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SUMMARY 
 

This thesis is concerned with the study and characterization of the xenobiotics-induced 

transcriptomic signature in some ruminants. Based on the different studies presented in this thesis, 

the microarray-based transcriptomics approach was able to provide a holistic view on the global 

gene expression in diverse types of tissues – namely, skeletal muscle, liver, whole blood, primary 

hepatocytes- and kidney-derived cell lines. The pre-designed commercial bovine microarray 

enabled the discovery of many biomarkers with which the differentiation between illicitly-treated 

and untreated veal calves was possible. It also demonstrated the transcriptomic signature 

dissimilarity between 2 tissues (i.e. skeletal muscle and liver) exposed to the same treatment (i.e. 

anabolic steroids). Also, the same approach revealed the presence of some transcriptomic landscape 

convergence between the hepatocytes primary cultures and the Madin-Darby bovine kidney 

(MDBK) cell line, which in turn spots the light on the MDBK cells as a possible surrogate in vitro 

tool for some liver-based functional studies. Finally, a custom-designed whole-transcriptome sheep 

(Ovis aries) microarray revealed the immune-system-induction and the transcriptional-modulation 

capacity of organic selenium in sheep. Collectively, the transcriptomics approach overcame the 

shortcoming of focusing on changes in expression of a priori list of selected genes – instead, it 

looks at the bigger picture within the protein-coding part of the genome. It is important to mention 

that using an alternative functional analysis tools [i.e. Gene set enrichment analysis (GSEA)] was 

useful to cross-validate the output of the conventional overrepresentation tools like the Database for 

Annotation, Visualization and Integrated Discovery (DAVID). The collective body of work 

represented here shows the adequacy of using microarray, commercial and custom-designed, to 

depict a holistic picture about the global gene expression profile of a given tissue. Still, there are 

some challenges in data analysis, interpretation and integration with the output of other alternative 

omic techniques – those challenges are highlighted and discussed across the different chapters of 

this thesis. 
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1. BACKGROUND 

Agricultural science and technology is one of the world’s fastest growing and exciting 

sectors within the global marketplace. This is because the world food economy is being 

increasingly driven by the shift of diets towards animal-based products such as meat, milk 

and dairy (Webb and Buratini, 2016). To fulfill the high demand on these animal proteins, 

millions of livestock are being produced every year (Table 1). To maintain a healthy 

status for this big number of animals – thus ensuring that food is harmless- and to protect 

such a strong and profit-oriented industry, it is quite practically impossible to keep those 

animals in a pharmaceuticals-free environment. In another word, using drugs or feed 

supplements in the livestock is mostly inevitable - they are considered by the food-animal 

producers as fundamental to the animal’s health and well-being and for the economy of 

the agribusiness. 

Mostly all the pharmacologically-active compounds that are administered to animals are 

generically being called ‘xenobiotics’. Food-producing animals - representing a readily 

available source of food for humans- are exposed to xenobiotics in multiple ways which 

could be present in their products. Xenobiotics in an organism go through a series of 

stages, including absorption, distribution, metabolism and excretion, forming part of the 

pharmacokinetics or toxicokinetics according to the effects produced by a particular 

substance (pharmacological or toxicological). Xenobiotics enter a food-producing animal 

organism and, according to its kinetics, reach the tissues which will become food for 

human beings. Collectively, all the pharmaceuticals (both of natural origin or chemically 

synthesized) administered to food animals could be considered as xenobiotics.  

 

Table 1. Live animal production (ruminants) in 2013 - thousand heads; 

 2000 2013 

Cattle 1 302 895 1 494 349 

Sheep 1 059 082 1 172 833 

Goats 751 632 1 005 603 

Buffaloes 164 114 199 784 

Food and Agriculture Organization (FAO). Statistical Pocketbook. Rome: FAO, 2015. Available on: 

www.fao.org/3/a-i4691e.pdf [Retrieved: October 24, 2016] 
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The reported benefits of using pharmaceuticals (i.e. xenobiotics) in farm animals are 

mainly derived from keeping the animals in a good health, thereby reducing the 

possibility of a disease becoming transmitted from animals to humans, and furthermore 

ensuring a high quality food product (Lozano and Trujillo, 2012). Still, with these 

benefits come some challenges that need to be addressed and questions to be answered, 

such as (1) What are the possible direct and indirect effects of hundreds of pharmaceutical 

compounds on both the animal and human health?, (2) What regulates – and ensures- the 

correct usage of those compounds?, (3) Are the conventional methods for veterinary drug 

monitoring and screening still valid or other methods should be implemented? 

In principle, all pharmaceutical preparations administered to food-producing animals – 

after achieving their desirable pharmacological effect- can give rise to residues in edible 

tissue, milk or eggs, and therefore reach humans (McEvoy, 2002). In spite of most drugs 

representing a relatively low risk to the general public, when used responsibly and in line 

with instructions approved by the laboratories making veterinary drugs, adverse reactions 

have been frequently reported for some compounds; these would include antibacterial 

drugs and growth promoters (Lozano and Trujillo, 2012). Another concern is that not all 

of these pharmaceuticals are being administered to animals for their original 

pharmacological purposes, therefore some of them fall under the category of ‘illicit’ 

drugs.  

Any discussion regarding illicit drugs can become confused by the ambiguity as to what 

exactly defines an illicit drug. The confusion stems from the fact that illicit drugs are not 

limited exclusively to illegal drugs – that is, drugs with no medical use. Illicit drugs can 

include active ingredients from bona fide registered pharmaceuticals having valuable 

therapeutic uses – like some antibacterials. They can also include active ingredients that 

are banned from all use under various international conventions or national law, as they 

are deemed as having a public health concern – like growth promoters in the European 

Union (EU). Whether a drug is illicit (or illegal) can be dictated by a number of different 

characteristics, including the chemical structure of the active ingredient or the way in 

which the drug is manufactured, formulated, labeled, distributed, acquired, or used 

(Daughton, 2011).  

To cope with the advancements in the food animals’ industry, and to address the public 

health concerns about the exposure of animals to various pharmaceuticals, a huge amount 
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of scientific contribution has been made, which in turn have led to different legislations, 

regulations and laws. On the one hand, a number of both in vitro and in vivo experimental 

models were established to examine the kinetics of the different xenobiotics administered 

to food-producing animals. On the other hand, several screening techniques were 

developed to detect the presence (or the absence) of certain xenobiotics in the tissues 

(usually liver or muscle) or the biological fluids (i.e. blood, urine or milk) of treated 

animals.  

There is a big variety of methods for identifying, confirming and quantifying drug traces 

(i.e. analytes) which could be used individually or coupled to each other in a suitable way. 

Some of them are ‘immunochemical assays’ such as the enzyme-linked immunosorbent 

assay (ELISA), direct and indirect competitive enzyme linked immunosorbent assays, 

immunoaffinity chromatography (IAC), radioimmunoassay (RIA), the enzyme-monitored 

immunotest (EMIT), the fluorescent immunoassay (FIA) and the chemiluminescence 

immunoassay. Alternatively, they can be ‘physico-chemical assays’ like gas 

chromatography (GC), high performance liquid chromatography (HPLC), ionic 

chromatography (IC), mass spectrometry (MS), mass spectrometry in tandem (MS/MS), 

or a coupled HPLC-MS (Mastovska, 2011; Lozano and Trujillo, 2012). 

1.1. Growth promoters in food-producing animals 
 

Growth promoters are substances which produce improvements in growth rate when 

added to animal feed in sub-therapeutic dosages over an extended period of time. A wide 

spectrum of pharmaceuticals is known or suspected of being used in livestock as growth 

promoters, and an extensive literature exists on this subject, but the practice differs 

greatly among countries (Daughton, 2011). Some of these drugs are also abused by 

humans, so they can serve as another source contributing to environmental residue levels; 

others are unique to veterinary practice. Among the drugs in use, many may be registered 

for veterinary use but not for the purposes actually employed. Others may not be 

approved for any purpose. Included are hormones (corticosteroids, anabolic steroids, and 

thyreostats such as the thiouracils), β-agonists (e.g., clenbuterol), and some antibacterials 

(Courtheyn et al., 2002; Stolker et al., 2007).  

Using these compounds, either natural or synthetic, as growth promoters in food-

producing animals is not allowed in the EU, due to potential adverse effects to human 

health, unlike in the United States where some anabolic hormonal-type growth promoters 
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are still permitted. That’s why foods of animal origin are being monitored for the 

presence of veterinary drug residues in the EU. The European Food Safety Authority 

(EFSA) – likewise, the US Department of Agriculture’s (USDA) in the USA- is the 

keystone of the EU’s risk assessment regarding food and animal feed safety. Based on the 

scientific opinion of EFSA, the EU took some measures to ban the use of growth 

promoters (mainly of hormonal origin) in food-producing animals. In 1981, with 

Directive 81/602/EEC (European Economic Community, 1981), the EU prohibited the 

use of substances having a hormonal action for growth promotion in farm animals. 

Examples of these kind of growth promoters are oestradiol 17ß, testosterone, 

progesterone, zeranol, trenbolone acetate and melengestrol acetate. This prohibition 

applies to Member States and imports from third countries alike. The legal instrument in 

force is Directive 96/22/EC (European Commission, 1996) which has been amended later 

by the Directive 2003/74/EC (European Commission, 2003) to broaden the scope of this 

ban to also include any substance that has a hormonal or thyrostatic action, as well as 

beta-agonists.  

Due to the continuation to use some of the banned items by some of the food animal 

farmers – with a growing ‘black market’ for these growth promoters, as well as the 

emergence of new growth promoter cocktails (i.e. new combinations with lower dosages), 

the scientific community had to find new alternatives to the conventional screening 

methods. Consequently, research groups started to investigate the presence of the illicit 

drug traces in other tissues away from the conventional ones (i.e. blood, urine and milk), 

which in turn led to the implementation of the molecular ‘biomarkers’ approach.  

The identification of molecular biomarkers to distinguish physiological conditions or 

clinical stages is an emerging research field that has grown substantially during the last 

years. The main fields in which molecular biomarker research is performed are clinical 

diagnostics, risk assessment, and therapeutic areas, but also in other fields like food 

safety, where the request for molecular biomarkers has come into focus (Riedmaier et al., 

2009; Divari et al., 2011; Riedmaier and Pfaffl, 2013). Molecular biomarkers can be 

identified on different molecular levels, namely the genome, the epigenome, the 

transcriptome, the proteome, the metabolome and the lipidome. With special “omic” 

technologies these molecular biomarkers can be identified and quantitatively measured 

(Riedmaier and Pfaffl, 2013). 
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The corticosteroid dexamethasone (DEX) is licensed for therapy in veterinary medicine, 

and is frequently used in livestock production. Although its original purpose is to be used 

as an anti-inflammatory and immunosuppressive agent, it was found to be illegally used 

as a growth promoter in animal husbandry - usually at low dosages either alone or in 

cocktails containing different anabolic agents (Gottardo et al., 2008). Because of its 

public health concern, the EU has established a maximum residue limit for DEX – and 

other fellow corticosteroids - in several biological matrices, such as muscle, kidney, liver 

and milk from different species. A substantial number of research work has been 

performed in that field. The thymus was one of the alternative tissue matrices used to 

control the illegal use of corticosteroids in veal calves and beef cattle, and it has been the 

subject to several research works (Biolatti et al., 2005; Cannizzo et al., 2008; Cannizzo et 

al., 2010; Cannizzo et al., 2011; Vascellari et al., 2012). Others have investigated the 

changes in gene expression in the testis (Lopparelli et al., 2010; Lopparelli et al., 2011), 

neutrophils and lymphocytes (Lopparelli et al., 2012), liver (Giantin et al., 2010), or 

skeletal muscle (Carraro et al., 2009) of DEX-treated cattle. More recently, proteomic 

(Stella et al., 2011; Guglielmetti et al., 2014; Stella et al., 2016) and transcriptomic 

(Pegolo et al., 2012) biomarkers were proposed to depict a molecular signature behind the 

illicit use of DEX in food animals. 

Another banned growth promoter in the EU is the beta-agonist clenbuterol (CLEN). This 

β2-agonist compound elicits its growth-promoting effect by enhancing protein synthesis 

and cell hypertrophy, which is known as the ‘repartitioning effect’ (Baker et al., 1984). 

These effects may result in a reduction of carcass fat by up to 40% and an increase of 

carcass protein content by up to 40%, yielding a consistent advantage for the meat 

producers (Courtheyn et al., 2002). Because of a possible synergetic effect when 

combined at lower doses with other molecules such as corticosteroids, the cocktail DEX-

CLEN has gained the attention of many research groups. This attention was combined 

with a controversy regarding whether to accept or prohibit using CLEN in animal 

production. It was not considered as potentially oncogenic or mutagenic – still, it was 

embryotoxic in large doses whilst its adverse effects on consumers became evident when 

recommended withdrawal times were not respected and when excessive doses were used 

(Brambilla et al., 2007). That was quite enough for the EU to develop programs and 

mechanisms for the monitoring of CLEN and its fellow growth promoters. In this context, 

Odore and colleagues (Odore et al., 2006, 2007) have investigated the effects induced by 
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a treatment with CLEN, 17β-oestradiol and DEX, similar to those illegally performed in 

the field, on the regulation of glucocorticoid, beta- and androgenic receptors in veal 

calves. Also, Cantiello and colleagues have examined the effect of CLEN-containing 

cocktails on the serum immunoglobulins and lymphocytes proliferation (Cantiello et al., 

2007), the cytochrome P450 inhibition (Cantiello et al., 2008) - as well as its expression 

profile (Cantiello et al., 2009) - in veal calves. Recently, a transcriptomic biomarker 

signature was proposed to detect the abuse of growth promoters in the liver of veal calves 

(Riedmaier et al., 2014). 

The use of anabolic steroids began in the beef cattle industry over 50 years ago to 

improve efficiency, and approximately 90% of all feedlot cattle receive at least 1 implant 

throughout their lives (APHIS, 2013). Currently, more than 30 implants are approved for 

use in beef cattle in the United States (FDA, 2013). In the EU it is quite different from 

that in the US since all the anabolic steroids have been banned in animal production for 

over 25 years. At the time of the initial imposition of the ban, there were only five 

licensed hormonal growth promoters (the naturally occurring 17β-estradiol, testosterone 

and progesterone, and two synthetic hormones, trenbolone and zeranol). These hormones 

were all administered by means of pellets, which were injected into the ears of recipient 

animals (Mooney et al., 2009). On a monitoring-and-drug-abuse-discovery basis, some 

studies have been performed for either the direct or the indirect detection of anabolic 

steroids in cattle in Europe, in which investigations on transcriptomic profiling of thymus 

(Cannizzo et al., 2013), uterine endometrium (Becker et al., 2011), liver (Becker et al., 

2010), vaginal smears (Riedmaier et al., 2011) and muscle (De Jager et al., 2011; Pegolo 

et al., 2014) have been conducted. In the same context, other groups have investigated the 

use of alternative ‘‘omic” techniques, such as proteomics (McGrath et al., 2013; Kinkead 

et al., 2015; Stella et al., 2015) and metabolomics (Graham et al., 2012; Jacob et al., 2014; 

Kouassi Nzoughet et al., 2015). 

The full procedure and the methodologies for confirmatory analysis are costly in time, 

equipments and chemicals. In addition, they require trained personnel with high expertise. 

Control laboratories must face a large number of samples, with a variety of analytes, to be 

analyzed in relatively short periods of time. Thus, there is a need for screening methods 

that allow the analysis of such a large number of samples in short periods of time. This 

means that high-throughput methods with low cost must be available (Toldrá and Reig, 

2006; Reig and Toldrá, 2008). 
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The fact that the traces of a drug molecule are frequently present in very low 

concentrations, and that some practices use ‘‘cocktails’’ (mixtures of low amounts of 

several substances that exert a synergistic effect) that are difficult to quantify, represents 

an important challenge for the conventional analytical detection (Reig and Toldrá, 2008; 

Cannizzo et al., 2013). Accordingly, it was necessary to implement other methods that 

can either overcome the shortcomings of the analytical methods or simply change the 

strategy from a ‘physico-chemical’ towards a more holistic ‘systems biology’ approach. 

Providentially, the advent and the integration of the high-throughput ‘omic’ technologies 

(e.g., genomics, transcriptomics, proteomics, metabolomics and lipidomics) has 

revolutionized the way biology is done, allowing the systems biology of an organisms to 

be elucidated (Cantacessi et al., 2012). These technologies started to be widely 

implemented in the veterinary science. 

1.2. Transcriptomics 
 

The “transcriptome” is defined as the complete set of mRNA molecules (or transcripts, 

which represents a template for protein synthesis) present in a cell or tissue at a given 

time or condition. It represents the link between the genotype and the phenotype, and it is 

essential to understand how a biological system works in both a physiological or a 

pathological context (Wang et al., 2009). High-throughput genomic technologies, such as 

high-density microarrays and sequencing-based tools [i.e. massively parallel mRNA 

sequencing (mRNA-seq)], provide whole genome approaches to address biological 

questions (Rinaldi et al., 2010). The advent of microarrays as a tool for a global gene 

expression analysis (Schena et al., 1995) has paved the way for the transcriptomics era to 

prevail. More than 10 years later, this advancement was followed by the revolutionary  

RNA sequencing (RNA-seq) (Wang et al., 2009) that is becoming now the gold-standard 

for transcriptomic studies. Although the so called ‘the death of microarrays’ – because of 

the advent of the high-throughput gene sequencing technologies -  was questioned some 

years ago (Ledford, 2008), the microarray- and the RNA-seq-based studies are both 

growing at the same pace (Figure 1).    



Background 

8 
 

 

Figure 1: Number of scientific papers found in PubMed using microarray or RNA-seq approaches 

to study the bovine and ovine species. The search was performed using the key words “microarray 

[Title/abstract] AND (bovine or cow or ovine or sheep) NOT review”; and “(RNAseq 

[Title/abstract] OR RNA-seq [Title/abstract]) AND (bovine or cow or ovine or sheep) NOT 

review.” The search was performed on October 24, 2016. The idea of the figure is inspired by 

Loor et al. (2013). 

 

A DNA microarray, sometimes called DNA chip, is a technology that involves the 

immobilization of DNA fragments or oligonucleotides of known sequences (probes) on a 

solid support – usually a spotted (arrayed) glass slide - allowing the profiling of thousands 

of genes or interactions in one single experiment. The word ‘micro’ is usually used to, for 

practical reasons, distinguish, for practical reasons, between microarrays and macro-

arrays, whereas typical spot sizes are ‘more than 300’ and ‘less than 200’ microns for the 

macro- and microarray, respectively (Bier et al., 2008).  The arrayed probes can represent 

either the whole transcriptome or a selected (customized) panel of target genes or coding 

regions. The “target” is the free nucleic acid sample, usually labelled by a fluorescent dye 

during the preparation process, which interacts with the probe by hybridization (Bier et 

al., 2008). 

Large-scale bovine microarrays started with ~3,800 cDNA probes (Band et al., 2002), 

then it scaled up to contain ~7,000 (Everts et al., 2005) and 13,000 oligonucleotide 

sequences (Loor et al., 2007). Later on, the commercial microarrays such as the 
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‘Affymetrix Bovine GeneChip’ and the ‘Agilent Bovine Gene Expression Microarray’ 

provided a ‘somehow complete’ coverage of the bovine transcriptome, with more than 

23,000 transcripts covered. 

A typical microarray experiment produces lots of data. That’s why a good experimental 

design that allows unambiguous interpretation of results and reporting of data for a 

genome-wide comparability is required (Spielbauer and Stahl, 2005). In 2001, the 

Functional Genomics Data Society (FGED) created for this purpose the Minimum 

Information About a Microarray Experiment (MIAME) guidelines, which provide all the 

necessary information required to potentially reproduce a robust microarray experiment 

(Brazma et al., 2001; Brazma, 2009). Following the compliance with the MIAME 

guidelines, and to allow reproducibility, the microarray data has to be deposited into a 

publicly accessible repository, such as the Gene Expression Omnibus (GEO; Edgar et al., 

2002) and the ArrayExpress archive (Parkinson et al., 2010). The MicroArray Quality 

Control (MAQC) project - now is known as the MicroArray/Sequencing Quality Control 

(MAQC/SEQC) - was initiated to address the concerns about studies with dissimilar or 

altogether contradictory results, obtained using different microarray platforms to analyze 

identical RNA samples (Shi et al., 2006). This project demonstrated the intra-platform 

consistency across test sites as well as a high level of inter-platform concordance in terms 

of genes identified as differentially expressed.   

Microarray still has some shortcomings such as the hybridization-based limitations 

associated with background noise and saturation or probe set issues such as incorrect 

annotation and isoform coverage (Zhao et al., 2014). On the other hand, the more recent 

RNA-seq technology overcomes the challenges posed by microarray. It is superior in 

detecting low abundance transcripts, differentiating biologically critical isoforms, 

allowing the identification of genetic variants, and having a broader dynamic range than 

microarray (Zhao et al., 2014). It also allowed the understanding of transcription initiation 

sites, the cataloguing of sense and antisense transcripts, improving the detection of 

alternative splicing events, and detection of gene fusion (reviewed in Loor et al., 2015). 

Still, there is a considerable amount of microarray-based scientific literature that is keep 

growing (see Figure 1). One could say that microarrays remain useful and accurate tools 

for measuring expression levels, and RNA-seq complements and extends microarray 

measurements (Malone and Oliver, 2011). 

http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
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An the present time it is not the matter of generating the omics data but how these data 

will be handled, analyzed and interpreted at the end. A big challenge is to interpret the 

findings of an omics-based study in a more biologically meaningful fashion and 

eventually communicate biological knowledge systematically (Loor et al., 2013). If data 

are not properly processed and analyzed, the existence of massive data sets certainly is 

not a guarantee that useful information in a given system will be obtained (Loor et al., 

2015). Another challenge is that the use of any one of the omics tools alone cannot 

provide a full picture of the biological system and thus can be misleading when 

interpreting biological outcomes (Loor et al., 2013). That’s why omics data integration 

(e.g. integrative analysis of transcriptomics plus proteomics data) is being now considered 

fundamental in both human and animal (Vogel and Marcotte, 2012; Haider and Pal, 2013; 

Shahzad et al., 2014; Loor et al., 2015; Ritchie et al., 2015) 

 

1.3. Nutrigenomics 
 

Modern research aims to understand the genome-wide influence not only for 

pharmaceuticals but also for nutrients. Studying how nutrients can alter the expression 

and/or the structure of an individual’s genetic makeup is known as nutritional genomics 

or more simply ‘nutrigenomics’ (Kaput and Rodriguez, 2004; reviewed in Bionaz et al., 

2015). Still, nutrigenomics should not be understood as the effect of nutrients on the 

sequence of DNA; rather, it should be interpreted as the nutrient–gene interactions 

through the intermediate action of the transcriptional regulatory or the epigenetic factors 

in the short to medium and medium to long term, respectively (Bionaz et al., 2015). 

Nutrigenomics is actually addressed to clarify the molecular activity of bioactive and non-

nutrient compounds affecting transcription factors (transcriptomics), protein expression 

(proteomics), metabolite production (metabolomics) and even DNA structure 

(epigenomics) (De Godoy and Swanson, 2013).  Nutrigenomics aims (1) to understand 

the cellular functions of nutrients and other bioactive components and how they affect 

homeostasis in specific tissues or in the whole organism, (2) to relate the different 

phenotypes to differences in the cellular and/or genetic response of the biological system, 

(3) to identify genes that are involved in the onset of the disease, and therefore, molecular 

biomarkers and, consequently, (4) to prevent diet-related diseases (Fenech et al., 2011). 
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According to the major activity of nutrients on transcription factors, the analysis of 

changes in mRNA expression is often the first step to study the flow of molecular 

information from the genome and one of the main goals of nutrigenomics research. For 

years, gene expression has been determined by quantification of mRNA with northern 

blotting but, gradually, it has been replaced by more sensitive techniques such as real-

time PCR. Both techniques, however, can only analyze a limited number of candidate 

genes at a time. This is an important limitation for their application in nutrigenomics 

research since the analysis of a reduced number of genes may not provide a true insight 

about relationship between the bioactive food constituent and its biological effect 

(García-Cañas et al., 2010). The high-throughput technologies such as NGS and 

microarray overcome this limitation by their ability to profile the whole-transcriptome of 

a given biological matrix at once, that’s why they are widely adopted now in 

nutrigenomics. 

In ruminants, nutrigenomics is a recent field of research that holds great potential to 

improve animals’ health and productivity (Bionaz et al., 2015). In the last decade, 

microarray technology has been extensively utilized in livestock species as a 

nutrigenomic research tool to improve food production, quality and their safety in dairy 

and meat industries (Zduńczyk and Pareek, 2009; Bionaz et al., 2015). The initial data 

from nutrigenomics studies in ruminants strongly indicate that this branch of science will 

play a critical role in future strategies to better feed livestock such as the dairy cattle 

(Bionaz et al., 2015). An overview of the microarray technology applications in 

nutrigenomics is depicted in Figure 2.  
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Figure 2: Schematic overview of potential applications of biochips in nutrition and food research. The 

array technology plays a key role in the scientific analysis of the interactions between nutrients and genes. 

The influence of nutrition on the global gene expression profile can be analyzed by using high-density, 

whole-genome DNA microarrays. Figure from Spielbauer and Stahl (2005). 
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2. AIMS 

The main objective of this thesis was to study and characterize the transcriptomic profile 

of some ruminants – bovine and ovine species – following their exposure to different 

xenobiotics , in the form of illegal schedule or regular feed supplementation. More in-

depth, the specific objectives were to: 

 

1- Examine the changes in the skeletal muscle’s (i.e. meat) transcriptome of beef 

cattle following the experimental exposure to an illicit protocol of either 

dexamethasone alone, or in combination with clenbuterol. Then, to identify a set 

of differentially expressed genes that could be used as indirect biomarkers for 

growth promoters treatment abuse. And, finally, to compare the results with 

transcriptomics data from dexamethasone-positive field monitoring samples as 

well as proteomics data previously obtained from the same set of samples. 

 

2- Study the effect of a combined trenbolone acetate (TBA) and estradiol (E2) 

implant on the transcriptome of muscle (target tissue for anabolic steroids) and 

liver (main biotransformation site). A specific objective was to point out the main 

differences and similarities (if any) between both tissue matrices, and to list out 

the main differentially expressed genes that can be used as a ‘‘pool” for anabolic 

steroids biomarker discovery in the future. 

 

3- Characterize the transcriptome of the Madin-Darby bovine kidney (MDBK) cell 

line and compare it with that of the cattle hepatocyte primary cultures and the ex 

vivo hepatic tissue. 

 

 

4- Investigate the effect of dietary Selenium on the whole-transcriptome of sheep 

(Ovis aries), and to test whether or not a high dietary selenium supplementation 

would induce genes of the immune system of sheep and leave a noticeable 

molecular signature behind. 
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Abstract 
 

Growth promoters (GPs) such as the glucocorticoid dexamethasone (DEX) and the β-

adrenergic agonist clenbuterol (CLEN), are still abusively used in beef cattle production. 

Transcriptomic markers for indirect detection of such GPs have been discussed either in 

experimentally treated animals or commercial samples separately. In the present study, 

we examined the transcriptomic signature of DEX alone or in combination with CLEN in 

skeletal muscle of experimentally treated beef cattle, and, furthermore, comparing them to 

previously screened commercial samples from a field-monitoring study, as well as to a 

proteomics data representing the same set of samples. Using a DNA microarray 

technology, the transcriptomic profiling was performed on 12 samples representing 3 

groups of animals: DEX (0.75 mg/animal/day, n = 4), a combination of DEX (0.66 

mg/animal/day) and CLEN (from 2 to 6 mg/animal/day, n = 4) and a control group (n = 

4). The analyses evidenced the differential expression of 198 and 39 transcripts in DEX 

and DEX-CLEN groups, respectively. Both groups had no common modulated genes in-

between, neither with the proteomics data. Sixteen candidate genes were validated via 

qPCR. They showed high correlation with the corresponding microarray data. Principal 

Component Analysis (PCA) on both the qPCR and normalized microarray data resulted in 

the separation of treated animals from the untreated ones. Interestingly, all the PCA plots 

grouped the DEX positive samples (experimental or commercial) apart from each other. 

