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SOMMARIO 

 

La giunzione neuromuscolare (neuromuscular junction, NMJ) è una sinapsi ‘tripartita’, composta 

da un terminale assonico di un motoneurone (motor axon terminal, MAT), una fibra muscolare 

postsinaptica, e da cellule di Schwann perisinaptiche (perisynaptic Schwann cells, PSC). La 

funzionalità della NMJ è essenziale per l’esecuzione dei movimenti corporei. Tuttavia la sua 

anatomia la rende particolarmente esposta ad una vasta gamma di stimoli patologici, quali 

neurotossine animali e batteriche, sostanze tossiche, traumi meccanici e malattie autoimmuni. 

Nella sindrome di Miller Fisher (Miller Fisher Syndrome, MFS), auto-anticorpi riconoscono specifici 

gangliosidi (>90% GQ1b) presenti nel MAT e attivano la cascata del complemento alla sua 

superficie, causandone la degenerazione. Questo danno è reversibile, in quanto il MAT è in grado 

di rigenerare completamente e di ristabilire la trasmissione sinaptica. 

Le PSC sono tra i principali effettori della rigenerazione della NMJ. Ad oggi, tuttavia, l’attuale 

comprensione dei ruoli di queste cellule in questa neuropatia autoimmune è principalmente 

fenomenologica, e ulteriori studi molecolari.  

È stato riportato che il MAT in degenerazione rilascia segnali di allarme (alarmine) capaci di 

attivare il fenotipo di pro-rigenerazione delle PSC. Dunque si può dedurre che il MAT gioca un 

ruolo attivo nel processo della propria degenerazione. Inoltre è probabile che molti altri segnali 

siano generati da parte di tutti e tre i componenti della NMJ, che generano così un network 

complesso di comunicazione intercellulare, il quale è stato solo parzialmente compreso. 

 

Nel progetto di dottorato qui presentato è stato sviluppato un nuovo modello in vivo di MFS, allo 

scopo di chiarire gli eventi molecolari e cellulari che avvengono nelle PSC in seguito a danno del 

MAT osservato nella MFS. Ciò è stato permesso tramite l’utilizzo di FS3, un anticorpo monoclonale 

che riconosce gangliosidi associati alla MFS, e siero umano (normal human serum, NHS), utilizzato 

come fonte di proteine del complemento. La amministrazione subcutanea nel muscolo LAL, o 

intramuscolare nel muscolo soleo, della combinazione di questi due elementi induce la 

degenerazione del MAT, e i suoi frammenti vengono fagocitati e degradati dalle PSC. Entro pochi 

giorni dall’iniezione la rigenerazione del MAT è completa sia a livello morfologico che funzionale, 

come evidenziato da analisi di immunofluorescenza ed elettrofisiologiche. Gli effetti osservati sono 

strettamente dipendenti dall’anticorpo e dal sistema del complemento, in quanto non viene 

osservata neurodegenerazione in assenza di FS3 o quando il NHS viene inattivato al calore. 



 

 

Allo scopo di identificare le alarmine neuronali responsabili dell’attivazione delle PSC e le 

conseguenti risposte molecolari di quest’ultime, è stato parallelamente sviluppato un modello in 

vitro di MFS, che consiste nell’esposizioneì della combinazione di FS3 e NHS (FS3+NHS) a colture 

primarie di neuroni cerebellari o di motoneuroni da midollo spinale. Ciò causa un’entrata 

massiccia e incontrollata di calcio (Ca2+) a livello dei neuriti, associata alla formazione di 

protuberanze, o bulges, a livello dei neuriti stessi. Questi bulges sono siti di accumulo di 

mitocondri gonfi e disfunzionali, e di produzione di perossido di idrogeno (H2O2). Il perossido di 

idrogeno è un segnale di allarme per le cellule di Schwann (Schwann cells, SC). Infatti in co-colture 

di neuroni e SC, il H2O2 derivante dai neuroni attaccati da FS3+NHS induce l’attivazione nelle SC del 

pathway di ERK1/2, conosciuto per il suo importante ruolo di induzione del fenotipo pro-

rigenerazione delle SC. 

Inoltre, tramite il modello in vitro di MFS, è stata identificata una seconda alarmina coinvolta 

nell’attivazione delle SC, l’adenosina trifosfato (ATP). 

Infatti, neuroni primari esposti al complesso FS3+NHS rilasciano nel mezzo extracellulare ATP, che 

a sua volta induce oscillazioni intracellulari di Ca2+ nelle SC. Queste oscillazioni sono abolite in 

presenza di apirasi, un enzima che degrada l’ATP, nel mezzo di incubazione. 

In aggiunta, esperimenti con un sensore FRET per l’AMP ciclico (cAMP) hanno mostrato che i livelli 

di SC aumentano in co-colture di neuroni e SC in seguito al danno neuronale esercitato da 

FS3+NHS. All’aumento di cAMP intracellulare osservata ne consegue un’aumentata fosforilazione 

(ovvero attivazione) del fattore di trascrizione CREB (cAMP response element-binding protein), 

anch’essa ATP-dipendente. 

 

In conclusione, il lavoro svolto in questo progetto di dottorato ha portato allo sviluppo di nuovo 

modelli in vivo e in vitro di MFS. Questi sono stati utilizzati per lo studio della comunicazione 

molecolare tra il MAT e le PSC. Il perossido di idrogeno e l’ATP sono stati identificati come 

importanti alarmine neuronali, capaci di attivare il fenotipo pro-rigenerazione delle SC. 

Crediamo che questi risultati contribuiscano a gettare luce sugli eventi molecolari e cellulari che 

avvengono alla NMJ nella MFS, e che queste conoscenze possano venire estese anche ad altre 

patologie che affliggono il MAT. 

  



 

SUMMARY 

 

The neuromuscular junction (NMJ) is a ‘tripartite’ synapse, composed of the presynaptic motor 

axon terminal (MAT), the muscle fiber and perisynaptic Schwann cells (PSCs). NMJ functionality is 

essential for the execution of body movements and it is anatomically exposed, becoming an easy 

target of bacterial and animal neurotoxins, toxic chemicals, mechanical trauma, and autoimmune 

diseases. 

In the Miller Fisher Syndrome (MFS) autoantibodies against specific gangliosides (>90% GQ1b) 

bind to MAT and in turn activate the complement system cascade at its surface, leading to nerve 

degeneration. Such damage is reversible, as the motor neuron is able to fully regenerate and 

restore neurotransmission.  

PSCs are main supporters of NMJ regeneration: to date, however, the current understanding of 

PSCs role in this autoimmune neuropathy is mostly phenomenological, and molecular studies are 

needed. It was recently reported that the degenerating MAT release alarm signals (alarmins) able 

to activate the pro-regenerating phenotype of PSCs. Therefore, MAT can be considered an active 

player of its own regeneration. In addition, many other signals are thought to be generated by all 

the three main components of the NMJ, thus generating a complex inter-cellular communication 

network, which has been only partially identified. 

In order to better elucidate the molecular and cellular events driving PSCs response to MAT 

damage in MFS, we recently developed a novel in vivo MFS model. The combination of FS3, a 

monoclonal antibody against gangliosides related to MFS, and normal human serum (NHS) as a 

source of complement, administered subcutaneously in LAL muscles and intramuscularly in soleus 

muscle in mice, causes the degeneration of MAT. Soon after MAT destruction, neuronal debris are 

engulfed and digested by PSCs. Within few days after injection MAT regrowth is morphologically 

and functionally complete, as assessed by immunofluorescence analysis and electrophysiological 

recordings. The effect is antibody- and complement-dependent, as no MAT degeneration takes 

place in the absence of FS3, nor when NHS is heat-inactivated. 

To identify the neuronal alarmins responsible for PSCs activation and the signaling pathways 

engaged, we have parallely set up an in vitro MFS model consisting of administration of FS3 plus 

NHS to primary cerebellar neurons and spinal cord motor neurons, which causes a complement-

dependent massive Ca2+ overload in neurite, together with the formation of neurite enlargements, 



 

named bulges. Bulges are sites of accumulation of swollen and dysfunctional mitochondria, and of 

localized hydrogen peroxide (H2O2) production. Hydrogen peroxide is an alarm signal for SCs. 

Indeed, in FS3 plus NHS attacked neurons-SCs co-cultures, neuron-derived H2O2 induces activation 

of the ERK1/2 pathway in SCs, a known crucial player of the switch toward a pro-regenerative 

phenotype of SCs. 

In addition, we identified adenosine triphosphate (ATP) as an additional alarmin involved in SCs 

activation. Indeed, primary neurons exposed to FS3 plus NHS release ATP in the extracellular 

medium, which in turn evokes intracellular calcium spikes within SCs in co-cultures with neurons. 

These spikes were significantly abolished in the presence of the ATP-inactivating enzyme apyrase 

in the incubation medium. 

Furthermore, experiments with a FRET-based cyclic AMP (cAMP) sensor show that, upon FS3 plus 

NHS addition in neurons-SCs co-cultures, cAMP levels rise in SCs, and this event eventually results 

in an ATP-dependent increased phosphorylation the transcription factor CREB (cAMP response 

element-binding protein). 

In conclusion, the work performed during this PhD project has led to the development of novel in 

vitro and in vivo models of MFS, in order to study the molecular communication between MAT and 

PSCs. Hydrogen peroxide and ATP were found to be important neuronal alarmins, able to activate 

pro-regenerative pathways within SCs. 

We believe these results throw light on the molecular and cellular events taking place in MFS, and 

may well be extended to other MAT affecting pathologies. 
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1. INTRODUCTION 

 

1.1. The Neuromuscular junction: structure and physiology 
 

The neuromuscular junction (NMJ) is the specialized anatomical structure of the peripheral 

nervous system (PNS) which allows, triggers, and regulates muscle contraction. It is therefore a 

master manager of body movements: it represents an essential link between decision makings 

carried out at the level of the central nervous system (CNS) and order executions fulfilled by 

skeletal muscles. This highly specialized synapse consists of three main components: the motor 

axon terminal (MAT), the skeletal muscle fibre (MF), and perisynaptic Schwann cells (PSCs) (peri-, 

from Ancient Greek περί, stands for surrounding or around), also termed terminal Schwann cells 

(TSCs).  

MATs are the ultimate output of motor neurons, whose cell bodies lie in the spinal cord. 

MATs primary physiological function is the conversion of the electrical signal travelling along the 

axon into a chemical one directed to MF. This goal is achieved by active packaging of small 

vesicles, the synaptic vesicles, inside the MAT, in close proximity to the plasma membrane facing 

the MF, termed the presynaptic membrane. The MF counterpart of the presynaptic terminal is 

named postsynaptic membrane. Acetylcholine (Ach), a small molecule neurotransmitter, is 

stocked inside synaptic vesicles. Once the action potential (the electrical signal) coming from the 

axon reaches the MAT, it triggers a rapid sequence of events leading to the transient rise of 

intracellular calcium concentration ( [Ca2+]i ), which in turn induces the fusion of synaptic vesicles 

with the presynaptic membrane, and the release of their content into the space separating the 

presynaptic membrane to the postsynaptic one, named synaptic cleft. Ach molecules can now 

freely reach the postsynaptic membrane, highly enriched in nicotinic acetylcholine receptors 

(AchRs) which, upon Ach binding, initiate the intracellular transduction pathway which eventually 

leads to muscle contraction.  

A multi-cellular carpet of PSCs covers the space close to MAT-MF contact. Schwann cells (SCs) are 

the principal glia cells of the PNS: myelinating SCs wrap motor neuron axons and participate in the 

conduction of nervous impulses along nerves, and non-myelinating SCs, involved in maintenance 

of smaller axons. PSCs belong to non-myelinating SCs and represent a specialized subtype of the 
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NMJ: there are typically 3-5 PSCs/NMJ in mammalians, depending to the NMJ size (1). Their 

function(s) in physiological and pathological conditions will be discussed in the next chapters. 

 

1.2 Perisynaptic Schwann cells: key regulators of NMJ formation and 
activity 
 

PSCs have been considered merely passive players in NMJ functions for a long time: on the 

contrary, beside the role of maintaining a proper environment for MAT and electrically sealing the 

synaptic cleft, PSCs fulfil a number of crucial tasks in physiological as well as pathological 

conditions. 

Firstly, they participate in NMJ formation: during embryonic development SCs precursors, which 

originate from neural crest cells (2), co-migrate with the developing motor axons toward the 

muscle, and are hence present at the earliest nerve-muscle contact, suggesting an involvement in 

neuromuscular synapse formation (3). Further evidence comes from observations from murine 

models in which Neuregulin-1 / erbB signalling was disrupted. This pathway is essential for the 

survival of the entire SC lineage (including PSCs), and its disruption causes the lack of SCs. These 

studies led to the conclusion that SCs are dispensable for the initial nerve-muscle contacts, but are 

essential for subsequent growth and maintenance of the developing synapses. Indeed in absence 

of SCs NMJs are initially established but fail to be maintained, with extensive motor neuron death 

(2). This observation has been further confirmed by experiments at the developing NMJ in 

tadpoles, in which SCs processes always precedes AchRs deposition and synaptic growth, thus 

appearing to guide nerve terminals growth (4).  

The privileged position of PSCs at the adult NMJ allows them to actively participate also to the 

regulation of synaptic activity. Indeed, they express several transmembrane receptors for 

neurotransmitters such as Ach, adenosine, and adenosine triphosphate (ATP). Pioneer studies 

have demonstrated that high frequency stimulation of the motor nerve causes a rapid elevation of 

[Ca2+]i in PSCs in amphibian NMJs. This was dependent on Ach and ATP released by MAT during 

nerve activity (5). The consequent G-protein activation of PSCs leads to production of molecules 

that modulate synaptic output, providing an important feedback regulation of the synapse in 

response to MAT activity.  
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Furthermore, the ability of PSCs to sense and modulate synaptic transmission observed in the frog 

NMJ have been convincingly replicated also at mammalian NMJ (6), indicating that synapse-glia 

intercellular communications are a fundamental, evolutionarily conserved feature of the NMJ. 

