
the two human body segments linked by the joint of interest, the
joint angle measurement can be performed. More modern versions
of mechanical goniometers are equipped with an electronic scale that
allows, through the connection with a computer, to digitally read, in
real-time, the joint angle values. Despite being simple and cheap, me-
chanical goniometers are not really accurate in measuring the joint an-
gles during the movements. Indeed, to obtain reliable measurements,
a precise alignment between the human joint and the goniometer joint
axes must be guaranteed; condition pretty hard to satisfy due to soft
tissue artifacts caused by muscle contractions and joint movements.
Moreover, the mechanical goniometer interferes with the movement
itself; indeed, being rigid and attached to both the proximal and the
distal segments of the joint, it constrains the joint to act as an ideal
pin joint.

A technological evolution is represented by the electrogoniome-
ters [194], generally based on piezoelectric transducers or Hall-effect
sensors. Independently from the technology on which they are based
on, electrogoniometers are composed by a flexible wire that links two
bases. The measuring wire is strain-gauged to one plastic base, while
it is attached to a low stiffness spring inside the other base. The bases
should be attached to the skin covering the body segments adjacent
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to the joint of interest. Electrogoniometer output is proportional to
the angle of reciprocal orientation of the two bases in one plane;
however, several electrogoniometers can be combined to assess the
angle between the segments on more planes. Nevertheless, electrogo-
niometers are prone to cross-talk effects due to soft tissue artifacts or
to their non accurate placement, especially when combined together
on the same joint. Despite being not the most accurate measuring
devices, they are largely used since cheap and easy to use to obtain
direct measures of joint angles without requiring further work at the
model level.

The indirect methodologies, on the contrary, measure other quanti-
ties related to the human kinematics; thus, such approaches require
a subsequent modeling effort to estimate the joint angles. Besides the
higher complexity that comes together with indirect measurements,
instruments based on different technologies, acquisition procedures,
processing pipelines, and automated software tools have been devel-
oped in the latest decades,making those approaches the state of art in
human kinematics measurements.

The subsequent sections present the two most relevant technologies
currently used to indirectly measure human kinematics. The former
is the stereophotogrammetry, the current de-facto gold standard. By
using a set of high-speed cameras it allows to reconstruct the 3D po-
sition of reflective markers attached to human body. However, the
use of this technology is limited by its cost and is confined to labo-
ratory settings. The second technology, based on the combined use
of several Inertial Measurement Units (IMUs), is relatively new but
very promising . These systems allow to obtain the orientations of
the body segments where the IMUs have been sticked on. Moreover,
being wearable, these systems could be effectively used in almost ev-
ery environment without interfering with the human movements.

3.2.1.1  Indirectly measuring kinematics inside a laboratory

The current de-facto gold standard to indirectly measure human kine-
matics is the stereophotogrammetry, which aims at measuring the 3D
displacement of one or more points inside a confined space — like a
laboratory — with respect to a known reference system. The physical
principle on which this technology is based is the stereoscopic vision
— i.e. the combination of 2D images to reconstruct a single 3D image.
The computer-aided stereophotogrammetry uses a set of high-speed
cameras which synchronously acquire 2D images at every time sam-
ple. Ideally, to reconstruct the 3D location of a point, two orthogonal
images are enough; however, to obtain more accurate measurements
and to avoid occlusion phenomenas, the typical stereophotogrammet-
ric system is composed by 6 to 12 cameras. The acquired 2D images
are then processed on-the-fly by the system software which, using
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the settings of the experimental setup, provides a single vectorial 3D
representation of the locations of the points in the space. Indeed, the
3D reconstruction is not performed for the full scene but only for the
points of interest.

Depending on the specific technology in use, those points of in-
terest, typically the human boney landmarks plus other points on
the body segments, should be marked by placing on top of them spe-
cial passive or active markers which are automatically detected by the
software. Active markers are basically small LEDs, attached on rubber
supports, capable of emitting a light characterized by a special fixed
wave length easily detectable by the cameras. This characteristic al-
lows to clearly distinguish the markers from the background of each
image, enabling the 3D reconstruction to be performed almost in real-
time. Systems based on active markers, however, are quite complex
to use since all the markers need to be powered and synchronized,
thus, they are typically wired together. Moreover, the cables connect-
ing the markers influence, both physically and psychologically, the
movements, impeding a properly natural motion.

To overcome this issue, optoelectronic systems based on infrared
light have been developed. Those systems use as markers small
plastic spheres covered by a special reflective coating sensitive
to the infrared light. By placing infrared light sources on top of
each camera and mounting special filters on the camera lenses, the
recorded images are almost completely black with white circular
spots correspondent to the visible markers. To prevent the draft effect
due to the reflection, the infrared sources are synchronized with
the images acquisition. However, also the sunlight has components
in the infrared domain; therefore, it is necessary to adjust software
parameters to prevent the appearance of phantom markers due to
the sunlight hitting eventual reflective surfaces and to obtain an
optimal contrast between the background and the markers. The huge
advantage of these systems is represented by the complete absence of
wires and cables on the subject body, allowing natural unconstrained
and unconditioned movements. Moreover, the subject preparation
phase is quite rapid since it is sufficient to find the desired spot on
the body of the subject and stick on top of them the passive markers.

During the latest decades, the progressive technological improve-
ments of these systems, together with their large adoption in both
biomechanics research and clinical practice, brought these systems
to the stage of being the current de-facto standard in human motion
analysis. Daily used all over the world, passive marker based sys-
tems are developed and sold by mainly three competitors on the
market: Vicon [205], Qualysis [162], and BTS [25]. Nowadays, more
than on technological aspects, the fight among the competitors to
lead the market is focused on the software provided with the sys-
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tem. Indeed, real-time processing and tracking’, improvements on
the models used to retrieve the joint angles, and predefined process-
ing pipelines to promote its usability are crucial factors. However, the
most severe and limiting drawback of optoelectronic systems is the
constraint of requiring a dedicated laboratory, clean of reflective sur-
faces and masked against sunlight, with trained personnel to handle
the acquisition process. This aspect prevents the usability of the sys-
tem in everyday environments such as industrial sites, sport fields,
and home settings. Moreover, the high cost that characterizes these
systems is a further limitation to its wide adoption to perform analy-
sis in non-dedicated contexts.

3.2.1.2 A wearable approach for indirect kinematics measurements

A promising technology, quite recently applied to human motion
analysis, that aims at becoming the new de-facto standard for wear-
able kinematics assessments is the one based on IMU chains. Before
proceeding on describing the system, a short parenthesis to explain
what an IMU is results mandatory.

The Inertial Measurement Unit (IMU) is a small and light sensor ca-
pable of providing an estimate of its 3D orientation with respect to a
global reference frame. An IMU is composed by two tri-axial sensors
based on the Micro Electro-Mechanical System (MEMS) technology: a
gyroscope to measure angular velocity and an accelerometer to sense
linear accelerations. If a tri-axial magnetometer is also present inside
the IMU, then the global reference frame is Earth-fixed, defined using
gravitational and magnetic field directions. The measured quantities
are then generally fused together, using a sensor fusion algorithm
(SFA), to estimate the IMU orientation in the global reference frame.
Several SFAs have been proposed in the literature to accurately esti-
mate IMU orientations [33, 166, 169], relying on either Kalman [81,
170] or complementary [121, 122] filtering techniques. Independently
from the filter in use, the IMU orientation is always an estimated
quantity, resulting from the fusion of measurements taken in differ-
ent domains [114]. This, together with the noises and error sources
that characterize each of the IMU internal sensors (i.e. measurement
noises, external disturbances, sensor biases, etc.), may lead to inaccu-
rate orientation estimates [102]. Moreover, the dynamic behavior of
the SFA is highly influenced by its internal parameters, which should
be accurately chosen to balance its noise rejection and response speed
performances.

The IMUs, linked in chains — using cables or wireless technologies
— and connected to a common hub which handles data acquisition,

Tracking marker data means connecting the 3D reconstructions among the different
time frames, allowing to retrieve the temporal evolution of the markers during the
movement.
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preprocessing, and transmission, are sticked to the human body seg-
ments to retrieve their orientation during the motion.

Being an extremely compact system — each IMU, complete of bat-
tery and on-board electronics, could have the minimum dimension
of a coin and weight less than 25 grams —, relatively cheap compared
with optoelectronic systems — around 2K Euros per sensor — and fully
wearable, it is object of huge attention by researchers and industries.
The most interesting feature of this system is the wearability, which
would allows its effective use to measure everyday movements in al-
most every environment.

Despite the technical challenges associated with this technology,
IMUs are nowadays starting to be largely adopted to assess human
kinematics. A good review of the biomechanics studies based on
IMU systems is provided in [157].

To conclude, IMU systems are seen as the future of human motion
analysis. Thus, many efforts are currently being spent by researchers,
within the model level, in order to obtain accurate and reliable joint
angle estimates from the orientations provided by these systems.

3.2.2  Measuring human dynamics

In the large majority of applications, however, the knowledge of hu-
man kinematics is not enough to describe the mechanisms that un-
derlie the motion. Indeed, despite kinematics being the most visible
effect, it is the result of the balance between the forces exerted by
each human muscle and the ones applied to the human body by the
environment. It is therefore mandatory, to fully describe the motion,
to gain insight on how the movements are generated by the human
locomotory system. Only throughout those information can fields
like biomechanics, medicine, ergonomics, and cooperative robotics
enhance their knowledge on the effects of internal and external fac-
tors influencing the human movements; thus obtaining quantitative
information to improve the effectiveness in reaching their specific
aims.

However, directly measuring in-vivo human muscle forces and joint
moments is not possible using non-invasive techniques — i.e. without
surgical interventions aiming at inserting sensors in human limbs.
Therefore, indirect measurements should be used to collect related
quantities to feed the model level in order to obtain estimates of mus-
cle forces and joint moments.

Mainly two quantities are nowadays routinely measured to then
estimate human musculoskeletal dynamics: ground reaction forces
(GRFs) and muscles electromyographic activity. GRFs are the forces
exerted by the human on the ground, therefore a consequence of
the human motion. Muscles electromyographic activity, instead, is
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related to the control signals that the human nervous system sends
to the muscle to generate the motions, therefore is the cause of the
movement itself.

3.2.2.1  Ground reaction forces and moments

In biomechanics analyses, like in many other applications, the most
important external forces acting on the human body in both static
and dynamic conditions are the ground reaction forces. This naming
comes from Newton’s Third law, GRFs are indeed the reactions to the
forces applied by the human to the ground, equal in magnitude and
opposite in sign.

Several devices, based on different sensing principles, have been

developed in the latest decades. The one which is considered the most
accurate in measuring GRFs and covers the role of gold standard is
the force platform. The first force platform was composed by a single
rigid pedestal instrumented with a load cell. The main limitation of
this device was the capability to measure only the vertical component
of the applied force.
More advanced force platforms are used nowadays, composed by two
rigid plates placed one over the other and between them a tri-axial
force transducer is placed on each corner. Data from each sensing
element of the platform are then fused together to retrieve the so-
called six-axes measurement of the equivalent forces (Fy, Fy, F, ) and
moments (My, My, M;). Then, since unless being rigidly attached
to the platform it is impossible to apply a pure torsional moment
around the horizontal axes, the measured moments around X and Y
axes are used to retrieve the zero-moment point —i.e. the point where
the resultant force is applied.

The first commercial force platform, which appeared on the market
in 1969 by the Swiss company Kistler, employed piezoelectric tri-axial
force transducer. Few years later, in 1976, the American company Ad-
vanced Mechanical Technology Incorporated (AMTI) made commer-
cially available a new force platform, based on strain gauges, charac-
terized by lower price and larger surface. Although other companies
appeared on the market in the following years, Krisler and AMTI
force platforms are still nowadays the most largely used.

Despite each force platform of each producer has its own specific
characteristics, the typical specifications are listed in the following.

* Measurement range: =10kN (=10 to 20 kN on the vertical axis)
* Linearity: < 0.5% of full scale

* Hysteresis: < 0.5% of full scale

Cross-talk: < 2%

Temperature range: —20 to 50 °C
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Despite being the gold standard in measuring GRFs, force plat-
forms are nowadays considered a limiting technology. Indeed, in
order to reach a good accuracy level, force platforms need to be
welded or rigidly screwed on the floor, confining their usage in
laboratories or closed and dedicated environments. Moreover, since
each force platform measures the resultant of the forces acting on
it, to effectively measure human movements a setting with at least
two platforms - one for each foot — is mandatory. The combination of
these factors with the increasing interest in continuously monitoring
human motion in everyday environments, led to the investigation of
alternative solutions to measure the GRFs.

A commercially available device is the portable pressure mat,
capable of measuring the applied pressure. Despite pressure mats
have a sensing surface larger then the force plates, they still confine
to a certain space the movements to be measured. Moreover, from
the measured pressure distribution is possible to calculate only the
normal component of the force. For these reasons, devices belonging
to this family of products have not been considered a valuable
solution for the proposed multilevel framework.

A wearable solution to the problem of continuously measuring
GRFs in everyday environments is still required. To fulfill this need,
instrumented shoes capable of measuring 3D forces and moments are
currently being developed. In the latest years, two different solutions
have been investigated: pressure-measuring insoles and soles instru-
mented with force-torque sensors.

The first approach is the most promising one since less invasive and
more portable. However, it requires to develop pressure sensors capa-
ble of sensing the pressure (and consequently to estimate the force)
along all the three axes and not just the vertical one. Several com-
mercial products are available but still limited to sense the normal
component of the force.

Research on shoes instrumented with 6 axis force/torque (FT) sen-
sors is nowadays a step ahead than 3D pressure measuring insoles.
The rationale behind this faster development stands on the integra-
tion of commercially available sensors (6-axis FT sensors) on standard
shoes. Several FT sensors are available on the market, with different
sensing technologies and characteristics. However, just few of them
are capable of sensing forces compatible with human weight and with
the magnitude of the forces exerted during human movements.

To the best of our knowledge, a single commercial product
(ForceShoe) by XSens appeared on the market a few years ago but
has been discontinued since considered too bulky to be used. It was
basically an open sandal with two FT sensors under the sole (and 2
IMUs. to retrieve foot kinematics). One sensor was placed under the
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Vertical force range, F, +580 N
Horizontal force ranges, Fx, Fy +1160 N
Vertical-axis moment range, M, +20 Nm
Horizontal-axis moment range, My, My +20 Nm
F, resolution 05N
Fx/Fy resolution 05N
M, resolution 0.017 Nm
Mx /My resolution 0.0053 Nm
Single axis overload, F, 10 kN
Single axis overload, Fx, Fy 5.1 kN
Single axis overload, M, 140 Nm
Single axis overload, My, My, 110 Nm
Stiffness (calculated), F, 9.8e7 N/m
Stiffness (calculated), Fy, Fy 7.4e7 N/m
Stiffness (calculated), M, 3.0e4 Nm/rad
Stiffness (calculated), Mx, My 1.7e7 Nm/rad

Table 3.1: XSens ForceShoe specifications for the force-torque sensing.

heel, the other under the forefoot. Its main specifications, limited to
the force-torque sensing performances, are reported in Tab.3.1.

3.2.2.2  Muscle electromyographic activity

The work presented in this section has been published as a chapter of a
scientific book [3]. I have made a substantial and principal contribution in
the drafting and critical revisioning of the final manuscript. Furthermore,
the contents reported in this section refers only to the contribution to the
book chapter I provided. Co-authors’ permission for the inclusion in this
dissertation has been obtained.

This section presents the technique used to measure the biological
signals sent by the nervous system to the muscles in order to produce
the correct amount of force required to perform a certain movement.
The measurement of these electromyographic (EMG) signals pro-
vides insights on the amplitude and the timing of the subject’s
muscle activation. Thus, EMGs are a necessary input for forward
simulations aiming at estimating muscle forces and, combining the
force of all the muscles acting on a joint with the musculoskeletal
kinematics, the total joint moments.

In [220], the author defines electromyography as the study of mus-
cle functions through the analysis of the electrical signals measurable
from the muscles [220]. EMG signals are emitted shortly before mus-
cle contraction and can be directly measured through superficial non-
invasive electrodes sticked to the skin over the muscle belly. Actually,
EMGs could be measured also with intra-muscular electrodes, but
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since invasive and not suitable for routine measurements, this tech-
nique is not described in this work. EMG signals are basically electric
signed signals, and their magnitude is in the order of millivolt.

However, the EMG measurements are highly susceptible to
unpredictable external factors: correct electrodes placement, skin
conductivity, thickness of the fat layer between the muscle and the
skin, cross-talk among nearby muscles, muscular fatigue, electrodes
and amplifier quality and durability, electrical and magnetic noises,
etc. The influence of these external factors must be removed, or at
least reduced, before computing the muscle activation [26] to obtain
reliable inputs to be provided to the model layer. Since the large
majority of those factors is related to the experimental setup, the
procedure to “clean” the signals is called preprocessing and has been
considered a component of the measure level.

The first mandatory step of the preprocessing procedure aims at
removing the DC offset and the low frequency noises that affect the
measured “raw” EMG signal. Those effects, mainly caused by soft-
tissue artifacts and/or not adequate quality of the electrodes and the
amplifiers, are eliminated by high-pass filtering the signals. Typically,
a cutoff frequency in the range of 5 to 30 Hz, depending on measur-
ing device characteristics and on the type of filter, is selected. A good
strategy is to use a digital zero-phase delay filter, for example a for-
ward and backward 4th order Butterworth filter. The use of a filter
belonging to this category prevents the appearance of undesired time
delays in the filtered signals.

The subsequent step requires to visually inspect each signal to look
for the presence of 50 Hz electrical interferences. For the affected sig-
nals, a 50 Hz notch filter (usually a 10th order one) should be used.
Finally, the signals must be rectified by computing the absolute value,
thus obtaining the rectified EMG signals.

EMG Normalization

Once obtained the rectified EMG signals, another challenge, largely de-
bated in literature, should be faced: the EMGs normalization. Indeed,
despite being practically feasible to directly use the rectified EMGs as
input for the model level, it is not appropriate because their absolute
values depend from a long list of parameters that could not be con-
trolled or predicted, both related to the physiological characteristics
of the human and to the experimental setup. A comprehensive de-
scription of the most common influencing factors and of their effects
on the amplitude of the signals is provided in [49].

To remove, or at least reduce, the effects of the EMGs variability a
largely accepted practice is to normalize the EMGs, thus facilitating
the comparisons of measures collected from different muscles and/or
from different subjects during the same and/or different movements
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and acquisition sessions [49, 112].

In [112] a concise and precise discussion about the crucial process
of normalizing EMGs and the possible misinterpretations that could
arise from not adequate signal normalizations is provided.

The normalization procedure is typically performed dividing the
rectified EMG signal by a normalization factor specific for the con-
sidered muscle. Several studies partially face the problem of how
to compute these normalization factors within the context of more
general discussions, thus limiting the focus to report the limitations
and benefits associated to each normalization approach [27, 39, 40, 49,
100]. However, from a more complete review [28], aiming at compar-
ing the different normalization methods, the general conclusion that
emerges clearly is that the challenge of defining a standard normal-
ization procedure is still far from being fully addressed.

One of the most used strategies, endorsed by the Journal of Elec-
tromyography and Kinesiology (JEK), is the Maximum Voluntary
Contraction (MVC) normalization method. This strategy requires to
perform specific tasks — typically one for each muscle — designed
to guarantee the maximal activation of one specific muscle for each
task. Then, by averaging the rectified EMG across that task, the nor-
malization factor is computed and used to normalize the EMG of
that muscle during all the other acquisitions. Similarly, the SENIAM
project [84, 133] suggests to use as normalization factor the average
EMG recorded during a reference contraction, and uses MVC as an
example. Both strategies refer to static MVC, although it could also
be dynamic. Both JEK and SENIAM advise electromyographers to
report information about the joint angles of the subject during the
MVC acquisition in the attempt of increasing the repeatability and
reproducibility of the measurements.

The main benefit of using MVC as normalization method is the
possibility to understand the level of activation of the muscle during
a task in terms of percentage of the subject-specific maximum muscle
activation. However, electromyographers should ensure that subjects
are reaching their true maximum contraction during the MVC task,
otherwise the results could be misleading.

Another widely used strategy employs as normalization factor the
peak of the rectified EMG recorded during the task or during the
whole acquisition session. This approach simplifies the acquisition
protocols, since it does not require to perform an ideally large number
of normalization trials (one for each considered muscle) like the MVC
strategy does. However, most of researches indicate that this method
reduces inter-subject variability and has poor intra-subject reliability.
Therefore, it is preferable to use MVC method when interested in
comparing EMGs among different trials, muscles, or individuals.
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Muscle filtering effect

Once normalized, the rectified EMG signals are filtered again, this
time aiming at reproducing the filtering effect of the muscle. Indeed,
although the electrical signals that pass through the muscle have
frequency components higher than 100 Hz, the forces that the mus-
cles generate have a much lower frequency content. There are many
mechanisms in muscle that cause this filtering: calcium dynamics,
finite amount of time for signals propagation along the muscle,
muscle and tendon viscoelasticity, and others. To account for these
effects, a forward and backward pass 4th order Butterworth low-pass
filter is used with a cutoff frequency in the range of 3 to 10 Hz.

The outputs of the described procedure are the preprocessed EMGs
(P-EMGs), directly usable to feed the model level of the proposed
multilevel framework in order to estimate human dynamics.

3.3 MEASURING THE DEVICE MOVEMENTS

The challenges to face when measuring the state of the device are
completely different from the ones presented in the previous sections
for the human state, despite the final target being the same: to es-
timate joint angles and joint torques. Indeed, the robotic device is
the result of a designing, manufacturing, and assembling process per-
formed by experts. Therefore, the sensors required to directly mea-
sure kinematic and dynamic quantities of interest can be integrated
in the mechanical structure of the device. On the contrary, it comes
intuitive, the same intervention cannot be made with humans.

This big difference lead to the conclusion that measuring the kine-
matics and the dynamics of the robotic device is way less complicated
than in the human case. However, this does not mean it is a trivial
problem that can be neglected. Indeed, the introduction of each single
sensor comes along with drawbacks that can be either technological
or economical. From the engineering point of view, the integration of
a sensor inside a device most likely requires to redesign the mechani-
cal structure in order to comply with the physical requirements of the
measure — for example inserting a co-axial sensor in the mechanism
of a (complex) joint most likely requires to redesign the joint itself.
Moreover, each mechanical and electronic component can fail and its
failure can impact on the functionality of the whole device. For this
reason, the introduction of numerous sensors in the device should
be carefully evaluated paying attention to their reliability and dura-
bility, weighting case by case potential failure risks and effects. Re-
lated to this aspect, an important distinction about the purpose of the
robotic device should be made. Indeed, while for devices developed
to be research platforms the costs related to the failure could be ac-
cepted, for commercial products the failure effects and costs are way
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higher. Therefore, sensors integration considered worthy for research
platforms might be completely unacceptable for commercial robotic
devices, thus limiting the number of measured quantities. From the
economical point of view, instead, the drawbacks are related to the
increase in the costs: both sensor costs and indirect costs — engineer-
ing time to redesign the structure and manufacturing costs related to
the production of the new components — should be considered.

As emerges from these simple and intuitive considerations, the
integration of sensors to measure kinematics and dynamics in a
robotic device is the result of a carefully weighted trade-off between
the benefits related to the availability of the direct measurements and
the associated direct and indirect “costs” discussed above.

Sensors to directly measure joint angles are nowadays integrated
in almost every robotic device. Those sensors are named rotary en-
coders: they are electromechanical devices directly connected to the
joint axis (more correctly on the motor shaft) which convert the an-
gular position to an analog or digital signal. Since a full description
of the available different encoders is out of the scope of the present
work, just a very brief and limited overview is provided in the fol-
lowing, demanding to the scientific literature a more complete and
detailed review [13, 46, 131, 179]. Two main types of encoders could
be found on the market: absolute and incremental. The former gives
absolute information of the angle between the current joint position
and the reference position —i.e. the zero of the encoder. The latter, in-
stead, gives information about the motion of the joint relative to the
previous position; therefore a further processing is required to obtain
the real angular value. Encoders are basically composed by two el-
ements: a graduated disk which rotates with the motor shaft and a
fixed transducer to read the ticks of the disk. Encoders incorporating
transducers based on mechanical, optical, or magnetic technologies
have been developed and improved over the years, leading to the cur-
rent wide range of options. Small, lightweight, relatively cheap, and
reliable — the last two properties are strongly related to the technol-
ogy on which they are based and on the desired angular resolution —
encoders are integrated in almost every actuator. Indeed, in most of
the cases, encoders are already integrated by the actuator producers
on the back of the motor. In many robotic devices, in particular hu-
manoid robots or rehabilitation devices, however, some joints might
be actuated through pulleys or other mechanisms, therefore for those
joints the integration of the encoder should be handled by the device
developers.

However, in order to reduce the costs and the failure risks of the
robotic devices, current research efforts are concentrated toward the
direction of reducing of the number of encoders, using cheaper IMUs
to estimate the kinematics [135, 151, 206]. Those approaches, indeed,
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despite requiring computational efforts at the model level, provide
more accurate information about joint velocity and link accelerations.
Such quantities are in fact typically obtained by numerical differenti-
ation of encoder measures, thus largely affected by noises.

As already discussed for the human case, pure kinematic measure-
ments are not sufficient to fully describe the motion of the robotic
devices. Device joint torque measurements are indeed required to
both assess its dynamics behavior and develop close-loop torque
controls. Also in this case, direct and indirect methods to assess the
joint torques are available and the choice among them is guided by
the trade-off between pros and cons.

Direct measurement approaches rely on torque transducers con-
nected to the motor shaft, which measure the deformation of their
internal structure in order to obtain reliable estimates of the torque.
In other words, the torque transducer includes a load cell structure
which supports the load by deflecting a known amount in response to
the applied torque. The deformation of the elastic element integrated
in the sensor could be measured with different sensors based on elec-
trical, electromagnetic, or optical phenomena. Two main classes of
sensors to measure deflections could be defined depending if there
is contact between them and the elastic deforming element. Exam-
ple of noncontact sensors are the one based on light, Hall effect, or
Faraday’s law. Contact sensors class, instead, includes strain gauges,
potentiometers, piezoelectric sensors, or optical fibers. Even in this
case, the description of the different types of torque transducers avail-
able is out of the scope of this work. A good review of the different
technologies can be found, by interested readers, in [179, 197].

In general, a distinction should be made between force sensors
developed to measure 6D generalized forces (3D force and 3D mo-
ment) and the ones developed on purpose to measure a single axial
torque [1]. Indeed, while the former should measure all the compo-
nents of the applied generalized force, and thus their elastic element
should be compliant in all the directions — generating high defor-
mations to guarantee a good resolution — single axis torque sensors
should be, ideally, insensitive to the other five components. This in-
sensitivity is mainly due to the need of reducing the cross-talks and
the influences of forces due to external loads. The goal of single-axis
torque sensors is, indeed, to accurately measure the torque exerted
on the joint by the actuator. A large literature is available on six-axes
force/torque sensors [87, 185] and on the different methods to apply
those sensors on the motors| [82, 119]. However, little attention has
been paid to the development of pure joint torque sensors [10, 96,
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Despite the large availability of options to measure joint torques,
three main factors negatively influence their wide usage in research
platforms and even more in commercial robotic devices: reliability,
costs, and compliance introduced at the joint. The last factor is
intrinsic in the torque sensor working principle since it is based
on the deformation of an elastic element, deformation that should
be large to have a good measurement resolution. However, the
introduced elasticity negatively impacts on the performances of the
devices in terms of controllability and accuracy, thus requiring more
complex controllers. As already discussed for the encoders, sensor
reliability, durability, and costs have an even more severe impact
for joint torque sensors, indeed they are more delicate, fragile, and
characterized by higher costs.