In brief, our study provided some interesting glucocorticoid-responsive biomarkers whose 

expression was contradictory to what is reported in human studies. Additionally, our 

study pointed out the transcriptomic signature dissimilarity between commercial and 

experimentally treated animals.  

 

Introduction 
 

The misuse of growth promoters (GPs) such as anabolic hormones, corticosteroids and β2-

agonists in cattle is a major concern in food safety, because of its public health interest. 

The synthetic glucocorticoid dexamethasone (DEX) is known to be illicitly used in meat 

cattle either alone or in combination with other active principles, such as the β2-agonist 

clenbuterol (CLEN). It is known that low doses of DEX interfere with endogenous 

cortisol synthesis and metabolism; therefore, it result in improved feed intake, increased 

weight gain, reduced feed conversion ratio, reduced nitrogen retention and increased 
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water retention and fat content (Möstl et al. 1999; Courtheyn et al. 2002; König et al. 

2006; Cannizzo et al. 2013). As regards β2-agonists, they elicit their growth-promoting 

effect enhancing protein synthesis and cell hypertrophy, by inhibition of proteolysis in the 

muscle tissue and induction of lipolysis in the adipose tissue, which is known as the 

“repartitioning effect”. These effects may result in a reduction of carcass fat up to 40% 

and an increase of carcass protein content up to 40%, yielding a consistent advantage for 

the meat industry (Courtheyn et al. 2002; Leporati et al. 2014). Phramacologically, the 

repartitioning and induced muscle growth of CLEN are mediated via interaction with β-

adrenergic receptors (β-AR; Rothwell and Stock 1987), however, this effect soon 

becomes attenuated due to decreased density (Huang et al. 2000) or desensitization of the 

β-AR in skeletal muscle upon long-term exposure to β2-agonists (Badino et al. 2005). On 

the other hand, glucocorticoids are thought to reverse the homologous down-regulation of 

the β-AR number and mRNA expresseion (Mak et al. 1995), and hence are considered as 

part of the strategy to enhance the anabolic effects of β-adrenergic agonists (Huang et al. 

2000). The effect of continuous administration of low doses of DEX and CLEN on 

animals’ muscle mass and performance has been illustrated earlier (Odore et al. 2006; 

Biancotto et al. 2013).  

The use of various illicit schedules, such as newly designed drugs or cocktails containing 

lower GP concentrations, makes the mission of control authorities more difficult, 

especially when these low GP concentrations bypass the threshold limits of current 

official detection methods (Cantiello et al. 2007; Riedmaier et al. 2014). For that reason, 

looking for alternative detection methods was inevitable. In recent years, some pilot 

studies investigated the effect of DEX, alone or in combination with CLEN, on different 

biological parameters, in order to highlight direct or indirect markers that could be used 

for screening purposes. In this context, regulation of tissue beta-adrenergic and 

glucocorticoid receptors, in veal calves, has been studied following repeated exposure to 

DEX or CLEN (Odore et al. 2007). Moreover, effect of DEX/CLEN-containing cocktail 

on serum immunoglobulins, lymphocyte proliferation and cytokine gene expression in 

veal calves has also been evaluated (Cantiello et al. 2007). Others have used protein 

expression changes (Stella et al. 2011), thymus morphology and serum cortisol 

concentration (Vascellari et al. 2012), or corticosteroid profiling of urine using coupled 

LC-MS/MS (Biancotto et al. 2013), as indirect markers to detect illegally administered 

GPs. On the other hand, commercial beef samples were also used to look for diagnostic 
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signatures for DEX treatment in a field monitoring study (Pegolo et al. 2012). 

Collectively, high-throughput-omic methodologies, such as epigenomics, genomics, 

transcriptomics (e.g. the whole-transcriptome expression profile using DNA microarrays), 

proteomics and metabolomics, have recently been incorporated in this field of research, 

similar to other biological sciences (Riedmaier & Pfaffl 2013).    

The purpose of this study was threefold: (1) to measure the changes in cattle skeletal 

muscle transcriptome induced by treatment with DEX alone, or in combination with 

CLEN, similar to those illegally performed in the field; (2) to identify a set of 

differentially expressed genes (DEGs) that could be used as an indirect biological marker 

for illicit treatment abuse; (3) to understand, through the comparison with transcriptomic 

data from field monitoring samples (Pegolo et al. 2012) and proteomic results (Stella et 

al. 2011), if the single approach – strategy (i.e., proteomics, transcriptomics or analytical 

chemistry) could be enough for defining a universal panel of biomarkers, or a multi-

approach strategy is needed. Finally, another question of this study, was to discover 

whether or not experimentally treated animals respond differently from those present in 

the field.  

 

Materials and methods 

Animals and experimental design 
 

Twenty-four clinically healthy Charolais bulls (18- to 20-month-old) were used in this 

study. Animals were weighed, housed in ventilated stables and all the experimental 

procedures were carried out according to the European Union animal welfare legislation. 

The experiment began after 3 weeks of acclimatization. The animals were randomly 

divided into three groups of 8 animals each. The first one was used as a control (CTR); 

the second group was treated with DEX, administered via feed 0.75 mg per capita for 42 

days (group DEX); the third one (DEX-CLEN) was administered DEX via feed (0.66 mg 

per capita for 21 days) in combination with an increasing dose of CLEN, e.g., 2 mg per 

capita during the first week, 4 mg per capita on the second week, and 6 mg per capita 

during the third and the fourth weeks (28 days in total, see Figure 1). The products to be 

administered were dissolved in water, and the desired dosage was achieved by mixing 15 

ml of water containing an appropriate concentration of each drug with 100 g of feed. This 
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feed was carefully offered to each animal, ensuring that no significant residue remained in 

the feeder. In addition, feed conversion index (FCI) and body weight were recorded all 

over the study. 

 

 

Figure 1: Experimental design (treatment). Charolais beef cattle were treated via feed with dexamethasone 

(DEX) alone or in combination with clenbuterol (CLEN). Animals were administered DEX at a dose rate of 

0.75 mg per capita for 6 weeks. One group (DEX-CLEN, n=8), besides DEX, was administered with CLEN 

increasing dosages, e.g. 2 mg per capita during the first week, 4 mg per capita during the second week, and 

6 mg per capita during the third and the fourth weeks (4 weeks in total). A third group served as control 

(CTR). 

 

Sample collection and RNA extraction 
 

At the slaughterhouse, small biceps brachii muscle tissue specimens were sampled from 

all the animals. Muscle samples were immediately frozen in vessels containing liquid 

nitrogen (within 1 min of removal) and stored at -80ºC prior to subsequent analyses. Total 

RNA was isolated by TRIzol® reagent (Life Technologies, USA) and subsequently 

purified using the RNeasy Mini kit (Qiagen, Italy), according to the manufacturer’s 

instructions. To avoid genomic DNA contaminations, on-column DNase digestion with 

the RNase-free DNase set (Qiagen, Italy) was performed. Total RNA concentration was 

determined using the NanoDrop ND-1000 UV-Vis spectrophotometer 

(NanoDropTechnologies, USA), and its quality was measured by the 2100 Bioanalyzer 

and RNA 6000 Nano kit (Agilent Technologies, USA). High quality input (hybridized 

RNA) is essential to have an unbiased and reproducible output in terms of gene 

expression data; therefore, the isolated RNAs were tested for proper concentration and 
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integrity. The best 4 samples of each group (total number = 12) were selected for the 

microarray analyses, using a specific RNA quality parameter as a criterion, e.g. RNA 

concentration ≥ 40 ng/µl and RNA integrity number (RIN) ≥ 6.5. The mean RIN value of 

these 12 samples was 6.93 ± 0.51, indicating intact RNA. Additionally, tissue specimens 

of 4 illicitly DEX-treated animals (were classified as positive by LC-MS and thymus 

histological analyses in the study performed by Pegolo et al., 2012) were provided and 

fresh RNA was isolated from them, then tested for quantity and quality as before. On the 

bases of having positively DEX treated samples from the field, those 4 samples have been 

analyzed by qPCR, then implemented in further statistical analyses (see statistics and 

principal component analyses) along with our experimental samples.  

 

RNA amplification, labeling and hybridization 
 

Sample amplification, labeling and hybridization were performed following the Agilent 

One-Color Microarray-Based Gene Expression Analysis protocol. Briefly, for each 

individual sample 50 ng of total RNA were linearly amplified and labeled with Cy3-

dCTP using Agilent Low Input Quick Amp Labeling kit (Agilent Technologies, USA). A 

mixture of 10 different viral polyadenylated RNAs (Spike-In Mix, Agilent Technologies, 

USA) were added to each RNA sample before amplification and labeling. A purification 

step was applied to the labeled cRNA using the RNeasy Mini Kit (Qiagen, Italy), and 

sample concentration and specific activity (pmol Cy3/µg cRNA) were measured. A total 

of 1.65 μg of labeled cRNA was fragmented by using the Gene Expression Hybridization 

kit (Agilent, USA) according to the manufacturer’s instructions, and finally diluted by the 

addition of 55 µL of 2X GE Hybridization buffer. A volume of 100 µL of hybridization 

solution was then dispensed in the gasket slide and assembled to the microarray slide, 

with each slide containing four arrays. Bovine-specific oligo-arrays (Bovine V1, 4x44k 

G2519F, Design ID 015354, Agilent Technologies, USA) were used. Slides were firstly 

incubated for 17 h at 65ºC in a Hybridization Oven (Agilent Technologies, USA), then 

washed using wash buffer 1 and 2 according to the manufacturer’s instructions. 

Hybridized slides were scanned at 5 µm resolution using a G2565BA DNA microarray 

scanner (Agilent Technologies, USA). Default settings were modified in order to scan the 

same slide twice at two different sensitivity levels (XDR Hi 100% and XDR Lo 10%). A 

general workflow of the microarray experiment is reported in Figure 2. Microarray data 
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have been deposited in the NCBI’s Gene Expression Omnibus (GEO) and are accessible 

through the GEO Series accession number GSE61934. 

 

 

 

Figure 2. General workflow of the microarray experiment. 

 

Normalization of the microarray data 
 

Data were extracted and the background was subtracted using the default settings of the 

Agilent’s Feature Extraction Software version 9.5.1 (Agilent Technologies, USA). 

Extracted data were normalized and processed as previously described in Giantin et al., 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61934
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(2014). A further filtering step was carried out by removing probes that reported missing 

values or no reactivity (flag equal to 0) in at least 50% of samples. Missing values (probes 

with Feature Extraction flag equal to 0) were imputed by using the microarray data 

analysis tool TIGR Multiple Array Viewer (TMEV; Saeed et al., 2003). In addition, raw 

microarray data (30 samples) from a monitoring study were downloaded from GEO 

(GSE26318: Pegolo et al., 2012). Experimental and monitoring samples (n = 42) were 

grouped, normalized and filtered together in one run, to avoid any possible analytical 

bias, and then used in subsequent analyses. The functional analysis of DEGs list was 

performed using the Ingenuity Pathway Analysis (IPA) online platform 

(http://www.ingenuity.com, Qiagen, USA).  

 

Quantitative Real time PCR 
 

Sixteen target genes, and three housekeeping (HK) genes (RPLP0, GAPDH and TBP) 

were chosen for the external validation of microarray findings by qPCR. To increase the 

number of data points in the statistical and correlation analyses between DNA microarray 

and qPCR, samples from all the 24 animals of our study were included in the qPCR 

analysis. Gene-specific primers (Table 1), encompassing one intron, and the most 

appropriate Universal Probe Library (UPL) probe were designed by using the UPL Assay 

Design Centre web service (Roche Applied Science, USA). First-strand cDNA was 

synthesized from 0.15 µg of total RNA using the High Capacity cDNA Reverse 

Transcription Kit (Life Technologies, USA) according to the manufacturer’s protocol and 

stored at -20ºC until further use. Overall, qPCR reactions (10 µL final volume) consisted 

of 1X LightCycler 480 Probe Master (Roche Applied Science, USA), 300 or 600 nM 

forward and reverse primers (Integrated DNA Technology, Italy) according to the assay 

set-up, 200 nM human UPL probe (final concentrations) and 2.5 µL of 1:7.5 diluted 

cDNA (15 ng/µL). Each qPCR analysis was performed, in duplicate, in a LightCycler 480 

Instrument (Roche Applied Science, USA) using the standard PCR conditions (an 

activation step at 95ºC for 10 minutes; forty-five cycles at 95 ºC for 10 seconds and at 

60ºC for 30 seconds; a cooling step at 40ºC for 30 seconds) and LightCycler 480 clear 

plates (Roche Applied Science, USA). To determine the efficiency of each qPCR assay, 

non-template and no-reverse transcription controls were included on each plate. 

Moreover, standard curves obtained by amplifying eight threefold serial dilution of the 

same cDNA pool were used. Data were analyzed with the LightCycler480 software 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26318
http://www.ingenuity.com/
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release 1.5.0 (Roche Applied Science, USA) using the second derivative or fit point 

method. Messenger RNA relative quantification was performed by the ΔΔCq method 

(Livak & Schmittgen 2001). 
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Table 1: Oligonucleotide sequences for qPCR. 

Gene acronym Gene name NCBI RefSeq 
Primer sequence 

5’ >>> 3’ 

Amplicon 

size (bp)a 

RPLP0b Ribosomal protein, large, P0 NM_001012682 
F: CAA CCC TGA AGT GCT TGA CAT c 

R: AGG CAG ATG GAT CAG CCAc 
227 

GAPDH b Glyceraldehyde-3-phosphate dehydrogenase NM_001034034 
F: ACA CCC TCA AGA TTG TCA GCA A 

R: TCA TAA GTC CCT CCA CGA TGC 
82 

TBP b TATA box binding protein NM_001075742 
F: ACA ACA GCC TCC CAC CCT ATG C 

R: GTG GAG TCA GTC CTG TGC CGT AA 
111 

C7 Complement component 7 NM_001045966 
F: GGA CGG TGC TGA TGA AGA CA 

R: TGT AAC CAC GTC CGG TAA GC 
101 

CCDC80 Coiled-coil domain containing 80 NM_001098982 
F: GTC ACT GGA AAA CTT CCT AT CCA 

R: CAT CAT TAG GGG CCG AGA T 
71 

CRISPLD2 Cysteine-rich secretory protein LCCL domain containing 2 NM_001100299 
F: AGT CAG AGA GAA ACG GCG TG 

R: GTG GTG TAG CAG TCC AGG TC 
100 

FKBP5 FK506 binding protein 5 NM_001192862 
F: GTG GAG TGC TGC GAC AAG 

R: CTT GGC TGA CTC GAA CTC GT 
105 

LIPG (LOC509808) Endothelial lipase-like  XM_002697766 
F: CGC CTA TTG TGG CTT TGC 

R: GCG GAG GTT AAA TCT CAC AGG 
127 

MMP2 
Matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa 

type IV collagenase) 
NM_174745 

F: CGA TGC TGT GTA CGA AGA CC 

R: CTG GCT GAA TAG ACC CAG TAT TC 
78 

MYOC Myocilin, trabecular meshwork inducible glucocorticoid response NM_174118 
F: CAG CAG CTC TCA GGA CGT G 

R: GTC CAT GTT CTC CAA ATT CCA 
67 

RASD1 RAS, dexamethasone-induced 1 NM_001206261 
F: CAC CGC AAG TTC TAC TGC AT 

R: GCT GAA CAC CAG GAT GAA CA 
132 

SULT1A1 Sulfotransferase family, cytosolic, 1A, phenol-preferring, 1 NM_177521 
F: CAC GGC TCC TCA AGA CAC ACT 

R: GGG CGA TGT AGA TCA CCT TG 
84 

CYP1A1 Cytochrome P450, subfamily I, polypeptide 1 XM_002696635 
F: GGC CTT TAT CCT GGA GAC CT 

R: AAG CCG TTC AGA TTG CTG TC 
90 

CCL24 Chemokine (C-C motif) ligand 24 NM_001046596 
F: GCT ACC AGC TTA CCA ACA GGA 

R: GAA CTT CTG GCC CTT CTG G 
74 

PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 NM_001192835 
F: CGG GAT CTG TCC TAC ATC AAG 

R: CAC GCG GTT CAC GAC ATA 
60 

C1QA Complement component 1, q subcomponent, A chain NM_001014945 
F: CCT GGA AAC CCA GGC AGA AT 

R: TGG CTG GTC CTT GAT GTT CC 
114 

MEDAG Mesenteric estrogen-dependent adipogenesis NM_001083660 

F: TCC AGA AAA GAA GGA GAC CATT 

R: TGC AAT TAA AAA CTT CAT CTA TTG 

AAC 

131 

FGL2 Fibrinogen-like 2 NM_001046097 
F: GGCAAATGTTCATCTAAGTGTCC 

R: ACTGCTTCTTTTGCCTATTGTGT 
114 

HSPA8 Heat shock 70kDa protein 8 NM_174345 
F: AAC CAA GTC GCA ATG AAT CC 

R: GCA TCA TCA AAT CTT CGT CCA 
74 

a
 Base Pairs; 

b
 Reference gene; 

c 
Robinson et al., 2007. 
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Statistics and Principal Component Analysis (PCA) 
 

To identify DEGs, a two-class unpaired test was implemented in the program SAM 

(Significance Analysis of Microarrays) release 4.0 (Tusher et al. 2001), enforcing a False 

Discovery Rate (FDR) of 5% with a fold change (FC) threshold of 2. All other statistical 

tests (linear regression, non-parametric Spearman correlation analysis and Mann-Whitney 

test) were carried out by the GraphPad Prism 5 software (San Diego, CA, USA). 

Statistical significance was set at P < 0.05.  

Using TMEV, a PCA analysis was carried out on our microarray processed samples (n = 

12), in order to test the efficiency of our identified DEGs in differentiating treated from 

untreated samples. Hence, only normalized and filtered microarray intensities of the 

previously obtained DEGs (198 transcripts of DEX vs. CTR and 39 of DEX-CLEN vs. 

CTR) were used. 

To visualize the multivariate response of the selected classifiers to the treatment and see if 

the chosen set of gene markers could result in the best separation of treated and untreated 

animals, another dynamic PCA approach, based on qPCR results (relative quantification 

values; RQ), was performed. The objective was to test if our proposed set of the 16 genes 

could differentiate DEX-treated samples (experimental or commercial) from the untreated 

ones. For that purpose, the later PCA was performed using RQ values corresponding to 

the CTR (n = 8), and DEX (n = 8) groups, along with the 4 samples claimed to be positive 

for DEX from the monitoring study. The PCA on qPCR RQ values was executed by the 

GenEx v.5 software (Bergkvist et al. 2010), adopting the following settings: mean center 

scaling, Ward’s algorithm and Manhattan distance. Finally, another PCA analysis was 

carried out on our microarray processed (n = 12) and all the monitoring samples (n = 30) 

or the DEX-positive ones (n = 4), in order to test if they could group into different 

clusters based on their DNA microarray raw data. For each PCA, samples were grouped 

together in one set, and a blind PCA was carried out. 
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Results 

Animal health status and growth performance 
 

The health status of all the experimental animals was satisfactory all throughout the 

experiment. Except for DEX and/or CLEN, no other drugs have been administered during 

the experimental procedure. Information about the animals’ performance and feed 

conversion index have been presented in details elsewhere (Biancotto et al. 2013). 

Microarray quality control and data analyses 

The comparison of the DEX group with the CTR one (DEX vs. CTR) resulted in a list of 

198 down-regulated transcripts, representing 123 characterized transcripts and 75 

estimated sequence tags (ESTs: see Supplementary Table 1). Estimated sequence tag 

transcripts were excluded from further analyses due to limited or not available 

information on annotation. Among the 123 down-regulated genes, 29 ones had a FC > 4, 

and the highest FC (-14.77-fold) was noticed for the LOC509808 (LIPG) gene. 

Following the comparison between DEX-CLEN and CTR groups (DEX-CLEN vs. CTR), 

the analysis with SAM resulted in a much shorter list of DEGs. A total of 39 DEGs, 

representing 21 characterized transcripts and 18 ESTs (thereby excluded from further 

analyses), was identified. Among the 21 genes, 16 and 5 were respectively up- and down-

regulated (Supplementary Table 2). There were no overlapping DEGs between the 2 

comparisons. 

To better describe the transcriptome functional modifications and to mine through the 

obtained DEG lists, IPA was used to find out and explore pathways, networks and bio-

functions somewhat modulated by the used GPs. Data analysis identified some networks 

and bio-functions, e.g. molecular and cellular functions, physiological system 

development and canonical pathways (see Supplementary Table 3 for a detailed IPA 

report). Moreover, glucocorticoid receptor and xenobiotic metabolism signaling pathways 

were highlighted among the canonical pathways output following the IPA core analysis 

performed on our DEGs (Figure 3). 
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Figure 3: Ingenuity Pathways Analysis (IPA). Canonical pathways tree following a core analysis by IPA 

and using human, mouse and rat databases as a background. The glucocorticoid receptor signaling 

pathway is highlighted. 

 

To reduce the complexity of a long list of significant genes, an additional approach was to 

focus on those transcripts that seemed more relevant to our study. Through an extensive 

literature screening, using NCBI database and gene summaries present in GeneCards of 

the human gene database (http://www.genecards.org), together with some predictions 

suggested by IPA, we collected information about the direct function of each gene and the 

corresponding target tissue (when available). This strategy helped us in refining our DEG 

lists and grouping genes into 3 main categories, e.g. glucocorticoids responsive, skeletal 

muscle related and coagulation cascade related genes (Supplementary Table 4). A set of 

16 genes shown to be modulated in DEX (15 genes: CYP1A1, FKBP5, CCL24, RASD1, 

MYOC, PFKFB4, MEDAG, SULT1A1, LIPG, CRISPLD2, C1QA, FGL2, CCDC80, C7, 

and MMP2), and DEX-CLEN groups (1 gene: HSPA8) were considered for the final 

validation analysis by qPCR.  
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Confirmatory qPCR analysis 
 

To cross-validate our platform performance and identify some potential biomarkers, a 

relative quantification approach by using qPCR was a must. All the aforementioned 16 

genes were found to be significantly regulated in the muscle tissue, comparing treated 

with control animals (Figure 4).  

 

 

Figure 4: Validation of 16 differentially expressed target genes. Expression levels (Relative Quantification; 

RQ values) of genes, relative to non-treated (CTR) samples determined by qPCR. Significance was tested 

by using the one-way ANOVA (Kruskal-Wallis test) followed by Dunn’s post-hoc test. Multiple bars show 

means ± SE.  

Statistically significant differences of DEX vs. CTR values were calculated at P < 0.05, 0.01 & 0.001 (*, ** 

& ***), respectively. 
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A Spearman rank correlation test was then performed for each target gene, comparing 

qPCR RQ values with the corresponding microarray’s intensities (Figure 5). 

 

 

 

 

Figure 5: Plots of qPCR RQ values versus corresponding normalized-microarray probe intensities for 

individual target genes. Each solid dot represents a sample from the twelve samples (4/group) included in 

the microarray analysis as mentioned before. Both the Pearson’s rho (r), representing the correlation 

coefficient, and the obtained p-value is shown within each plot. 
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At DEX group, 14 out of 15 genes showed high correlation coefficients (Spearman rho > 

0.8; P < 0.001), while only one gene (MEDAG) was significantly correlated, but with a 

lower correlation coefficient (rho = 0.685; P = 0.01). At DEX-CLEN group, a significant 

relationship was only found for HSPA8 (rho = 0.734; P < 0.01: Table 2).  

 

 

Table 2: Spearman’s rho for the selected genes used for qPCR validation. 

Gene acronym FC qPCR FC array Spearman’s rho
†
 

C7 -2.12 -2.54 0.9580 

CCDC80 -3.44 -2.53 0.9021 

CRISPLD2 -5.65 -7.07 0.9930 

FKBP5 -7.14 -8.66 0.9720 

LIPG -15.32 -14.77 0.8601 

MMP2 -2.83 -2.58 0.9790 

MYOC -2.36 -4.44 0.9021 

RASD1 -3.05 -4.75 0.9720 

SULT1A1 -2.49 -2.54 0.9091 

CYP1A1 -10.39 -10.41 0.9371 

CCL24 -4.84 -5.14 0.9021 

PFKFB4 -3.17 -4.38 0.8862 

C1QA -1.69 -3.61 0.9161 

MEDAG -2.50 -3.28 0.6853 

FGL2 -2.82 -3.16 0.9930 

HSPA8 1.52 2.11 0.7343 

Fold-change (FC) was calculated comparing group DEX vs. group CTR or 

group DEX-CLEN vs. group CTR 

†Spearman’s rho (r) calculated at P < 0.01. 

 

 

Furtheremore, the correlation made on the average FC obtained with DNA microarray 

and qPCR technologies showed a high and significant correlation coefficient (Spearman’s 

r = 0.754, p < 0.0001), with a slope of linear regression equal to 0.94 (see Figure 6). 
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Figure 6: Overall comparison between microarray and qPCR data, expressed as 

estimated fold-changes, referring to the final 16 candidate transcript biomarkers. 

P < 0.001 

 

 

Clustering and principal component analyses 
 

The first two components, which accounted for 81.124 % of the total variance, clearly 

identified and distinguished DEX from CTR samples, while DEX-CLEN samples were 

distributed along the x and y axis with no clear grouping trend (Figure 7A). By using the 

RQ values of the proposed 16 gene markers, the PCA was able to distinguish 3 groups of 

samples, e.g. CTR (n = 8), DEX-treated animals (n = 8) and the four DEX-positive 

samples from the monitoring study. The first two principal components of greatest 

variation covered the 94.60% of the total variance. Quite unexpectedly, samples from 

DEX group and DEX-positive samples from the monitoring (MO) study did not group 

together on the PCA plot (Figure 7B). Likewise, samples clustered independently from 

each other also on the relative dendrogram (Figure 8). 
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Figure 7: Principal component analysis (PCA). (A) PCA plot of the 12 samples of the current study, 

showing normalized microarray data of all the differentially expressed genes (198 and 39 in DEX vs. CTR 

and DEX-CLEN vs. CTR, respectively). The PCA shows the two principal components of greatest variation, 

accounting for 67.8% (x-axis) and 13.3% (y-axis) of the total variance. (B) Plot showing the three principal 

components of variance for the three experimental groups. Animals of the control group (CTR) are 

represented by green circles; dexamethasone-treated group (DEX) are represented by black stars, while 

animals of the monitoring study (4 DEX positive samples) are shown by red squares. Ellipses distinguish 

different treatment groups. Eigenvalues for PC1, PC2 and PC3 were 75.955%, 18.651% and 2.915%, 

respectively. 
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Figure 8: Dendrogram showing the hierarchical clustering of the three experimental groups; controls 

(CTR, B4:1-B4:8), animals administered with dexamethasone (DEX, B4:9-B4:16) and monitoring DEX 

positive cattle (MO:S21, S54, S56 and S57). This tree represents the similarity between genes and/or 

samples, based on the gene expression profiles (RQ values) measured by qPCR assays. Average linkage 

and Euclidean distance were used as a clustering method and distance measure, respectively. 