 

 

1.3 Schwann cells functions in neuro-degeneration and regeneration: 
the classical cut and crush approach 
 

A number of high debilitating neurodegenerative diseases affects the PNS such as amyotrophic 

lateral sclerosis, myasthenia gravis and Guillain-Barré syndromes. Some of them are incurable, 

or treatments are only partially effective. There is therefore an urgent need of novel 

knowledges in this field, to unravel the molecular mechanisms underlying degeneration and 

regeneration of peripheral neurons, and how the cross-talk between peripheral neurons and 

other cells (muscle cells, SCs, immune cells) contribute to such process. 

The traditional experimental approach for studies on nerve degeneration and regeneration 

consists in the induction of a mechanical trauma either by transection or by crushing of the 

nerve (cut and crush method). Upon such insult the segment of the motor axon distally to the 

injury degenerates in a process called Wallerian Degeneration. First described by Augustus 

Waller in 1850 (7), this complex array of events usually begins within 24-36 hours from the 

lesion, when failure of synaptic transmission and muscle denervation occur. Alterations of 

axonal membrane permeability cause an increase in [Ca2+]i and the consequent activation of 

Ca2+-dependent proteases, which lead to disintegration of axonal cytoskeleton and organelles, 

together with axolemma swelling and accumulation of swelled mitochondria (8).  

A complex response to axonal injury rapidly begins: myelinating SCs de-differentiate to a 

progenitor-like state, becoming “reactive”, and start proliferating (9). They undergo a radical 

change in gene expression, down-regulate structural proteins (such as the protein zero P0, the 

myelin basic protein MBP and the myelin associated glycoprotein), and up-regulate cell-

adhesion molecules and growth factors (10). Interestingly, they acquire phagocytic-like 

activities, and start clearing up axonal debris. They also recruit macrophages and other immune 

cells by releasing cytokines and chemokines, thus improving the clearing rate favouring 

regeneration (11). Importantly, SCs also guarantee structural support to the regenerating motor 

axon: during their proliferation phase, SCs begin to form a line of cells called Bands of Bungner, 
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along which axons regenerate in close association toward the proper direction, i.e. the NMJ 

(12).  

 

 

1.4 PSCs roles in NMJ pathological conditions 
 

PSCs plasticity in pathological conditions affecting the NMJ is really remarkable. As NMJ lies 

outside the blood-nerve barrier (BNB), it is anatomically exposed (13) and an easy target of 

many bacterial and animal neurotoxins, toxic chemicals, mechanical trauma, and autoimmune 

diseases. It is therefore an urgent evolutionary requirement for the body to rapidly restore NMJ 

functionality upon motor nerve injury. Noteworthy, differently from central neurons, peripheral 

neurons have the intrinsic ability to repair after nerve injury (14). Upon MAT injury PSCs 

undergo to an array of responses very similar to myelinating SCs during Wallerian degeneration, 

de-differentiating and re-entering into the cell cycle. They acquire phagocytic activity and 

contribute to the removal of debris coming from degenerating MAT. 

A boost in the research on PSCs biology came from the work of Son and Thompson in 1995. 

Upon full denervation of rat soleus muscle by nerve crush, the authors observed that PSCs 

extend processes (also called sprouts) which form a network interconnecting denervated NMJs. 

Moreover, sprouts extend towards the cut ends of the severed axons, and are in turn employed 

as guide/substrate for axon regrowth toward the NMJ (15). It was demonstrated for the first 

time that PSCs are crucial for MAT regeneration, guiding reinnervating axons toward the original 

NMJs. Interestingly, paralysis by botulinum neurotoxins, which preserve MAT structural 

integrity, also causes PSCs sprouting from the NMJ, together with MAT sprouting associated 

with PSCs processes (16). In line with this, PSCs can sense neurotransmission and respond to 

denervation and/or presynaptic blockade by changing their gene expression (17). 

In summary, in absence of appropriate signals from the MAT PSCs, similarly to myelinating SCs 

during Wallerian degeneration, undergo a complex array of transcriptional, biochemical and 

morphological changes functional to neuroregeneration.  
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1.5 α-Latrotoxin: an innovative tool to study NMJ degeneration and 
regeneration 
 

Much of our knowledge on the processes of neuro-degeneration and regeneration comes from 

in vivo studies based on the cut and crush of the nerve. However, this approach introduces 

some drawbacks, the most important being the induction of Wallerian. Indeed, Wallerian 

degeneration sets in motion a complex battery of events involving, besides SCs, many different 

cell types, mainly macrophages and other immune cells, with a pronounced inflammatory 

response all along the degenerating nerve segment distal to the cut or crush site. This implies 

that: i) the cut and crush model only partially overlaps with those neurological disorders 

affecting predominantly the NMJ, such as amyotrophic lateral sclerosis, Miller Fisher syndrome 

and other Guillain Barré syndrome subtypes; ii) it cannot be reproduced by simplified in vitro 

models; iii) the role of PSCs in the restoration of NMJs cannot be discerned from that of 

myelinating SCs and of inflammatory cells. 

Taking in account these considerations, we have recently developed an innovative experimental 

approach, alternative to the surgical cut and crush model, based on the use two animal 

neurotoxins acting at the NMJ (18). 

In particular, α-Latrotoxin (α-LTX), a pore-forming toxin from the venom of black widow spiders 

(genus Latrodectus), represents a reliable tool for a better understanding of PSCs role in MAT 

regeneration (18). Its effect is indeed very specific for the MAT and highly reproducible. 

In the venom of black widow spider α-LTX is a monomer. Once bound to its receptors at the 

presynaptic membrane it inserts in the lipid bilayer and tetramerizes, forming a 10 Å diameter 

channel across the membrane, which permits a massive influx of water and ions, mainly Ca2+, 

inside the MAT (19). This uncontrolled [Ca2+]i rise triggers a massive neuroexocytosis followed by 

progressive degeneration of the MAT due to activation of Ca2+-dependent proteases, mainly 

calpains, which carry out cytoskeletal and organelle degradation (18,20).  

Electrophysiological recordings of murine muscle-nerve preparations intoxicated with α-LTX  show 

a rapid increase in the frequency of spontaneous miniature postsynaptic potentials (MEPPs), due 

to the massive neuroexocytosis, followed by the complete inhibition of evoked action potentials 

(EPPs) induced by MAT destruction. Importantly, the resulting skeletal muscle paralysis is 

reversible: MAT regeneration and NMJ re-innervation are completely restored in mice in 4 to 8 

days (18,20). 
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Electron microscopy studies show that in the earliest stages of intoxication MATs become 

markedly swollen and depleted of synaptic vesicles. Mitochondria appear also swollen and 

rounded (20).  

The abovementioned morphological and electrophysiological effects of α-LTX action at murine 

NMJs were also observed in murine models of Miller Fisher syndrome, an autoimmune disease 

targeting the NMJ (21), suggesting that the molecular mechanisms underlying α-LTX-dependent 

MAT destruction, as well as PSCs pro-regenerative response(s) leading to MAT reconstruction, may 

be shared by other NMJ-affecting diseases.  

In addition, α-LTX can be used in simplified in vitro models. Indeed, intoxication of primary 

cultured neurons with α-LTX largely recapitulates α-LTX effects at NMJ, i.e. large calcium influx, 

formation of swellings along neurites, called bulges, hallmarks of massive neuroexocytosis, 

calpains activation and cytoskeletal degradation (22,23).  

These in vitro models are advantageous for their vulnerability and simplicity. In addition, primary 

neurons/SCs co-cultures can be set up to mimic the intimate relationships between MAT and PSCs.  

Summarizing, α-LTX represents an innovative tool to induce an acute, confined and reversible MAT 

degeneration without inflammation, to monitor the subsequent regeneration and define PSCs 

contribution to such process.  

 

 

1.6 MAT as active player of its own regeneration: the concept of 
alarmins 
 

By applying the ‘molecular model’ of neuro-degeneration and regeneration, i.e. in vivo 

intramuscular acute administration of α-LTX in mice, our laboratory has recently uncovered 

some of the intercellular events leading to neuroregeneration after MAT damage.  

Upon MAT α-LTX dependent destruction, PSCs start to display pro-regenerative activities. They 

engulf nerve debris, eventually clearing the NMJ from pieces of destroyed MAT, and sprout 

processes, along which axon stump can regrow toward the denervated NMJ (18). 

Degenerating neurons have an active role in their own regeneration by activating neighbouring 

SCs. This can be achieved by an active release of molecules in the extracellular environment 

which alert PSCs, hence termed alarmins (18,24). 
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Damage-associated molecular patterns (DAMPs) are alarm molecules often released from cells 

in a number of patho-physiological conditions associated to cell death and injury. Normally 

present inside the cell in different subcellular compartments, once liberated in the extracellular 

milieu, DAMPs are recognized by the innate immune system by pattern recognition receptors 

(PRRs) and activate an inflammatory response, acting as chemotactic, pro-phagocytic and 

immunostimulatory factors (25).  

Upon nerve damage SCs acquire phagocytic properties and play important roles in the 

modulation of immune response, producing and secreting a wide variety of proinflammatory 

cytokines, such as IL-1β, IL-6, TNF-α, TGF-β. These chemoattractants induce the invasion of 

immune cells to the site of injury, further contributing to the removal of axon debris (26). 

SCs also express Toll-like Receptors (TLRs), a subfamily of PRRs, mostly found in immune cells 

and, in addition, they act as antigen-presenting cells by expression of MHC class II at their 

surface (27,28).  

These data strongly suggest that SCs can be considered, under certain conditions, 

immunocompetent cells and can sense and be activated by DAMPs.  

Experiments performed in our laboratory found indeed a number of alarmins released by the 

damaged MAT which were able to induce activation of pro-regenerative signaling pathways in 

PSCs. Among these, hydrogen peroxide (H2O2), mitochondrial DNA  and adenosine triphosphate 

(ATP) appear to be major PSCs activators (18,24).  

H2O2 is themost stable among reactive oxygen species (ROS). For long time believed solely 

harmful molecules, accumulating evidence show that ROS, particularly H2O2, can also be 

important second messengers in many intra- and inter-cellular pathways. H2O2 main source are 

cellular respiration and oxidative phosphorylation within mitochondria, where the short-lived 

superoxide (O2
•-) is converted to H2O2 by superoxide dismutases. The relative stability and 

uncharged nature of H2O2 permits its diffusion across long distances and membranes, possibly 

acting as a paracrine signal (29,30). Indeed, MAT exposed to α-LTX produce mitochondrial H2O2, 

which in turn activates ERK1/2 signalling pathway in neighbouring PSCs. This pathway was 

previously shown to play a crucial role in orchestrating nerve repair (31), stimulating SCs pro-

regenerative features. Accordingly, administration of catalase (a H2O2-inactivating enzyme), as 

well as a ERK1/2 pathway inhibitor, significantly impaired MAT regeneration and muscle 

reinnervation after α-LTX dependent neurodegeneration (18).  
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In addition to H2O2, also mitochondrial DNA (partly via exosome release), cytochrome C, and 

ATP have been observed to be released by α-LTX intoxicated neurons and act as alarmins able 

to activate Schwann cells (18,24). These results throw light on the wide range of intracellular 

mechanisms that contributes to transmit the damage signal to the surrounding Schwann cells, 

preparing them for the complex processes that support neuroregeneration. ATP in particular is 

an extracellular messenger in many tissues and cell types. Beside its known role of energy 

source, it acts on different purinergic receptors expressed in the plasma membrane of nearly all 

cell types and tissues. Purinergic engagement can activate different pathways in the cell, 

including [Ca2+]i modulation and cyclic adenosine monophosphate (cAMP) synthesis (32,33).  

ATP is well-known to play a role in the chemical communication between MAT and PSCs during 

physiological conditions of the NMJ (5,34). Pharmacological blockade of the purinergic signalling 

impaired axonal regeneration in a model of rat nerve transection (35), suggesting a role in 

intercellular communication also during pathological conditions. 

Accordingly, in vitro experiments with α-LTX provided evidence of an early release by 

degenerating neurons of ATP. It contributes to the activation of a series of intracellular 

pathways within SCs that are crucial for nerve regeneration: Ca2+, cAMP, CREB (cAMP response 

element-binding protein), and ERK1/2 (24).  

In summary, the toxin model allowed us to shed light on the molecular cross-talk between 

degenerating MAT and nearby cells, pointing out the role of H2O2 and ATP as prominent neuron-

derived alarmins, leading to the activation of pro-regenerative signalling pathways in SCs.  

 

 

1.7 α-Latrotoxin and Miller Fisher syndrome: do common pathogenic 
steps trigger common regenerative mechanisms? 
 
We decided to extend the study on the cross-talk among degenerating MAT and PSCs to other 

NMJ-affecting disorders, such as the Miller Fisher syndrome (MFS).  

MFS is a subtype of Guillain-Barré syndrome (GBS). In MFS the main toxic stimulus is represented 

by a pore-forming complex assembled at the presynaptic membrane, whose pathological effects 

at MAT are Ca2+-dependent, morphologically and electrophysiologically akin to those of α-LTX (see 

next chapters) (21). PSCs phagocytosis with removal of nerve debris occurs also in animal models 

of MFS (36).  
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We therefore speculated that during MFS the inter-cellular communication between MAT and 

PSCs may be closely similar to that occurring at α-LTX-poisoned NMJs. 

An introduction to GBS and MFS, as well as details about pathogenesis and consequences for 

NMJ, are presented below.  

 

 

1.8 Guillain-Barré syndrome: historical background and clinical traits 
 

Firstly described in 1916, the Guillain-Barré syndrome (GBS) takes its name from two military 

doctors, Georges Guillain and Jean-Alexandre Barrè, who made the first clinical observations on 

two soldiers of the French Army who had become partially paralysed during the First World War. 

One, in particular, had fallen over when he put his pack on and had been unable to get up. In the 

original paper, which they published together with the physiologist Andrè Strohl, they asserted:  

“These two patients, without a detectable cause, developed a clinical syndrome 

characterized by disorders of all muscles of the upper and lower limbs, worse distally, the loss of 

tendon reflexes, with preservation of cutaneous reflexes, paresthesia with mild disorders of 

objective sensation, pain when pressure was applied to muscle masses, small modifications of the 

electric reactions of nerves and muscles and the distinct finding in the cerebrospinal fluid of a 

marked hyperalbuminosis without cytological reaction” (37). 

