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RIASSUNTO 

Le innovazioni tecnologiche e il potenziamento di hardware e software, l’ampia diffusione di 

software geografici (GIS), di sensori e strumenti per il remote-sensing e la creazione di reti di scambio 

di informazioni connesse con l’avvento del web, hanno facilitato la possibilità di collezionare 

estensivamente (sia nello spazio che nel tempo) dati idrogeomorfologici, ponendo le basi per nuovi 

progressi in idrologia e geomorfologia, anche attraverso lo sviluppo di sofisticati modelli di 

simulazione. Tra gli scopi dell’idrologia, oltre a quello di comprendere i processi, vi quello di poterli 

quantificare e prevedere, nella prospettiva di fornire strumenti sempre più idonei alla prevenzione e 

mitigazione del rischio idrogeologico.  Tale scienza è quindi ad un punto della sua evoluzione per cui 

le sfide e i problemi emergono nel momento in cui ci si interfaccia con altre discipline scientifiche, e 

con elementi che riguardano non più semplicemente l’ambito scientifico o di ricerca, ma anche 

l’ambito politico, scientifico-tecnologico, computazionale e socio-economico. Attualmente nella 

comunità scientifica è stata posta la necessità di analizzare la risposta idrologica in una prospettiva 

più ampia, non solo a livello di ricerca, ma anche con l’ottica di trasferire le conoscenze in ambito 

applicativo e gestionale.  

La problematica principale relativa alla possibilità di comprendere e prevedere la risposta idrologica 

di un bacino è legata alla forte eterogeneità derivante non solo dal regime pluviometrico, ma anche 

dagli assetti geologico-strutturali, dalla conformazione morfologica, dai caratteri pedologici, dall’uso 

del suolo e dalla presenza di infrastrutture antropiche. Tale eterogeneità permane a tutte le scale di 

analisi, e la sua struttura spaziale e l’organizzazione delle sue proprietà e caratteristiche esibiscono 

un significativo controllo nel condizionare la risposta idrologica di piena al variare delle scale spaziali 

di indagine. La risposta di ogni sistema deriva dall’interazione tra numerosi processi e dai vari 

feedbacks tra le varie componenti del sistema stesso, e si mostra allora necessaria una corretta 

rappresentazione delle complesse dinamiche di interazione presenti alle varie scale di indagine. 

Nell'idrologia moderna esiste una lunga tradizione che mette in relazione gli elementi morfologici di 

un bacino con le sue dinamiche idrologiche. Essa si può far risalire alla formulazione della risposta 

idrologica geomorfologica (Rodriguez-Iturbe et al. 1986) e, più recentemente, è stata investigata in 

dettaglio grazie alle possibilità offerte dalla grande e sempre più accurata base di dati topografici 

derivante da rilievo remoto (LiDAR), che consentono una lettura dettagliata del paesaggio e offrono 

strumenti efficaci per la comprensione dei processi idrologici (Tarolli et al 2009; Tarolli e Dalla 

Fontana, 2009). Nonostante i progressi ottenuti negli approfondimenti riguardanti l’analisi e la 

comprensione dei singoli fenomeni idrologici, il processo di comprensione completo dei sistemi pone 

una serie di interrogativi irrisolti. Nel corso degli anni, parallelamente allo sviluppo di interpretazioni 

sempre più raffinate delle teorie governanti i singoli processi idrologici non si è visto un parallelo 
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progresso di strutture che permettano di comprendere il funzionamento dei sistemi idrologici a larga 

scala, e molto spesso i risultati non consentono il trasferimento delle conoscenze tra vari operatori, 

su diverse scale spaziali o temporali. Vi è quindi la necessità di identificare e uniformare nuove 

metodologie per identificare tali processi in maniera oggettiva, automatica e facilmente ripetibile, in 

modo da superare l’eterogeneità geomorfologica, ma anche sintattica e semantica intrinseca negli 

operatori, per facilitare ed ottimizzare la gestione delle risorse territoriali. Tale approccio richiede la 

definizione di indici di somiglianza, e l’identificazione di particolari attributi che caratterizzano il 

comportamento idrologico dei bacini idrografici. Data l’eterogeneità morfologica e idrologica 

presente a tutte le scale, questo richiede lo sviluppo di strumenti di classificazione diagnostica che 

siano in grado di integrare e prendere in considerazione fattori come ad esempio la. Ovviamente 

questo richiede l'acquisizione ripetuta di informazioni topografiche ad alta risoluzione, e la rapida 

crescita della disponibilità di modelli digitali del terreno (DTM) come quelli derivati da scansioni laser 

(LIDAR), ha fornito un modo di guardare al nostro pianeta con livello di dettaglio senza precedenti, 

spesso consentendo il riconoscimento di caratteristiche morfologiche precedentemente sconosciute 

(Tarolli et al. 2009). Non vi è alcun dubbio che oggi rispetto al passato, abbiamo una capacità migliore 

di rappresentare in maniera corretta e realistica i vari sistemi idrologici, e abbiamo una migliore 

comprensione e capacità predittiva dei fenomeni idrologici, ma rimane comunque la necessità di 

regole semplici e/o procedure chiare per determinare i processi dominanti che operano in diversi 

bacini.  Lo sviluppo di queste regole e procedure consentirebbe un approccio molto più sistematico e 

fattibile, anche per il trasferimento di conoscenze a scale diverse. Ogni indagine richiede 

l'identificazione accurata della scala spaziale di interesse, oltre che della scala temporale del 

problema in analisi, per consentire la selezione del processo rilevante e delle variabili che lo 

caratterizzano. La letteratura in questo settore ha mostrato che, in generale, l'idrologia è di fronte 

alla necessità di andare oltre il concetto di ‘modellare tutto’, e di muoversi verso l’idea di 'catturare 

le caratteristiche essenziali', e questo parte dall’identificazione di una corretta scala di analisi. 

L’Analisi Digitale del Terreno (Digital Terrain Analysis -DTA) applicata a DTM ad alta risoluzione, 

sviluppata nel lavoro di tesi del dottorato, può essere uno strumento utile in questo contesto, 

fornendo il quadro di riferimento per la quantificazione della morfologia superficiale e la sua 

classificazione, puntando sia all’identificazione dei vari processi, con gli obbiettivi futuri anche di 

simularli correttamente in modo tale da ottenere informazioni sia sulle condizioni attuali, che sui 

possibili risvolti futuri. Il principio fondamentale della DTA è la possibilità di rappresentare in maniera 

digitale la morfologia superficiale, a partire dall'abbondanza di informazioni topografiche contenute 

nei dati di elevazione (modelli digitali del terreno, DTM). Tale morfologia appare con diversi livelli di 

complessità e deriva dall’interazione di processi geologici e idrologici, le cui componenti principali 

possono essere lette morfologicamente attraverso l'utilizzo degli attributi topografici. La varietà di 
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forme di rappresentazione incorporate nei DTM, le grandi opportunità di elaborazione in tempo 

reale, e la facilità di rappresentazione multi-scala, hanno portato l'analisi digitale del terreno ad 

essere qualcosa che va oltre la ricerca, ma che può essere vista anche come supporto per la 

creazione di mappe morfologiche e per l'identificazione automatica o semiautomatica di features. 

L’attività di ricerca ha avuto come come filo conduttore l’esplorazione e l’analisi di quella che può 

essere chiamata ‘firma statistica’ di diversi processi idro-geomorfologici sulla morfologia superficiale, 

analizzando vari elementi su una vasta gamma di scale spaziali, con l’obbiettivo di identificare il 

processo fisico dominante. In particolare, l’idea è analizzare i dati derivanti da DTM LiDAR ad alta 

risoluzione con l'obiettivo di estrarre particolari features di interesse geomorfologico/idrogeologico. 

In combinazione con una formulazione ottimale, questo tipo di approccio permette l'estrazione 

accurata e automatica di reticoli idrografici o features geomorfiche sia di origine naturale che 

antropica. Più in particolare, il lavoro di ricerca è risultato nella definizione di metodi oggettivi o 

semi-automatici per l’identificazione di features, che mirano a risolvere una serie di problemi ben 

documentati legati alla rappresentazione di tali features in idrologia e geomorfologia. Il lavoro è stato 

sviluppato considerando due principali ambiti di studio: bacini montani e aree antropiche (in 

particolare piane alluvionali).  In contesti naturali (montani), l’efficienza della topografia LiDAR ad 

alta risoluzione è già stata testata in diversi lavori in letteratura, ed è stata nuovamente evidenziata 

durante il triennio di ricerca; un ulteriore obiettivo è stato quello di testare se tale informazione 

topografica può essere uno strumento di analisi utilizzabile anche per ambienti antropici, dove sono 

presenti caratteristiche diverse, e le attività umane possono risultare in elementi di disturbo. L'analisi 

digitale del terreno proposta si basa principalmente sull'uso di indici topografici (alcuni già collaudati 

in letteratura e alcuni nuovi) valutati a varie scale di analisi per quantificare morfologia del terreno. 

Dal momento che le proprietà statistiche della morfologia catturata dal DTM dipendono 

strettamente dalla scala a cui il modello viene analizzato, studiare come esse cambiano al variare 

della scala può essere uno strumento efficace per identificare la scala ottimale di analisi, sia nel 

mondo digitale che in quello reale, e quindi nel contesto idrogeomorfico. A questo punto, alcuni 

interrogativi restano ancora aperti: processi fisici statisticamente diversi, sono fautori di regimi 

idrologici statisticamente diversi? E’ vero che le diverse leggi che regolano i processi lasciano una 

firma sulle proprietà statistiche della morfologia? Quanto della relazione tra idrologia e morfologia 

viene catturata da tale firma? Ora che siamo in grado di valutare la morfologia con un elevato livello 

di dettaglio grazie alla topografia ad alta risoluzione, è possibile rispondere ad alcune di queste 

domande. Se i processi fisici lasciano firme importanti sulle statistiche dei parametri morfologici, e se 

siamo in grado di quantificare queste firme in dettaglio, la statistica può essere utilizzata per aiutare 

la modellazione e la previsione dei vari processi su scale diverse e ambienti diversi. La topografia ad 

alta risoluzione accoppiata ad un approccio statistico può quindi essere un potente mezzo di 
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inferenza, per definire la scala di analisi ottimale e per individuare soglie di inizio o fine di particolari 

processi, al fine di facilitare l’approfondimento e il trasferimento delle conoscenze 

idrogeomorfologiche.  
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ABSTRACT  

Technological innovations and the upgrading of hardware and softwares, the wide distribution of 

geographical information softwares (GIS), sensors and instruments for remote sensing, and the 

increasing of networks to transfer information facilitated the ability to collect extensively (both in 

space and time) hydrogeomorphological data, offering new opportunities for advances in hydrology 

and geomorphology, also thanks to the development of sophisticated simulation models. However, 

one of the purposes of hydrology is not only to understand processes, but also to forecast them, in 

order to prevent risks, and hydrology is therefore, at a point of its development where challenges 

and problems arise when interfacing with other disciplines and elements that do not involve simply 

the scientific context, but also the political, technological, computational and socio-economic ones. 

Recently, the scientific community highlighted the need to analyze hydrological responses in a 

broader perspective, not only for research purposes, but also with the aim of transferring knowledge 

in the application and management world. 

The main issue concerning the ability to understand and predict the hydrological response of a basin 

is, however, related to the heterogeneity that derives not only from the different rainfall regimes, 

but also from the geological structure of a watershed, and its morphology, soil characteristics and 

land use, and of course, it is influenced by the presence of human infrastructure. This heterogeneity 

persists at all scales of analysis, and its spatial structure and the organization of its properties and 

characteristics exhibit a significant influence in controlling the hydrological response at the full range 

of scales. The hydrological response of each system comes from the interaction between various 

processes and various feedbaks between the components of the system itself; therefore a correct 

representation of the complex dynamics of interactions present at different scales is needed. The 

connection between hydrological dynamics of a basin and its morphological structure is not new, but 

has deep roots in hydrology. It can be traced back to the formulation of the hydrological-

geomorphological response (Rodriguez-Iturbe et al. 1986) and, more recently, it has been deeply 

investigated thanks to the possibilities offered by the availability of large-scale and highly accurate 

topographic data derived from remote sensing (LiDAR), that allowed a detailed reading of the 

landscape and offered effective tools for the understanding of hydrological processes (Tarolli et al 

2009; Tarolli and Dalla Fontana, 2009). Despite progress in the analysis and insights on the 

understanding of individual hydrological phenomena, understanding the process of complete 

systems raises a number of unanswered questions. Over the years, with the development of 

increasingly refined interpretations of the theories governing the individual hydrological processes, 

there has not been a parallel increasing of understanding the hydrological functioning at a large-

scale, and very often the results do not allow the transfer of knowledge between different operators 
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in different spatial and temporal contexts. There is therefore, a deep need of defining new methods 

to identify these processes in an objective, easily repeatable and automatic or semi-automatic way, 

in order to overcome the issue of geomorphological heterogeneity, but also the inherent syntactic 

and semantic heterogeneity that comes from the operators themselves, to facilitate and optimize the 

land management. This approach requires the definition of indices of similarity, and the identification 

of specific attributes that can characterize the hydrological behavior of watersheds. Given the 

morphological and hydrological heterogeneity present at all scales, this requires the development of 

diagnostic classification tools that are able to integrate and take into account factors such as 

topography. Obviously, this requires the acquisition of repeated high-resolution topographic 

information, and the rapid growth in the availability of digital terrain models (DTM) as those derived 

from laser scanning (LIDAR), has provided a way of looking at our planet with a level of 

unprecedented detail, often allowing the recognition of morphological features previously unknown 

(Tarolli et al. 2009). There is no doubt that today we have a greaterability to accurately and 

realistically represent the various hydrologic systems than in the past, and we have a 

betterunderstanding and predictive capability about hydrological phenomena. However, there is still 

the need for simple rules and/or clear procedures to determine the dominant processes operating in 

different basins. The development of these tools allows a much more systematic and practicable 

approach to transfer knowledge at different scales. Every investigation requires the accurate 

identification of the spatial scale of interest, as well as the time scale of the problem in analysis, to 

allow selection of the relevant process and variables that characterize it. The literature in this area 

has shown that, in general, the hydrology is facing the need to go beyond the concept of 'model 

everything', and to move towards the idea of 'capturing the essential features’, and this starts from 

the identification of a correct scale of analysis. The Digital Terrain Analysis (DTA) applied to high-

resolution DTM, as proposed in this thesis, can be a useful tool in this context, providing the 

framework for the quantification of the surface morphology and its classification, aiming to identify 

the various processes, with the future goals also to simulate them correctly to gather information 

about their current conditions, but also their possible future implications. The fundamental principle 

of the DTA is the ability to represent the surface morphology in a digital form, starting from the 

abundance of information within the topographic elevation data. This morphological surface appears 

with different levels of complexity, that derive from the interaction of geological and hydrological 

processes, whose main components can be read morphologically through the use of topographical 

attributes. The variety of forms of representation embedded in the DTM, their fast real time 

processing, and easy multi-scale representation, have led the digital analysis to be something that 

goes beyond research, but that can be also seen as support for the creation of maps and the 

morphological identification of features through automatic or semiautomatic approaches. The 
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present work has as a main theme, the exploration and analysis of what might be called 'statistical 

signature' of hydro-geomorphological processes on surface morphology, analyzing various elements 

that can characterize this morphology over a wide range of spatial scales, to identify the dominant 

physical process. In particular, the idea is to analyze data from high-resolution LiDAR DTM to 

recognize the hydrogeomorphic features of interest. In combination with an optimal formulation, 

this approach allows accurate and automatic extraction of river networks and geomorphic features 

both with natural or anthropogenic origin. More specifically, the thesis aims to develop objective and 

semi-automatic methods that aim to solve a series of well documented problems related to the 

representation of these features in hydrology and geomorphology. The work has been developed 

considering two main study areas: mountainous basins and anthropogenic areas (flood plains). In 

natural settings, the effectiveness of high-resolution LiDAR topography has already been tested in 

several works in literature, and one of the objectives of this thesis is to test whether this information 

can be a tool to perform topographic analysis also in disturbed environments. The proposed digital 

terrain analysis is primarily based on the use of terrain attributes (some already known and tested in 

literature, and some new) evaluated at different scales to quantify terrain morphology. Since 

statistical properties of the morphology captured and derived by DTMs critically depend on the scale 

at which the model is analyzed, analyzing how they change at changing scale can be an effective tool 

to identify the ‘characteristic scales’ in both the cell and the hydrogeomorphic realms. At this point, 

some open questions still remain: Are statistically-distinct hydrological regimes the result of 

physically-distinct processes? Do differences in laws governing processes leave their signature on the 

statistical properties of landform geometry, and how much of the behavior of the coupled 

hydrologic/geomorphologic system is reflected in the statistics that we can digitally derive?  