 

To better understand why DEX-treated animals clustered apart from each other, and 

particularly to verify whether this behavior was a treatment-specific response or a 

technical bias, a broad dynamic PCA, using the raw microarray data of all the samples 

(present study: n = 12, field monitoring: n = 30), was performed (Figure 9A). In this 

case, the first two components, in compliance with Pegolo et al. (2012), accounted for 

66.5% of the total variance and separated the monitoring samples (MO-1 and MO-2) from 

our experimental samples (EXP). The y-axis, representing 24.3% of the total variance, 

separated our 12 samples from group MO-2, including the four DEX-positive samples 

and other unknown samples. To further confirm these findings and to avoid any possible 

distortion in the PCA plot due to many unknown samples in the monitoring study, the 

PCA was repeated between our 12 samples (EXP) and the 4 DEX-positive samples (MO-

POS), using the differentially regulated gene list (11,484 unique transcripts) following a 
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one-class SAM analysis, and enforcing an FDR of 0%. Again, we found that our samples 

and the monitoring ones were grouped apart from each other’s (Figure 9B). 

Figure 9. PCA of the bovine skeletal muscle gene expression profiles. (A) PCA plot showing the grouping 

of the 12 experimental samples distinctively away from commercial field monitoring samples (MO-1 and 

MO-2). The plot was created following a one-class SAM analysis (via TMEV) on normalized microarray 

intensities, by using a differentially regulated gene list (11,484 unique transcripts) and a false discovery 

rate (FDR) of 0%. The first two components accounted for 42.2% and 24.3%, respectively. (B) PCA plot, 

excluding all the monitoring study samples except for the 4 dexamethasone (DEX) -positive ones; the x-axis 

and y-axis cover 60.8% and 8.8% of the total variance, respectively. The ellipse on the right side represent 

the 12 experimental samples, while the 4 samples on the left side of the plot are the 4 DEX-positive ones 

from the monitoring study.   
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Discussion 
 

Although the development of additional detection methods for GPs’ abuse in beef cattle 

has already been faced by different “omic” disciplines, such as genomics, transcriptomics, 

proteomics and metabolomics, the “gold standard” detection technology or the perfect 

biomarkers panel is seemingly out of reach for the moment. In the present study, we 

investigated the effect of some GPs on the muscle’s transcriptome of beef cattle. The 

foremost objective was to detect possible changes in gene expression and compare these 

transcriptional effects with those obtained applying a proteomic approach (Stella et al. 

2011) and MS-based analytical investigations (Biancotto et al. 2013). Moreover, another 

goal was to test our suggested transcriptional biomarkers against pre-validated DEX-

positive samples (Pegolo et al., 2012). Shortly, a set of potential transcriptional 

biomarkers was identified and cross-validated with an independent method. However, the 

comparison of our DEGs list with that of the proteomics study revealed no common gene-

coded protein or pathway(s) in-between. Finally, after plotting our samples on PCA 

against DEX-positive samples coming from a monitoring study, our proposed target 

genes did not group the experimental and monitoring samples together; on the contrary, 

they were clustered separately. These distinct results are hereby discussed more in depth. 

Indirect biological markers have a comparable cost, higher output and high sensitivity 

compared with other methods (Balizs & Hewitt 2003; Carraro et al. 2009). Based on 

results here obtained, the use of illicit schedules containing DEX alone could be reliably 

identified, with high confidence, by using fifteen genes; on the other hand, the use of a 

DEX-CLEN combination was eventually identified by the HSPA8 gene only. The 

identification of 198 DEGs in the DEX-treated group and only 39 ones in the DEX-CLEN 

group could suggest a CLEN-masking effect upon DEX. Counteraction between DEX 

and CLEN, where the latter caused mild attenuation of the effects of DEX on some 

physiological parameters, has already been reported (Huang et al. 2000). Several genes 

were broadly down-regulated in the DEX-treated group, and we will shortly discuss only 

the ones showing the highest response in terms of fold-changes and/or relevance to the 

purpose of the study.  

The most down-regulated gene (-15.32-fold) is the endothelial lipase (LIPG) gene. 

Endothelial lipase is a member of the triglycerides (TG) lipase gene family, showing a 

significant phospholipase activity on high-density lipoprotein (HDL) particles (Goldberg 

1996; Jaye et al. 1999; Griffon et al. 2006); furthermore, LIPG gene inactivation has been 
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shown to increase HDL levels (Qiu et al. 2007). Although the relationship between LIPG 

and lipid metabolism is well documented, there is not much information in the literature 

regarding any relationship between this gene and glucocorticoids. However DEX has 

been shown to decrease LIPG activity in the liver of rats (Peinado-Onsurbe et al. 1991). 

Moreover, a recent study reported that DEX administration in horses decreased the 

expression of genes involved in hormone signaling, cholesterol synthesis and 

steroidogenesis (Ing et al. 2014). The well-studied and evident effect of DEX on lipid 

metabolism (Zhou & Cidlowski 2005; Xu et al. 2009; Martin et al. 2009; Campbell et al. 

2011) could be a reason to hypothesize a relationship between LIPG and DEX treatment. 

The cytochrome P450 1A1 gene was down-regulated by 10.39-fold. This gene is involved 

in oxidative drug metabolism (Beresford 1993) and it depends from the aryl hydrocarbon 

receptor (AhR) for its regulation. It has been reported that CYP1A1 expression in adult 

human hepatocytes was negatively regulated by DEX at the protein level, but no effects 

were noticed upon mRNA (Monostory et al. 2005). On the other hand, DEX was shown 

to have no inhibitory potency on the CYP1A1 level either in human hepatocytes (Vrzal et 

al. 2009) or in rainbow trout (Burkina et al. 2013). In the same context, DEX was recently 

proved to suppress CYP1A1 transactivation in gene reporter assays (Stejskalova et al. 

2013). 

FKBP5 (also known as FKBP51) can act as an important determinant of the responses to 

steroids, especially to glucocorticoids in stress and mood disorders in humans (Kang et al. 

2008; Jaaskelainen et al. 2011). Up-regulation of FKBP5 in response to corticosteroid use 

has been consistently demonstrated in many studies (Franchimont et al. 2002; Almon et 

al. 2005; Tissing et al. 2007), and has been associated with the loss of efficacy of 

corticosteroids (Fisher et al. 2005). Surprisingly, in the present study FKBP5 was down-

regulated (-7.14-fold). Most of the information about FKBP5 are closely related to 

human, and very little information is available about this gene in animals, if any. 

However, it has been recently reported that FKBP5 is down-regulated following a 21 

days’ treatment with the corticosteroid prednisolone in a collagen-induced arthritis mouse 

model (Ellero-Simatos et al. 2014). It should be emphasized that illicit schedules in cattle 

substantially differ, in terms of dosage and duration of administration, from the ones used 

in human, and it is also worth mentioning that the glucocorticoid signaling system is 

highly stochastic, and differ greatly from one tissue to another (Kino 2007).  
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Dexamethasone-induced Ras-related protein 1 (RASD1) is a member of the Ras family of 

proteins that is usually activated following the administration of corticosteroids 

(Kemppainen & Behrend 1998; Tu & Wu 1999). Surprisingly, we observed a down-

regulation of this gene (-3.05-fold). Up to our knowledge, there is no available 

information about RASD1 gene expression in cattle. In humans, RASD1 mRNA is 

constitutively expressed in many tissues such as brain, heart, liver and kidney 

(Kemppainen & Behrend 1998; Tu & Wu 1999; Fang et al. 2000), while no records are 

available about skeletal muscle. The inactivation of RASD1 and its correlation with 

resistance to DEX, as a consequence of methylation, was recently discussed by Nojima et 

al. (2009). A thorough explanation of these contradictory findings needs further 

investigations and comparative studies to be performed, in order to understand if there are 

species- and/or tissue- related variations.  

The chemokine (C-C motif) ligand 24 (CCL24) is predominantly involved in chemotaxis 

of T cells compatible with an anti-inflammatory effect of glucocorticoids (Ehrchen et al. 

2007). In few studies performed on cattle, CCL24 was shown to be normally down-

regulated in the gestation period of female cows (Oliveira et al. 2010; Laporta et al. 

2014). However, data from human and experimental animal models, in accordance with 

our findings, showed that CCL24 was down-regulated following DEX treatment (Goleva 

et al. 2008; Luesink & Jansen 2010; Louten et al. 2012). Overall, these findings are in 

concordance with the down-regulation (-4.84-fold) we observed following DEX 

treatment. 

The myocilin, trabecular meshwork inducible glucocorticoid response (MYOC) gene was 

shown to be moderately down-regulated (-2.36-fold). This result is apparently in contrast 

with other studies, where MYOC was up-regulated upon DEX treatment in both human 

and cattle anterior segments of the eye, namely the trabecular meshwork cells (Taniguchi 

et al. 2000; Ishibashi et al. 2002; Rozsa et al. 2006; Mao et al. 2011) Nevertheless, it was 

recently reported (Kumar et al. 2013) that MYOC showed decreased expression in the 

trabecular meshwork cells isolated from eyes of mice treated with steroids. Furthermore, 

the effect of DEX upon MYOC gene expression varies greatly from one tissue matrix to 

another (Morgan et al. 2014).  

One of the other interesting results was the down-regulation (-3.44-fold) of the cysteine-

rich secretory protein LCCL domain containing 2 (CRISPLD2) gene. This transcript has 
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only recently been considered as a glucocorticoid-responsive gene (Himes et al. 2014). 

What is interesting here is that CRISPLD2 showed an over expression pattern in some 

primary human cell lines following a 24-48 hours of DEX treatment (Masuno et al. 2011; 

Greer et al. 2013; Himes et al. 2014), while it was down-regulated in our study. Very little 

information is actually available for this gene in the literature, except for humans. The 

present contradictory result might be due to the different illicit protocol (GP combination) 

and/or the DEX dosages here used. 

Likewise to CRISPLD2, the complement component 7 (C7), a key component of the 

adaptive immunity (Actor et al. 2001; Mashruwala et al. 2011), has been recently 

considered as a glucocorticoid-responsive gene (Himes et al. 2014). In our experimental 

conditions, C7 was found to be down-regulated (-2.12-fold). This could be explained by 

the fact that glucocorticoids are known to repress the expression of adaptive immune-

related genes (Galon et al. 2002; Franchimont 2004; Azuma 2010). The only up-regulated 

gene in our validated set of genes was the heat shock proteins A8 (HSPA8) which has 

been examined as a glucocorticoid-induced gene in other model systems (Smoak & 

Cidlowski 2006). However, no information relating this gene to CLEN is present in the 

literature so far. 

A second purpose of the present work was the comparison between our DEG lists 

(transcriptomics data) with the one referring to differentially expressed proteins (e.g., 

proteomics data), for which the same muscle samples from the same animal were used 

(Stella et al. 2011). Interestingly, the comparison resulted into no common differentially 

regulated genes/protein in-between. In cattle, the proteomic approach has been explored 

as a tool for detection of protein expression patterns in skeletal muscles (Keady et al. 

2013; Stella et al. 2014), body fluids (Draisci et al. 2007; Della Donna et al. 2009; 

Guglielmetti et al. 2014) and some target organs such as liver (Gardini et al. 2006). Until 

recently, there was an implicit assumption in the systems biology literature of the 

existence of proportional relationship between mRNA and protein expressions measured 

from a tissue. However, analysis of mRNA and protein expression data from the same 

cells under similar conditions have failed to show a high correlation between the two 

domains in multiple studies (Pascal et al. 2008; Ghazalpour et al. 2011). Moreover, small 

non coding RNAs (miRNA) and post-translational modifications such as phosphorylation, 

SUMOylation and ubiquitination have been shown to modulate the expression, 

regulation, stability and function of glucocorticoid molecular targets and pathways (Duma 
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et al. 2006; De Iudicibus et al. 2013). Therefore, finding no single gene overlap was 

somehow surprising, but further confirm that the transcriptomic and proteomic 

approaches are independent from each other, even if the target tissue is the same. This 

agrees with Timperio et al. (2009), who reported that proteomics and transcriptomics data 

seldom overlapped when compared upon analysis of liver samples from two different Bos 

taurus breeds. Hence, the need for an integrated approach against GPs’ misuse in cattle 

seems to be required to improve the effectiveness of the indirect biomarker approach for 

screening purposes.  

On the microarray level, the defined DEGs were able to distinguish our experimental 

groups, one from another. This has an effect on the efficiency of the analyses and the 

robustness of the obtained data. In addition, the validated and proposed set of biomarkers 

(16 genes, whose level of expression was measured by qPCR) grouped the field 

monitoring DEX-positive samples away from our experimental DEX group on the PCA; 

furthermore, they were also clustered in different batches on a dendrogram. This 

unexpected behavior of the monitoring samples prompted us to decide to use the whole 

microarray raw data set of all the monitoring samples along with ours, to check whether 

monitored commercial animals still behave differently from the experimentally treated 

ones or not. Interestingly, all of our samples grouped together and distinctively away 

from the other monitoring samples, that were represented on the PCA as previously 

reported in Pegolo et al. (2012). Moreover, this result was confirmed after repeating the 

PCA using our 12 samples against only the 4 DEX-positive samples. Despite the efforts 

made to decrease any possible outliers affecting samples’ distribution on the PCA, we 

again had the 2 groups apart. Once again, variables such as breed (maybe), diet and 

breeding conditions (more probable), the use of different DEX-containing illicit protocols 

and/or new cocktails containing different GPs, could be the reason(s) for this conflict. 

Indeed, intraspecies transcriptomic comparison is needed to reveal the differences in drug 

response between animals under field and experimental conditions.  
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Conclusions 
 

A qPCR-validated panel of 16 genes was able to distinguish the DEX-treated (both 

experimental and field-monitoring) from the untreated animals. This can render those 

genes – or a subset of it - applicable in the screening purposes for DEX-illicitly-treated 

animals. Still, more DEX-positive samples from the field are needed to validate this panel 

because different DEX ‘cocktails’ are expected to have different impact on the treated 

animals. Further, the present work showed that despite the attractions of comparative 

profiling of transcripts and proteins on a global ‘omic’ scale, there are obvious biological 

and technical differences preventing transcriptomics and proteomics from having a 

convergence. Moreover, the idea of having a “universal set of biomarkers” that can be 

applied to all the illicitly treated cattle still seems elusive at the moment. Indeed, one 

‘stand-alone’ technology does not suffice for gaining a comprehensive understanding of 

the biological system complexity. An approach that incorporates the various ‘omic’ 

platforms and their data would be the key to solve this puzzle. 
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Abstract 
 

We investigated the transcriptomic signature of some anabolic steroids in cattle. Our main 

objective was to evaluate the effect of a combined trenbolone acetate (TBA, 200 mg) and 

estradiol-17β (E2, 40 mg) implant (Revalor-XS®, REV) on the transcriptome of muscle 

(target tissue for anabolic steroids) and liver (main biotransformation site). 

Transcriptomic profiling was performed on 60 samples (30 per tissue) representing 2 

groups of animals: REV (sustained release implant for 71 days, n = 15), and a control 

group (CTR, n = 15). The analyses (REV vs. CTR) evidenced the differential expression 

of 431 (down-regulated) and 503 transcripts (268 up-regulated and 235 down-regulated) 

in muscle and liver tissues, respectively. Functional annotation showed the enrichment of 

several ion transport systems (cation, metal ion and potassium ion transport) in muscle, 

while revealing the enrichment of carbohydrate, protein and glycoprotein metabolism and 

biosynthesis mechanisms in the liver. Both tissues had 20 genes commonly expressed in-

between. Seven randomly-selected genes showed positive correlation with their 

corresponding microarray data upon a qPCR cross-validation step. In muscle, but not the 

liver, Principal Component Analysis (PCA) on the microarray data resulted in the 

separation of treated animals from the untreated ones (first 2 components = 97.87%.). 

Overall, the identification of different genes, pathways and biological processes has 

illustrated the distinctive transcriptomic profile of muscle and liver in response to 

anabolic steroids. Moreover, it is becoming more clear that anabolic steroids are working 

through a complex interaction of numerous pathways and processes incorporating 

different tissues. 

 

Introduction 
 

Beef cattle production is a strong animal industry worldwide. The economic challenges 

and the profit-oriented strategies in this business are, logically, favoring the cost-

reduction procedures. Growth promoters (GPs), such as anabolic steroids, are used to 

increase animal productivity and feed conversion rates; hence, reducing costs. Although 

they are legally and widely used in the USA, anabolic steroids are prohibited by law in 

the European Union (European Union 1996 & 2002)  because of their public health 

concerns. Despite this ban, GPs are still illicitly employed in bovine meat production due 

to their economic benefits resulting from the improved animal growth (Courtheyn et al. 
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2002; White et al. 2003; De Brabander et al. 2007; Mooney et al. 2009). Subcutaneous 

implantation of androgenic and estrogenic compounds, such as trenbolone acetate (TBA) 

and β-estradiol (E2), administered alone or in combination, is one of the most common 

ways of anabolic steroid applications for cattle, due to its sustained release that can last up 

to 200 days (Food and Drug Administration; FDA 2007). 

On a monitoring-and-drug-abuse-discovery basis, some studies have been performed for 

the indirect detection of TBA and E2 in cattle in Europe, in which investigations on 

transcriptomic profiling of thymus (Cannizzo et al. 2013), uterine endometrium (Becker 

et al. 2011), vaginal smears (Riedmaier et al. 2011) and muscle (De Jager et al. 2011; 

Pegolo et al. 2014) have been conducted. In the same context, other groups have 

investigated the use of alternative “omic” techniques, such as proteomics (Stella et al. 

2015) and metabolomics (Jacob et al. 2014; Kouassi Nzoughet et al. 2015).  

Being the main target organ of such anabolic steroids, muscle has been given the main 

attention in the few “omic” studies that investigated the effect of TBA and/or E2 on 

muscle either in a physiological (De Jager et al. 2011) or detection and monitoring 

context (Becker et al. 2011; Parr et al. 2011; Cannizzo et al. 2013; Pegolo et al. 2014; 

Stella et al. 2015). However, despite the well-documented effectiveness of anabolic 

steroid implants in increasing bovine muscle growth, information on the mechanism of 

action in nonmuscle tissues (e.g. Liver) have not been extensively studied (Dayton & 

White 2014). Moreover, the liver has never been considered in a global gene expression 

microarray analysis following TBA or E2 administration, and was only considered either 

in direct residue detection studies (MacNeil et al. 2003; MacNeil et al. 2008; Wang et al. 

2009) or mRNA expression of a set of pre-defined genes (White et al. 2003; Reiter et al. 

2007; Giantin et al. 2010). The fact that anabolic steroids can cause a number of serious 

side effects, including immunity and liver dysfunction (Brenu et al. 2011) was a further 

reason for the inclusion of liver in our study.  

In the present study, we conducted a comparative investigation on bulls treated by a 

combination of anabolic compounds (sexual steroids) forbidden in the European Union, 

and untreated bulls. We used a commercially available ear implant containing 200 mg of 

TBA and 40 mg of E2 (Revalor-XS
®
, Merck Animal Health, USA) that is approved in the 

United States in bovine breeding. To the best of our knowledge, this was the first 

comparative global gene expression profiling study to be performed on both muscle and 
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liver of cattle implanted with Revalor-XS
®
. The primary aim of this study was to 

compare, via transcriptomic approach, the response of both muscle and liver to anabolic 

steroids, and to point out the main differences and similarities between both matrices. In 

addition, a second aim was to list out the main differentially expressed (DE) genes that 

can be used as a “pool” for biomarker investigations in the future. 

Materials and methods 

Animals and experimental design 
 

Animals in this study were part of a transcriptomic-proteomics comparative trial, where 

30 Charolais cattle, all males, aged 10–14 months, were randomly divided into two 

groups of 15 animals each. The first group received no treatment and served as a control 

(CTR), while the second was exposed for 71 days to the steroid hormone subcutaneous 

implant Revalor-XS
®

 (group REV). The beef cattle were weighed at the beginning and 

the end of the treatment. The average daily gain (ADG) was calculated as the difference 

between two subsequent body weights. The procedure was checked and approved by the 

Animal Experimentation Ethics Committee of the University of Bologna on January 31, 

2011 (PROT: 8134-X/10  and 4783-X/10). Health status was monitored daily by 

recording all individual pathological events and medical treatments. The experimental 

workflow is shown in Figure 1.  

Figure 1: General workflow of the experiment. 
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Sample collection and RNA extraction 
 

At the slaughterhouse, small biceps brachii muscle and liver specimens were sampled 

from all the animals. Both muscle and liver samples were immediately stored in RNAlater 

solution (Life Technologies, USA), then stored at -80ºC until analyses. Total RNA was 

isolated by TRIzol
®
 reagent (Life Technologies, USA) and subsequently purified using 

the RNeasy Mini kit (Qiagen, Italy), according to the manufacturer’s instructions. To 

avoid genomic DNA contaminations, on-column DNase digestion with the RNase-free 

DNase set (Qiagen, Italy) was performed. Total RNA concentration was determined using 

the NanoDrop ND-1000 UV-Vis spectrophotometer (NanoDropTechnologies, USA), and 

its quality was measured by using the 2100 Bioanalyzer and RNA 6000 Nano kit (Agilent 

Technologies, USA). The isolated RNAs were tested for proper concentration and 

integrity. All the 60 samples (30 from muscle and 30 from liver) passed the RNA quality 

criteria [i.e: RNA concentration ≥ 40 ng/µl and RNA integrity number (RIN) ≥ 7]. Hence, 

they were all considered for the subsequent microarray analyses.  

RNA amplification, labeling and hybridization 
 

Sample amplification, labeling and hybridization were performed following the Agilent 

One-Color Microarray-Based Gene Expression Analysis protocol. Briefly, each of the 60 

RNA samples was labeled with Cy3 (green) fluorescent dye label using Agilent Low 

Input Quick Amp Labeling kit (Agilent Technologies, USA). Ten different viral 

polyadenylated RNAs were used as reference “spikes” (Spike-In Mix, Agilent 

Technologies, USA). A purification step was applied to the labeled cRNA using the 

RNeasy Mini kit (Qiagen, Italy), and sample concentration and specific activity (pmol 

Cy3/µg cRNA) were measured. A total of 1.65 μg of labeled cRNA was fragmented using 

the Gene Expression Hybridization kit (Agilent, USA) according to the manufacturer’s 

instructions, and finally diluted by the addition of 55 µL of 2X GE Hybridization buffer. 

A volume of 100 µL of hybridization solution was then dispensed in the gasket slide and 

assembled to the microarray slide, with each slide containing four arrays. Bovine-specific 

oligo-arrays (Bovine V1, 4x44k G2519F, Design ID 015354, Agilent Technologies, 

USA) were used. The slides were firstly incubated for 17 h at 65ºC in a hybridization 

oven (Agilent Technologies, USA), then washed using wash buffer 1 and 2 according to 

the manufacturer’s instructions. The hybridized slides were scanned at 5 µm resolution 

using a G2565BA DNA microarray scanner (Agilent Technologies, USA). The default 

settings were modified in order to scan the same slide twice at two different sensitivity 
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levels (XDR Hi 100% and XDR Lo 10%). The total RNA of 4 samples was labeled twice 

and hybridized separately in different slides to generate technical replicates. The entire set 

of expression data corresponding to the 60 hybridizations was deposited in the Gene 

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) under the 

accession number GSE62002. 

Normalization of microarray data and identification of DE genes 
 

Microarray data of both muscle and liver samples (n = 30, each) were processed, 

normalized and analyzed independently from each other. The data were extracted and the 

background subtracted by using the default settings of the Agilent Feature Extraction 

Software version 9.5.1 (Agilent Technologies, USA). The extracted data were normalized 

and processed as previously described (Giantin et al. 2014). A further filtering step was 

carried out by removing probes that reported missing values or no reactivity (flag equal to 

0) in at least 50% of the samples. Missing values (probes with Feature Extraction flag 

equal to 0) were imputed by using the microarray data analysis tool TIGR Multiple Array 

Viewer [TMEV: (Saeed et al. 2003)]. 

Functional enrichment analysis 
 

Enrichment analysis of the differentially up- and down-regulated genes was performed 

using the Functional Annotation tool available in the DAVID Database 

(http://david.abcc.ncifcrf.gov/). Only the probes present in the microarray chip  were used 

as a ‘gene reference background’. All GO terms and KEGG pathways included in the 

DAVID knowledge base were considered. For KEGG terms, the following parameters 

were used: gene count 5, EASE 0.05. For GO, Biological Process and Molecular Function 

(BP_FAT and MF_FAT, respectively), gene count 5 and EASE 0.05 were used. 

Quantitative Real time RT-PCR (qPCR) validation 
 

Seven randomly selected genes (2 for muscle and 5 for liver datasets), along with other 

three internal control ones (RPLP0, GAPDH and TBP) were chosen for the external 

validation of microarray findings by qPCR. For each candidate gene, a short description, 

the accession number, primer sequences, the corresponding Universal Probe Library 

(UPL) probe, and amplicon length are provided in Table 1. 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62002
http://david.abcc.ncifcrf.gov/
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Table 1. Genes and primers used for the qPCR validation assays 

Gene  Description Accession Forward primer (5' >> 3') Reverse primer (5' >> 3') UPL 

Probe 

Amplico

-n (bp) 

NR4A2 Nuclear receptor subfamily 4, group 

A, member 2 

NM_001076208 CGGTCTCAAGGAACCCAAG CGGTTCAAACCCCCATTATT 25 96 

ITGA2 Integrin, alpha 2 (CD49B, alpha 2 

subunit of VLA-2 receptor) 

NM_001166499 GTGATTGTTGGTTCGCCTTT TGCCCTCATGACCATTGTAG 50 70 

ANGPTL4 Angiopoietin 4 NM_001046043 TGGCTCCGTGGACTTTAACC GATGGGGAACTGCAAGGACT 135 178 

GK Glycerol kinase NM_001075236 CTCGGCAGAGATAAACCCGT ATAAGGTGCATACAGCCCCG 46 192 

HAMP Hepcidin antimicrobial peptide NM_001114508 AGACACGACAGCTCACAGAC ATGGGAAAGTGGGTGTCTCG 50 103 

MT2A Metallothionein 2A NM_001075140 CAAAGATTGCAAGTGCGCCTC CAGCTGCACTTGTCCGAAGC 104 114 

MAP3K14 Mitogen-activated protein kinase 

kinase kinase 14 

NM_001192178 CCGGTGGATTATGAGTACCG CTGTGGACCTCTCCAAAGGA 113 86 

RPLP0
a
 Ribosomal protein, large, P0 NM_001012682 CAACCCTGAAGTGCTTGACAT AGGCAGATGGATCAGCCA 145 227 

GAPDH
a
 Glyceraldehyde-3-phosphate 

dehydrogenase 

NM_001034034 ACACCCTCAAGATTGTCAGCAA TCATAAGTCCCTCCACGATGC 119 82 

TBP
a
 TATA box binding protein NM_001075742 ACAACAGCCTCCCACCCTATGC GTGGAGTCAGTCCTGTGCCGTAA 81 111 

 
a
 Internal control gene 
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Where possible, primers were designed across exon/intron boundaries to avoid genomic 

DNA amplification. First-strand cDNA was synthesized from 0.5 µg of total RNA using 

the High Capacity cDNA Reverse Transcription kit (Life Technologies, USA) according 

to the manufacturer’s protocol and stored at -20ºC until further use. The primer specificity 

was evaluated at first in silico by means of the Primer-BLAST tool, then by Power SYBR 

Green I (Life Technologies, USA) amplification and melting curve analysis. Overall, 

qPCR reactions (10 µL final volume) consisted of 1X LightCycler 480 Probe Master 

(Roche Applied Science, USA), 300 or 600 nM forward and reverse primers (Integrated 

DNA Technology, Italy) according to the assay set-up, 200 nM human UPL probe (final 

concentrations) and 2.5 µL of 1:25 diluted cDNA (50 ng/µL). Each qPCR analysis was 

performed, in duplicate, in a LightCycler 480 instrument (Roche Applied Science, USA) 

using the standard PCR conditions (an activation step at 95ºC for 10 minutes; forty-five 

cycles at 95ºC for 10 seconds and at 60ºC for 30 seconds; a cooling step at 40ºC for 30 

seconds) and LightCycler 480 clear plates (Roche Applied Science, USA). To determine 

the efficiency of each qPCR assay, non-template and no-reverse transcription controls 

were included in each plate. Moreover, standard curves obtained by amplifying eight-

threefold serial dilution of the same cDNA pool were used. Data were analyzed with the 

LightCycler 480 software release 1.5.0 (Roche Applied Science, USA) using either the 

second derivative or the fit point method. Messenger RNA relative quantification was 

performed according to the ΔΔCt method (Livak & Schmittgen 2001).  