For these reasons, alternative indirect approaches have been intro-
duced to obtain joint torque estimates using as input other quantities
more easy to measure. For example, a commonly used approach is
to measure the current provided by the motor driver to the actuator
and from that measure, using a model of motor and transmission
chain, the exerted torque can be estimated. Another approach uses
angular measurements to estimate the torque exerted by compliant
actuators [202]. This approach, described into the details in Sec. 7.3,
was used to estimate the joint torques exerted by the exoskeleton pro-
totype developed within the EU project I contributed to.

3.4 MEASURING THE INTERACTION

So far, the principal methodologies to estimate the kinematic and dy-
namic states of both the human and the robotic device have been pre-
sented and briefly discussed. However, to fully describe the behavior
of the whole cooperating system, also the state of the interaction be-
tween the human and the device should be assessed and, possibly,
measured.

This sub-level of the measure level is the one where the major
technological challenges are concentrated. The reasons are mainly re-
lated to the relatively new interest in accurately measuring the forces
emerging from the interaction between a human and a device. Indeed,
until the latest decades when this interest arose, external forces mea-
surements were limited to GRFs and contact forces exerted by a robot
when touching an object. The first case (GRFs) has been already dis-
cussed in the first part of this chapter, whereas the second case, more
interesting for the scope of this section, is briefly presented in the
following.

The commonly used approach to measure the forces exerted by
a robotic device interacting with something is to integrate 6-axes FT
sensors in the mechanical structure of the links in which the contact is
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expected. Typically, a single 6-axes FT sensor is integrated in the end-
effector of the robot to measure the forces applied when touching or
grasping an object [87, 135, 151, 185]. Despite being a reliable sen-
sor capable of providing accurate measures, it senses forces applied
to a single rigid body — like, for example, the sliding part of a grip-
per. If this approach is adequate to accurately describe the interaction
between a robotic device and an object, the same approach cannot
provide exhaustive information when the interaction involves a hu-
man. Indeed, human-robot contact is not limited to the end-effector
but could potentially happen each time in a different location on
the robot, in particular in the case of cooperative robotic arms or
humanoids.

These considerations led researchers to investigate the devel-
opment of skin-like sensors and sensing methods for gathering
distributed tactile information. Tactile sensing has been investigated
for a long time and a very large number of valuable prototypical
solutions is reported in literature [111]; however, they are mainly
focused on small areas, like robotic hands for grasping and manip-
ulation of objects. Several attempts have been made to extend those
methodologies to cover the whole body of robotic devices — in partic-
ular humanoid robots [147]. Indeed, a valuable approach to measure
the interaction between a human and a robot is to cover the large
majority of the robot surface with skin-like sensors in order to be
able to sense contacts which may happen at unpredictable locations
and in unpredictable ways. Several engineering challenges arise
from this need; indeed, the skin should be: conformable to adapt
to curved robot body, tough and reliable to withstand a significant
number of contact cycles, embedded to allow modular integration
with the robots, and finally simple to manufacture [30]. As result of
a smart engineering design combined with advanced manufacturing
technologies, in [30] authors propose ROBOSKIN [123], a valuable ar-
tificial skin composed by modular semi-flexible triangular elements.
Each element, having size more or less equal to a coin, is equipped
with 12 uniformly distributed capacitive transducers engineered to
sense not only the human touch but also the contacts with other
objects. Such approach, extremely valuable and capable of providing
accurate measures, allows to measure the interaction between a
humanoid or a robotic arm and a human.

Slightly different is the case of wearable robotic devices, which are
linked to the human body through connection cuffs. In this case, in-
deed, the contacts are concentrated at the interface between the cuffs
and the skin of the human. However, the contact surfaces change their
shapes and properties during the interaction, leading to the unfeasi-
bility of using standard rigid FT sensors to measure the exchanged
forces. Moreover, the connection between a human and a wearable
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device is characterized by high shear forces. Those forces, exerted in
the tangent direction with respect to the skin, are particularly chal-
lenging from a technical point of view for mainly two reasons. On
the one hand, they are not measurable with standard pressure sen-
sors, which are sensitive only to the pressure exerted in the normal
direction, thus a 3D combination of more sensors would be required.
On the other hand, shear forces exerted on the sensors cause high
levels of stress in the mechanical structure which needs to be robust
and durable but, at the same time, soft (to avoid hurting the human),
flexible (to adapt to the surfaces shape changes), and compliant (to
avoid interference with the interaction phenomena itself).

These considerations led to the conclusion that, at the current state,
ROBOSKIN cannot be effectively used to sense the interaction at the
interface between a human and a wearable robot — i.e., between the
textile connection cuffs and the wearer skin — since not enough flex-
ible and quite delicate. Current efforts are therefore focused on de-
veloping a new prototype of the skin where the transducers are inte-
grated in a silicone support, flexible, durable, and capable of resisting
to high shear forces.

At the best of my knowledge, only two prototypical approaches
have been so far developed to assess the interaction forces emerg-
ing at the interface between human and wearable device connection
straps. In [193], a low cost solution has been proposed. Six single-
axis flexible force sensors (FlexiForce Ag01-25, Tekscan) have been
glued on a soft spongy support to be placed between the exoskele-
ton cuffs and the user limbs. Combined with on-board electronics for
signal conditioning and a remote software to handle the calibration
and acquisition processes, this sensor prototype allowed the authors
to obtain quite accurate and reliable measures of the normal interac-
tion forces. The approach has been validated “on the field” with a
real exoskeleton worn by both an healthy subject and a spinal cord
injured patient, obtaining promising results.

A completely different technology has been employed in [56]. The
developed sensors are composed by a flexible matrix of optoelectron-
ics transducers integrated into a soft silicone U-shaped pad. Modu-
lar structure and scalable sizing enable the usage of such sensors to
cover wide areas of different shapes to accurately measure the ap-
plied pressure. The assessment of the capability of the developed sen-
sors was performed by the authors applying those sensors between
the connection cuffs of the exoskeleton and the user limbs. Despite,
as demonstrated, being capable of providing accurate measures with-
out compromising the comfort of the human, the main drawbacks of
this sensor are its high cost, its quite complex manufacturing process,
its difficult characterization and calibration, and its potential interfer-
ence with the interaction phenomena.
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To conclude, none of the presented solutions is neither currently
available as commercial product nor integrated with available wear-
able robotic devices.
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Part of the work presented in this chapter has been published as scientific
papers [190, 209].

I have made a substantial and principal contribution in the conception and
design of these studies, related softwares development, analyses and interpre-
tations of the results, drafting and critical revision of the final manuscripts.

Co-authors permissions for the inclusion of the studies in this dissertation
have been obtained.

4.1 INTRODUCTION

In Sec. 2.2, the choice of OpenSim as a common software platform
to develop a full multilevel model of the whole human-robot system
was discussed. As seen in Sec. 2.2, however, the chosen software
platform must be reliable in simulating all system components — i.e.
humans, actuated devices, and dynamic contacts.

This chapter describes and analyses the steps followed to assess
OpenSim reliability in simulating robotic devices like exoskeletons,
rehabilitation devices and, thus, potentially, humanoid robots and in-
dustrial manipulators.

The first step, the validation of OpenSim as multi-body mecha-
nisms simulator, is described in Sec. 4.2. To achieve this goal, a largely
accepted multi-body systems (MBS) benchmark composed of five
problems, each one tackling a specific simulation challenge, has been
used.

After completing the “mechanical” validation of OpenSim, the fo-
cus was moved to the investigation of OpenSim’s performance in
modeling control systems. Two different test cases have been consid-
ered to develop realistic control systems. The first test case (Sec. 4.3.1)
has been a simple pendulum model driven by an ideal motor con-
trolled through a double loop (i.e. position and speed) PID controller.
The second test case (Sec. 4.3.2) has been a Furuta pendulum [69],
a common challenging test-bench for controllers. In this test case, a
switching control system composed by a swing-up controller [11] and
a Linear Quadratic Regulator (LQR) [107] has been implemented.

The obtained results show that OpenSim could effectively be used
to simulate robotic devices, in terms of both mechanics and low-level
controllers. Indeed, the H2" lower-limb exoskeleton (Technaid, Spain)
has been successfully modeled and simulated in OpenSim. The de-

1 http://www.technaid.com/products/robotic-exoskeleton-exo-exoesqueleto/
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1D Problem Name Simulation Challenge

Ao1 | Simple pendulum Example problem (2D)

Aoz | N four-bar mechanism | Singular configuration (2D)
Ao3 | Andrew’s mechanism | Very small time scale (2D)
Ao4 | Bricard’s mechanism Redundant constraints (3D)
Aos | Flyball governor Stiff system (3D)

Table 4.1: Simulation challenges tackled by the problems of the Multi-Body
Systems Benchmarking Suite.

scription of the work and the achieved preliminary results are re-
ported in Sec. 4.4.

4.2 VALIDATING THE ROBOTIC PLATFORM ON A MULTI-BODY
SYSTEMS BENCHMARK

The study presented in this section has been published as a scientific paper
[190].

To extensively evaluate OpenSim as a multi-body systems simula-
tor, the first step was selecting the benchmarking suite to use. Sur-
prisingly, very few options were available in the multi-body dynamics
research field. The best formalized, the most complete, and the one
with the largest number of publicly available results was the Multi-
Body System Benchmarking Suite [76, 77]. This suite was composed
by five problems, each one tackling a specific challenge for dynamic
simulators as summarized in Tab. 4.1.

4.2.1 MBS Benchmark: problems description and implementation

A short description of the main characteristics of each problem and
of their implementation in OpenSim is provided in this paragraph.
For more details about the benchmarking suite interested readers are
invited to refer to [76, 77].

AO1 - SIMPLE PENDULUM

The first problem is a simple pendulum (Fig. 4.1a), a planar mech-
anism composed of a point mass welded at one end of a rigid mass-
less rod. At the other end, the rod is connected to the ground by
an ideal pin joint. The only force applied to the mechanism is the
gravity acting in the vertical direction. Tab. 4.1c reports system con-
figuration while Fig. 4.1b shows the implemented OpenSim model.
This problem does not have a real challenge; it is only proposed as
demonstration example.
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Property | Value

P17 mass 1.0kg
o« Bar length | 1.0m
Bar mass | 0.0kg
0(0) 0.0rad
o 9(0) 0.0rads™!

(@) (b) (©

Figure 4.1: OpenSim validation as mechanical simulator. MBS problem Ao1
— Simple pendulum: (a) sketch of the mechanism, (b) OpenSim
model, and (c) system properties and initial configuration. Refer-
ence point: Py.

Property Value

N 40
Link mass 1.0kg
Link length | 1.0m
Box(0) 1.0m/s

Table 4.2: OpenSim validation as mechanical simulator. MBS problem Ao2
- N-four-bar mechanism: system properties and initial configura-
tion.

AO2 - N-FOUR-BAR MECHANISM

The second problem is the N-four-bar mechanism composed of
2N + 1 links connected through ideal hinge joints (Fig. 4.2 and
Tab. 4.2); an extension of the 2-four-bar mechanism proposed in [15].
When the mechanism reaches the horizontal position, the number of
degrees of freedom instantaneously increases from 1 to N+1. The only
force applied to the mechanism is the gravity acting in the vertical di-
rection. This problem is challenging because it is a common example
of a mechanism which undergoes singular configurations [77].

AO3 - ANDREW'S MECHANISM

The third problem is an Andrew’s mechanism [175] (Figs. 4.3, 4.4a).
It is a planar mechanism composed by seven bodies interconnected
through ideal hinge joints and driven by a motor located in O. The
motor is considered ideal, i.e. capable of providing a constant torque
without any transient effect. Tabs. 4.3 and 4.6 report the geometrical
and inertial properties of each link.
The dynamic simulation of this problem, due to the very small time
scale specified by problem definition, is highly challenging for most
of the available multi-body simulators.
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2=9.81N/Kg

Figure 4.2: OpenSim validation as mechanical simulator. MBS problem Ao2
- N-four-bar mechanism: (a) sketch and (b) OpenSim model (only
the first three windows are shown). Reference point: By.

Figure 4.3: OpenSim validation as mechanical simulator. MBS problem Ao3
- Andrew’s mechanism: (a) sketch and (b) OpenSim model. Ref-
erence point: F.

‘ Angle [rad]

B —0.0620
OFE 0
FEB 2.088
FEG 2.341
EGA 1.792
EHA 1.348

(a) (b)

Figure 4.4: OpenSim validation as mechanical simulator. MBS problem Ao3
- Andrew’s mechanism: (a) mechanism’s links’ reference systems
and (b) initial configuration specifications.
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Center of Mass (CoM) Mass Inertia (CoM) | Length

Xmml | Yl | Ikl [kgm?] [m]
OF | 0.00092 0 0.04325 | 2194 x107¢ | 0.007
FE | —0.0115 0 0.00365 | 4.41x10~7 0.028
EG 0 0.01421 | 0.00706 | 5.667 x 10~7 0.02

AG | 0.02308 0.00916 0.0705 | 1.169 x 10~° 0.04
AH | —0.00449 | —0.01228 | 0.05498 | 1.912x 10> 0.04
HE | —0.01421 0 0.00706 | 5.667 x 10~7 0.02

Table 4.3: OpenSim validation as mechanical simulator. MBS problem Ao3 -
Andrew’s mechanism: inertial properties of the mechanism links.

Center of Mass (CoM) ‘ Mass ‘ Inertia Point ‘ X [m] ‘ Y [m
Xim] | Yml | kel | kgm? B 0.0 0.0
0.01043 | —0.01874 | 0.02373 | 5.255 x 10~° D 002 ) —0.018

E 0.0 | —0.035

Table 4.4: OpenSim validation as mechanical simulator. MBS problem Ao3
- Andrew’s mechanism: triangular element properties, points de-
fined with respect to Xgpe—Yppr reference system.

Point‘ X [m] ‘ Y [m]

(@) 0 0

A —0.06934 | —0.00227
B 0.036 35 0.03273
C 0.014 0.072

Table 4.5: OpenSim validation as mechanical simulator. MBS problem Ao3
- Andrew’s mechanism: coordinates of the points with respect to
the X-Y reference system.

Property Value

Spring coefficient | 4530 N m!
Spring rest length | 0.07785m
Motor torque 0.033Nm~!

Table 4.6: OpenSim validation as mechanical simulator. MBS problem Ao3
- Andrew’s mechanism: properties od the passive elastic element
and motor torque.
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(@) (b)

Figure 4.5: OpenSim validation as mechanical simulator. MBS problem Aog
- Bricard’s mechanism: (a) sketch and (b) OpenSim model. Refer-
ence point: P3.

1 \\\\C

(@) (b)

Figure 4.6: OpenSim validation as mechanical simulator. MBS problem Aos
- Flyball Governor: (a) sketch and (b) OpenSim model. Reference
coordinate: s.

A04 - BRICARD'S MECHANISM

The fourth problem is the Bricard’s mechanism [22], a system com-
posed of five rods (1.0m length and 1.0kg mass) connected by six
ideal hinge joints (Fig. 4.5). The only force applied to the mechanism
is the gravity acting in the vertical direction. The challenge of this
problem is being an over-constrained system. Indeed, while Griibler’s
formula [79] results in no degrees of freedom, the particular orien-
tation of the revolute pairs produces a system with one degree of
freedom.

AO5 - FLYBALL GOVERNOR

The last problem is a flyball governor (Fig. 4.6, 4.7) and was firstly
formalized by J. Watt in the 18th century. The only force applied to the
mechanism is the gravity acting in the vertical direction. In this stiff
mechanical system, coupler rods are substituted by spring-damper
elements, thus making its simulation very challenging.
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Property Value

Axis, Rods 1.0m x 0.00Tm x 0.01m
Base 0.0Tmx0.0lmx0.Tm
Density p 3000 kg/m3

Spring stiffness K | 8 x 10> Nm™!
Spring damping C | 4 x 104 Nsm™!
Spring rest length | 0.5m

s 0.5m
o4 30°
w 2nrads™!

Table 4.7: OpenSim validation as mechanical simulator. MBS problem Aos -
Flyball Governor: system properties and initial configuration.

4.2.2  Accuracy evaluation

In order to assess the accuracy of OpenSim in simulating the prob-
lems of the MBS benchmarking suite, the guidelines provided by suite
authors [77] were followed. For each problem, the 3D displacement of
a reference point was provided by the authors. Reference points are
visible in the mechanism description figures included in the previous
section.
The accuracy of the simulations was evaluated computing the maxi-
mum normalized error between the reference displacements and the
simulated ones, as required in [77].

For each time sample t;, the error at coordinate j was computed as
follows:

() —qref(+.
o it) = |wmylm} (11)

max {m;ef(ti”)yjthreshold

where y is the simulation output and y™®' is the provided reference.
A threshold was introduced to avoid the singularity that could appear
if the reference value approached zero. The threshold value was set
to 107> for problem Ao3 and to 10~ for the others. The choice of
the threshold value depends on the coordinate values assumed by
the reference point during the motion of the mechanism, which are
lower for the Ao3 problem.
Eq. 4.2 defines the total error (e1ota1)-

m

1 1 &
erotat =, | — ) — ) (g(t:))? (4-2)
i j=1

=1

In Eq. 4.2, m is the dimension of the displacement vector of the
reference point and n the number of samples.
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Ao1 Aoz Ao3 Aoy Aos
RMSE X [m] 28x 107> 79%x107> 70x107% 21x107> 4.0x107>
RMSE Y [m] 29%x107> 54x107> 80x107° 20x10°° -
RMSE Z [m] - - - 4.0x10°° -

Peak Error X [m] 5.6x 107> 21x107% 16x10°> 19x10% 18x103
Peak Error Y[m] 59x107> 1.8x10™% 19x10> 51x10°° -
Peak Error Z [m] - - - 53x107° -

Table 4.8: OpenSim validation as mechanical simulator. Root Mean Squared
Error and Peak Error computed at the reference point of each prob-
lem of the MBS benchmarking suite.

The secondary goal of this work was to compare OpenSim with
other commonly used software dedicated to multi-body systems sim-
ulations. In order to achieve this goal, obtained results have been
compared to the ones obtained by other researchers and made avail-
able through a common online database®. The database structure and
the performance indexes to include in the submission have been de-
fined by the “IFToMM Technical Committee for Multi-body Dynamics”.
The provided guidelines define the accuracy index as the variation of
the total mechanical energy of the system with respect to the start-
ing conditions. This definition is applied to the first four problems
of the benchmarking suite. For the last one, instead, the global er-
ror defined in Eq. 4.2 is used as accuracy index. Besides the accuracy,
also computational performances are required for the inclusion of the
obtained results in the collaborative database. Required information
includes: the solver algorithm, the time step, the main specifications
of the computer, and the computational time.

4.2.3 Results and discussion

In order to assess the accuracy of OpenSim as multi-body systems
simulator in absolute terms, simulation results were compared with
the references provided by benchmarking suite authors.

Tab 4.8 reports the Root Mean Square Error (RMSE) and the Peak
Error (PE) computed at the reference point of each benchmark prob-
lem. R? values were also computed and are always really close to the
unit value (R? > 0.999) for each problem. Obtained results demon-
strate the high precision of the simulations and confirm the suitabil-
ity of OpenSim as multi-body system simulator. The perfect match
between simulated and reference solutions is also shown in graphic
format in Fig.4.7.

Tab. 4.9 reports the global errors and the variation of total mechan-
ical energy of each system with respect to its starting conditions. The
energy variation during the simulation of each benchmarking prob-

2 https://www.iftomm-multibody.org/benchmark/
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Figure 4.7: OpenSim validation as mechanical simulator. Comparison be-
tween OpenSim simulation outputs (dashed lines) and MBS
benchmark reference (gray lines or dots) for the reference point.
Note: OpenSim output perfectly matches the reference solution
therefore the lines are often overlapped.
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Problem ID | Global error [%] ‘ Mechanical energy variation []]

Ao1 3.6x1073 4.0 %10~
Aoz 9.8 %104 32x1077
Ao3 47 %1072 3.8x1077
Aoy 6.4x1074 9.6x 1077
Aos 29x107° -

Table 4.9: OpenSim validation as mechanical simulator. Global error [%] and
total mechanical energy variation with respect to the starting con-
ditions []J] for each problem of the MBS benchmarking suite simu-
lated in OpenSim.

Problem ID ‘ CPU time [s] ‘ Integrator ‘ Solver ‘ Time Step [s]
Ao1 0.637 CPodes NRI | 1x107¢-1x10"3
Aoz 0.455 RKM EEC4 | 1x1073-1x10"2
Ao3 0.384 RKM EEC4 | 1x107°-1x10"%
Aoy 0.258 CPodes NRI | 1x1073-1x102
Aos 0.233 CPodes NRI | 5x1073-1x102

Table 4.10: OpenSim validation as mechanical simulator. Simulator settings
used and computational time required to solve the benchmark-
ing problems. Acronyms used: CPodes Linear Multistep Back-
ward Differentiation Formula (CPodes), Runge-Kutta-Merson
(RKM), Newton-Rhapson Iteration (NRI), Explicit Euler Con-
trolled 4th order (EEC4).

lem is graphically shown in Fig. 4.8. Since in the first four problems
there are no dissipative phenomena, the theoretical mechanical en-
ergy variation with respect to the starting condition should be equal
to zero. Overall, both global error and mechanical energy variation
indexes are very low for all the benchmarking problems. Comparing
with the other results available in the database, it could be stated
that OpenSim performs better than the other simulators in terms of
accuracy — the accuracy is typically an order of magnitude smaller.

Tab. 4.10 reports the simulator settings used to solve each prob-
lem and the required computational time. To fairly compare with the
other solutions in terms of computational performances, details about
the computer must be provided; the computer used in this work was
an HP workstation equipped with Intel Core i5-45703.2GHz proces-
sor running Windows 8.1 operating system.

Computational performance is in line with that of the other simula-
tors, which is an indicator of the efficient implementation of OpenSim
libraries.
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Figure 4.8: OpenSim validation as mechanical simulator. Total mechanical
energy variation during the simulation of the benchmark prob-
lems. OpenSim results (blue) and theoretical values (black). Since
there are no dissipative phenomena, theoretical mechanical en-
ergy variation is zero for all the problems.
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4.2.4 Conclusions and remarks

This work presented a formal evaluation of OpenSim as mechanical
multi-body system simulator [190]. The C++ source code to create
the models and simulate the MBS benchmarking suite problems
in OpenSim has been released for free under GPL3.0 License and
is hosted in a dedicated the GitHub repository 3. Videos of the
simulations recorded through OpenSim GUI and live plots showing
the evolution of the simulations can be found in the dedicated
YouTube channel*.

Reported results show that OpenSim already provides all the tools
required to define a methodology to predict the dynamic behavior of
mechanical multi-body systems. This achievement is a fundamental
milestone in the implementation of the complete framework objec-
tive of my PhD and, in a more general perspective, in OpenSim com-
munity research. This work, indeed, validates OpenSim in the field
of multi-body systems simulation, allowing researchers to move for-
ward in modeling both human and devices using the same software
platform.

4.3 IMPLEMENTING DEVICE CONTROLLERS

Verified the feasibility of accurately modeling and simulating mechan-
ical devices in OpenSim, the subsequent step was to move to mecha-
tronics devices composed by mechanisms, actuators, and controllers.

Two test cases were considered in this phase, characterized by dif-
ferent complexity levels.

The first test case focused on the implementation and simulation of
low-level standard controllers such as the proportional-integral (PI)
and the proportional-integral-derivative (PID). Those controllers are
the most widely used since they represent a valuable compromise
in the trade-off between complexity and obtainable dynamic perfor-
mances for the controlled system. They have respectively two/three
parameters to play with to match the requirements of the system and
the impact of each parameter on the system behavior is well known
and documented in literature. A simple pendulum was used as test-
bench to assess the accuracy of OpenSim in simulating the developed
controllers. The classic step response approach was used.

The second test case faced the challenge of simulating advanced
control techniques, such as the autonomous switching between two
different controllers. A Furuta pendulum [69] was used as test-bench
to validate OpenSim results against experimental measures from the
real system.

3 https://github.com/RehabEngGroup/MBSbenchmarksInOpenSim
4 https://www.youtube.com/playlist?1list=PL6A7KIWOWTN58UcT1-jRnfwzvOVHIqTXY
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The presentation of the control theory, however, goes beyond the
scope of this chapter, therefore, for the sake of brevity, it will be omit-
ted. Interested readers are referred to the classic control theory litera-
ture [11, 38, 107, 177, 182].

4.3.1  Test case 1. The simple pendulum

The Proportional-Integral-Derivative (PID) controller is the most
common control scheme and is successfully used in the large major-
ity of control problems. The PID controller, indeed, allows to obtain,
once correctly tuned, very good dynamic performances for the con-
trolled system — i.e. stability, zero steady state error, fast response,
short rise time, absence of oscillations, and good noise rejection. Rel-
atively simple to implement, both in analog and digital forms, and
to tune, since its parameters are quite intuitively related to the dy-
namic performances of the closed-loop system — i.e. bandwidth, ris-
ing time, steady-state error, etc. — it represents the standard device
controller. The PID controller takes as input the error in(t) between
the measured value and a provided reference. It is composed by three
different components:

* Proportional: out(t) = K - in(t)
e Integral: out(t) = Ky - [in(t)dt

¢ Derivative: out(t) = Kq - di&m

Ky, Ki, and Kg are the three parameters which need to be tuned in
order to obtain the desired closed-loop behavior. The outputs of the
three components are then summed up to obtain the control signal
that needs to be given as input to the actuator or, if a nested control
scheme is implemented, to the inner control loop. A common practice
in systems control is to implement a double loop schema (Fig. 4.9)
in order to obtain better dynamic performances and to increase the
stability of the controlled system.

The outer loop controls the position of the system, minimizing the
error between the measured position q(t) and the provided reference
r(t). The inner loop. instead, controls the speed of the actuator
minimizing the difference between the output of the position loop
and the measured speed (q_dot(t)).

A simple pendulum model was used as basic test case to assess
the feasibility of implementing and simulating double loop PID con-
trollers in OpenSim.

A point mass (1 kg weight) was connected at one extremity of a mass-
less rod (1 m length). The other end of the rod was connected to the
ground through an ideal hinge joint. The joint was actuated by an
ideal DC motor capable of exerting a maximum torque of 200 N m.
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Position controller Speed controller

T
Actuator System

q_dot(t)

q(t)

Figure 4.9: Double loop PID control schema. The outer loop controls the
position of the system, minimizing the error between the mea-
sured position and the provided reference, while the inner loop
controls its speed.
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Figure 4.10: Control systems modeling in OpenSim. Step responses (20 deg
position reference step amplitude) of the controlled pendulum
model corresponding to different P-PID gain sets. Only the ini-
tial 0.5 s time window is shown.