The cause of the condition was left unanswered, assumed to be some unknown kind of infection 

or poisoning. Both soldiers quickly recovered.  

In 1956 Charles Miller Fisher, a Canadian neurologist, described three patients with acute external 

ophthalmoplegia (eye movements paralysis), ataxia (lack of voluntary coordination of muscle 

movements) and areflexia (absent tendon reflexes). Two patients had no weakness; the other had 

a facial palsy and possible weakness. None of the three patients had limbs paralysis. All three 

recovered spontaneously (38).  

Because some patients with GBS had ophthalmoplegia and other clinical similarities, Miller Fisher 

concluded that these patients had suffered a disorder akin to GBS.  

Nowadays the three clinical symptoms observed by Miller Fisher, i.e. ophthalmoplegia, ataxia and 

areflexia, are the clinical triad marking the MFS. MFS is now considered one GBS subtype.  

Indeed, GBS encompasses a group of autoimmune neuropathies, commonly characterized by 

acute flaccid areflexic (or hyporeflexic) paralysis with a progressive course, usually starting from 
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distal limbs and ascending to proximal limbs. Maximal severity is usually reached within 4 weeks 

from onset (39). 

The different GBS subtypes display a different distribution of weakness in the limbs or in cranial-

nerve innervated muscles, and can have highly different prognosis, ranging from spontaneous 

complete recovery (as for MFS) to a poorer outcome (40). Indeed, even though GBS is considered 

a reversible disease, with recovery in most cases, there is a high variation in the rate and extent of 

rehabilitation: the disease progression is followed by a plateau ranging from 2 days to 6 months 

before patients start to recover (39). Two thirds of patients are unable to walk independently 

when maximum weakness is reached. Approximately 20% of cases lead to total paralysis and thus 

to respiratory insufficiency, requiring prolonged intensive therapy with mechanical ventilation 

(41). Major complications including pneumonia, sepsis, pulmonary embolism, develop in 60% of 

intubated patients. Twenty percent of patients remain severely disabled, and 5% die (40). 

Additionally, GBS presents common occurrence with a yearly incidence rate between 1.1 and 1.8 

per 100.000 (42), and thus represents the most frequent cause worldwide of flaccid paralysis. 

Together, these observations make GBS a high social and economic burden, and one of the serious 

emergencies in neurology. 

 

 

1.9 Pathogenesis of GBS: auto-antibodies against gangliosides are 
produced through molecular mimicry 
 

GBS is a post-infectious disorder. Antecedent infections, mainly of the upper respiratory and 

gastrointestinal tracts, precede up to 70% of cases reported (42). The most frequently identified 

infectious agent associated with subsequent development of GBS is the Gram-negative 

Campylobacter jejuni, with 30% of GBS cases attributed to C.jejuni infection (0.65 per 1000 cases 

of infection), followed by cytomegalovirus (up to 10%). Other infectious agents with a well-defined 

relationship to GBS are: Epstein Barr virus, Varicella Zoster virus, and Mycoplasma pneumonia 

(40).  

The apparent lack of correlation between precedent infections in GBS and the neuromuscular 

paralysis that characterize the disease can be dismissed considering the most important 

serological hallmark of GBS: pathological auto-antibodies in patients’ sera. Indeed, microbial 

infections engage a host immune response (both innate and adaptive), with production of 
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antibodies, mainly immunoglobulin M (IgM) and G (IgG) isotypes, specific for different microbial 

epitopes. In GBS the adaptive immune system generates also a pool of transient serum IgG 

antibodies against microbial glycan epitopes, which still contribute to fight the infection but, on 

the other hand, cross-react with plasma membrane components of peripheral nerves (43). This 

pathogenic mechanism is termed molecular mimicry. The most known and studied molecular 

mimicry in the field of GBS is the one between C.jejuni lipo-oligosaccharide (LOS) and lipo-

polysaccharide (LPS) epitopes and gangliosides of the outer leaflet of host neuronal membranes. 

Undoubted demonstration of the occurrence of a molecular mimicry in different subtypes of GBS, 

ranging from acute motor axonal neuropathy (AMAN) to MFS, was given by pioneering studies of 

Dr. Yuki and colleagues: animal models inoculated with C.jejuni LOS or heat-inactivated C.jejuni 

lysates produced IgG antibodies against gangliosides and/or developed GBS-like symptoms (44-

46). 

Gangliosides are glycosphingolipids composed of a hydrophobic ceramide tail attached to one or 

more sugars (hexoses), and containing one or more sialic acid (N-acetylneuraminic acid) linked to 

an oligosaccharide core (40). Their nomenclature was proposed by Svennerholm in 1994 (47): it 

designates a ganglioside as GXyz, where G indicates ‘ganglioside’, X represents the number of sialic 

acid molecules (M, one; D, two; T, three; Q, four), y indicates the length of the neutral sugar 

sequence (defined as 5 minus the number of residues), and z indicates the isomeric form, 

reflecting the position(s) and linkage(s) of the sialic acid residues (a, b or c) (Fig. 1). 

 

 

Figure 1: The ganglioside biosynthesis pathway. Key gangliosides occurring on neurons in adult mammalian brain 

(adapted from Proia, 2004, Nature Genetics). 
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Gangliosides are ubiquitously expressed throughout the body and are highly enriched in neurons. 

They represent 10–20% of the total lipid content of the outer neuronal membrane layer, ten times 

more than in non-neuronal cells. Membrane gangliosides accumulate mainly in small dynamic 

membrane compartments called lipid rafts, characterized by high concentrations of 

glycosphingolipids and cholesterol (48).  

Ganglioside biosynthesis takes place in the Golgi complex in parallel pathways, with the 

addition of neutral sugar and sialic acid moieties to a glucosylceramide molecule, catalysed by 

specific glycosyltransferases. Once synthesized, gangliosides are transferred to the outer leaflet of 

the neuronal membranes, through the trans-Golgi network, where they fulfill many different 

physiological tasks (mainly modulation of ion channels and transporters, Ca2+ homeostasis 

regulation, neuronal development, synaptic transmission modulation), but also can be a target of 

anti-ganglioside auto-antibodies during GBS (48).  

 

 

1.10 Anti-ganglioside antibodies action at the NMJ: role of the 
complement system 
 
Patients affected by different GBS subtypes display different anti-ganglioside antibodies (AGAbs) 

in their sera, that at least in part explain the clinical differences amongst GBS cases. Remarkably, 

MFS is very strongly associated (>90% of cases) with complement binding IgG antibodies against 

GQ1b (anti-GQ1b antibodies) (49). Up to 50% of MFS sera also display reactivity toward other 

gangliosides such as GT1a, GD3, GD1b and occasionally GT1b (50). Moreover, different nervous 

system structures can express different ganglioside patterns and levels. For example, extraocular 

cranial nerves display high levels of immunoreactive MFS-related gangliosides. Noteworthy, NMJs 

at extraocular muscles (EOMs), the six muscles that control the movements of the eyes, were 

shown to be enriched of GQ1b, GT1a and GD1b gangliosides (51).  

This data might explain the ophthalmoplegia characterizing MFS and, together with other 

considerations, makes NMJ a possible target of MFS: i) NMJ lies outside the blood-nerve barrier 

(BNB) (13), making it easily accessible to circulating antibodies; ii) the MAT is gangliosides-rich; iii) 

GBS/MFS symptoms overlap with those of known NMJ disorders, such as botulism and myasthenia 

gravis (48). Moreover, anti-GQ1b IgGs and IgMs have been demonstrated to bind to the NMJ, and 

anti-GQ1b-positive MFS sera induces in ex vivo mouse diaphragm preparations a transient but 
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dramatic rise of spontaneous release from MATs (termed miniature endplate potentials, MEPPs), 

together with asynchronous muscle twitching, followed by permanent paralysis (21,48). These 

effects resemble those triggered by the presynaptic neurotoxin α-latrotoxin (α-LTX). Anti-GQ1b 

antibodies actions at NMJ are hence termed the ‘α-latrotoxin-like effect’ (21).  

It is conceivable that the electrophysiological similarities between anti-GQ1b antibodies and α-LTX 

imply a shared molecular mechanism of action at the NMJ. α-LTX is a pore-forming neurotoxin 

whose toxicity is Ca2+ mediated. Also anti-GQ1b antibodies action at NMJ implies the formation of 

a pore-forming complex upon activation of the complement system and alteration of Ca2+ 

homeostasis, and this can be extended to all GBS-related AGAbs. Indeed, the most common 

AGAbs detected in patients’ sera are IgG1, IgG3 or IgM isotypes, i.e. those isotypes with 

complement-activating features.  

The complement system is a complex group of 35-40 soluble proteins playing crucial roles in 

innate and acquired host defense mechanisms against infection, such as cytolysis, phagocytosis, 

and inflammation (52). Proteins of the complement system are synthesized by the liver, and 

circulate in the blood as inactive precursors (pro-enzymes). The complement system can be 

activated by three different pathways, termed the classical, the lectin and the alternative 

pathways. All three pathways are activated in a sequential manner, with activation of one 

component leading to the activation of the next. The classical pathway is dependent on those 

antibodies (IgG1, IgG3, IgM) present in immune-complexes capable of activating the first 

component of the classical pathway, namely C1 complex, through recruitment of the C1q subunit. 

The activation of the lectin pathway is induced by binding of the mannose binding lectin to 

mannose residues on the cellular surface of pathogens. The alternative pathway is triggered when 

the C3b protein directly binds to the pathogen surface. All the three pathways converge in the 

activation of C3, the central protein of the complement system. Upon activation the C3 molecule 

can be covalently attached to target surfaces, where it leads to either opsonization, or cytolysis by 

means of the lytic pathway of the complement system. The lytic pathway begins with the 

production of C5 convertase which cleaves C5 to C5b and C5a. The membrane inserted C5b in turn 

initiates the self-assembly of the final effector of the complement lytic pathway, the membrane 

attack complex (MAC) (also called terminal complement complex, TCC) (52). 

MAC is a supramolecular organization of molecules assembled at the target membrane. It contains 

one copy each of C5b, C6, C7 and C8, together with 12-18 copies of C9, the latters inserted into 

the target membrane, forming a cylinder-shaped pore-forming complex. The inner diameter of the 
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MAC pore is 110 Å, the outer diameter 220 Å, and the height of the MAC “cylinder” is 90 Å (53,54) 

(Fig. 2). 

 

 

Figure 2: The classical pathway of the complement system. Plasma membrane antigen-bound antibodies (IgM or IgG) 

are able to trigger activation of the classical complement system through recruitment of C1q complex. The following 

cascade of proteolytic events activates other complement proteins and eventually the deposition of the membrane 

attack complex (MAC) at the target membrane occurs. In the images below, two views of a three-dimensional atomic 

model for the mature MAC, viewed from different directions, are depicted (adapted from Aleshin et al, 2012, Journal 

of Biological Chemistry).  

 

Nowadays, overwhelming evidence supports the key role of complement in GBS. In particular, 

anti-GQ1b antibodies action at MAT has been deeply studied by Prof. Willison’s laboratory in ex 

vivo murine nerve-muscle preparations, employing MFS sera, as well as anti-GQ1b antibodies in 

combination with a source of complement system proteins, i.e. normal human serum (NHS). The 

use of NHS is necessary because endogenous mouse complement fails to generate pathological 

lesions in AGAbs models, possibly due to protective mechanisms at NMJ and/or lack of activity of 

one of the murine complement component (55). 
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Immunohistochemical analysis of paralyzed muscles revealed deposits of complement products, 

including MAC, at NMJ, as well as anti-GQ1b antibodies (21,56). MAC deposition at NMJ led to 

MAT breakdown, which appears swollen and electron-lucent, with presence of abnormalities 

clearly indicating advanced MAT degeneration: cytoskeletal degradation and disorganization, 

synaptic vesicles depletion, damaged mitochondria and reduced contact with the postsynaptic MF 

(36). The causal relationship between complement cascade activation and MAT damage exerted 

by anti-GQ1b antibodies was conclusively established by employment of C6 or C7- depleted sera 

(56) or complement inhibitors (57), which prevented MAT degeneration. 

The abovementioned alterations at MAT are akin to those observed with α-LTX, which are Ca2+ 

dependent. Also MAC effects are dependent on Ca2+- and Ca2+-activated proteases, as calpain 

inhibitors were protective for MAT (58). In other words, in MFS murine models MAC is the α-LTX-

like protein complex which localizes at the MAT and induces a Ca2+ dependent insult, 

morphologically and electrophysiologically similar to that caused by α-LTX (Fig. 3).  

Even though some AGAbs can also act in a complement-independent way at the NMJ (59), this has 

not been observed for anti-GQ1b antibodies, and MAC formation is considered the major toxic 

stimulus at NMJ. 

In summary, AGAbs plus complement represents the intrinsic pathogenic stimulus responsible for 

MAT degeneration, with anti-GQ1b antibodies being the trigger and the complement system the 

effector of this dual system. 
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Figure 3: The effects of α-LTX and MAC at the NMJ. Schematic diagram depicting the events occurring at MAT 

exposed to α-LTX or anti-ganglioside antibodies in presence of complement. Upon deposition of the pore the large 

entry of Ca
2+

 inside the terminal induce a massive synaptic vesicles exocytosis and calcium/calpain mediated intra-

terminal injury, including cytoskeletal degradation and mitochondrial injury (Willison, 2007, Journal of 

Neurochemistry).  

 

 

  



17 
 

2. AIM 

 

The general purpose of this PhD project is to provide a better understanding of the complex inter- 

and intracellular signalling that govern MAT degeneration and regeneration. 

To achieve this aim, I have set-up novel in vivo and in vitro models of Miller Fisher syndrome, 

based on the combination of FS3, a monoclonal anti-GQ1b/GT1a antibody (kindly provided by 

Prof. Nobuhiro Yuki, Department of Neurology, Mishima Hospital, Niigata, Japan) with normal 

human serum (NHS) as a source of the complement proteins. The FS3+NHS complex represents 

the “pathogen” responsible for the reversible acute injury of MATs of this peripheral autoimmune 

neuropathy.  