Statistics and Principal Component Analysis (PCA) 
 

To identify the DE genes, a two-class unpaired test was implemented in the program 

SAM (Significance Analysis of Microarrays) release 4.0 (Tusher et al. 2001), enforcing a 

False Discovery Rate (FDR) of less than 5% with a 1.5-fold change (FC) threshold. All 

other statistical tests (non-parametric Spearman correlation analysis and Mann-Whitney 

test) were carried out by the GraphPad Prism 5 software (San Diego, CA, USA). 

Statistical significance was set at P < 0.05.   

Principal components analysis is a technique used to reduce multidimensional data sets to 

lower dimensions for analysis. This statistical method was used to determine whether 

there was a clustering, based on DE genes, between control and treatment groups. 

Following SAM, the corresponding normalized microarray intensities of all the DE 
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transcripts were extracted from both datasets (muscle and liver), and used to generate 

separate PCA using TMEV. 

Results 
 

Phenotypic measures 
 

The health status of all the experimental animals was satisfactory all throughout the 

experiment. No drugs (other than Revalor-XS
®

) have been administered during the 

experimental procedure. Detailed information about body weight gain and feed 

conversion ratio have been presented elsewhere (Stella et al. 2015). 

Microarray quality assessment and data analyses 
 

A mean RIN values of 7.76 ± 0.40 and 7.90 ± 0.37 for muscle and liver tissues, 

respectively, were enough to guarantee all the 60 samples access to the microarray 

labelling and hybridization process. The used Agilent microarray platform contains, by 

default, a total number of 44,407 features (spots), of which 42,990 features consist of 60-

mer probes that correspond to 21,475 unique transcripts. All the non-biological control 

probes (n = 1097) and the first two spikes that were out of range in the log relative 

concentration plot (n = 64), were excluded from the dataset before the quantile 

normalization was applied. Due to the relatively robust number of samples in each dataset 

(30 per tissue), only 3 and 2 probe intensities were excluded from muscle and liver 

datasets, respectively, as they did not meet the criteria for inclusion. The processed 

signals for 42,987 and 42,988 probes in muscle and liver, respectively, were finally 

analyzed by SAM to identify the DE genes between REV and CTR groups. Finally, to 

cross-validate our platform performance, a relative quantification using qPCR was 

performed. The quantitative changes observed in the DNA microarray for the selected 

genes were confirmed by qPCR, and a positive correlation in the expression values 

between the two methods was found, confirming the experimental reliability (Table 2). 
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Table 2. qPCR cross-validation and correlation coefficient between qPCR and Microarray. 

Gene  FC
*
 qPCR FC array 

Spearman’s 

rho 

NR4A2 -2.08 -2.08 0.922 

ITAG2 -1.17 -2.37 0.127 

ANGPTL4 3.89 2.67 0.935 

GK 2.11 2.34 0.946 

HAMP 1.89 2.09 0.919 

MT2-A 1.8 2.01 0.933 

MAP3K14 1.16 2.29 0.368 

*
Fold Change (FC) was calculated comparing REV vs. CTR group. 

 

 

Transcriptomic signature of Revalor-XS
®
-71 days- treatment in muscle and liver 

tissues  

In muscle, the comparison between REV and CTR groups (REV vs. CTR) resulted in a 

list of 431 down-regulated transcripts. Following a careful re-annotation process and 

genome database screening, a total of 84 transcripts (corresponding to 84 unique probes 

ID on the Agilent bovine V.1 microarray slide) appeared to be withdrawn or discontinued 

records from the gene bank database, and hence they were excluded from our final DE 

list. Moreover, among the DE transcripts there were 64 estimated sequence tags (ESTs) 

that we also did not include in the final DE list. The remaining 283 characterized and 

fully annotated transcripts were considered in the functional analyses. A full list of all the 

431 DE transcripts in the muscle tissue is provided in Supplementary Table 1. The 

enrichment analysis using the Functional Annotation tool in DAVID identified several 

GO terms and KEGG pathways that were significantly enriched in the REV group of 

muscle samples. Noteworthy, there were several genes involved in the transmembrane 

transport (17 genes) and ion transport (19 genes). Significant enrichment of other 

biological transport systems (i.e. cation, metal ion and potassium ion transport) were also 

observed. In addition, cytokine receptor interaction and Jak-STAT signaling pathways 

were also enriched (Table 3). 
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Table 3. GO Biological Process, GO Molecular functions and KEGG pathway analysis of DE genes. DAVID functional annotation of the 

complete list of differentially regulated genes between CTR and REV groups (REV vs. CTR) in muscle tissue. 

Category and GO term Count Genes P-value FE 

BP: Transmembrane transport 17 

KCND3, SLC26A2, SLC9A3, TRPC2, CACNA1E, SLC5A9 ,KCNQ3, 

SLC17A2, LOC522784, SLC25A45, KCNG2, RHCG, ATP4A, 

KCNS1, SLC2A5, CACNA1G, KCNG3 

0.0002 2.95 

BP: Ion transport 19 

KCNJ6, KCND3, SLC26A2, SLC9A3, TRPC2, CACNA1E, SCNN1B, 

KCNQ3, ATP1A3, SLC17A2, KCNG2, GABRE, RHCG, ATP4A, 

KCNS1, HTR3B,, CACNA1G, KCNG3, FXYD7 

0.0005 2.51 

BP: Cation transport 15 

KCNJ6, KCND3, SLC9A3, TRPC2, CACNA1E, SCNN1B, KCNQ3, 

ATP1A3, SLC17A2, KCNG2, RHCG, ATP4A, KCNS1, CACNA1G, 

KCNG3 

0.0007 2.84 

BP: Monovalent inorganic cation transport 11 
KCNJ6, KCNG2, KCND3, SLC9A3, SCNN1B, ATP4A, KCNQ3, 

KCNS1, ATP1A3, SLC17A2, KCNG3 
0.0009 3.57 

BP: Metal ion transport 12 
KCNJ6, KCNG2, KCND3, SLC9A3, CACNA1E, TRPC2, SCNN1B, 

KCNQ3,, KCNS1, SLC17A2, CACNA1G, KCNG3 
0.0031 2.85 

BP: Potassium ion transport 6 KCNJ6, KCNG2, KCND3, KCNQ3, KCNS1, KCNG3 0.0169 3.98 

MF: Voltage-gated cation channel activity 8 
KCNJ6, KCNG2, KCND3, CACNA1E, KCNQ3, KCNS1, 

CACNA1G, KCNG3 
0.0004 5.81 

MF: Ion channel activity 13 
KCNJ6, GABRE, KCNG2, KCND3, CACNA1E, TRPC2, SCNN1B, 

KCNQ3, KCNS1, HTR3B, CACNA1G, KCNG3, FXYD7 
0.0005 3.35 

MF: Substrate specific channel activity 13 
KCNJ6, GABRE, KCNG2, KCND3, CACNA1E, TRPC2, SCNN1B, 

KCNQ3, KCNS1, HTR3B, CACNA1G, KCNG3, FXYD7 
0.0005 3.31 

MF: Channel activity 13 
KCNJ6, GABRE, KCNG2, KCND3, CACNA1E, TRPC2, SCNN1B, 

KCNQ3, KCNS1, HTR3B, CACNA1G, KCNG3, FXYD7 
0.0006 3.26 

MF: Passive transmembrane transporter activity 13 
KCNJ6, GABRE, KCNG2, KCND3, CACNA1E, TRPC2, SCNN1B, 

KCNQ3, KCNS1, HTR3B, CACNA1G, KCNG3, FXYD7 
0.0006 3.26 

MF: Cation channel activity 10 
KCNJ6, KCNG2, KCND3, CACNA1E, TRPC2, SCNN1B, KCNQ3, 

KCNS1, CACNA1G, KCNG3 
0.0006 4.18 

MF: Gated channel activity 11 
KCNJ6, GABRE, KCNG2, KCND3, CACNA1E, SCNN1B, KCNQ3, 

KCNS1, HTR3B, CACNA1G, KCNG3 
0.0007 3.72 

MF: Voltage-gated channel activity 8 
KCNJ6, KCNG2, KCND3, CACNA1E, KCNQ3, KCNS1, 

CACNA1G, KCNG3 
0.0016 4.64 



Chapter II 

 

66 
 

MF: Voltage-gated ion channel activity 8 
KCNJ6, KCNG2, KCND3, CACNA1E, KCNQ3, KCNS1, 

CACNA1G, KCNG3 
0.0016 4.64 

MF: Metal ion transmembrane transporter activity 10 
KCNJ6, KCNG2, KCND3, CACNA1E, TRPC2, SCNN1B, KCNQ3, 

KCNS1, CACNA1G, KCNG3 
0.0019 3.56 

MF: Iron ion binding 11 
CYP4F2, RSAD2, SCD, CYP4A11, CYP26C1, HPX, HBE1, 

TBXAS1, TPO, NOS2, MIOX 
0.0019 3.26 

MF: Heme binding 7 CYP4F2, CYP4A11, CYP26C1, HBE1, TBXAS1, TPO, NOS2 0.0034 4.74 

MF: Voltage-gated potassium channel activity 6 KCNJ6, KCNG2, KCND3, KCNQ3, KCNS1, KCNG3 0.0037 5.75 

MF: Tetrapyrrole binding 7 CYP4F2, CYP4A11, CYP26C1, HBE1, TBXAS1, TPO, NOS2 0.0044 4.52 

MF: Potassium channel activity 6 KCNJ6, KCNG2, KCND3, KCNQ3, KCNS1, KCNG3 0.0103 4.50 

KEGG pathway:Cytokine-cytokine receptor interaction 10 
CRLF2, TNFRSF8, FLT4, IFNAC, IL2RG, IL15RA, OSM, TPO, 

CXCR4, CCL4 
0.0011 3.74 

KEGG pathway: Neuroactive ligand-receptor interaction 10 
GABBR2, GABRE, P2RY2, GIPR, GRPR, SSTR1, NTSR1, APLNR, 

F2RL2, GALR2 
0.0061 2.91 

KEGG pathway: Jak-STAT signaling pathway 6 CRLF2, IFNAC, IL2RG, IL15RA, OSM, TPO 0.0427 3.07 

 

GO: gene ontology; BP: biological process; MF: molecular function; P value: modified Fisher exact P value calculated by DAVID software; FE: fold enrichment defined as 

the ratio of the two proportions: input genes involved in a biological process and the background information. 
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Regarding the liver tissue, 503 transcripts were found to be differentially expressed in the 

REV group when compared to the CTR one. Among these ones, 268 and 235 were up- 

and down-regulated, respectively (Supplementary Table 2). Following the same strategy 

of re-checking the status of those transcripts in the GenBank database, 57 and 104 

transcripts were excluded from the final list, as they were either withdrawn or EST 

sequences, respectively. A final list of 342 fully annotated DE transcripts was analyzed 

using DAVID. Functional annotation of liver DE transcripts (n = 342) evidenced the 

enrichment of many GO terms which were mainly biological processes incorporating 

carbohydrate, protein and glycoprotein metabolism and biosynthesis mechanisms. In 

addition, MAPK signaling pathways was the only KEGG pathway significantly enriched 

in this list (Table 4). 

 

Revalor-XS
® 

modulated common genes, but no functional GO terms or 

pathways, in both muscle and liver 
 

Twenty genes were found to be commonly expressed between muscle and liver data sets 

(Supplementary Table 3). Among these genes, some steroid-related genes such as the 

gamma-aminobutyric acid B receptor 2 (GABBR2) and the glutamate decarboxylase 1 

(GAD1) were represented. All the genes were down-regulated in both tissues, except for 

fatty acid synthase (FASN) gene, which was down-regulated in muscle (FDR 0%) and 

up-regulated in liver (FDR 3.43%). 



Chapter II 

 

68 
 

Table 4. GO Biological Process, GO Molecular functions and KEGG pathway analysis of DE genes. DAVID functional annotation of the 

complete list of differentially regulated genes between CTR and REV groups (REV vs. CTR) in liver tissue. 

Category and GO term Count Genes P-value FE 

BP: Carbohydrate biosynthetic process 7 CHST10, PMM2, ATF4, ATF3, B4GALT1, CHST12, G6PC 0.0008 6.24 

BP: ncRNA metabolic process 9 
METTL1, TBL3, MOCS3, FTSJ1, WARS2, FARSA, WDR4, 

DIMT1, CARS 
0.0038 3.53 

BP: Glycoprotein biosynthetic process 7 
ST3GAL1, PHLDA1, MGAT1, B4GALT1, B3GNT6, CHST12, 

ST6GALNAC2 
0.0039 4.60 

BP: RNA modification 5 METTL1, MOCS3, FTSJ1, WDR4, DIMT1 0.0050 7.11 

BP: Cellular carbohydrate biosynthetic process 5 PMM2, ATF4, ATF3, B4GALT1, G6PC 0.0072 6.42 

BP: Glycoprotein metabolic process 7 
ST3GAL1, PHLDA1, MGAT1, B4GALT1, B3GNT6, CHST12, 

ST6GALNAC2 
0.0100 3.80 

BP: Ribosome biogenesis 6 TSR1, TBL3, BYSL, FTSJ1, MRTO4, DIMT1 0.0102 4.51 

BP: Hexose metabolic process 7 PMM2, RPIA, ATF4, ATF3, B4GALT1, ENO2, G6PC 0.0192 3.29 

BP: tRNA metabolic process 6 METTL1, MOCS3, WARS2, FARSA, WDR4, CARS 0.0211 3.76 

BP: Ribonucleoprotein complex biogenesis 6 TSR1, TBL3, BYSL, FTSJ1, MRTO4, DIMT1 0.0221 3.71 

BP: Monosaccharide metabolic process 7 PMM2, RPIA, ATF4, ATF3, B4GALT1, ENO2, G6PC 0.0299 2.97 

BP: Protein amino acid glycosylation 5 ST3GAL1, MGAT1, B4GALT1, B3GNT6, ST6GALNAC2 0.0412 3.81 

BP: Biopolymer glycosylation 5 ST3GAL1, MGAT1, B4GALT1, B3GNT6, ST6GALNAC2 0.0412 3.81 

BP: Glycosylation 5 ST3GAL1, MGAT1, B4GALT1, B3GNT6, ST6GALNAC2 0.0412 3.81 

BP: ncRNA processing 6 METTL1, TBL3, MOCS3, FTSJ1, WDR4, DIMT1 0.0422 3.13 

MF: Sequence-specific DNA binding 15 
GSX1, NFIL3, MAFB, CEBPD, ATF3, CREB3L3, ONECUT3, 

GATAD2A, LHX1, ZHX3, ATF4, XBP1, CRX, ESRRB, SIX1 
0.0012 2.70 

MF: Transcription factor activity 17 

NFIL3, MAFB, CEBPD, NFIX, MYC, ATF3, CREB3L3, 

ONECUT3, E2F4, GATAD2A, LHX1, ZHX3, ATF4, XBP1, 

CRX, ESRRB, SIX1 

0.0057 2.13 

MF: Protein dimerization activity 9 
NFIL3, GABPB2, CEBPD, XBP1, ATF4, ATF3, B4GALT1, 

CREB3L3, CD3D 
0.0374 2.35 

KEGG pathway: MAPK signaling pathway 11 
CACNG6, FGFR4, GADD45B, PLA2G5,, GADD45A, MAP3K14, 

MYC, ATF4, MAP3K8, IL1A, TAOK1 
0.0249 2.20 

GO: gene ontology; BP: biological process; MF: molecular function; P value: modified Fisher exact P value calculated by DAVID software; FE: fold enrichment defined as 

the ratio of the two proportions: input genes involved in a biological process and the background information. 
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Differentially expressed genes can differentiate treated muscle samples, but not 

liver, from the control ones  
 

An PCA analysis was carried out separately on each dataset. To avoid any possible 

distortion in the PCA and to test the ability of the obtained DE transcripts to distinguish 

treated from control animals, only normalized and filtered microarray intensities of the 

previously obtained DE transcripts (431 and 503 transcripts for muscle and liver, 

respectively) were used. In the PCA on muscle samples (Figure 2), the first two 

components accounted for 97.87% of the total variance. On the other hand, in the PCA on 

liver samples (Figure 2) the first two components accounted for 72.57% of the total 

variance. A clear separation could be observed between CTR and REV-treated animals in 

the case of muscle samples, while, in the liver, grouping of treated from untreated 

samples couldn’t be clearly seen. 

 

Discussion 
 

On the phenotypic level, chronic exposure (71 days) to the TBA+E2, resulted in a 

significant increase in the ADG, but not in the final weight, of treated animals compared 

to the control ones. The main metabolites of TBA and E2 (ɑ, β-trenbolone and ɑ, β-

estradiol, respectively) were significantly present in the urine of animals, confirming the 

dissemination of the Revalor-XS
®
 implant into the circulation of the treated animals 

(Stella et al. 2015). It should be noted that the approach used in the current study was 

fairly conservative, as the implant was applied only for 71 and not 200 days (the full 

treatment schedule). Moreover, in a steady-state study like ours, a dynamic response 

might be expected in the early or even later period of exposure. However, the presence of 

the main metabolites of TBA and E2 in the urine of the treated animals, along with the 

large sample size (30 samples per tissue), assures the robustness of the provided results.   

A number of DE genes were identified in skeletal muscle and liver of steroid-treated 

cattle, with 20 genes commonly regulated between both tissues. Functional analyses of 

the resulted DE gene lists pointed out the enrichment of many biological processes, 

molecular functions and biochemical pathways.  
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Figure 2: PCA of the gene expression profiles. Top: PCA plot for the muscle samples shows the two 

principal components of greatest variation, covering 75.24% (x-axis) and 22.63% (y-axis) of the total 

variance. Ellipses distinguish different treatment groups, where the ellipse on the right illustrates the REV-

treated samples from the CTR ones (left ellipse). Bottom: PCA plot for the liver samples, where the first two 

components of greatest variation cover 72.58%. The “green squares” denote the CTR samples (numbers 1-

15), while the REV-treated samples (numbers 16-30) are denoted by “red squares”. 
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In muscle, several genes involved in the cytokine-cytokine receptor interaction pathway 

were significantly down-regulated, which still support the fact of steroids being immune-

suppressive agents (Morell 1995; Verthelyi 2001; Eisenberg et al. 2008). Among these 

genes, the chemokine C-X-C motif receptor 4 (CXCR4), the tumor necrosis factor 

receptor superfamily member 8 (TNFR-SF8) and the chemokine C-C motif ligand 4 

(CCL4), were down-regulated by 2.3-, 1.8- and 1.8-fold changes, respectively. In 

agreement with our results, the suppressive effect of steroids on CXCR4 (Ruiz et al. 

2010), TNFR (Riedmaier et al. 2009; Massart et al. 2015) and CCL4 (Sánchez et al. 

2014), were previously discussed. In addition, the Jak-STAT signaling pathway, which is 

a key pathway controlling myoblast proliferation and differentiation (Sun et al. 2007), 

was also enriched in our data set.  

A significant enrichment was also observed for the biological processes “transmembrane 

transport”, “ion transport”, “metal ion transport” and “potassium ion transport”, with 

many significantly down-regulated genes involved. The growth-promoting potency of 

TBA is based on both anabolic activity as an androgen and anti-catabolic activity as an 

anti-glucocorticoid (Thomas & Rodway 1983; Sillence & Rodway 1990; Jones et al. 

1991; Meyer 2001; Hunter 2010). Moreover, an earlier report by Danhaive and Rousseau 

(Danhaive & Rousseau 1988) suggested that anabolic steroids act via muscle 

glucocorticoid receptors, rather than via muscle androgen receptors, thereby antagonizing 

the catabolic activity of endogenous glucocorticoids. Taking into consideration that 

glucocorticoids are a key player in the ion transport machinery, and that steroids are 

potent absorbagogues (Sellin & DeSoignie 1985), an explanation for the enrichment of 

transmembrane and ion transport biological processes in our data set can be depicted.  

It is worth mentioning that we expected to see molecular signals in the steroid-treated 

muscle related to one or more of 1) the classical anabolic steroid-related genes AR, IGF1 

and GH and 2) the canonical promyogenic transcription factors MYOD1 and MYOG. 

Surprisingly, of these regulators, only the IGF1-like (LOC512788) was down-regulated 

by 1.6-fold. This result was in contrast to the IGF1 up-regulation reported in De Jager et 

al. (De Jager et al. 2011), but agreed with Pegolo et al. (Pegolo et al. 2014) who reported 

a limited under-expression of IGF1.  

In the liver, the combination of TBA and E2 (REV treatment) seemed to evoke a response 

putative of a transcriptional regulation. The modulation of genes involved in the mitogen-
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activated protein kinase (MAPK) pathway (11 genes) and the transcription factor (TFs) 

activity (17 genes), was observed in the liver following REV treatment. Among the 

modulated TFs, nuclear factor, interleukin 3 (NFIL3), activating transcription factor 3 

(ATF3), activating transcription factor 4 (ATF4) and E2F transcription factor 4 (E2F4) 

were all up-regulated by 2.15-, 1.75-, 1.5- and 1.84-fold, respectively. The classical 

estrogen signaling is known to occur through either a direct binding of estrogen receptor 

(ER) dimers to estrogen responsive elements (EREs), or via a second mechanism in 

which ERs interact with other transcription factors. Moreover, estrogen may also elicit 

effects through non-genomic mechanisms, which involve the activation of downstream 

signaling cascades such as MAPK (Faulds et al. 2012). In our study, as no differential 

regulation has been observed in the ER, we postulated the prevalence of the non-genomic 

mechanism of E2 in exerting its effect on the liver. 

The enrichment of several carbohydrate and protein biosynthesis and metabolic processes 

was evident in the liver and not observed in the muscle. Several genes involved in the 

carbohydrate biosynthesis process were differentially expressed. Among these, the 

carbohydrate sulfotransferase 10 (CHST10) and 12 (CHST12) were 1.65- and 1.9-fold 

down-regulated, respectively. Moreover, the transcription factors ATF3 and ATF4 were 

also among the involved genes. In the liver, glucuronidation converts steroid hormones 

into more water-soluble products, facilitating removal from the circulation. In addition to 

glucuronidation, sulfation (through sulfotransferases) also plays a role in counteracting 

the presence of steroid hormones (Raftogianis et al. 2000; Suzuki-Anekoji et al. 2013). 

Recently, CHTS10 has been suggested to regulate estrogen in vivo, and its loss, blocked 

the down-regulation of steroids (especially estrogen) in the mouse (Suzuki-Anekoji et al. 

2013). These findings point out, to some extent, the dominating signature of E2 over TBA 

in the liver. The down-regulation of some genes encoding fast fiber-type subunits 

(mezzanine 3, MYOZ3; myosin 16, MYO16; troponin C type 2, TNNC2) was 

interestingly observed in the liver and not in the muscle tissue. Although these findings 

do not support the slow fibre phenotype shift suggested by De Jager et al. (De Jager et al. 

2011), they still come to an agreement with data published by Pegolo et al. (Pegolo et al. 

2014). 

Despite the distinct transcriptomic profile, it was interesting to find 20 commonly 

regulated genes between muscle and liver following REV treatment. While all the 
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common genes showed a similar down-regulation trend, FASN was the only gene 

appeared to be down-regulated in muscle and up-regulated in the liver tissue. This gene 

codes for one of the key lipogenic enzymes catalyzing the de novo synthesis of fatty acids 

(Jensen-Urstad et al. 2012). Also, Chung et al. (2011) reported that the implant with a 

combination of TBA and E2 decreased the adipogenic gene expression in finishing steers. 

Moreover, FASN has been recently reported to be among the down-regulated lipogenic 

genes in the adipocytes of steroid-implanted steers (Duckett and Pratt 2014). However, 

FASN up-regulation in the liver shifted the argument from decreased to increased 

lipogenesis machinery, which might be resulting from a fatty liver (a characteristic 

feature of high producing cattle) or to a dominating effect of E2, which is believed to 

cause increased hepatic lipid accumulation (Murondoti et al. 2014). Although not being 

the main objective of this study, those commonly regulated genes could be further 

addressed in a targeted gene biomarker assays.  

From the PCA results, we could observe the consistency of the DE gene list of muscle 

over that of the liver. The one of the muscle was able to separate mostly all the treated 

from the untreated animals, while the liver one was less powerful in discriminating the 2 

animal groups. This could be, logically, addressed to the muscle being the main target 

tissue of anabolic steroids, and that the machinery of muscle fiber hypertrophy (main 

effect of anabolic steroids) is taking place solely in muscle. Accordingly, this could still 

favor the use of muscle tissue over the non-muscle one to screen beef cattle for anabolic 

steroid fraud.  
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Conclusions 
 

The present study showed that the effect of TBA and E2 combination on muscle and 

liver’s gene transcription appeared relatively weak in terms of FC, with no transcripts 

being markedly over- or under-expressed. However, a robust number of DE genes were 

identified in both tissues following the treatment with REV, that resulted in a better 

understanding of the transcriptomic signature an exogenous administration of anabolic 

hormones could leave behind. It is becoming clear that anabolic steroid-enhanced bovine 

muscle growth involves a complex interaction of numerous pathways and receptors. The 

muscle’s transcriptome response was directed toward mineral and ion transport processes, 

while the liver was expressing more a carbohydrate and protein biosynthesis patterns. 

Additionally, although TBA and E2 were not administered separately, and were 

combined within a sustained release implant, we postulated that the transcriptomic 

changes in the liver tissue were driven mainly by E2. Moreover, treated animals were 

better distinguished from the untreated ones based on the DE genes identified in muscle 

and not in the liver. Consequently, additional in vivo and in vitro studies are necessary to 

understand the mechanisms involved in this complex process, and the role of crosstalk 

between various receptors and pathways in anabolic steroid-enhanced animal growth 

needs to be depicted. 

 

Supplementary materials 
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Abstract 

 
Bovine primary cultured hepatocytes (CHs) are widely used in vitro models for liver 

toxicity testing. However, little is known about their whole-transcriptome profile and its 

resembelence to the normal liver tissue. In the present study, we profiled – by microarray 

- the whole-transcriptome of bovine CHs (n = 4 ) and compared it with the transcriptomic 

landscape of control liver samples (n = 8), as well the Madin-Darby bovine kidney 

(MDBK) cell line (n = 4). Compared with liver tissue, the bovine CHs expressed (fold-

change; FC > 2, P < 0.05) about 2,155 and 2,073 transcripts at a relative lower or higher 

abundance, respectively. Of those expressed at a lower abundance, many were drug 

biotransformation enzyme-coding transcripts (i.e. genes), such as the  the cytochrome 

P450 family (CYPs), sulfotransferases, methyltransferases, and glutathione peroxidases. 