Now that we can assess landforms with a high level of detail thanks to high resolution topography, 

some of these questions can be answered. If physical processes do leave important signatures on the 

statistics of landscapes, and if we can quantify these signatures in detail, statistics can be used in 

assisting modeling, prediction and observatory design across scales and across environments. High 

resolution topography coupled with statistic approaches can thus be a powerful means of inference, 

to define the optimum scale of analysis, to identify a threshold to label where a process starts, to 

transfer knowledge across scales. 
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CONTENTS 

The thesis is organized to provide a general introduction (Sect. I.Introduction), and on a second 

section the considered study sites are described (Sect. II.Study sites). The section III.Materials and 

methods describes the research context behind the work, and a detailed description of the proposed 

approaches is presented in Sect. IV.DTA for feature recognition.  

More in detail, after a first introduction to the importance of scales and similarities in hydrological 

processes in the hydrogeomorphic and the digital realms (Chapt. 1, Sect. I.Introduction), the research 

context is discussed (Chapt. 2, Sect. I.Introduction), providing a literature background for the 

considered features. The thesis approaches to two different types of environments, a natural 

landscape and an anthropogenic ones, and the considered study sites are described in detail in the 

section II.Study areas. In the section III.Materials and methods, the theoretical basis of, and problems 

associated with Digital Terrain Analysis (DTA) for characterizing surfaces, landforms, and 

hydrogeomorphic features using high resolution LiDAR-Digital Terrain Models are presented. In the 

first two chapters of this section, a description of LiDAR technology (Chapt. 1) and derived DTMs 

(Chapt. 2) is provided. In particular, concerning the DTMs (Chapt. 2), the research is focused on the 

quality of the models (Chapt. 2.1) and on how to apply them to model continuous surfaces (Chapt. 

2.2). Chapter 3 is completely dedicated to the hydrological and morphological characterization of 

surfaces, and a detailed description of all the topographic parameters used in the thesis is provided. 

All the proposed Digital Terrain Analyses share the use of statistical operators, and the conceptual 

background for this framework is described in chapter 4, where the main statistics are addressed 

(Chapt. 4.1), and their use for the definition of the scale of analysis and for the extraction of features 

is described (Chapt. 4.2). A thorough analysis of the effect of errors on DTMs on the topographic 

parameter statistics is also proposed (Chapt. 4.3). 

The fourth section of this thesis (IV.DTA for feature recognition) contains the detailed description of 

the different approaches applied for feature recognition. The first two cases (Chapt. 1 and 2) are 

focused on the mountainous environment, and they address the main hydrogeomorphic features 

that are generally considered in hydrological analyses. In the first example of feature extraction 

(Chapt. 1), an a posteriori approach is presented to test different objective statistical operators used 

to characterize geomorphic features. On the second approach (Chapt. 2), a methodology to 

objectively extract network features is discussed, and its robustness and limits are assessed through 

a statistical framework.  

However, hydrological processes span outside the mountainous context, therefore Chapt. 3 and 4 

present an analysis of the effectiveness of the different topographic parameters as the basis for DTA 

in engineered landscapes. On the first approach (Chapt. 3), different topographic parameters are 
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tested to extract levees, underlining the limits or the advantages of each one, and identifying the 

optimal one. Chapt. 4 describes a full DTA approach for the characterization of the drainage network 

in floodplains, starting from the same topographic parameter highlighted as optimal in Chapt. 4. 

Chapter 5 presents the final remarks about all the proposed procedures, underlining how high-

resolution topography connected with the use of statistics is a powerful tool to gain knowledge 

about hydrogeological features both in mountainous contexts and engineered landscapes. 

A short commentary with summary, conclusions and recommendations is provided at the end of the 

thesis (Sect. V.Conclusions and future challenges).  

The whole work has been carried out by integrating a GIS and non-GIS environment, briefly 

commented in Appendix A. 
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I. INTRODUCTION 

1. Scales and similarities in hydrological processes: the 

hydrogeomorphological and the cell realms 

 
Runoff generation results from the interaction of different hydrological processes, and one 

demanding aspect in hydrology is the understanding of its spatio-temporal patterns. The 

investigation of runoff in different contexts is challenged by the specific characteristics of the 

environments: for alpine catchments, for example, this study is often challenged by inaccessibility of 

these regions; for engineered landscapes, it is challenged by the extent of the areas, and the 

continuous disturbance introduced by human activities. Another problem related to this matter is 

the heterogeneity of the terrain and of its morphometric properties that directly influence hydrologic 

processes (Gregory and Walling, 1973), and that differs across spatial and temporal scales. In turn, 

topography is a direct manifestation of the same processes that dynamically and continually shape 

the surfaces, and transform the terrain with different levels of dissectivity, and with a variety of 

morphological entities.  

Hydrology and geomorphology spatial heterogeneity is scale-dependent (Klemes, 1983; Bloschl and 

Sivapalan, 1995), since both fields deal by nature with patterns and processes, as well as their 

interactions and functional implications on a variety of scales (Sivapalan, 2005), and the concept that 

“scale matters”, common ground in environmental sciences, has been underlined by a flourishing 

literature both in hydrology (e.g. Bloschl and Silvapalan, 1995; Vogel and Roth, 2003; Sivapalan , 

2005) and geomorphology (e.g. Evans 1972, 1979, Dodds and Rothman, 2000; Shary et al. 2005). 

Processes that are important at one scale are not necessarily important at other scales (Sivakumar, 

2008), and dominant processes change within changing scales (Grayson and Bloschl, 2001). Processes 

are influenced by past and present events interactions and thresholds (Dietrich et al. 1993, Grayson 

and Bloschl, 2001, Montgomery and Dietrich 1992, McDonnell and Woods, 2004), and depending on 

their intrinsic scale, they are controlled and influenced by different driving forces. Several studies 

have investigated the influence of different landscape controls on hydrological functioning and 

behavior of catchments such as topography (Anderson and Burt, 1978a,b; Grabs et al., 2009; Jencso 

et al.,2009), geology (Uchida et al., 2005; Spence, 2007), soil cover (Carey and Woo, 2001; Kirkby et 

al., 2002;Laudon et al., 2007; Tetzlaff et al., 2007a) and climate(Devito et al., 2005; Hrachowitz et al., 

2009; Troch et al., 2009). These studies have revealed the complex way in which catchment 

characteristics and forcing factors affect hydrological flow paths, and they demonstrated how 
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catchment characteristics (Gupta et al., 1980; Rodriguez-Iturbe and Valdes, 1979; Acreman and 

Sinclair, 1986; Sauer et al., 1983).  

The structure of a catchment depends to a large extent on the interaction between hillslope and 

channel processes, and it is widely acknowledged that  the hydrologic response bears the signatures 

of both the structure of the channel network and of the characteristic hillslope lengths defining the 

drainage density of the basin. The deep interaction between the two processes raises numerous 

questions, as in which process is mainly responsible for characterizing the catchment response; or 

what determines the importance of one process over the other, and again, what is the correct scale 

to use to analyze and represent both processes and their interaction. 

The transition from straight or convex hillslopes to concave valley forms is understood to represent a 

transition in process dominance, but the nature of that transition has been debated. Gilbert (1909) 

argued that convex-concave forms correspond to a gradual transition in process dominance from 

creep to wash with increasing distance from a drainage divide. This approach is based on the view 

that valleys form where flow convergence causes rill or gully excavation by runoff erosion. An 

alternative view is that valley and channel formation are controlled by geomorphic thresholds. A 

number of researchers have argued, for example, that hillslope-valley transitions occur where a 

threshold for runoff erosion is regularly exceeded during large storms (Horton, 1945; Montgomery 

and Dietrich, 1989; Willgoose et al., 1991a.b). Some authors commented that these two approaches 

constitute end-member cases, and any given landscape may be both threshold-dominated or 

instability-dominated, depending on the climate, relief, geology, and stage of evolution (Kirkby, 

1988).  

A further element that drives the hydrologic response of a basin is its geomorphologic  structure: 

Rodriguez-Iturbe and Valdes (1979), for example, developed a theory for linking the surface 

hydrologic response to geomorphological settings. They used the classical  unit hydrograph concept  

to describe  the hydrologic response and Horton numbers, as  well as other parameters, to describe 

the geomorphologic structure of a watershed. Their pioneering study was followed by several other 

similar studies on the links between hydrologic processes and basin morphology (e.g., Gupta et al.,  

1980; Rodriguez-Iturbe  et  al., 1986;  see  also  Rodriguez-Iturbe  and Rinaldo,  1997,  chapter  VII).  

Information on the internal behaviour of catchments is necessary to identify similarities and 

differences between catchments in terms of their response to natural and anthropogenic 

disturbance and change (Buttle, 2006). Given the importance of heterogeneity at all scales, process 

conceptualization requires the development of diagnostic classification tools that consider factors 

such as topography to develop indices of similarity (Buttle, 2006). Thus, there is a need for simple 

rules and/or clear procedures to determine the dominant processes operating in different 

catchments, and how these reflect variations in landscape controls (Buttle, 2006). Clearly, catchment 
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can be viewed as a nested hierarchy, in which the larger landforms are made up of smaller ones, but 

investigating landforms at different scales typically requires changing the research focus, since the 

functioning and evolution of large-scale landforms often cannot be understood by simply integrating 

the behavior of the smaller ones. Such changes in focus occur over the full range of 

geomorphological interest. Any investigation requires careful identification of the spatial and 

temporal scale of the problem, to allow selection of the relevant processes and variables.  

Digital Terrain Analysis (DTA) can be framed in this context, providing the basis and the tools for 

landform quantification, segmentation and classification, aiming both at processes recognition and 

simulation to extrapolate terrain knowledge. In general, DTA allows to handle the complexity of 

individual processes and patterns as well as some of the difficulties that are encountered in 

delineating the appropriate spatial and temporal scales (Wilson and Gallant, 2000). Digital Terrain 

Analysis has been an active study field for years, and it has been consolidated in the scientific 

literature. Wilson and Gallant (2000) collected a significant amount of work regarding terrain analysis 

methods and their applications to soils, hydrology and vegetation. Pike (2000) underlined the 

significance of digital terrain modeling and computerized technology in practical applications, and 

numerous publications before that have emphasized the role of terrain, and as a consequence DTA, 

in hydrologic modeling, sediment transport, soil erosion estimation, drainage basin morphology, 

vegetation, and ecology (Krcho 1991, Parson and Abrahams 1993, Rodriguez-Iturbe and Rinaldo 

1997). The main principle of Digital Terrain Analysis is that a continuous landscape surface can be 

generated from the abundance of topographic information contained within elevation data 

(geomorphic position, slope, etc.), and various studies underlined how the spatial distribution of 

topographic attributes can often be used as an indirect measure of the spatial variability of 

hydrological, geomorphologic and biological processes (i.e. Moore et al., 1991).  

In DTA, analysis starts thanks to the availability of Digital Elevation Models (DEMs), that can be used 

for the extraction of land-surface parameters (Pike, 2000). The variety of representation forms 

embedded in the DEMs, and their high feasibility of automation and real-time processing, and the 

easy multi-scale representation, brought Digital Terrain Analysis beyond a research tool, supporting 

landform mapping and the automatic or semiautomatic identification of landform elements at their 

specific scale, through the use of topographic attributes (Lashermes et al. 2007; Tarolli and Dalla 

Fontana, 2009; Passalacqua et al. 2010; Pirotti and Tarolli, 2010; Tarolli et al., 2010; Sofia et al. 2011).  

One of the simplest attributes of a terrain is the elevation itself, that carries information about the 

length, gradient and frequency distribution of surface slopes, the magnitude of relief, the degree of 

incision of drainage channels, etc. of any given point in a landscape. This information can be used to 

describe and characterize most of the hydrological processes. The advantage of considering and 

analyzing topography, compared to other information such as soil parameters or biomass production 
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estimates, is based on the relatively simple and fast techniques available to model it in large areas, 

that allows the description of the complex spatial patterns of environmental systems as seen by 

Moore et al. (1993). Terrain can be characterized by features and landform elements that can be 

observed at a different scale, and that carry information about the underlining hydro-

geomorphological processes. Landform entities, of course, differ from one another in terms of 

characteristics and scale of analysis, and they differ in terms of the physical processes that were 

involved in their formation, and that continue to operate within them at the moment. Recognizing 

and characterizing such features from terrain data, therefore, is a key element, for any hydro-

geomorphological analysis. Dikau (1989) differentiates these elements with homogeneous plan and 

profile curvature from facets having homogeneous gradient, aspect and curvature. Shary et al. (2002) 

proposed an objective, local, scale-specific classification of elemental landform features based 

entirely on consideration of signs of curvatures. MacMillan et al. (2000) described the three major 

problems for an automated landform classification algorithm for identifying various types of 

landscapes at different scales as connected i) to the selection and computation of an appropriate 

suite of terrain derivatives; ii) to the identification of meaningful landforms at different scales and 

their salient or defining characteristics; and iii) to the selection and application of classification 

procedures capable of using the available terrain derivatives to represent correctly the landform 

types at the desired scale.  

The concept of scale and scaling in terms of hydrology and geomorphology has already been 

underlined. Most land-surface parameters and objects vary with spatial scale, but when observing 

and classifying terrain it is necessary to rely on a combination of the intrinsic scale of the process 

itself, and a scale imposed by the level of detail of the displayed surface, as controlled by resolution 

of the data used to represent it. In the digital realm, the scale at which we are able to represent a 

landform is therefore understood as a function of cell size or grid resolution (Wilson and Gallant, 

2000). The dependence of land-surface parameters on grid resolution has been described by Evans 

(1972) as ‘a basic problem in geomorphometry’. The horizontal and vertical resolution of the 

elevation data used to portray a terrain surface has a significant influence on the level of detail and 

the accuracy of the portrayal of surface features, and on the values of land surface parameters that 

are directly computed from a digital representation of surfaces. Numerous authors have examined 

the effects of the grid resolution on the value accuracy of land-surface parameters and objects 

derived from elevation data sets of differing resolutions (Florinsky, 1998; Wilson and Gallant 2000). 

Shary et al. (2002) provided a theoretical examination of the effects of grid resolution on land surface 

parameters and objects. They demonstrated that the local variables of slope gradient, aspect and 

curvatures are very sensitive to DEM resolutions, exemplifying how second derivatives (curvature) 

are more sensitive than first derivatives (slope). Arrell et al. (2007) examined the scale dependency of 
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morphometric classes. They found that the relative importance of landform classes varies with DEM 

resolution. Some authors underlined that it is possible to identify characteristic dimensions over 

which specific landforms may occur (Evans, 2003) and (either implicitly or explicitly) it is possible to 

recognize a hierarchy with different types and sizes of landforms occurring at different scales. 

However, in the absence of scale optimization techniques, the geomorphometric analysis is 

conducted at rather arbitrary scales, which rely on the user’s experience.  

Recent advances in data collection technology such as airborne and terrestrial laser scanning have 

enabled rapid, accurate, and effective acquisition of geographic information (Ackermann 1999, Kraus 

and Pfeifer 2001, Briese 2004, Slatton et al. 2007, Tarolli et al. 2009) and this enabled advances in the 

analysis of landform morphometry through the availability of high resolution data. A new generation 

of high resolution (~ 1m) Digital Elevation Models (in the form of Digital Terrain Models –DTM-, or 

Digital Surface Models –DSM-) is nowadays widely available, offering new opportunities for the 

scientific community to use detailed representations of surfaces. The rapid growth in the availability 

of this type of DEMs, provided a way to look at our planet with an unprecedented detail, often 

allowing the recognition of previously unknown features and the establishment of their spatial 

relationships (Tarolli et al. 2009). The challenge is now focused on their application for understanding 

earth and surfaces processes at different scales and for different contexts (Tarolli et al. 2009; Tarolli 

and Dalla Fontana, 2009). Originally, terrain-related analyses were limited by the coarse spatial 

resolution of available DEMs, applying the concept of scale just as a function of the grid resolution. 