The actuator was controlled by a nested controller composed by a pro-
portional position controller and a proportional-integral-derivative
speed controller. This control scheme will be referred in the following
as P-PID. The goal was to follow a position reference step of 20 deg
starting from the pendulum stable equilibrium configuration (verti-
cal rod, mass down). The gravity force was considered acting in the
negative vertical direction. A time window of 2s was considered for
the simulations.

Simulated joint angles corresponding to different P-PID gains are
shown in Fig. 4.10.

Obtained results confirmed the feasibility of simulating controlled
systems in OpenSim using PID controllers, even in nested loops.
Moreover, thanks to the controller structure, it is possible to config-
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(b)

Figure 4.11: Control systems modeling in OpenSim: Furuta pendulum. (a)
Real device and (b) OpenSim model.

ure the gains using an external XML file, therefore there is no need
to rebuild the source code every time a gain is changed.

4.3.2 Test case 1. The Furuta pendulum

The work presented in this section has been published as part of a scientific
paper [190].

The Furuta pendulum [69] (Fig. 4.11a), or rotational inverted pen-
dulum, consists of a driven arm which rotates in the horizontal plane
and a pendulum. The pendulum is a rod with a mass attached to one
extremity. The other end is connected to the arm with a non-actuated
pin joint allowing the pendulum rotation on the vertical plane. The
arm, on the other end, is connected to the actuator. This device, which
can be seen as a complex nonlinear oscillator, is commonly used as
test-bench for simulators since modeling its behavior is particularly
challenging.

In the process of evaluating OpenSim as common multi-level sim-
ulation platform, modeling and dynamically simulating the Furuta
pendulum [209] was another step toward the final goal. Indeed, its
simulation required to implement two different controllers, one for
the swing-up phase and another one for the stabilization phase, and
to automatically detect the correct timing for an optimal switch be-
tween them.

Materials and Methods

To collect experimental measurements to be used as ground of truth
in the validation of OpenSim simulation outputs, a real Furuta pendu-
lum was used. The device was available at the Laboratory of Mecha-
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tronics of the Department of Management and Engineering of the
University of Padua. The actuator used to drive the horizontal arm
was a DC motor with direct current control; no reduction gear was
used. Joint angles were directly measured interfacing the optical axial
encoders mounted on the joints with a custom acquisition software
implemented in Simulink (MathWorks, USA).

The model of the Furuta pendulum (comprehensive of mechanism,
motor, and controller) was implemented both in Simulink and in
OpenSim (Fig. 4.11b) to compare the simulation outputs provided
by the two simulation platforms with the experimental measures. A
switching control schema was implemented; this schema was com-
posed by two controllers: a swing-up controller and a stabilization
one. The former aimed at swinging the pendulum from the stable
equilibrium position (vertical, mass down) to the unstable equilib-
rium one (vertical, mass up). The approach adopted for swinging up
the pendulum is the one described in [11]. After reaching the unsta-
ble equilibrium position, the second controller took over the control
in order to robustly hold the pendulum in that position. An infinite
horizon Linear Quadratic Regulator (LQR) [38, 107, 182] was used
as controller for this stabilization phase. Viscous joint friction was
considered in the model by connecting two virtual speed-controlled
actuators to the joints.

Results and discussions

Fig. 4.12 reports the obtained results, highlighting the accuracy of
OpenSim in performing complex simulations.

From Fig. 4.12b it is possible to notice that the two simulators pro-
vided perfectly matching solutions for both the joints of the device.
However, those estimates differ from the experimentally measured
system behavior. These differences could be due to uncertainties in
system’s inertial and dynamic parameters (such as moments of in-
ertia, friction coefficients, non idealities in the actuator, etc) used in
the models. Therefore, attention should be paid in identifying real
systems properties.

4.4 DYNAMIC MODEL OF A LOWER-LIMB EXOSKELETON

Upon completing the validation of OpenSim as reliable tool for mod-
eling and simulating mechatronics devices, a real robotic device
model was developed. The selected device was the Exo-H25 (Tech-
naid S. L., Spain), a commercial lower-limb exoskeleton for gait reha-
bilitation of post-stroke patients [21]. The Exo-Hz has been the result
of many years of research carried out by the Bioengineering Group
of the Consejo Superior de Investigation Cientificas (CSIC). This in-

5 http://www.technaid.com/products/robotic-exoskeleton-exo-exoesqueleto/
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Figure 4.12: Control systems modeling in OpenSim: Furuta pendulum. (a)
Actuated joint angles. Real device (black line), Simulink esti-
mate (blue dashed line), and OpenSim estimate (red line). (b)
Free joint angle. Real device (black line), Simulink estimate
(blue dashed line), and OpenSim estimate (red line).

stitute is the proprietary of the know-how rights and has conceded
an exclusive license to Technaid S.L. for the design, manufacturing,
and commercial exploitation of the system. Characterized by three
actuated joints for each leg (hip, knee, and ankle), the Exo-H2 pro-
vides people that have partially lost their walking capabilities with
the required support during the rehabilitation treatment. The clean
mechanical design, the very limited weight (only 11kg for the full
exoskeleton), and the open architecture that allows the user — being a
therapist, professor or researcher — to modify and adjust the control
parameters of the system in order to maximize the rehabilitation ef-
ficacy for the patients, are the distinguishing feature of the Exo-H2
with respect to other similar commercial devices.

To develop the OpenSim model of the Exo-Hz2, device specifications
(geometrical and inertial properties of each component and device as-
sembly) were retrieved from the CAD model of the device kindly
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(@) (b)

Figure 4.13: Robotic devices modeling in OpenSim. The Exo-Hz2 (Technaid S.
L., Spain) lower-limb exoskeleton for gait rehabilitation. (a) Real
device picture from Technaid website and (b) model developed
in OpenSim

provided by CSIC, thanks to our ongoing collaboration in the context
of the Biomot European Project®.

Fig. 4.13b shows the OpenSim model of the Exo-H2 exoskeleton,
while Fig. 4.13a shows a picture of the real device taken from Tech-
naid offical website.

Each joint of the Exo-H2 was directly connected to a permanent
magnet DC motor capable of exerting a maximum torque of 20 N m.
In the developed OpenSim model, in order to mantain the computa-
tional demand to a minimum , the actuator was considered ideal,
therefore capable of providing continuously its maximum torque.
Each actuator was controlled by one P-PID controller and its gains
were manually tuned to obtain the desired behavior. Position refer-
ences (i.e. joint angles used as references for the P-PID controllers)
were provided from experimental joint angles measured during a
walking trial performed by an healthy female subject.

Obtained results are shown in Fig. 4.14, highlighting once again the
excellent performances of OpenSim as robotic devices simulator.

An almost perfect match was obtained at all the joints of the device,
as shown by the overlap between references and simulation results in
Fig. 4.14. Root mean squared errors (RMSEs) for all the joints are re-
ported in Tab. 4.11. The worst root mean squared error (RMSE) was

6 http://www.biomotproject.eu
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Figure 4.14: Robotic devices modeling in OpenSim: H2-Exo. The simulation
goal was to follow the provided kinematics reference during a
walking task. Results obtained during the simulation (a) for the
right leg and (b) for the left leg. OpenSim estimates are shown
as solid lines, experimental joint angles are shown as dashed
lines.
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Joint Name | RMSE []

right hip 0.93
right knee 1.23
right ankle 0.79

left hip 1.03

left knee 1.47

left ankle 0.88

Table 4.11: Robotic devices modeling in OpenSim: H2-Exo. Joint angles Root
Mean Squared Errors for the Exo-Hz2 dynamic simulation in
OpenSim. Reference values were experimentally measured dur-
ing a single overground walking performed by an healthy female
subject.

obtained at the hip joint of the left leg and it is equal to 1.47°. More-
over, experimentally measured joint angles were used as reference for
the simulation, but the accuracy would have been even higher if noise
free synthetic trajectories would have been used.

4.5 CONCLUSIONS

The goal of this chapter was to provide a complete and exhaustive
assessment of OpenSim performances and capabilities when used to
simulate robotic devices dynamics. This step was a major milestone
in my PhD, since it was mandatory for developing the proposed mul-
tilevel framework, where humans and robotic devices symbiotically
cooperate to perform shared activities.

Section 4.2 reported the assessment of OpenSim performances in
simulating the behavior of complex mechanism, conducted using a
largely adopted multi-body systems benchmark available in litera-
ture. Obtained results were very promising, placing OpenSim at the
same level as other dedicated multi-body simulators (like ADAMS
or Simulink), in terms of both accuracy level and computational de-
mand. The source code to create the models and run the simulations
was released for free under GPL3.0 License and it is available on
GitHub [191]. This work led to the publication of a scientific paper
[190].

Section 4.3 described the steps followed to assess the feasibility of
implementing control systems in OpenSim and using them to drive
device models. Both standard and advanced controllers were success-
fully developed and applied to two different test cases leading to
very promising results. Part of the work presented in this section was
published as a scientific paper [209].

Finally, Sec. 4.4 presented the results obtained in simulating the
dynamic behavior of the Exo-H2, a commercial lower-limb exoskele-
ton for gait rehabilitation. Obtained results were very promising also



4.5 CONCLUSIONS

in this case, confirming the capability of OpenSim in simulating real
robotic devices.

Since all the conducted evaluations provided very good and
promising results, both in terms of kinematics and dynamics, it can
be concluded that OpenSim could be a valuable software platform

to model and simulate not only the human but also robotic devices.

The complete evaluation reported in this chapter, therefore, opened
the path of using OpenSim as common platform to simulate together
humans and robotic devices.
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Part of the work presented in this chapter has been published as scientific
papers [186-189].

I have made a substantial and principal contribution in the conception and
design of these studies, related softwares development, analyses and interpre-
tations of the results, drafting and critical revision of the final manuscripts.
Co-authors permissions for the inclusion of the studies in this dissertation
have been obtained.

5.1 INTRODUCTION

A key factor for succeeding in facing the challenge of enhancing
human - robotic device symbiotic cooperation is the availability of
reliable tools to assess the human dynamic state during motion.
While for robotic devices it is generally possible to directly assess,
through experimental measures, the dynamic quantities that describe
the motion, the same does not hold for humans. As explained in
the introduction of this dissertation, indeed, in the large majority
of the cases it is not possible to directly measure, in a non invasive
way, neither the kinematics nor the dynamics of human motion. To
overcome this limitation, the biomechanics community is asked to
develop accurate models to describe the underlying mechanisms
that regulate human movements. Those models, driven by the
experimental measurements of dynamics-related quantities’, are
indeed fundamental to gather insights on the way a motion task is
performed by a human. The importance of the availability of those
insights stands mainly in providing a quantitative support to the
assessment of human behavior. Independently from the final goal of
the assessment, indeed, drawing conclusions based on quantitative
information prevents subjective influences in the evaluations and pro-
motes objectiveness, enabling accurate inter-subject or intra—subject
comparative studies. These concepts fit perfectly the specific case of
the proposed multilevel framework focus, the symbiotic cooperation
between a human and a robotic device. Indeed, the availability of
quantitative information about human physiological state during the
cooperation enables the evaluation of the response of the human to
different interaction strategies and their effects on the performed
task. These evaluations are fundamental to the aim of promoting and

Examples of dynamics-related quantities are: marker trajectories, segments orien-
tations, ground reaction forces, electromyographic signals, and so on. For a more
detailed explanation about currently available measurement technologies and mea-
surable quantities, readers are invited to refer to Ch. 3
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enhancing the symbiosis of the human—device cooperation.

Human modeling could be divided into two branches: the kinemat-
ics and the dynamics ones.

The kinematics sub-level focuses, as its name clearly declares, on the
estimation of the kinematics quantities that regulate the motion. The
aim, therefore, is to obtain an estimation of the angular values as-
sumed by the human joints during the motion.

Two main approaches are available and largely used in both research
and clinical practice: a direct one and a model-based optimization
one.

The direct approach uses the experimental measurements — either

3D position of “known” landmarks on human body segments or body
segments 3D orientation — to directly prescribe the pose, at each time
frame, to a basic kinematic model of the human. From that pose, fi-
nally, the direct method retrieves the corresponding joint angles.
The main benefit of this approach relates to the negligible compu-
tation time, characteristics that suits particularly well its online use.
However, the direct approach suffers of two main drawbacks which
limit the accuracy of its estimates. The models it uses are generally
basic kinematic chains that do not reflect the real anatomy of human
joints. In general terms, as a consequence of the different definitions
of the joints, the estimates could rarely be used to drive the anatom-
ical models on which are based the dynamics estimation tools. The
second drawback of the direct approach is related to the noise and
artifacts that afflict the experimental measurements. Indeed, without
any optimization, they directly influence the quality of the obtained
results.

The model-based optimization approach, instead, relies on ac-
curate anatomical model, personalized on subject’s anthropometric
characteristics, to estimate the joint angles. For each time frame, this
approach solves an optimization process in order to find the joint an-
gles that guarantee the minimum global tracking error. The specific
definition of the tracking error strongly depends on the source of the
data provided as input to the process, however, it could be generally
interpreted as the sum of the errors between each real sensor measure
and its virtual equivalent attached to the model, the latter obtained
as a consequence of the estimated joint angles. As it could be easily
understood, the computational demand associated to this approach
is higher than the one associated to the direct approach. However, the
efficient implementation of the simulation softwares that uses this ap-
proach enabled its usage also for online applications. Moreover, this
approach could effectively reduce the negative effects of noises and
experimental artifacts, leading to an higher level of accuracy of the
joint angle estimates.
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Sec. 5.2.1 provides a detailed description of the marker-driven ver-
sion of the model-based optimization approach, which is currently
considered the de-facto standard in biomechanics motion analysis. Par-
ticular reference is made to the marker-based Inverse Kinematics (IK)
tool available in OpenSim.

Sec. 5.2.2, instead, presents a novel approach I developed during
my PhD to extend OpenSim IK capabilities in order to use as input
the body segments orientations provided by inertial wearable sys-
tems [188]. The developed approach was validated in two different
test cases: the first, presented in Sec. 5.2.2.1, involved a robotic arm
while for the second (Sec. 5.2.2.2) a custom-made planar passive
mechanism was used. Experimental joint angles were obtained
in the first case by direct encoder measurements, whereas in the
second case by estimations of the marker-based OpenSim IK tool.
Finally, Sec. 5.2.2.3 reports the preliminary study conducted using
the developed orientation-based IK approach to estimate human
joint angles during gait.

The dynamics sub-level focuses on describing and modeling the inter-
nal mechanisms that regulates human motion, most of them neither
visible nor quantifiable from external observations. However, gather-
ing insights on internal dynamic quantities like muscle forces, joint
moments, and muscles and joints stiffness, has a big relevance when
the goal is assessing human motion.

To estimate the dynamics of the movement, accurate (neuro) mus-
culoskeletal ((N)MS) models are required. Furthermore, those models
need to be scaled and calibrated in order to match the anthropometry
of the subject (i.e. inertial and muscular properties), leading to the
so—called subject-specific NMS models. Several NMS models, char-
acterized by different modeling assumptions and complexity, have
been developed in the last decades and have been made available to
the community in the OpenSim model library [149].

As for the kinematics, also for the dynamics two different approaches
could be followed to estimate joint moments and, if required, muscle
forces and other internal quantities.

The inverse dynamics (ID) approach estimates the joint moments
taking as inputs the external forces applied to the body — for exam-
ple the ground reaction forces — and the joint kinematics — i.e. joint
angles and, optionally, velocities — from the previous modeling sub-
level [52].

The first step of the ID aims at computing, by numerical double dif-
ferentiation, the joint accelerations from the joint angles provided as
input. Then, the ID approach solves the classic equations of motion to
compute the net moments and forces at each joint which corresponds
to the prescribed motion.

Once obtained the joint moments, another algorithm, the static opti-
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mization (SOPT) is in charge of computing the muscle forces that, pro-
jected on the joints through the muscle moment arms, corresponds
to those moments [52, 149]. However, human body has much more
muscles than joints, resulting in a highly redundant problem to solve.
For this reason, the same set of joint moments could be associated
to several muscle forces sets, depending on the cost function of the
static optimization process. Different cost functions could be defined
to mime the muscle activation pattern but, since based on heavy as-
sumptions, the resulting muscle forces could be very different from
the reality. This indetermination affects even more the results of the
studies where an optimal execution of the tasks cannot be formalized
or when the subjects are patients with musculoskeletal diseases.

In the latest decades, these limitations gave to the researchers the
motivations to investigate the use of forward approaches to estimate
muscle forces.

The forward dynamics (FD) approach radically changes the per-

spective of problem solution. Indeed, while the ID (plus SOPT) com-
putes joint moments and than tries to find the optimal muscle forces
set that corresponds to those moments, the FD approach reflects the
real causality of the physical motion generation process. The inputs of
the FD approach are: external forces, joint kinematics, and the neural
commands (i.e. muscle excitations). Depending on how those neural
commands are obtained, different FD methods could be found in lit-
erature. The neural commands, indeed, can be directly retrieved from
electromyographic measurements or they can be estimated through
optimizations or neural networks models.
In the optimization procedure to estimate muscle forces, initial values
of muscle excitations are used to calculate initial guesses for muscle
forces and joint accelerations, and consequently joint torques [132].
Then, through an iterative optimization, muscle excitations are modi-
fied in order to minimize the error between the experimental external
forces and their estimated equivalents [195]. Alternatively, the target
of the optimization can be defined either according to task-dependent
parameters, such as maximum jump height, or according to physi-
ological evaluations, such as minimum metabolic energy consump-
tion [150, 217]. However, as discussed for the static optimization ap-
proach, the definition of the cost function is highly sensitive to inves-
tigators’” assumptions, especially for movements without a clear op-
timal performance task, such as walking, or related to physiological
functional targets. Furthermore, this methodology cannot account for
differences in an individual’s neuromuscular control system, which
may be impaired and characterized by abnormalities in the muscle ac-
tivations patterns. Finally, testing different optimization criteria could
be not always feasible due to the high computational demand.

To overcome these limitations, hybrid FD approaches have been in-
vestigated including in the optimization process experimental EMG
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measurements from a limited number of muscles [89, 105, 155, 156].
In these hybrid FD approaches, the provided EMGs are used to com-
pute the neural commands and then iteratively adjusted to obtain the
best match between experimental measurements of joint torques® and
their equivalent estimates.

Finally, full open-loop FD approaches have been investigated, directly
using the neural commands, computed from the experimental EMGs
through neural activation models, to drive the NMS models without
any optimization process. In full open-loop FD approaches, the fine
calibration of the muscular parameters is crucial for obtaining accu-
rate and reliable estimates of muscle forces and joint moments [7, 37,
47, 117, 124, 126].

Towards this research direction is collocated the work I performed
during my PhD in collaborating to the development of CEINMS (Cal-
ibrated Emg-Informed NeuroMusculoSkeletal toolbox), a state of the
art EMG-driven NMS modeling toolbox. Originally proposed in [117],
CEINMS is the result of more than 25 years of joint efforts by differ-
ent research groups [115, 159, 171, 173] and it has recently released
for free, open-source under Apache License, to the community [34].
A detailed overview of the workflow of CEINMS is provided in Sec-
tion 5.3. Sections 5.3.2 and 5.3.3, instead, respectively focus on the
contributions I provided to enhance CEINMS performances by devel-
oping and integrating in the toolbox a more accurate neural dynamics
model and a new analytical muscle and joint stiffness computation al-
gorithm [36].

5.2 MODEL-BASED APPROACHES TO ESTIMATE HUMAN MOVE-
MENTS

As the model-based adjective says, a key role in both the kinematics
estimation approaches is covered by the model on which they relies.
Before proceeding with the description of the approaches, therefore,
it is worth to spend a few words about OpenSim models.

An OpenSim model consists in a .osim file — i.e. basically an XML
file with a defined specific grammar — describing the properties of
the kinematic chain in terms of links, joints, muscles, and coupling
constraints. For each component, a set of properties should be pro-
vided to characterize its kinematic and dynamic behavior. Examples
of joint properties are: type (i.e. pin, ball-socket, translational, etc),
parent and child links, locations and orientation with respect to par-
ent and child link frames, ranges of motion, and default value. Be-
sides the joint properties, also the properties of each link should be

In this context it is mandatory to highlight the abuse of the term experimental. In-
deed, since direct measurements of joint torques are rarely feasible, experimental
refers to the joint torques estimated through the ID process.

75



76

MODELING THE HUMAN

specified to match the inertial and geometrical characteristics of the
real body segment it represents.

Despite several human OpenSim models, with different character-
istics and levels of complexity, are freely available, new models could
be created ad-hoc by the users both editing directly the .osim file or
using the software APIs.

As it could be easily understood, creating a new accurate model
of a human requires an in-depth knowledge of anatomy and biome-
chanics; moreover, upon developing a new model, its performances in
describing human motion should be validated. For this reasons, most
of the studies relies on the already available and validated models.

When using a generic model, a crucial step, before proceeding with
the estimations of both kinematics and dynamics quantities, is the
personalization of the model. This personalization is done throughout
the scaling, a procedure that aims at adjusting inertial and geometrical
parameters of the generic model —i.e. developed averaging specimen
measurements, thus representing an average human being — in order
to match the exact anthropometric characteristics of the real subject.
The scaling is usually done, for geometrical parameters such as bone
size and muscle lengths, by matching the positions of known points
(i.e. boney landmarks) during an experimentally recorded static trial.
Once completed the geometrical scaling, the mass of each model com-
ponent is linearly scaled to match the whole body weight. After all
the steps of the scaling process, the model fits the anthropometric
characteristics of the subject and could be used to perform the simu-
lations.

5.2.1 A marker-driven inverse kinematics approach as de-facto standard

This IK approach is driven by experimental data collected through
state-of-art optoelectronic motion capture systems. Those systems are
the current gold—standard in biomechanics for their accuracy in mea-
suring the three-dimensional location of reflective markers placed on
the subject body3. The output of the optoelectronic motion capture
system is a set of 3D marker trajectories that expresses the movements
of the points marked on the subject body during the performed task.

The second input of the marker—driven IK approach is the scaled
subject model. On the model, virtual markers should be added in the
locations that correspond to the points where experimental markers
were attached to human body segments. This placement is usually
done manually, however, an automated routine is available in Open-
Sim to fine-adjust the manually specified locations during a static
trial.

An exhaustive description of optoelectronic motion capture systems was provided
in Sec. 3.2.1.1
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The third optional input is a set of joint angle trajectories, if known
a-priori. Indeed, in some cases, some joints of the subject could be
fixed or their motion strictly imposed by an external device, thus the
angular values assumed by those joint is known and can be directly
prescribed to the model.

The marker-driven IK tool, using those inputs, solves a separate
global optimization problem for each time sample, without memory
about the previous frames. In this optimization, the goal is to find the
model joint angle set that minimizes the total error between all the
virtual markers placed on the model and their experimental equiva-
lents. If a-priori knowledge of some joint coordinates is available, a
second term is added to the cost function. The full optimization prob-
lem is formalized as a Weighted Least Squares (WLS) problem, thus
its cost function could be written as:

2 2
feost(q) = 2 icm Wi foxp _xi(q)H X 2_kekC Wk (qlixp - qk)
c —
o ZieM Wi ZieKC Wi
(5.1)

In Eq. 5.1 the first term accounts for the tracking error of all the
markers (M). x;(q) is the 3D position of the i-th virtual marker, func-
tion of the model joint coordinates set q while x; ™" is the 3D position
of its experimental equivalent. The second term, instead, accounts for
the errors in tracking the known coordinates (KC) for which is avail-
able an a-priori knowledge. However, in most of the real applications
that knowledge is not available, therefore this term is rarely included
in the cost function. q; 7 is the value of the k-th a-priori known joint
coordinate and gy is its model equivalent. Finally, w is a weighting
coefficient that could be specified separately for each marker and for
each a-priori known joint coordinate.

5.2.2 A novel orientation-driven inverse kinematics approach to estimate
joint angles

The study presented in this section has been published as scientific papers
[186-189].

In the large majority of the applications interested in knowing hu-
man kinematics, however, being obliged to perform the tasks inside a
motion analysis laboratory is a crucial limitation. For this reason, the
biomechanics community is looking forward to using data coming
from wearable motion capture systems. The most promising solution
is represented by IMUs#, that, once firmly attached to human body
segments, provide their 3D orientations during the motion. However,

4 An exhaustive description of this technology was provided in Sec. 3.2.1.2
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to the best of author’s knowledge, very few studies investigated the
use of a model-based kinematics estimation approach [19, 104] and
none of them present a throughout methodological assessment of its
accuracy and robustness to measurement noise. Moreover, none of
them made the developed tools available to the community.

To face these lacks, I developed a model-based orientation-driven
IK (OB-IK) approach. Its implementation as plugin for OpenSim
has been released in open-source format, for free under Apache 2.0
license, in order to allow its use by the community. The C++ source
code is hosted in a dedicated Github repository>.

The developed approach uses as inspiration source the standard
marker-based IK and extends its capabilities. Indeed, it allows re-
searchers to use, at the same time, data coming from IMUs, markers,
and a-priori known joint coordinates. In the following, to simplify
the algorithm description, the hypothesis of using only IMUs data is
made.

Once virtual orientation sensors have been manually placed on the
model matching the experimental configuration, an automated rou-
tine has been developed to adjust the orientation of the virtual sen-
sors according to the experimental data collected during a static trial.

The developed OB-IK algorithm takes as input the orientations pro-
vided by experimental IMUs, expressed as unitary quaternions. This
representation allows to minimize data size and, at the same time,
avoids the singularity implied in more compact representations like
Euler angles and rotational matrices [54].

The goal of the OB-IK is to calculate the joint angles that determine
the best match between experimental IMU orientations and the ones
of the corresponding virtual sensors attached to the model (Fig.5.1).
In order to quantify the orientation mismatch between one experi-
mental IMU and its virtual correspondent the Euler axis-angle repre-
sentation was used and the angle (x) given by this representation cho-
sen as the parameter to minimize. The developed computational tool
was based on the implementation available in the Simbody source
code [180].

The minimization problem is defined as a stateless global optimiza-
tion, in which each time frame is solved independently. The cost func-
tion to minimize is a WLS function, where the weight coefficients
could be chosen according to a-priori information about the accuracy
of each IMU, if available. The minimization is achieved by a gradient
descent algorithm. Assuming w; the weight coefficient of the i-th ori-
entation sensor and «; the angular tracking error for the i-th couple

5 https://github.com/RehabEngGroup/0B-IK
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(a)

Figure 5.1: Orientation-based IK algorithm. Single degree of freedom
sketches of the model pose before (a) and after (b) solving the
orientation-based IK for a single time-frame. Experimental orien-
tation sensor in green and virtual equivalent in blue. Graphical
offset in models position was manually added for clarity.

of real-virtual sensors, the cost function to minimize can be written
as

o2 (q):
feost(q) = W (5-2)

In Eq.5.2 the dependency from the set of model coordinates q has
been made explicit.

5.2.2.1 Test Case I. An industrial robotic arm

The main aim of this test case was to validate OB-IK joint angle esti-
mates against data experimentally measured by the encoders of the
robotic arm, considered as gold standard for accuracy.

A 6-DoF actuated robotic arm UR-10 (Universal Robots A/S, Den-
mark) was used in this experimental setup (Fig. 5.2a).