Also, many drug transporters and solute carriers were expressed at a lower abundance in 

bovine CHs. ‘Drug metabolism’, ‘PPAR signaling’, and ‘metabolism of xenobiotics by 

CYPs’ were among the most negatively-enriched pathways in bovine CHs compared with 

liver. A qPCR cross-validation using 8 selected genes evidenced a high correlation (r = 

0.95, P = 0.001) with the corresponding microarray results. Although from a kidney 

origin, and albeit to a lower extent compared with bovine CHs, the MDBK cells showed a 

basal expression of a wide array of CYP-coding transcripts. Our study provide a whole-

transcriptome-based evidence for the bovine CHs and hepatic tissue resembelance. 

Overall, the bovine CHs’ transcriptomic profile renders it unreliable as an in vitro model 

to study drug metabolism. 

Introduction 
 

In spite of the fact that in vitro experimental models can not fully resemble the 

complexity of a living organism, their simplicity provides the ability to manipulate and 

analyze specific parameters (Jia and Liu, 2007). Several hepatic in vitro systems are 

currently available, ranging from hepatocyte subcellular fractions to whole isolated 

perfused livers (Godoy et al., 2013; Vinken et al., 2014). Among those, primary cultured 

hepatocytes (CHs), especially in human medicine, are generally considered as the gold 

standard in the field of liver-based in vitro modeling (Fraczek et al., 2013; Godoy et al., 

2013).  

Primary cultured hepatocytes are cells isolated from liver and maintained in culture, and 

indeed they have some intrinsic advantages that result in the closest representation of the 
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hepatic in vivo situation (Benet et al., 2015). They retain active uptake and excretion 

mechanisms as well as metabolism to a level comparable to hepatocytes in the liver 

(Jigorel et al., 2005). However, the fact that cultured hepatocytes are kept in an artificial 

environment differing from that of the liver might result in relevant phenotypic changes. 

Thus, it was argued that the drug metabolism activities of cultured hepatocytes may 

significantly differ from in vivo and this would throw uncertainty on the value and 

relevance of the in vitro data (Hewitt et al., 2007). Moreover, primary CHs provide a 

good reflection of the hepatic in vivo situation only for some days when properly 

cultured, hence their cultures can only be used for short-term purposes (Vinken and 

Rogiers, 2015). 

As long-term cultivation of primary hepatocytes is to a great extent hindered by the 

dynamic loss of the hepatocyte-particular phenotype both at the morphological and at the 

functional level (Vinken and Rogiers, 2015), there is a strong need for robust long-term in 

vitro screening models, the use of which ensure a well-maintained phenotypic and 

functional characteristics, as well as a reduced usage of animals in drug development 

studies. For instance, hepatoma cell lines offer some advantages for in vitro studies, such 

as high availability, easy handling, nearly unlimited life-span, and stable phenotype that 

does not depend on donor characteristics (Donato et al., 2015). Still, there are no available 

bovine hepatoma cell lines and the currently available human hepatoma cell lines (as 

HepG2 cells) are not a good alternative to cultured hepatocytes, as they show an 

extensively dedifferentiated hepatic phenotype (Benet et al., 2015) as well as limited 

expression of drug metabolizing enzymes and transporters (Guo et al., 2011; Hilgendorf 

et al., 2007).  

The absence of an immortalized bovine hepatocytes cell line and the generally difficult-

to-transfect primary CHs (Ourlin et al., 1997; Tur-Kaspa et al., 1986) has inspired the 

usage of other non-hepatic cell lineages. For example, the Madin-Darby bovine kidney 

(MDBK) cells- an immortalized bovine kidney distal tubule cell line (Madin and Darby, 

1958)- are easy to transfect (Nadeau, 2012) and have been widely used as a transient or 

stably-transfected in vitro model. In specific, MDBK cells have been used as a model for 

studying some functional pathways (mainly lipid metabolism) in cows (Bionaz et al., 

2008b; Thering et al., 2009; White et al., 2012), following the earlier report by Bionaz et 
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al., (2008a) that showed a similar gene expression profile between MDBK cells and 

periparturient bovine liver tissue.  

As a primary in vitro hepatic model, more attention was, logically, given to study primary 

hepatocytes. Several studies have investigated the transcriptomic profile of human 

primary cultured hepatocytes in many toxicological and pharmacological investigation 

(reviewed in: Fasinu et al., 2012; Godoy et al., 2013; Vinken and Rogiers, 2015). To date, 

there is no evidence on the global gene expression (whole-transcriptome) of the popular 

liver-derived in vitro model in bovine’s toxico-pharmacological studies; the bovine 

primary CHs. Therefore, the objectives of this study were; (1) to charachterize the 

transcriptomic profile (basal transcript abundance) of bovine primary CHs and to 

compare it with that of the bovine liver tissue, and (2) to characterize the global gene 

expression of MDBK cells in order to determine if this cell line can be a suitable model to 

replace primary hepatocytes in long-term toxicological and pharmacological studies in the 

bovine species. 

Materials and methods 
 

Primary hepatocytes isolation, cell cultures and liver tissue samples 
 

The bovine primary CHs were isolated from the liver caudate lobe of two healthy 

Charolais heifers (15-18 months old, ~400 kg body weight) as previously reported in 

Giantin et al. (2012). Briefly, at the slaughterhouse, liver specimens (100-150 g) were 

excised from the caudate lobe then rinsed immediately with ice-cold Eurocollins buffer 

(15 mM KH2PO4, 42 mM K2 HPO4, 15 mM KCl, 1 mM NaHCO3 and 0.2 M glucose, 

pH 7.4) supplemented with 1 mM ethylene glycol-bis(2-aminoethylether)- N,N,N0,N0-

tetraacetic acid (EGTA). The specimens were transported to the laboratory where the 

hepatocytes were isolated according to the method of Klooster et al. (1992), with few 

modifications (Giantin et al., 2012). Isolated hepatocytes were washed three times with 

William’s E medium (WEm), and the final pellet was weighed to estimate the appropriate 

amount of culture medium to be added (6 mL of medium per each 1 g of hepatocytes). 

The total number of isolated hepatocytes and the percentage of viable cells were 

determined by the trypan blue dye exclusion test. The isolated cells were suspended in 

WEm with 10% fetal bovine serum (FBS), 1.67 mM glutamine, 26.6 µM NaHCO3, 50 µg 

mL-1 gentamicin sulfate, 1 µM hydrocortisone 21-hemisuccinate and 1 µM insulin) to a 
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final density of 106 cells mL-1. Then, 6 mL of the cell suspensions (total of 6 x 106 cells) 

was seeded in a 9 cm plastic petri dish coated with rat-tail type-I-collagen (150 µL of a 1 

mg mL-1 collagen solution). Cells were then incubated in a humidified atmosphere 

(O2/CO2 95:5) at 37°C and left to attach for 4 h. The medium was then replaced with the 

same WEm mentioned above but without FCS. One replicate of primary cultured 

hepatocytes from the liver of each heifer (a total of 4 samples) were chosen for the 

microarray hybridizations.  

MDBK cells (American Type Culture Collection; ATCC, Catalog CCL-22) were grown 

in Dulbecco’s modified Eagle’s minimal essential  medium (DMEM), supplemented with 

10% FBS, 1% penicillin-streptomycin (PS), and L-glutamine. Cells were grown in 25-

cm2 tissue culture flasks (at 37°C and 5% CO2 atmosphere), and routinely sub-cultivated 

when attained 80% confluence, according to the product information supplied by ATCC. 

Two replicates of untreated cells (a total of 4 samples) were used for the microarray 

experiments.  

With respect to liver tissue, we have used a set of 8 raw microarray data (correspond to 8 

liver samples) that have been previously published by our group (Elgendy et al., 2015). 

The original data was a set of 15 untreated (control) liver samples that have been 

deposited into the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE62002. In the 

present study, we have used the raw microarray data that correspond to 8 liver control 

samples and re-analyzed them with the microarray data of the primary cultured 

hepatocytes. The accession numbers of the eight liver control samples are GSM1518119, 

GSM1518120, GSM1518123, GSM1518126, GSM1518127, GSM1518129, 

GSM1518130 and GSM1518131, respectively. 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62002). 

Cell Harvesting and RNA Isolation  
 

Total RNA from primary cattle hepatocyte cultures and MDBK cells was isolated by 

TRIzol (Life Technologies, USA) and subsequently purified using the RNeasy Mini kit 

(Qiagen, Italy) according to the manufacturer’s instructions. Briefly, the medium of two 

replicate Petri dishes for each cell culture was aspirated and 2 mL of ice-cold 0.1 mM 

phosphate buffer solution (PBS, pH 7.4) was added to each dish; monolayer were then 

scraped off. Cells were then pelleted by centrifugation (1500g, 5 min at 4 °C), the buffer 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62002
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was discarded and the remaining pellet was processed for RNA isolation. To avoid 

genomic DNA contaminations, on-column DNase digestion with the RNase-free DNase 

set (Qiagen, Italy) was performed during the RNA purification steps. Total RNA 

concentration was determined using the NanoDrop ND-1000 UV–Vis spectrophotometer 

(NanoDropTechnologies, USA), and its quality was measured by the 2100 Bioanalyzer 

(Agilent Technologies, USA). RNA aliquots (stored at -80°C) that have been previously 

isolated from the control liver samples (n = 8) were quantified and tested for RNA 

integrity again. All the 16 RNA samples (8 liver tissue; 4 primary cultured hepatocytes; 4 

MDBK cells) passed the RNA quality criteria (i.e., RNA concentration ≥ 40 ng/µL and 

RNA integrity number (RIN) ≥ 8). Hence, they were all considered for the subsequent 

microarray hybridizations and/or qPCR assays. 

Microarray Hybridization And Data Analysis 
 

Bovine-specific 4x44K oligo-microarray  (AMADID-015354, Agilent Technologies, 

USA) with a possible 22,000 unique probes (correspond to more than 18,000 unique 

transcripts) was used in the present study. Sample amplification, labeling and 

hybridization were performed following the Agilent One-Color Microarray-Based Gene 

Expression Analysis protocol as previously described (Elgendy et al., 2015). Briefly, 

RNA samples were labeled with Cy3 (green) fluorescent dye label using the Agilent Low 

Input Quick Amp Labeling kit (Agilent Technologies, USA). A purification step was 

applied to the labeled cRNA using the RNeasy Mini kit (Qiagen, Italy), and sample 

concentration and specific activity (pmol Cy3/µg cRNA) were measured. A total of 1.65 

µg of labeled cRNA was fragmented using the Gene Expression Hybridization kit 

(Agilent Technologies, USA) according to the manufacturer’s instructions, and then 

diluted by the addition of 55 µL of 2X GE hybridization buffer. A final volume of 100 µL 

of the hybridization sample mixture was dispensed on the gasket slide and then the active 

side of the microarray slide was placed on the top of it to form a ‘‘sandwich slide pair”. 

The slides were firstly incubated for 17 h at 65 °C in a hybridization oven (Agilent 

Technologies, USA), then washed using wash buffer 1 and 2 according to the 

manufacturer’s instructions. The hybridized slides were scanned at 5 µm resolution using 

the G2565BA DNA microarray scanner (Agilent Technologies, USA) where the default 

settings were modified in order to scan the same slide twice to produce images at two 

different sensitivity levels (XDR Hi 100% and XDR Lo 10%). The array images were 
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analyzed by the Agilent’s Feature Extraction Software (version 9.5.1), using the GE2-

v5_95_Feb07 FE extraction protocol.  

The microarray data files from each sample were imported into GeneSpring 13.0 (Agilent 

Technologies, USA) to perform the normalization and the differential expression analysis. 

Two independent analyses have been conducted by GeneSpring. The first analysis was a 

comparison between CHs and the liver tissue samples (CHs vs. liver tissue), and the 

second was between MDBK cells and CHs (MDBK vs. CHs). The raw data were 

normalized using the percentile algorithm (lower cutoff: 20th percentile and upper cutoff: 

100th  percentile). Probes that were flagged as marginal or absent were excluded, 

specifying that at least 50% of the samples in both experimental groups must possess 

flags to be employed in the differential expression analyses. The differentially expressed 

genes were then identified through fold change (FC), and P values were calculated using 

the Mann-Whitney unpaired test followed by a Benjamini-Hochberg multiple testing 

correction. The threshold for up- and down-regulated genes was set as a FC ≥ 2.0 and P 

values and FDR values < 0.05. The microarray data were deposited in the ArrayExpress 

public database (https://www.ebi.ac.uk/arrayexpress/) at the European Bioinformatics 

Institute and are accessible through the accessions E-MTAB-4424 and E-MTAB-4430. 

Cross-Validation by Quantitative Real-Time PCR (qPCR) 
 

Quantitative real-time PCR (qPCR) was performed to confirm the expression pattern of 8 

candidate genes of interest. Those genes were chosen from the list of down-regulated 

genes in the primary cultured hepatocytes as compared to the liver tissue. The GenBank 

accession number and the qPCR primer oligonucleotide sequences used for the 

quantification of the genes encoding cytochromes P450 (CYPs) 1A1, 2C19 and 3A5, 

solute carrier (SLC) 10A1 and O2B1, complement 7 (C7), and tyrosine aminotransferase 

(TAT) are reported in Table 1. 
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Table 1. Oligonucleotide sequences used for the qPCR cross-validation assays. 

Gene  GenBank accession Primer sequence (5’ >> 3’) 
Amplicon size 

(bp) 
Reference 

CYP1A1 XM_588298 
F: GACCTGAATCAGAGGTTCTACGTCT 

R: CCGCATGTGACCCTTCTCAA 
81 Giantin et al., 2008 

CYP1A2 XM_010817139 
F: ACCATGACCCGAAGCTGTG 

R: CAATGGTGGTGCCATCAGAC 
78 Giantin et al., 2008 

CYP2C19 NM_001109792 
F: TGACCTTGTCCCCAGCAGTA 

R: CTGCCCTGGGTTGGAAAACT 
142 Ex novo 

CYP3A5 NM_174531 
F: CCAGAGACGTGGTCTACTTTGA 

R: CCCTACTCACCAGCAAGTACAGT 
76 Zancanella et al., 2014 

SLC10A1 NM_001046339 
F: GCTTCTCCTTGTTGCCATCTTTAG 

R: AGGTCATTTTTGTGTCATCTCTGG 
71 Zancanella et al., 2013 

SLCO2B1 NM_174843 
F: GTGTGGAATACATCACGCCCT 

R: TTGGTGTAGAAGACCTGGCTTTT 
88 Zancanella et al., 2013 

C7 NM_001045966 
F: GGACGGTGCTGATGAAGACA 

R: TGTAACCACGTCCGGTAAGC 
101 Elgendy et al., 2015 

TAT NM_001034590 
F: CTGAAGTTACCCAAGCAATGAAAG 

R: CCTCCCGACTGGATAAGTAGCC 
90 Cantiello et al., 2009 

TBP
a
 NM_001075742 

F: ACAACAGCCTCCCACCCTATGC 

R: GTGGAGTCAGTCCTGTGCCGTAA 
111 Lisowski et al., 2008 

B2M
a
 NM_173893 

F: TCGTGGCCTTGGTCCTTCT 

R: AATCTTTGGAGGACGCTGGAT 
71 Zancanella et al., 2013 

 

B2M: beta-2-microglobulin; bp: base pairs; C7: complement component 7; CYP1A1: cytochrome P450 1A1; CYP1A2: cytochrome P450 

1A2; CYP2C19: cytochrome P450 2C19; CYP3A5: cytochrome P450 3A5; SLC10A1: Solute carrier family 10, member 1; SLCO2B1: Solute 

carrier organic anion transporter family, member 2B1; TAT: tyrosine aminotransferase; and TBP: TATA box binding protein. 
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The beta-2-microglobulin (B2M) and the TATA box binding protein (TBP) genes were 

used as an internal control (reference) genes. To ensure a uniform workflow, the RNA 

samples used for qPCR were the same used for the microarray hybridizations. First-strand 

cDNA was synthesized from 0.5 µg of total RNA using the High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Foster City, CA, USA) according to the 

manufacturer’s protocol and stored at -20ºC until further use. Quantitative RT-PCR was 

performed using Power SYBR Green I (Thermo Fisher Scientific Inc, Waltham, MA, 

USA). Briefly, the qPCR reactions (10 µL final volume) consisted of a SYBR Green 

master mix, 300 or 600 nM forward and reverse primers (Integrated DNA Technology; 

TEMA ricerca, Bologna, Italy), and 2.5 µL of 50 ng/µL cDNA. Assays were performed 

in duplicates by the Stratagene MX3000P real-time PCR system (Stratagene, CA, USA) 

using the standard PCR conditions (an activation step at 95 ºC for 10 min; 45 cycles at 95 

ºC for 10 s and at 60 ºC for 30 s, and a cooling step at 40 ºC for 30 s). No template and 

no-reverse-transcription controls were used in each assay to ensure a specific and 

uncontaminated reaction. For each qPCR assay, 8 standard curves were generated using 

duplicate 3-fold serial dilutions of cDNA pool. Messenger RNA relative quantification 

(RQ) was calculated by the ΔΔCt method (Livak and Schmittgen, 2001), and normalized 

using the average RQ values of the 2 internal control genes (B2M and TBP). The selected 

reference genes showed an unchanged expression pattern between the experimental 

groups after a quality control qPCR step, hence they were used for the data normalization. 

Functional Annotation and Statistical Analysis 
 

Functional analysis of the DE genes was performed by the analysis of the enrichment for 

specific Gene Ontology (GO) terms using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID; Dennis et al., 2003; Huang da et al., 2009) as 

implemented in the online platform (http://david.abcc.ncifcrf.gov/). The probes present in 

the microarray were used as reference background, and the default options were modified 

to identify enriched GO terms at a minimum gene count of ‘10’ and an EASE score (a 

modified Fisher Exact P-value) ≤ 0.01. 

Statistical tests were carried out by the GraphPad Prism 5 software (San Diego, CA, 

USA). The RQ values of the qPCR-analyzed genes were expressed as FC, and the 

significance of gene expression between experimental groups (primary hepatocytes 

versus liver tissue) was determined using the nonparametric Mann-Whitney test (Mann 

http://david.abcc.ncifcrf.gov/
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and Whitney, 1947). The correlation significance between qPCR and microarray data on 

the level of either individual genes (qPCR-derived RQ value of a specific gene compared 

to its corresponding microarray intensity) or the level of quantification technology (qPCR 

versus microarray; using FC of the respective genes) was carried out by the Spearman’s 

nonparametric correlation test. Statistical significance for all analyses was declared at P ≤ 

0.05. 

Results 

Microarray Analysis 
 

Bovine Primary Cultured Hepatocytes (CHs) versus Liver 

Out of the 21,535 unique probes -automatically identified by GeneSpring for each raw 

data file-, a total number of 14,399 probes (66.9 %) appeared to have flags (i.e. above-

threshold intensities) in at least 50% of the 2 experimental groups (CHs and liver). Of 

those flagged probes, 11,832 (~82%) passed the ‘filtering by expression’ step (percentile 

20-100%) and hence considered in the differential expression analysis. A number of 

4,327 probes showed differential expression (FC ≥ 2.0, P ≤ 0.05) in CHs when compared 

with liver tissue, of which 2,125 and 2,202 probes –corresponded to 2,073 and 2,155 

unique transcripts– were over- and under-expressed, respectively. A hierarchical 

clustering heatmap of CHs (n = 4) and liver tissue samples (n = 8) is shown in Figure 1A. 

The detailed list of the up- and down- regulated probes, their corresponding gene symbol 

(if any), and a description of each probe is reported in Supplementary Table 1 & 2, 

respectively.  

Primary cultured hepatocytes showed a low abundance of many biontransformation-

related genes compared to the liver tissue (Supplementary Table 2). Many phase I 

biotransformation genes, such as cytochrome P450s (CYPs; CYP1A1, CYP1A2, 

CYP3A5, CYP2C19, CYP214, CYP4V2 and CYP4A22), flavin-containing 

monooxygenases (FMOs; FMO3, FMO5 and FMO2), and alcohol dehydrogenases 

(ADHs; ADH4, ADH1C, ADH6 and ADHFE) were down-regulated in the CHs 

compared to the liver tissue samples (CHs vs. liver). Other phase I biotransformation 

enzymes (NADPH-reducatases, esterases, amidases and hydrolases) were also expressed 

at lower amounts in CHs. Some major phase II biotransformation enzymes such as 

methyltransferases (MTs; AMT, BHMT, SHMT, COMT and GAMT), sulfotransferases 
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(STs; CHST, CHST13 and HS3ST3B1), glutathione peroxidases (GST; GSTA2, GSTA4, 

GST2, GSTT and GSTA3), and glucuronsyltransferases (UGTs; UGT2B1, UGT2A, 

UGT2A3, UGT1A6 and UGT31) were also under-expressed in CHs. Many ATP-binding 

cassette (ABC) transporters and solute carriers (SLCs) were also expressed at lower levels 

in CHs, compared to the liver tissue. 

Madin-Darby Bovine Kidney (MDBK) cells versus Bovine Primary Cultured Hepatocytes 

(CHs) 

The MDBK cells –in comparison with the CHs– expressed 13,803 probes (~64% of the 

total probes count) in at least 50% of the samples (n = 4, each). The ‘filtering by 

expression’ retained a final number of 13,030 transcripts (94.4% of the flagged probes) 

which we have used to check for the DE gene between groups (MDBK vs. CHs). Finally, 

a total of 5,306 probes showed differential expression (FC ≥ 2.0, P ≤ 0.05) in MDBK 

cells when compared with CHs, of which 2,601 and 2,705 probes –corresponded to 2,536 

and 2,640 unique transcripts– were over- (Supplementary Table 3) and under-expressed 

(Supplementary Table 4), respectively. A hierarchical clustering heatmap of MDBK (n 

= 4) and CHs (n = 4) is shown in Figure 1B. 

On the level of biotransformation-related genes, MDBK cells –compared with the bovine 

CHs– had a lower transcript abundance of many CYPs (CYP1A1, 1A2, 3A5, 2C18, 

2C19, 2C87, 2D14, 4A22, 4F2, 4V2, 11A1, 17A1, 26A1, 27A1 AND 39A1). Although 

those genes were not abundant in MDBK cells, they were still detected (Supplementary 

Table 4). Other genes involved in biotransformation (i.e. STs, MTs, UGTs, ABC 

transporters) were expressed in MDBK cells with no distinct pattern of abundance 

(neither all were over- nor down-expressed) in comparison with the bovine CHs. 
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Figure 1: Cluster dendrogram of the differentially expressed (DE) genes in both comparisons (CHs vs. 

Liver and MDBK vs. CHs). A heatmap was generated from the DE genes (> 2-fold) in both comparisons; 

CHs vs. Liver (A), and MDBK vs. CHs (B). The hierarchical clustering (Euclidean distance clustering 

algorithm) option in the GeneSpring software v.13.1 (http://genespringsupport.com/) was used. In the 

heatmap, red indicates an expression level higher than the mean across all subjects, and blue denotes 

expression level lower than the mean. 
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qPCR cross-validation 
 

There were strong correlations between the expression ratios (expressed in FC) of the 

microarray and qPCR results (P < 0.01; Table 2) across all the tested 8 genes. The 

correlation plots of all the individual qPCR-tested genes are shown in Figure 2. 

 

 

Table 2. qPCR cross-validation analysis. Nine differentially expressed (DE) genes 

between bovine primary cultured hepatocytes (CHs) and liver were tested by qPCR, then 

correlated to their corresponding microarray data. The difference in expression is 

reported as a fold-change (FC).  

 

* CYP1A1 was expressed in MDBK cells in a lower abundance compared with CHs (- 4.8-fold) and liver 

(- 147.9-fold, while the other 8 genes were detected at very high Ct (>35) and the qPCR assays were 

inefficient.
 

1
The mRNA relative quantification (RQ) was calculated by the ΔΔCt method, and normalized using the 

average of the RQ values of 2 internal control (reference) genes (TBP and B2M). For the microarray, the 

FC was calculated using the Mann-Whitney test in the GeneSpring software, comparing primary cultured 

hepatocytes (CHs) versus the liver tissue samples (CHs vs. Liver) 
†
Correlations were calculated using the RQ values of the genes analyzed by qPCR and their 

corresponding microarray intensities (normalized raw data). All correlations were significant at P ≤ 

0.01.

Gene name FC
1
 qPCR FC array Spearman’s rho

†
 

CYP1A1* -61.5 -79.8 0.9441  

CYP1A2 -26.7 -51.6 0.7972  

CYP2C19 -9.2 -9.5 0.7622  

CYP3A5 -11.8 -10.7 0.7692  

SLC10A1 -33.4 -29 0.8021  

SLCO2B1 -4.8 -6.9 0.7902  

C7 -149 -121.6 0.9231  

TAT -52.2 -121.5 0.9091  
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Figure 2: qPCR cross-validation of 8 differentially expressed (DE) genes in bovine primary cultured 

hepatocytes (CHs) when compared with normal liver tissue (CHs vs. Liver). The plots represent the qPCR 

RQ values of the qPCR-analyzed genes versus their corresponding normalized-microarray probe 

intensities. Each solid dot represents a sample from twelve samples (CHs, n = 4; liver tissue, n = 8). Both 

the Pearson’s rho (r), representing the correlation coefficient, and the obtained p-value are shown within 

each plot. 
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In addition, both technologies (i.e. microarray vs. qPCR) showed a strong correlation 

(Spearman’s r = 0.95, P = 0.0011) in-between, in terms of the calculated FC values 

(Figure 3). In MDBK cells, CYP1A1 was the only quantifiable gene with an efficient 

qPCR assay, while the other 7 genes (CYP1A2, CYP2C19, CYP3A5, SLC10A1, 

SLCO2B1, C7, and TAT) were poorly quantified (Ct values > 35, and non-efficient qPCR 

assays). The CYP1A1 gene was expressed in a lower abundance compared with both the 

bovine CHs (- 4.8-fold) and liver tissue (- 147.9-fold). 

 

 

 

 

Figure 3: Overall correlation between the microarray and qPCR data.  Using the 

calculated fold-change (FC) of selected 8 genes, both technologies (i.e. microarray vs. 

qPCR) showed a strong correlation (Spearman’s r = 0.95, P = 0.0011) in-between. 

 

Functional Annotation and Pathway analysis 
 

The functional annotation highlighted the most relevant GO terms and signaling pathways 

associated with each list of the DE genes and, accordingly, their corresponding biological 

condition (i.e. CHs, liver tissue or MDBK cells). The most enriched KEGG pathways (n = 

21) in CHs –compared with liver tissue– and the direction of the enrichment is presented 

in Table 3. In CHs, the data indicated that pathways related to ‘metabolism’ were the 

most represented, with a larger inhibition of main metabolic pathways, such as drug 
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metabolism, retinol metabolism, metabolism of xenobiotics by CYPs, fatty acid 

metabolism, tyrosine and tryptophan metabolism. The data also indicated a higher 

inhibition of pathways related to amino acid and lipid metabolism in CHs. Among those 

the ‘PPAR signaling’ and the ‘fatty acid metabolism’ pathways were highly impacted 

(Table 3). Finally, nucleotide metabolism and cell death related pathways were overall 

induced in CHs, with ‘proteasome’ (the protein-destroying apparatus) being the most 

induced pathway (Table 3). 



Chapter III 

 

95 
 

Table 3. Pathway analysis of the differentially regulated genes between primary culture hepatocytes (CHs) and the liver tissue (CHs vs. Liver). 