Nowadays, Increasing availability of high resolution topography anyway, is leading to a paradigm 

shift regarding the scale issues, and it has been recognized that analyses should not be driven by the 

finest available grain size, but that it might be appropriate to consider a coarser resolution, more 

relevant to particular research objectives (Wood, 1996; Pirotti and Tarolli, 2010, Tarolli et al. 2010, 

Sofia et al. 2011). Scale dependency of land-surface parameters and land-surface objects has been 

underlined by a number of studies (Wood, 1996; Florinsky and Kuryakova, 2000; Evans, 2003; 

MacMillan et al., 2003; Schmidt et al. 2003; Hengl, 2006; Arrell et al., 2007; Pirotti and Tarolli, 2010; 

Tarolli et al. 2010; Sofia et al. 2011). There is not a single or fixed value for local land-surface 

parameters at a point, but rather a whole range of values that are dependent both on DEM 

resolution, and scale of analysis (windows size) used to compute the parameters. Consequently, 

there is not a single best resolution for analysis, but the selected resolution needs to be appropriate 

for capturing and describing not only the surface, but also the features of interests for a particular 

application. Consequently, the importance of scaling methods has grown significantly, and different 

methods to account for scale have been proposed. In particular, techniques such as filtering and 

resampling are frequently applied to high resolution grids to smooth out noise that may lead to 

erroneous results (MacMillan et al., 2000; Lashermes et al. 2007, Passalacqua et al. 2010a,b; Pirotti 
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and Tarolli, 2010, Tarolli et al. 2010, Sofia et al. 2011). In his thesis, Wood (1996) clearly showed the 

scale dependency of land-surface parameters by computing and analyzing them over a range of 

spatial scales. As a major outcome he introduced the open-source software package, LandSerf, that is 

currently one of few products capable of performing ‘multi-scale surface characterization’.  

The mentioned literature underlined that decisions on an appropriate resolution involve compromise 

between noise reduction and generalization. A similar conclusion was drawn by Hengl (2006), who 

suggested a number of intermediate values between the finest available and coarsest legible 

resolutions to be an appropriate scale for a specific problem. Schmidt and Andrew (2005) introduced 

a spatially adaptive scale detection technique, exemplified for curvatures, in order to recognize 

dominant scale ranges of landforms and to study local landform variability across scales. Pirotti and 

Tarolli (2010) tested different filtering techniques on the LiDAR raw data for the characterization of 

landform curvature, and a filtering approach based on the Wood (1996) moving windows to produce 

curvature maps for channel network identification. The same generalization procedure has been 

applied by Tarolli et al. 2010 for the characterization of geomorphic features. 

As Olaya (2009) pointed out ‘combining ideas from image analysis and geomorphometry can be a 

fruitful way of…gaining a better understanding of the information contained in the DEM’, and 

methods originally developed in image analysis, offer the potential for dealing with scale in DEM 

analysis (Li, 2005).  Lashermes et al. 2007 introduced the use of wavelet  to locally filter DTMs in 

order  to bring out the meaningful signal connected to channel network and mask noises related to 

localized surface morphologies. Passalacqua et al. 2010a introduced a filtering approach based on a 

non linear adaptative filter, tested in comparison with the work of Lashermes et al. 2007 in the paper 

produced 2010b. In one of the approached proposed in this thesis, some concept of filtering derived 

from image segmentation processing have been tested for the recognition of anthropogenic features 

in agrarian contexts. In Sofia et al. (2011), combining both image analysis filtering techniques and 

tools, an approach is proposed to determine automatically the optimum scale of analysis.   

All these research topics have the common thread of exploring space-time statistical signatures over 

a range of scales and relating them to the underlying physical processes. The newest approaches aim 

at analyzing high-resolution digital elevation data towards the goal of extracting features of 

geomorphologic/hydrologic interest. Combined with optimization formulation, they allow the 

accurate and automatic extraction of channels and channel networks, as well as locations and length 

scales of channel interruptions, or the localization of geomorphic or anthropogenic features. 

At this point, some open questions still remain: Are statistically-distinct hydrological regimes the 

result of physically-distinct processes? Do differences in laws governing processes leave their 

signature on the statistical properties of landform geometry, and how much of the behavior of the 

coupled hydrologic/geomorphologic system is reflected in the statistics that we can digitally derive?  



 

22 
 

Now that we can assess landforms with a high level of detail thanks to high resolution topography, 

some of these questions can be answered. If physical processes do leave important signatures on the 

statistics of landscapes, and if we can quantify these signatures in detail, statistics can be used in 

assisting modeling, prediction and observatory design across scales and across environments. High 

resolution topography coupled with statistic approaches can thus be a powerful means of inference, 

to define the optimum scale of analysis, to identify a threshold to label where a process starts, and to 

assess the quality of the considered model, in order to transfer knowledge across scales. 
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2.  Hydrogeomorphic features 

2.1 Features in mountainous environments 

 
Mountainous environments are very complex due to the interaction of tectonic, geomorphological, 

ecological, and climatic agents (Walsh et al., 1997). Consequently, there is a need to monitor and 

understand complex processes and interactions, as well as characterize and map complex spatial 

patterns. Many problems cannot be solved without remote-sensing information science, and 

technology, since topographic data are required to account for the spatial and temporal scale 

dependencies associated with phenomena and processes (Goodchild and Quattrochi, 1997). New 

sensor systems with improved spatial resolution offered opportunities to assist scientists, but as a 

consequence, new information extraction challenges emerged, questioning the effectiveness of 

some classic methodologies based on lower resolution data. Despite the technological advances, 

results are anyway dependent upon the complexity of the terrain, data quality, measurement scale, 

integration of multi-source data, spatial analysis approaches, and pattern recognition algorithms. 

Consequently, for this type of environment, it is important to develop and empirically test automatic 

or semi-automatic algorithms that: i) handle data with any measurement scale; ii) are used to 

integrate multi-resolution, multi-temporal, and other forms of spatial data; iii) do not require data to 

exhibit homogeneity of variance; and iv) recognize complex non-linear patterns. 

The Digital Terrain Analyses assessed in this work, concerning mountainous environment, can be 

framed in this context. Two main features are addressed, in order to obtain information also about 

the underlying processes: geomorphic features (in particular landslides and bank erosion) and 

hydrological features (channel network). In the following section, the background context for both is 

presented. 

a. Geomorphic features: landslides crowns and bank erosion 

Landslides and erosional processes are a major problem in mountainous regions (Alexander 2008). 

Shallow landsliding phenomena are critical since in steep, soil-mantled landscapes, they can also 

contribute to the generation of debris flows that scour low-order channels, deposit large quantities 

of sediment in higher-order channels, and pose a significant hazard (Borga et al. 2002).  

From earth observation data, landslides and erosional features studies can be summarized in three 

application domains: 1) mapping (inventory), 2) characterization, and 3) spatial and temporal 

monitoring (Metternicht et al. 2005). In a more wide context, these applications convey in the 

process of landslide hazards assessment, generally carried out through: 1) field analysis to recognize 

areas susceptible to landslides; 2) projection of future patterns of instability through analyses of 
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landslide inventories (DeGraff 1985); 3) statistical quantitative approach for medium-scale surveys or 

inventory-based method (the multivariate or bivariate statistical analysis) (Carrara 1983; Carrara et 

al. 1991, 1995; Clerici et al. 2002); 4) stability ranking based on criteria such as slope, lithology, land 

form, or geologic structure (Hollingsworth and Kovacs 1981; Montgomery et al. 1991); 5) physically 

based or process-based approach for failure probability analysis (Hammond et al. 1992; Montgomery 

and Dietrich, 1994; Pack et al. 1998; Borga et al. 2002; Crosta and Frattini 2003; Tarolli and Tarboton 

2006), and the issue of modeling the propagation of landslide phenomena such as falls and 

flows/avalanches to predict the potentially affected areas (Wieczorek et al. 1999; Iovine et al. 2003).  

All these applications starts from the capability to actually detect landslides on the surfaces, and this 

requires fine and up-to-date spatial information to provide correct assessments. One of the greatest 

limiting factors in predicting and mapping landslide activity is the lack of understanding of scale-

dependent processes. The literature on this topic is predominantly theoretical, although several uses 

of remote sensing and statistics to describe scale and morphometric parameters have been proposed 

(Bishop et al., 1998, 2003; Bonk, 2002; Wallace et al., 2004). Topographic data with a resolution 

relevant to the scale of morphological features are necessary to understand the space- and time-

dependent processes, and previous studies based on the availability of high-res data have linked 

landslide processes with morphology and slide components (Smith, 2001; Korup, 2004; McKean and 

Roering, 2004). In practical application, however, visual photo-interpretation techniques combined 

to ground survey remains the most used method to locate and characterize landslides (Mantovani et 

al. 1996), allowing the identification of precursor signs, characteristic forms, and predisposition 

factors. They also allow to locate and map past events, but this technique is complex to apply over 

large areas, and it is time-consuming. Moreover, it requires an expert knowledge on the hazard, and 

therefore, it remains very subjective (McKean and Roering 2004). The generation of high spatial 

resolution images offered new opportunities to provide detailed information on landslides, moving 

towards methods considering objected oriented image analysis (Geneletti et al. 2003; Harayama et 

al. 2004). However, in the presence of vegetation covers, these images result still not feasible for 

applications. 

Numerical analyses of topography, on the other hand, can provide preliminary insight into landslide-

scale mechanics and surface deformation (McKean and Roering, 2004). For example, relationships 

between topographic data and the surface expression of processes may provide insight into landslide 

activity, age, and material type. Advances in topographic surveys and the development of LiDAR 

techniques offered new opportunities to gather detailed information about topography, allowing to 

provide this information also over areas with vegetation cover, due to LiDAR’s pulse penetration and 

multi-echo recording capability. Identification of potential or actual erosional/landslide hazard can 

now be possible even with vegetation cover. The use of LiDAR for these types of quantitative 
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analyses is relatively new; however, previous studies have used DEM-based geomorphometry for 

landslide delineation and risk (Gritzner et al., 2001), discriminating zones of superficial processes in 

mountainous terrain (Bishop et al., 2003), and mapping landforms for structural interpretations 

(Ganas et al., 2005) or regional analysis (Bolongaro-Crevenna et al., 2004). These analyses typically 

included first- and second order derivatives of elevation such as slope angle, slope aspect, profile 

curvature, tangential curvature, etc. A few studies have used statistical measures such as 

semivariograms and spatial autocorrelation for geomorphometry, which can provide information 

about topographic variability and surface roughness (Bishop et al., 1998, 2003; Walsh et al., 2003; 

Miska and Hjort, 2005, Trevisani et al. 2009). Looking at the last few years we can mention the use of 

high resolution topography for characterization and differentiation of landslide morphology and for 

the determination of the location and distribution of landslide activity (Chigira et al. 2004; McKean 

and Roering 2004; Glenn et al. 2006; Ardizzone et al. 2007; Booth et al. 2009), for geomorphological 

mapping of glacial landforms (Smith et al. 2006) and for recognition of depositional features on 

alluvial fans (Staley et al. 2006; Frankel and Dolan 2007). In Trevisani et al. (2009) a LiDAR-derived 

DTM is analyzed using variogram maps to characterize and compare different morphological 

features, showing that geostatistical approach on a local search window can efficiently synthesize the 

spatial variability of topography representing suitable “fingerprints” of surface morphology. Other 

authors discussed about the critical issues and limits of high resolution DTMs for the numerical 

modeling of shallow landslides (Tarolli and Tarboton 2006; Tarolli and Dalla Fontana 2008). 

Finding methodologies to automatically recognize geomorphic features really represent a challenge, 

and a useful tool for natural hazard mapping, and environmental planning in mountainous regions. 

One of the DTA approaches proposed in this thesis aims to automatically recognize landslide crowns 

and features related to bank erosion of debris-flow channels starting from a high-resolution LiDAR 

DTM (Chapt. 1, Sect. IV.DTA for feature recognition). Different methods introduced by Tarolli and 

Dalla Fontana (2009), Pirotti and Tarolli (2010), and Lashermes et al. (2007), are tested compared to 

numerous statistical analysis of variability to define objective thresholds of landform curvature for 

feature extraction. An analysis on effects of the scale choice on curvature calculation is provided, 

suggesting guidelines and indentifying also limits and at the same times future challenges in 

automated methodologies for geomorphic feature extraction from high resolution topography. 

b. Hydrological features: channel network 

Drainage network delineation is one of the key steps when studying catchment hydrological 

responses to rainfall events (Tucker et al., 2001). Traditionally, extraction methodologies are based 

on the flow routing model, and various drainage algorithms offer possibilities of computing drainage 

networks all over the raster surface (O’Callaghan  and  Mark,  1984; Quinn et al., 1991; Tarboton, 
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1997; Orlandini et al., 2003). They generally follow the procedure of filling pits, computing flow 

direction, and computing the contributing area draining to each grid cell (Tarboton, 2003). The 

conversion from a drainage flow path to a meaningful network requires then the choice of a 

threshold to apply to label channels. However, these classical methodologies are not bias-free, and 

they present two main disadvantages: i) the flow direction approach is unable to operate effectively 

on flat areas (areas of equal elevation), where flow routing is unable to occur; and ii) the conversion 

from flow path to actual network requires the choice of a unique thresholds that is generally not able 

to fully characterize the network. 

Considering i), a number of drainage enforcement algorithms have been developed to determine 

flow direction in flat areas of DTMs (Jenson and Domingue, 1988; Hutchinson, 1989; Tribe, 1992; 

Soille and Gratin, 1994; Saunders and Maidment, 1995; Garbrecht and Martz, 1997; Martz and 

Garbrecht, 1998; Mackay and Band, 1998; Turcotte et al., 2001; Soille et al., 2003). However, 

drainage enforcement is a computationally expensive operation that can cause the formation of 

artifacts such as double streams and meanders (Soille et al., 2003). Other authors worked on 

Triangulated Irregular Network (TIN), representing elevation dataset as an irregular mesh of 

triangular facets (Gandoy-Bernasconi et al., 1990; Jones et al., 1990; Nelson et al., 1994; Palacios-

Velez et al., 1998; Tucker et al., 2001; Vivoni et al., 2005a,b) in order to better characterize surfaces, 

but the application of such models is computationally not feasible for large-scale analyses. 

Considering ii), the traditional approach is to use a unique contributing area or slope-area threshold 

beyond which the hydrographical network is chosen (Mark, 1984; O`Callaghan and Mark, 1984; 

Marks et al., 1984; Jenson and Domingue, 1988; Fairfield and Leymarie, 1991; Freeman, 1991; Wichel 

et al., 1992; Costa-Cabral and Burges, 1994; Soille and Gratin, 1994; Tarboton, 1997; Soille et al., 

2003; Colombo et al., 2007). This approach implies that the drained area is the most important factor 

to explain hydrographic networks distribution. The assumption is that the morphology of the 

thalweg, creating breaks of slope, concentrates both surface water and exfiltrations of sub-

waterflows (Pilesjo, 1992). Physical location of channel heads, however, is not related just to 

topographic slope, but in some cases depends also on several factors as geomorphic processes 

involved, soil properties, climatic environment, land use, etc. (Montgomery and Dietrich, 1988; 

Prosser 1996; Wemple et al., 1996; Beven and Kirby, 1979; McGlynn and McDonnel, 2003). In these 

contexts, the identification of drainage network according to the area or slope-area thresholds does 

not necessarily correspond to the actual channel head location (Orlandini et al., 2011), because the 

use of a unique value is not enough to characterize all channels (Passalacqua et al., 2010b).  

Alternatively, some authors proposed morphological reasoning to establish this threshold 

(Rodriguez-Iturbe and Rinaldo, 1997; Heine et al., 2004).  



 

27 
 

Different works in literature (Passalacqua et al., 2010b; Orlandini et al., 2011) proved that classical 

methodologies are not suitable for some study areas. Orlandini et al. (2011) provided a 

comprehensive work where classical methods are evaluated by using accurate field observations of 

channel heads (Pirotti and Tarolli, 2010), gridded elevation data obtained from LiDAR surveys, and 

state-of-the-art methods for the delineation of drainage basins and surface flow paths (Orlandini et 

al., 2003; Orlandini and Moretti, 2009a, 2009b). Their work highlights how classic approaches show 

variable reliability and sensitivity over different drainage basins and grid cell sizes, with a general 

tendency to overestimate the network, and they do not provide reliable predictions of channel heads 

across drainage basins having different morphology and channel initiation depending on different 

processes. A clear comparison of classical channel network extraction and flow routing 

methodologies has been deeply and successfully addressed also by Passalacqua et al. (2010b). These 

authors state that “The large variability shown by channel initiation contributing areas […] presents a 

formidable challenge for any standard channel network extraction algorithm”, and they showed how 

the classical methodologies tend to predict channels that are actually not present in the field. The 

conclusion is in all cases, that classical approaches are unable to predict accurately channel heads in 

areas where the channel initiation depends on different processes.  