Four Cometa WaveTrack IMUs (Cometa Systems, Italy) were posi-
tioned on the four links around the three most proximal joints of the
robot (i.e. shoulder-pan, shoulder-lift and elbow joints). The desired
trajectory was defined by manually moving the robot links, aiming
to involve in the motion all the three joints of interest simultaneously,
while spanning a wide range of motion — approximately 90°for the
shoulder_pan_joint and 45° for the others. The robot was then pro-
grammed to repeat the movement consecutively for four times. Data
were collected, using a common trigger signal, from both the robot en-
coders (125Hz) and from IMUs (286 Hz). Two different speeds were
selected for the assessment, respectively the 50% (TR_s50) and the
100% (TR_100) of the robot maximum speed in order to test robust-
ness of joint angle estimation to various angular velocities — the robot
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Figure 5.2: Experimental setup of the Test Case I for the validation of the
OB-IK approach. (a) Picture of the UR-10 robot with real IMUs
placed. (b) OpenSim model of the device. In (b) virtual orienta-
tion sensors have been placed on the model and numbered re-
spectively A1 to A4. Joint names are also identified. length of the
UR-10 links: Lal = 89.2mm, La2 =425mm, La3 = 392 mm.

maximum angular speed was 120deg /s for the shoulder joints and
180 deg /s for the elbow joint. A single trial was recorded for each
speed.

A model of the UR-10 was implemented in OpenSim (Fig. 5.2b)

porting the URDF model available as part of the ROS-Industrial pack-
age®.
Virtual orientation sensors were placed on model links by aligning
them to known reference points, as done during the preparation of
the experimental setup. After the virtual sensors orientation refine-
ment procedure, joint angles were computed using the developed
OB-IK tool.

Results obtained from the OB-IK were compared to the experi-
mental joint angles, measured from the robot encoders, in terms
of squared Pearson correlation coefficient (r?), Root Mean Square
Error (RMSE) and Maximum Absolute Error (MAE) over the full trial.

Obtained results were similar for both recorded trials as shown in
Tab. 5.1.

For TR_50 a correlation coefficient r= > 0.999 was obtained for
all joints. The highest RMSE value (equal to 0.83°) was obtained for
the shoulder_pan_joint (Fig. 5.2b). At the same joint was recorded also
the highest MAE (equal to 1.76°). The higher amplitude of the er-
rors at the shoulder_pan_joint with respect to the other joints could be
explained by the wider range of motion that it spanned during the
motion.

During the second trial (Fig. 5.3), the robot was moving at its max-
imum speed. It can be noticed that the maximum error amplitude
increased up to around 6° at the extreme position of the range of

2

6 http:/ /wiki.ros.org/universal_robot
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TRso | | |

Joint | RMSE 7] | MAE[] |+
shoulder_pan 0.83 1.76 0.999
shoulder_tilt 0.76 1.53 0.999
elbow 0.65 1.16 0.999
TR_100 ‘ ‘

Joint | RMSE [] \ MAE[]] | 2
shoulder_pan 3.04 5.82 0.994
shoulder_tilt 1.76 4.02 0.996
elbow 2.0 3.68 0.999

Table 5.1: Test Case I. Results evaluation of OB-IK estimates against encoder
measurements. TR_50 and TR_100 are the trial at the 50% and
100% of the robot maximum speed (i.e. maximum 120deg /s for
the shoulder and 180 deg /s for the elbow) respectively, Root Mean
Squared Error (RMSE), Maximum Absolute Error (MAE) and cor-
relation coefficient v are reported.

motion, when higher linear accelerations occur on adjacent links.
These results can be explained by the fact that IMU orientation is
not directly measured but estimated using sensor fusion techniques,
which are deeply affected by filter settings. Indeed, the set of
parameters chosen by the IMU manufacturer and not under our
control during the experimental acquisition, was appropriate for
slow movements but not suitable for high speed ones. The slow filter
behavior explains the overshoot effects visible in Fig. 5.3.

To conclude, it is possible to say that this first test case demon-
strated the capabilities of the developed OB-IK in estimating joint an-
gles with a very good accuracy when compared with experimentally
measured angles. The crucial aspect of IMUs internal filter settings
emerged clearly. Despite being an aspect related to the acquisition de-
vices and not to the developed tool, it should be taken into account by
users. Indeed, to accurately estimate joint kinematics it is necessary to
select the adequate parameter set for the filter [129]. However, in this
test case, it was not selectable due to the limitation of the used IMU
system, therefore it was kept constant to the default value specified
by the manufacturer.

5.2.2.2 Test Case 1. A passive planar mechanism

In this second test case the focus was moved to a more challenging,
yet still controlled, scenario. The goal of this test case was to compare
OB-IK accuracy with respect to the de-facto standard used in biome-
chanics: the marker-based IK (MB-IK). To this aim, a rigid mechanism
(phantom) consisting of four links connected by three non-actuated
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Figure 5.3: Test Case 1. Results evaluation of OB-IK estimates against en-
coder measurements. OB-IK estimates(dashed black) and en-
coder measured joint angles (cyan) during the trial TR_100 per-
formed at maximum robot speed.

co-planar hinge joints was designed and 3D printed using plastic ma-
terial (Fig.5.4a).

We deliberately choose to perform this assessment on a rigid mech-
anism in order to avoid the influence of some common sources of
error that afflict data collection on humans - i.e. model inaccuracies
and soft tissue artifacts.

Four Cometa WaveTrack IMUs (Cometa Systems, Italy) and four-

teen passive reflective markers were positioned on the mechanism
links. Marker trajectories were collected using a Vicon T160 with 10
cameras (Vicon Motion Systems Ltd., UK). A common hardware trig-
ger signal was used to synchronize the acquisition systems. Markers
data were collected at 100 Hz, IMUs data at 286 Hz.
Three different trials were recorded, involving respectively one (TR_1,
j-1 joint involved), two (TR_2, only j-3 joint locked) and three (TR_3)
degrees of freedom of the mechanism at the same time. During all
the trials the phantom was manually moved over a planar surface. At
the beginning of each trial the mechanism was aligned to a reference
to guarantee the consistency of the starting position.

A model of the phantom mechanism (Fig.5.4b) was developed in
OpenSim matching the CAD model used to design and print it. Vir-
tual orientation sensors were placed on model links to reflect the ex-
perimental setup, and their orientation with respect to model links
was then refined. IMU data were processed using the developed
OB-IK tool. Marker trajectories were firstly low-pass filtered with a
6 Hz, 4-th order, zero-lag Butterworth filter; then were processed us-
ing the standard OpenSim MB-IK tool. Simulation quality for MB-IK
was evaluated using tracking metrics such as RMSE and maximum
marker tracking error (reported as mean + standard deviation).
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Figure 5.4: Experimental setup of the Test Case II for the validation of
the OB-IK estimates. (a) Picture of the custom-designed planar
mechanism with both IMUs and passive markers placed and (b)
OpenSim model of the mechanism. In (b) orientation sensors are
placed on the model and numbered B1 to B4. Joint names are
also identified. Length of the custom—designed mechanism links:
Lb0 =75mm, Lb1 =150 mm, Lb2 =150 mm, Lb3 =110 mm.

Joint angle estimates from OB-IK were then compared against
MB-IK results in terms of 12, RMSE, and MAE.

Obtained results are shown in Fig. 5.5 for TR_o2 while quantitative
evaluation parameters are reported, for all the trials, in Tab. 5.2.

For joints actively involved in trial motion, a good agreement be-
tween the two estimation methods was found in terms of both RMSE
(< 5.8deg) and 12 (> 0.98) for all the trials. Values related to the un-
mobilized joints during each trial were omitted from Tab.5.2, which
only reports metrics for mobilized joints.

In evaluating the outcomes of this test case, it is worth to remem-
ber that both methods are affected by issues that could negatively
influence their outputs. Indeed, on one hand, IMUs are sensitive to
environmental noises and their dynamic behavior strongly depends
on their internal filter settings, as shown in the previous test case. On
the other hand, joint angle estimates from MB-IK are sensitive to ex-
perimental marker placement and segment size. In this specific case,
however, the metrics from MB-IK (RMSE < 1.7 £ 0.5 mm , maximum
tracking error MAE < 3.5 £ 1.0mm in all the trials) allowed us to
consider the joint angle estimation of good quality.

The high amplitude of MAE obtained in this framework, with
spikes up to 21deg, could be due to effect of the mechanism’s size
on the two IK algorithms. For the OB-IK, if two IMUs are too close
to each other, a cross-talk effect, generated by magnetometers, could
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Figure 5.5: Test Case IL. Results evaluation of OB-IK estimates against MB-IK
results. OB-IK estimates (dashed black) and MB-IK (cyan) joint
angle estimates for TR_o2 when joint j-2 and j-3 were moving
contemporaneously and joint j-1 was manually kept steady.

TR 1 |
Joint | RMSE[] | MAE[] | +2

= - -]
2 - -]
i3 3.89 1208 | 0.999
TR 2 | |

Joint | RMSE [°] | MAE[] | r

5.86 18.1 0.98

Joint | RMSE [°] \ MAE[] | +

\
E
4.89 13.03 0.99
)

1.53 532 0.997
5.58 214 0.987
5.83 16.95 0.979

Table 5.2: Test Case II. Results evaluation of OB-IK estimates against MB-IK
results. TR_1 consisted in manually moving the joint j-1 and keep-
ing steady the other joints. In TR_2 joint j-2 and j-3 were moved
contemporaneously and joint j-1 was kept steady. During TR_3
all the three joints of the mechanism were moved at the same
time. Root Mean Squared Error (RMSE), Maximum Absolute Er-
ror (MAE) and correlation coefficient v2 are reported
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emerge, leading to inaccurate orientation estimates. For MB-IK, in-
stead, the smaller are the body dimensions and the distance between
joints and tracked markers, the larger will be the angular offset gen-
erated by the same marker tracking error.

However, despite the high values for MAEs, the global metrics were
aligned with the results of the first test case and could be considered
a promising starting point to investigate the performances of OB-IK
in estimating human kinematics. In that case, indeed, body segments
are larger, therefore size-effects should be less pronounced.

Robustness of joint angle estimation to noisy input data

As additional analysis for the proposed MB-IK approach, the effects
of experimental noise in the joint angle estimates were investigated.
In this assessment, OB-IK noise robustness was compared with the
one of the de-facto standard MB-IK approach. Moreover, considera-
tions were made about the effects of the same noise level in case of
forward use of IMU orientations to estimate joint angles.

Marker trajectories and IMU data from TR_3 were used as starting
point for the noise robustness analysis. Using custom Matlab V2016-
b (The MathWorks, USA) code, Gaussian noise was added to each
component (i.e. X, Y, and Z) of each marker 3D trajectory. The charac-
teristics of the noise distribution were chosen to realistically approx-
imate the experimental noise (mean = 0 mm and standard deviation
(SD) = 3 mm) affecting the measurements from the typical data collec-
tion [53]. This procedure was repeated 20 times with different seeds
of the random noise generator, obtaining 20 noisy versions of the
original trial.

A similar procedure was used to generate noisy IMUs data. Since
IMUs data were stored in quaternion form, and the quaternion space
is not linear, it was not possible to directly sun the noise to each com-
ponent. Therefore, three independent noise signals were generated,
one for each IMU axis, and treated as if they were Euler angles defin-
ing a “noise” rotation in space, so that they could be converted into
quaternion form and finally multiplied to the experimental quater-
nions. This procedure has the physical meaning of applying a pure
orientation "noise" to the original orientation expressed in quaternion
form. The amplitude of the Gaussian distribution (mean: 0°, SD: 2°)
was chosen equal to the worst orientation error declared by the IMU
manufacturer for a dynamic scenario. Same as for the markers case,
20 noisy trials were generated.

The obtained noisy data were then processed according to the
procedure described for the second test case. Similarly, the obtained
results were then compared against the original data using the same
metrics — i.e. 12, RMSE, and MAE.
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Figure 5.6: OB-IK robustness analysis results. Standard deviation of joint an-
gle estimates over the 20 noisy trials for MB-IK (cyan lines) and
OB-IK (dashed black lines) during TR_o3.

The joint angle estimates obtained with the developed OB-IK tool
for the 20 noisy trials were summarized in terms of mean and stan-
dard deviation. Comparing that mean with the results obtained for
the original data, no relevant differences arose - RMSE <0.13° and
a MAE <0.67° were obtained for all joints. The mean standard de-
viation of the 20 noisy estimates was lower then 0.53 4 0.1° for all
joints.

If IMU orientations are directly used to estimate the joint angles
with a forward approach, for a planar movement the worst case sce-
nario — orientation error for both joined links equals to 2° in opposite
directions — corresponds to a maximum joint angle error of 4°. This
value, approximately five times greater than the one obtained with
OB-IK, suggests that including the constraint of a the model within
the optimization framework leads to a more accurate estimation of
the joint kinematics.

Fig.5.6 reports the standard deviation of the joint angle estimates
over the 20 noisy trials for both the markers case (cyan lines) and
the IMUs case (dashed black lines). The amplitude of the standard
deviation of OB-IK outputs over the 20 trials is constant over joints,
time, and movement speed. The amplitude of the standard deviation
of MB-IK outputs is instead larger for the joint connecting the
smallest links (j_3) and increases at higher movement speeds (as
during the second half of the trial). This suggests that the OB-IK
approach produces more consistent and robust estimations of joint
angles than the ones computed using the MB-IK approach.
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The outcomes of the conducted noise robustness analysis sug-
gested that the use of a model-based inverse kinematics approach
could reduce the effects of experimental noises and IMU non-
idealities on the final joint angle estimates.

5.2.2.3 Application to human movement

The promising results obtained in the two presented test cases con-
firmed that the model-based orientation-driven inverse kinematics
methodology I developed could promote the widespread of IMU
technology in the challenge of measuring the movement. Indeed, in
both the test cases, the OB-IK accuracy was comparable with the one
of the current state of the art methodology — i.e. encoder measures
in the first test case and marker-based IK estimates in the second).
However, the final verdict about its performances is demanded to
the final targeted application: the estimation of human kinematics.
In order to do that, a pilot study was performed with a single
healthy subject during a walking task. In this study, OB-IK accuracy
and reliability were compared with the de-facto standard in human
analysis, the MB-IK.

Eight IMUs (Noraxon, Scottsdale, AZ, US) were placed, each one
on a single body segment (thorax, pelvis, thighs, shanks, and feet).
Passive reflective markers were placed on the subject’s bony land-
marks and rigid clusters of 3 markers were attached to each IMU.
A 12-camera motion capture system (Vicon, Oxford, UK) was used
to collect marker trajectories through Vicon Nexus (v. 2.3). IMU ori-
entations were acquired through Noraxon myoRESEARCH (v. 3.8)
software and exported as quaternions. Marker and IMU data were
synchronously collected via a common trigger signal and sampled at
200 Hz and 100 Hz respectively.

The standard OpenSim gait_2392 model was scaled to match sub-
ject’s anthropometry using bony landmark markers from a static pose
trial. Positions and orientations of virtual orientation sensor were reg-
istered to the model using the data from the marker clusters.

Hip and knee flexion-extension, and ankle plantar-dorsiflexion
angles were estimated for seven different gait cycles using both
OB-IK and MB-IK and then time normalized to the gait cycle. Root
Mean Squared Error (RMSE) and correlation coefficient (%) were
used to compare the results.

Sagittal plane joint angle estimates obtained from both OB-IK and
MB-IK are shown in Fig. 5.8 as averages and standard deviations.

An overall good agreement emerges from the comparison of the
two approaches, with RMSE (mean =+ SD) of 4.34 + 0.56 deg for the
hip, 6.18 £ 1.62deg for the knee, and 4.29 £ 1.11deg for the ankle.
The close match between OB-IK and MB-IK estimates is confirmed
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Figure 5.7: Pilot study on the application of the OB-IK approach to estimate
human kinematics. Experimental setup with an healthy subject
instrumented with both passive reflective markers and IMUs
(placed under the marker clusters).

also by the correlation coefficients (average + SD) equal to 0.93 + 0.03
for both the hip and the knee, and to 0.75 £ 0.08 for the ankle.

To conclude, during overground walking, sagittal plane joint angles
estimated via the orientation-driven IK approach closely matched the
results of the de-facto standard marker-based IK. However, further in-
vestigations are required to complete the assessment of the accuracy
of the OB-IK approach. Indeed, the other planes of motion should
be considered when estimating joint kinematics. Moreover, an exten-
sive study involving more subjects and different tasks should be con-
ducted. While the outcomes of those pending tasks are still missing,
the results achieved in this pilot study are promising, thus indicating
that the developed orientation-driven IK approach could lead to ex-
citing and innovative out-of-the-laboratory biomechanics analyses of
human kinematics.

5.3 CEINMS: A MODELING TOOLBOX TO ESTIMATE HUMAN DY-
NAMICS

The meaningful acronym CEINMS already contains an indication of
the main characteristics of the modeling toolbox.
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Figure 5.8: Pilot study on the application of the OB-IK approach to esti-
mate human kinematics. Left leg joint angles estimated by MB-IK
(blue lines) and OB-IK (red lines) and averaged over seven gait
cycles. Standard deviations are shown as shaded bands for both
the methods.
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e Calibrated. It relies on a calibration procedure to adjust the
parameters of the model in order to match the anthropometric
characteristics of the subject to be analyzed.

* EMG-Informed. Three different usage modes are available: fully
EMG-driven (open-loop with no optimization of neural controls),
hybrid (neural controls are optimized starting from experimen-
tal measures), fully optimization-driven (close-loop optimization,
similar to SOPT). However, the full EMG-driven mode is the
most used and innovative one.

* NeuroMusculoSkeletal. It relies on an accurate subject-specific
neuromusculoskeletal model implemented as an extension of
the OpenSim model.

Another major advantage of CEINMS is its adaptability. Indeed,
its generic and configurable implementation enables researchers to
estimate the dynamics of the whole human body or just the one
of the part they are interested in like, for example, the lower limb.
Moreover, recent developments enabled its usage at run-time to ob-
tain estimates of human dynamics during the tasks executions [160].

Inputs of CEINMS are the joint angles and the experimental pre-
processed EMGs (P-EMGs, e(t))7. Limited to the phase of the model
calibration, also experimental joint torques, estimated through the ID
or through a wearable robot, should be provided as references to be
matched. Final outputs of CEINMS are the estimated muscle forces
and joint torques. Moreover, recent improvements not considered in
this dissertation allowed to estimate also internal joint loads [160].
Additional outputs of CEINMS, estimated through the algorithm I
developed during my PhD and detailed in Sec. 5.3.3, are the muscle
and joint stiffness.

CEINMS model is composed by three sub-models (Fig. 5.9): the P-
EMG to muscle activation model, the muscle-tendon model, and the mus-
culoskeletal kinematics model. The last block is instead responsible of
evaluating the total joint torques given muscle-tendon unit forces and
moment arms.

The P-EMG to muscle activation model

The P-EMG to muscle activation component of CEINMS focuses on
modeling the relationship that links P-EMG signals to muscle activa-
tions. This model is composed by two main sub-blocks: one in charge
of modeling the neural activation dynamics, the other accounting for
the muscle activation dynamics (Fig. 5.10).

7 A detailed description of EMG preprocessing strategies could be found in Sec. 3.2.2.2
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Figure 5.9: Workflow of CEINMS showing the main sub-models and their
interconnection.
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Figure 5.10: Workflow of the CEINMS component describing the relation-
ship between P-EMG and muscle activation. The notation t — d
has been used to highlight the time shift caused by the elec-
tromechanical delay block.

The neural activation block models the time-varying characteristics
of the muscle activation. Studies on muscle physiology have shown
that activation and deactivation of muscles are regulated by different
physiological processes [220], leading do different dynamics for the
two phases. To model this phenomenon, the formulation in Eq. 5.4
has been proposed [220].

du(t)+ 1 (B+(1—Re(t))| u(t) = !

dt Tact Tact

e(t) (5-3)

where e(t) is the P-EMG of the muscle, u(t) is the neural activation,
Tact is the time constant of the muscle activation dynamics, and f3 is
a constant such that 0 < f < 1.

Despite capturing very well the activation and deactivation dynamics,
the main drawback of this formulation is that, for discrete signals, it
should be solved numerically, leading to an high computational cost
that might prevent the run-time use of the model.

An interesting solution to overcome this limitation has been pro-
posed in [137, 138], whereby a second order differential equation
has been used. A valuable discrete-time version of this approach
has been implemented in CEINMS, using the backward differences
method [164] (Eq. 5.4).

u(t) = ae(t —d) — Bru(t—1) — Pou(t —2) (5-4)

In Eq. 5.4, d is the electromechanical delay that accounts for the time
shift between the neural activation and the muscle contraction. A
more extensive discussion about its meaning is proposed in the fol-
lowing, right after the end of the discussion about the neural activa-
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tion model. In the formulation presented in Eq. 5.4, the coefficients «,
1 and B, define the second order dynamics. The selection of these
four parameters is crucial for the stability of the equation, therefore,
the following relationships must be verified:

Br=v1+72
P2=v1"v2
hyal <1
yal <1

(5-5)

where v and vy, are the poles of the discrete-time system.
Another condition that must be verified ensures the unitary gain of
the equation:

x—P1—P2=1 (5.6)

Through the combination of these constraints it can be shown
that only the three parameters d, yq, and vy, are required to fully
characterize the system dynamic behavior. A possible interpretation
of this formulation, arising from a signal processing perspective, has
been proposed in [26]. The equation represents, indeed, a recursive
filter, where the current value for u(t) depends on the last two values
of u(t). That is, the neural activation depends not just on the current
P-EMG but also on the recent history of the neural activation itself.

Before moving to the description of the muscle activation model,
it is worth to spend few words on the electromechanical delay d.
Defined as the time delay between the neural activation and the start
of the corresponding twitch force in the muscle, it accounts for two
different physiological phenomena [45]: the “transport” of the signal
in the muscle and the dynamics of force production. The former is
due to several factors, such as calcium transportation across muscle
membrane and muscle fibers conduction velocities, while the latter
depends on the chemical dynamics of muscle depolarization and the
muscle contraction dynamics. It has been shown to assume values
between 10 and 100 milliseconds [26, 45]. Difficult to include in the
continuous-time formulation, in the discrete time this delay can be
represented as a linear shift of the inputs, therefore it is usually
included in the neural activation block, as seen in Eq. 5.4.

The second block, the model of the muscle activation, takes as input
u(t) and describes its nonlinear relationship with the muscle activa-
tion [26, 83, 215, 221]. For example, Woods and Bigland-Ritchie [215]
showed that while some muscles have linear isometric EMG-force
relationships, the relationship for other muscles is nonlinear, espe-
cially for low forces (up to about 30% of the maximum muscle force).
The model proposed by the authors to describe this phenomenon
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Figure 5.11: Nonlinear relationship (Eq. 5.7) between neural activation u(t)
and muscle activation a(t) for different values of A.

used a power relationship for the beginning of the curve (the first 30—
40%) and a linear function for the remaining part. This model, how-
ever, suffers of two main drawbacks. The junction between the two
parts is non-smooth, leading to discontinuities in muscle activation.
Moreover, its representation is not minimal — it uses two parameters
whereas just one could be fully descriptive — therefore prone to over-
fit effects. To overcome these disadvantages, the replacement of the
power function with a logarithmic function has been proposed [125].
Moreover, the formulation used in this approach was fully described
by only one parameter.

Taking inspiration from this solution, in CEINMS a simpler but
effective formulation (Eq. 5.7) was used to obtain to adequate results
[116, 117, 126].

eAu(t) -1
a(t) = TeA ] (5.7)

where a(t) is the muscle activation and A is a single parameters, char-
acteristic of the muscle, that express the amount of nonlinearity of the
relationship. A is allowed to vary from —3 to 0, with A = —3 being
highly exponential and A = 0 corresponding to a linear relationship.
Fig. 5.11 graphically shows how the relationship between u(t) and
a(t) expressed by Eq. 5.7 varies with the value of A.

The musculoskeletal kinematics model

The musculoskeletal kinematics component of CEINMS is basically
provided by OpenSim. Indeed, it uses an OpenSim model - funda-
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mentally the one used to estimate joint kinematics — that includes also
muscle-tendon actuators (MTA) attached to the body segments to re-
flect real human anatomy. As example, the gait_2392 shipped with
OpenSim is commonly used to perform lower-limb studies. During
the scaling process, already described in Sec. 5.2, also muscle-tendon
unit (MTU) lengths are tuned to match subject’s anthropometric char-
acteristics.

The scaled model is then used to perform a kinematic driven sim-
ulation, using as input the joint angles provided to CEINMS, to esti-
mate muscle-tendon lengths (IpmTu), velocities (vmTu), and moment
arms (MA) during the motion. Despite it would be feasible to directly
estimate those quantities when the inverse-kinematics is performed —
independently if marker—driven or orientation—driven — CEINMS de-
velopers preferred to keep the two processes separated. This choice,
indeed, increases CEINMS general applicability since it allows to use
other sources of joint angles like, for example, the ones measured by
a wearable exoskeleton or provided by motion capture system soft-
ware.

The muscle-tendon unit model

This block models the dynamics of the muscle, estimating the force
expressed by the muscle given its activation level and the MTU kine-
matics.

Each MTU is modeled as an Hill-type muscle model [86, 220]. The
model, shown in Fig. 5.12, is composed by the interconnection of 3
components in a series configuration. The lateral ones model both
the tendons that connects the muscle fiber to the bones as simple
passive elastic elements. However, since those passive elements are
placed in series and are directed along the same axis, in the following
they will be considered as a single one that synthesizes both. The
central component, instead, describes the muscle fiber as the parallel
between an active contractile element and a passive elastic one.

The tendon is practically modeled as a rubber band. Indeed, when
the tendon length (lt) is lower than its slack length (lts), the ten-
don does not generate force, whereas when Lt is bigger than lts the
tendon generates a force proportional to its strain. The normalized
tendon length 1t is defined as:

Ir = Hf& (5.8)
TS

The relationship expressing the tendon force (fT) as a function of
11 is reported in Eq 5.9 as a piecewise function (Fig. 5.13) [220]. In
the graph, the tendon force is normalized by the maximum isometric
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Figure 5.12: Hill-type elastic-tendon muscle model. The tendons are repre-
sented by single elastic passive elements. The muscle fiber, in-
stead, is modeled as an active contractile element in parallel
with a passive elastic one. The muscle fiber is placed between
the two tendons and is connected to them with an orientation
expressed by the pennation angle ¢. Iy 1y is the muscle-tendon
length. 1, is the muscle fiber length. 1; is the sum of either the
tendon lengths (each of them has a length equals to 1¢/2). fact
is the force produced by the active element of the fiber while
fpass is the force produced by the passive one.

muscle force (Fpmax 150)-

fr=0 Ir<o0
fr =1480.3 12 0< Ty <0.0127 (5.9)
fr =37.5Tr —0.2375 Ir >0.0127

The total muscle fiber force along the fiber axis is composed by the
two terms fq.¢ and f,ass.
The active force is defined as:

fact = fISO_MAX (fa(a) Im) fv(f’m) + dmvm) (5-10)

where a is the activation of the muscle at the current time sample,
fa is the active force-length relationship, f, is the fiber force-velocity
relationship, and the term d,,, V., represents the contribution of a pas-
sive damping element included to prevent singularities when activa-
tion or isometric force equals to zero. f, is expressed as function of
activation and normalized muscle fiber length Tm = ln/lmo Where
lmo = lo(A(1 —a)+ 1) is the optimal fiber length, function of the
activation level and 1, is the optimal fiber corresponding to the max-
imum muscle activation. f, is, instead, a function of the normalized
fiber contraction velocity ¥, normalized on L,.
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Figure 5.13: Tendon force-strain relationship. Tendon force is normalized on
the maximum isometric muscle force and it assumes unitary
value for It = 3.3%.