 

Direction KEGG Pathway Count Genes FE* P Value
†
 

− 
Bta00280:Valine, leucine and 

isoleucine degradation 
18 

HSD17B10, ALDH6A1, ACAA2, ACADM, EHHADH, BCKDHB, HIBADH, 

DBT, MUT, ALDH7A1, HMGCS2, MCCC1, AOX1, ALDH2, ACAD8, PCCB, 

HMGCL, ACAA1 

5.77 2.19E-09 

− 
Bta04610:Complement and 

coagulation cascades 
22 

C7, MBL2, C4A, MASP1, C3, F13A1, C6, C5, F9, SERPING1, C4BPB, C4BPA, 

PLG, PROC, C1QA, C8B, C1QB, F5, CFI, SERPIND1, CFD, CPB2 
4.37 7.79E-09 

− Bta00982:Drug metabolism 18 

CYP3A5, GSTA3, GSTA4, CYP2C18, CYP2D14, MAOB, GSTT1, CYP1A2, 

UGT1A6, FMO5, LOC511498, ADH4, FMO2, MGC152010, FMO3, AOX1, 

UGT2A3, MGST2 

5.18 1.49E-08 

− Bta03320:PPAR signaling pathway 19 

ACOX2, CPT1B, PPARA, CPT2, ACADM, EHHADH, ACADL, PCK1, APOA2, 

CYP4A22, APOA5, FABP1, SCD5, SCP2, SLC27A2, PLTP, SLC27A5, ACAA1, 

NR1H3 

4.01 4.73E-07 

− Bta00830:Retinol metabolism 15 

CYP3A5, CYP1A1, CYP2C18, CYP1A2, RDH5, ALDH1A1, UGT1A6, 

ALDH1A2, CYP4A22, LRAT, DHRS4, LOC511498, ADH4, MGC152010, 

UGT2A3 

5.04 5.10E-07 

− 
Bta00260:Glycine, serine and 

threonine metabolism 
13 

GLYCTK, SHMT1, ALAS1, GATM, AMT, MAOB, BHMT, GCAT, GAMT, 

AGXT2, PSAT1, PIPOX, CBS 
5.56 1.17E-06 

− 
Bta00980:Metabolism of xenobiotics 

by cytochrome P450 
13 

CYP3A5, GSTA3, GSTA4, CYP1A1, CYP2C18, GSTT1, CYP1A2, UGT1A6, 

LOC511498, ADH4, MGC152010, UGT2A3, MGST2 
4.37 2.04E-05 

− Bta00071:Fatty acid metabolism 12 
CPT1B, GCDH, ACAA2, ALDH7A1, CYP4A22, CPT2, ACADM, EHHADH, 

ADH4, ALDH2, ACADL, ACAA1 
4.46 3.96E-05 

− Bta00380:Tryptophan metabolism 12 
DDC, GCDH, ALDH7A1, TDO2, CYP1A1, EHHADH, AOX1, MAOB, ALDH2, 

CAT, CYP1A2, AFMID 
4.23 6.70E-05 

− Bta00350:Tyrosine metabolism 10 DCT, DDC, GOT1, ADH4, AOX1, MAOB, HGD, COMT, TAT, FAH 4.28 3.33E-04 

− 
Bta00330:Arginine and proline 

metabolism 
12 

GLS2, ALDH7A1, GOT1, ASS1, GATM, CKMT2, OTC, MAOB, ALDH2, 

GAMT, CPS1, ASL 
3.26 8.11E-04 

+ Bta03050:Proteasome 16 
PSMA7, PSMB8, PSMB9, PSMB5, PSMA1, PSMB4, PSMD14, PSME1, 

PSMD12, PSMA5, PSMA4, PSMB2, PSMD1, PSMC1, PSMD2, PSMD6 
4.02 3.36E-06 

+ Bta00240:Pyrimidine metabolism 24 

DCTD, POLR2G, NUDT2, CTPS, DTYMK, UPP1, POLR1B, POLR2D, TK1, 

POLD3, UMPS, ITPA, POLE4, UPRT, NT5M, POLD1, NT5C2, RRM1, PRIM2, 

ENTPD8, CDA, TXNRD1, UCK2, DUT 

2.91 3.41E-06 

+ Bta03030:DNA replication 13 
MCM3, MCM4, MCM5, POLD3, RPA1, RFC3, POLE4, RFC4, RFC2, POLD1, 

PRIM2, PCNA, FEN1 
4.23 2.19E-05 
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+ 
Bta00970:Aminoacyl-tRNA 

biosynthesis 
13 

YARS, CARS, DARS, PSTK, SARS, AARS, GARS, GTF2H4, KARS, WARS, 

LARS, HARS, MARS 
3.59 1.35E-04 

+ Bta04210:Apoptosis 18 
CFLAR, IRAK1, DFFA, TP53, FADD, ENDOD1, BAD, BCL2L1, BIRC3, 

CAPN2, CASP6, IRAK3, TNFRSF1A, CASP3, CASP7, RIPK1, CASP8, FAS 
2.43 8.33E-04 

+ Bta04110:Cell cycle 23 

CDC7, ANAPC1, E2F4, DBF4, TP53, SKP2, SMAD3, CDK7, MCM3, CDK4, 

CDC26, CDC27, MCM4, MCM5, CDK2, TGFB2, CDC25B, YWHAH, CCND3, 

CDKN2B, GSK3B, PCNA, BUB3 

2.07 0.001276 

+ Bta03420:Nucleotide excision repair 11 
RPA1, POLD3, RFC3, POLE4, RFC4, RFC2, POLD1, PCNA, GTF2H4, CDK7, 

ERCC1 
2.97 0.002809 

+ 
Bta04620:Toll-like receptor signaling 

pathway 
18 

IRAK1, MAP2K1, MAP2K3, FADD, TLR4, CD40, IFNAR1, IKBKE, MAPK1, 

STAT4, MAPK13, JUN, RIPK1, CASP8, MAPK3, TICAM1, SPP1, TRAF3 
2.12 0.003924 

+ Bta05200:Pathways in cancer 41 

TRAF1, PTGS2, PML, CDH1, NFKB2, BCL2L1, ITGB1, MMP1, FLT3LG, 

TGFB2, CASP3, STAT4, CDKN2B, ITGAV, CASP8, SLC2A1, FAS, TRAF4, 

AXIN1, TRAF3, EGFR, MSH6, MAP2K1, TGFBR1, SKP2, TP53, SMAD3, 

ITGA3, FZD3, FADD, BAD, BIRC3, CDK4, CDK2, JUP, MAPK1, NRAS, 

ITGA6, GSK3B, JUN, MAPK3 

1.50 0.008156 

+ Bta05213:Endometrial cancer 11 
EGFR, NRAS, MAPK1, MAP2K1, GSK3B, ILK, MAPK3, TP53, CDH1, BAD, 

AXIN1 
2.53 0.009253 

 

*FE = Fold Enrichment 
†
The significance of enrichments was set at P < 0.01, a minimum gene count of 10, and an EASE score of 0.01. 
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The identified biological process (BP) and molecular function (MF) GO terms are 

described in Table 4 and Supplementary Table 5 (Appendix 5). Oxidation reduction 

and lipid-metabolism-related processes were strongly represented as inhibited BP terms in 

CHs. Several binding-related molecular functions (Table 4) were also inhibited in CHs, 

with the ‘cofactor’ and ‘coenzyme’ binding being the most enriched (lowest P values) 

terms, and ‘ion binding’ being the one with the highest gene count (190 genes). Lastly, 

the functional annotation evidenced the induction of several biological processes, of 

which the ‘programmed cell death’ was the most induced. As it was not the objective of 

the present study, and because of the different tissue nature and the expected 

transcriptomics divergence, no functional analysis was conducted on the DE gene list of 

the MDBK cells comparison with CHs (MDBK vs. CHs). 

 

Table 4. Functional annotation of the differentially expressed genes in the primary 

culture hepatocytes (CHs) samples compared to the liver tissue (CHs vs. Liver). 

Minimum gene count was set to 20 and an EASE score of 0.01 was applied. Counts 

represent the number of genes from the list associated with a given GO term. Negatively 

and positively enriched GO terms are indicated by ‘−’ and ‘+’, respectively. The detailed 

gene list for each GO term is reported in Supplementary Table 5. 

 
Direction Category and GO term Count FE P value 

− BP;GO:0055114~oxidation reduction 86 2.687

462 

9.88E-18 

− MF;GO:0048037~cofactor binding 42 3.625

84 

5.43E-13 

− MF;GO:0050662~coenzyme binding 30 3.767

107 

7.33E-10 

− BP;GO:0016054~organic acid catabolic process 20 5.343

674 

1.68E-09 

− BP;GO:0046395~carboxylic acid catabolic process 20 5.343

674 

1.68E-09 

− MF;GO:0005509~calcium ion binding 61 1.914

946 

1.04E-06 

− MF;GO:0005506~iron ion binding 34 2.418

709 

3.44E-06 

− MF;GO:0009055~electron carrier activity 25 2.918

181 

3.58E-06 

− MF;GO:0046906~tetrapyrrole binding 20 3.098

181 

1.79E-05 

− BP;GO:0006631~fatty acid metabolic process 21 2.953

083 

2.11E-05 

− MF;GO:0030246~carbohydrate binding 24 2.687

881 

2.36E-05 

− MF;GO:0043167~ion binding 190 1.291

226 

2.77E-05 

− MF;GO:0043169~cation binding 187 1.283

468 

4.86E-05 

− MF;GO:0046872~metal ion binding 183 1.270

747 

1.14E-04 

− BP;GO:0009611~response to wounding 23 2.106

934 

0.001229 

− MF;GO:0000287~magnesium ion binding 21 1.989

032 

0.004218 

− MF;GO:0008289~lipid binding 23 1.798

26 

0.008696 

− BP;GO:0008610~lipid biosynthetic process 20 1.897

162 

0.008745 

− BP;GO:0048878~chemical homeostasis 24 1.764

883 

0.00892 

+ BP;GO:0012501~programmed cell death 39 2.457

924 

2.73E-07 
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+ BP;GO:0006915~apoptosis 38 2.445

856 

4.54E-07 

+ BP;GO:0008219~cell death 40 2.283

123 

1.35E-06 

+ BP;GO:0016265~death 40 2.230

516 

2.46E-06 

+ BP;GO:0008283~cell proliferation 25 2.725

349 

9.16E-06 

+ BP;GO:0006260~DNA replication 21 2.954

786 

1.63E-05 

+ BP;GO:0006259~DNA metabolic process 43 1.985

968 

1.99E-05 

+ BP;GO:0034660~ncRNA metabolic process 27 2.438

171 

3.01E-05 

+ BP;GO:0042981~regulation of apoptosis 46 1.886

866 

3.69E-05 

+ BP;GO:0043067~regulation of programmed cell death 46 1.867

87 

4.76E-05 

+ BP;GO:0045321~leukocyte activation 23 2.601

053 

4.88E-05 

+ BP;GO:0010941~regulation of cell death 46 1.861

623 

5.11E-05 

+ BP;GO:0006396~RNA processing 42 1.910

613 

6.33E-05 

+ BP;GO:0007049~cell cycle 40 1.854

491 

1.86E-04 

+ BP;GO:0001775~cell activation 24 2.323

306 

1.98E-04 

+ BP;GO:0043065~positive regulation of apoptosis 23 2.319

272 

2.85E-04 

+ BP;GO:0043068~positive regulation of programmed cell 

death 

23 2.300

105 

3.22E-04 

+ BP;GO:0010942~positive regulation of cell death 23 2.281

251 

3.63E-04 

+ BP;GO:0051726~regulation of cell cycle 22 2.335

194 

3.64E-04 

+ BP;GO:0010033~response to organic substance 31 1.974

3 

3.93E-04 

+ BP;GO:0044265~cellular macromolecule catabolic 

process 

41 1.710

768 

8.37E-04 

+ BP;GO:0010605~negative regulation of macromolecule 

metabolic process 

34 1.781

033 

0.001262 

+ BP;GO:0033554~cellular response to stress 34 1.758

2 

0.001572 

+ BP;GO:0006397~mRNA processing 23 2.016

758 

0.001986 

+ BP;GO:0016071~mRNA metabolic process 25 1.939

191 

0.002082 

+ BP;GO:0044093~positive regulation of molecular function 27 1.877

672 

0.002118 

+ BP;GO:0009057~macromolecule catabolic process 42 1.554

199 

0.004429 

+ BP;GO:0001944~vasculature development 20 2.000

091 

0.004634 

+ BP;GO:0065003~macromolecular complex assembly 38 1.580

141 

0.005323 

+ BP;GO:0042127~regulation of cell proliferation 36 1.584

072 

0.00652 

+ BP;GO:0070271~protein complex biogenesis 26 1.747

857 

0.006738 

+ BP;GO:0006461~protein complex assembly 26 1.747

857 

0.006738 

+ BP;GO:0043933~macromolecular complex subunit 

organization 

39 1.532

213 

0.007832 

+ BP;GO:0043066~negative regulation of apoptosis 22 1.823

371 

0.008415 

+ BP;GO:0060548~negative regulation of cell death 22 1.798

731 

0.00979 

+ BP;GO:0043069~negative regulation of programmed cell 

death 

22 1.798

731 

0.00979 

 

GO: gene ontology; BP: biological process; MF: molecular function; FE: fold enrichment (defined as the 

ratio of the two proportions: input genes involved in a biological process and the background information); 

P value: modified Fisher exact P value calculated by DAVID software. 
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Discussion 
 

The main focus of the present study was the comparison between bovine CHs and liver 

tissue, in terms of global gene expression. The transcriptomic profiling of the MDBK 

cells was performed just to examine whether they share any common genetic features 

(individual genes or gene batteries) with the bovine CHs that could render them 

alternative in vitro model for hepatic-based pharmaco-toxicological studies. The present 

study illustrates -in details- the transcriptomic landscape of bovine CHs in comparison 

with the normal liver tissue, and furthermore shows the ability of MDBK cells, albeit to a 

lower extent compared to CHs, to express some of the key hepatic drug metabolizing 

enzyme-coding genes. 

Each in vitro model has its own pros and cons. A major drawback of the use of isolated 

hepatocytes and their cultures is their limited life span and progressive loss of liver-

specific functions (Guillouzo et al., 1990), especially those controlled by the CYPs family 

(Elaut et al., 2006; López-Garcı́a, 1998; Wang et al., 2002), rendering them an inadequate 

model for the study of xenobiotic biotransformation and toxicity. The CYP enzymes were 

reported to be downregulated with time in rat hepatocytes culture (Baker et al., 2001; 

Sidhu and Omiecinski, 1995). In agreement, the bovine CHs in the present study were 

shown to have a low basal abundance of most of the key CYPs-coding genes, especially 

the CYP1A1, CYP1A2 and CYP3A5 which are main players in the metabolism of 

steroids, fatty acids, and xenobiotics. The expression levels of many CYPs are known to 

decrease tremendously in rat cultured hepatocytes (Boess et al., 2003). Some studies have 

previously used bovine CHs to assess the CYP-mediated metabolism and cytotoxicity of 

aflatoxins (Kuilman et al., 2000) and the CYP-induced activity to some environmental 

contaminants such as the dioxin-like compounds (Guruge et al., 2009). CYPs play a 

pivotal role in the toxication of some compounds (Vignati et al., 2005), thus the low 

enzyme levels in CHs might result in an underestimation of the toxicity of some 

compounds. Therefore, attention should be given when using bovine CHs to study 

biotransformation- and CYPs-based studies, as their basal expression is very low and 

doesn’t resemble their corresponding liver tissue status. 

Many phase II biotranformation enzymes-coding genes (MTs, STs and GSTs) were 

present at a  lower abundance in CHs as compared with the liver tissue. In agreement, a 

marked downregulation of MTs (Baker et al., 2001) and STs (Baker et al., 2001; Boess et 
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al., 2003) was previously reported in human primary hepatocytes. In earlier studies, some 

GSTs have shown either unchanged (Baker et al., 2001) or down-regulation (Lee and 

Boyer, 1993) pattern in rat hepatocytes. Although present in the MDBK cells, phase II 

drug metabolizing enzymes showed no distinct pattern of abundance in comparison with 

CHs. The aim of profiling the transcriptome of MDBK cells was more quantitative than 

qualitative (i.e. the presence of a specific gene rather than its quantity), therefore the 

ability of MDBK cells to show basal expression of some drug metabolism-related genes 

was based only on the microarray data. Thus, more specific prospective studies might be 

needed to better characterize the capacity of MDBK cell line to express (or foster) certain 

gene(s).  

In the comparison between MDBK cells and bovine primary CHs (MDBK vs. CHs), the 

relatively high number of detected (i.e. expressed) probes (~64% of all the unique probes) 

in both groups together reflects a quite large resemblance in their transcriptomic profile. 

The MDBK cells were previously shown (Bionaz et al., 2008a) to have a large similarity 

in mRNA abundance with the bovine liver tissue of periparturient cows, suggesting 

MDBK cells could be a suitable model to study transcription regulation in bovine liver. 

Although the transcriptome in general is thought to be tissue-specific (Su et al., 2004), 

different tissues from the same species share common transcriptomic features (Wang et 

al., 2008); that’s why the shared transcriptomic profile between MDBK cells and the 

bovine primary CHs was not surprising. In the present study, MDBK cells were shown to 

have less abundance of the key CYP-coding genes compared with the CHs, which render 

the bovine CHs more suitable than MDBK cells when it comes to CYP-related studies. 

Still, liver tissue was superior in its basal level of CYPs and the other biotransformation-

related genes over the CHs and the MDBK cells, respectively (i.e. Liver > CHs > 

MDBK). The fact that MDBK cells are stably transfected and easy to handle would 

encourage the idea of inducing their basal level of drug metabolizing enzymes (using 

certain ligands) or inserting the gene(s) of interest by transfection. 

The peroxisome proliferator-activated receptor gamma (PPARγ) was expressed at higher 

abundance (< 20-fold) in MDBK cells compared with the CHs. Interestingly, the 

lipoprotein lipase (LPL), which is one of the PPARγ-responsive genes, was expressed at a 

very low abundance (- 151-fold) in MDBK cells compared with the CHs. In partial 

agreement, Bionaz et al. (2008b) reported that LPL was almost undetectable in untreated 
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MDBK cells, while it showed an increased expression only in the rosiglitazone (specific 

PPARγ agonist)-treated MDBK cells. In the present study, it was still interesting that LPL 

exhibited this very low abundance while PPARγ was expressed at a higher amount. A 

possible explanation is that the exhibited higher abundance of PPARγ in our MDBK cells 

has been just a relative basal-expression difference between MDBK cells and CHs and 

not a real activation of the gene.  

Logically, when the expression of  a closely related group of genes (e.g. CYPs) changes, 

their dependent metabolic or signaling pathways will be subsequently modified (see 

Fraczek et al., 2013; Gómez-Lechón et al., 2004). In the present study, the marked 

inhibition in pathways such as the ‘drug metabolism’, ‘Retinol signaling’, and 

‘metabolism of xenobiotics by CYP’ was a further confirmation of the CYP-suppressed 

status in the bovine CHs compared with the liver tissue. 

In both comparisons [(CHs vs. liver tissue) or (MDBK vs. CHs)], we expected to see 

abundance difference related to one or more of the nuclear receptors (NRs)-coding genes, 

such as the retinoid X receptor (RXR), the constitutive androstane receptor (CAR), the 

liver X receptor (LXR), the pregnane X receptor (PXR), and the peroxisome proliferator-

activated receptor (PPAR). Surprisingly, of these NRs, only the PPAR showed a 

difference in abundance in CHs compared with liver tissue (PPARα; - 2-fold) and in 

MDBK cells compared with CHs (PPARγ; 20-fold). Getting back to the original 

microarray platform, we found that only CAR and PPAR were present in the annotated 

platform while the others (RXR, LXR and PXR) were not; hence, a full picture on those 

NRs could not be depicted by the microarray analysis. Still, that was not the scope or the 

objective of the study. It should also be noted that the CHs and the control liver tissue 

samples were from different animal individuals. Still, they represented the same cattle 

breed and the same tissue matrix (i.e. Liver).  
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Conclusions 
 

In conclusion, the present study showed that although the transcritomic makeup of bovine 

primary CHs largely resembles its parental tissue; i.e. the liver, they still have their own 

shortcomings when it comes to the drug metabolizing enzymes-coding genes. The bovine 

primary CHs seems to have most of the biotransformation-related gene batteries; 

however, their basal level is much less than the in vivo status. Thus, attention should be 

paid not to draw firm conclusions on pharmaco-toxicological studies performed with 

bovine CHs. Furtheremore, the transcriptomic profile of the MDBK cells evidenced a 

good resemblance with the bovine primary CHs; hence, presumably, with their parental 

tissue (i.e. the liver). This might shed light on the stably-transfected cell line; MDBK 

cells, to be considered as a probable surrogate in vitro model that can spontaneously or 

inductively express most of the hepatic genes upon a putative successful transfection. 
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IV. Transcriptomic signature of high dietary 

organic selenium supplementation in sheep; 
A nutrigenomic insight using a custom microarray platform and 

gene set enrichment analysis
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Abstract 

 
The objective of this study was to investigate the effect of a high dietary selenium (Se) 

supplementation on the whole-transcriptome of sheep. A custom-sheep whole-

transcriptome microarray, with more than 23,000 unique transcripts, was designed, and 

then used to profile the global gene expression of sheep after a high dietary 

supplementation of organic Se. Lactating cross-bred ewes (N = 10, 3 to 4 y of age; 55 to 

65 kg BW) at their late lactation [100 ± 8 d in milk (DIM)] were acclimated to indoor 

individual pen feeding of a basal control diet (0.40 mg Se/d, Na-selenite) for 4 wk. Sheep 

were then kept on a diet with an extra (high) supplementation of organic Se (1.45 mg Se/d 

as Sel-Plex, Alltech, Australia) for 40 d. Whole blood (2.5 ml) was collected at 2 time-

points [last day of the acclimatization period (T0), and after 40 d of the high Se 

supplementation (T40)], then total RNA was isolated and labeled for the subsequent 

microarray analysis. Significant analysis of microarray (SAM), using a paired t-test, of 

the microarray data (T40 versus T0) evidenced the up- and down-regulation of 942 and 

244 transcripts (FDR < 0.05), respectively. Seven genes showed the same trend of 

expression (up- or down-regulation) when tested by qPCR in a cross-validation step. The 

microarray evidenced the up-regulation of some selenoproteins at T40, such as the 

selenium binding protein 1 (SELENBP1), selenoprotein W1 (SEPW1), glutathione 

peroxidase 3 (GPX3), and septin 8 (SEPT8), where the expression trend for SEPW1 and 

SEPT8 has been additionally validated using qPCR. Functional annotation of the 

differentially expressed (DE) genes showed the enrichment of several immune system-

related biological processes (lymphocyte activation, cytokine binding, leukocyte 

activation, T cell differentiation, B cell activation) and pathways (cytokine and 

interleukin signaling). Moreover, gene set enrichment analysis (GSEA) evidenced the 

enrichment of B and T cell receptors signaling pathways with an enrichment score (ES) of 

0.63 and 0.59, respectively. Overall, these results provide- on a global gene expression 

(whole-transcriptome) scale- the main genes, biological processes and pathways regulated 

by a high Se supplementation in sheep, which mainly reflect an immune-system and 

transcription-modulation-induced transcriptomic signature. Moreover, the study delivers a 

custom whole transcriptomic microarray platform that can be used in further global gene 

expression studies in the ovine species. 
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Introduction 
 

In some of the geographical areas where the soil (and hence the produced forages) is 

selenium (Se)-deficient (Oldfield, 2002), supplementing the animals’ diet with an external 

source of Se is a common practice (Tinggi, 2003). Selenium is authorized in the European 

Union (EU) as a nutritional additive for all species, and the current European commission 

regulations (EU No. 427/2013; EU No. 489/2015) allow the organic form of Se to be 

added to all of the food producing animals’ diet (including sheep) not to exceed 0.5 

mg/kg of diet (as fed). The U.S. Food and Drug Administration (FDA) upper limit of 

dietary Se supplementation in ruminants is 0.3 mg Se/kg DM (FDA, 2012). Therefore, a 

Se-level between 0.3 and 0.5 mg/kg DM while within limits in the EU is considered 

supranutritional Se supplementation according to the FDA. High dietary Se 

supplementation has been associated with variable improvements in animal performance 

and immune status of ewes and lambs (Rooke et al., 2004). Recent studies on sheep (Hall 

et al., 2011; Meyer et al., 2011; Stewart et al., 2012; Hall et al., 2013) and cattle 

(Stockdale et al., 2011; Hall et al., 2014a; Hall et al., 2014b) have focused on the effect of 

high dietary (supranutritional) Se  on the animals’ overall performance and immune 

system. From a genomic point of view few (Hall et al., 2011; Hugejiletu et al., 2013; 

Chauhan et al., 2014; Chauhan et al., 2015) have investigated the effect of high dietary Se 

on the mRNA expression of a pre-selected set of genes in sheep. However, to date, the 

effect of Se on the global gene expression of sheep (using high-throughput technologies) 

has not been investigated. Our hypothesis was that high dietary Se would induce the 

immune system of sheep and leave a noticeable molecular signature behind. Therefore, a 

whole-genome microarray platform has been custom designed for the present study, and 

used to examine the effect of high dietary Se on the global gene expression 

(transcriptome) of sheep. 
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Materials and methods 
 

All procedures conducted in the present study were approved by the Teramo University 

Institutional Animal Care and Use Committee. No animals have been sacrificed in this 

study, and only blood samples were collected at different time points, using the least 

invasive approach to avoid animals’ distress. Animals were managed according to the 

Directive 86/609/EEC regarding the protection of animals used for experimentation or 

other scientific purposes, enforced by the Italian D. Lgs n. 116 of January 27, 1992 and 

by the Directive 63/2010. 

Animals and Study Design 
 

Ten lactating cross-bred ewes (3 to 4 y of age; 55 to 65 kg BW) at their late lactation 

period [100 ± 8 d in milk (DIM)] were used in this study, where a “before-and-after” 

experimental design was implemented. The trial was conducted within a farm in the 

region of Abruzzo (Italy), where the tradition of sheep farming is well-established. Sheep 

had a 4 wk acclimatization period, in which they were kept on a basal diet, which 

consisted of mainly hay ad libitum [2.7 kg/(animal ∙ d); ~4.5% of BW] plus 0.5 

kg/(animal ∙ d) of a custom-formulated concentrate (Table 1) that has been offered to the 

animals in 2 parts during the day (0.3 kg in the morning and 0.2 kg in the afternoon). The 

basal diet was formulated to meet the ewes’ requirements for maintenance and milk 

production (NRC, 2007), with an adequate level of Se [0.40 mg Se/d, equals ~0.13 mg 

Se/kg DM of the complete feed (3.2 kg/(animal ∙ d)] in the form Na-selenite. The 

acclimatization period was then followed by a 40 d high dietary Se supplementation 

phase, where the same sheep received an organic Se [Sel-Plex (2,000 mg Se/kg DM), 

Alltech, Australia] supplementation  of 1.45 mg Se/d [equivalent to 0.45 mg Se/kg DM of 

the complete feed (3.2 kg/(animal ∙ d)], that has been added to the concentrate as a 

replacement of the Na-selenite. The organic Se source used in this study (Sel-Plex) has a 

guaranteed amount of 2 g organically bound Se [63 % as selenomethionine (SeMet), and 

34-36 % as low molecular weight selenocomponents] per kg supplement, as described by 

the manufacturer (EFSA, 2011). Selenium supplementation in this study has been set not 

to exceed the maximum level of organic Se (0.5 mg/kg DM) permitted in the EU (EU No. 

427/2013; EU No. 489/2015). Sheep had continuous access to water, and a specialized 

staff monitored the correct and complete ingestion of the formulated concentrate which 
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was offered separately to each animal using individual troughs. Body temperature, feed 

intake and milk production were recorded daily for all sheep. 

 

Table 1. Ingredients and chemical composition of the formulated basal diet. 