As a consequence of the mentioned observations, several studies emerged, pointing out that a 

robust delineation of stream networks cannot always be achieved by the popular steepest descent 

algorithm, and in some case studies, it should be based on direct detection of morphology in the 

DTM (e.g. Molloy and Stepinski, 2007; Lashermes et al., 2007; Tarolli and Dalla Fontana, 2009; 

Thommeret et al., 2010, Pirotti and Tarolli, 2010; Passalacqua et al. 2010a,b; Sofia et al. 2011). These 

studies underlined how specific geometric properties of surfaces calculated directly from DTMs can 

effectively avoid the thresholding issue of classical methods on channel network extraction. The core 

idea of these approaches is to label convergent cells and connect them on a second step using 

classical flow routing procedures or cost functions based upon them. A large number of indexes 

directly derived from LiDAR DTMs exists to describe correctly the geometric properties of surfaces, 

and they are able to identify terrain convergences (Gallant and Wilson, 2000). Some of them have 

already been used for network extraction (Tarboton and Ames, 2001; Molloy and Stepinski, 2007; 

Lashermes et al., 2007; Tarolli and Dalla Fontana, 2009; Thommeret et al. 2010; Pirotti and Tarolli, 

2010; Passalacqua et al., 2010a, 2010b; Sofia et al. 2011).  

Tarboton and Ames (2001) suggested the use of a proxy of curvature stemming from the Peuker and 

Douglas (1975) algorithm to account for spatially variable drainage density. Upwards curved grid cells 

have been used by other authors to derive channel networks from digital elevation data (Band, 1986; 

Gallant and Wilson, 2000). Tarboton (2003) proposed a procedure in order to provide a weight 

matrix to apply on drainage area computation. He suggested the use of a statistical threshold based 
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on the constant drop property of channel networks (Broscoe, 1959) in order to choose the most 

suitable weighted support area threshold to map channels. However, some authors argued that this 

thresholding procedure is not applicable when the network topology needs to be related to 

morphology (Thommeret et al., 2010).  

Wavelet analysis to locally filter LiDAR elevation data and to detect threshold of topographic 

curvature and slope-direction change has been used by Lashermes et al. (2007) to define valleys and 

portions of probable channelized areas within the valley. Curvature maps derived from LiDAR DTMs 

have been used by Tarolli and Dalla Fontana (2009) and Pirotti and Tarolli (2010) to assess the 

capability of high resolution topography for the recognition of convergent hollow morphology of 

channel heads and for channel network extraction respectively. Thommeret et al. (2010) used a data-

driven and data-derived threshold based on DTM noise to extract badlands network, identifying 

convergent areas from a combination of terrain morphology indices and a single flow drainage 

algorithm. Passalacqua et al. (2010a, 2010b) applied nonlinear diffusion filtering combined with a 

geomorphically-informed geodesic cost function to identify automatically channel initiation points 

and extract channel paths from LiDAR data.  

The referenced studies dealt with a prior assessment of the input data (Thommeret et al. 2010), 

calibration of the kernel size by interactively testing its effectiveness related to the investigated 

features (Pirotti and Tarolli, 2010), fixed arbitrarily chosen scales to evaluate topographic parameters 

(Tarboton and Ames, 2001; Molloy and Stepinski, 2007; Tarolli and Dalla Fontana, 2009; Passalacqua 

et al. 2010a,b). Some open questions still remain, as in how to identify thresholds that are not data-

driven and how to objectively select scale without calibrating it on results and without considering a 

previous analysis of the data and of the study area.   

For the present work, to extract channel network, a methodology relatively independent of the input 

dataset or from the size of the analyzed features is proposed (Chapt. 2, Sect. IV.DTA for feature 

recognition). The approach is based on normalized topographic attributes, such as openness 

(Yokoyama et al., 2002; Prima et al., 2006) and minimum curvature (Evans, 1979) as a weight for the 

upslope area. The identification of the optimum scale to use to evaluate topographic parameters is 

based upon distribution analysis, and statistical thresholds provide the key for the choice of the 

parameters controlling the extracted network. 
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2.2   Features in engineered landscapes 

Engineered landscapes cover as great an extent of Earth’s land surface as do many other globally 

important ecosystems (Achard et al., 2002; Ellis, 2004; Foley et al., 2003). In such environments, 

direct anthropic alteration of processes is significant, and it is aimed toward servicing the needs of 

human populations (Ellis et al. 2006). In Northern Italy, and in particular in agrarian landscapes within 

floodplain, massive investments in land reclamation have always played an important role in the past 

for flood protection. In these contexts, human alteration is reflected by artificial (human-made or 

extensively modified) earth-surface features (‘Anthropogenic features’, NRCS,2005), such as banks, 

levees and drainage networks, that constantly increase and change, in response to the rapid land use 

changes and the growth of human populations. For these areas, various existing and emerging 

applications require up-to-date, accurate and sufficiently attributed digital data about these 

anthropogenic features, but such information is usually lacking (Kothe and Bock, 2009), especially 

when dealing with large-scale applications. These areas are complicated due to the mix of man-made 

features and natural features, and additional spatial indicators have to be extracted based on 

structural analysis in order to understand and identify spatial patterns or the spatial organization of 

features, especially for man-made feature. Additional attributes are generally derived by 

geomorphological mapping, field-based technique (Passmore and Macklin, 2001; Schrott et al., 2002) 

or provided by cartography, but these sources might present some issues as well. Ground-based 

geomorphological mapping, for example, is generally only performed on small areas (Burel and 

Baudry 2005), or with large investments in terrain surveys (Lagacherie et al. 2004), with clear 

constraints for generalization, and thus restricting its use as a tool for larger scale investigations. The 

official cartography (i.e. Regional Technical Map – RTM- at 1: 5000 scale) is generally considered as a 

large-scale source of data, but the provided information refers to the time the map is produced, and 

this presents a big limitation when maps are not updated frequently. In Italy, the updating of the 

RTM is supposed to be done approximately every 10–15 years, but no specific regulation exists: each 

regional government makes its own rules and specifications. It is therefore, clear that users, when 

working with the RTM, must cope with the oldness of the derived information, that cannot account 

for all the frequent changes the anthropogenic environment is subjected to. At the same time, map 

updating requires new information about topography, that are traditionally derived by aerial surveys, 

and subsequent user interpretation, a process that is not bias free. 

More recently, National or Local Mapping Agencies, especially in Europe, are moving towards the 

generation of  digital topographic information that conforms to reality and are highly reliable and up 

to date (Baltsavias et al. 2004). In combination with widely automated methods of data processing 

and image analysis, remote sensing can provide multiple options to support decision makers with 

accurate and up-to-date geoinformation in such environmental context. Available space-borne 
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systems provide data sets with low spatial resolution (in the range of > 500m) and a broad swath 

(spatial coverage of one image). Thus, sensors like DMSP-OLS (night-time lights), MODIS or NOAA 

enable mapping on continental or national basis. On medium spatial resolution (>5m) sensors like 

Landsat, SPOT, IRS or RapidEye featuring a field of view of 60-185 km enable to separate urbanized 

from non-urbanized areas on a regional scale. 

Highest geometric resolution (<5m) is provided by sensors like Ikonos or Quickbird, allowing the 

classification of the small-scale individual objects. The restriction here is that the swath of around 15 

km often does not cover the full extent of the study areas. Also, radar sensors such as TerraSAR-X or 

CosmoSkyMed are operating from space. These active systems are weather-independent (all-time) 

systems, while the optical systems are restricted to cloud free skies. With spatial resolutions up to 1 

meter these data sets are capable of detecting the small-scale structures, with swaths from 10 to 100 

km. In addition, interferometric SAR has been applied widely to derive digital elevation models 

(DEMs). In particular, the Shuttle Radar Topography Mission (SRTM) of the year 2000 supports 

analyses with area-wide DEMs with a spatial resolution of up to 30m.   

Next to satellite based sensors, airborne remote sensing provides complementary data sets 

especially suitable for small scale features: aerial imagery provides spatial resolutions up to few 

centimeters and laser scanning as well as stereo cameras enable producing digital elevation models 

on geometric resolutions of 1 meter or even higher, for example. However, advantages of using 

LiDAR for terrain analyses in engineered landscapes include the following: LiDAR allows rapid 

generation of large-scale DTMs (digital terrain models); LiDAR is daylight independent, is relatively 

weather independent, and is extremely precise. In addition, because LiDAR operates at much shorter 

wavelengths, it has higher accuracy and resolution than microwave radar. 

LiDAR DTMs covering large areas are readily available for public authorities, and there is a greater 

and more widespread interest in the application of such information by agencies responsible for land 

management for the development of automated methods aimed at solving geomorphological and 

hydrological problems. Automatic feature recognition based upon DTMs can offer for large-scale 

applications a quick and accurate method that can help in improving topographic databases, and that 

can overcome some of the problems associated with traditional, field-based, geomorphological 

mapping such as restrictions on access, and constraints of time or cost. For mountainous 

environments, numerous recent studies demonstrated the reliability of LiDAR data for the automatic 

characterization of features (Tarolli and Dalla Fontana, 2009; Passalacqua et al., 2010; Pirotti e 

Tarolli, 2010; Tarolli et al. 2010, Sofia et al., 2011). In engineered landscape within floodplain, high-

resolution digital terrain models have instead mainly been used for hydrological modeling purposes 

(e.g. Cobby et al., 2001; French 2003; Dal Cin et al., 2005), while some other studies focused on 

morphological aspects (e.g. Lohani and Mason, 2001; Challis, 2006; Challis et al., 2006; Nelson et al., 
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2006). Anthropogenic feature extraction from DTM in engineered landscape within floodplains is a 

relatively new field of application. In this thesis, digital terrain analysis for feature recognition in 

floodplain it is tested for two main types of features, drainage network and levees (Chapt. 3 and 4, 

Sect. IV.DTA for feature recognition). This choice is done considering that in floodplains, these two 

elements offer two of the main tools for flood protection, and they can be managed easily to control 

runoff; therefore, their identification and characterization can be a useful tool for hazard mapping 

and environmental planning. 

a. Anthropogenic features: levees and scarps 

This work considers on a first DTA the example of levees and scarps as typical anthropogenic 

features, since they are the most wide-spread man-made terrain features in engineered landscapes 

within floodplains. These particular features are strictly connected with hydrological analysis, 

considering that are originally created to manage and control runoff and consequently, the 

hydrologic behavior of these areas. In the mentioned context, for a long time, the only data sources, 

used for anthropogenic feature extraction, were aerial and satellite imagery, while when dealing with 

LiDAR topography, the identification of anthropogenic features is usually done directly on the filtered 

point cloud of LiDAR data, after filtering vegetation and any other non-ground elements. However, 

differently from buildings, anthropogenic features as levees and scarps are implicitly embedded in 

DTMs, even if they actually do not belong to what is usually defined as the bare ground surface 

(Krüger and Meinel, 2008; Kothe and Bock, 2009). They result in hybrid objects, which are man-made 

on one hand, but on the other hand, they are considered as belonging to the earth surface (Krüger 

and Meinel, 2008). A technique of extracting banks information from LiDAR DTMs has been 

investigated by Krüger and Meinel (2008). In their work, the authors proposed method to label pixels 

as banks when their height exceeds an operative threshold defined according to flood alert levels 

considering dikes height. Kothe and Bock (2009) analyzed an approach to post-processing DTMs in 

order to detect man-made features and reconstruct the natural surface. These authors applied a 

filter based on a resampling module to generalize grid data and to produce a smoothed DTM: the 

difference between the original DTM and the smoothed ones contained nearly all man-made 

features. In their work, additional skeletonization and manual adjustment of extraction were needed.  

More recently, when dealing with feature extraction in natural contexts, morphological indicators (as 

in landform curvature) have been proven to be feasible for applications. Questions as in what is the 

optimum scale to apply to evaluate parameters have been raised (Pirotti e Tarolli, 2010; Tarolli et al. 

2010, Sofia et al., 2011) and statistical operators have been proven to offer reliable and objective 

threshold for geomorphic feature identification in such environments (Lashermes et al. 2007; Tarolli 

and Dalla Fontana, 2009; Passalacqua et al., 2010a,b; Pirotti e Tarolli, 2010; Tarolli et al. 2010, Sofia 



 

32 
 

et al., 2011). The question is still open as in if these morphological indicators and objective 

thresholds can be feasible also in anthropogenic landscapes, where features assume different 

characteristics and other artificial disturbances are present. 

In this work, three different topographic parameters are tested to verify their suitability for feature 

extraction in engineered landscapes (Chapt. 3, Sect. IV.DTA for feature recognition). Both the 

parameter introduced by Tarolli et al. (2010), and an approach similar to the one proposed by Krüger 

and Meinel (2008),  Kothe and Bock (2009), Carturan et al. (2009), Humme et al. (2006) Hiller and 

Smith (2008), Doneus and Briese (2006) are tested. A new parameter based on a measure of 

randomness of surfaces is also proposed.  All these parameters are evaluated according to different 

approaches, and they are computed for different scales.  A statistical analysis of the produced 

datasets is applied, then, to identify outliers to define objective thresholds for feature extraction. The 

same statistical approach is used on the extraction to discard false positive and produce a map of the 

potential features.  

a. Anthropogenic features: drainage network 

Drainage networks in agrarian landscape within floodplains constitute man-made surface’s 

discontinuities, and they are expected to affect hydrological response during flood events. Drainage 

networks, in fact, influence groundwater hydrology (Dages et al., 2009), but also overland flow paths 

(Duke et al., 2006; Gascuel-Odoux et al., 2011; Lavasseur et al. 2011). Considering agricultural ditch 

drainage networks, four effects are commonly accounted for: i) the interception of overland flow on 

hillslopes; ii) the drainage of groundwater by lowering the water table; iii) the infiltration from the 

ditch towards the groundwater, and iv) the conveyance of water towards downstream areas (Carluer 

and Marsily, 2004; Dunn and Mackay, 1996; Lavasseur et al. 2011). Clearly, these networks influence 

the water transfer (Moussa et al., 2002), and they play a key role in the control of floods generation 

(Gallart et al., 1994; Voltz et al., 1998; Marofi, 1999; Moussa et al., 2002).  

In Northern Italy, and in particular in alluvial plains, massive investments in land reclamation have 

always played an important role for flood protection. The extensive drainage network designed for 

reclamation purposes was able, in the past, to control groundwater level, especially when dealing 

with long-term heavy rainfall, which are the most critical in these areas. During the last years, 

changes in agricultural techniques, and the simultaneous increase of urbanization and 

industrialization increased the extent of impervious areas and reduced the extent of agrarian 

drainage networks. As a consequence, an overall decrease in volumes of small reservoirs is generally 

registered, and some studies highlighted the consequent effect on flood risks (Brath et al. 2003), 

pointing out the impacts of urbanization and changing agricultural practices in flood flows. These 

land-use changes, on the one hand, greatly increased the capital that the reclamation must defend 
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and, on the other hand, they greatly decreased the time of concentration of meteorological waters 

(i.e. the time it takes rainfall waters in a certain point to reach the drains). The old drainage network 

designed on the needs of agricultural lands, results often insufficient. As a consequence, many 

inundations have occurred causing great financial damages. An example is the major flood that 

affected the eastern part of North of Italy during November 2010 (Marra et al., 2011), and that 

underlined how the agrarian landscape and the urbanization are connected one to the other, and 

their deep connection represents a critical issue in flood risk management.  

In Northern Italy, the agrarian drainage network consists generally of open main, sub-main, and 

lateral ditches, located both on the field boundaries but also within the plots. Some areas lay below 

the mean sea level, and consequently, the water fluxes on the network are either mechanically or 

alternately mechanically controlled by pumping stations. The whole network is subdivided into 

different drainage districts, each managed and monitored by a Land Reclamation Consortium (LRC). 

Each LRC has the responsibility to control, maintain and modernize the drainage network, and to 

guarantee the hydraulic safety of the territory from flooding. This proper programming of measures, 

especially for complex drainage systems, relies on a correct network characterization, starting from 

large-scale and up-to-date information about network positioning and geometry. Furthermore, 

drainage/reclamation service criteria determine the requirements for hydraulic infrastructure in the 

form of drainage density and storage capacity. Storage capacity within the network, in particular, 

plays an important role in the design of drainage channels and pumping stations, considering that a 

larger storage or retention capacity within the network system lowers the requirement for pumping 

capacity to achieve the same service objective (Malano and Hofwegen, 1999). Network storage 

capacity assessment, furthermore, is a crucial tool for flood management: low values of channel 

storage capacity can underline deficit in the network, and they can outline areas whose hydrological 

behavior is potentially critical during floods. 