Once established, this model has been employed to identify alarm molecules (alarmins) released 

after MAT injury and involved in PSCs activation, as well as to study the intracellular pathways 

involved in PSCs pro-regenerative phenotypic shift. 
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3. MATERIALS & METHODS  

 

 

3.1 Reagents 
 

The mouse monoclonal antibody (FS3, isotype IgG2b-κ) was previously characterized (46). For 

immunization mice were inoculated with a heat-killed C. jejuni lysate, the infectious agent 

frequently associated with MFS. FS3 recognizes gangliosides GQ1b and GT1a, the latter being 

identical to GQ1b except for one sialic acid residue less. Normal human serum (NHS) from a pool 

of human healthy males AB plasma (Sigma-Aldrich #H4522, lot #SLBG2952V) was employed as a 

source of complement. Unless otherwise stated, all reagents were purchased from Sigma. 

 

 

3.2 Primary cell cultures and co-cultures 
 

Rat primary cultures of cerebellar granular neurons (CGNs), spinal cord motor neurons (SCMNs), 

primary Schwann cells (SCs) and their relative co-cultures were prepared as described previously 

(18,60,61). 

 

 

3.3 Mice 

 

Experiments were performed in Swiss-Webster adult CD1 mice or C57BL/6 mice expressing 

cytosolic GFP under the plp promoter via the collaboration of Thomas Misgeld (Munchen, 

Germany). All procedures were performed in accordance with the Council Directive n° 2010/63/EU 

of the European Parliament and approved by the Italian Ministry of Health.  

 

 

 

 



20 
 

 

3.4 NMJ immunohistochemistry 
 

For binding studies whole Levator auris longus (LAL) and EOMs were incubated ex-vivo with FS3 10 

µg/mL at 10°C for 15-30 min, then washed, fixed and processed for immunofluorescence (see 

below). In the studies of FS3 internalization at MAT, some muscles were additionally incubated at 

37°C for 30 minutes. 

For MAC deposition analysis FS3 (10 µg) was diluted with NHS 50% (v/v) in 100 μL of physiological 

saline (0.9% wt/v NaCl in distilled water), and injected s.c. in proximity of LAL muscle of 

anesthetized CD1 of around 20–25 g; muscles were collected after 2 h. In the case of EOMs, an ex 

vivo incubation was performed (FS3 10 µg/mL + NHS 50% v/v, 1 h at 37°C). Heat inactivation of 

NHS (56°C for 30 min, HI-NHS), or treatment with NHS 50% alone were employed as negative 

controls.  

To define the kinetics of nerve terminal degeneration and regeneration in mice, FS3 (10 µg) was 

diluted with NHS 50% (v/v) in 100 µl physiological solution, and subcutaneously injected close to 

LAL muscles, or intramuscularly in the mice hind limb for different time points.  

Muscles were then fixed in 4% (wt/vol) PFA in PBS for 15 min at room temperature, quenched in 

PBS + 50 mM NH4Cl, and then permeabilized and saturated in blocking solution: 15% (v/v) goat 

serum, 2% (wt/v) BSA, 0.25% gelatin, 0.20% (wt/v) glycine, and 0.5% Triton X-100 in PBS 2 h at 

room temperature. Incubation with the following primary antibodies was carried out for 48-72 h in 

blocking solution: anti-neurofilaments 200 (mouse monoclonal, anti-NF, 1:200, # N5389), anti-

VAchT (rabbit polyclonal, 1:1000, Synaptic Systems), anti-C5b-9 (rabbit polyclonal, 1:1000, Abcam, 

#ab55811). Muscles were then washed and incubated with secondary antibodies (Alexa-

conjugated, 1:200, Life Technologies). Nuclei were stained with Hoechst. NMJs were identified by 

Alexa-conjugated α-bungarotoxin (α-BTx, 1:500, Life Technologies, #B35451). Images were 

collected with a Leica SP5 confocal microscope equipped with a 63× HCX PL APO NA 1.4. 

 

 

3.5 Electrophysiological recordings 
 

Mice were sacrificed at scheduled times by anaesthetic overdose followed by cervical dislocation, 

soleus muscles dissected and subjected to electrophysiological measurements. Three mice were 
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used for each condition at each time point. Electrophysiological recordings were performed in 

oxygenated Krebs-Ringer solution on sham or FS3+NHS injected soleus muscles using intracellular 

glass microelectrodes (WPI, Germany) filled with one part of 3M KCl and two parts of 3M 

CH3COOK.  

Evoked neurotransmitter release was recorded in current-clamp mode, and resting membrane 

potential was adjusted with current injection to −70mV. Evoked junction potentials (EJPs) were 

elicited by supramaximal nerve stimulation at 0.5 Hz using a suction microelectrode connected to 

a S88 stimulator (Grass, USA). To prevent muscle contraction, samples were incubated for 10 min 

with 1 µM µ-Conotoxin GIIIB (Alomone, Israel). Signals were amplified with intracellular bridge 

mode amplifier (BA-01X, NPI, Germany), sampled using a digital interface (NI PCI-6221, National 

Instruments, USA) and recorded by means of electrophysiological software (WinEDR, Strathclyde 

University). EJPs measurements were carried out with Clampfit software (Molecular Devices, USA), 

statistical analysis with Prism (GraphPad Software, USA). 

 

 

3.6 Calcium imaging 
 

Primary neurons or their co-cultures with SCs were loaded for 10 min with the calcium indicator 

Fluo-4 AM (4 μM, Life Technologies, #F14201), washed and transferred to the stage of an inverted 

fluorescence microscope (Eclipse-Ti; Nikon Instruments), equipped with the perfect focus system 

(PFS; Nikon Instruments) and with high numerical aperture oil immersion objectives (60X). Calcium 

signals were recorded in control samples and in samples exposed to FS3 0.1 g/mL + NHS 0.5 % 

(v/v), or NHS, or FS3+HI-NHS,  with excitation of the fluorophore performed at 465-495 nm by 

means of an Hg arc lamp (100 W; Nikon). Emitted fluorescence was collected at 515-555 nm. 

Fluorescence (F) was measured in a selected region of interest (ROI) containing cell cytosol and 

corrected for background. Measurements were expressed as F/F0 fold increase (%), where F0 

represents the fluorescence level at t=0. Images were acquired every 20 sec. In some experiments 

apyrase (1.5 U/ml) was added 15 min before image acquisition and left throughout. 
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3.7 Immunofluorescence 
 

For binding experiments CGNs (6 DIV, days in culture) or SCMNs (4-5 DIV), plated onto 35-mm 

dishes or 24 well-plates, were exposed to FS3 0.1 g/mL at 16°C for 20 min in Krebs Ringer buffer 

for CGNs (KRH: Hepes 25 mM at pH 7.4, NaCl 124 mM, KCl 5 mM, MgSO4 1.25 mM, CaCl2 1.25 mM, 

KH2PO4 1.25 mM, glucose 8 mM), and in E4 medium for SCMNs (E4: 120 mM  NaCl, 3 mM  KCl, 2 

mM MgCl2, 2 mM CaCl2, 10 mM glucose, and 10 mM Hepes, pH 7.4). Cells then washed, and 

subjected to immunofluorescence (see below). 

For studies on MAC deposition and bulge characterization neurons were exposed to FS3 0.1 g/mL 

+ NHS 0.5 % (v/v) at 37°C for 20 min.  

Following treatments cells were washed, fixed for 10 min in 4% (wt/v) paraformaldehyde (PFA) in 

PBS and quenched (0.38% glycine, 50 mM NH4Cl in PBS) at room temperature. Cells were 

permeabilized and saturated in buffer A (20 mM PIPES, 137 mM NaCl, 2.7 mM KCl, pH 6.8) 

containing 5% (v/v) goat serum, 50 mM NH4Cl and 0.5% (wt/v) saponin for 45 min. Slices were 

incubated overnight in buffer A plus 5% goat serum and 0.1% (wt/v) saponin with the following 

primary antibodies: anti-C5b-9 (rabbit polyclonal, 1:5000, Abcam), VAMP2 (1:500, Rossetto et al., 

1996). 

For immunofluorescence in neurons-SCs co-cultures, samples were fixed and quenched as above, 

and permeabilized with 0.3% Triton X-100 in PBS for 5 min at room temperature (RT). After 

saturation with 3% (v/v) goat serum in PBS for 1 h, they were incubated with primary antibodies 

(anti-phospho-p44/42 MAPK (1:500, Cell Signaling, #9101); anti-phospho-CREB, 1:500, Cell 

Signaling, #9198S); anti-S100 (1:200, #S2532)) diluted in goat serum 3% (v/v) in PBS overnight at 

4°C. 

After washes, samples were incubated with the correspondent secondary antibodies (Alexa-

conjugated, 1:200; Life Technologies). Nuclei were stained with Hoechst. Coverslips were mounted 

in ProLong Diamond (Thermo Fisher) and examined by epifluorescence (Leica CTR6000) 

microscopy. 
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3.8 Mitochondrial imaging 
 

SCMNs or CGNs were loaded with tetramethylrhodamine methyl ester (TMRM, Life Technologies) 

10 nM for 10 min at 37°C, washed and equilibrated at room temperature for 10 min before 

FS3+NHS addition (FS3 0.1 g/mL + NHS 0.5 % (v/v) for 10 min). At the end of each experiment 10 

M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a known mitochondrial electron 

chain uncoupler, was added as positive control. For mitochondrial morphology studies cells were 

loaded with Mitotracker Red (Life Technologies) 25 nM for 10 min at 37°C and then washed prior 

to image acquisition. 

 

 

3.9 Hydrogen peroxide detection 
 

Hydrogen peroxide was measured in primary neurons exposed to FS3 0.1 g/mL + NHS 0.5 % (v/v) 

for 20 min using Mitochondria Peroxy Yellow 1 (MitoPY1) or Peroxyfluor 6 acetoxymethyl ester 

(PF6-AM), probes specific for mitochondrial and cytoplasmic H2O2 detection, respectively (29,62). 

Both probes were loaded at 5 μM for 30 min at 37 °C in E4 medium (SCMNs) or KRH (CGNs). 

 

 

3.10 Western blotting 
 

SCMNs+SCs co-cultures were exposed to FS3 0.1 g/mL + NHS 0.5 % (v/v). In some samples cells 

were preincubated with catalase (500 U/well, #C1345, 5’ preincubation) or apyrase (1.5 U/ml, 

#A7646, 15’ preincubation) before intoxication and left throughout.  

For internalization studies, SCMNs or CGNs were incubated with FS3 2 g/mL for different time 

periods. 

Following treatments samples were lysed in lysis buffer (4% SDS, 0.125 M Tris-HCl, protease 

inhibitors Cocktail-Roche-, #04 693 132 001, and phosphatase inhibitor cocktail, #P0044). Total 

lysates were loaded on Precast 4–12% SDS-polyacrylamide gels (Life Technologies) and transferred 

onto nitrocellulose paper in a refrigerated chamber. 

After saturation, membranes were incubated overnight with rabbit polyclonal antibodies (anti-

phospho-p44/42 MAPK (1:1000, Cell Signaling, #9101); anti-phospho-CREB, 1:1000, Cell Signaling, 
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#9198S)) followed by an anti-rabbit secondary antibody HRP-conjugated (Life Technologies, 

1:2000). Chemiluminescence was developed with the Luminata TM Crescendo (Millipore), and 

emission measured with ChemiDoc XRS (Bio-Rad). For densitometric quantification, the bands of 

interest were normalized to the housekeeping protein Hsp90 (mouse monoclonal, 1:1000, BD 

Transduction Laboratories, #610419). Band intensities were quantified on the original files with 

the software Quantity One (Bio-Rad). None of the bands reached saturation. 

 

3.11 ATP measurements 
 

ATP was quantified in the supernatants of primary neurons using the commercial ATP Lite One-

Step kit (Perkin-Elmer, #6016941), which relies on a luminescence-based ATP-dependent reaction. 

Cells were exposed for different time periods to FS3 (0.1 g/mL) in combination with NHS (0.5% 

v/v), as well as to appropriate control conditions. Ecto-ATPases and NHS-ATPases activities were 

quenched by the addition of 1 mM sodium orthovanadate in the incubation medium. For each 

well the ATP released was estimated as the ratio between ATP in the supernatant and total 

cellular ATP (cell lysis by Triton X-100 0.5% v/v), and expressed as percentage of the untreated 

control. Quick centrifugation of supernatants was performed to eliminate cell debris before 

measurements. Luminescence was measured with a luminometer (Infinite M200 PRO, Tecan).  

 

 

3.12 Lactate dehydrogenase activity assay 
 

CGNs plated on 24-well plates (250,000 cells/well) were exposed to saline, NHS, FS3 (0.1 g/mL) + 

NHS (0.5% v/v), or FS3 + HI-NHS for 30 min. Supernatants were collected and lactate 

dehydrogenase (LDH) activity was measured following manufacturer’s instructions (Sigma, #TOX7) 

and normalized by total cellular LDH activity from cell lysates. Each sample was expressed as 

percentage of the positive control (cell lysates by Triton X-100 0.5%). 
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3.13 Cyclic AMP detection 
 

Epac-SH187, a fourth generation of Epac-based FRET probe for cAMP detection was employed. This 

sensor consists of the cAMP-binding protein EPAC sandwiched between mTurquoise2, a very 

bright and bleaching resistant donor fluorescent protein, and a novel acceptor cassette consisting 

of a tandem of two Venus fluorophores (63). Briefly, SCs co-cultured with neurons were 

transfected with 1 μg of the probe with Lipofectamine 2000 (Life Technologies, #11668-027). 