The passive element, instead, is modeled as a function of the nor-
malized fiber length (Eq. 5.11).

fpass = fiso_max fy(lm) (5.11)

Within CEINMS, f,, f, (Fig. 5.14a), and f, (Fig. 5.14b) are defined as
numerical functions retrieved from literature [26]

The total muscle fiber force is then projected along the tendon axis
following Eq. 5.12.

finT =fm COS(d)(Im)) (5-12)

Several studies showed that the pennation angle depends from the
joint angles and the amount of muscle activation [101]. Despite sev-
eral complicated models have been developed to express this depen-
dency, their computational demand is very high. For this reason, in
CEINMS, a simpler model is used [176]. This model expresses the
pennation angle as a trigonometric function of the normalized mus-
cle fiber length (Eq. 5.13).

d(lm) = sin~! (Si?d)O)

(5.13)

m

Where ¢, is the pennation angle corresponding to the optimal fiber
length.
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From the equilibrium of forces comes immediate that the tendon
force must be equal to the muscle fiber force along the tendon axis.
By solving the equilibrium, through an iterative process, the current
muscle fiber length — and thus the tendon length, by simply subtract-
ing from total MTU length provided by the muscle-tendon kinemat-
ics the muscle fiber length — is retrieved. Then, the final value of the
MTU force, corresponding to the estimated muscle fiber length, is
finally computed.

The muscle forces projection

The last step of CEINMS workflow is in charge of projecting the es-
timated forces of the MTU units on the corresponding joints. Due
to the high redundancy of human body, several MTUs actuate the
same joint, therefore the contribution of each one, multiplied by the
corresponding moment arm provided by the muscle-tendon kinemat-
ics model, is summed to the others to obtain the total joint torque.
Eq. 5.14 expresses this sum for the j-th joint, where the sum is per-
formed over all the M muscles acting on that joint.

M
T = Z fmTu,iMA; (5.14)
i=0

5.3.1  CEINMS calibration process

As stated in the general overview, a fundamental feature of CEINMS
is the calibration process which allows to tune the muscle parameters
to account for the specific subject anthropometric characteristics [117,
173]. As best practice, the trials used to calibrate the model should
include both static and dynamic tasks [117, 173].

Within this process, the parameter set of each muscle (Tab. 5.3) is
iteratively refined, using a simulated annealing algorithm [72], in or-
der to minimize the error between estimated joint torques and exper-
imental ones — again, experimental within this context refers to ID
estimations.

The range of values allowed for the calibration of each parameter
is specified according to the values available in literature [116]. The
strength coefficient, the only parameter not defined previously, is just
a constant used to scale the maximum isometric force.

At the end of the calibration, the model can be finally used to esti-
mate the force exerted by each MTU included in the model and the
total moment exerted by the subject on each considered joint. The
execution of CEINMS can then be fully open-loop, therefore, no opti-
mizations or external force measurements would be required to esti-
mate human dynamics.
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Parameter Minimum | Maximum
Y1 -1 1
Y2 -1 1
A -3 0
Irs —5% 5%
lo —5% 5%
Strength Coefficient 0.5 25

Table 5.3: CEINMS parameter set to be calibrated independently for each
muscle. The allowed ranges of variation are also reported. The per-
centages are defined from the uncalibrated values obtained from
literature.

5.3.2  Physics equivalent model of neural activation dynamics

During my PhD, significant efforts have been spent in enhancing
CEINMS accuracy in estimating human dynamics from joint kinemat-
ics and EMG recordings. As extensively discussed previously, a fun-
damental block of CEINMS workflow is the neural activation model.
This section focuses on that block, reporting the work conducted
toward resolving the conceptual mismatch between the continuous
and the discretized formulations of the neural activation dynamics.
As described in the previous section, CEINMS uses a second-order
differential equation (Eq. 5.15) in the continuous time domain to
model the relationship between P-EMG and neural activation [117].

du?(t)
dt? d

u(t)

e(t) =M L + Ku(t) (5.15)

Where M, B, and K are the parameters — respectively mass, viscous
damping coefficient, and elastic coefficient — of an equivalent mass—
spring-damper system. Defining the natural frequency w,, and the
damping & for this equivalent system as:

W = K
W= —
M (5.16)
£ B
- 2Muwn,

and applying the Laplace transform, it is possible to obtain the system
transfer function G(s).

U(s) w3 /K
E(s) s2+28wns+ w2

(5.17)

Then, the discretized version of Eq. 5.17 is obtained through the
backward differences method, leading to the implemented formula-
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tion of Eq. 5.4. For each muscle, the poles of the discrete-time systems
(v1 and ) are directly used as parameters to be calibrated.

This “direct poles placement” approach allows a simpler imple-
mentation and is largely adopted in system control problems [146].
However, the poles of the discrete transfer function depend on the
sampling period. Thus, if the sampling period changes, they must be
calibrated again from scratch.

Despite for control systems this need might not represent an issue
since the sampling frequency rarely changes, in NMS modeling it
is a severe limitation. Indeed, once calibrated, CEINMS model aims
at representing the real anthropometric characteristics of the subject
which, of course, do not depend on the sampling frequency of the
measurements. Moreover, in the context of the generic human-device
framework, the sampling frequency might change between the cali-
bration setup and the real usage of the model due to the use of dif-
ferent acquisition devices or to different requirements in data size —
when dealing with the run-time use it might be necessary to reduce
the sampling frequency to prevent possible saturations in bandwidth
or computational resources.

Furthermore, the current discretization of the continuous relation-
ship is based on the backward differences method. However, this
method does not guarantee the stability consistency between continu-
ous and discrete formulations — i.e. the stability conditions that holds
for the discrete might not hold for the continuous. This consideration
could be easily taken into account by using the Tustin approximation
method to discretize the system. Indeed, this Tustin transformation
ensures that stability in the discrete domain maps into the stability of
the continuous model and vice versa.

Finally, with the proposed approach, the parameters used in the cal-
ibration process are more intuitive since they represent the properties
of the equivalent mass—spring—damper system.

To summarize, the work I conducted was focused on using Tustin
approximation to discretize Eq. 5.15 and on choosing wy and & as
parameters to be calibrated.

Eq. 5.18 reports the Tustin approximation for the Laplace variable
s with T being the sampling period.

22712 1—z1
T z41 T 14277

(5.18)

From Eq. 5.17 and Eq. 5.18 the discrete-time transfer function of the
system (G4(z)) can be written.

B oa(1+2z71)?
a bo+2byz 1 +byz2

Gd(Z) (5-19)
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where «, bp, by, and b, have been defined as in Eq.5.20.

x = wiT?/K

bo = WAT? +4&wn T+ 4

.20
by = 2(w2T2 —4) (5:20)
by = WiT? — 48w, T+4
Ga(z) has, as in the continuous domain, two poles.
4—iT?) +4w,T/E2 —1
Y1,d,Y2,d = ( n') o (5.21)

WZ T2 +4EwnT+4

As for the backward differences method, the constraints [yq 4 < 1
and |y2 4/ < T must be introduced [164]. However, for this method,
those constraints ensure the stability of both the discretized and the
original continuous system.

Differently from the continuous time, Tustin approximation intro-
duces two coincident virtual zeros in the discrete transfer function
placed in z = —1. Those zeros do not influence the stability of the
model but introduce a memory effect. Eq. 5.19 could be then rewrit-
ten in the more compact form of Eq. 5.22.

o4 (14212

Galz) = -
alz) WA T2 +4EwnT+4 (1—viz71)(1—vy2z7T)

(5.22)

Leading back to the time domain, the linear difference equation cor-
responding to Eq. 5.22 could be written as:

u(k) =1/bg - (apge(k) +aje(k —1) + are(k —2)+

—byu(k—1) — byu(k—2)) (5.23)

where the coefficients not already defined by Eq.5.20 have been de-
fined as:

ag=a; = szsz/K

2
@ = 2 (5-24)

Introducing in the notation the electromechanical delay d (with d
multiple of T ), Eq. 5.23 could be written in the final form of Eq. 5.25.

u(k) =1/bo-(ape(k—d)+aje(k—d—1)+are(k—d—2)+

Cbu(k—1) —byu(k—2)) (5:25)

As it could be verified by looking at the definitions of the coeffi-
cients of Eq. 5.25 (Eq. 5.20 and Eq. 5.24), the dependency from the
continuous-time parameters wy and & has been made explicit. For
this reason, in this work we propose to directly calibrate those pa-
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rameters, independent from the sampling frequency, and with that
compute the discrete-time coefficients.

As discussed in CEINMS description, however, some constrains
should be defined to guarantee the physiological validity of the
model. In [137, 138] the authors investigated, for different subjects,
the physiological values of wy and & during voluntary isometric con-
traction of a single muscle. Results showed that the system is well
described by an almost critically damped (i.e., & ~ 1) second-order
system with natural frequencies f,, = 2nwy between 1 and 1 Hz. Fol-
lowing those findings, we defined a calibration range for each param-
eter the 20% larger than the one reported in the literature to allow
more flexibility.

Finally, the static gain has been constrained to be unitary [117]
which has the effect of imposing a unitary value to the spring
constant K.

Concluding, this work provided a new formulation of the P-EMG

to neural activation discrete-time relationship that preserves the corre-
spondence with the physics equivalent system.
Furthermore, the choice of calibrating the natural pulse w,, and the
damping coefficient & of the continuous-time formulation removed
the requirement of recalibrating the model at every change of the
sampling frequency.

5.3.3 Human joint and muscle stiffness computation

As part of my PhD, I faced the problem of estimating at run-time
the stiffness of human joints and MTUs, thus extending CEINMS
capabilities. The rationale behind this work arose from the goal
of the proposed multilevel framework to enhance human-robot
cooperation through the closure of their interaction loop. A crucial
requirement to achieve this goal was the availability of models
capable to accurately describe both human and device behavior.

Human locomotion is characterized, among the other factors, by
the capability of the human body to automatically adapt to a large
number of external factors such as different terrains, presence of hu-
man or robotic parters to cooperate with, and so on. In most of the
cases, this adaptation process occurs subconsciously, largely managed
at the neuromuscular level through the modulation of the viscoelastic
properties of MTUs [61, 110, 196, 211] and joints [9o, 110, 130, 154].
The viscoelasticity of each MTU can be expressed in terms of stiffness
and damping, where the former describes the elastic characteristics
of the MTU while the latter describes the viscous ones.

This work focuses on the stiffness as a descriptor for the resistance
that a joint opposes to perturbations.
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Mathematically, the stiffness is defined as the partial derivative of
joint torque with respect to joint angle. This is therefore a different
quantity than the quasi-stiffness — defined as the total derivative of
joint torque with respect to joint angle — that can be visually inter-
preted as the slope of the torque-angle relationship during a task.
While in the case of passive joints stiffness and quasi-stiffness are equiv-
alent, in the case of active powered joints, such as the human ones,
stiffness and quasi-stiffness are distinct concepts. The latter is descrip-
tive of the task that the joint is performing, while the former describes
the mechanical characteristics of the joint.

In the following, the procedure developed to estimate MTUs and
joints stiffness is detailed.

The starting point of the proposed methodology is the definition
of the stiffness as the partial derivative of the joint torque (1) with
respect to the joint angle (x). From Eq. 5.14, joint stiffness K can be
written as:

M
ot of i OMA;
K=—= i_E - 71\3(::1’1 * MA{ + o ok fMTu,i (526)

Applying the derivative chain rule to the first term it follows:

ofmTu,i  OlmTu,i OMA;
K= Zalmul v FMALE = fmTu (5:27)

The physical relationship between the i-th MTU and the joint is mod-
eled as an ideal mechanical transmission with variable ratio with i-th
MTU force and length as inputs, joint torque and angle as outputs,
and the moment arm as transmission ratio. From the application of
the power balance between the inputs and the outputs of this trans-
mission, follows:

SMIUL _ MA, (5.28)
Substituting Eq. 5.28 in Eq. 5.27:

M
OMA;
K=> Kmru,ixMA+ Yy S x MU, (5.29)

i=0

where Kptu,i is the stiffness of the i-th MTU.

In the following, the i—th MTU will be considered, therefore, to sim-
plify the notation, the subscript i will be omitted.

Given that in CEINMS each MTU is modeled as an Hill-type muscle
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(Fig. 5.12), it follows that the total MTU stiffness can be expressed as:

1 1
KmTu = <KTnT + KT) (5.30)

where K;,,T is the fiber stiffness along the tendon axis while K is the
tendon stiffness.

The stiffness of the tendon could be computed as the partial deriva-
tive of the tendon force with respect to its length.

_ofr Ofr(ly)

Kt = E =~ oy (5:31)

The relationship between the force of the tendon and its normalized
length is defined by the numerical function ft empirically extrapo-
lated from data available in literature already discussed and shown
in Fig. 5.13.

From the application of the derivative chain rule to Eq. 5.31 combined
with the definition of It (Eq. 5.8) follows:

ofr(ly) oly 1, -
Kt = = — = —x%f'(l .32
T TR T e (1) (5-32)

with f/(11) obtained by numerical differentiation of f(lt).

The stiffness of the muscle along the tendon action line (Ky,1) is
defined as the partial derivative of the force of the muscle along the
tendon (f;,1) with respect to its length along the same line (L)
Applying once again the derivative chain rule it follows:

fmt Ol
. P (5-33)

Kint =

The fiber length along the tendon action line could be obtained by
multiplying 1., by the cosine of the pennation angle (Eq. 5.13). There-
fore:

Ol 12 —sinZd,

1
almT(cos(d)(Tm))—l—sin(d)(Im))* sindo ) (5.34)

The expression of f,1, obtained combining Eq. 5.12, Eq. 5.11, and
Eq. 5.10, is reported in Eq. 5.35.

fmT = fiso_max(a falm) fo(¥m)+

A+ (Tn)) * cos(d(Tm) (535)
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Therefore, deriving Eq. 5.35 with respect to the fiber length, it is ob-
tained:

W _ O cos(lTm) + iy + 2S00 Um))

_ Ofm 36
.. ol ol (5:36)

The partial derivative of the cosine term with respect to 1, can be
written as:

cos(d(lm)) _ sindo sin(d(lm)) (5:37)
Om 1 JB, —sin2g0

Then, from the last two equations it follows:

a ~m ~ :[m T
aaf;: = fISO_MAX (afa(tm) fo(¥m) +fp’a(lm)> * cos(d(lm))+
. sind, sin(¢p(lm))

I /12, —sinZd,

By substituting Eq. 5.38 and Eq. 5.34 in Eq. 5.33, the expression of the
muscle stiffness along the tendon line is obtained.

fo(lm)
olm

(5-38)

K= [fISOMAX (a faa(:m) fo(Om) +

) +cos(P(lm)) +

+fm *

sind, Sin(d)ﬁm)) “
(5-39)

I /12, —sinZd,

1
¥ (cos(¢(ImJ)+sm(¢am)) y —SnPo )

12, —sin?d,

Finally, by combining Eq. 5.30, Eq. 5.32, and Eq. 5.39 the total MTU
stiffness is obtained.

Then, the total joint torques can be computed by summing each MTU
contribution following the relationship expressed by Eq. 5.29.

The MTU and joint stiffnesses computed through the presented ap-
proach have been assessed in the application of the whole multilevel
framework, therefore their discussion will be reported in Chapter 7.
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Part of the work presented in this chapter has been published as scientific
papers [36, 209].

I have made a substantial and principal contribution in the conception and
design of these studies, related softwares development, analyses and interpre-
tations of the results, drafting and critical revision of the final manuscripts.
Co-authors permissions for the inclusion of the studies in this dissertation
have been obtained.

6.1 INTRODUCTION

In the previous chapters a detailed description of both the device and
the human model levels have been provided. However, within the
scope of the proposed framework, those models are still single enti-
ties that need to be connected together through a third sub-model, the
interaction one. From this interconnection arises the so-called multi-
level model, devoted to promote and enhance the symbiotic coopera-
tion between the human and the device, by enabling joint simulations
of the whole interacting system dynamics.

In the proposed framework formalization (Sec. 1.4), two dif-
ferent sub-levels have been identified within the interface model
sub-level: the physical one and the interaction one. The goal of this
chapter is to report and comment the preliminary works conducted
towards the development of accurate models for both those sub-level.

A simple way to understand the concept of physical interface is re-
lating it with the sense of the touch: the feeling we have when our
hands or feet come in contact with the surface of the object we are
interacting with. Depending on our perception of the physical char-
acteristics of the surface, our way to handle the interaction radically
changes — for example, the way we lift a solid block of wood is com-
pletely different from the way we grasp a jelly bean or we walk on a
slippery surface. However, all physical interactions are regulated by
the same contact laws; whereas the differences are due to the amount
of forces applied and to the stiffness of the surfaces.

To face the challenge of modeling the contacts between a human
and a robotic device, and thus, predicting their physical interaction,
two subsequent steps were performed and are reported in the first
part of this chapter (Sec. 6.2).

As preliminary work, OpenSim performances in solving contact
problems have been assessed using as workbench the simulation
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of a sphere bouncing on a plane (Sec. 6.2.2). Both the two different
formulations that could be alternatively used to model the contact,
described in Sec. 6.2.1, and are implemented in OpenSim have been
considered within this preliminary study.. Once completed this step,
the focus was moved to the estimation of the interaction forces due
to the overground walking of a small humanoid robot (Sec. 6.2.3).
In this second test case, the obtained force estimates have been
compared with the experimental measurements provided by the
force platforms.

In Sec. 6.3, the focus shifts from the physical interface to the inter-
action one. The work conducted and presented in this second part,
indeed, aimed at developing adequate high-level cooperation strate-
gies capable of enhancing the symbiosis between the robotic device
and its user.

It comes intuitive that both the type of device and the task to be
performed have a strong impact on how to tackle this problem. To ex-
emplify this concept, two possible applications of the proposed mul-
tilevel framework are reported in the following.

The first possible scenario is the one where an industry worker has
to screw a component on the top of an heavy panel which is held
and moved by a robotic arm. Human and robot should coordinate
their movements in a way that the screw hole could be reached by
the operator and then they need to hold that configuration for the
time required for fixing the screw. In this case, human and robot are
not physically linked together, therefore the robot could not move
the human and vice versa. The interaction is fully concentrated on
human hands and the cooperation could be enhanced by reducing his
effort in reaching the holes - this aspects relate to the wide topic of
ergonomics — and in screwing the screws on a non grounded surface.

From a second scenario, where a stroke patient relearn to walk
by performing a rehabilitation task with the aid of a wearable ex-
oskeleton, a completely different challenge arises. In this case, in-
deed, the device and the robot are connected through semi-rigid cuffs
and they should coordinate themselves to walk together since the de-
vice moves the human and vice versa. Enhancing the symbiotic coop-
eration, therefore, requires to develop proper high-level interaction
strategies capable of promoting the rehabilitation efficacy by balanc-
ing the efforts of each “player”.

What turns out from these examples is the central role played by
the interaction sub-level in the whole framework. Sec. 6.3 presents
two different adaptation strategies developed to promote the cooper-
ation between a human and a wearable exoskeleton. Attempting to
provide a general tone to the description, only minimal references to
the real application used to assess these high-level interaction strate-
gies are made. The complete description of the application, the decli-
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nation of those strategies to the specific case, and the analysis of the
obtained results are instead demanded to Chapter 7.

6.2 MODELING THE PHYSICAL INTERFACE OF TWO INTERACT-
ING ELEMENTS

Simulating two interacting entities within the same environment re-
quires to link together their models. Despite being possible to idealize
that link into ideal joints and constrains connecting rigid bodies, this
approach is not realistic and does not provide a description of the
underlying dynamics. In the reality, indeed, objects are not infinitely
rigid; therefore, contact forces and dissipative effects arise as conse-
quence of their deformations due to the contact. Those contact forces
depend on several factors like material properties, objects shape, fric-
tions between the surfaces, and relative movements. Being capable of
modeling the mechanisms that generate and modulate those forces
is fundamental when the focus is to study the interaction between
two elements, like in the context of a multilevel model descriptive of
the behavior of the whole system. Indeed, since contacts and impacts
modify the standalone dynamics of each element, neglecting them
could lead to misleading simulations which do not reflect the reality.

Several different contact models are available in the literature [98],
each of them characterized by different approaches to the problem
and different assumptions. Two of them are provided by OpenSim
library: an analytical one and an approximated one. Actually, those
models are implemented within Simbody and OpenSim makes them
available by exporting them in its libraries.

Before moving to the description of the two approaches, provided
in Sec. 6.2.3, it is worth to remember that also contact models, like
all the models, requires to be provided with parameters descriptive
of the real system. Every model, indeed, needs to be tuned to match
the characteristics of the real system it aims at describing. In the case
of contact models, independently form their assumptions and their
level of detail, parameters tuning is challenging since measures of
those parameters are generally not available. To face this challenge,
an optimization approach have been applied, aiming to find the pa-
rameter set that leads to the best match between the experimentally
measured forces and the estimated ones. Once completed the param-
eters tuning phase, the model can be considered descriptive of the
real interaction and, thus, used to gather reliable information about
the interaction.
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6.2.1  Two different approaches to model the contact

The contact force f. could be considered the sum of three contribu-
tions [178]:

fe ="fs+fa+fs (6.1)

where f represents the stiffness component of f., f4 the dissipation
component, and f¢ the force due to the friction.

Two different models are available in OpenSim to model the con-
tacts. The first model (HZ) is based on Hertz contact theory [85, 98]
and, using an analytical approach to describe contact surfaces, pro-
vides accurate estimates of fs and of the surfaces deformation based
on the linear elastic theory. However, this model could be used only
for simple surfaces, like planes, spheres, and ellipsoids, since it re-
quires an analytical description of the contact surfaces.

The second model is the elastic foundation (EF) one [16, 98]. This
method, using meshes to approximate arbitrary complex contact
surfaces, estimates fs and surfaces deformation through a simplified
elastic model. Within the EF model, the surface of each object is
modeled with a mesh composed by small triangular elements. In
the center of each mesh element a spring that accounts for the
elastic properties of the corresponding portion of the object is placed.
Combining all the elements together, this approach forms a bed of
springs in which are considered to be concentrated all the contact
dynamics.

Despite the mesh could be densified to increase results quality, a
trade off must be reached since the more dense is the mesh, the
higher is the number of elements, thus the higher is the computa-
tional demand of the simulation.

Similarities can be found between this approach and the Finite
Element theory, however this model neglects the coupling between
elements in order to reduce the computational demand. Due to this
approximation, the results does not converge to the ones provided
by the finite elements simulations and by the Hertz model regardless
by the mesh density.

Once f; has been calculated, using either the Hertz-based model or
the elastic foundation one, f4 and f¢ are computed using the same
methods in both the models.

The dissipation force computation is based on Hunt and Crossley the-
ory [92] under the hypothesis that impact velocities are small enough
to not cause permanent deformations in the objects [128]. Under that
hypothesis, the dissipation force, acting on the contact point in the
direction normal to the surface, is evaluated as the multiplication of
a constant coefficient k, the stiffness force fs, and a dissipation con-
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stants c¢* that combines the dissipation properties of both the two
contacting materials.

The friction force f¢ is computed lastly since, according to Stribek
model [8], it could be modeled as the multiplication of a non-linear
function p(v) with the total normal force f,, = fs + f4 already com-
puted. The non-linear function p(v) is a function of the slip rate —
i.e. the absolute value of the relative velocity of the two interacting
bodies in the parallel direction to the contact plane — and accounts
for the static, dynamic and viscous friction.

An more extensive description of the theory and implementation
of the contact models available in Simbody is provided by Sherman
et al. [178].

6.2.2 Test Case I. The bouncing ball

As workbench to assess the differences between the two con-
tact models available in OpenSim and to compare their estimates
with the results provided by the well known mechanical simulator
ADAMS [143], a rigid ball bouncing on a plane was used .

The ball was modeled as a sphere having an uniformly distributed
mass of 1kg and a radius of 0.3 m. The initial position of the ball,
defined with respect to its center of mass, was set at 0.8 m from the
plane along the positive vertical direction. The mesh provided to the
EF model was composed by 20480 triangular elements. The compari-
son of the simulation results provided by ADAMS and OpenSim was
based on the vertical displacement of the ball, since no dissipative
phenomena were considered in the simulations. The stiffness coeffi-
cient was set to 256 - 10°N/m, therefore almost rigid body behavior
was expected. The only external force acting on the system was the
gravity, acting in the negative Y direction.

The vertical displacement of the center of mass of the ball during
the simulations performed using ADAMS and OpenSim is shown in
Fig 6.1.

Once again, from the comparison of the results with the ones pro-
vided by specific MBS simulators (ADAMS in this context), clearly
emerges the reliability of OpenSim in modeling complex dynamic
systems, in this case with particular reference to contacts.

The computation time required to simulate a 5s time period was
approximately 5 min for ADAMS. OpenSim, instead, required respec-
tively 3.47s and 7.38 s for simulating the system using HZ and EF
models. As emerge from the comparison of the time required to sim-
ulate the problem using the two contact models in OpenSim, which is
approximately double for the EF one, attention should be paid to the
density of the mesh when using EF contact models if computational
demand is an issue for the target application (i.e. like for online con-
texts). In both the cases, however, OpenSim (and Simbody) computa-
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Figure 6.1: Contact modeling in OpenSim. Comparison of the vertical dis-
placement of a rigid ball bouncing on a plane estimated by
ADAMS (black markers) and OpenSim using its Elastic Founda-
tion (EF) model (orange full line) and Hertz-based (HZ) model
(blue dashed line). The red horizontal line represents the position
below that bodies starts to deform.

tional performances are way higher than ADAMS ones, highlighting
once again its (their) efficient implementation.

6.2.3 Test Case II. Overground walking of a small humanoid

The study presented in this section has been published as part of a scientific
paper [209].

The main goal of the work presented in this part of the chapter
was to assess the feasibility of applying an optimization approach to
the problem of automatically tune the parameters of OpenSim con-
tact models [207, 209]. In the ideal case, this approach would not
be needed since objects characteristics and properties would be pre-
cisely known or measurable. However, in the large majority of the
real applications, those parameters are only roughly available since
difficult to measure and changing in time. For this reason, correctly
tuning the parameters of the contact model could be the key factor
for obtaining a good accuracy in the simulations. As seen in the pre-
vious sections, OpenSim provides two different contact models, both
having the same parameter set that needs to be tuned to match real
system characteristics. The parameter set is composed by five coeffi-
cients: stiffness, dissipation, static friction, dynamic friction, and viscous
friction.