For the characterization of the network over large areas, problem arises in Italy for two main 

reasons: i) there are no technical manuals with precise indications, valid for the Country, regarding 

the suitable size and density of the in-field channel network, that remains a farmer choice; and ii) as 

in other European countries, each farm unit is very often not continuous: as a result of land 

inheritance and political action, properties are generally characterized by a high degree of 

fragmentation, and each farmer’s land is divided into a collection of scattered plots. As a 

consequence, when scaling up from an agricultural plot scale to the LRC scale, the structure of 

drainage networks appears to be highly variable in space and hard to characterize. 

For the localization of the network, Regional Technical Maps are the source of information, with the 

limits already expressed. When dealing with the geometric characterization of the network, channel 

geometries are generally homogeneous over each property, and they are related to the trenchers 
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used to build the channel, but no constraints exist that require all the farmers to apply some specific 

machines. Consequently, channel geometries vary over the different plots, and no information at all 

about channel widths or cross sections are available, unless they are derived with large investments 

in field surveys (Lagacherie et al. 2004), with clear constraints for generalization. As a consequence, 

drainage length, drainage density and storage capacity within the network are generally hard to 

define, and tools for an accurate large-scale and up-to-date detection of the agrarian network, and 

for an efficient characterization of its characteristics are deeply needed. 

With LiDAR surveys, high resolution data are available concerning the ground elevation, and 

considering the artificial network dimensions, i.e. width or height, this kind of data can be a good 

candidate for agrarian landscapes’ linear elements mapping (Bailly et al., 2008). A first method to 

delineate artificial network reaches in agrarian landscape directly from the LiDAR point cloud has 

been assessed by Bailly et al. (2008). However, these authors underlined how their approach had two 

requirements: i) ditches are exclusively located at field boundaries, and ii) a geographical database of 

plot boundaries must be available. If both conditions are satisfied, ditch detection is defined for 

some pre-located sites, and for those specific locations, it is possible to estimate the ditches 

elevation from the scatter of LiDAR last pulse points. The two underlined constraints make the 

method not feasible for large-scale applications in the Italian context, where a dense in-field network 

exists, the official cartography cannot be considered as a valid and up-to-date network database to 

identify specific sites, and field surveys for large areas are cost-prohibitive and time-consuming.  

How to objectively and automatically detect and characterize the channel network in a floodplain 

context where the network is highly variable and only few information are available, is still an open 

question. In other environmental contexts, automatic channel network detections benefit from the 

topographic information given by high resolution (3m and better) LiDAR Digital Terrain Models 

(DTMs) (Tarolli and Dalla Fontana, 2009; Passalacqua et al., 2010; Pirotti and Tarolli, 2010; Sofia et 

al., 2011). In a floodplain context, problems for network extractions arise because the accuracy with 

which a DTM is able to detect and correctly represent the hydrological asset of a catchment is 

determined by the strength of the landscape gradient (i.e. flatness and/or slope changes). Low-relief 

areas, such as great alluvial plains, are therefore, more challenging even when high-resolution DTMs 

are available. For cultivated landscapes, drainage algorithms used on DTMs are unable to represent 

anthropogenically modified overland flow paths (Duke et al., 2006 and Garcia and Camarasa, 1999). 

The detection of the network in these contexts benefits from morphological approaches, whereas 

channelized elements are defined from local morphologies, and hydrological connectivity is not 

accounted for. 

In this work, a DTA methodology based on high resolution DTMs is assessed (Chapt. 4, Sect. IV.DTA 

for feature recognition), to i) detect the drainage networks (ditches and channels) in 
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agrarian/floodplain context, and ii) to calculate some of the network summary statistics (i.e. network 

length, width, drainage density and storage capacity per unit of interest). The procedure starts from 

a grid DTM readily available for public authorities in Italy. The DTM (1 m resolution) derives from a 

LiDAR survey planned to have highly affordable costs: the survey can be easily repeated during time, 

providing up-to-date large scale topographic information. The procedure is applied in two typical 

alluvial-plain areas in the North East of Italy, and results are tested comparing automatically derived 

network information with field surveyed ones. 
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II. STUDY SITES 

In this thesis, investigations using various techniques have been carried out towards a more detailed 

understanding of relationships and interactions between morphometry and processes at various 

scales and in different environments. Four main study areas have been considered, two 

representatives of mountainous context, and two representatives of engineered landscapes typical 

of floodplains. 

1. Mountainous environment 

1.1 Cordon basin 

The Cordon basin is located in the Dolomites, a mountain region in the Eastern Italian Alps (Fig. 2, Fig. 

3). The area is characterized by a large variety of  geomorphological processes and related landforms 

(e.g. landslides, surface erosion, steep fluvial incisions of bedrock rivers, colluvial and alluvial 

channels). 

 

Fig.  2 Cordon basin: study areas and investigated features 

 
The elevation ranges from 1969 to 2205 m above sea level (a.s.l.) with an average of 2064 m a.s.l.. 

The slope angle is 27.4° in average, and 69.6° at maximum.  The area has a typical Alpine climate with 

a mean annual rainfall of about 1100 mm. Precipitation occurs mainly as snowfall from November to 

April. Runoff is dominated by snowmelt in May and June, and summer and early autumn floods 

represent an important contribution to the flow regime. During summer, storm events and long dry 
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spells are common. During these events, several shallow landslides are triggered on steep screeds at 

the base of cliffs (Tarolli et al. 2008). Soil thickness varies between 0.2 and 0.5 m on topographic 

spurs up to depths of 1.5 m on topographic hollows. The vegetation covers the 96.1% of the area and 

consists in high-altitude  grassland (89.7% of the area), and sporadic tall forest (6.4%). The remaining 

3.9% of the area is un-vegetated talus deposits.   

The Cordon morphology is extremely complex, both due to the presence of slope failures and 

erosional processes and, on the northern part of the site, due to the presence of erratic boulders, 

rocky outcrops, vertical cliffs and hummocky morphology (Fig. 3). Moreover the area is characterized 

by rapid slope changes, and these morphological complexities offer major issues for feature 

extractions.  

 
Fig.  3 Morphological settings of the upper part of the Cordon basin. The high degree of complexity (A) and the 

rapid slope change (B) define two of the main issues related to channel network extraction on this area 

according to topographic parameters and classic thresholding procedure respectively. (Sofia et al. 2011) 
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Available data of this area consist of several field surveys conducted during the past few years, 

including LiDAR survey (data acquired during snow-free  conditions in October 2006), and DGPS 

(Differential Global Positioning System) ground observations carried out in the period 1995-2001 

(Dalla Fontana and Marchi 2003) and during summer 2008-2009 (Pirotti and Tarolli 2010).  

Two main features have been considered in this study area: shallow landslides and erosional features 

(Fig. 2 and Fig. 4) and channel network (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4 Geomorphic feature details: (a) old landslides scars and bank erosion features and debris flow channel for 

the 2001 mud flow (b) (Tarolli et al. 2010) 

 

Analysis of shallow landslides indicates that small, shallow debris flow scars heal rapidly, and they are 

difficult to detect after as few as 3-4 years. About 68% of the surveyed landslides were triggered by a 

very intense and short-duration storm on September 14
th

, 1994 (Lenzi 2001; Lenzi et al. 2004). The 

storm, with a duration of 6 hr, caused the largest flood recorded in 20 years of observation on the 

Rio Cordon basin. Due to the short duration of the storm, few slope instabilities were observed on 

entirely soil-covered slopes, while several landslides were triggered on slopes just below rocky 

outcrops (Tarolli et al. 2008).  An important new sediment source was formed on May 11
th

, 2001, 

A B 
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during an intense snowmelt event after a very snowy winter (Lenzi et al. 2003; Lenzi et al. 2004). Soil 

saturation mobilized a shallow landslide covering an area of 1905 m
2
 that turned into a mud flow 

moving along a small tributary. A 4176 m
3
 debris fan was formed at the confluence with the Rio 

Cordon, providing to the main channel fine sediments to be transported downstream (Lenzi et al. 

2003). This new landslide area (Fig. 4A,B) triggered during 2001 is considered in this work, and it is 

located in a neighboring area of the Rio Col Duro basin where steep slopes, a narrow valley, and 

ancient landslide deposits are present as well. Along the small tributary affected by the mud flow of 

2001, several shallow landslides were mapped (L3 in Fig. 4A,B). As a consequence, the whole 

tributary is considered to be a likely unstable region since different slope failures were checked in the 

field during the last survey of early June 2010. During the same field campaign, also other slope 

instabilities were found in proximity of the other two main landslide areas and channels.  

The hydrographic network for the study area can be classified into three distinct types (Montgomery 

and Buffington, 1997) according to sediment supply, transport capacity and interaction with hillslope 

processes: alluvial channels that spatially organize sediment into distinct morphologies, colluvial 

channels comprise the transport-limited end member morphology where hillslope processes 

dominate. The final channel morphology is a bedrock channel where the transport capacity 

dominates the channel, leaving little to no deposition of sediment. To provide detailed information 

about the network, the area was systematically walked along all channels and surface flow paths up 

to the drainage basin divide (Passalacqua et al., 2010b). Twenty eight channel heads (Fig. 2) were 

mapped on the field with an accuracy of few centimeters. Channel heads were defined as points at 

which non-confined divergent flows on the hillslope converge to a drainage line with well-defined 

banks and flow paths, that is the upstream limit of concentrated flow (Dietrich and Dunne, 1993). For 

the Cordon area, contributing areas at channel head locations range between approximately 110 m
2
 

to 13000 m
2
. Considering this high variability, area and slope-area threshold procedures using a 

unique value have been proven to be not reliable for channel network extraction if compared with 

the real channel network (Passalacqua et al., 2010b; Orlandini et al. 2011). 

1.2  Miozza basin 

The Miozza basin, located in Carnia (a seismically active area), an alpine region of north-eastern Italy, 

has been used most of all as a test site for the network extraction procedure. The test area (Fig. 5), in 

particular, refers to a sub-basin within the catchment. The area covers 4.4 km
2
 and its elevation 

ranges from 834 to 2075 m a.s.l. with an average value of 1530 m a.s.l. The area is a typical alpine 

debris-flow dominated catchment (Tarolli and Tarboton, 2006).  
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Fig.  5 Miozza basin: study area and investigated features. 

  

Geomorphological settings of the basin are typical of north-eastern alpine region: deep valleys with 

high value of slope and significant erosion areas. Vegetation   covers   90%   of   the   area   and   

consists   of   forest   stands   (40%),   shrubs   (20%)   and mountain grassland (30%); the remaining 

10% of the area is unvegetated landslide deposits. The Miozza basin is characterized by numerous 

landslide scars (Tarolli and Tarboton, 2006) object of several modelling applications (Tarolli and 

Tarboton, 2006; Tarolli and Dalla Fontana, 2008) and surveys (for example with Terrestrial Laser 

Scanner –TLS-). The average slope of the landslide scars area is 39°. Most of these areas, in particular, 

the largest single landslide area, are located at the head of the basin and occur in complexes that 

result from the aggregation of many shallow landslides. The occurrence of landslides in complexes is 

not the result of a specific event, but a combined effect of different events, including extreme short 

rainfalls, low intensity long duration rainfalls, snow melt, and also tectonic activity.  

The area is quite wild, and the only significant human activity is related to occasional forest practices. 

The site is very representative of lithological and physiographical conditions frequently observed in 

Carnia areas, and detailed topographic information from various sources are available: data consist 

of field surveys conducted during the past few years (Tarolli and Tarboton, 2006), including LiDAR 

survey (data acquired during snow-free conditions in 2003) and a DGPS field campaign conducted 

during 2006-2007 (Tarolli and Dalla Fontana, 2009).  
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2. Engineered landscapes 

For the present work, two main study sites have been selected as representative of engineered 

landscapes, and in particular of floodplains of the North East of Italy. The first site is a small area 

covering about 80 ha (Fig. 6), while the second area is a wider site, covering about 3000 ha (Fig. 8). 

Within study area b, a smaller site has been chosen to test the effectiveness of different topographic 

attributes in detecting anthropogenic features. 

2.1 Site A  

Site A (Fig. 6) is a 82 ha site located in the Friuli Venezia Giulia region (North East of Italy), in the 

municipality of Sacile (PN). This site has been chosen to apply Digital Terrain Analysis for network 

detection and characterization. The area contains a complex and dense artificial drainage network 

approximately 20 km long. The network (Fig. 6) consists of open main, sub-main, and lateral ditches, 

located on the field boundaries but also within the plots. The positioning of the ditches is regular, 

and it closely depends both on field subdivisions and agricultural practices. A detailed topographic 

survey was done, in order to provide a broad database of typical cross sections, retrieving 170 

measures of channel geometries (Fig. 7). The survey was planned to obtain cross-section 

measurement for any relevant change on the sections for every significant network length (>30m). 

 

 

Fig.  6 Drainage network and field surveyed cross-sections retrieved for site A.  
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A database of network widths (Wobs), mean depths and cross-sectional areas (Aobs) has been created. 

Ditches and channels dimensions are characterized by widths ranging from 0.90 to 6.10 m (average 

of  1.2  m for ditches and 2.4 m for channels) and cross-sectional areas between 0.07 and 5.40 m
2
 

(average of 0.5 m
2 

 for ditches and 0.8 m
2
 for channels). Being the drainage network artificial, its 

shape and characteristics are generally regular and homogeneous within the plots, and a strong 

relationship between the two parameters is registered (Fig. 7). 

Considering that the network is artificial and generally built using trenchers with specific digging 

widths and depths, it is possible to relate some specific cross-sectional area to network widths, the 

assigned values in this case are 0.4 m
2
 cross-sectional areas for widths lower than 2 m,  0.7 m

2
 for 

widths up to 3 m and 1.5 m
2
 for sections larger than 3 m. This characterization is area specific: it is an 

averaged characterization of cross-sections for widths ranges, and it may vary in different areas 

according to the digging techniques adopted to create the ditches.  

 

 

Fig.  7 Study site A: surveyed cross-sectional areas (Aobs) and bankfull widths (Wobs) and relationship between 

the values 
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2.2  Site B  

Site B (Fig. 8a,b) covers the tract of the lower Veneto plain (North-Eastern Italy) stretching between 

Livenza and Tagliamento Rivers. The whole surface (about 3000 ha) is regulated by Hydro-geological 

Structure Plan (PAI) and it belongs to the Lemene River Basin Authority whose borders outline the 

area eastern boundaries. The west boundaries are underlined instead by the Livenza river 

embankments. On this area, two features are considered: levees and scarps, and drainage network. 

 

Fig.  8 Study site B. The considered drainage units are shown and labeled from 1 to 49, and the smaller site used 

for testing the different topographic parameters is showed. 

 

The site is crossed from north to south by several natural and artificial water collectors (Fig. 8). These 

watercourses originate from the northern part of the area, in Friuli-Venezia Giulia, by waters 

emerging along the line of groundwater springs; they then flow through Veneto receiving the 

superficial outflows. In the southern part, the average ground elevation is at the sea level and  
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declines to even 2 – 3 meters below it in the southernmost areas, close to the coast. For this reason, 

these watercourses in their final stretch become collectors of artificial outflows, which originate from 

water scooping plants. Almost 60% of the area is artificially drained: at the present time, about 30 

water scooping plants are working, with a total circulation of about 200 m
3
/s. 

The drainage network spans for about 900 km, 30 % of which offers just drainage functions. The 

remaining 70% is characterized by both irrigational and drainage functionality making use of draining 

ditches either for irrigation or for drainage. This network is mainly composed by channels and 

ditches, as typical for agricultural landscapes (Fig. 8 and 9a). Ditches are generally small (<1 m), and 

they store excess water for drainage or irrigation purposes; channels are wider, and are 

characterized by permanent and constant discharge. According to the official cartography (RTMs), 

channels are defined as main channels when their width is greater than 2 m, while they are labeled 

as minor network when the width is smaller than 2 m. The whole area includes different drainage 

units, based mainly on a network of open channels and ditches, which guarantees the drainage of 

meteoric water, and on a complex embankments system, which prevents the whole area from being 

flooded. For this study, for network characterization, 50 drainage units have been considered (Fig. 8). 

Each drainage unit completely relies on artificial drainage by water scooping plants.  

Within site B, a small test site (Fig. 9) has been selected to test the effectiveness of different 

topographic parameters for feature extraction.  

 
Fig.  9 Location of the test area for anthropogenic feature extraction, its main characteristic (a) and flood level 

hazards (b). Anthropogenic features (levees and scarps) as derived from official cartography are shown. 