Item Dietary content 

Ingredients of the total diet, % of dietary DM 

Hay 83.00 

Concentrate 17.00 

  

Ingredients of the concentrate, % of dietary DM 

Barley 59.55 

Soybean flour 44% 22.75 

Corn 15.00 

Calcium carbonate 2.00 

Dicalcium phosphate 17% 0.50 

Mineral-vitamin mix
1
 0.20 

  

Nutrient composition, DM basis 

NEg, Mcal/kg 1.02 

CP, % 19.59 

NDF, % 17.90 

ADF, % 6.01 

ADL, % 1.0 

Se (Na-selenite), mg/kg 0.80 
 

1
Mineral and vitamin premix contained (per kg) 32.00 mega-IU vitamin A, 3.20 mega-IU vitamin D3, 48 

mg vitamin E, 166 mg Fe as FeCO3, 62 mg Mn as MnO, 6.2 mg of I as Ca(IO3)2 and 198 mg Zn as ZnO. 

 

Blood Collection and Se Analysis 
 

To determine the level of Se in blood, jugular venous blood samples were collected at 0, 

30, 35 and 40 d of the high dietary Se supplementation. Blood was collected into 

evacuated tubes with EDTA (2 mL; final EDTA concentration, 2 g/l) and stored on ice 

until it could be frozen at −20 °C for a whole-blood (WB) Se assay. Selenium 

concentrations were determined using an Agilent 7500ce ionized coupled plasma mass 

spectrometer (ICP-MS; Agilent 7500ce, Agilent Technologies, Santa Clara, CA, USA) 

with modifications as previously described (Tinggi et al., 2004). For the molecular assays 

(microarray and qPCR), 2.5 mL of WB were collected at T0 (before high dietary Se 

supplementation) and T40 (after 40 d of high dietary Se supplementation). Blood was 

collected in each of 2 PAXgene tubes (Qiagen SpA, Milan, MI, Italy) according to the 

manufacturer’s instructions for subsequent RNA isolation. The PAXgene tubes were first 

stored at room temperature overnight and then at −20 °C until RNA isolation.  
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Microarray Custom Design and Annotation 
 

A custom whole-transcriptome 4x44K microarray was designed for this study. Briefly, 

we used the complete Ovis aries cDNA library (23,112 mRNA sequences; genome 

assembly Oar_V3.1) available from the ENSEMBL online repository 

(ftp://ftp.ensembl.org/pub/release-80/fasta/ovis_aries/). In addition, a library of sheep’s 

Estimated Sequence Tag (EST) sequences (338,827 sequences) has been retrieved from 

the GenBank repositories (http://www.ncbi.nlm.nih.gov/genbank/dbest/dbest_access/), 

and the EST sequences have been blasted (using BLASTX on a local Unix server)  

against themselves and against the ENSEMBL cDNA library to check for any non-

overlapping entries. We obtained 1,662 EST non-overlapping sequences that were added 

to the mRNA library (23,112 sequences) FASTA file. The mRNA and the ESTs (total 

24,774 sequences) were then uploaded to the eARRAY online portal hosted by Agilent 

for array design (http://earray.chem.agilent.com/earray), and 2 oligo probes (60-mer each) 

per sequence have been designed. Using the quality scores assigned for each probe by the 

Agilent's probe design algorithm (denoted as BC score, with a range from 1 - high quality 

to 4 - low quality), we excluded all probes with BC scores of 2 and above. Moreover, all 

the probes showing a possible non-self perfect match (NSPM) have been excluded as 

well. Finally, the designed platform contained 43,803 oligo probes (average of 1.84 

probes per sequence) of which 500 probes (50 probes repeated 10 times) were assigned as 

biological probes control group, and 1,417 probes were Agilent internal technical control 

probes (45,220 features in total). All arrays were printed using Sureprint technology 

(Agilent Technologies, USA). This custom microarray platform was deposited in the 

Gene Expression Omnibus (GEO) online repository (http://www.ncbi.nlm.nih.gov/geo/) 

under accession number GPL20576.  

RNA Isolation and Microarray Analysis 
 

Total RNA was isolated in accordance with the protocol of the PAXgene blood RNA kit 

(PreAnalytics/Qiagen, Milan, Italy). A DNase treatment was performed on the column for 

quality assurance before RNA was eluted from the filter and stored at −80°C until 

processed. Total RNA concentration was determined using the NanoDrop ND-1000 UV-

Vis spectrophotometer (NanoDrop Technologies Inc., Wilmington, USA), and its quality 

was measured by using the 2100 Bioanalyzer and RNA 6000 Nano kit (Agilent 

Technologies, Santa Clara, CA, USA). All the 20 samples have passed the RNA quality 

ftp://ftp.ensembl.org/pub/release-80/fasta/ovis_aries/
http://www.ncbi.nlm.nih.gov/genbank/dbest/dbest_access/
http://earray.chem.agilent.com/earray
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL20576
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criteria, i.e., RNA concentration ≥ 40 ng/µL and RNA integrity number (RIN) ≥ 8, hence; 

they were all considered for the subsequent microarray analysis. 

Preparation of the labeled cDNA probes and subsequent Genechip hybridizations were 

performed in accordance with the Agilent Technologies One-Color Microarray gene 

expression analysis guidelines as previously described (Elgendy et al., 2015). Briefly, 

total RNA (100 ng) from each animal was labeled individually with Cy3 using the Low 

RNA Input Linear Amplification Kit, One-Color (Agilent Technologies, USA). A 

mixture of 10 Agilent’s different viral polyadenylated RNAs (Spike-In Mix) was added to 

each RNA sample before amplification and labelling. A purification step was applied to 

the labelled cRNA using the RNeasy Mini Kit (Qiagen, Milan, Italy), and sample 

concentration and specific activity (Cy3 pmol/μg cRNA) were measured. Each single 

one-color labeled sample was hybridized (65°C, 17 h) in Agilent’s SureHyb 

Hybridization Chambers containing 100 µL (corresponding to 1.65 µg of Cy3-labeled 

cRNA) of the final hybridization mixture. Microarrays were scanned at 5 µm/pixel 

resolution by the Agilent DNA Microarray Scanner G2505B (Agilent Technologies, 

USA), and the images were analyzed by the Agilent’s Feature Extraction Software 

(version 9.5.1), using the GE2-v5_95_Feb07 FE extraction protocol [default settings were 

modified to scan the same slide twice at 2 different resolution levels (XDR Hi 100% and 

XDR Lo 10%)]. The extracted data were normalized and processed as previously 

described in Elgendy et al. (2015). Briefly, The 20 samples have been normalized 

together in a single analysis to ensure a uniform normalization and to check for any 

possible inter-array outliers. Data Normalization was performed by the statistical software 

“R” (http://www.r-project.org). The intensities of the polyadenylated Spike-In control 

probes were used to identify the best normalization procedure. Quantile normalization 

using the “limma” package yielded the best results, thus quantile-normalized data were 

used in all subsequent analyses. After normalization, all control features and Spike-In 

probes were filtered out. A further filtering step was carried out by removing probes that 

reported missing values or no reactivity (probes with Feature Extraction flag equal to 0) 

in at least 50% of samples. Numerical values corresponding to the missing microarray 

intensities were imputed by the MultiExperiment Viewer (MeV; http://www.tm4.org/) 

application as described by Saeed et al. (2003). The microarray data have been deposited 

in GEO and are accessible through the accession number GSE69997. 

http://www.r-project.org/
http://www.tm4.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69997
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Quantitative Real-Time PCR 
 

Quantitative real-time PCR (qPCR) was performed to confirm the expression pattern of 7 

genes. The PCR primer sequences used for the quantification of the genes encoding 

ankyrin repeat domain 10 (ANKRD10), selenoprotein W1 (SEPW1), septin 8 (SEPT8), 

adenylate cyclase 6 (ADCY6), G protein-coupled estrogen receptor 1 (GPER1), Sec61-

alpha-1-subunit (SEC61A1) and SLX4 interacting protein (SLX4IP) are reported in 

Table 2. 
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Table 2. Genes and their corresponding oligonucleotide sequences for qPCR validation 

Gene  Description Ensembl Gene ID Forward primer (5' >> 3') Reverse primer (5' >> 3') 
UPL 

Probe 

Amplico

n (bp) 

ANKRD10 Ankyrin repeat domain 10  ENSOARG00000007048  TCGACCTGAGAAATGCCAGT GGTGCACTCTCGGAAACC 74 71 

SEPW1 Selenoprotein W, 1 ENSOARG00000011453 GGTCGTCGTCCGAGTTGTTT CCAAACGGCTAGGGAACTCA 117 98 

SEPT8 Septin 8 ENSOARG00000014705 AGAAACTGGACAGCAAGGTGA CTCGTCATCCGTGGGAAACT 56 149 

ADCY6 Adenylate cyclase 6 ENSOARG00000019182 AACCGTGGTGATGCCTTC GTGTGCAGATCCCAATGACA 150 85 

GPER1 

G protein-coupled estrogen 

receptor 1 

ENSOARG00000018024 TTCAACCTGGACGAGCAGTA   GAGGAAGAAGACGCTGCTGTA   4 96 

SEC61A1 

Sec61 alpha 1 subunit (S. 

cerevisiae) 

ENSOARG00000005237 CTTCAACGGAGCCCAAAAG   ATCCCCGTCATCACGTACAC   9 75 

SLX4IP SLX4 interacting protein ENSOARG00000010370 GGTGTGTGGAACAACTACTTCCT   TCTCAGTTCTGTTCACAATTTCTTG   117 78 

GAPDHa 

Glyceraldehyde-3-phosphate 

dehydrogenase  

ENSOARG00000007894 GGTCGGAGTGAACGGATTTG ACCATGTAGTGAAGGTCAATGAAG 147 117 

SDHAa 

Succinate dehydrogenase 

complex, subunit A  

ENSOARG00000015619 CCACCAGGTCCCATACTGTC TCACGGTGTCGTAGAAGTGC 25 99 

YWHAZa 

Tyrosine 3-monooxygenase 

/tryptophan 5-monooxygenase 

activation protein, zeta 

ENSOARG00000018661 GCAAAAGACGGAAGGTGCTG AAAAGCTTCTTGGTATGCTTGC 102 262 

G6PDa 

Glucose-6-phosphate 

dehydrogenase 

ENSOARG00000004237  TATCATCATGGGTGCATCGGG TGTAGGTGTCTTCGGGCAAA 83 98 

a 
Internal control gene  
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Five genes (ADCY6, ANKRD10, GPER1, SEC61A1, and SLX4) were randomly selected 

from the ranked list of the differentially expressed (DE) genes according to their fold-

change (FC) and false discovery rate (FDR) values. The ADCY6 and ANKRD10 genes 

were selected from the up-regulated DE genes, while GPER1, SEC61A1 and SLX4IP 

were selected from the down-regulated ones. Genes with high FC and low FDR were 

favored in the selection. The other 2 genes (SEPW1 and SEPT8) were intentionally 

selected to check for any Se-induced molecular signature (in the form of induced 

selenoproteins). To ensure a uniform workflow, the RNA samples used for qPCR were 

the same used for the microarray analysis. Where possible primers were designed across 

exon/intron boundaries to avoid genomic DNA amplification. To ensure the qPCR 

product specificity, consideration has been taken to design (de novo) all primers using the 

mRNA sequences of the corresponding transcripts  in the list of the DE genes (each 

transcript has its unique ID in the custom-microarray platform). Additionally, an in-silico 

analysis using Primer BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) was 

further performed to ensure the specificity of the possible amplified qPCR product. First-

strand cDNA was synthesized from 0.7 µg of total RNA using the High Capacity cDNA 

Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA) according to the 

manufacturer’s protocol and stored at -20ºC until further use. Quantitative RT-PCR was 

performed using Power SYBR Green I (Thermo Fisher Scientific Inc, Waltham, MA, 

USA) and Roche universal probe library (UPL; Roche Diagnostics, Indianapolis, IN, 

USA) assays as previously described (Elgendy et al., 2015). Briefly, the qPCR reactions 

(10 µL final volume) consisted of 1X LightCycler 480 Probe Master (Roche Applied 

Science, Indianapolis, IN, USA), 300 or 600 nM forward and reverse primers (Integrated 

DNA Technology; TEMA ricerca, Bologna, Italy), 200 nM human UPL probe (final 

concentrations) and 2.5 µL of 50 ng/µL cDNA. Assays were performed in duplicates by 

the LightCycler 480 instrument (Roche Applied Science, USA) using the standard PCR 

conditions (an activation step at 95 ºC for 10 min; 45 cycles at 95 ºC for 10 s and at 60 ºC 

for 30 s, and a cooling step at 40 ºC for 30 s). No template and no-reverse-transcription 

controls were used in each assay to ensure a specific and uncontaminated reaction. For 

each qPCR assay, 8 standard curves were generated using duplicate 3-fold serial dilutions 

of control sheep cDNA pool.  

Data were analyzed with the LightCycler 480 software release 1.5.0 (Roche Applied 

Science, USA) using either the second derivative or the fit point method. Messenger RNA 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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relative quantification (RQ) was calculated by the ΔΔCt method (Livak and Schmittgen, 

2001), and normalized using the average RQ values of 4 internal control (reference) genes 

(GAPDH, SDHA, YWHAZ and G6PD). The internal control genes were selected after 

the study by Vorachek et al. (2013) on reference gene selection for qPCR studies in sheep 

neutrophils. The selected reference genes showed an unchanged expression pattern 

between the experimental groups (T40 versus T0) after a quality control qPCR step, 

hence they were used for the data normalization. 

Functional Annotation and Gene Set Enrichment Analysis  
 

The functional analysis of transcript lists of interest was performed by the analysis of the 

enrichment for specific Gene Ontology (GO) terms using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID; Dennis et al., 2003; Huang da et al., 

2009) as implemented in the online platform (http://david.abcc.ncifcrf.gov/). The 

annotated probes for the list of the DE genes were matched to their bovine (Bos taurus) 

orthologs, using the Ensembl genome browser data-mining tool (BioMart; 

http://www.ensembl.org/biomart/martview/), and analyzed against the DAVID’s built-in 

Bos taurus genome. Analyses were performed using the default GO_FAT terms and 

KEGG pathways included in the DAVID knowledgebase, implementing a gene count of 5 

and an EASE score of 0.05. The annotation clusters in the present study were selected 

using an enrichment score (ES) of 1.17 or more.  Gene Set Enrichment Analysis (GSEA; 

http://www.broadinstitute.org/gsea/index.jsp) was also used to examine the significantly-

enriched pathways by comparing the normalized data of the entire gene transcripts from 

the T40 group to 880 curated canonical pathway gene sets in the GSEA Molecular 

Signatures Database (MsigDB; Subramanian et al., 2005). All the annotated transcripts 

(33,413 features in total) with expression values were uploaded to the software and 

compared with catalog C2 (4725 curated gene sets). 

Statistical Analysis 
 

Differentially expressed genes were identified using the two-class paired t-test in the 

Significance of Microarray Analysis (SAM) software v.4.0 (Tusher et al., 2001), 

enforcing an FDR ≤ 0.05 and an FC threshold ≥ 1.5. All other statistical tests (Spearman 

correlation analysis, one-way ANOVA and Student’s t-test) were carried out by the 

GraphPad Prism 5 software (San Diego, CA, USA). In evaluating the effect of Se 

supplementation on WB-Se concentration, data were analyzed by one-way ANOVA 

http://david.abcc.ncifcrf.gov/
http://www.ensembl.org/biomart/martview/7df06d8e9cb1e9f6ae698047a768dcde
http://www.broadinstitute.org/gsea/index.jsp
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(Kruskal-Wallis test) followed by Dunn’s Multiple Comparison Test. The RQ values of 

the qPCR-analyzed genes were expressed as FC, and the significance of gene expression 

between groups (T0 and T40) was determined using the Student’s t-test. Data are reported 

as means ± SD, and statistical significance was declared at P ≤ 0.05. 

Results 
 

The health status of all the experimental animals was satisfactory throughout the 

experiment. Ewes produced an average daily amount of 600 ± 95 mL of milk, and none of 

them showed any clinical signs of Se toxicity at any time during the study. The effect of 

high dietary Se supplementation on WB-Se concentrations are shown in Figure 1. At d 0 

(baseline), WB-Se concentration was 112.5 ± 14.63 ng/mL. High dietary Se 

supplementation increased (all P < 0.0001) WB-Se concentrations at d 30 to 283 ± 18.75 

ng/mL, and the Se-concentration remained stable at 35 (287.5 ± 21.32 ng/mL) and 40 d 

(287.5 ± 21.68 ng/mL). Therefore, after a stable WB-Se concentration (from d 30 to d 

40), the blood collected at T40 has been used to evaluate the effect of this 

supplementation on the transcriptome of sheep. 

 

 

Figure 1: The effect of high dietary organic selenium (Se) on whole-blood (WB)- Se concentration in 

sheep. Whole-blood (WB)- Se concentrations were measured after 0, 30, 35, and 40 d of organic Se 

supplementation (0.45 mg Se/kg DM; ~1.40 mg Se/d). Whole-blood Se concentration for each time point 

are shown as separate bars. At baseline (d 0), WB-Se concentration was 112.5±14.63 ng/mL. High organic 

Se supplementation increased (P < 0.0001) WB-Se concentrations at 30 d to 283±18.75 ng/mL, where the 

Se concentration remained stable at 35 (287.5±21.32 ng/mL)  and 40 d (287.5±21.68 ng/mL). 
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After screening more than 23,000 unique transcripts in the microarray platform, a total of 

1,186 unique transcripts displayed significant differences in expression of 1.5-fold or 

more between the T40 and T0 samples (T40 versus T0). Of those transcripts, 942 and 244 

were up- and down-regulated, respectively (Supplementary Table 1). Those identified 

transcripts were able to discriminate the 2 experimental groups, on a heatmap scale, upon 

a hierarchical clustering analysis (Figure 2) as well as after a principal component 

analysis (PCA; Figure 3). 

 

Figure 2: Cluster dendrogram of the differentially expressed (DE) genes at T0 [before high dietary 

selenium (Se) supplementation] and T40 (after 40 d high dietary Se). A heatmap was generated from the 

differentially expressed (DE) transcripts (≥ 1.5-fold with respect to controls) using the hierarchical 

clustering (Euclidean distance clustering algorithm) option in the GeneSpring software v.13.1 

(http://genespring-support.com/). In the heatmap, red indicates an expression level higher than the mean 

across all subjects, and blue denotes expression level lower than the mean. 

http://genespring-support.com/
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Figure 3: PCA plot of the Se-supplemented sheep at two time points (T40 and T0) shows the two 

principal components of greatest variation, covering 58.39% (x-axis) and 9.23% (y-axis) of the total 

variance. Squares distinguish the different time points, where the red-colored squares (left) represents 

the Se-supplemented animals after 40-d of Se supplementation (T40), while the blue-colored squares 

(right) depict the same animals before the supplementation (T0). 

 

 

While the genome of Ovis aries is relatively poorly annotated, the corresponding genes of 

all the DE transcripts in this study (some transcripts encoded the same gene) have been 

matched to their bovine (Bos taurus) orthologs, which resulted in retaining 772 and 192 

genes out of the total 942 and 244 up- and down-regulated transcripts, respectively 

(Supplementary Table 2). Those filtered Bos taurus ortholog genes were used in the 

subsequent functional annotation analyses.  

To cross-validate the microarray platform, the relative expression of 7 genes (ANKRD10, 

SEPW1, SEPT8, ADCY6, GPER1, SEC61A1 and SLX4IP) was analyzed by qPCR. Four 

genes (ANKRD10, SEPW1, SEPT8 and GPER1) revealed statistically significant 

differences between T40 and T0 (Table 3), while the other 3 genes (ADCY6, SEC61A1 

and SLX4IP), however not statistically significant when compared to the T0 group, they 

showed the same trend of expression (up- or down-regulation) compared to their 
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corresponding microarray FC values (Figure 4). The correlations between the microarray 

and the qPCR output are reported in Table 3. 

 

Table 3. Spearman’s rho for the set of selected genes used for the qPCR cross-validation.  

Gene name FC
1
 qPCR FC microarray Spearman’s rho

†
 

ANKRD10 1.71
*
 2.04 0.6301 

SEPW1 1.88
*
 1.95 0.9068 

SEPT8 1.41
*
 1.69 0.3714 

ADCY6 2.72 3.3 0.4571 

GPER1 -1.26
*
 -1.8 0.2977 

SEC61A1 -1.1 -1.91 0.3684 

SLX4IP -1.1 -1.97 0.4045 
 

1
FC = Fold Change. For the qPCR, the mRNA relative quantification (RQ) was calculated by the ΔΔCt 

method, and normalized using the average of the RQ values of 4 internal control (reference) genes 

(GAPDH, SDHA, YWHAZ and G6PD). For the microarray, the FC was calculated using the paired t-test in 

the SAM (Significance of Microarray) software, comparing T40 (40 d high organic Se supplementation) 

versus T0 (control) values. 
*
Genes that were significantly (P ≤ 0.05) regulated between groups (T0 and T40) by qPCR analysis. 

†
Correlations were calculated using the RQ values of the genes analyzed by qPCR and their corresponding 

microarray intensities (normalized raw data).  

 

 

Figure 4: Microarray data validation on a subset of 7 differentially expressed genes by qPCR. 

Fold changes are expressed as T40 (40 d high dietary Se supplementation) versus T0 (control), 

in which negative fold changes indicate down-regulation while positive fold changes indicate up-

regulation of expression due to high dietary organic Se supplementation. FC = Fold change. 
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The functional GO terms with the highest P values  (all P ≤ 0.05) in the enrichment 

analysis, along with the involved genes in each term are shown in Table 4. The 

significantly enriched terms included genes involved in lipid binding (P = 0.0009), 

lymphocyte and leukocyte activation, positive regulation of T and lymphocyte cell 

differentiation, leukocyte and lymphocyte proliferation, and cytokine binding. 



Chapter IV 

 

123 
 

Table 4. Functional annotation of the differentially expressed genes (FDR ≤ 0.05) in the T40 (40 d high dietary Se) samples compared to the T0 

(control) ones. Functional annotation was performed using the default settings in DAVID, an EASE score of 0.05 and GO term categories. 

Counts represent the number of genes from the list associated with a given GO term. Genes that were up-regulated are indicated by ‘+’ while 

those down-regulated are indicated by ‘−’.  

Direction Category and term Count Genes 

Fold 

enrich-

ment 
P Value 

+ MF:GO:0008289~lipid binding 18 
PRKCD, APOA5, HNF4A, RXRB, BPIFB3, ITPR3, BPIFA1, ENSOART00000006166, DEF8, SNX20, 
ENSOART00000019129, SNX5, ARHGAP32, SNX27, FABP6, KIF16B, APOD, ANXA9 

2.49 0.0009 

+ 
MF:GO:0005088~Ras guanyl-nucleotide exchange 

factor activity 
8 RANBP10, ITPR3, PREX1, FGD3, ARHGEF11, ITSN2, ARHGEF12, ABR 4.11 0.0030 

+ BP:GO:0046649~lymphocyte activation 10 PRKCD, CCND3, ERCC1, RAG2, FOXP3, LAX1, CXCR4, CD40, FAS, ENSOART00000017658 3.2 0.0038 

+ BP:GO:0045321~leukocyte activation 11 
PRKCD, CCND3, ERCC1, TLR4, RAG2, FOXP3, LAX1, CXCR4, CD40, FAS, 

ENSOART00000017658 
2.93 0.0041 

+ 
BP:GO:0045582~positive regulation of T cell 
differentiation 

5 FOXP3, VNN1, HLX, IL2RG, AP3D1 7.13 0.0045 

+ 
BP:GO:0045619~regulation of lymphocyte 

differentiation 
6 FOXP3, FAS, VNN1, HLX, IL2RG, AP3D1 5.35 0.0047 

+ BP:GO:0070661~leukocyte proliferation 5 PRKCD, CCND3, RAG2, CXCR4, ENSOART00000017658 6.79 0.0055 

+ BP:GO:0046651~lymphocyte proliferation 5 PRKCD, CCND3, RAG2, CXCR4, ENSOART00000017658 6.79 0.0055 

+ BP:GO:0032943~mononuclear cell proliferation 5 PRKCD, CCND3, RAG2, CXCR4, ENSOART00000017658 6.79 0.0055 

+ MF:GO:0019955~cytokine binding 8 CXCR4, CCR9, IL10RA, ENSOART00000021229, IL1RL1, CXCR6, IL2RG, TNFRSF1A 3.66 0.0058 

+ MF:GO:0035091~phosphoinositide binding 7 ITPR3, ARHGAP32, SNX27, SNX20, ENSOART00000019129, KIF16B, SNX5 4.18 0.0061 

+ BP:GO:0006631~fatty acid metabolic process 11 PLP1, SCD5, ALOX5, ALOX12, CPT2, ALOX15, FADS2, ADIPOR1, PPARA, TYRP1, TNFRSF1A 2.75 0.0064 

+ 
BP:GO:0045621~positive regulation of lymphocyte 

differentiation 
5 FOXP3, VNN1, HLX, IL2RG, AP3D1 6.48 0.0065 

+ MF:GO:0005543~phospholipid binding 9 
ITPR3, ENSOART00000006166, SNX20, ENSOART00000019129, SNX5, ARHGAP32, SNX27, 
KIF16B, ANXA9 

3.21 0.0066 

+ BP:GO:0042127~regulation of cell proliferation 19 
FLT4, KDR, DHCR7, MYD88, CDH5, FGFR4, ALOX12, ALOX15, FOXP3, CD40, DPT, GRN, 

DNMT1, GHRL, HLX, CTNNA1, IFI30, NOS2, EPO 
1.97 0.0076 

+ 
MF:GO:0005089~Rho guanyl-nucleotide exchange 

factor activity 
7 FGD3, ARHGEF11, ITPR3, PREX1, ITSN2, ABR, ARHGEF12 3.87 0.0089 

+ 
MF:GO:0005085~guanyl-nucleotide exchange factor 
activity 

10 RANBP10, FGD3, ARHGEF11, ITPR3, PREX1, ITSN2, ABR, ARHGEF12, RAB3IL1, DOCK6 2.79 0.0094 
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+ CC:GO:0005886~plasma membrane 55 

RHOH, KDR, ADRB3, LAPTM5, CDH5, NECAP1, PCDH19, GNB1, CALB2, RAB11B, FLOT2, 

PNPLA2, ADRA1A, TMPRSS11F, CISH, LIPE, AQP3, ITPR3, KCNA1, CD40, KCNMA1, TLR4, 
ALOX12, ALPL, TF, ARCN1, LAX1, CXCR4, PIGR, LAMP1, CCR9, SLC30A3, 

ENSOART00000022569, CTNNA1, IL2RG, DGKD, AP3D1, ENSOART00000021229, SNX20, SYN1, 

HRH1, LPAR5, CXCR6, ITGA5, FAS, MALL, RAB19, MS4A1, VNN1, TNS1, JUP, GJA3, CHRND,  

1.36 0.0114 

+ BP:GO:0001775~cell activation 11 PRKCD,CCND3,ERCC1,TLR4,RAG2,FOXP3,LAX1,CXCR4,CD40,FAS,ENSOART00000017658, 2.51 0.0120 

+ BP:GO:0050865~regulation of cell activation 9 TLR4,FOXP3,LAX1,CD40,FAS,VNN1,HLX,IL2RG,AP3D1 2.88 0.0123 

+ MF:GO:0019899~enzyme binding 13 PRKCD,CDH5,SQSTM1,RANBP10,CCND3,EPAS1,CUL4A,CD40,LAX1,DOCK6,HINFP,RTKN,JUP 2.24 0.0133 

+ CC:GO:0005829~cytosol 17 
ALOX5,RILPL2,PNPLA2,ARF1,ALOX12,POTEJ,ENSOART00000010183,ALOX15,LIPE,PDE9A,SN
X27,NXN,SELENBP1,JUP,NOS2,ENSOART00000017658,ANXA9 