The developed optimization approach iteratively adjusts the
parameters of the contact model using a simulated annealing global
optimization algorithm [72]. The tuning process aims at minimizing
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Figure 6.2: Contact modeling in OpenSim: the overground walking of a
small humanoid robot. The Nao robotic platform (Aldebaran
Robotics, France). (a) Real robot, (b) Opensim model of the robot
with virtual markers.

a cost function which has been defined as the Root Mean Squared
Error (RMSE) between the contact forces estimated trough the sim-
ulation and the experimentally measured ones. Since the simulated
annealing is a global optimization algorithm, it ends when the
optimal set of parameters is found. Optimal, in this context, means
that corresponds to the absolute minima of the cost function —i.e. the
best possible fit between experimental measures and estimates that
could be obtained using that model and optimizing each parameter
inside the defined range of values.

As test case for the developed optimization approach, we used
the Nao robotics platform [4] (Aldebaran Robotics, France), a small
humanoid robot with 25 degrees of freedom which allow him to
perform complex movements. The Nao robotic platform (Fig. 6.2a)
weights 5.8 kg and is 573 mm tall.

The experimental data collection was conducted at the Laboratory
of Movement Analysis of the Department of Information Engineer-
ing of the University of Padua, Italy. The robot was simply made
walking on the floor of the laboratory on a straight path, designed to
made the robot stepping on two in-ground force plates (Bertec, USA)
used to collect the ground reaction forces (GRFs) at 960 Hz. The 3D
displacement of 38 passive reflective markers rigidly attached to the
robot surface was collected using an optoelectronic motion capture
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system equipped with six cameras (BTS Engineering, Italy) at 60 Hz.
Both ground reaction forces and marker trajectories were collected
synchronously using the BTS SMART Analyzer software. A critical
limitation brought by the use of that software to collect also GRFs (as
analog channels), was the automatic downsampling of all the data to
match the low sampling frequency of the cameras (6o Hz) done by
the software when saving the data.

An OpenSim model of the Nao was developed by connecting rigid

bodies through ideal joints in order to match the real kinematic chain
of the robot (Fig. 6.2b). Inertial properties and dimensions of each
body were retrieved from its technical specifications [4].
In order to model the interaction between the robot and the floor,
modeled as an infinitely rigid plane,, two elastic foundation contact
models were defined, one for each foot. As seen previously, the elas-
tic foundation model is based on the mesh of the contact surfaces;
therefore, the meshes of the sole of robot feet were used.

Joint kinematics was computed using the marker-based inverse
kinematics tool available in OpenSim (already described into the de-
tails in Sec.5.2.1). The joint angle estimates were then directly pre-
scribed to robot model joints during the forward dynamics simula-
tion used to estimate the contact forces during the walk.

The developed optimization process, in the context of this applica-
tion, runs iteratively the forward dynamic simulation, each time with
a different set of contact model parameters. The cost function to be
minimized is the RMSE between the estimated GRFs — equal to the
contact forces provided by the contact model — and the experimen-
tally measured ones.

In this work, only the vertical component of the GRFs was con-
sidered due to the limiting characteristics of the experimental setup.
Indeed, the very small weight of the Nao humanoid, with respect to
the weight of a standard human, caused a very poor signal-to-noise
ratio in the acquired data. Indeed, as usual, the force platforms of the
motion analysis laboratory were calibrated to maximize the signal-to-
noise ratio when a human being is stepping on them.

The parameters optimization process was run on a single stance
phase (~0.9 s) for just one foot in order to reduce the computational
demand of the process. However, this choice was supported by the
intrinsic symmetry of the system and, according to the conducted pre-
liminary assessments, did not compromised the quality of the results.

The average time required to solve a single iteration of the opti-
mization was 20 s with a standard deviation close to 10 s on an Intel
Core i7@2.8GHz, 16 GB RAM, MacOS, MacBook Pro v.11.3. Contact
parameters calibration ranges and their calibrated values are reported
in Tab. 6.1.
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Calibration Range | Calibrated Value

Stiffness 10% — 10° 1374308
Dissipation 10 — 600 75.12
Static Friction 0.1 — 15 3.05
Dynamic Friction 01 —15 5.02
Viscous Friction 0.1 — 15 7.53

Table 6.1: Contact modeling in OpenSim: the overground walking of a small
humanoid robot. Calibration ranges and calibrated values of the
EF contact model used to describe the interaction between the foot
of the Nao and the ground.
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Figure 6.3: Contact modeling in OpenSim: the overground walking of a
small humanoid robot. Vertical GRF estimates corresponding to
different iterations of the optimization process compared with
the experimental measured one.

In Fig. 6.3, the vertical component of the GRF estimates correspond-

ing to different iterations of the optimization process are compared
with the experimentally measured one.
As shown in Fig. 6.3, during the optimization process the parameters
are iteratively tuned to reduce the RMSE between the experimental
and the estimated vertical component of the GRE. At the first run
the RMSE was equal to 21.44 N, then after 100 iterations its value
dropped to 12.21 N to further decrease at the iteration number 1000
where the RMSE was equal to 10.88 N. After 2000 iterations the RMSE
was equal to 10.75 N. Finally, the optimization process ended finding
the absolute minimum of the RMSE in 10.56 N.

To conclude, Fig. 6.4 shows the vertical component of the GRF esti-
mated by the calibrated model for a different step of the robot.

In Fig. 6.4 it is possible to notice that, during the simulation, the
robot lost the contact with the ground from 6.4 s until second 6.55 s.
This behavior, not corresponding to the reality, was verified to be
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Figure 6.4: Contact modeling in OpenSim: the overground walking of a
small humanoid robot. Vertical component of the GRF for a sin-
gle stance, not used for the calibration, of the left foot predicted
by the calibrated model. Simulated values (red) and experimen-
tal equivalent (blue).

caused by a kinematics estimation error. Indeed, during that phase,
the optical tracking system lost few markers.

Overall, the obtained results could still be considered promising
since the match with the experimental GRFs is quite close. This con-
clusion is endorsed also by the limiting experimental setup: a combi-
nation between a very lightweight robot and force plates optimized
on the average weight of a human being (~80kg).

63 MODELING THE INTERACTION INTERFACE TO ENHANCE
THE COOPERATION

An high-level controller to adapt device behavior to human needs

The study presented in this section has been published as part of a scientific
paper [36].

During the latest decades, the research community has put a lot
of efforts in developing high-level control models [127]. A common
aim of those efforts was to provide to the devices the capabilities
of “feeling” the interaction and adapting their behavior accordingly,
thus maximizing the cooperation efficacy. To face this challenge
several approaches have been proposed, each one with specific
references to the characteristics of the targeted application and to the
goal to achieve.
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Given the wideness of the problem, during my PhD I focused on
the human-exoskeleton application scenario to tackle this sub-level of
the proposed multilevel framework. Within this context, the interac-
tion takes action through the attachment cuffs that connect the device
to the human. The exoskeleton could move the human, and the hu-
man (at least an healthy one) could move the exoskeleton; however,
this is not cooperating, is just coexisting in a master-slave configura-
tion. To achieve a proper cooperation, the device should be able to
adapt its behavior, accordingly to user needs, following a predefined
strategy. This capability has been implemented in the so-called high-
level controller.

Two different strategies of high-level interaction control have been
developed to enhance the human-exoskeleton cooperation: the assis-
tance as needed and the engagement keeping. Both the strategies have
been developed with respect to the case of the gait rehabilitation.
However, while the latter is dedicated to face that specific problem,
the former is more general and could be adapted to every applica-
tion where a human (healthy or with motion impairments) wears an
exoskeleton.

Adaptation strategy I. Assistance as needed

The assistance as needed high-level controller implements a concept
well known in the field of rehabilitation [60, 127]. The fundamental
idea of this adaptation strategy is to modulate the assistance pro-
vided by the device to the user according to the specific needs he/she
has during the task execution. In a rehabilitation context, indeed, if
all the effort required by the task is exerted by the exoskeleton, the
user is fully passive and, as a consequence, it would not increase the
strength of his muscles. Therefore, to provide no more than the assis-
tance needed by the user to correctly perform the task is the key for
an effective rehabilitation process [60]. Despite the assistance as needed
interaction control strategy finds its natural application in the reha-
bilitation field, it could be effective also in other fields. For example,
in an industry setting where an operator has to carry an heavy box,
the most suitable strategy could be to provide him enough assistance
to avoid him getting tired but without exceeding, in order to still let
him “feel” the weight, thus keeping him aware of the possible risks
associated to the task he is performing.

The developed implementation of the assistance as needed interac-
tion control strategy is presented in Fig. 6.5.

The high-level controller takes as inputs user joint torques — esti-
mated by the human dynamics model —, exoskeleton torques, and
the target. The target is the set of joint total torques required to cor-
rectly perform the specified task and is specified by a specialist —
for example by the therapist or by an ergonomics expert depending
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Figure 6.5: High-level interaction control strategies. Concept schema of the
assistance as needed interaction control strategy.

on the final application. For each joint, the high-level controller com-
pares the total torque (sum of user and device contributions) with
the target and provides a control signal to the device to modulate the
assistance level. If the target is higher than the total torque, it means
that the user needs more assistance to perform the task. On the con-
trary, if the total torque is higher than the reference, it might mean
alternatively that either the exoskeleton is providing too much assis-
tance - thus forcing the user - or the user is expressing an excessive
amount of effort. In both cases the controller decreases the assistance
provided by the device, regardless from the responsible for the over-
run. While the case of device “fault” is trivial, given that the decrease
of assistance it is already resolutive for the compliance with the tar-
get without compromising the task execution, the case of user “fault”
requires further discussions. In this case, indeed, the action of decreas-
ing device assistance is not directly decisive but acts as basic feedback
for the user which has been previously informed about that. Indeed,
the user needs to be able to associate a reduction of the support pro-
vided by the device to the fact he is asked to reduce his efforts and to
let the controller adjust the device assistance during the subsequent
control cycles. Optimal results from this approach could be obtained
combining this basic feedback with a more informative one (visual or
auditory) that clearly advises the user to decrease his effort.

Adaptation strategy II. Engagement keeping

The engagement keeping adaptation strategy is a brand new concept,
as the best of my knowledge, I proposed to enhance the user engage-
ment while performing a task wearing the exoskeleton. This strategy,
as opposite to the one discussed in the previous section, is mainly
focused on the rehabilitation scenario, where increasing user’s psy-
chological engagement during the task is a key factor for maximizing
treatment efficacy [23, 120].

The main idea of the engagement keeping interaction control strategy
is shown in Fig. 6.6.
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Figure 6.6: High-level interaction control strategies. Concept schema of the
engagement keeping interaction control strategy.

The high-level controller takes as inputs user joint torques - esti-
mated by the human dynamics model - and target torques. The tar-
gets, one for each joint, are defined by the therapists as the optimal
torques the user needs to exert in order to maximize the benefits of
the rehabilitation task. If user’s torques are higher then the target val-
ues, he is putting too much effort into the task. This excess of effort,
however, could most likely led the patient to fatigue more than he
is intended to and, thus, prematurely ending the task. Therefore, to
guarantee the completion of the rehabilitation session, the exoskele-
ton is then asked to increase the provided assistance, thus allowing
the patient to reduce his effort without compromising task execution.
On the contrary, the device is asked to reduce the support provided
to the user when the latter is loosing engagement — a good engage-
ment losing indicator is that the exerted torques are lower than the
prescribed references. In this case, the goal of the control action is to
“wake up” the user forcing him to increase the effort put into the task,
thus regaining focus on the treatment. The cause—effect relationship
becomes even more direct when the task is fix-speed treadmill walk.
Indeed, if the patient does not react with an increase of the exerted
torques, he would not be able to keep the pace with the treadmill.

Once again, the efficacy of this adaptation strategy could be fur-
ther incremented by providing an adequate visual feedback to the
patient in order to help him in maintaining the engagement during
the rehabilitation task.






SPECIALIZING THE MULTILEVEL FRAMEWORK
FOR THE ROBOTIC REHABILITATION

Part of the work presented in this chapter has been published as a scientific
paper [36].

I have made a substantial contribution in the conception and design of the
study, related softwares development, analysis and interpretations of the re-
sults, drafting and critical revision of the final manuscript.

Co-authors permission for the inclusion of the study in this dissertation have
been obtained.

7.1 INTRODUCTION

The previous chapters detailed the first two levels of the multilevel
framework I developed during my PhD. At this point, only the
presentation of the last level, the extract/synthesize one, is missing
to complete the framework description. As described in Sec. 1.4,
this last level focuses on extracting and packing the insights on the
system dynamics, provided by the measure and the model levels,
that need to be delivered to the user, to the external observers, and
to the device. Despite being theorized using a general approach in
order to enable its use in almost every man-machine context, the
extract/synthesize level is deeply rooted in the characteristics and
in the needs of the specific targeted application. Indeed, both the
information to be delivered and the format to present them are
extremely variable to suit the specific needs of the context — indeed,
the experimental setup influences the available measurements and
the outputs of the model level, the task characteristics influence how
to use those information to enhance the efficacy of the cooperation
in reaching the final goal, and so on. For this reason, I preferred to
directly describe the extract/synthesize level in the specialization
we developed for a specific application: the robotic-aided gait
rehabilitation.

The targeted application was framed in the context of Biomot, the
European research project I contributed to during my PhD. Indeed,
the main aim of this highly challenging project was to enhance the
symbiotic cooperation between a human and a wearable robotic de-
vice for gait rehabilitation through the closure of their interaction
loop. In Sec. 7.2 an overview of the rationale behind the Biomot
project is provided.
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Then, in Sec. 7.3, the process of specializing and applying the pro-
posed multilevel framework to tailor the specific needs of Biomot
is reported. This section descends into the details of the solutions
adopted to enhance the symbiotic cooperation through the closure of
the human-device interaction loop, an innovative approach enabled
by the developed multilevel framework.

Once provided to the reader the keys to understand both the chal-
lenges that characterized the Biomot project and the developed frame-
work specialization, the focus moves to the description of the specific
solutions developed at the extract/synthesize level (Sec. 7.3.2).

Finally, the last two sections present the preliminary results ob-
tained on a pilot study with an healthy subject and discuss the bene-
fits that further investigations toward the undertaken direction could
bring to the field of robotic rehabilitation.

7.2 THE BIOMOT EUROPEAN PROJECT AIMS

The Biomot research project, framed into the European Union Re-
search Framework FP7, aims at improving the efficacy of the sym-
biotic cooperation between a lower-limb wearable robot (WR) for
gait rehabilitation and its user. Succeeding in the pursue of this goal
would have, potentially, a huge impact in both the clinical and the in-
dustrial application of WRs. Indeed, nowadays, those contexts shares
the same need of flexible wearable robotic devices that could help
their users during “everyday” tasks to be performed in normal en-
vironments — in this context normal environments should be red as
unstructured and unpredictable, like the ones we live and work in.

Despite in the latest decades lot of efforts have been spent in this
research stream, most of the currently available WRs still fail to pro-
vide the real-time adaptability and flexibility presented by humans’
natural behavior. Indeed, the large majority of those devices are ex-
tra body actuated mechanical structures which impose fixed prepro-
grammed motion patterns to their user. Moreover, the practical us-
ability of those devices in everyday practice is still a far frontier and
even more far is the autonomous use of WRs by users, since long
periods of expert supervision and tuning are still required [165].

From these considerations arises the rationale of the Biomot project
[142]: to provide a substantial contribution to the transition from sta-
tionary robotic exoskeleton [44, 204] to ambulatory robotic exoskele-
tons [62]. From a more practical perspective, this rationale is trans-
lated in the purpose of delivering a novel ambulatory wearable ex-
oskeleton technology that exploits human-robot interaction dynamics
and provides efficient and real-time adaptive assistance based on the
user’s voluntary and subconscious actions.

The new generation of WRs should not force anymore the human
to move in a predefined way neglecting his actions and needs,
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external environmental factors — such as uneven terrain, mechan-
ical perturbations, carrying weight — and task constraints — like
transitions and changes in walking speed and direction. On the
contrary, those devices should gather all the possible information to
behave in symbiosis with their users, continuously monitoring the
state of the whole system (i.e. user, device, and environment) and
consequently adjust the provided support. Advances toward this
direction have been achieved with rehabilitation exoskeletons for
overground training under the assist-as-need paradigm [6, 20, 141].

The Biomot project intent is to face this challenge through the mix-
ture of three main factors: compliant mechanic and actuation design,
bio-inspired control, and human-device loop closure. The former is in
charge of miming human anatomy to provide a compliant and adap-
tive behavior to the robotic device. The second, instead, is responsible
for practically exploiting this capability by controlling the device in a
natural human-like fashion, using as input the knowledge of the in-
teraction state and of the human dynamics provided by an advanced
NMS modeling approach. The latter, finally, closes the information
and control loops by informing the user and the device (and eventual
external observers) about the state of their cooperation and by giv-
ing them hints about how to enhance their interaction symbiosis to
achieve quickly and efficiently the task goals.

From this mixture of knowledges could indeed emerge a valuable
solution to fill the so-called adaptability gap; in particular, Biomot fo-
cuses on filling this gap within the context of the overground walking
of both healthy and impaired subjects.

However, for the success of the project it is firstly mandatory to
investigate further how people adapt their walking pattern when
wearing an exoskeleton. Preliminary studies have shown that users
react to the device aid by reducing their muscle-generated moment
about the “assisted” joints but, at the same time, the combined (user
plus device) moment remains closer to the one exerted during the
standalone subject walking, thus altering joint kinematics [29, 113].
Unfortunately, this behavior has not been clearly attributed to sub-
ject adaptation or device limitations. Further researches observed that
users modulate the stiffness of their limbs to achieve a combined be-
havior similar to the standalone one, thus reducing the metabolic cost.
If this conclusion has been drawn from a hopping study [2], there is
still little evidence of such positive effect during walking [55, 95].

Moreover, the choice of biosignals driven controls (for example my-
oelectric ones) results in larger reduction of muscle activation than
classical mechanistic controls [62] leading to more natural gait kine-
matics. However, the same study highlighted also the existence of
an algebraic loop, indeed co-contractions of main muscles causes co-
contraction of robot actuators, hindering gait kinematics. A similar
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Figure 7.1: Conceptual diagram showing the specialization of the multilevel
framework developed to tailor Biomot European project aims.
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algebraic loop has been discussed by Fleischer [68] in the context of
directly use estimated joint torques to drive a powered lower limb
exoskeleton.

From these findings, emerges clearly the need of a tool capable of
providing, in real-time, accurate and quantitative insights on the in-
ternal dynamics of both the user behavior and the cooperation status.
A valuable way to fulfill this need, pursued by Biomot, is to use the
multilevel modeling approach to monitor and enhance the coopera-
tion between the human and robotic device. An extensive discussion
of how this challenge has been faced through the joint action of a
compliant exoskeleton, a fast and reliable communication infrastruc-
ture, and a robust and configurable informative feedback system, is
reported in the next section.

7.3 THE MULTILEVEL FRAMEWORK SPECIALIZATION

While the previous section provided an overview of the main ideas
behind the Biomot project, this section discusses the way those ideas
have been translated into practice through the application of the mul-
tilevel framework developed during my PhD studies and presented
in this dissertation.

Fig. 7.1 provides a graphical representation of how the Biomot
aims have been fitted into the multilevel framework. The left part of
the conceptual diagram shows the Real “Whole” System, composed by
the user and the exoskeleton that actively cooperate, both physically
and cognitively — the cooperation have been represented through
the green double-headed arrow. Experimental measurements are
collected from the system and provided to the Multilevel Model, the
core block in charge of estimating the dynamic state of the whole
system. This state is then processed by the Feedbacks Generator block
in order to extract the required information from the state estimate.
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This information is finally provided to the user in visual form and
to the external observer (i.e. the physiotherapist or the doctor in this
context). The latter uses the feedback to design and than prescribe a
desired task aim that, together with the state feedback, is provided
to the High-Level Interaction Controller to generate the references for
the low-level controllers of the exoskeleton.

Before going into the details of the developed framework special-

ization, the Biomot exoskeleton and its main features are presented.
The development of the exoskeleton prototype has been conducted
by two partners of the consortium, the VUB (Bruxelles, Belgium) and
the CSIC (Madrid, Spain). The Biomot exoskeleton has six actuated
degrees of freedom (DoF) — hip, knee, and ankle flexion for both legs
on the sagittal plane — and a compliant pelvis attachment to guar-
antee a comfortable fit to the user. Besides the lightweight and size
adjustable mechanical structure, all the six joints of the BioMot ex-
oskeleton are actuated by variable stiffness actuators (VSA) capable
of providing a minimum peak torque of 50 N m [12].
Starting from the MACCEPA VSA concept [202], the actuators have
been simplified to fulfill the requirement of a lightweight wearable
exoskeleton. A spindle-driven version of the MACCEPA has been im-
plemented, obtaining a better inertia distribution and a more compact
design. Furthermore, despite original MACCEPA actuators can mod-
ify online their stiffness through an additional motor, this feature has
not been implemented in Biomot actuators in order to reduce the
weight and the device final cost. Nevertheless, Biomot actuators’ stiff-
ness can be manually regulated offline by acting on a simple mech-
anism. For more details on the Biomot exoskeleton and a complete
characterization of its actuators interested readers are referred to [12,
140] and related publications.

The Biomot exoskeleton is controlled through a tree-structured ar-
chitecture in which the roots are represented by a BeagleBone Black
(BBB) board [14] running Linux operative system. A custom expan-
sion board was connected to the BBB to interface it, using the CAN
protocol, with the custom ARM board installed on each exoskeleton
joint. The role of the ARM board is to handle the communication
between the BBB and the PIC-based driver board (Secondary Process-
ing Unit, SPU) and to implement the low-level control of the actuator.
This board is responsible for providing the correct amount of current
to the actuator according to the control signal provided by the ARM
board to comply with the control reference prescribed by the BBB ev-
ery 3ms. Furthermore, the SPU collects the measurement provided
by the actuator encoder. Those measurements are then packed, by
the ARM board, into CAN messages that are sent to the BBB through
the CAN bus (every 10 ms).
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To interface the BBB with the “rest of the world” (i.e. the computers
running all the other blocks of the multilevel framework) the middle-
ware ROS has been used (Sec. 2.3). On the BBB a ROS node inter-
faces the exoskeleton middle-level controller, implemented in Mat-
lab, with the ARM board of each joint through the socketCAN API.
Measurements coming from the ARM board of each joint are pub-
lished, by a dedicated ROS node, as JointState messages on the
\exo_joint_angles topic. This node is also responsible for the esti-
mation of the current gait phase from the measurements provided
by the four foot—switches (FSW) installed on soles of the exoskeleton
(one under the forefoot and one under the heel of each foot). Each
FSW provides a binary signal equals to 1 if there is contact between
the sensor and the ground, 0 otherwise. Fusing the information com-
ing from the four FSW, the gait phase is identified and the correspon-
dent identification number written on a dedicated field of the current
JointState message.

Two control strategies have been implemented to control the
Biomot exoskeleton: a zero-torque mode and, only for the ankle ac-
tuators, a feedforward energy injection one. The former aims at com-
pensating the resistive torque that the user feels when moving the
exoskeleton. The latter, instead, provides a positive contribution to
the ankle plantar-dorsiflexion to help the user during the push-off
phase of the gait cycle.

Since the detailed description of the low- and middle-level control
strategies goes beyond the scope of this dissertation, interested
readers are referred to the dedicated scientific publications [12, 75].

Following the theoretical structure given to the multilevel frame-

work, the work done to implement the Biomot specialization will
be described in the prologue. The exoskeleton is, from now on,
considered as a black-box — i.e. a device that communicate through
the ROS interface of the BBB by sending and receiving ROS messages
on different topics.
Fig. 7.2 shows the developed multilevel framework specialization,
composed by the ROS nodes (rectangular blocks) connected by the
ROS topics (gray blocks). Background colors have been used to
clearly identify the different level at witch the modules belongs: blue
for the measure level, orange for the model level, and green for the
extract/synthesize level. Exception is made for the macro-blocks
CEINMS-ROS and Feedbacks Display, which, to simplify the schema,
do not directly corresponds to ROS nodes and will be discussed
separately.

The measure level of the multilevel framework is composed by
three elements:
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Figure 7.2: Block diagram of the ROS architecture developed to specialize
the multilevel framework to face the needs of Biomot EU project.
Squared blocks represents the ROS nodes while gray boxes rep-
resents the ROS topics. Blue background of the blocks is used
to indicate their belonging to the measure level, orange back-
grounds indicates the models belonging to the model level, and
green background for the block belonging to the extract level.

¢ IMUhub node. This node, implemented in Matlab, uses the Mat-
lab API and the ROSMatlab interface to communicate with the
IMU system employed to measure human kinematics. The IMU
system we used is the Tech IMU V4 (Technaid S.L., Madrid,
Spain). The IMUs are wired in chains, connected to the central
computing unit, the TechHUB, which handle all the operations
of the system. The hub is connected to the PC through an USB
cable and the acquisition can be fully controlled using either
the provided software or the Matlab APIs. The implemented
node uses the Matlab APIs to handle the system calibration rou-
tine (to be carried at every power-on of the system) and the
procedures to start and stop the data collection. Through the
proprietary closed-source algorithms that stand behind the in-
terface provided by the API accurate real-time estimates of user
joint angles are made available. The ROS node retrieves those
estimates and packs them in the form of JointState ROS mes-
sages. Those messages are finally made available to the other
nodes on the dedicated \human_joint_angles topic with a fre-
quency of 60 Hz.

* EMGreader module. This module is in charge of providing
electromyographic measurements from the user muscles. To
record EMG signals, a 16-channel Cometa Wave Wireless EMG
(Cometa srl, Milano, Italy) was employed. The probes, that need
to be attached to the electrodes sticked to the skin over the mus-
cles of the user, are wireless connected to a receiver that, ac-
cording to the manufacturer specifications, collects and outputs
the measurements at 2 kHz guaranteeing a fixed delay of 13 ms.
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The Cometa receiver provides the measurements both in ana-
log and digital form (USB protocol); the latter was preferred
since did not require an additional analog to digital converter.
A custom version of the proprietary driver was developed on
purpose by the manufacturer, allowing to collect data packages
at 100 Hz (20 samples per package; the default was 10 Hz with
200 samples per package). However, USB drivers and API inter-
face are provided only for Windows operating system, compli-
cating the integration of this device in the framework. Indeed,
ROS is not officially supported on Windows. To face this issue
we relied on YARP, supported and fully working on Windows
and, thanks to the recent efforts spent for the interoperability be-
tween ROS and YARP [66], fully compatible with ROS networks.
Indeed, we implemented the YARP-based EMGreader module
and through it we published ROS-compatible messages. From
the point of view of the ROS-based architecture, this module is
indistinguishable from a standard ROS node.

Within the EMGreader module, we integrated also the EMG pre-
processing block in charge of reading the data packages, and
filtering, rectifying, and normalizing the raw EMG readings. To
online filter the signals a 2nd order low pass Butterworth fil-
ter with a cut-off frequency of 8 Hz has been used. After being
filtered and rectified, EMGs are normalized using the normal-
izing factors obtained during offline dedicated tasks and made
available as parameters of the ROS parameter server. The tasks
used to calculate the normalization factors aimed at obtaining
the absolute Maximum Voluntary Contraction (MVC) of each
muscle. Finally, the P-EMGs are published by the EMGreader as
ROS-compatible messages on the \emg_data topic at 100 Hz.