Location that have been surveyed on the field to verify cartography, - labelled from 1 to 12- are identified.  
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Due to the dense network and the morphological context, the area is characterized by high levels of 

flood hazard (Fig. 9b), and banks, levees, and scarps offer the major flood protection, especially 

considering that the average ground elevation is at the sea level or lower. 

For testing purposes, two different type of anthropogenic features have been analyzed (Fig. 9a): 

levees (L1, L2, L3, L4) and scarps (S1, S2, S3). Levees are built along both banks of the main channel 

(L1), or on one or both banks of some minor channels (L2, L3, L4) for flood protection purposes. They 

are usually characterized by width ranging from 10 to 30 m, trapezoidal cross-section, and heights 

that range between 1 and 3 m (Fig. 10), and they are generally passable. Scarps are instead abrupt 

differences in ground level, due to artificial causes (i.e. roads escarpments, or escarpments along 

channels that are too small to be considered as levees). S1 and S2 (in Fig. 9) are on the right side of 

some minor channels, while S3 and S4 are due to the construction of two small roads that run on a 

level higher than the surrounding plain. All the artificial features have been checked on the field, and 

12 sections (1-12 in Fig. 9a and Fig 10)  have been mapped on the input LiDAR DTM (1 m resolution) 

(Fig. 10), to gain insights about the shapes and measures of the features as they are represented on 

the digital terrain model, and to provide a database of position measurements to use as reference 

dataset. 

 
Fig.  10 Representation of anthropogenic features geometry according to the Digital Terrain Model.  
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III. MATERIALS AND METHODS 

 
This chapter reviews and discusses the research that provides materials and methods for this study. 

It is not meant to be a deep and complete review of the literature about Digital Terrain Analysis, but 

more an indication of the theoretical basis of, and problems associated with its application for 

characterizing surfaces, landforms and hydrogeomorphic features using high resolution LiDAR- Digital 

Terrain Models. 

With the term of Digital Terrain Analysis (Evans, 1980), literature usually identify the processes of 

geomorphological analysis, landform parameterization and land surface analysis (Shary et al. 2002). 

Wilson and Gallant (2000) give a comprehensive review of Digital Terrain Analysis, providing a deep 

overview of applications to geomorphology, hydrology, soil and vegetation mapping, offering a ‘state 

of the art’ reference for this context. The increasing interested in DTA has been driven in the last 

decade by the growing availability of high-resolution models, such as the one derived from LiDAR. In 

this chapter, a brief review of this technology is provided. A more detailed approach is dedicated to 

Digital Terrain Models, their characteristics, and the main conceptual problems related to their use in 

the field of landform characterization for feature extractions. Using LiDAR data for DTM generation is 

becoming a standard practice in spatial related contexts, but their use for automated or semi-

automated methods to detect landform and landform features is still a matter of research 

(Lashermes et al. 2007, Passalacqua et al. 2010a,b,; Tarolli et al. 2010, Sofia et al. 2011). A review of 

the main concepts related to surface representation is provided, offering the general background 

and framework for the terrain parameters considered in this thesis and applied for the research. The 

statistical approach that offer the basis of the objectivity of all proposed methodologies is also 

described. 

 



 

 

1. Airborne LiDAR technology 

 

Airborne Light Detection and Ranging (LiDAR) – also referred to as Airborne Laser Scanning (ALS), 

provides nowadays a valid tool for high-density and high-accuracy three-dimensional terrain point 

data acquisition. Two of the most appealing features in the LiDAR output are the direct availability of 

three dimensional coordinates of points in object space (Habib et al., 2005), and the capability to 

obtain ground information over areas with vegetation cover (Vosselman and Maas, 2010). LiDAR data 

have become a major source of digital terrain information (Raber et al., 2007) and they have been 

used in a wide of areas, such as building extraction and 3D urban modeling, hydrological modeling, 

glacier monitoring, landform or soil classification, river bank or coastal management, and forest 

management. However, terrain modeling has been the primary focus of most LiDAR surveys 

(Hodgson et al., 2005). As of today, the use of LiDAR for terrain data collection and Digital Elevation 

Models (DEMs) generation is the most effective way for digital surface mapping (Forlani and 

Nardinocchi, 2007), and it is becoming a standard practice in the spatial science community (Hodgson 

and Bresnahan, 2004).   

An airborne LiDAR system  is typically composed of three main components (Fig. 11): a laser scanner 

unit, a Global Positioning System (GPS) receiver, and an Inertial Measurement Unit (IMU) (Habib et 

al., 2005; Hollaus et al., 2005; Reutebuch et al., 2005; Webster and Dias, 2006; Pfeifer and Briese, 

2007).  

 

Fig.  11 LiDAR schematic, showing scanning laser unit and scan patterns on the ground (red), and aircraft 

positioning and altitude measurement systems (Carrier-phase DGPS for aircraft position and an inertial 

measurement unit -IMU- for recording pitch, yaw, and roll of the aircraft) (Reutebuch et al., 2005; Wehr and 

Lohr, 1999). 
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The laser scanner unit consists of a pulse generator of laser with a wavelength in the range of 0.8 µm 

to 1.6 µm (typically, with 1.064 µm or 1.500 µm) and a receiver to get the signal of scattered and 

reflected pulses from targets (Wehr and Lohr, 1999; Mukai et al., 2006; Pfeifer and Briese, 2007). The 

laser pulses are typically 4 to 15 ns in duration and have a peak energy of several millijoules (Wehr 

and Lohr, 1999; Acharya et al., 2004; Lemmens, 2007). Laser pulses are emitted to the Earth surface 

at a rate of up to 250 kHz (Lemmens, 2007).  

The basic principles of the technology, relies on pulses of light toward a target: each emitted signal is 

backscattered and reflected by the objects, and the measurement mechanism is able to provide 

some of the properties (e.g. traveling time, signal intensity) of the reflected pulse (Wehr and Lohr, 

1999). The distance (range) between the LiDAR sensor and the object can then be calculated by 

multiplying the speed of light by the traveling time of the light to be transmitted from and return to 

the sensor (Watkins, 2005; Weitkamp, 2005). With recently developed LiDAR sensors, range 

precision can reach 2-3 cm (Lemmens, 2007). Range measurements do define the target position 

through lasers, adopt two major principles: pulsed modulation and sinusoidal Continuous Wave (CW) 

modulations (Fig. 12). 

 

 
Fig.  12 Measuring principle of pulse and CW-lasers. On the right, the first and the third figures show the 

transmitted signal, the second and the fourth figures the received one. AT and AR are the amplitudes of the 

transmitted and received signal, respectively (Wehr and Lohr, 1999). 

 

The GPS receiver is used to record the aircraft trajectory and position in absolute coordinates, while 

the IMU unit measures the altitude of the aircraft (roll, pitch, and yaw or heading) (Webster and Dias, 

2006). By synchronizing the information derived by the scanner, the IMU and the GPS it is possible to 
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determine the target location with high accuracy in three dimensional spaces (Liu, X. et al., 2007). 

The accuracy of LiDAR points is related to  the accuracy of GPS and IMU. Airborne GPS is able to yield 

results in 5 cm horizontally and 10 cm vertically, while IMU can generate attitude with accuracy 

within a couple of centimeters (Liu, 2008). LiDAR data can get an overall accuracy of 15 cm root mean 

square error (RMSE) in vertical and 20 cm RMSE in horizontal (BC-CARMS, 2006).   

One of the main advantages of the airborne LiDAR systems, is their capability of detecting multiple 

return signals for a single transmitted pulse (Wehr and Lohr, 1999; Charaniya et al., 2004; Reutebuch 

et al., 2005). Most LiDAR systems typically record first and last returns, but some are able to record 

up to six returns for a single pulse (Wagner et al., 2004; Lim et al., 2003). Recording multiple returns 

is quite useful for the topographic mapping in forested area or for the description of forest stand and 

structure (Sheng et al., 2003), and it is of great advantage, especially in mountainous environment.     

In addition to the three dimensional coordinates, most LiDAR systems also have the capability of 

capturing the intensity of the backscattered laser pulse, which is referred to as the LiDAR intensity 

value for the particular return (Jelalian, 1992; Barbarella et al., 2004; Coren et al., 2005). This 

intensity data can assists surface classification, and therefore, is of potential to improve the 

generation of DEMs (Höfle and Pfeifer, 2007).   

One important developments of airborne LiDAR systems include the integration of a high-resolution 

digital camera or video camera with a LiDAR system (Ackermann, 1999; Ahlberg et al., 2004). For 

each collected digital image, the position and orientation of the camera can be obtained by using the 

GPS and IMU data. Exterior orientation parameters for each frame of imagery are directly provided 

by these position and orientation data. Therefore, no stereo overlapping images and/or ground 

control points are needed. Orthorectification can be completely automatic by using the digital 

images and a LiDAR-derived DEM (Ahlberg et al., 2004).  

LiDAR data sets contain a very large record of points, concerning both bare ground surfaces, and 

every feature on the surface. Such data are filtered and thinned using specific algorithms, providing a 

dataset for ground elevation and a dataset for feature information. From such information set, the 

construction of DEMs, such as Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) can 

be computed. These high-quality models can have accuracies less than ± 25 cm depending on land 

cover, slope, flight parameters and environmental conditions (Hollaus et al., 2005).  
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2. Digital Terrain Models 

 

The availability of data derived by laser scanning enabled rapid, accurate, and effective acquisition of 

geographic information (Ackermann 1999, Kraus and Pfeifer 2001, Briese 2004, Slatton et al. 2007, 

Tarolli et al. 2009). There has been a significant increase in the use of LiDAR data for Digital Elevation 

Models (DEM) generation over the last decade, as more reliable and accurate LiDAR systems are 

developed (Sithole and Vosselman, 2003). Lohr (1998) and Kraus and Pfeifer (1998) are pioneers who 

demonstrated the suitability of using airborne LiDAR for the generation of DEMs. Since then, DEMs 

generation from LiDAR data under various conditions has been documented by many authors (Lloyd 

and Atkinson, 2002; Wack and Wimmer, 2002; Lee, 2004; Gonçalves-Seco et al., 2006; Lloyd and 

Atkinson, 2006; Kobler et al., 2007).   

Different digital elevation models have been developed to represent the terrain surface: the most 

common one are the regular grid (usually square grid), the triangular irregular network (TIN), and the 

contour line model (Ramirez, 2006). The form of dem used for this entire thesis is that of the regular 

grid Digital Terrain Model (DTM). 

A DTM can be understood as a digital representation of a portion of the bare ground earth’s surface, 

represented as ‘fields’: each grid cell with x and y coordinate has a constant elevation (z) value for 

the whole cell (Ramirez, 2006). In this sense, a DTM is a ‘2.5D’ representation of terrain surface 

(Weibel and Heller, 1991) through a matrix of values. The georeferentiation of elements that 

comprise the surface is defined by the ordering of elevation values within the matrix, whose 

structure implicitly record topological relations between data points (El-Sheimy et al., 2005). The 

widespread use of such grid models for morphological quantification is mainly due to the fact that 

the matrix form is the simplest and the most efficient approach in terms of storage and 

manipulation, since this data structure is similar to the array storage structure in computer (El-

Sheimy et al., 2005; Ramirez, 2006; Ziadat, 2007). This matrix form is the key element that allows the 

use of such models also in a non-GIS environment, as further explained in appendix A. 

There are a number of conceptual problems that must be addressed when considering DTMs as 

models of terrain form. In this chapter, some main issues are addressed, and they follow two of the 

main general tasks related to digital terrain modeling for landform characterization: (1) DTM 

generation, analysis and interpretation: what is the morphological quality of the produced DTM? (2) 

DTM application: how do we apply a discrete surface (DTM) to represent continuous variables (slope, 

aspect, curvature…)? 
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2.1  DTM Generation, analysis and interpretation: quality of the DTM 

 

It is well known that LiDAR DTMs, being an accurate representation of ground surface, allow 

automated direct extraction of hydrological features (Martz and Garbrecht, 1999), thus bringing 

advantages in terms of processing efficiency, cost effectiveness, and accuracy assessment, compared 

with traditional methods based. However, the quality of spatial analysis strictly depends on DTM 

quality, procedure relevance, and on the way they interact (Burrough and McDonnell, 1998). 

Researchers have found that DTM quality and resolution affect the accuracy of any extracted 

hydrological features (Kenward et al., 2000). Quality assessment of data is a critical parameter for 

DTM production and use: semantically reliable and high-quality data models should be always 

defined. Generic quality of a DTM can consist of many factors, as for example in the accuracy of the 

DTM in respect to the input points (interior quality), or its accuracy related to external control data 

(exterior quality) (Briese 2010). The common techniques for quality assessment are based on the 

statistical comparison of small reference areas of higher quality, or the use of higher resolution 

measurements of the terrain surface (i.e. Zandbergen, 2008 and Davis et al., 2001) with the created 

DTM in order to find outliers. However, one should consider that there is an inherent variability of 

landscapes across a very wide range of scales (McClean and Evans, 2000), therefore measurements 

of elevation at a finer spatial resolution may be measurements of a slightly different surface (Wise 

2011). Another approach used in literature  to assess DTM quality is the use of synthetic surfaces in 

which the true values of elevation and surface derivatives are known everywhere (Jones, 1998; Zhou 

and Liu, 2002; Zhou and Liu, 2004). One of the main weaknesses of this approach is that synthetic 

surfaces, even when complex polynomial or trigonometric surfaces (i.e. Jones, 1998), tend to be 

smoother than natural terrain, and they might lack of information in places where interpolation 

problems actually arise (Wise, 2000). 

A number of studies have empirically assed the accuracy of DTMs under various conditions.  Later 

works have examined errors in LiDAR derived DEMs as influenced by land cover and slope (Hodgson 

et al. 2003).  Cowen et al. (2000) tested for a relationship between canopy closure and accuracy of 

the produced maps.  In a more recent work, Hodgson and Bresnahan (2004) presented an error 

budget model for a LiDAR derived DTM surface, accounting for the contributing error from the LiDAR 

system, elevation errors induced from horizontal displacement, errors induced by interpolation 

techniques and errors in the survey used as reference to calculate the observed RMSE.   

It is generally understood that there are a variety of factors influencing the accuracy of LiDAR derived 

DTMs.  A general summary of the sources of these errors can be found in Maune (2001) and in Table 

1.   
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Table 1: Concepts related to LiDAR surface accuracy variations (Hodgson et al. 2004) 

 
Sensor Aircraft Navigation LiDAR point processing Geography 

Pulse Length Altitude GPS  Return identification Seasonality 

Pulse Rat Forward speed INS Automated labeling algorithm Land cover 

Wavelength   Human classification Slope 

Divergence   Interpolation algorithm  

Scan Angle     

 

In general, errors in a DTM appear as a consequence of constructing a model from a discrete 

distribution of points sampled on the terrain (Meneses et al. 2005). This approach is liable to 

introduce errors because of its discontinuous representation of the terrain surface. More specifically, 

the features which have an impact on DTMs accuracy are the point density and terrain slope (Karel 

and Kraus, 2006), the ratio of point resolution to grid resolution and the distance between each point 

and its nearest neighbor (Briese, 2010). There are approaches to DTM creation that try to solve the 

problem of assigning the appropriate sampling density to each type of surface, as a function of the 

accuracy required (Li 1991), but the relation between point density and model quality has not been 

appropriately parameterized. Usually, a higher level of accuracy might be achieved by increasing the 

point density, but in terrain with rough topography, this is not always feasible (Meneses et al. 2005). 

There are even anomalous situations where increasing the point density might increase the errors in 

the DTM as well (Makarovic 1973, 1977, 1980, 1984).  The variety of available interpolation methods 

has led to questions about which is most appropriate in different contexts and has stimulated several 

comparative studies of relative accuracy (Zimmerman et al., 1999). To evaluate the performance of 

some commonly-used interpolation methods, a variety of empirical works have been conducted to 

assess the effects of different methods of interpolation on DTM accuracy (Zimmerman et al., 1999; 

Ali, 2004; Blaschke et al., 2004; Mardikis et al., 2005; Chaplot et al., 2006; Lloyd and Atkinson, 2006). 

There seems to be no single interpolation method that is the most accurate for the interpolation of 

terrain data (Fisher and Tate, 2006): no interpolation method is universal for all kinds of data 

sources, terrain patterns, or purposes. Many DTM creation methods produce distinctive artifacts that 

have a strong spatial signature (Berry et al., 2000, Brown and Bara, 1994, Guth, 1999,Wise, 2000 and 

Wood and Fisher, 1993). For example, linear interpolation of contour lines can create ramps 

(Hutchinson, 1988), spline interpolation can create deep pits (Wood, 1996), and inverse distance 

weighting interpolation can create terraces (Burrough and McDonnell, 1998).  