1.9 0.0135 

+ 
BP:GO:0035023~regulation of Rho protein signal 

transduction 
7 FGD3, ARHGEF11, ITPR3, PREX1, ITSN2, ABR, ARHGEF12 3.44 0.0153 

+ BP:GO:0021700~developmental maturation 6 PLP1, KDR, CDH5, EPAS1, VSX1, EPO 3.98 0.0164 

+ BP:GO:0051249~regulation of lymphocyte activation 8 FOXP3, LAX1, CD40, FAS, VNN1, HLX, IL2RG, AP3D1 3 0.0166 

+ BP:GO:0045580~regulation of T cell differentiation 5 FOXP3, VNN1, HLX, IL2RG, AP3D1 4.92 0.0174 

+ BP:GO:0048469~cell maturation 5 PLP1, KDR, VSX1, EPAS1, EPO 4.6 0.0219 

+ BP:GO:0006350~transcription 27 

ZNF677, USP22, HNF4A, ENSOART00000003469, RXRB, EPAS1, VSX1, MAML2, ZNF574, LIPE, 

RBM14, RFX2, NR2F2, IRF1, PPARA, PHTF1, ZNF554, POLR1B, ENSOART00000020476, DNMT1, 

HINFP, HLX, ELF5, ZSCAN2, BANP, OVOL1, ACTL6B 

1.57 0.0227 

+ 
BP:GO:0043122~regulation of I-kappaB kinase/NF-
kappaB cascade 

6 RHOH, MYD88, SQSTM1, TLR4, CD40, TNFRSF1A 3.64 0.0233 

+ 
BP:GO:0006357~regulation of transcription from 

RNA polymerase II promoter 
16 

ID1, HNF4A, ENSOART00000004159, RXRB, EPAS1, MAML2, NR2F2, FOXP3, RBM14, CRYM, 

PPARA, ENSOART00000020476, HINFP, OVOL1, EPO, TNFRSF1A 
1.85 0.0259 

+ MF:GO:0030695~GTPase regulator activity 14 
NRK,RANBP10,FGD3,ADAP1,ARHGEF11,ITPR3,PREX1,ITSN2,ABR,ARHGDIG,RTKN,ARHGEF1
2,RAB3IL1,DOCK6 

1.95 0.0272 

+ MF:GO:0005083~small GTPase regulator activity 11 NRK, RANBP10, FGD3, ADAP1, ARHGEF11, ITPR3, PREX1, ITSN2, ABR, ARHGDIG, ARHGEF12 2.21 0.0273 

+ BP:GO:0002694~regulation of leukocyte activation 8 FOXP3, LAX1, CD40, FAS, VNN1, HLX, L2RG, AP3D1 2.68 0.0287 

+ BP:GO:0050867~positive regulation of cell activation 7 TLR4, FOXP3, CD40, VNN1, HLX, IL2RG, AP3D1 2.94 0.0310 

+ MF:GO:0003777~microtubule motor activity 6 DNAH11, KIF24, KLC3, KIF3C, KIF16B, DNAH2 3.38 0.0313 

+ BP:GO:0042113~B cell activation 5 PRKCD, ERCC1, RAG2, LAX1, CD40 4.07 0.0327 

+ 
CC:GO:0016023~cytoplasmic membrane-bounded 
vesicle 

14 
NECAP1, CSPG5, SYT4, SLC1A5, TF, ARCN1, ENSOART00000010183, LAMP1, MALL, 
ENSOART00000016099, DGKD, SYN1, TYRP1, SYN2 

1.89 0.0336 

+ 
MF:GO:0060589~nucleoside-triphosphatase regulator 
activity 

14 
NRK, RANBP10, FGD3, ADAP1, ARHGEF11, ITPR3, PREX1, ITSN2, ABR, ARHGDIG, RTKN, 
ARHGEF12, RAB3IL1, DOCK6 

1.89 0.0344 

+ CC:GO:0031410~cytoplasmic vesicle 16 
NECAP1, CSPG5, SYT4, SLC1A5, TF, ARCN1, ENSOART00000010183, ITPR3, LAMP1, SLC30A3, 

MALL, ENSOART00000016099, DGKD, SYN1, TYRP1, SYN2 
1.77 0.0350 
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+ BP:GO:0002252~immune effector process 7 PRKCD, MYD88, ERCC1, FOXP3, LAX1, FAS, SAMHD1 2.85 0.0351 

+ CC:GO:0031988~membrane-bounded vesicle 14 
NECAP1, CSPG5, SYT4, SLC1A5, TF, ARCN1, ENSOART00000010183, LAMP1, MALL, 

ENSOART00000016099, DGKD, SYN1, TYRP1, SYN2 
1.85 0.0396 

+ BP:GO:0008283~cell proliferation 9 
PRKCD, GNB1, CCND3, ERCC1, RAG2, RXRB, CXCR4, ENSOART00000017136, 

ENSOART00000017658 
2.31 0.0402 

+ BP:GO:0042592~homeostatic process 20 

PLP1, KDR, ADRB3, AIPL1, SLC9A1, IKBKB, EPAS1, KCNMA1, TF,FOXP3, 

ENSOART00000022569, SEPW1, ENSOART00000017658, NCDN, FAS, NXN, GHRL, QSOX1, 

SLC9A2, EPO 

1.62 0.0403 

+ 
BP:GO:0002684~positive regulation of immune 

system process 
10 MYD88, TLR4, FOXP3, LAX1, AQP3, CD40, VNN1, HLX, IL2RG, AP3D1 2.16 0.0415 

+ CC:GO:0031982~vesicle 16 
NECAP1, CSPG5, SYT4, SLC1A5, TF, ARCN1, ENSOART00000010183, ITPR3, LAMP1, SLC30A3, 

MALL, ENSOART00000016099, DGKD, SYN1, TYRP1, SYN2, 
1.72 0.0437 

+ MF:GO:0000166~nucleotide binding 67 

ENSOART00000000072, PRKCD, FLT4, RHOH, KDR, NRK, PLK3, ENSOART00000002476, 
MKNK1, ENSOART00000002789, WRNIP1 ,ARL10, ENSOART00000003168, TAOK2, PGS1, 

ENSOART00000004309, IRAK2, PANK3, RAB11B, STK3, DIRAS2, FGFR4, RPS6KA2, IKBKB, 

DNAH11, POTEJ, ENSOART00000009416, RAVER2, KIF24, ARF1, GTPBP2, RBM14, UCK1, 
PDE2A, DDX27, RBM12, ATP2A3, CHD3, ARL16, PFKFB4, SYN1, ACTL6B, KIF3C, CLCN7, 

ABCB6, MYH14, DNAH2, SRSF3, RALYL, SNRNP70, NOS2, MAP3K8, SYN2, PGK1, DDX23, 

CRYM, CSNK1E, HNRNPA1, BLK, RBM23, HK2, DOCK6, POR, RAB19, SART3, KIF16B, SEPT8 

1.23 0.0438 

+ 

BP:GO:0002460~adaptive immune response based on 

somatic recombination of immune receptors built from 

immunoglobulin superfamily domains 

5 PRKCD, MYD88, ERCC1, FOXP3, FAS 3.57 0.0499 

+ BP:GO:0002449~lymphocyte mediated immunity 5 PRKCD, MYD88, ERCC1, FOXP3, FAS 3.57 0.0499 

+ 
BP:GO:0048871~multicellular organismal 
homeostasis 

5 KDR, ADRB3, AIPL1, EPAS1, NCDN 3.57 0.0499 

+ BP:GO:0002250~adaptive immune response 5 PRKCD, MYD88, ERCC1, FOXP3, FAS 3.57 0.0499 

+ 
KEGG PATHWAY:bta03320:PPAR signaling 
pathway 

9 SCD5, APOA5, RXRB, CPT2, ENSOART00000017136, FADS2, FABP6, PPARA, SLC27A2 3.46 0.0040 

+ 
KEGG PATHWAY:bta04920:Adipocytokine 
signaling pathway 

7 IKBKB, RXRB, ENSOART00000017136, ADIPOR1, PPARA, RELA, TNFRSF1A 2.86 0.0338 

- CC:GO:0044456~synapse part 5 CHRNB2, PLCB4, GABRA1, SYT17, SYT10 5.52 0.0118 

- CC:GO:0045202~synapse 5 CHRNB2, PLCB4, GABRA1, SYT17, SYT10 4.07 0.0321 

- CC:GO:0005856~cytoskeleton 10 
ENSOART00000000099, ENSOART00000000870, LYST, DYNLRB2, PLCB4, FRMPD4, VIL1, 

KRT75, MYO1B, H1F0 
2.05 0.0466 

- BP:GO:0006955~immune response 6 TLR5, LYST, CCL8, VTN, CD28, IL36RN 2.9 0.0521 

- 
KEGG PATHWAY:bta04080:Neuroactive ligand-

receptor interaction 
5 MC2R, RXFP1, NMUR2,GABRA1, SSTR1 3.33 0.0545 

 

GO: gene ontology; BP: biological process; MF: molecular function; P value: modified Fisher exact P value calculated by DAVID software; FE: fold enrichment defined as 

the ratio of the two proportions: input genes involved in a biological process and the background information. 
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In addition, some of the annotated genes were grouped in 3 signaling pathways: 

Peroxisome proliferator-activated receptor (PPAR) and adipocytokine signaling pathways 

(for the genes expressed at greater levels at T40), and neuroactive ligand-receptor 

interaction pathways (for the genes expressed at lower levels at T40). Furthermore, the 

molecular function (MF) “nucleotide binding” and the biological process (BP) 

“transcription” were among the significant GO terms of the highest gene count with 67 

and 27 up-regulated genes, respectively (Table 4). Cluster enrichment scores are 

geometrical means of P-values for each GO term included in the cluster and expressed on 

a negative logarithmic scale. In the present study, the clustering analysis by DAVID 

uncovered 5 positively-enriched clusters of functionally relevant genes in the T40 group 

with ES of 1.17 or more (Supplementary Table 2). The first cluster had an ES of 2.48 and 

was represented mainly by the MF “lipid” and “phospholipid binding”, while the second 

cluster (ES = 1.65) consisted of MF terms related to guanyl-nucleotide exchange factor 

activity, GTPase regulator activity and Ras protein signal transduction. The third (ES = 

1.5) and the fourth cluster (ES = 1.4) were dominated by immune-system-related 

(lymphocyte and leukocyte activation, adaptive immune response, cytokine production, 

positive regulation of T and B cell differentiation) BP terms. The least positively-enriched 

cluster (ES = 1.17) represented membrane trafficking-related (cytoplasmic, and 

membrane-bounded vesicle) CC terms.      

To further consider the biological significance of our data, we used GSEA to identify 

pathways that correlate with the higher dietary Se supplementation. GSEA is a 

computational method that identifies shared differential gene expression of predefined, 

functionally related gene sets representing biological pathways. This is quantified by 

using a different type of ES, a weighted Kolmogorov-Smirnov-like statistic that evaluates 

if the members of the pathway are randomly distributed or found at the extremes (top or 

bottom) of the list (Subramanian et al., 2005). The GSEA analysis revealed that most of 

the core-enriched genes contributing to each individual gene set significantly enriched at 

T40 (positive ES) fell into an immunity related pathway, such as B and T cell receptor 

signaling pathways, adipocytokine signaling pathway and Toll-like receptor signaling 

pathway (Figure 5). On the other hand, some other pathways, such as oxidative 

phosphorylation, steroid hormone biosynthesis, basal transcription factors and 

selenoamino acid metabolism were among the top pathways less enriched (negative ES) 

in the T0 group compared to the T40 one (data not shown). A full list of the rank ordered 

genes participating in the top positively enriched pathways are reported in Supplementary 

Table 4. 
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Figure 5: GSEA Enrichment plot (score curves). Gene set enrichment analysis (GSEA) was performed with the canonical pathway 

gene sets in GSEA Molecular Signatures Database (880 sets). "Signal-to-Noise" ratio (SNR) statistic was used to rank the genes 

according to their correlation with either the T40 (40 d high dietary Se supplementation) phenotype (red) or the T0 (control) 

phenotype (blue). The heatmap on the right side of each panel visualizes the ranked, ordered, non-redundant list of genes 

contributing to the enriched pathway (for the detailed list see Supplementary Table 5). On each panel, the vertical black lines 

indicate the position of each of the genes of the studied gene set in the ordered, non-redundant data set (Supplementary Table 5). 

The green curve corresponds to the ES (enrichment score) curve, which is the running sum of the weighted enrichment score 

obtained from GSEA software. A, B, C and D denote the most enriched (significant) pathways (i.e. Gene sets); B cell receptor 

signaling, T cell receptor signaling, Adipocytokine signaling and Toll-like receptor signaling pathway, respectively. 



Chapter IV 

 

128 
 

Discussion 
 

Microarray technology can simultaneously measure the differential expression of 

thousands of genes in a given tissue. The resulted information can be used to examine a 

certain condition from the perspective of  the biological processes or molecular functions 

involved (functional profiling), rather than from the expression levels of individual genes 

(Tarca et al., 2006). The objective of this study was to examine the transcriptomic-

signature of a high dietary Se supplementation in sheep, and to evaluate weather this 

signature reflects an induced immune-system. The major finding from the present study 

was that a high dietary level of Se can modulate the expression of a large number of 

genes in sheep and leave a noticeable molecular-signature that mainly reflects an 

immune-system activation and transcription-regulation patterns. 

Appropriate dietary Se supplementation in sheep and goats varies from 0.1 to 0.3 mg 

Se/kg DM in the total diet (Ullery et al., 1978; Smith and Sherman, 2011). While blood 

concentrations of Se are usually derived from a corresponding dietary Se intake, blood Se 

levels less than 50 ng/mL are considered as Se-deficient while levels between 50 and 100 

are marginal, and greater than 100 are adequate (Koller and Exon, 1986). Ewes in the 

present study were fed on a basal diet that contained an appropriate level of Se (0.13 mg 

Se/kg DM of the complete feed) that resulted in an adequate blood Se concentration 

(112.5 ng/mL) after 4 wk of acclimatization. Thus, the Se status of those ewes at the first 

sampling time (T0) could be considered as Se-adequate or as Se-nondeficient, and the 

blood Se concentration at T40 (287.5 ng/mL), and the subsequent results, would be 

interpreted as the added effect of high dietary Se supplementation in sheep. The fact that 

Blood Se concentrations respond to supplemental Se in proportion to the magnitude of 

supplementation is much straightforward in subjects of deficient to low Se status (Xia et 

al., 2005). However, for Se-nondeficient subjects the relationship of Se intake and blood 

Se level depends mainly on the form of Se consumed (Combs, Jr., 2015), where organic 

Se, represented by SeMet, is thought to increase blood Se in adequate and high Se status 

(Broome et al., 2004; Burk et al., 2006; Combs et al., 2012). The organic source of Se 

(Se-yeast) used in the present study consisted mainly of SeMet (63%), which partly 

explains the duplication in blood Se level seen after at 30 to 40 d of Se supplementation 

to a group of Se-nondeficient sheep.  
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The importance of Se is commonly ascribed to its wide array of biological roles in the 

immune system (Mckenzie et al., 2002; Arthur et al., 2003) and the antioxidant 

machinery (Burk, 2002), where dietary Se can modify the readout of the genetic code 

thourghout the procees of being transcriptionally-incorporated into selenoproteins 

(Howard et al., 2013; Duntas and Benvenga, 2014). In the present study, the microarray 

analysis identified 1,186 transcripts that exhibited changes in expression of 1.5-fold or 

more after a high dietary Se supplementation. This indicates that Se, even in short-term 

supplementation (40 d), has a traceable effect on the transcriptome of sheep that could be 

attributed to it capacity of being a transcriptional modulator. Although this effect 

appeared relatively moderate in terms of FC, with no transcripts being markedly over- or 

under-expressed, it is quite expected of nutritional studies not to result in large differences 

in gene expression (Blanchard et al., 2001; Afman and Muller, 2006; Pagmantidis et al., 

2008). High levels of Se in the present study resulted in changes in expression of a small 

number of the selenoprotein-related genes; namely, SEPW1, selenium binding protein 1 

(SELENBP1), glutathione peroxidase 3 (GPX3) and SEPT8. While GPX3 and SEPW1 

are classified as nonessential selenoproteins (McCann and Ames, 2011), it was quite 

unexpected not to find some of the other classical (essential) selenoproteins, e.g.,  GPX4, 

SEPP1, SEPS1 or TXNRDs among the affected genes. It was reported by Howard et al. 

(2013) that the “hierarchy” of differential selenoprotein expression in response to 

selenium availability is likely accounted for the diversity of health effects associated with 

dietary Se intake. In support; after a supranutritional Se supplementation, Hugejiletu et al. 

(2013) reported a significant increase in the expression of GPX4 and SEPS1 (anti-

inflammatory selenoproteins) in footrot-affected sheep, while the expression of SEPW1 

and GPX1 (antioxidant selenoproteins) showed non-significant changes. In the former 

study, it could be understood that high dietary Se supplementation resulted in a selective 

induction of some of the anti-inflammatory selenoproteins, on the expense of other ones, 

i.e., the antioxidant selenoproteins, as a result of the associated health condition 

(oxidative stress caused by footrot). On the other hand, sheep in the present study were in 

normal physiological status with no induced- or spontaneously-occurring pathological 

stress, which we believe affects the sensitivity of gene expression levels of selenoproteins 

to the status of Se in the animal’s body. Additionally, it is worth mentioning that the 

findings of the present study represent the difference between high and adequate-Se 

supplementation rather than high and no-Se supplementation, which might have had more 

impact on the number and type of regulated selenoproteins. 
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Selenium and the immune response have been always mentioned together, and Se 

deficiency is known to contribute to a higher prevalence and severity of diseases present 

in animal populations ( reviewed in Arthur et al., 2003). Supranutritional Se induced both 

the innate and humoral immune functions in footrot-affected sheep (Hall et al., 2011; Hall 

et al., 2013; Hugejiletu et al., 2013) and Se-replete dairy cows (Hall et al., 2014b). 

Furtheremore, Se supplementation improved the growth rate, antioxidant status and 

humoral immune response in lambs (Kumar et al., 2009). In agreement, the functional 

analysis in the present study revealed that most of the significantly-regulated genes were 

mainly involved in multiple immune system-related biological processes. Several genes 

involved in the lymphocyte and leukocyte activation were significantly up-regulated, and 

this still supports the fact of Se being an immunostimulant agent (Arthur et al., 2003). Of 

those genes was the PRKCD gene, which is one of the Protein kinase C (PKC) family that 

is believed to has a crucial and diverse role in multiple signaling pathways utilized by 

adaptive and innate immune cells (Altman and Kong, 2014), and the cyclin D3 (CCND3) 

which is one of the D-type Cyclins fundamental for immature T lymphocytes normal 

expansion (Sicinska et al., 2003). Moreover, the forkhead box P3 (FOXP3) gene, which is 

also up-regulated in our data set, is one of the potential targets of dietary Se 

supplementation (Schomburg, 2012; Duntas and Benvenga, 2014). 

Selenium is known to elicit its antioxidative action through selenoamino acid 

incorporation into selenoproteins, which in turn influences the lipid metabolism in both 

physiologic and stress conditions (Holben and Smith, 1999; Kohrl et al., 2000). Our 

functional analysis using DAVID revealed that the MF “lipid binding” was the most 

significantly-affected GO term at T40, with a count of 18 up-regulated genes. Of those 

genes, the protein kinase C, delta (PRKCD), the apolipoprotein A-V (APOA5) and the 

fatty acid binding protein 6 (FABP6) were up-regulated by 1.95-, 1.5- and 2.05-fold, 

respectively. The PRKCD gene is considered one of the oxidative stress responsive-genes 

(Nitti et al., 2008; Vazquez et al., 2011), while the APOA5 and FABP genes are among 

those genes that modify the association of Se and lipid levels (Mutakin et al., 2013; 

Galan-Chilet et al., 2015). Additionally, some of the lipid-trafficking-endosomal-sorting-

nexin (SNX) genes (Cullen, 2008) such as SNX20, SNX27 and SNX5 were also up-

regulated. It is also worth mentioning that the BP “fatty acid metabolic process” and the 

MF “phospholipid binding” were among the significantly enriched GO terms in our data 
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set. These findings partly confirm, on the transcriptomic level, the association between Se 

and lipid metabolic processes. 

Pathway analysis has been reported to be critical for identification of expression pattern 

changes after nutritional interventions (Hesketh, 2008). DAVID analysis showed that 

PPAR and adipocytokine signaling pathways were the most represented KEGG pathways 

in the set of the up-regulated genes at T40. Likewise, The Se-induced PPAR activation as 

a part of the peroxisomes role in oxidative stress has been discussed in human (Schrader 

and Fahimi, 2006; Arnaud et al., 2009), and Se has been also shown to be linked to 

adipocytokine regulation in humans (Kim and Song, 2014). The functional annotation 

tool DAVID works via testing a set of a priori selected, significantly DE genes, for 

overrepresentation in annotated gene sets such as GO or KEGG, using standard statistical 

tests for enrichment (Huang da et al., 2009). However, this approach does not account 

either for genes with small changes in expression that might be biologically relevant 

(Mootha et al., 2003) or for the multivariate nature of the expression changes (Glazko and 

Emmert-Streib, 2009; Emmert-Streib and Glazko, 2011). As genes do not work in 

isolation (Pagmantidis et al., 2008), GSEA could be considered as an alternative 

technique that considers differential expression of gene sets and not just priori selected 

genes, instead it treats a gene set as a unit of expression (Ackermann and Strimmer, 2009; 

Dinu et al., 2009; Rahmatallah et al., 2015). Because we had small changes in expression 

(in terms of FC), we assumed that using the microarray intensities of all the probes 

instead of only a selected range of genes (represented by symbols or accession IDs) 

would give GSEA an advantage over DAVID in better describing the biological 

significance of the obtained data, and also to check whether both analyses would have a 

convergence. The top signaling pathways (B and T cells, adipocytokines, and Toll-like 

receptor-signaling pathways) identified by GSEA, partly confirms the complex effect of 

Se-supplementation on the immune system, which mainly reflects an induced adaptive 

rather than innate immunity trend, and furthermore shows a partial convergence (in terms 

or results) between both methods. 

In the present study, the relatively high number of up-regulated genes involved in 

“nucleotide-binding” and “transcription” GO terms suggests a Se-induced transcription-

modulation effect. For Se to induce its effects it needs to be specifically incorporated into 

selenoproteins as selenocysteine (SeCys) residues, which requires translational recoding 
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(Heider et al., 1992; Howard et al., 2013). However, the predominant form of Se in the 

supplemental source (Sel-Plex) used in the present study is SeMet and not SeCys, which 

logically raises the question “what was the possible source (if any) of SeCys?”. Firstly, Se 

is known to be retained largly by tissues in protein-bound forms, SeCys being specifically 

incorporated into selenoproteins and SeMet being nonspecifically incorporated into all 

proteins (reviewed in Combs, Jr., 2015). Moreover, SeMet enters the methionine pool and 

a variable proportion goes where methionine rather than Se is required, but partial 

conversion to SeCys via a lyase and adenosylmethionine is possible (NRC, 2005). Also, 

some transfer of Se from SeMet to SeCys have been suggested to occur when SeMet 

enters the Se-transport (selenoprotein P, SEPP) pool to be incorporated into functional 

proteins such as GPXs (Suttle, 2010). A hypothesis could be that higher dietary levels of 

SeMet used in the present study resulted in high levels of Se to be recycled and made 

available for incorporation into SeCys. Because in our DE genes’ list we did not 

recognize a SeCys-specific gene regulation pattern, i.e., no DE of SEPP, GPX1, GPX4 or 

thioredoxin reductases (TRs) genes, this hypothesis couldn’t be fully supported. As 

selenoproteins and their downstream targets are the functional outcome of dietary Se 

intake (Hesketh, 2008), the fact that the sheep in the present study were Se-nondeficient 

could support a less Se-induced effect in terms of regulated selenoproteins. 

Conclusions 
 

In conclusion, the present study has shown that it is feasible to use microarrays, combined 

with biological processes and signaling pathway identification, to identify differential 

gene expression patterns in sheep supplemented with Se. The findings suggest that, in 

sheep, high dietary Se supplementation leads to change of expression of several genes 

involved in the immune-system machineries (both adaptive and innate), and provide 

further insights on the transcriptional-modulation capacity of Se. In addition, this study 

provides a custom-designed whole-transcriptome microarray platform which can be used 

in future studies on the ovine species. 

Supplementary materials 
 

https://drive.google.com/drive/folders/0BxmPKazb5UxsdmdlWVBHZ2JvRms?usp=

sharing 
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4. GENERAL CONCLUSIONS AND PERSPECTIVES 

In 2015, agriculture in the EU (all 28 member states; EU-28) generated around EUR 164 

billion added value to the whole economy - of which around 41 % came from the food-

producing animal sector (Eurostat, 2016). The EU regulates this industry with the aim to  

protect the animal species kept for the production of food (i.e. meat and milk), wool, or 

for other farming purposes, as well as to protect the consumers from any food-related 

harm. The enforcement of such regulations indeed requires a strong – and updated - 

scientific background on the effect of xenobiotics on both the food-producing animals and 

humans (i.e. consumers). The ‘omics’ technologies are becoming more accessible and 

affordable to a greater number of livestock scientists. Currently, these tools are 

considered fundamental when it comes to study the effect of different xenobiotics and 

nutritional additives on the overall performance of livestock.   

Based on the different studies presented in this thesis, the microarray-based 

transcriptomics approach was able to provide a holistic view on the global gene 

expression in diverse types of tissues – namely, skeletal muscle, liver, whole blood, 

primary hepatocytes- and kidney-derived cell lines. The pre-designed commercial bovine 

microarray enabled the discovery of many biomarkers with which the differentiation 

between illicitly-treated and untreated veal calves was possible. It also demonstrated the 

transcriptomic signature dissimilarity between two tissues (i.e. skeletal muscle and liver) 

exposed to the same treatment (i.e. anabolic steroids). Also, the same approach revealed 

the presence of some transcriptomic landscape convergence between the hepatocytes 

primary cultures and the MDBK cell line, which in turn spots the light on the MDBK 

cells as a possible surrogate in vitro tool for some liver-based functional studies. Finally, 

a custom-designed whole-transcriptome sheep (Ovis aries) microarray revealed the 

immune-system-induction and the transcriptional-modulation capacity of organic 

selenium in sheep. Collectively, the transcriptomics approach overcame the shortcoming 

of focusing on changes in expression of a priori list of selected genes – instead, it looks at 

the bigger picture within the protein-coding part of the genome. It is important to mention 

that using an alternative functional analysis tools [i.e. Gene set enrichment analysis 

(GSEA)] was useful to cross-validate the output of the conventional overrepresentation 

tools like DAVID. 

http://ec.europa.eu/eurostat/statistics-explained/index.php/Agriculture_statistics_at_regional_level
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Although the transcriptomics-based approaches provide an extensive view on the 

differentially regulated genes in a given tissue/living organism, it is evident it can’t fill all 

the gaps in understanding a complex biological system. The present work showed a no 

overlap between the transcriptomics and proteomics data obtained from the same cohort 

of samples. Although puzzling, this showed the necessity to change the strategy from 

comparing two different omics data sets (i.e. transcriptomics vs. proteomics) to try 

integrating them in a way that one can be used to fill the gaps in the other. From a 

systems biology approach this could be more interesting. Loor et al. (2015) discussed the 

fact that researchers should focus on those cases where the expected correlations between 

the transcriptome and the proteome are absent as this could reveal the possibly hidden 

regulatory information lacking from the original knowledge base of the biological system. 

Altogether, the transcriptomics approach is a very powerful data generation tool, but the 

data integration at various levels (genomics, transcriptomics, proteomics, metabolomics) 

is necessary to arrive at a holistic view of how animals or biological systems function.  
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