* Biomot Exoskeleton. This element, as discussed previously, is con-
sidered here in a black-box fashion. This element communicates
through ROS messages on dedicated topics. As output, it pro-
vided the \exo_joint_angles topic at 100 Hz. The messages of
this topic contains both the exoskeleton joint angles and the
unique code that identifies the gait phase.

In order to guarantee the precise synchronization between all the ele-
ments of the measure level, the devices have been wired to a custom
developed Trigger Generator analog circuit. Once the trigger signal is
fired, all the devices receive it at the exact same time and react start-
ing the data acquisition. The analog solution has been preferred to
the digital one since more reliable and precise.

The model level, is composed by three components: the ExoTorque
module, the CEINMS-ROS block, and the InteractionControl module. The
former, based on a simple geometrical model of the actuator mecha-
nism, takes as input the measured joint angles to estimate the torque
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exerted by the actuators of the exoskeleton. For each joint, indeed we
can express the torque as:

(7.1)

T=k1ld sin(x) <1+PC_H_d|>

'F

In this equation, « is the angle between the lever arm and the second
link of the actuator, k is the MACCEPA spring constant, PC is the
spring pre-compression, 1 is the lever arm length, d is the distance be-
tween the joint axis and the attachment of the spring. F is a parameter
computed as:

F:\/dz—l—lz—Zldcos(oc) (7.2)

Except for o« which is the input of the module, all the other pa-
rameters are constant and their values are saved in the ROS’s pa-
rameter server during the start-up of the system. The estimated ex-
oskeleton torques are published by the module on the dedicated
\exo_joint_torques at the same frequency the messages are received
form the \exo_joint_angles topic (100 Hz). The computational time
of this module is absolutely negligible due to the simplicity of the
operations.

The CEINMS-ROS block contains the developed ROS version of
CEINMS. The details of this block will be discussed into the details
in the following dedicated paragraph. In this overall framework de-
scription it is sufficient to list the input topics it is connected to:

* \emg_data
® \human_joint_angles
and the joint topics it publishes:
® \ceinms_joint_moments,
e \ceinms_muscle_forces,
® \ceinms_joint_stiffnesses,
e \ceinms_mtu_stiffnesses,
e \human_muscletendon_lengths,
¢ \human_moment_arms.

The third element of the model-level is the InteractionControl module.
This module is connected to the topics dedicated at providing the
user joint moments, the exoskeleton joint torque estimates, and the
current gait phase. Moreover, it takes as additional input the task
target defined by the therapist and available as parameter of the
ROS’s parameter server. Thanks to the flexibility provided by the
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server, this parameter could be manually changed online without
requiring to stop the task and restart everything. The Interaction-
Control module uses those quantities to estimate the optimal level of
assistance that should be provided to the user in order to maximize
the rehabilitation task efficacy and to promote the symbiosis of the
cooperation between the user and the device. The implemented
high-level interaction control strategies have been already discussed
in Sec. 6.3, therefore here is reported only their specialization
developed to face the Biomot challenge. Both the strategies have
been implemented within the module, and the choice of using one or
the other is made through a configuration command. To prevent the
possible risks related to the instantaneous change of the assistance
provided to the user by the exoskeleton, the adaptation is made
step by step. This means that during the current step the optimal
assistance level is computed and prescribed to the device to be
provided to the user during the next step. Once again, it is worth to
repeat that this block does not substitute the middle- and low-level
controllers of the device but simply provide a target level to the
middle-level controller to scale the amplitude of the reference. The
desired assistance level is sent to the device through the dedicated
\exo_assistance_level ROS topic.

To conclude the overall framework specialization description, the
last missing level, the extract/synthesize one, is shown in Fig. 7.2 as
the Feedbacks Display block. Given the modularity provided by the use
of ROS and by the structure given to the proposed framework, this
block can be connected to every topic available on the ROS network.
This approach allows to define a broad range of different feedbacks,
both in terms of contents and graphical representation. A detailed
discussion on the different solutions developed within this level is
reported in the next section, right after the description of the CEINMS-
ROS core block.

7.3.1 The CEINMS-ROS block

A detailed description of the CEINMS modeling toolbox has been pro-
vided in Sec. 5.3. This section, extends that description presenting the
changes made in order to integrate CEINMS in the overall framework
through ROS.

Fig. 7.3 shows the developed ROS architecture of the CEINMS-ROS
block.

The major difference between the classic version of CEINMS and
the developed one, apart for the ROS interfaces implemented, is
contained in the Musculoskeletal Kinematics Splines yellow box. This
block, indeed, substitutes the Musculoskeletal Kinematics component
presented in Sec. 5.3, in the computation of the muscle-tendon lengths
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Figure 7.3: Block diagram showing the main components of CEINMS-ROS.
Squared blocks represents the ROS nodes while gray boxes rep-
resents the ROS topics.

and velocities and the moment arms. As already discussed, this com-
putation is implemented in the offline version of CEINMS by rely-
ing on the OpenSim libraries which are not computationally efficient
enough to be used in (soft) real-time applications [35]. Therefore, the
approach proposed in [172] has been used to estimate musculoskele-
tal kinematics. During a preliminary offline preparation procedure,
the scaled OpenSim model is used to create a set of Multidimen-
sional Cubic B-Spine. Each spline defines the MTU kinematics as a
function of the angles assumed by the joints crossed by the MTU. Fi-
nally, the Musculoskeletal Kinematics Splines node uses at run-time the
set of splines as a fast and efficient interpolatable lookup table. After
an in-depth refactoring of the original source code, the MCBS C++
Library has been released for free under the GNU GPLv3 license’.
As shown in Fig. 7.3, the CEINMS node takes as static input the
subject-specific CEINMS NMS model. This model is obtained from
the preliminary execution of the offline CEINMS calibration routine

(Sec. 5.3.1).
7.3.2  The Feedback Display block

This component belongs to the third level of the proposed multilevel
framework, the extract/synthesize one.

The major requirements for designing an effective feedback format
to inform the user are two: it needs to be meaningful, exhaustive,and
informative and, at the same time, minimally invasive and distractive.
The path for defining such a feedback presents several forks to be
crossed, therefore, in most of the cases, is the outcome of an iterative
process, where the collaboration of “pilot” end-users is fundamental.

The first decision to take is the type of support for the feedback:
auditory, tactile, or visual. While the first two demonstrated their
suitability for simple cases — for example to help the user to keep
the pace during a repetitive task or to inform him about the need of

1 https://github.com/RehabEngGroup/mcbs/tree/develop

131



132 SPECIALIZING THE MULTILEVEL FRAMEWORK FOR THE ROBOTIC REHABILITATION

performing an action like grasp or lift —, the latter is more flexible
and powerful. Visual support, indeed, allows to combine in a single
view more information than the other supports. This capability, how-
ever, might be also a drawback; indeed, developers might be more
prone to concentrate a too large amount of information in the same
feedback. This, could end in confusing the user and, therefore, in frus-
trating the benefits of the feedback. Once again, the involvement of
pilot end-users in the development process is fundamental.

The second choice to make, once decided to use the visual
support, is what information needs to be provided. Despite the
common goal is to maximize the symbiosis between the human and
the device, different tasks have different specific aims, therefore the
same information in some case could be more effective than in others.

Within Biomot, we used the visual support to gain the maximum
flexibility, postponing to future clinical trials the evaluation if using
other supports, or maybe a combination of more support, could lead
to a more effective cooperation enhancement or to an higher level of
engagement of the users. Moreover, aiming at providing the best feed-
back to both the user and the eventual external observers, we decided
to promote the flexibility. This aim has been practically translated in
allowing the Feedbacks Display node to connect with every topic avail-
able in the ROS network — regardless the framework level from which
they are provided.

Besides this flexible plug-and-play feature, I designed and imple-
mented the prototype of an exhaustive visual feedback (Fig. 7.4) to
inform the user. The figure is provided as an example and the dis-
played data are taken from the conducted pilot study, explained in
the next section, which involved an healthy subject wearing only the
ankle prototypes to walk on a treadmill. Just the left side was consid-
ered in this pilot study. However, the joints for which the data are dis-
played are selectable without limitations, except for the ones imposed
by the experimental configuration used. The graphs on the first row
report, from the left to the right, the exoskeleton joint torques, the
user joint moments, and the user joint stiffness and are updated at
run-time. To facilitate the feedback reading of the user, in those three
graphs vertical lines showing the left foot heel strike (full green lines)
and the left foot toe off (dashed green lines) events have been added.

The bottom row of the Biomot feedback prototype, instead,
presents the data of the previous step (the time interval between two
consecutive left foot heel strike events) in order to provide the user a
steady information about his performances on the last step. The first
two graphs show respectively the exoskeleton joint torques and the
user joint moments. Finally, the bar chart informs the user about the
assistance level that the Biomot exoskeleton is currently providing.
This information, during the pilot assessment, turned out to be very
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Figure 7.4: Biomot prototype of the visual feedback provided to the ex-
oskeleton user. On the top row, online data, on the bottom one
data from the previous step (heel strike to heel strike). Green ver-
tical lines on the graphs of the first row represent the heel strike
(full line) and the toe off (dashed line) events. On the first column
exoskeleton joint torques, on the central column estimated user
joint moments. On the right column, on top user joint stiffness,
on the bottom assistance level provided by the exoskeleton.
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useful in helping the user to better perceive the device behavior and
to increase its symbiosis with the device while performing the gait
task.

As stated before, however, thanks to the modular structure given
to the Feedbacks Display node and to the standardized communication
infrastructure provided by ROS, the contents of every topic could be
graphically displayed. Fig. 7.5 shows three examples of the interme-
diate quantities that can be displayed by connecting to the dedicated
topics. Those quantities could be very useful to assess the internal
dynamics of the task execution, in particular for external observers
who need to tune the rehabilitation task itself. For example, the ther-
apist, by looking at P-EMGs and muscle forces, could identify the
muscles that are responsible for co-contraction phenomena spotted
by the stiffness graph (Fig. 7.4) and consequently adjust the goals of
the rehabilitation process.

The next section presents the experimental setup used and the
results obtained during a preliminary assessment of the developed
framework specialization conducted with an healthy subject.

7.4 THE PRELIMINARY RESULTS

To gather preliminary insight on the benefits that could provide the
developed multilevel framework, and through it the closure of the
loop between the rehabilitation device and its user, a simplified exper-
imental setup was used (Fig. 7.6). A female healthy subject (27 years
old) was recruited for the experiments and, after being informed
about the risks, she provided her informed consent in written form.

A preliminary acquisition was conducted in order to calibrate the
CEINMS NMS model and to record the maximum voluntary contrac-
tion of her muscles. Instrumented with EMG probes on the muscles
mainly involved in ankle plantar-dorsiflexion (tibialis anterior, gastroc-
nemius medialis, gastrocnemius lateralis, peroneus longus, soleus) and with
CODA Motion active markers, the subject performed 10 overground
walking trials. Ground reaction forces were collected synchronously
using two force platforms (AMTI, USA). MVC trials were recorded
by following a custom protocol aiming at activating each muscle
separately during a dedicated exercise. The calibration of CEINMS
was than performed following the procedure already described in
Sec. 5.3.1.

Once completed this preliminary phase, CODA Motion active
markers were removed and force platforms disconnected since not
needed anymore. Instead, the subject was asked to wear the ankle
actuators of the Biomot exoskeleton prototype.

The choice of focusing the efforts only on the ankle was driven by the
intent of limiting the complexity of the setup to allow more intuitive
considerations on the outcomes. Technaid IMU system was used to
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Figure 7.5: Additional feedbacks that can be displayed by the Biomot Feed-
backs Display node. From the top to the bottom: preprocessed
EMG signals, MTU lengths, and muscle forces.
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Figure 7.6: Biomot experimental setup during the preliminary performance
assessment. Healthy subject wearing Biomot ankle actuator pro-
totypes walking on a treadmill while watching the provided vi-
sual feedback.

measure ankle and knee kinematics using a set of 7 IMUs and propri-
etary algorithm to estimate joint angles. EMG signals were recorded
only from the left leg since, during preliminary tests, we found no
significant differences between left and right leg muscles activity —
as expected since the subject had neither musculoskeletal nor neural
disorders.

The subject, after a short training required to gain confidence with
the device, was asked to walk for about 10 minutes continuously
on a treadmill at the comfortable speed of 3.5 km/h while watching
the provided visual feedback prototype. The device was controlled
to provide assistance during the push-off phase of the gait cycle
- the feedforward energy injection control strategy was activated.
Both the Assistance-as-needed and the Engagement keeping interaction
control strategies were activated separately during different phases
of the task execution. The target for both these strategies was set
by an expert physiotherapist to 70 £ 5N m , standard value for a
female subject of that same age and weight. The +5N m tolerance
bandwidth was used to prevent possible negative effects caused to
experimental noises. Therefore, when the value of the ankle moment
exerted by the user was inside the target band, no assistance level
adaptation was made by the exoskeleton.
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Figure 7.8: Left ankle actuator torque (blue line) and assistance level (red
line) during the same task interval of Fig. 7.7.

Fig. 7.7 shows the estimated user ankle moment during a ~100s
interval of the walking trial. During this interval, the Engagement keep-
ing interaction control strategy was active and the subject was firstly
asked to exert higher plantarflexion moment than the one correspond-
ing to a natural walk, and then to relax exerting lower moment than
in the standalone natural walk. Superimposed in red is shown the
assistance level commanded by the adaptation algorithm, which in-
deed increases when the user exerts an excessive ankle plantarflexion
moment, and decreases when the user relaxes.

Fig. 7.8 reports the torque exerted by the exoskeleton during the
same task interval. Superimposed in red is shown again the assis-
tance level commanded by the Engagement keeping interaction control
strategy.

Finally, a 30 s interval of the same walking task is reported to high-
light the differences in the informative content carried by the joint mo-
ment and the joint stiffness estimates. While, in general, an increase
in plantarflexion moment magnitude (negative sign on the plot) cor-
responds to an increase in joint stiffness, it can be seen how joint
stiffness is modulated differently among gait cycles. For example, in
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Figure 7.9: Left ankle moment (blue line) and stiffness(red line) estimated
by CEINMS during a 30s interval of treadmill walking while
wearing the Biomot ankle actuator with push-off assistance and
Engagement keeping interaction control strategy activated.

the time window from 441 s to 445 s, the peak value of the plantarflex-
ion moment remains constant among the different gait cycles, while
the stiffness peak value varies, likely as a consequence of increased
muscle co-contraction by the user.

7.5 CONCLUSIONS AND REMARKS

This chapter presented the work done in order to specialize the devel-
oped multilevel framework to face the specific challenges proposed
by the Biomot European project.

The main aim of this collaborative research project was to enhance
the symbiotic cooperation between a new generation of compli-
ant gait-rehabilitation exoskeletons and their users. This aim was
pursued by developing the tools required to estimate at run-time
the dynamics that regulate the behavior of the user, of the device,
and of their interaction. Those estimates were than used to provide
quantitative and informative feedbacks to the user — in order to
help him in taking all the possible advantages from the cooperation
with the device, thus maximizing the efficacy of the rehabilitation
treatment — to the device — in order to inform him about the current
user’s needs — and to the external observers (i.e. the therapists) — in
order to help them in the design of the most suitable and effective
tasks for the specific needs of the patient.

To author best knowledge, for the first time an accurate and physio-
logical NMS model, a state of the art compliant rehabilitation device,
and an informative feedbacks system were effectively integrated to-
gether to promote and enhance the symbiosis of the human—device
cooperation. The results obtained from the preliminary assessment
conducted with an healthy subject and with just the Biomot ankle
actuator prototypes, can be considered very promising. Indeed, the
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feedbacks provided about the developed system and the achieved re-
sults by both the user and the therapists and doctors assisting to the
experiments were positive, highlighting the high impact on the reha-
bilitation practice that such a system has the potentiality to provide.
The user during the task felt confident and comfortable, gaining per-
ception of the consequence of her actions both on the dynamics of her
neuromusculoskeletal system and on the assistance provided by the
device. The therapists that were assisting at the experiments recog-
nized in the system the potential of keeping the users engaged and,
at the same time, were interested in the availability of quantitative
informations to monitor user performances during the rehabilitation
process and to perform inter- and intra-subject evaluations.

However, the developed framework is still far from being effec-
tively used in clinical practice. Extensive evaluations using the full
exoskeleton and involving more users (both healthy and impaired)
are indeed mandatory to quantify the real benefits that such a system
is capable of providing and to tune the user feedback format in order
to maximize its efficacy. Moreover, more work is required to increase
the usability of the developed tools, reducing the complexity and the
informatics skills required to use the framework — i.e. for example
designing a more user-friendly graphical interface to handle all the
operations.
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SIMPLIFYING THE FRAMEWORK FOR ENHANCED
AUTONOMOUS DEVICE-DRIVEN AT-HOME
REHABILITATION

The work presented in this chapter has been published as a scientific pa-
per [192].

I have made a substantial and principal contribution in the conception and
design of this study, related software development, analysis and interpreta-
tion of the results, drafting and critical revision of the final manuscript.
Co-authors permission for the inclusion of the study in this dissertation has
been obtained.

8.1 INTRODUCTION

The previous chapter described the specialization of the proposed
multilevel framework developed to face the specific needs of a clin-
ical rehabilitation treatment based on the use of a new prototype of
exoskeleton together with a feedback architecture aiming at promot-
ing the human-device cooperation.

This chapter, instead, presents the work done toward the direction
of device-assisted autonomous at home rehabilitation. It comes intu-
itive that such a context presents a completely different set of chal-
lenges, in particular in terms of usability, intuitiveness, and simplic-
ity. The rehabilitation system, indeed, in this case should be directly
usable by the patient, who might be old or completely unfamiliar
with new technologies and anatomy concepts, after a short super-
vised training period. Therefore, the complexity of the setup should
be minimized, reducing the amount of time and specific knowledges
required to prepare and use the system. For example, in this con-
text, measuring EMG signals, as done for the Biomot scenario, is un-
feasible due to the expertise required to place the electrodes in the
right spots and to the difficulties in autonomously performing correct
MVC normalization trials. Moreover, also the usability of the software
plays a fundamental role: for such a context the software should be
extremely reliable and work in a one click to start fashion; definitely
not compatible with the current status of the multilevel framework
we developed and applied to the Biomot context.

Currently, the most advanced techniques for robot-aided patients
self-rehabilitation rely on preprogrammed robotic assistive devices
which force the users to perform repetitive cyclic tasks. However,
those devices are completely blind to the needs and capabilities of
their user. Therefore, providing to the devices some insights on the
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user current state — although reduced with respect to the complete
framework and limited to cyclic movements— could represent a big
step forward in enhancing the motor relearning process and promot-
ing the user engagement during the rehabilitation process.

The final research goal in which the work presented in this chap-
ter is inserted is to assess the feasibility of taking advantages from
the multilevel framework and its modeling approach to enhance the
cooperation between the device and the patient in the autonomous
self-rehabilitation contexts. Towards this direction, this work presents
a possible solution to overcome the unfeasibility of measuring EMG
signals during autonomous rehabilitation sessions. Actually, our pro-
posal consists in using a subject and task specific EMG model to pro-
vide a synthetic signals to drive CEINMS in order to get dynamics
estimates that could be used, as presented in the previous chapter, to
inform the device interaction controller. That model, to accurately rep-
resent the user capabilities, needs to be re-tuned periodically through
dedicated clinical sessions where trained physiotherapists can effec-
tively handle the EMGs measurement procedure.

The experimental setup used to assess the feasibility of the
proposed approach, the preliminary results obtained, and the main
conclusions that can be drawn are presented in the rest of the chapter.

8.2 APPLICATION SCENARIO AND SPECIFIC AIMS OF THE WORK

In the latest decades, the number of people affected by locomotion
diseases is rapidly increasing. Several causes contribute to this wor-
rying trend, among the others we can find the increases of popula-
tion mean age, of neurological and musculoskeletal pathologies, and
of severe injuries [152, 210]. In the latest decades, personalized re-
habilitation treatment, designed on the specific anatomical, physio-
logical, and neurological characteristics of the patient, demonstrated
their effectiveness in promoting the restoration of motor function-
alities [108, 183, 203]. Nowadays, this treatments personalization is
generally achieved through the expertise of doctors and therapists.
However, the increasing spread between rehabilitation treatments de-
mand and availability of therapists is limiting the sustainability of
this approach, thus no longer able to deliver optimal rehabilitation
treatments to the patients. Moreover, the results of the treatments are
highly dependent on the skill of the therapist to “feel” and adapt the
process to the user needs. Indeed, the whole approach relies on per-
sonal expertise with only partial support of simple qualitative evalu-
ation scales and scores.

To overcome these limitations — by reducing the costs, increasing
the number of patients served daily, and providing the tools to per-
form quantitative evaluations — robotic technologies recently started
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to be integrated in the rehabilitation practice to assist the patient in
the repetition of the exercises. Examples are automated treadmill as-
sisting the gait rehabilitation through preprogrammed gait patterns
[97, 204] or robotic devices supporting the over-ground locomotion
with the objective of reteaching gait patterns to the patients [18, 65,
88]. However, most of these devices are based on preprogrammed
control strategy where the patient is not actively involved, thus
he/she behave passively and, as a consequence, the effectiveness
of the treatment is limited. Furthermore, subject monitoring is still
demanded to the therapist during periodic manipulation.

In accordance with the leitmotif of the work I conducted during my
PhD studies, these limitations could be effectively overcome by devel-
oping a new generation of rehabilitation devices, capable of under-
standing patient’s intention and adapting to his/her current neuro-
logical and physiological state. To this aim, the developed multilevel
framework proved to be effective in closing the loop between device,
the user, and the therapist, leading to a symbiotic relationship dur-
ing the whole rehabilitation treatment. However, as briefly discussed
in the introduction of this chapter, the EMG driven approach inte-
grated in the developed framework is the most critical factor which
prevents the applicability of the framework in robotic-aided patients’
self-rehabilitation.

To address and overcome this limitation, the work presented in
this chapter represents an enhanced assessment [208] of the feasibil-
ity to predict EMG values during plantar-dorsiflexion (P-DF) cyclic
movements, often used to rehabilitate common ankle injuries such
as sprains or fractures fractures [158]. An EMG model for the mus-
cles mainly involved in ankle P-DF was build, from an experimen-
tal database composed by data from ankle P-DF tasks performed at
six different speeds, to predict the EMG signals during ankle P-DF
performed at arbitrary speeds. Than, those estimates have been pro-
vided to CEINMS to estimate user muscle forces and joint moments.
The obtained results could be considered promising, endorsing fur-
ther investigation on the accuracy and the reliability of EMG pre-
dictions when used to drive neuromusculoskeletal models. However,
since muscles activity strongly depends from user capabilities, the
developed subject and task specific EMIG model should be periodically
adjusted to follow the patient recovering process. To this aim, ded-
icated sessions where EMG are measured by therapists should be
performed. Despite its applicability limited to repetitive movements
this approach would allow to apply the developed multilevel frame-
work also to the robotic-aided self-rehabilitation scenario, promoting
a faster and effective rehabilitation.
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(b)

Figure 8.1: Experimental setup used to create and validate the subject and
task specific EMG model. (a) Subject on S3P, (b) EMG electrodes
placement on the subject right leg muscles.

8.3 MATERIALS AND METHODS
8.3.1 Equipments and Experimental Setup

The experimental data collections have been performed at the Depart-
ment of Neurorehabilitation Engineering of the University of Medical
Center Gottingen Georg-August University (Germany).

For this preliminary study, we recruited five voluntary subjects (1
female and 5 males); their age was 25.6 £ 2.9 years (mean £ STD),
their body weight was 66.8 == 11.9kg, and their height was 1.73 +
0.12m. The participants had no neurological or musculoskeletal disor-
ders that could have influenced their movements and provided writ-
ten informed consent prior to participate to this study.

The anthropometric characteristics of the subjects were obtained
through a static acquisition using an optoelectronic motion capture
system equipped with eight infrared digital cameras with acquisition
frequency of 256 Hz (Oqus 300, Qualisys, Gothenburg, Sweden). A set
of 12 reflective markers has been placed on the subject’s right leg,
according to the protocol used in [51].

EMG signals were collected with an EMG-USB2 System (OT Bioelet-
tronica, Turin, Italy) from the five muscles mainly responsible for an-
kle P-DF: Gastrocnemius Lateralis, Gastrocnemius Medialis, Soleus, Per-
oneus Longus, and Tibialis Anterior. Surface electrodes were placed ac-
cording to SENIAM recommendation [84].

A System 3 Pro (S3P) dynamometer (Biodex Corp., Shirley, NY) was
used in isokinetic mode to drive the movement on the subject- pre-
scribing the trajectory and the speed. Motor joint torque and kine-
matic data measured by the S3P and signals from the EMG amplifier
were synchronously acquired at 2048 Hz.

Fig. 8.1 shows the experimental setup used for the study..
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8.3.2  Experimental Procedure

The experimental protocol started with a static trial where the subject
was standing straight for about 10s. During this trial only optoelec-
tronic data were collected. Those data were used to scale the Open-
Sim musculoskeletal model in order to match the subject’s anthropo-
metric characteristics. Once completed the static trial acquisition, the
passive markers were removed from subject’s body since not needed
anymore.

In the second part of the protocol, the participants were asked to
comfortably sit on the S3P with the right knee flexed at 40° and the
right foot on the S3P stand (Fig. 8.1a). Before starting the acquisition,
the subjects have been shortly instructed on the procedure and had
the time to gain some confidence with the movement by performing
few test trials.

Firstly, they were asked to perform P-DF movements with the right
ankle following in a passive way the movement imposed by the S3P.
This task provided a torque measurement representing, in a good
approximation, the torque required to compensate the subject foot
weight. EMG signals were visually inspected to verify that the sub-
jects were completely passive. This measured torque was then used
to correctly estimate the subject torque contribution from the mea-
surements provided by the S3P.

Then, the subjects were instructed to perform ankle P-DF following
the speed imposed by the S3P and producing their maximum effort,
thus trying somehow to speed up the movement. A visual feedback
expressing the amount of effort exerted was provided to guide the
subjects in the correct execution of the tasks. The feedback reference,
in terms of the maximum effort corresponding to the imposed speed,
were acquired during the first execution of the task.

For this study, six different speed were selected, chosen for feasi-
bility and safeness for the subject: 30°/s, 45°/s, 60°/s, 75°/s and
90 °/s. The subjects were asked to perform five ankle P-DF repetition
for each trial, four trials were recorded for each speed. Each trials of
each considered speed was performed by the subjects exerting their
maximum effort, helped by the provided visual feedback.

8.3.3 EMG Data Processing

Raw EMG signals were preprocessed in accordance with the proce-
dure described in Sec. 3.2.2.2 — high-pass filtering (Butterworth, 4-th
order, 300 Hz), rectification, and low-pass filtering (Butterworth, 4-th
order, 8 Hz). The EMG signals normalization procedure was based
on the maximum EMG peak obtained, for each muscle, among the
whole experimental procedure execution.
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8.3.4 EMG Model

The EMG model we developed aims at predicting the EMG signal
of each considered muscle from the available information on the P-
DF speed (arbitrary) and on the current ankle joint angle. The model,
as already stated, is subject and task specific, therefore it will be de-
scribed in the following considering a single subject.