Experiments were performed 24 hours after transfection. Cells were monitored using an inverted 

fluorescence microscope (Eclipse-Ti; Nikon Instruments) equipped with the perfect focus system 

(PFS; Nikon Instruments). Excitation of the fluorophore was performed by an Hg arc lamp (100 W; 

Nikon) using a 435-nm filter (10-nm bandwidth). YFP and CFP intensities were recorded with a 

cooled CCD camera (C9100-13; Hamamatsu) equipped with a 515-nm dichroic mirror at 530 nm 

(25-nm bandwidth) and 470 nm (20-nm bandwidth) respectively. Signals were digitized and FRET 

was expressed as the ratio between donor (CFP) and acceptor (YFP) signals (CFP/YFP). YFP and CFP 

intensities were corrected for background. Co-cultures were pre-incubated with 1 mM sodium 

orthovanadate as general ATPase inhibitor for 5 min, then, after 1 min recording, cells were 

exposed to FS3 (0.1 g/mL) + NHS (0.5% v/v), or NHS, or FS3 + HI-NHS. A final stimulation with 25 

μM forskolin was performed at the end of each experiment to maximally raise cAMP levels. 
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4. RESULTS 

 

4.1 Set-up of a novel in vivo model of MFS 
 

To date, most of the animal models of MFS based on anti-GQ1b antibodies plus complement were 

ex vivo muscle preparations, and were mainly employed to study the acute effects of anti-GQ1b 

antibodies plus complement, i.e. the early pathogenic steps of MAT degeneration, leaving the 

processes leading to MAT regeneration unexplored (21,36,56,58,64).  

More recently, Rupp and colleagues reported the first in vivo model of MFS, where MAT 

degeneration and regeneration kinetics were followed after topical application of a monoclonal 

anti-GQ1b IgG antibody plus NHS (65). Briefly, after midline excision of anesthetized and intubated 

mice, sternohyoid and sternomastoid muscles were exposed to anti-GQ1b antibody (120 μg per 

mouse) for 30 minutes and soon after to NHS (40% v/v, diluted in a total volume of 0.6 mL) for 

additional 30 minutes. Hence, skin suture in the ventral neck area was performed and mice were 

sacrificed after different days post-surgery, and NMJs of treated muscles processed for 

immunohistochemistry analysis. By this approach the totality of NMJs recovered completely in 5 

days post-injury (65). 

Although of great value, the work of Rupp and colleagues is mostly phenomenological, and the 

molecular players involved in MAT regeneration were not studied. In addition, although such 

surgical procedure allows to expose the muscles to a large quantity of antibody and NHS (see 

above), it displays a certain degree of invasiveness, that could negatively influence or mask the 

identification of those molecular signals and cellular pathways involved in cell-to-cell 

communication. 

Taking in account these considerations, the establishment of a novel model of MFS was crucial for 

a molecular study of the intercellular and intracellular signalling events underlying MAT 

degeneration and regeneration observed in MFS. We therefore set-up a murine model of MFS 

based on the combination of the complement-fixing (isotype IgG2b-κ) anti-GQ1b/GT1a 

monoclonal antibody FS3 (kindly provided by Prof. Nobuhiro Yuki, Department of Neurology, 

Mishima Hospital, Niigata, Japan), and NHS as a source of complement. This novel model provides 

the advantage of minimal surgical procedures (needle injection) and reduced volume of injection 

(see below), due to strong affinity of FS3 to neuronal membranes, with important reduction of 
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inflammatory response upon FS3 plus complement injection. Consequently, this model is suitable 

for molecular studies, as controllable and minimally invasive. 

 

 

4.1.1 Anti-GQ1b antibody binds to and is internalized by motor axon terminals.  

 

As a first step, we characterized the binding properties of FS3 at different murine muscles: the 

Levator Auris Longus (LAL) muscle and extra-ocular muscles (EOMs). LAL muscle belongs to mouse 

cranial muscles and, because of its flatness, is ideal for imaging studies (18,66). EOMs are the 

muscles firstly affected in MFS, the specific targets of anti-GQ1b autoantibodies, and highly 

enriched in GQ1b and GT1a gangliosides (49,51).  

We performed immunohistochemical analyzes in LAL and EOMs nerve-muscle preparations 

incubated ex vivo with FS3 at 10°C, in order to slow down endocytic processes, and we observed 

that FS3 avidly binds to NMJs, and co-localizes with the presynaptic vesicular acetylcholine 

transporter (VAchT) (Fig. 4A).  

We also performed ex vivo binding of FS3 at LAL and EOMs followed by incubation of the muscles 

at 37°C for 30 minutes. This procedure caused the loss of FS3 selective plasma membrane 

localization (Fig. 4B), indicating FS3 internalization inside the MAT. Orthogonal projections from 

confocal images confirmed that FS3 staining is indeed inside the terminal (Fig. 4C). These results 

are in line with recent works of Prof. Willison’s group, which demonstrate that AGAbs are 

endocytosed by MAT, and consequently removed from the blood circulation, which represents a 

protective mechanism which attenuates complement-mediated cytotoxicity (67,68). 

We analysed also in vitro FS3 internalization in cultured neurons: we incubated the antibody with 

spinal cord motor neurons (SCMNs) and cerebellar granular neurons (CGNs) for different time 

periods. Hence cells were lysed in non-denaturing conditions, protein lysates separated by 

electrophoresis, and FS3 content in each sample assessed with an anti-mouse-HRP. Western blot 

experiments indicate that FS3 progressively accumulates inside neurons (Fig. 4D), in line with in 

vivo results. 
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Figure 4: FS3 internalization in vivo and in vitro. (A) Muscle-nerve preparations of LAL muscles (left panels) and EOMs 

(right panels) were incubated with FS3 at 10°C and subjected to immuno-histochemical analysis. FS3 (red) binds to 

presynaptic nerve terminals that are stained by an anti-VAchT antibody (green). (B) FS3 is internalized upon 30 

minutes incubation at 37°C. (C) Orthogonal projection of confocal images showing FS3 staining inside motor axon 

terminals. Scale bars: 10 m. (D) Spinal cord motor neurons (SCMNs) or cerebellar granular neurons (CGNs) were 

exposed to FS3 for different time points and lysed in non-denaturing conditions. Western blot analysis shows FS3 

progressive accumulation inside neurons. One representative Western blot out of 3 experiments is shown. Hsp90 is 

used here as internal standard. 
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4.1.2 Anti-GQ1b antibody triggers complement activation at EOMs motor axon 
terminals  

 

EOMs are main targets of anti-GQ1b antibodies in MFS (49). Indeed, ophthalmoplegia belongs to 

the triad of symptoms hallmarking this disease (40). We therefore studied the effects of a 

combination of FS3 with a source of complement proteins (normal human serum, NHS) at MATs of 

ex vivo preparations of EOMs. FS3, when combined to NHS (FS3+NHS) for 1 h at 37°C, triggers the 

formation and deposition of the final effector of the complement system, the membrane attack 

complex (MAC), as detected by a specific antibody for C5b-9 complex (Fig. 5, upper panel). This 

leads to the disappearance of the staining of neurofilaments (NFs) at MAT, due to nerve terminal 

degeneration. 

MAT degeneration is FS3- and complement- dependent, as heat inactivation of complement 

proteins of the NHS (56°C for 30 min, HI-NHS) or incubation with NHS 50% alone prevents MAC 

deposition and neurodegeneration (Fig. 5, middle and lower panels). 
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Figure 5: FS3 binding to GQ1b/GT1a gangliosides triggers MAC deposition in the presence of complement and nerve 

terminal degeneration in EOMs. FS3+NHS leads to MAC deposition (green) on neuronal surface of ex-vivo treated 

EOMs (1 hour incubation). The presynaptic element is identified by NF staining (white), the postsynaptic one by 

fluorescent -BTx (red). MAC-triggered neurodegeneration is complement- and FS3- dependent, as no nerve terminal 

fragmentation is detectable in FS3+HI-NHS or NHS treated NMJs (middle and lower panels). Scale bars: 10 µm. 
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4.1.3 Anti-GQ1b antibody plus complement triggers a reversible 
neurodegeneration of motor axon terminals in vivo 

 

EOMs represent a useful tool to study anti-GQ1b antibodies- mediated damage at MAT. However, 

due to accessibility costraints they are not suitable for in vivo experiments (the skull, which tightly 

closes and protects the eye, prevents to perform local injections at EOMs). We therefore moved to 

other muscles to be able to follow entirely the kinetics of FS3+NHS- induced nerve terminal 

degeneration, as well as the subsequent nerve terminal regeneration.  

With these purposes, we administered FS3 (10 µg per mouse) plus NHS (50% v/v) subcutaneously 

in LAL muscles of living CD1 mice for different time periods, and looked at NMJ morphology by 

immune-histochemical analysis. Noteworthy each mouse received a single acute injection of 

antibody plus complement in a small volume (100 μL) of physiological saline, in the absence of 

surgery, with very limited invasiveness. By this approach, we observed MAC deposition at MATs 

within 2h after FS3+NHS administration (Fig. 6A), followed by a progressive degeneration of MATs, 

monitored by the disappearance of NFs and VAchT stainings over time (Fig. 6B, left panel). 

Maximum degeneration occurred after 24h treatments, with 61% NMJs lacking both NFs and 

VAchT stainings (144 NMJs analyzed, 3 independent experiments). Strikingly, 3 days post-injection 

MATs regrew completely, in line with the known reversibility of MFS. 

Similarly to EOMs, the neurotoxic effect on LAL muscles is FS3- and complement- dependent, as 

neurodegeneration does not take place upon incubation with HI-NHS or in the absence of FS3 (Fig. 

6B, right panel).  

To obtain a quantitative estimation of FS3+NHS- induced neurodegeneration, we performed 

electrophysiological recordings on soleus muscles after an intramuscular injection of FS3 (10 µg) 

plus NHS (50% v/v) (total volume 100 µL) in the hind limbs for different times. Briefly, tibial nerve - 

soleus muscle preparations were dissected, and evoked junction potentials (EJPs) at the 

postsynaptic membrane of muscle fibers were elicited by supramaximal nerve stimulation and 

recorded. Noteworthy, EJPs are strictly dependent on a functional MAT. We found that 

neurotransmission is compromised at 48 hours, and is progressively restored within 9 days (Fig. 

7A). This kinetics was further confirmed by immunohistochemistry, with a peak of MAT 

degeneration at 48h after injection (92% of degenerated NMJs, 137 NMJs analyzed, 3 independent 

experiments), and recovered morphology of the totality of NMJs within 9 days (Fig. 7B). 
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Figure 6: Anti-GQ1b plus complement triggers a reversible motor axon terminal degeneration in vivo at LAL NMJs. 

(A) FS3+NHS injected close to LAL muscle leads to MAC deposition (green) on neuronal surface. The postsynaptic 

element is stained by fluorescent -BTx (red), while the presynaptic elements is identified by NFs and MAT-bound FS3 

(white). (B) Kinetics of VAchT and NFs loss (green and white respectively) in LAL NMJs following injection of FS3+NHS, 

and subsequent recovery (left panels). Neurodegeneration depends on FS3 binding and on active complement, as no 

degeneration takes place upon local injection of saline, NHS or HI-NHS (right panels). Scale bars: 10 µm.  
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Figure 7: Anti-GQ1b plus complement triggers a reversible motor axon terminal degeneration in vivo at soleus 

NMJs. (A) Evoked junctional potentials (EJPs) were recorded in soleus muscles upon local injection of FS3+NHS, NHS or 

saline for the indicated time points. Bars represent the average EJP amplitude of 45 muscle fibres from 3 different 

mice/time point. Student’s unpaired t-test, two-sides, ***p<0.0001 versus control (vehicle). Error bars represent SEM, 

ns= not significant. (B) Kinetics of VAchT and NF loss (green and white respectively) in soleus NMJs following injection 

of FS3+NHS, and subsequent recovery. The postsynaptic element is stained by fluorescent -BTx (red). Scale bars: 10 

µm. 
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4.1.4 Complement resistance occurs at motor axon terminals upon MAC 
deposition 

 

The injection volume employed here, i.e. 100 µL, provides the minimal and sufficient quantities of 

anti-GQ1b antibody and complement proteins to elicit MAT degeneration. During the set-up of the 

model we tested a smaller injection volume, i.e. 15 µL, which provides the same amount of FS3 (10 

µg per mouse), but a different amount of NHS (50% v/v). This combination resulted in an extensive 

deposition of MAC at MATs of LAL muscle, as assessed by immunohistochemistry (Fig. 8A); 

however, surprisingly, neurodegeneration failed to occur, and all MATs appeared unharmed and 

healthy (Fig. 8B). Therefore, MAC deposited at MAT (directly proportional to the quantity of 

injected NHS) can elicit terminal degeneration only when it reaches a ‘toxic threshold’ (100 µL 

injection volume).  Noticeably, in both cases MAC is deposited at MATs: it is likely that 

complement resistance is induced also in the 100 µL condition, but are overcome by the more 

massive delivery of MAC at MATs.  

The putative mechanisms underlying the complement resistance behavior are commented in the 

Discussion section. 
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Figure 8: Nerve terminal degeneration by FS3+NHS depends on the amount of complement. (A) Injection of FS3 (10 

µg) + NHS 50% v/v (15 µL total volume) leads to MAC deposition (red) at MAT of LAL muscles, but not to nerve 

terminal degeneration. NMJs are recognizable by GFP-expressing Schwann cells (green) and FS3 staining (white). (B) 

No MAT degeneration takes place even after longer incubation (4 and 16 h). The postsynaptic element is stained by 

fluorescent -BTx (red). Scale bars: 10 µm.  
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4.1.5 Perisynaptic Schwann cells engulf debris of motor axon terminal destroyed 
by anti-GQ1b plus complement 

 

Once established the time course of neurodegeneration following the injection of FS3 (10 µg) plus 

NHS (50% v/v) in the 100 µL total volume, we examined the morphological responses of PSCs to 

MAT destruction. With this purpose, we employed transgenic mice (C57BL/6 strain) expressing 

cytoplasmic green fluorescent protein (GFP) specifically in SCs under the plp promoter (69,70). 

Local injection of FS3+NHS in LAL muscles of these mice results in MAT degeneration that 

resembles that observed in CD1 mice (not shown). As soon as MAT becomes fragmented, PSCs 

become strongly enriched in vacuoles, likely phagosomes, containing debris from the destroyed 

MAT (Fig. 9). This suggests that upon anti-GQ1b plus complement-triggered neurodegeneration, 

PSCs undergo to a series of intracellular responses aimed at clearing nerve debris, a crucial step for 

the subsequent neuroregeneration. 