Another point to consider is that, even by choosing the most appropriate interpolation method, the 

fidelity with which the DTM represents the true surface will depend on both surface roughness, and 

DTM resolution. There is therefore, an implicit scale of analysis implied by the grid cell resolution: the 
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bigger the grid size, the more general the approximation of the terrain surface representation 

(Ramirez, 2006). LiDAR data have high density, and can overcome this kind of limitation of grid DTM, 

allowing the creation of models with sub-meter grids. However, selection of a suitable resolution for 

a DTM is also highly dependent on different applications. High resolution DTMs may significantly 

improve the predictive ability of terrain attributes (Lassueur et al., 2006), and the choice of input 

DTM data resolution depends on the output of interest (Chaubey et al., 2005). The general idea is to 

select a resolution that produces best predictive properties without giving computational constraints, 

and many researchers have investigated the effects of different resolutions on the accuracy of 

specific application models (Hengl, 2006, Garbrecht and Martz, 1993; Ackerman, 1993;  Hodgson, 

1995, Tarolli and Dalla Fontana, 2009). Other relevant researches can be seen in (Garbrech and 

Martz, 1994; Zhang and Montgomery, 1994; Florinsky and Kuryakova, 2000; Kienzle, 2004). In 

general, one must note that the grid DTM is commonly over-sampled in low relief areas and under-

sampled in high relief areas (Hengl et al., 2003). Furthermore, the size of regular grids can not be 

adapted to the complexity of the relief. Feature specific points such as peaks and pits may be missed 

(El-Sheimy et al., 2005), and linear features such as breaklines are not well represented. One way to 

increase the details of the terrain representation is to increase the sample point density and 

decrease the grid size. Considering LiDAR data, anyway, the point density, even if high, is not regular, 

and changes in point density might results in errors and artifacts on the produced map that do not 

actually represent the ground surface (see i.e. Fig. 51, p. 116). LiDAR data, furthermore, need to be 

filtered before deriving the DTM, and filtering procedures is another fundamental issue that has been 

discussed in some recent researches (Jones et al., 2007; James et al. 2007; Cavalli et al., 2008a). The 

automatic filtering procedures of LiDAR raw data, may decrease the quality of DTM, mainly for the 

decreasing of bare ground points density, and it might result in systematic error on the filtered data. 

This fact has a strong influence on the representativeness of the derived DTM for morphological 

characterization of surfaces.  

Small errors in elevation can produce large errors in derived values, especially second-order 

derivatives such as curvature (Florinsky, 2002; Wise, 1998). In Florinsky (2005) a thorough analysis is 

reported on artificial linear elements of topographic variables, where such linear elements can be a 

reflection of geological structures, but can also be a result of quality degradation due to the 

geometry of the DTM grid, errors in the DTM compilation, errors in the DTM interpolation, aliasing 

errors, imperfection of algorithms for DTM derivation, and anisotropy of operators. Kraus and Pfeifer 

(2001) have investigated on the geo-morphological quality of LiDAR-derived DTMs, mentioning the 

importance of the identification of breaklines and pits; the former to improve the quality of the DTM, 

the latter to improve applicability of hydrological models by elimination of the pits. Other related 

works on the theoretical bases of DTM modeling and quality assessment have been done by Li (1993) 
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and McCullagh (1988).  Haneberg (2006), Holmes et al. (2000), and Fisher (1998) showed that the 

effects of elevation errors on slope angles and other derivative values calculated from conventional 

10 m and 30 m DEMs can impart significant uncertainty into slope angle calculations and values 

dependent upon them. McKean and Roering (2003), Hodgson and Bresnahan (2004), and Adams and 

Chandler (2002) have evaluated LiDAR elevation errors using root-mean-square (RMS) statistics. 

Haneberg (2008) evaluated instead the geostatistical variability of high resolution LiDAR DTM 

elevation errors and their effects on slope instability calculation. In Wise (2011) the general 

characteristics of DTM errors are issued and the capability of RMSE of elevation in characterizing 

these errors is addressed. 

Other than the horizontal or vertical accuracy, therefore, a geo-morphological quality of the DTM 

should also be accounted, whereas a high geo-morphological quality DTM must include the absence 

of elements which limit successive interpretation. DTMs are normally only provided with a single 

RMS error, this is not adequate to determine the error associated with the derived topographic 

parameters, because this indicator shows only moderate correlation with the geo-morphological 

quality of the DTMs. In Fig. 13 for example, a visual assessment of four different 1 m LiDAR DTM 

underlines how the standard measure of error (RMSE ~ 0.3 m for all areas), shows only moderate 

correlation with the quality of the DTMs. All three datasets are characterized by errors, i.e. artificial 

lineaments and fault textures (b and c) and erroneous heights (pits) (a) (Fig. 13).  

 

Fig.  13 Examples of errors on DTMs: (a) points with wrong elevation value and pits (red arrows), (b) fault 

texture oriented approximately east-west) (c) fault texture oriented north-south)(Sofia et al. under review) 

 

DTMs provide the basic information required to characterize the topographic attributes of terrain. 

Projects which use LiDAR have a DTM as either main product or intermediate product, and often 

such projects are over very large areas, and they are based on a large number of tiled DTMs. Many 

algorithms have been developed to evaluate topographic attributes but less work has gone into 
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determining the effects of DTMs uncertainty in these parameters, or the affect of this uncertainty in 

the scale choice. Assess the geo-morphological quality of DTMs is therefore fundamental, especially 

when dealing with their morphological applications for understanding earth and surfaces processes. 

Such analysis is provided in this thesis in Chapt. 4.3, Sect. III.Materials and methods. 

2.2 Modeling continuous surfaces attributes through DTMs 

Characterizing the shape of the terrain surface is important to environmental applications (Burrough 

and McDonnell, 1998). In the context of analyzing and understand earth surface processes, surface 

characterization moved towards a more practical approach, implying measurements and 

quantification of each surface forms, through geomorphometry (Wood, 1996). Various authors have 

presented a large number of geomorphometric measures, many of which are closely related and 

overlapping in terms of the surface form attributes they describe. For example, Nogami (1995) 

describes 37 such measures. Evans (1972, 1979, 1980) presents a synthesized and standardized set of 

measures, which provide a comprehensive description of surface form, while minimizing redundancy. 

Evans (1972, 1979, 1980) considers five terrain parameters that may be defined for any two 

dimensional continuous surface. These correspond to groups of 0, 1
st

 and 2
nd

 order differentials, 

where the 1
st

 and 2
nd

 order functions have components in the xy and orthogonal planes. In theory, 

these first and second order derivatives exist and can be calculated mathematically because terrain is 

a continuous surface. However, the raster grid format of a DTM, despite being a model of continuous 

surface, is a set of discrete elevation measurements (Wood, 1996). Therefore, the first and second 

order derivatives must be approximated by computing a local continuous surface patch for each cell. 

There are a variety of methods for making this approximation, which have been described and 

compared (Burrough and McDonnell, 1998; Evans, 1972; Florinsky, 1998; Hodgson, 1995; Jones, 

1998; Skidmore, 1989). Figure 14 shows (in profile) different examples of ways in which adjacent grid 

values can be used to imply a continuous surface. 

 

Fig.  14 Comparison of different interpolation to transform discrete DTM cell values into continuous surface 

models. (a) Proximal interpolation; (b) inverse distance squared; (c) spline interpolation; (d) quadratic 

interpolation (modified from Grayson and Bloschl, 2001) 
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The process of interpolating parts of surfaces from point values in a DTM is fundamental. In this 

work, the approximation considered for the application are mainly two: the proximal interpolation 

(Fig. 14a), and a quadratic interpolation (Fig. 14d) (e.g. Evans, 1979, 1980; Wood, 1996).  

Proximal interpolation (Fig. 14a) is the native format of a grid DTM and it is used most commonly in 

raster visualization, where each grid location is the centre of an homogeneous rectangular grid cell 

(hence the ‘2.5 dimension’ of the DTM). It is also frequently used in many forms of DTM processing 

(e.g. viewshed analysis, Fisher, 1993). This kind of representation, even if continuous, it is also 

abrupt, meaning that processing requiring higher order continuity (such as slope derivation) cannot 

be applied directly. However, proximal interpolation can be the base to evaluate parameters as 

openness (Yokoyama et al. 2002, see Chapt. 3.1.d, Sect. III.Materials and methods), elevation 

residuals (see Chapt. 3.1.c, Sect. III.Materials and methods), and Entropy (see Chapt. 3.1.e, Sect. 

III.Materials and methods). 

To measure terrain properties, such as slope or terrain curvature, the DTM interpolation needs to be 

more sophisticated. Figure 14c shows an example of fitting a spline function through adjacent cells in 

order to preserve second order continuity. Such a procedure has been used by Mitasova and 

Hofierka (1993) for various spatial and temporal analyses of  DTMs. 

The approximation considered in this work for curvature and slope evaluation, is the quadratic 

approximation (Fig. 14d) (e.g. Evans, 1979, 1980; Wood, 1996), based on the use of a bi-variate 

quadratic function. This function has been already applied in literature for many DTM analyses (e.g. 

Evans, 1979, 1980; Wood, 1996; Pirotti and Tarolli, 2010; Tarolli et al. 2010, Sofia et al. 2011), and it 

has the advantage that second order properties (curvature) can be identified directly (Wood, 1996). 

It is the highest order complete polynomial that can be estimated for a grid cell and its 8 connected 

neighbors. Other surfaces approximations are available, and have been referenced in numerous 

works (Evans, 1972; Horn, 1981; Zevenbergen and Thorne, 1987; Mitasova and Hofierka, 1993; Shary 

et al., 2002). However, empirical evidences (e.g. Skidmore, 1989) suggest that the bi-variate 

quadratic function represent a better form of continuous function for measuring slope magnitude 

and direction. 

The continuous quadratic function can be represented as the sum of six terms based on a local 

coordinate system (x,y,z) centered on the DTM grid cell whose properties are to be measured (Eq. 1). 

z ax by cxy dx ey f= + + + + +2 2
      1 

The coefficients a-f in Eq. (1) can be solved within a moving window using simple combinations of 

neighboring cells: the standard method to solve them involves calculating the parameters for a 

central cell, related to its eight neighbors in a moving 3x3 cell window (Evans ,1980) (Fig. 15).  
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Z = ax
2
 +by

2
 +cxy+dx+ey+f 

 

a = (z1 + z3 + z4 + z6 + z7 + z9)/6g
2
 – (z2 + z5 + z8)/3g

2
 

b = (z1 + z2 + z3 + z7 + z8 + z9)/6g
2
 – (z4 + z5 + z6)/3g

2
 

c = (z3 + z7 – z1 – z9)/4g
2
 

d = (z3 + z6 + z9 – z1 – z4 – z7)/6g 

e = (z1 + z2 + z3 – z7 – z8 – z9)/6g 

f = (2(z2 + z4 + z6 + z8) – (z1 + z3 + z7 + z9) + 5z5)/9 

 

Fig.  15 Solution of the bi-quadratic function according to a 3x3 neighborhood (modified from Evans, 1979) 

 

More complete and complex analysis can be carried out considering a wider range of kernels, and 

this allows the classification of surfaces and their segmentation into specific units. Wood (1996) 

shows how the coefficients can be found for any sized window using matrix algebra. The larger the 

window size used for the computation, the smoother is the derived surface (Fig. 16).  

 

Fig.  16 Comparison of a profile of a squared grid DTM and the derived continuous bi-quadratic surfaces for 

different windows size: 3x3 (red), 15x15 (black), 33x33(blue). The reference grid DTM is showed, as well as the 

value for the centre of each pixel on the grid (black dots). 

 

The advantage of a moving window approach is that it preserves some of the spatial variability 

inherent in the original dataset, providing at the same time a smoothing filter to the input data. 

Smoothing filters help to improve the classification of grid cells within the context of the landform 

features of interest, and filtering improves the extraction of hydrological features by reducing 

extraneous local detail (Pirotti and Tarolli 2010; Tarolli et al. 2010, Sofia et al. 2011). The core idea of 

the method is that the smoothing action of the filter provides a useful function in bringing out the 

longer-range signal (usually connected to meaningful processes signature among surfaces) and 

masking much of the local shorter-range noise connected to the presence of imbalanced or 

erroneous terrain elevation.  
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The choice of the window size range refers to two main issues: a computational constrain that sets 

the minimum size to apply, and operational choices supported by previous works (Pirotti and Tarolli 

2010; Tarolli et al. 2010, Sofia et al. 2011). The window size needs to be large enough for a 

reasonable number of data to be processed, and the computational constraint for its minimum width 

relies on the fact that sampling windows are centered on the cell of interest, thus they consider 

(2m+1)x(2m+1) cells where m is an integer. The minimum width for a squared window is therefore, 

3x3 cells. To choose the maximum window width, one can make considerations on literature review 

according to which over-sized windows have the tendency to incorporating irrelevant elevation data, 

smoothing surfaces, while undersized windows are less robust to noise (Pirotti and Tarolli 2010; 

Tarolli et al. 2010, Sofia et al. 2011). For a fuller discussion about the size constraint of moving 

windows, see Chapt. 3.1, Sect. IV.DTA for feature recognition.  

In the following paragraphs, the main assumptions of the generalization procedures are explained. 

For a fuller description, see Evans, 1979 and Wood, 1996. 

To solve the general case, the unknown coefficients in Eq. 1 are expressed as a set of six 

simultaneous equations, or normal equations. The normal equations can be simplified due to the 

regular nature of the DTM sampling (as Evans, 1979, Fig. 15). 

The basic assumption of the polynomial interpolation is to create a surface that has a constraint 

through the central cell of the local DTM window. The regression surface becomes an exact 

interpolator (at the centre of the function) to use the nomenclature of Lam (1983). This can be 

achieved by creating a local origin through the central cell in both X-Y and Z directions. Thus all 

elevations in the local window are expressed as relative vertical changes from the central value. If all 

observed values zi are taken from a local window with dimensions n by n, where n is an odd number, 

a local coordinate system can be defined with the origin at the central cell as a function of the grid 

spacing g (Fig. 17). 

(- n·g , - n·g) … … … (- n·g , 0) … … … (-n·g , n·g) 

… (- (n-1)·g , - (n-1)·g)   … (-(n-1)·g , 0) … … (-(n-1)·g , (n-1)·g) … 

… … … … … … … … … 

… …   (-g,-g) (-g, 0) (-g, g) … … … 

(0,  - n·g) (0 , - (n-1)·g) … ( 0,-g) ( 0, 0) ( 0, g) … (0 , (n-1)·g) (0, n·g) 

… … … ( g,-g) ( g, 0) ( g, g) … … … 

… … … … … … … … … 

… ( (n-1)·g ,- (n-1)·g)   … ((n-1)·g , 0) … … ( (n-1)·g , (n-1)·g) … 

(n·g , -n·g) … … … (n·g , 0) … … … (n·g , n·g) 

Fig.  17 Local coordinate system defined with the origin at the central cell (0,0) for a window with dimensions n 

by n, on a grid with pixel size g 
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Once this coordinate system has been adopted, all coefficients of the equations can be found by 

solving a standard matrix equation (2) 

zGGG TT =ι   2 

where z is the elevation matrix within the moving neighborhood, ι is the coefficient matrix 

according to (3), G for a n x n neighborhood is given by (4), and G
T 

 is the transpose of the matrix G, 

where each (i,j) element of G
T 
 is the (j,i) element of G. 

For any application case, ι is given by 
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and G for a nxn neighborhood is given by 
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where x and y are the coordinate of each pixel as a function of the grid size g (according to Fig. 17). 

From Eq. (2), ι  can be found as  

( ) zGGG TT ⋅= −1ι           5 

 

For example, for a 3x3 neighborhood having the origin at the central pixel, for a DTM with pixel size 

g, the coordinates of each cell become: 

(-g,-g) (-g, 0) (-g, g) 

( 0,-g) ( 0, 0) ( 0, g) 

( g,-g) ( g, 0) ( g, g) 
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Thus G can be identified as 
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and ( ) TT GGG ⋅−1

 is found to be 
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The advantage of this approach is that, by considering a local coordinate system centered at the 

central pixel of the moving window, Eq. (7) is only evaluated once, and it depends only on the size of 

the moving window and the resolution of the DTM (g). At any switch of the moving window, what 

changes is the height values stored in z, and ι  is evaluated from Eq. 5. Properties of a continuous 

surface that could not be estimated from the discrete DTM values directly, can now be derived 

analytically from the continuous function. Such measures describe the properties of the surface at a 

point at the centre of the quadratic function. Given that this point is usually the centre of the grid cell 

to be assigned the property, the measurements are often regarded as characteristic of the cell they 

are associated with. The coefficients a-f (Eq. 1 and 3) depends on the local morphology captured 

within the moving windows used to compute the surface, and they are not a function of the window 

size, if by a function it means that there is a direct relationship between the window size measure 

and their values. The surface approximated according to the different moving windows is at any time 

a slightly different surface, accounting for the elevation values captured within the moving window, 

and the parameters vary consequently. 
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3. Hydrogeomorphological characterization of surfaces 

 
High resolution terrain representation can be used at different levels, moving from a more 

qualitative approach to a quantitative one. A first and purely qualitative approach can be considered 

as a virtual tour of the landscape: the DTMs can be combined, for example, with high resolution 

orthophoto and can be used to produce a representation of the local terrain condition (Fig. 18). 