For each considered muscle and for each P-DF speed the average
of the EMG signal was firstly computed. To compute this average, a
total of nine cycles were used — the three central repetitions of the first
three trials. To this aim, it was first of all mandatory to remove the
dependency from the time — indeed, despite being the speed of the
movement and the range imposed, slightly different number of sam-
ples were obtained. Each P-EMG signal was therefore time warped
over 2000 samples. Eq.s 8.1 express this time-warping concept.

€m,s (t) — €m,s (k) (8.1)

where eq s(t) is the mean P-EMG for the muscle m and the task
speed s at the time t. After the warping it becomes a function of the
sample k, where k is in the range 1 to 2000.

Than, for each muscle, the six average curves, corresponding
to each speed, were averaged, thus obtaining a single speed-
independent curve Eq. 8.2.

Emn(k) = Ze]\*j“(k) (8.2)

At this stage, the developed EMG model is ready to be used to pre-
dict the EMG of each muscle, of course among the considered ones,
at any arbitrary speed. The prediction process is driven by the infor-
mation about the desired movement speed. Since the P-DF range is
fixed, also the time required can be exactly computed and than used
to un-warp the EMG average curve. However, it comes intuitive that
the movement speed has a strong influence ton just on the riming but
also on the amplitude of the EMG signals. To take into account this
dependency a shape factor index was used to adjust the amplitude of
the predicted EMG signal.

8.3.5 CEINMS

In this work, the offline version of CEINMS (Sec. 5.3) was used to
estimate the muscle forces and joint moments from both the EMG
measurements and the synthetic EMGs predicted through the devel-
oped subject and task specific EMG model. Experimental EMG and
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ankle torque measurements provided by the S3P were used to cali-
brate CEINMS.

8.3.6 EMG Model Validation

The validation of the developed EMG model was conducted in two
subsequent steps using experimental data not used to create the
model.

In the first step the accuracy and the reliability of the model in
predicting EMG signals was assessed. To this aim, the EMG values
synthesized by the model (Synth. EMGs) have been compared with
their experimentally measured equivalents. The results have been re-
ported as means and standard deviations computed after grouping
the curves firstly by muscle and secondly by speed.

In the subsequent step, instead, both synthetic and experimental
EMGs were used to drive CEINMS, obtaining ankle joint moment
and muscle forces estimates. The validation was performed compar-
ing predicted and experimental ankle torques since muscle forces,
albeit being the most interesting output, cannot be measured in a
non-invasive way therefore an experimental ground of truth was not
available. Within this step, the results have been evaluated consider-
ing firstly CEINMS estimates obtained using Synth. EMGs against ex-
perimentally measured torques. Then, the comparison has been per-
formed between CEINMS estimates obtained using Synth. EMGs and
experimental EMGs.

For both the validation steps, the statistic metrics used to quantify
the differences of the quantities have been the Root Mean Squared
Error (RMSE) and the correlation coefficient R?.

84 PRELIMINARY RESULTS

In the first step of the validation procedure, EMGs predicted by the
developed model and experimental ones were compared. Once again,
the data used in the validation phase were not included in the model
creation one.

Tab. 8.1 reports the behavior of the model for the different muscle
averaged among all the six considered speeds — three ankle P-DF
cycles have been considered for each speed.
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The average RMS error is 0.088 £ 0.017 which means, since the
EMGs values are normalized between 0 and 1, the prediction error
is always lower than 10%.

The overall R? is equal to 0.785 £ 0.094, therefore a good correlation
between predicted and experimental EMGs have been obtained.

Different accuracy obtained for different muscles is manly due to
electrodes placement and muscles involvement during the ankle P-
DE. For example, the Tibialis Anterior, which is the muscle mainly
involved in ankle dorsiflexion and is easy to acquire since less prone
to motion artifacts, shows the best results, both in term of RMSE and
R2. On the contrary, the Peroneous Longus, which is only partially in-
volved in both plantar and dorsiflexion and the optimal spot to place
the EMG electrodes is hard to find, shows the poorest performances.

Subjects So and S1 exhibit the worst behavior, probably due to
their specific anatomical characteristics which negatively affected the
electrodes placement and, therefore, the EMGs measurement quality.
Despite this experimental negative factor, only for the subject So
a new data collection section is required to create an EMG model
characterized by a good accuracy; moreover, this need is limited to
his Peroneous Longus.

Tab.8.2 reports the statistical metrics of the comparison between
experimental and synthetic EMGs averaged among the different mus-
cles — three ankle P-DF cycles have been considered for each speed..
The achieved performances are quite promising, both in terms of R?
and RMSE for almost every tested speed. The slightly worst perfor-
mances achieved at the lowest speed (R? close to 0.66) are possibly
due to the difficulty felt by all the subjects in correctly following the
S3P at this extremely low speed. Indeed, the Biodex Reference Man-
ual suggests 60 °/s as the lowest speed to obtain reliable executions of
the ankle P-DFE. However, SP30 and SP45 have not been excluded from
the evaluation process in order to enable the assessment of the impact
of moderate EMGs prediction errors on the final torque estimated by
CEINMS.

Fig. 8.2 and Fig. 8.3 graphically show the obtained results for each
muscles for each of the six speeds for the subject So3.
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Figure 8.2: Validation of the subject and task specific EMG model. Compar-
ison between estimated EMG signals (blue full lines) and mea-
sured ones (reported in orange as mean + STD over three repe-
titions) for each muscle of subject So3 expressed as functions of
the ankle P-DF cycle %. Results for the tasks performed at: (a)
30deg /s, (b) 45deg /s, (c) 60deg /s, (d) 90deg /s.
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Figure 8.3: Validation of the subject and task specific EMG model. Compar-
ison between estimated EMG signals (blue full lines) and mea-
sured ones (reported in orange as mean + STD over three repe-
titions) for each muscle of subject So3 expressed as functions of
the ankle P-DF cycle %. Continuing from Fig. 8.2, results for the
task performed at 120deg /s.
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Once verified that the developed subject and task specific EMG
model provides adequate and reliable EMG signal estimates, the fo-
cus has been moved on the assessment of the final estimation goal of
the approach, thus the ankle joint moment.

However, before proceeding with the validation of the torque
estimates based on the Synth. EMGs, CEINMS maximum accuracy
have been evaluated by feeding it with the experimental EMGs. The
so-computed ankle joint moments have been therefore compared
with the experimentally measured ones (Tab. 8.3). The overall R? =
0.885 + 0.042 confirms a good correlation between the estimated joint
moments and the experimental ones while the overall RMSE (11.595
+ 2.813°) shows the presence of a remarkable error in the prediction.
As could be noticed in Fig. 8.4, however, the errors are mainly
concentrated on the first part of the P-DF cycle (from 0 to ~ 30%),
which corresponds to the switch between dorsi and plantar flexion.
Such a behavior was partially expected, indeed all the subjects
reported difficulties in synchronously following the motion imposed
by the Biodex during the switch, thus the experimental torque is
the result of a “bad” cooperation between the subjects and the S3P,
causing a significant mismatch between the two contributions.

153



ENHANCING THE DEVICE-AIDED AUTONOMOUS REHABILITATION OF PATIENTS

154

‘paads yoea 105 suonnadar 6 1040 paderaae udsq daLY S}NSAY
"SONA Teruswrradxa a3 Yiim paj SINNIAD Aq parewnysa sjuswowr jutof apjue pue sanbio) pamsesw Aqejuswriadxs usamiaq uostredwo)) :€°Q a[qe],

LE00F 160 | €Z00F €880 | LZOOF T80 | 6b00F8PL0 | 9L00FZ60 | AISF A
0Tt
08T F GIG'LL | 9TLFTOETL | 990°TF €9G'GL | 660'L F8¥S'8 | 88TTF 191'6 | ALS F ASWA
9100 F ££6'0 | YIOOFS/80 | TOOF S0 | LE00OFTISO | L00OFTE0 | AISF A .
o
6E0'L FEOE6 | 6/90F60TL | TSSLFEEL YL | 8TSOF €vb'8 | L1EL0F /892 | ALS F ASWA
PLOOT /T80 | ¥TO0FGE80 | 6L00F /80 | €900F8EG0 | I00FSL80 | AISTA |
VOLFELOLL | SELFELTTL | LLEEF8IGLL | (TOLF6L8L | 1080F 662 | ALS F ASWA
9200 F 8060 | 6L00FS880 | PLOOF 6880 | ZEOOF YO | LZOOF 1160 | AISF A
o
S86LT SOLLL | S60TF SS0SL | 2660 F #2211 | 909'L ¥ ¥8¥°6 | €061 F ¥vG6 | LIS T AN |
Sl00TEPS0 | €00FGO | €00FIEO | LE00FGEO | 9l00FIT80 | AISTA |
OV FTVEL | LWL LFTUEEL | VLITTFOESEL | WWLF eS| vSLOF v0L L | ALS F SINY
9L00F 1760 | LEOOF 1680 | TOOF 6880 | ¥I00F6/80 | TZ00F8L60 | AISF o ;
o
EITETFOTGGL | SISLFTSEYL | 8YETF L98'EL | 8990 F 16971 | SH'LFGEOL | ALS F AN
s/o
bs £s eS 1S 0s paadg
ai »alqng




8.4 PRELIMINARY RESULTS 155

Speed 30 deg/s

Torque Nm
|

20 a0 60 80 100

% P-DF
Speed 45 deg/s

Torque Nm
s

% P-DF
Speed 60 deg/s

Torque Nm
|
L

% P-DF
Speed 75

deg/s

Torque Nm
|

% P-DF
Speed 90 deg/s

Torque Nm

0
% P-DF
Speed 120 deg/s

o ———

Measured
— Exp-Ceinms

Torque Nm
|
L

0 20 a0 60 80 100

Figure 8.4: Comparison between experimental EMG driven CEINMS an-
kle moment estimates (blue lines) and experimentally measured
torques (orange line) for the subject So3 reported as function of
the P-DF cycle percentage. Full lines represents the mean mo-
ments obtained averaging 9 P-DF cycles while the shaded areas
represent the corresponding standard deviation intervals.
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Once verified the performances of CEINMS in estimating ankle
moments using as input experimental EMGs, the subsequent step
has been the assessment of the drop in the accuracy of the ankle joint
moment estimates due to the use of the synthetic EMG predictions.
To this aim, CEINMS has been fed with the Synth. EMGs and its esti-
mates compared with the experimental torques. Tab. 8.4 summarizes
the outcomes of this assessment, while Fig. 8.5 graphically shows the
differences between experimental and synthetic ankle joint moments
(i.e. estimated by CEINMS from Synth. EMGs) for the subject So3.
The obtained results are very promising, both in terms of RMSE
(12.595 + 2.876°) and R? (0.857 + 0.053) for all the subjects at every
considered speed. Such indicators express an important result: the
accuracy drop due to the use of Synth. EMGs instead of experimental
EMGs is limited, almost negligible.

This consideration emerges even more clearly when comparing
CEINMS estimates obtained using as input Synth. EMGs and the ones
obtained from experimental EMGs. Tab. 8.5 reports the statistics ob-
tained from this comparison for all the involved subjects. It can be
notice that the RMSE values are very low and the R? are really close
to 1 for each subject and for each speed. Fig. 8.6 presents the compar-
ison in graphical form for subject So3 in order to highlight the negli-
gible differences between the curves. Actually, a slightly worst behav-
ior have been achieved for lowest speed task. However, as discussed
previously, the EMG model was not very accurate at this speed due
to the experimental setup limitations. As our first objective was to
provide an answer to the need of avoiding continuous EMG measure-
ments, the overall RMSE of 5.930 + 1.595° and R? = 0.963 + 0.028
demonstrates the effectiveness of our approach.
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Figure 8.5: Comparison between CEINMS ankle moment estimates obtained
from Synth. EMGs (green lines) and experimentally measured
torques (orange lines) for the subject So3 reported as function
of the P-DF cycle percentage. Full lines represents the mean mo-
ments obtained averaging 9 P-DF cycles while the shaded areas
represent the corresponding standard deviation intervals.
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Figure 8.6: Comparison between CEINMS ankle moment estimates obtained
from Synth. EMGs (green lines) and from experimental EMGs
(blue lines) for the subject So3 reported as function of the P-DF
cycle percentage. Full lines represents the mean moments ob-
tained averaging 9 P-DF cycles while the shaded areas represent
the corresponding standard deviation intervals.
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8.5 CONCLUSIONS AND REMARKS

The main aim of the work presented in this chapter was to face
the problem of simplifying the experimental setup of the multilevel
framework to enable its use in robotic-aided self-rehabilitation con-
texts. In particular, this work focused on assessing the feasibility of
predicting EMG signals for simple cyclic movements — like ankle P-
DF —, thus removing the need of instrumenting the patient with EMG
electrodes and probes during every rehabilitation session.

To assess the reliability of the developed subject and task specific
EMG model in predicting EMG signals, six subjects have been re-
cruited to perform ankle P-DF movements assisted by a rehabilitation
devices at six different speeds.

The obtained results have been quite promising, leading to the con-
clusion that using model-predicted EMG signals causes a negligible
accuracy drop in the CEINMS joint torque estimates. However, the
results raised the attention to the need of accurately measure EMG
signals during the clinical sessions required to create the model and
to periodically tune it.

A possible limitation of the study, that should be overcome in the
future works, is the inclusion of only healthy subjects. Therefore, the
effectiveness of this approach with real patients is still to be assessed.

Moreover, another future work would be integrating the developed
EMG modeling approach within the multilevel framework presented
in this dissertation in order to provide feedbacks to the user, to the
device, and to the therapists, thus effectively enhancing the symbiotic
cooperation during the treatment.
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The overarching goal of the work conducted during my PhD and pre-
sented in this thesis was to define and develop a multilevel frame-
work capable to measure, model, promote, and enhance the sym-
biotic cooperation between a human and a robotic device. Such a
framework, indeed, attempts to provide to the community a system-
atic approach, together with a set of software tools integrated and
interconnected by a structured and modular infrastructure, to give to
the device, to the user, and to the external observers — i.e. the “de-
signers” of the shared activities to be performed — the consciousness
about themselves and the others and the quantitative information re-
quired to adapt their behavior to achieve a more symbiotic and nat-
ural cooperation. Moreover, the developed tools could be either used
as standalone instruments to face specific research challenges like,
for example, the estimation of human kinematics and dynamics state,
or the modeling of the dynamic interaction between two elements.
The proposed multilevel framework was than specialized to be effec-
tively applied to the context of the Biomot European project, aiming
at pushing forward the current frontiers of robotic gait rehabilitation
by achieving a symbiotic cooperation between the human and the
device.

9.1 SUMMARY

The work presented in this thesis had two main aims.

The first aim was to define the theoretical structure of the
multilevel framework by adequately defining the levels and their
sub-levels in order to give to the system a modular tree structure
where each component could be seen by the others as a black-box
which takes several inputs to provide a set of outputs.

The second aim was to implement the proposed framework by
interfacing the already available software and hardware components
and developing the missing ones. To guide the development process,
the second high-level aim was further divided into several sub-goals,
each one tackling the needs and the challenges of a specific level of
the proposed framework.

The proposed solution to achieve the first aim of the thesis has been
presented in Chapter 1, together with an overview of the targeted re-
search scenario: the development of a new generation of smart robotic
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devices able to understand and adapt to the user needs and capabili-
ties, thus achieving a symbiotic interaction.

The structure defined for the multilevel framework is composed by
three levels: the measure level, the model level, and the extract/synthesize
level. While the first two levels have been further divided according to
their focus — i.e. human, robotic device, and interface — for the third
one the intended addressee of the information has been considered
as discriminant —i.e. the human (being the device user or the external
observer), or the device.

Within the measure level, both for the human and for the device,
kinematics and dynamics are the objective of the estimation, whereas
for the interaction the goal is to measure the forces exchanged at the
interface during the contacts.

The model level, which is the core block of the whole infrastructure,
comprises all the models, tools, and algorithms needed to provide ac-
curate estimations or prediction of quantities that are either unmea-
sured or immeasurable. Mechanical and control models have been
distinguished as different but interconnected levels of the device sub-
level, and the same has been done for the human level, separating
kinematic and dynamic models. At the interface sub-level, instead,
two sub-levels have been defined: the former describing the physical
effects of the contact —i.e. the forces exchanged at the interface — and
the latter regarding the cooperation aspects of the interaction — i.e.
the strategy to be followed by the device to adapt to user needs and
capabilities.

Finally, within the extract/synthesize level, the human addressee
sub-level has been further divided according to the aim of the
feedback: providing online insights about the state of the system and
hints on how to improve the cooperation symbiosis, or generating
offline reports to give quantitative information to external observers.

Having fully defined a comprehensive and robust theoretical struc-
ture for the proposed multilevel framework, and before proceeding
with the implementation of the framework, a fundamental prelimi-
nary step needed to be performed: the selection of the common tools
to use. Two different tools were marked as necessary to realize an
efficient and reusable implementation of the framework: a simulator
for the model level and an infrastructure to connect all the compo-
nents. Their selection process, together with their main features, was
presented in Chapter 2.

OpenSim, a well known and largely adopted open-source biome-
chanical simulator, has been selected to be the common platform for
the model level. The main motivations behind this choice have been
its reliability, accuracy, and efficiency in performing complex kine-
matics and dynamics simulations of humans and their interaction
with the environment. Moreover, the accessibility to the source code
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of its libraries and the collaborative nature of the project — it can
count on a large community composed by hundreds of users and
contributors sharing their work, expertise, ideas, and best practices
through a very active forum — contributed to make the difference in
the selection process.

ROS, a well known robotic middleware, has been instead selected to
be the “glue” of the multilevel framework. Indeed, each level and
sub-level required to be connected with the others to compose an
integrated and modular network, where information and data are
exchanged using standardized and reliable protocols and interfaces.
Largely adopted and supported by its community of users, ROS has
been chosen as the best approach to implement the framework in-
frastructure thanks to its reliability in handling the communications
between different hardware and software components.

Upon completing the selection of the common software platforms,
the focus was shifted to the practical development of the framework
by tackling the specific challenges of each defined level.

Chapter 3 faced the problem of measuring the kinematics and
the dynamics of the real system, composed by the human, the
device, and their interaction. Without presumptions of completeness,
which goes beyond the scope of the chapter, the current state-of-art
approaches and technologies have been presented, highlighting the
challenges that still need to be fully faced at every sub-level. More-
over, particular attentions were reserved to the emerging wearable
technologies that could finally free from the spacial constraints of the
motion analysis laboratory.

The subsequent three chapters described into the details the work
done within the model level to develop and interface the tools, the al-
gorithms, and the approaches required to obtain accurate and reliable
estimates about the state of the whole system.

Chapter 4 described the efforts spent at the device model sub-level.
Mainly three goals were pursued: validating OpenSim as mechanical
multi-body systems simulator, assessing its performance in simulat-
ing control systems, and implementing a real rehabilitation exoskele-
ton model, including its motor controllers. The first goal was achieved
by implementing a multi-body benchmark in OpenSim and compar-
ing the obtained results with both the analytic solution of each prob-
lem and the numerical simulation results provided by commercial
dedicated multi-body simulators. The second goal was tackled by im-
plementing firstly a double loop (position and speed) PID controller
to drive an ideal motor connected to a simple pendulum mechanism,
and secondly a complex two-stage controller to handle the swing-up
and the stabilization around the unstable position of a Furuta pen-
dulum. The latter was validated against the measurement obtained
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from the real system. Finally, a commercially available wearable ex-
oskeleton for gait rehabilitation was modeled in OpenSim to prove
the feasibility of simulating such complex robotic devices.

In Chapter 5 the human modeling challenges were faced. A de-

tailed description of the work conducted toward the direction of esti-
mating human kinematics from the measurements provided by wear-
able IMU systems was provided.
The developed model-based orientation—driven inverse kinematics
tool, implemented as a plugin for OpenSim, allowed to obtain promis-
ing results when used to estimate joint angles of both robotic devices
— used as simplified test benches — and humans. The second part
of the chapter, instead, focused on the subsequent phase of the hu-
man modeling: the estimation of the dynamics, in terms of muscle
forces, joint moments, and muscle and joint stiffness. The state-of-art
CEINMS modeling toolbox was described, with particular reference
to the algorithms it incorporates to provide both online and offline
estimates.

The last chapter of the model level, Chapter 6, described how
two main challenges arising from the interaction between a human
and a robotic device have been faced. The first challenge concerned
the physical aspects of the interaction: the forces exchanged at the
interface resulting from the physical contact between two surfaces.
Two test cases have been developed to assess OpenSim capabilities
in solving contact problems: a bouncing sphere problem and the
overground walking of a small humanoid robot. While the former
was used to compare the different modeling options, the latter
focused on the prediction of the ground reaction forces emerging
in humanoid gait. In this case, the estimates have been validated
against experimental measures obtained through standard force
platforms, leading to promising results. Moreover, in this context, an
optimization routine was developed to automatically tune contact
model parameters from experimentally collected measures. The
second aim of the chapter was to develop cooperation strategies
capable of adjusting the dynamic behavior of the device according
to the current estimated user needs and capabilities, and to the
objectives of the task to be performed. Two adaptation strategies
were developed to promote the symbiosis between the device and
the user: the so called assistance as needed and the engagement keeping
strategy.

Chapter 7 changed the perspective from which to look at the
framework, describing how it has been specialized to tackle the
specific needs of robotic rehabilitation in the context of the Biomot
European project. The main research questions of the project were
presented along with the solutions adopted to close the informative
loops, providing feedbacks capable of promoting and enhancing the
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cooperation between a new compliant exoskeleton prototype and its
wearer. Feedback contents were selected with the aim of informing
the users and the therapists about the dynamic mechanisms underly-
ing the movements of the user, the assistance provided by the device,
and the achievement of a predetermined task goal.

Finally, Chapter 8 presented a complementary work conducted to-
ward the direction of combining the benefits of the multilevel frame-
work with the specific usability needs of the robotic-driven patient
self-rehabilitation context. Indeed, in such context, the experimental
setup of the system should be fully handled by the patient itself, there-
fore the complexity must be minimized. The work presented there
went into the direction of modeling EMG signals for simple rehabili-
tation movements (i.e., ankle plantar-dorsiflexion) to enable the use of
the framework described in the previous chapters without requiring
to measure EMG signals.

9.2 OPEN CHALLENGES AND FUTURE WORKS

The work presented in this thesis regarded the proposal of a new
framework in the wide, and partially unexplored, research horizon of
the human-machine symbiotic cooperation. From the developed tools
and methodologies and the results obtained from their application,
new challenges and research questions arise and may work as hints
for future investigations.

Within the measure level, a big open challenge relates to the
measurement of the forces exchanged at the physical interface
between the human and the device. For humanoids and industrial
manipulators the current state of the art is represented by pressure-
sensitive skin, which, despite being still at a prototype stage, allows
to measure the normal component of the force applied to the surface
with a good accuracy. However, extension to 3D forces is not available
yet, thus requires further research. For exoskeletons, or wearable
robots in general, an effective solution is still missing, causing the
impossibility to assess the forces exchanged by the connection cuffs
and the human limbs. To face this challenge, I started to develop a
new concept of interaction sensors by combining standard pressure
sensors and a custom designed 3D printed plastic case. The case
was based on a planar spring, to compensate the shear forces, and
a 3-point pushing element to guarantee a stable measurement of
normal forces. An early stage prototype has been already developed
and printed (Fig. 9.1) and the electronics development is currently
ongoing. The availability of such sensors, once characterized and
validated, would allow to measure the normal component of the
interaction forces exerted between the device connection cuffs and
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Figure 9.1: Early-stage prototype of the force sensor under development
to measure interaction forces between user limbs and wearable
robotic devices connection cuffs. (a) 3D CAD model sectioned on
central plane. (b) Real 3D printed sensor prototype.

the human limbs. For the time being, however, it was impossible
to present an early assessment of the effectiveness of such sensors,
therefore their presentation was excluded from this thesis and their
characterization and validation demanded to the next-future works.

In the human model level are concentrated most of the open
challenges of the thesis, therefore it is the level in which most of the
future research efforts should be focused.

For what concerns the developed model-based orientation-driven
inverse kinematics algorithm, two different aspects need to be
further investigated: the calibration process and the online execution.
The former needs to be investigated in order to find a valuable
approach to adjust the virtual orientation sensors on the model,
thus minimizing the tracking errors due to the mismatch. The latter,
briefly investigated only in an early stage of the project for a single
orientation sensor, should be further improved to allow the online
use of the tool to estimate human kinematics during motion.
Moreover, the accuracy and the reliability of the approach should be
evaluated more extensively, involving a larger number of subjects,
both healthy and affected by motion impairments, and movements.
Toward this direction, a collaboration with Prof. David Lloyd and his
research group at the Griffith University (Gold Coast, Australia) have
been started during the latest months of my PhD and will be carried
on in the next future.

A more general consideration that needs to be raised regards the
anatomical models used in the thesis to estimate both the kinematics
and the dynamics. Those models were based on a generic model
retrieved from human specimen and then linearly scaled to match
the anthropometric characteristics of each subject. Thus, bone shapes,
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muscle-tendon unit attachments, moment arms, and joint axes were
not properly subject—specific, but personalized to each subject. While
such approach is commonly used in biomechanics, it does not take
into account the specific anatomy of the individual. Consequently,
the obtained kinematic and dynamic estimates may be more accurate
when using a fully subject-specific anatomical model [74]. While
the creation of subject-specific models is currently a time-expensive
and costly procedure, population-based approaches that combine
statistical shape methods with medical imaging databases have
the potential to rapidly create subject-specific models [63]. Future
research should strive to include subject-specific anatomic models, as
they will likely improve the accuracy of model predictions.

In the work conducted to specialize the developed multilevel frame-
work for the robotic rehabilitation within the Biomot context, only
healthy users have been involved in the performed assessments. De-
spite the developed methodologies are general and no assumptions
have been made about human healthy behavior, unconsidered as-
pects or limitations could potentially arise from users pathological
conditions and motion impairments. For example, the visual feed-
back provided may need to be simplified to prevent distractions of
the patients from the task execution, or the EMG normalization meth-
ods may need to be adjusted to comply with patients reduced muscle
functionality and locomotion impairments. Therefore, since the final
addressees of the developed approach are the patients, further ex-
tensive evaluations should be carried on to gather insights on the
benefits that such a framework brings.

9.3 CONCLUSIONS

This thesis focused on the development of a multilevel framework to
promote and enhance the symbiotic cooperation between a human
and a robotic device during the execution of a shared task.
The framework was successfully applied to the robotic rehabilitation
context within the Biomot European project; despite its performances
were assessed only with healthy subjects, enthusiastic feedbacks were
received from the involved clinical experts. The developed tools and
methodologies addressed the lacks of each specific level of the frame-
work; however, for time being, not all of them have already been in-
tegrated in the framework. The benefits of combining state-of-the-art
technologies and approaches in a single framework to provide quan-
titative insights and real time feedbacks about the cooperative system
behavior emerged clearly from the preliminary assessment conducted
in the robot-aided gait rehabilitation context.

To conclude, the modular and generic multilevel framework de-
veloped in this thesis has the potential to push forward the current
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state of the art in the applications where a symbiotic cooperation
between robotic devices and humans is required. Indeed, it would
effectively support the development of a new generation of robotic
devices capable to perform challenging cooperative tasks in highly
unpredictable environments while complying with the current needs,
intentions, and capabilities of the human.
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