 

 

 

 

 

Figure 9: Phagocytosis of MAT debris by PSCs. Upon FS3+NHS injection in LAL muscles, degenerated nerve terminals 

stained by NF (red) are engulfed by PSCs (green). Magnification of phagosomes is shown in lower panels. Scale bars: 

10 µm.  
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4.2 Set-up of a novel in vitro model of MFS 
 

FS3+NHS mixture recapitulates in the live mouse the reversible neurodegeneration characterizing 

MFS. Following MAT fragmentation, we also observed a clear phagocytic response of PSCs which 

engulf nerve debris. To gain insights into neuron-SCs communication underpinning nerve terminal 

degeneration and regeneration from a molecular point of view, we performed in vitro experiments 

also in neurons-SCs primary co-cultures.  

Therefore, we applied FS3+NHS also to primary neuronal cultures from the cerebellum or the 

spinal cord. Cerebellar granular neurons (CGNs) are an almost pure neuronal population (71), and 

spinal cord motor neurons (SCMNs) are the most similar to peripheral motor neurons, and are a 

mixed culture (72). 

In in vitro experiments a careful assessment of FS3 and NHS concentrations is an absolute 

requirement, as cultured neurons are completely exposed to the stimuli, while in living animals 

the MAT is the only part of the motor axon not protected by the BNB. A particular attention must 

be paid to the amounts of NHS employed, as it contains, beside complement proteins, many 

different constituents and also a lot of different IgGs. It is therefore possible that some of the IgGs 

contained in NHS will bind to one or more antigens on the neuronal plasma membrane, thus 

activating the complement system also in absence of FS3. Nevertheless, a reduction of NHS 

concentration can prevent this aspecific MAC induction. Indeed, only six IgGs bound together to 

the antigen (IgGs hexamers) are efficiently able to recruit and activate C1q, the initiator of the 

classical complement cascade (73). 

Here follows a summary of the results obtained with our novel in vitro model of MFS.  
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4.2.1 Anti-GQ1b antibody binds to primary neurons and activate complement 

 

A prerequisite step for the in vitro model based on the exposure of primary neurons to FS3+NHS is 

the expression of GQ1b (and/or GT1a) polysialogangliosides on neuronal surface. SCMNs are 

primarily affected by MFS, and CGNs express GQ1b gangliosides (74,75). 

Immunofluorescence revealed that, indeed, FS3 stains both CGNs and SCMNs (3-tubulin positive 

cells) (Fig. 10A). The binding is neuron-specific, as no staining was observed either in the non-

neuronal cells of the SCMNs preparation or in primary SCs from sciatic nerve (Fig. 10A, lower 

panel).  

Interestingly, FS3 staining is not uniform, as it appears enriched in discrete domains of the plasma 

membranes. Likely, this localization may be related to the distribution in patches of neuronal 

gangliosides, together with sphingolipids and cholesterol (76). These domains are, at least partly, 

synaptic active zones, as FS3 staining partially co-localizes with the vesicular protein VAMP2 

(vesicle associated membrane protein 2) (Fig. 10B). 

When combined with NHS (0.5 % v/v), FS3 (0.1 µg/mL) triggers MAC deposition on the surface of 

SCMNs (Fig. 10C, left panels) and CGNs (Fig. 10C, right panels) as assessed by immune-localization 

of the C5b-9 epitope on treated neurons.  

FS3 and MAC stainings strongly co-localize, particularly in correspondence of varicosities or bulges 

(Fig. 10C, arrowheads, panels at higher magnitude), whose formation occurs rapidly on neurites 

upon FS3+NHS addition to neurons (see chapter 4.2.2) 

No bulges nor MAC deposition occur upon FS3+HI-NHS or NHS alone exposure, meaning that the 

observed effects are anti-GQ1b antibody- and complement- dependent (Fig. 10C). 
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Figure 10: Anti-GQ1b binding and MAC deposition in primary neurons. (A) FS3 (red) binding to CGNs or SCMNs (3-

tubulin positive, green) after 20 minutes incubation at 16°C. FS3 punctuated staining is restricted to neuronal cells, as 

no signal is detectable in SCs (identified by S100 labeling, green, lower panels). Nuclei are stained by Hoechst (blue). 

Scale bars: 10 µm. (B) Confocal microscopy shows that FS3 (red) partially overlaps at neuronal bulges with the 

presynaptic protein VAMP2 (green). Scale bars: 2 µm. (C) FS3+NHS triggers MAC deposition and bulge formation in 

SCMNs (left panels) and CGNs (right panels) upon 20 minutes incubation at 37°C. MAC (green) co-localizes with FS3 

(red) at neuronal bulges (arrowheads). FS3+HI-NHS or NHS fail to trigger MAC deposition. Nuclei are stained by 

Hoechst. Scale bars: 10 µm. 
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4.2.2 MAC assembly mediates Ca2+ entry into neurons 

 

As MAC deposition creates pores in neuronal plasma membrane, changes in ions homeostasis are 

expected to occur. For first we looked at intracellular Ca2+ concentration ([Ca2+]i): we administered 

FS3+NHS to neurons loaded with the fluorescent Ca2+ indicator Fluo-4-AM, whose fluorescence 

intensity is directly proportional to Ca2+ concentration. In both SCMNs (Fig. 11, left panels) and 

CGNs (Fig. 11, right panels) the activation of the complement cascade elicited by FS3+NHS leads to 

a rapid and massive Ca2+ influx inside neurons, within 10 minutes in SCMNs and 15 minutes in 

CGNs from complex addition. No [Ca2+]i changes take place on neurons either upon FS3+HI-NHS 

exposure, or NHS alone or FS3 alone (Fig. 11A and 11B). [Ca2+]i rise is particularly relevant within 

bulges and neurites (Fig. 11A and 11B). Noteworthy, bulges are sites of maximal MAC deposition, 

as above reported (Fig.10C). 
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Figure 11: Anti-GQ1b plus complement induces Ca
2+

 influx in cultured neurons. (A) SCMNs (left panels) and CGNs 

(right panels) loaded with Fluo-4 AM were exposed to FS3+NHS, FS3+HI-NHS, NHS for 20 minutes, and intracellular 

[Ca
2+

] calcium changes monitored over time. Images are presented in pseudocolors (blue, low calcium; white, high 

calcium). Scale bars: 10 µm. (B) Quantification of selected ROI within neurites. In FS3+NHS samples ROI within bulges 

have been measured. N=3, Student’s unpaired t-test, two-sides, *p< 0.05, **p<0.01, 
#
p<0.001. 
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4.2.3 Neuronal plasma membrane integrity depends on complement amount  

 

The concentrations of FS3 and NHS employed in this in vitro model (0.1 µg/mL and 0.5 % v/v 

respectively), which are used throughout all the in vitro experiments, are the result of a careful 

analysis on the functional effects of FS3+NHS combination in neurons. 

FS3 concentration is sufficient to provide the binding to neuronal surface, as clearly shown by 

preliminary binding studies of FS3 (Fig. 10A). Concerning NHS, we studied the outcomes of its 

concentration by Ca2+ imaging experiments. Fluo-4 loaded neurons were incubated with a fixed 

amount of FS3 together with different concentrations of NHS. Representative traces are depicted 

in Figure 12.  

 

 

Figure 12: Neuronal plasma membrane integrity depends on NHS concentration. SCMNs loaded with Fluo-4 AM were 

exposed to FS3 (0.1 µg/mL) plus different NHS percentages for 20 minutes (complex added at t=2 minutes). 

Intracellular calcium levels were measured on selected regions of interest in neurites. Upon FS3+NHS 1% v/v addition 

(red trace), a massive calcium entry takes place in neurons, followed by a rapid decrease in Fluo-4 fluorescence: likely, 

this is due to the loss of the calcium indicator through a permeabilized plasma membrane. FS3+NHS 0.5 % v/v (blue 

trace) triggers a progressive calcium increase that reaches a plateu in around 15 minutes. No calcium changes take 

place upon incubation with NHS alone (green trace) or FS3+HI-NHS (black trace). One representative experiment out 

of 3 experiments is shown. 
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Upon FS3 plus NHS 0.5% v/v incubation (blue trace), a progressive rise in [Ca2+]i in SCMNs begins at 

about 7-8 minutes after addition, reaching in few minutes a plateau which is maintained 

throughout the experiment (20 minutes). NHS concentration reduction (FS3 plus NHS 0.2% v/v) 

has no effects on [Ca2+]i (not shown), meaning that the amount of complement proteins are not 

sufficient to induce a significant amount of MAC deposition on neuronal surface. Upon doubling of 

NHS concentration (FS3 plus NHS 1% v/v, red trace), the rise in [Ca2+]i is definitely much stronger 

and quicker. However, as soon as [Ca2+]i rapidly reached a peak, it rapidly falls, most likely due to 

the loss of the Fluo-4 due to  plasma membrane permeabilization.  

FS3 plus NHS 1% v/v can be therefore considered a lytic dose for primary neurons: plasma 

membrane integrity is not maintained and intracellular content indistinctly flows into the 

extracellular medium. On the other hand, FS3 plus NHS 0.5% v/v still represents a toxic stimulus, 

but at a sublytic dose: plasma membrane integrity is preserved, neurons are still alive and a series 

of intracellular responses to the insult are triggered, which are the object of the present study. 

In other words, there is an in vitro ‘effective window’ for FS3+NHS treatment: the concentration 

range of NHS sufficient to elicit a significant, but not lytic, MAC-dependent damage, is very tight. 

Taking in account these considerations, FS3 0.1 µg/mL and NHS 0.5% v/v have been adopted in all 

in vitro studies.  

Summarizing, NHS concentration (i.e. the quantity of complement proteins), rather than FS3 

concentration, is the crucial factor which determines the ultimate fate of FS3+NHS attacked 

neurons. These findings are in line to those observed in the in vivo model. 
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4.2.4 Anti-GQ1b antibody plus complement alters mitochondrial morphology and 
functionality 

 

Mitochondria are intracellular organelles playing a crucial role in Ca2+ handling and buffering. 

Indeed, mitochondria have been reported to migrate toward cellular sites where Ca2+ levels are 

increased, and the rise in mitochondrial Ca2+ concentration closely follows the increase of 

cytoplasmic [Ca2+]i (77,78). Moreover, mitochondrial dysfunctions have been previously observed 

in MATs exposed to anti-GQ1b antibodies plus complement (36). 

As FS3+NHS addition to primary neurons results in a dramatic and rapid [Ca2+]i increase, we 

speculated that mitochondrial functionality could be affected. To address this hypothesis, we 

exposed FS3+NHS to neurons loaded with the fluorescent dyes MitotrackerRED or to 

tetramethylrhodamine methyl ester (TMRM) in order to analyse, respectively, mitochondrial 

morphology and mitochondrial functionality. 

Upon FS3+NHS addition, mitochondria of SCMNs rapidly (within 10 minutes) lose their elongated 

shape, become rounded and accumulate within bulges (Fig. 13A, arrowheads, panels at higher 

magnitude), which are sites of Ca2+ overload (Fig. 11).  

Mitochondria within bulges are dysfunctional, as they lose rapidly (within 10 minutes) the ability 

to retain TMRM, indicating loss the mitochondrial membrane potential (Fig. 13B,C). Indeed, under 

physiological conditions, TMRM is retained within the mitochondrial matrix due to the negative 

membrane potential across the inner membrane of these organelles, but is lost as soon as the 

membrane potential collapses due to calcium overload elicited by FS3+NHS or to the uncoupling 

agent carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), employed as a positive 

control. No morphological nor functional changes took place upon treatment with FS3+HI-NHS or 

NHS alone (Fig. 13A,B,C). Similar results were obtained also in CGNs (Fig. 13B, lower panel). 

Overall, these experiments indicate that the anti-GQ1b antibody plus complement represents a 

defined pathological effector for cultured neurons, where it causes toxicity similar to that 

occurring in vivo, namely deposition of MAC at active zones, followed by Ca2+ and mitochondrial 

homeostasis alterations.  
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Figure 13: Anti-GQ1b plus complement alters mitochondrial morphology and functionality in cultured neurons. (A) 

SCMNs were loaded with MitotrackerRed and exposed to FS3+NHS for 10 minutes. Over time mitochondria become 

rounded and accumulate within bulges (arrowheads, lower panels at higher magnification). No changes are detectable 

when NHS is heat-inactivated. Scale bars: 10 µm. (B) SCMNs (upper panels) and CGNs (lower panels) loaded with 

TMRM were exposed for 10 (SCMNs) or 15 minutes (CGNs) to saline, FS3+NHS, FS3+HI-NHS or NHS. Mitochondria of 

FS3+NHS treated neurons progressively lose the dye, indicating an impairment of functionality. No TMRM loss is 

observed with FS3+HI-NHS or NHS. The complete loss of TMRM is achieved upon FCCP addition (positive control). 

Scale bars: 10 µm. Quantification performed in regions of interest containing mitochondria is shown in (C). N=3, 

Student’s unpaired t-test, two-sides, ***p<0.001.  
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4.3 Identification of hydrogen peroxide and ATP as alarmins driving SCs 
activation in MFS  
 

 

4.3.1 Neurons injured by anti-GQ1b antibody plus complement produce 
mitochondrial hydrogen peroxide 

 

High calcium uptake in mitochondria causes the opening of the permeability transition pore and 

impairs the functionality of the respiratory chain, with production of reactive oxygen species 

(79,80). Superoxide anion is short lived, as it is rapidly reduced by the mitochondrial superoxide 

dismutases to hydrogen peroxide (H2O2) and oxygen (81). H2O2 is relatively stable and represents 

an ideal intra- and intercellular signaling molecule, as well as a paracrine mediator on neighboring 

cells, given its permeation through aquaporin channels (82,83).  

Accordingly, primary neurons exposed to the pore forming toxin α-LTX produce mitochondrial 

H2O2, with consequent activation of ERK1/2 pathway in SCs, acting therefore as an alarmin 

involved in SCs activation induced by neurodegeneration (18). 

To test whether H2O2 is produced inside neurons also upon FS3+NHS exposure, we took advantage 

of two specific H2O2 specific probes with different cellular localization, PF6-AM (cytoplasmic) and 

MitoPY1 (mitochondrial), kindly given by Prof. Chang (University of California) (29,62). PF6-AM 

takes advantage of multiple masked carboxylates to increase cellular retention, and hence 

sensitivity to low levels of peroxide. In its ester-protected form, PF6-AM can readily enter cells: 

once in the cytosol, the protecting group are rapidly cleaved by intracellular esterases to produce 

their anionic carboxylate forms, which are effectively trapped within cells. MitoPY1, on the other 

hand, is a bi-functional molecule that combines a chemoselective boronate-based switch and a 

mitochondrial-targeting phopshonium moiety for the detection of H2O2 in mitochondria. 

When exposed to FS3+NHS, primary neurons progressively produce H2O2, as shown by increase of 

PF6 fluorescence emission in live imaging experiments (Fig. 14A).  

Noticeably, [Ca2+]i increase and H2O2 generation spatially and temporally correlate. Indeed H2O2 

production takes place with a time course superimposable to that of [Ca2+]i increase, particularly 

in correspondence of neuronal bulges (Fig. 14A, arrowheads and 14B), which are sites of Ca2+ entry 

and dysfunctional mitochondria accumulation. Mitochondria are the main source of H2O2, as 

revealed by experiments on MitoPY1 loaded CGNs exposed to FS3+NHS (Fig. 14C).  
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H2O2 production is FS3- and complement- dependent, as it is not detectable upon exposure to 

FS3+HI-NHS, or NHS alone, or FS3 alone (Fig. 14A,B).  

 

Figure 14: Anti-GQ1b plus complement triggers mitochondrial hydrogen peroxide production in primary neurons. 

(A) SCMNs (upper panels) and CGNs (lower panels) loaded with the cytosolic H2O2 probe PF6-AM were exposed to 

saline, FS3+NHS, NHS, FS3+HI-NHS, for 20 minutes, and changes in fluorescence were measured over time. Scale bar: 

10 µm. Quantification of H2O2 production at the level of neurites and bulges (arrowheads) is shown (B). N≥4 

independent experiments for each condition, Student’s unpaired t-test, two-sides, *p<0.05, **p<0.01. (C) Hydrogen 

peroxide is produced inside mitochondria of CGNs loaded with the mitochondrial-targeted H2O2-sensitive probe 

MitoPY1. Hydrogen peroxide (100 µM) was used as positive control. N=3, Student’s unpaired t-test, two-sides, 

***p<0.001. 
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4.3.2 Anti-GQ1b antibody plus complement activates ERK1/2 pathway in Schwann 
cells co-cultured with neurons 

 

Growing evidence indicate that H2O2 is an important intercellular signaling molecule regulating 

kinase-driven pathways (84,85). It triggers ERK phosphorylation in different cell types with 

consequent activation of downstream gene transcription. ERK1/2 signaling pathway was recently 

shown to play a central role in the orchestration of axon repair by SCs (31), and ERK1/2 becomes 

phosphorylated in PSCs of αLTX- intoxicated mice (18). Activated SCs then actively participate to 

the process of nerve terminal regeneration after NMJ damage. With these considerations in mind, 

we wonder whether H2O2 could act as a signaling molecule and activate ERK1/2 signaling pathway 

also in the present model of MFS.  

As FS3 binds selectively to neurons and not to SCs (Fig. 10A), MAC is not deposited in SCs. 

Therefore, FS3+NHS represents a specific tool to deliver MAC exclusively to neurons in co-cultures 

with SCs. However, NHS is not only a ‘donor’ of complement proteins at physiological 

concentrations, but also a source of a huge number of molecules of different types (growth 

factors, hormones, IgGs …). This implies that one or more of these NHS components could activate 

by themselves cellular pathways in SCs (as well as in neurons) in a MAC-independent way, 

therefore biasing the purpose of the experiment. Hence, whatever neuron-SCs signaling is being 

investigated, the NHS alone condition must be included in each experiment, together with other 

appropriate negative controls.  

We tested ERK phosphorylation in co-cultures of primary neurons and SCs exposed to FS3+NHS for 

30 minutes, and detected phospho-ERK (p-ERK) in SCs by western blot (Fig. 15A,B) and 

immunofluorescence (Fig. 15C). ERK phosphorylation is MAC-dependent, as NHS alone (as well as 

FS3+HI-NHS) fails to trigger any p-ERK in co-cultured SCs. 

The addition of catalase, a H2O2-inactivating enzyme, in the extracellular medium significantly 

reduced ERK phosphorylation in SCs (Fig. 15A,B), indicating that H2O2 is an important contributor 

of ERK1/2 activation.  

No p-ERK increase was detected neither in isolated neurons (Fig. 15A,B) nor in neurons in co-

cultures (Fig. 15C) upon exposure to FS3+NHS, indicating that SCs are indeed the source of p-ERK. 

Altogether, these experiments demonstrate that H2O2 is produced by neurons in this model of 

MFS and represents an alarmin which activates SCs. 

 



50 
 

 

 

 

 

Figure 15: Anti-GQ1b plus complement induces ERK1/2 phosphorylation in SCs co-cultured with neurons. (A) 

Representative Western blot showing ERK phosphorylation induced by 30 minutes incubation with FS3+NHS in SCs co-

cultured with SCMNs. Phospho-ERK levels are reduced upon pre-incubation with catalase. No ERK activation is 

detected following exposure to NHS or when NHS is heat-inactivated. FS3+NHS fails to increase p-ERK levels in isolated 

SCMNs. (B) Quantification of p-ERK levels normalized on Hsp90 signal. N=5, Student’s unpaired t-test, two-sides, 

*p<0.05, ***p<0.001. (C) Phospho-ERK signal (green) is restricted to SCs in neurons-SCs co-cultures treated with 

FS3+NHS for 30 minutes, in line with Western blot results. Neurons are identified by FS3 staining (red). Nuclei are 

stained by Hoechst (blue). Scale bars: 10 µm. 
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4.3.3 ATP is released by neurons after anti-GQ1b antibody plus complement attack 

 

Beside its known role as energy source, ATP is also an extracellular messenger acting on different 

types of purinergic receptors. ATP is an important signalling molecule in the PNS, where it plays 

important roles in the chemical communication between MAT and PSCs (5,34).  

Recent work in our laboratory demonstrated that ATP released by α-LTX injured neurons activates 

different cellular pathways in SCs (24). We therefore aimed to analyze the role of ATP as potential 

alarmin released by MAC-damaged neurons. 

As a first evidence, we found that primary neurons exposed to FS3+NHS rapidly release ATP in the 

extracellular medium, measured by a luminometric assay, peaking at 10 minutes in SCMNs and at 

15 minutes in CGNs (Fig. 16A). This slight temporal difference is likely due to the small (but 

reproducible) difference in the time needed for MAC deposition by FS3+NHS at SCMNs and CGNs, 

as shown by Ca2+ imaging experiments presented above (Fig. 11B). ATP release is FS3- and 

complement- dependent, as it is not detectable upon exposure to NHS alone or to FS3+HI-NHS.  

Under the same experimental conditions, no lactate dehydrogenase activity (LDH) was measured 

in the cell supernatant (Fig. 16B), meaning that ATP is not released as a mere consequence of cell 

lysis, as membrane integrity is preserved upon FS3+NHS treatment. An active mechanism of ATP 

release is therefore triggered in neurons after FS3+NHS injury.  
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Figure 16: ATP is released by neurons treated with anti-GQ1b antibody plus complement. (A) Time-course of ATP 

release by SCMNs and CGNs exposed to NHS, FS3+NHS, or to FS3+HI-NHS for 10 (SCMNs) or 15 minutes (CGNs). The 

amount of the release is expressed as percentage of total ATP relative to untreated samples. *P < 0.05; **P < 0.01. 

N=7 (Student’s t test, unpaired, two-side). (B) Lactate dehydrogenase (LDH) activity measured in the supernatant of 

CGNs treated as in (A), and expressed as percentage of TRITON X-100 (0.5% v/v) treated samples. ns= not significant. 
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4.3.4 Neuronal ATP triggers calcium spikes in Schwann cells  

 

As mentioned before, ATP can activate different types of purinergic receptors at PSCs surface, and 

one possible consequence is the elevation of [Ca2+]i in PSCs (5). 

We thus wondered whether SCs might sense and respond to ATP derived from MAC-injured 

neurons, and investigated the intracellular pathways thereby activated. We previously observed 

that primary SCs respond to exogenous ATP with cytosolic Ca2+ spikes (24).  

When SCMNs-SCs or CGNs-SCs co-cultures, loaded with the Ca2+ indicator Fluo-4-AM, are exposed 

to FS3+NHS, Ca2+ spikes are observed in SCs immediately after the formation of bulges in neuritis 

and elevation of [Ca2+]i in neurons (Fig. 17A). No Ca2+ changes occur under control conditions and 

upon exposure to NHS alone or to FS3+HI-NHS (Fig. 17B). Noteworthy, a Ca2+ spike in SCs is 

observed in all samples upon NHS addition (independently on heat inactivation), which is likely to 

be due to the quick and transient action of unknown component(s) of human serum. 

Preincubation of co-cultures with apyrase, an enzyme which hydrolyses ATP to AMP and inorganic 

phosphate, strongly reduces FS3+NHS induced Ca2+ spikes in SCs in co-cultures (Fig. 17C), providing 

evidence that ATP is indeed an alarmin which engages Ca2+ signaling in SCs also in this model of 

MFS.  

 



54 
 

 

 

 

 

 

Figure 17: Neuronal ATP triggers calcium spikes in Schwann cells in co-cultures treated with anti-GQ1b antibody 

plus complement. Co-cultures of primary SCs and SCMNs or CGNs were loaded with Fluo-4 AM and exposed to 

FS3+NHS, NHS, FS3+HI-NHS, or saline for 30 minutes. Intracellular calcium changes are represented in a pseudocolor 

scale (blue: low concentration; white: high concentration), and quantified. (A) In co-cultures exposed to FS3+NHS 

calcium spikes are observed in SCs. (B) No calcium increase is detectable in SCs upon incubation with saline, NHS, or 

FS3+HI-NHS. (C) Apyrase preincubation nearly abolishes calcium spikes in SCs. Representative traces are reported. 

N=3. 
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4.3.5 Cyclic AMP is produced by Schwann cells in response to anti-GQ1b plus 
complement neuronal injury  

 

Among the intracellular pathways through which purinergic receptors can transduce the 

extracellular ATP input (33), we investigated the possible involvement of the second messenger 

cyclic AMP (cAMP), whose production is elicited by type P2Y purinergic receptors activation. 

Primary SCs respond to exogenous ATP by raising their cAMP content (24). Accordingly, cAMP 

levels were imaged in SCs in neurons-SCs co-cultures transfected with a new generation Epac 

probe (63) before and after exposure to FS3+NHS (Fig. 18). Within few minutes from FS3+NHS 

addition a cAMP rise in SCs is evoked, with a peak at about 8-10 minutes in SCMNs-SCs co-cultures 

and 12-15 minutes in CGNs-SCs co-cultures, then returning to basal levels. 

The positive control forskolin was added at the end of the experiment to reach maximum signal. 

No changes in cAMP levels were detected with saline alone, NHS or FS3+HI-NHS.  
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Figure 18: Cyclic AMP is produced in Schwann cells in co-cultures upon FS3+NHS treatment. SCs in co-cultures with 

SCMNs (A) or CGNs (B) were transfected with the EPAC H187 sensor and FRET measured during exposure to FS3+NHS 

(complex added at t=1 minute), NHS or FS3+HI-NHS. Forskolin was added at the end of the experiment (t=28 minutes, 

arrowhead) as positive control. FRET causes a decrease in YFP fluorescence and a parallel increase in CFP intensity, as 

indicated by the pseudocolor images (blue: low fluorescence; white: high fluorescence). Quantification is shown in the 

right panels, where FRET (CFP/YFP) is expressed as the ratio between the background-corrected donor (CFP) and 

acceptor (YFP) signals.  

 



57 
 

4.3.6 Neuronal ATP induces CREB phosphorylation in Schwann cells  

 

Activation of both ERK 1/2 and cAMP pathways promote the transcriptional activity of CREB, one 

of the best understood phosphorylation-dependent transcription factors, involved in a variety of 

cellular processes and in neuron-glia communication (86). As both pathways are engaged in SCs 

co-cultured with MAC injured neurons (Fig. 15,18) and CREB becomes phosphorylated in isolated 

SCs exposed to ATP (24), it is well conceivable that CREB might be activated also in this MFS 

model. This is the case, as showed by immunofluorescence experiments on SCMNs-SCs co-

cultures, which reveal an increase in phospho-CREB (Ser133) (pCREB) signal in SCs (S100-positive 

cells) nuclei after 10 minutes of FS3+NHS incubation (Fig. 19A,B). CREB activation is anti-GQ1b 

antibody and complement dependent, as it is not detectable if co-cultures are exposed to NHS 

alone or FS3+HI-NHS. Furthermore, it is extracellular ATP dependent, as preincubation with 

apyrase abolishes CREB phosphorylation. These results were further validated by western blot (Fig. 

19C,D). Interestingly, FS3+NHS incubation of co-cultures for longer times (15 and 30 minutes) 

failed to produce any detectable pCREB signal. This can be due to the presence of a negative 

feedback system in SCs that assure the return to basal CREB activity once engaged, and that is 

probably involved also in the reversibility of FS3+NHS dependent cAMP elevation observed in FRET 

experiments (Fig. 18).  
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Figure 19: Neuronal ATP induces CREB phosphorylation in Schwann cells co-cultured with neurons treated with anti-

GQ1b antibody plus complement. (A) Immunofluorescence of SCMNs-SCs co-cultures exposed for 10 minutes to 

saline, FS3+NHS, NHS, FS3+HI-NHS, or FS3+NHS plus apyrase. SCs are S100-positive (green), phospho-CREB is detected 

by a specific antibody (red), nuclei are stained by Hoechst (blue). Scale bars: 10 µm. (B) Quantification of phospho-

CREB and S100 -positive cells. ***P<0.001. N=3. (C) Representative Western blot showing phospho-CREB levels in 

SCMNs-SCs co-cultures exposed to FS3+NHS for 10, 15 and 30 minutes, and its reduction by apyrase. After 10 minutes 

incubation, phospho-CREB signal is significantly higher in FS3+NHS samples with respect to untreated co-cultures, and 

this increase is inhibited by apyrase. ATP 100 M is used here as positive control. No phospho-CREB is detectable in 

neurons exposed to FS3+NHS, demonstrating that phospho-CREB signal in co-culture lysates derives from SCs. 

Quantification is shown in (D). Band intensities of samples treated for 10 minutes are normalized to the housekeeping 

Hsp90 and expressed as percentage of the untreated control. *P<0.05. N=4 (Student’s t test, unpaired, two-side).  
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5. DISCUSSION 

 

Many efforts were made by the scientific community in the last 100 years following the first 

observations by Guillain and Barré in 1916, in order to shed light on the biological processes that 

underline GBS variants, including MFS. To date, many question marks are still unsolved. Much of 

the present research aims at unraveling the pathogenic mechanisms leading to 

neurodegeneration, but the molecular players that participate in neuroregeneration and 

neurotransmission recovery are ill-known. We opted to study MFS, which is the GBS variant with 

the higher percentage of complete recovery, in order to dissect the molecular signaling taking 

place between MAT and PSCs driving nerve terminal regeneration. 

In particular, I wondered which are the alarm signals (alarmins) produced by the degenerating 

MAT. 

 

To achieve this goal, I set-up an in vivo model of MFS, characterized by minimal invasiveness. The 

injection of an anti-GQ1b/GT1a monoclonal antibody FS3 plus NHS as a source of complement in 

living mice induces an acute and highly reproducible MAT degeneration, whose complete 

regeneration takes few days. This model represents an appropriate and controlled system to 

dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve 

terminals, and to define the PSCs contribution to these processes.  

 

FS3 displays the same affinity to GQ1b and GT1a gangliosides (46), so it cannot be distinguished 

whether its effects at the NMJ (and in primary neurons) are mediated by its binding to GQ1b, or 

GT1a, or both. Notably, the binding of autoantibodies to both gangliosides is implicated in MFS 

pathogenesis, although anti-GQ1b reactivity is the most frequent serological hallmark of the 

disease (49,50). 

 

Noteworthy, FS3+NHS effects vary markedly, depending on the muscles employed (LAL or soleus 

muscles). On one hand, MAT degeneration in LAL muscles occurs rapidly (within 3-4 hours), with 

neuroregeneration accomplished within 3 days, but only a fraction (about 60%) of total NMJs are 

affected. On the other hand, in soleus muscles FS3+NHS induced MAT degeneration is nearly total 

(more than 90% NMJs degenerated), but takes longer to occur (NMJ neurodegeneration peaks at 2 

days after injection). Such discrepancies may rely on differences in muscle fibres composition 
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between soleus muscle (nearly all slow fibres) and LAL muscle (compresence of slow and fast 

fibres). Previous works reported a remarkable resistance of LAL NMJs, in comparison to soleus 

muscle, to neurodegeneration induced by G93A mutation in the SOD1 protein (linked to 

amyotrophic lateral sclerosis), and to age-related alterations of endplate morphology (87).  

The fate of the endplate upon MAC deposition depends on complement resistance mechanisms of 

the MAT. It is well known that susceptibility to complement attack can vary in different kind of 

cells. One single MAC channel is sufficient to induce the lysis of one single erythrocyte (88). On the 

other hand, other cell types display an array of plasma membrane and cytoplasmic proteins which 

protect the cells from MAC damage.  

The first line of defense is represented by plasma membrane bound proteins, such as CD46, CD55 

and CD59, which are complement proteins receptors present in nearly all tissues, which interfere 

with the activation of the complement cascade, therefore blocking MAC deposition at self-tissues 

(52).  

A second line of defence is activated once MAC is deposited at plasma membrane, and consists of 

the activation of intracellular processes to limit cellular damage. A consistent line of research is 

actively studying the processes of membrane repair following different types of wounding: 

however the different cell types employed (skeletal muscle cells are the most studied because the 

most subjected to plasma membrane damage), the types of insults employed (scratch, 

compression, laser beam wounding, pore forming toxins, MAC), and the proteins/pathways 

involved (dysferlin, SNARE proteins, calpains, annexins, ESCRT proteins; exocytosis, endocytosis, 

blebbing, …) make the understanding of the cellular events that protect the MAT from sublytic 

MAC very challenging (89).  

Despite these difficulties, it is widely accepted that resistance to complement lysis is achieved by 

the physical removal of MAC by both endocytic and exocytic process. Pioneer studies by Morgan 

and collegues demonstrated that polymorphonucleated leukocytes are able to get rid of MAC by 

emission of MAC-loaded vesicles, and at the same time, by endocytosis of MAC and subsequent 

degradation of its components inside the cell (90,91).  

Whether one of more of the abovementioned protective mechanisms are engaged at MAT upon 

MAC deposition in the present MFS model is an open question. As MAC is deposited at MAT in 

vivo also at ‘sublytic’ doses (FS3 10 μg + NHS 50 % v/v in 15 μL of injection volume), it is likely that 

the first line of defence, represented by complement regulatory proteins on the plasma 

membrane, if present, is overwhelmed. It is reasonable that MAT is able to engage one or more 
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cellular mechanisms in order to physically remove the deposited MAC. In the presence of a higher 

quantity of complement proteins recruited to the presynaptic membrane (i.e FS3 10 μg + NHS 50 

% v/v in 100 μL of injection volume), also these mechanisms are overwhelmed and 

neurodegeneration takes place. 

 

In parallel to the in vivo MFS model, I set-up an in vitro MFS model, consisting of primary neurons 

exposed to FS3 plus NHS, which well replicates the pathogenic effects of anti-GQ1b antibodies plus 

complement at the NMJ, i.e. deposition of MAC, massive Ca2+ overload inside neuronal cytoplasm 

and impairment of mitochondrial functionality.  

I observed the appearance of plasma membrane swelling (bulges) in neurites. Neuronal bulging is 

likely to be driven by the following mechanisms: i) massive and uncontrolled Ca2+-induced release 

of synaptic vesicles, not counterbalanced by synaptic vesicle recycling, resulting in membranes 

surplus at the neurites surface. Indeed, bulges are sites of vesicular marker VAMP2 accumulation 

(Fig. 10B); ii) cytoskeletal and actin degradation caused by Ca2+-activated proteases, which renders 

the overlying plasma membrane devoid of structural support; iii) an osmotic imbalance derived 

from large proteins and other osmotically active intracellular components, that cannot permeate 

through the complement pores. 

 

By this simplified (but relevant) in vitro approach we identified two alarmins, H2O2 and ATP, which 

are released by neurons upon FS3+NHS attack.  

Mitochondrial ROS production increases under many stress conditions. Hydrogen peroxide is one 

of the most stable ROS species, and can permeate across cellular membranes through aquaporins-

mediated extracellular transport (82), therefore acting as a paracrine signal. Once inside the target 

cell, H2O2 can act as second messenger via chemo-selective oxidation of cysteine residues in 

signalling proteins (93,94). 

 

ATP is long-known as an important alarm molecule. It signals through purinergic receptors, whose 

activation elicits different signalling pathways in target cells including Ca2+, cAMP, inositol-1,4,5-

triphosphate, phospholipase C and others (32,33). PSCs express purinergic receptors and respond 

with Ca2+ elevations to ATP released by MAT during high frequency stimulation (5).  

We reported that ATP release from neurons in the present model of MFS is not mediated by 

alterations of plasma membrane integrity, as the FS3+NHS concentrations adopted in vitro were 
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non-lytic (see chapter 4.2.3), as confirmed by LDH assay (Fig. 16B). The exact mechanism of ATP 

release has not been examined. It is likely that one or more of the following mechanism are 

implicated: i) exit from MAC pores, given that ATP has a small radius (6 Å) (92), and it may pass 

through the large MAC pore (110 Å); ii) exit through the massive synaptic vesicles release induced 

by Ca2+ influx; iii) non-synaptic, non-vesicular ATP exit through volume-activated anion channels 

(VAACs) activated by microscopic axon swelling during action potential firing induced Ca2+ entry 

(92); iv) transient lipidic pores generated by the activation of phospholipases A2 and formation of 

lysophospholipids and fatty acids. 

 

In neurons-SCs co-cultures MAC deposit is restricted to neuronal membranes, thanks to FS3 

specificity, and this event is followed by the activation of ERK1/2 and CREB pathways, Ca2+ spikes 

and cAMP synthesis in SCs. We demonstrated that these effects depend on H2O2 and ATP released 

by neurons. Indeed, preincubation of co-cultures with catalase, a H2O2-inactivating enzyme, 

prevented the activation of ERK1/2 pathway in SCs. Noteworthy, ERK1/2 activation was not 

completely abolished by catalase, indicating that other mediators are involved.  

Preincubation of co-cultures with apyrase, an enzyme which cleaves ATP to adenosine and 

inorganic phosphates, prevented Ca2+ spikes and CREB phosphorylation. Both catalase and apyrase 

are tetramers of high molecular weight, respectively 250 kDa and 200 kDa, and are not 

internalized inside cells. Therefore, they exert their catalytic activity only in the extracellular 

medium, further supporting that the H2O2 and ATP are released by the MAC-attacked neurons in 

the extracellular medium in neurons-SCs co-cultures, where they are sensed by SCs, thus engaging 

molecular pathways important for nerve regeneration (Fig. 20). 

Indeed, following cut and crush nerve injury, myelinating SCs respond to axonal damage with a 

strong, sustained activation of the Raf/MEK/ERK signalling pathway, and this response was found 

to play a central role for the orchestration of the repair response (31,95). Furthermore, given the 

involvement of cAMP as an important second messenger regulating phagocytosis (96), this 

signalling cascade may be important for PSCs as well, as these cells display macrophagic-like 

properties after MAT degeneration (18,36). Synthesis of cAMP can lead to activation of CREB, a 

master transcription factor regulator of cell responses to a vast array of extracellular stimuli, 

including neurotransmitters, hormones, growth factors, synaptic activity, stressors, and 

inflammatory cytokines (97). 
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To conclude, the MFS model presented here has allowed to better elucidate the cross-talk 

between neurons and SCs, and to identify alarm signals driving nerve regeneration. This and future 

studies might provide a deeper understanding of the molecular mechanisms underlying 

neuroregeneration in MFS and, likely, of other MAT-affecting neurodegenerative pathologies.  

 

 

 

 

 

Figure 20: Hydrogen peroxide and ATP involvement in the signaling exchanged between the MAC-attacked neuron 

and Schwann cells. FS3 recruits and activates complement proteins provided by the NHS upon binding at GQ1b (or 

GT1a) gangliosides exposed at the plasma membrane of primary neurons. These events result in the insertion of MAC 

pore in the membrane bilayer and massive Ca
2+

 entry, which in turn leads to mitochondrial damage and formation of 

plasma membrane varicosities (bulges). The MAC damaged neuron releases hydrogen peroxide, derived from 

impaired electron transport chain in the mitochondria, and ATP in the extracellular enviroment. In response to these 

two alarmins, neighboring Schwann cells activate an array of intracellular responses, including ERK1/2 signaling 

pathway, the transcription factor CREB activity and second messengers Ca
2+

 and cAMP mediated pathways. 
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7. APPENDICES 

 

7.1 List of Abbreviations 
 

Ach Acetylcholine  

AchRs Acetylcholine receptors 

AGAbs Anti-ganglioside antibodies  

AMAN Acute motor axonal neuropathy  

AMP  Adenosine monophosphate 

ATP Adenosine triphosphate  

BNB Blood-nerve barrier  

BSA Bovine serum albumine 

cAMP Cyclic adenosine monophosphate  

CFP Cyan fluorescent protein 

CGNs Cerebellar granular neurons  

CNS Central nervous system  

CREB cAMP response element-binding protein  

DAMPs Damage-associated molecular patterns  

DIV Days in vitro 

EJPs Evoked junction potentials  

EOMs Extraocular muscles  

EPPs Evoked action potentials  

FCCP Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone  

FRET Fluorescence Resonance Energy Transfer 

GBS Guillain-Barré syndrome  

GFP  Green Fluorescent Protein 

HI-NHS Heat-inactivated normal human serum 

HRP Horseradish peroxidase 

Hz Hertz 

IgG Immunoglobulin G 

IgM Immunoglobulin M 

LAL Levator auris longus  

LDH Lactate dehydrogenase  

LOS Lipo-oligosaccharide  

LPS Lipo-polysaccharide  

MAC Membrane attack complex  

MAT Motor axon terminal  

MEPPs Miniature postsynaptic potentials  

MF Muscle fibre  

MFS Miller Fisher syndrome 

NF Neurofilaments 

NHS Normal human serum  
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NMJ Neuromuscular junction  

PBS  Phosphate buffered saline 

PF6-AM Peroxyfluor 6 acetoxymethyl ester  

PFA  Paraformaldehyde 

PNS Peripheral nervous system 

PRRs Pattern recognition receptors  

PSCs Perisynaptic Schwann cells  

ROI Region of interest  

ROS Reactive oxygen species  

RT Room temperature 

SCMNs Spinal cord motor neurons  

SCs Schwann cells 

TLRs Toll-like Receptors  

TMRM Tetramethylrhodamine methyl ester  

VAchT  Vescicular Acetylcholine Transporter 

YFP  Yellow fluorescent protein 

α-BTx α-bungarotoxin  

α-LTX α-Latrotoxin  
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7.3 Supplemetary Movies 
 

Note: supplementary movies of: [Rodella E, et al. (2016) An animal model of Miller Fisher 

syndrome: Mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve 

terminals and activates Schwann cells. Neurobiol. Dis.] are available at: 

http://www.sciencedirect.com/science/article/pii/S0969996116302212 

 