Numerous GIS software allow advanced visualization, analysis, and 3d surface generation starting 

from high resolution topography. Large sets of high resolution data can be seen in three dimensions 

from multiple viewpoints, creating a realistic perspective image that drapes raster and vector data 

over a surface. This first approach allows to create a realistic simulation of a project, environment, or 

critical situation to help the users on planning and preparing for and proactively mitigate potential 

issues. 

 

Fig.  18 3d representation: ortophoto combined with a 1m LiDAR DTM. 

 

The advantages of high resolution topography become more evident when DTMs are approached in 

a quantitative way, considering their capability to quantify and portray ground-surface form over 

large areas (Maune, 2001). Geomorphometry (or simply morphometry), terrain analysis, and 

quantitative geomorphology continue to grow through myriad applications to hydrology, natural 

hazards mapping, tectonics, sea-floor and planetary exploration, and other fields. Morphometric 

procedures are implemented routinely by commercial geographic information systems (GIS) as well 

as specialized software.  Figure 19  shows two LiDAR DTMs (1 m vs 10 m) for a mountainous area and 

for a floodplain context. It is clear that elements on the surface are plainly visible and correctly 

mapped through the 1 m resolution topography. 
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Fig.  19 Differences between a high-resolution DTM (A1, B1 1m) and a lower resolution one (A2 B2, 10m) for 

alpine environment (A) and for engineered landscapes (B). 

 

Morphometric analysis of surfaces has been widely applied in order to relate morphology to 

hydrological processes at a wide range of scales. Various approaches have been used and applied to 

describe landform surfaces quantitatively. For the research problems investigated in this study, some 

morphometric concepts have been chosen to describe landforms at different spatial scales. The main 

tool for morphometric analysis is the approach to topographic attributes, spatial variables that are 

used to describe and represent the shape and pattern of the landscape surface. Speight (1974) 

described over 20 attributes that can be used to depict landforms. Moore et al., (1991, 1993) also 

described terrain attributes and divided them into categories: primary and secondary or compound 

attributes (Tab. 2). Primary attributes are directly calculated from elevation data and include 

variables such as elevation, slope, aspect, curvature etc. Secondary or compound attributes involve 

combinations of the primary attributes and are indices that describe or characterize the spatial 

variability of specific processes occurring on the landscape such as upslope area accumulation. The 
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mathematical representation of most attributes and the methods for calculating them can be found 

in Moore (1991, 1993) and Gallant and Wilson (2000).  

 

Table 2:  Geomorphometric parameters and objects on different scales (Moore et al., 1991) 
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Slope Angle β 

Vertical Curvature ωv 

Horizontal Curvature ωh 

complex primary 

morphometric 
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Flowlength l 

Flowaccumulation a 
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ln(a/tanβ) 
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dimension 

parameters 

object length or width, object area 

circularity 

elontation ratio 

relief parameters 

statistic measures of primary parameters 

slope of 63ong est flowpath 

hypsometric integral 

portion of high curvature 

average height 

index of relief thickness (average height/area) 
 

 

Recently, when dealing with feature extraction, morphological indicators (as in landform curvature) 

have been proven to be reliable for feasible applications (Lashermes et al. 2007; Tarolli and Dalla 

Fontana, 2009; Passalacqua et al., 2010a,b; Pirotti e Tarolli, 2010; Tarolli et al. 2010, Sofia et al., 

2011). Questions as in what is the optimum scale to apply to evaluate parameters have been raised 

(Pirotti e Tarolli, 2010; Tarolli et al. 2010, Sofia et al., 2011), and the question is still open as in if 

these morphological indicators and objective thresholds can be feasible also in anthropogenic 

landscapes, where features assume different characteristics and other artificial disturbances are 

present. 

In this chapter, the classification of terrain parameters primarily reflects the purposes of the analysis. 

Hence, two main group will be addressed: a) morphometric, and b) hydrological parameters.  
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3.1  Morphometric terrain parameters 
 

The morphometric terrain parameters in this work are directly derived from a digital terrain model 

using local filter operations, where the term ‘local’ identify the analysis within neighboring pixels 

(moving windows environment) (see Chapt. 2.2, Sect. III.Materials and methods). For a fuller 

overview on morphometric parameters, the most recent study is given by Shary et al. (2002).  

a. Slope 

Several comparative studies of methods for the calculation of slope have been reported for 

terrestrial DTMs (e.g., Florinsky 1998; Jones 1998; Kienzle 2004; Warren et al. 2004), each of which 

reports a value in the direction of the steepest slope within the analysis window.  

Suppose a surface can be expressed by a parametric function, z=f(x,y), (i.e. Eq. 1, p.56) then slope  can 

be identified as 
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This formula is not based on a rise-over-run calculation over a fixed interval, but rather assumes that 

a plane surface can be placed at any point on the surface z(x,y) in such a way that it only just touches 

the surface: it is a tangential plane and relies on the notion of infinitesimally small distances. It is 

closely related to the formula for Euclidean distance, and simply shows how much of the surface 

z=f(x,y) rises with a small fixed increment in x and y. However, surfaces within GIS are rarely if ever 

represented by analytic functions: they are typically modeled as grids, with a finite resolution. Hence 

slope calculations will use approximations to the formula above depending on the surface model 

used, which is itself an approximate representation of the true surface.  

The most general assumption, requires the computation of slope by solving the general surface 

equation within a 3x3 neighborhood. However,  Evans’ (1980) methods, reviewed by Wood (1996), 

allows to calculate slope (or other terrain parameter) considering an analysis window moved across 

the raster DTM surface such that each pixel in turn becomes the central pixel on which calculations 

are based (for a fuller discussion, see Chapt. 2.2, Sect. III.Materials and methods). The resulting 

calculations are still reported at the original pixel size; it is merely the window size or ground area 

considered in the analysis which varies. This generalization allows the parameter to be analyzed at a 

range of scales (different values of ksize ≥ 3, Fig. 20) but also serves the function of overcoming short-

wavelength noise in the data. In this case, the user will have to decide the trade-off between the 

analysis scale and the sensitivity of their investigations to noise/artifacts. 

Slope is evaluated from Eq. 1 (p.56) and according to Eq. 8, starting from the computation of partial 

derivatives as 
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By adopting a local coordinate system with the origin at the central point of the analysis window (x, y 

= 0), the slope at the centre of the (moving) analysis window is: 

22arctan( eds +=           11

    

       

 

 
Fig.  20 Slope maps for different moving window sizes (ksize). 

 

b.  Curvature  

Curvature is a second spatial derivative of the terrain elevations. It is one of the basic terrain 

parameters described by Evans (1979), and it is commonly used in terrestrial terrain analysis, being 

related to terrain concavity and convexity. Curvature can be defined also mathematically defined as 

the inverse of the radius of a circle that is best fitted to the surface at a given point. 

Suppose a surface can be expressed by a parametric function, z=f(x,y), (i.e. Eq. 1, p.56)) then 

curvature can be identified as  
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According to this formulation, the larger the curvature, the rougher the surface.  

In general, the most appropriate curvature form depends on the nature of the surface patch being 

modeled: computational and interpretive simplicity may dictate a single measure for an entire DTM. 

The most effective way to introduce simple curvatures, is to consider some chosen directions (Shary 

et al. 2002). For any smooth surface, there are four such directions (Fig. 21). 



 

66 
 

 

Fig.  21 The four directions naturally marked on a surface S. n – the normal vector to S at point X; aa
’
 – the 

gradient line, bb
’
 – the contour line, dd

’
, cc

’
 – the main normal sections. (Olaya, 2009). 

 
 

Two of them (aa’ and bb’) can be physically distinguished by the gravitational field of the earth, while 

the other two are marked by the surface itself: cc’ by the maximal value of the curvature and dd’ by 

the minimal value of it (Olaya, 2009).  

The two most frequently calculated curvatures can be defined as (Gallant and Wilson 2000) i) Profile 

curvature (that of normal section aa’), and ii) Plan curvature (that of the normal section bb’). 

Profile curvature is the curvature of the surface in the steepest down-slope direction. It describes the 

rate of change of slope along a profile in the surface and may be useful to highlight convex and 

concave slopes across the DTM. Plan curvature is the curvature of a contour drawn through the 

central pixel. It describes the rate of change of aspect in a plan across the surface and may be useful 

to define ridges, valleys and slopes along the side of these features.  

Shary et al. (2002) grouped surface curvatures into two main types and twelve minor ones. Only 

describing the geometrical structure of the surface, the curvatures of the first main type are 

independent of reference coordinates. In contrast, the ones of the second main type have to do with 

the direction of the coordinate system (Tab. 3). 

Table 3: The information of terrain curvatures (modified from Youfu et al. 2008) 

Curvature types Curvature names Descriptive Geographical Themes 

First type  

independent from 

the  reference 

coordinates 

Mean Curvature “Equilibrium” land form state  

Unsphericity Curvature Extent to which land form differs from a sphere  

Maximum Curvature Geometrical C-ridges 

Minimum Curvature Geometrical C-valleys 

Total Gaussian Curvature Does not change during surface bending 

Second type  

dependent from the  

reference 

coordinates 

Difference Curvature Compares the 1st and 2nd mechanism 

Profile Curvature 2nd accumulation mechanism 

Contour Curvature movement modes of terrestrial materials 

Profile Curvature Excess splits flow-line twisting onto two components 

Horizontal Curvature Excess splits flow-line twisting onto two components 

Total ring Curvature Flow-line twisting 

Total accumulation Curvature Relative accumulation and deflection zones 

Tangential Curvature 1st accumulation mechanism 

Longitudinal Curvature Recognition and extraction of terrain features 
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Profile and plan curvature involves the calculation of the slope vector, therefore they remain 

undefined for quadratic patches with zero gradient (ie. the planar components d and e are both 

zero). In such cases, alternative measures independent of slope and based solely on surface 

geometry need to be substituted. Evans (1979) suggests two measures of minimum (concavity) and 

maximum curvature (convexity): 

( ) 22
max cbabaCurvature +−+−−=         13 

( ) 22
min cbabaCurvature +−−−−=                   14 

 
where a-c are the coefficient of the quadratic surface equation (Eq. 1, p.56)) derived according to the 

procedure already expressed in Chap. 2.2, Sect. III.Materials and methods. 

Calculation of the first and second derivatives using a local window is scale dependent. The derived 

parameters are only relevant to the resolution of the DTM, and the neighboring cells used for 

calculation. Wood (1996) proposed a multiple-scale parameterization by generalizing the calculation 

for different window sizes. The Eq. (13) and (14) become then: 

maxmax CurvaturegkC size ⋅⋅=                                                     15 

minmin CurvaturegkC size ⋅⋅=                                                      16 

where g is the grid resolution of the DTM, ksize is the size of the moving window and Curvaturemax and 

Curvaturemin derive from Eq. 13 and 14 respectively.  

The Eq. (15) and (16) have been used as a useful method for multi-scale terrain analysis (Wilson et al. 

2007), and for morphometric feature parameterization (Eshani and Quiel 2008).  A mean curvature 

(Cmean) derived from these two formulae has been used by Pirotti and Tarolli (2010) for channel 

network extraction. Cavalli and Marchi (2008) applied the same generalization procedure to plan 

curvature formulation, for the characterization of surface morphology. In the study cases presented 

in this work, crowns and features related to bank erosion correspond to convex slope breaks forming 

ridges within the likely unstable area, while channel network corresponds obviously to convex areas. 

Since ridges are related to surface convexity, for this work Cmax (Eq. 15, Fig. 22b) is the optimal 

parameter applied for geomorphic feature recognition, while Cmin (Eq. 16, Fig. 22a) is considered for 

channel network characterization. Minimum curvature, furthermore, has been considered in this 

work to account for DTM quality because it is more sensible to concavities/convexities when dealing 

with morphological feature extraction (Sofia et al. 2011), and a recent work by Wise (2011) 

underlined how errors induced by interpolation were similar for different interpolation techniques, 

showing larger values along narrow crest lines, and at the convex change of slope at the tops of 

ridges or in hillslope hollows, but also occurs along the valley sides and in the valley bottoms.   
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Fig.  22 Example of minimum (a) and maximum (b) curvature, and overview of the actual landscape on the area 

 

c. Elevation residuals 

In the context of feature extraction, sometimes features are controlled by local variations in 

topography (i.e. the change in elevation from one cell to the next). In some instances, it can be useful 

to consider the nature of each elevation point with reference to a wider context, as in the case of 

identifying ridges and valleys or elements that have a lower/higher values respect their surroundings.  

This kind of analysis ignores hydrological connectivity of the surface topography, considering instead 

the relationship of a point to the surrounding landscapes (Wilson and Gallant, 2000). 

The basic element to consider as a reference against which to compare the elevation at the central 

point of the window is usually the mean elevation       : 
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where nw is the number of pixel within the considered neighborhood and zi is the elevation at each 

pixel. 

The difference between the elevation at the centre of the window and the mean elevation is a 

measure of the relative topographic position of the central point, and its range depends on the range 

in elevation within the size of the window. 

This terrain attribute can be useful in connection with processes/elements that are sensitive to local 

difference from regional elevations, as in application of DTMs for landform characterization 

(Carturan et al. 2009) or feature extraction (Humme et al., 2006; Hiller and Smith, 2008; Doneus and 

Briese, 2006; Kothe and Bock, 2009; Cazorzi et al. in press). 

The core idea shared by these works is to apply a low-pass filter to the DTM, providing a smoothed 

elevation model (Eq. 17) representing an approximation of the large-scale landscape forms. The 

_
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difference between this smoothed map and the original DTM is an approximation of the local relief, 

where only small-scale topographic features are preserved, in spite of large-scale landscape forms. In 

a similar fashion, two models can be derived, one represents a relative elevation map that can be 

termed Relative Elevation Attribute (REA, Carturan et al. 2009) (Eq 18, Fig. 23a), the other represents 

a map of Residual Topography (Cavalli et al. 2008) (Eq. 19, Fig. 23b).  

These maps are evaluated as 

DTMwww zzREA −=
__

          18 

__

wDTMww zzRT −=
          19

  
   

where zDTMw is the elevation at the central pixel within the considered neighborhood (w) and ��̅ is 

the average elevation of cells within the same neighborhood according to Eq. 17 (Carturan et al. 

2009, Humme et al., 2006; Hiller and Smith, 2008; Doneus and Briese, 2006, Cavalli et al. 2008).  

 

Fig.  23 Evaluation of REA (a) and Residual Topography (b) for a floodplain area. 

 
The two formulation results in two maps that underline different features: the Relative Elevation 

Attribute is intended to represent concavities with higher values (i.e. Fig. 23a), while Residual 

Topography underlines convexities at the expense of concave-overall features (Fig. 23b). 

d.  Openness  

Continuous topography is difficult to express, and many parameters have been proposed to quantify 

attributes of terrain that existing measures cannot describe.  A new approach recently developed to 

describe topography, as distinguished from discrete landforms, is the DTM-based surface 'openness' 

of Yokohama et al. (2002), that expresses dominance (exposure) versus enclosure of a location on an 

irregular surface. Positive openness (Fig. 24b) is used to identify local convexities and it is equal to 
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the mean zenith angle of all determined horizons; Yokohama et al. (2002) suggest also the negative 

openness, which is based on nadir angles, to identify local concavities (Fig. 24a). 

 

Fig.  24 Example of negative (a) and positive (b) openness. 

 

Openness always assumes a positive sign, and its values range from 0 to 180°. The parameter is 

designated ‘positive’ and ’negative’ in the same sense as has been used to express terrain-slope 

curvature (Pike, 1988).  

Topographic openness is calculated as the average of either zenith (φ ) or nadir (ψ )  angles along 

eight azimuths D (0, 45, 90, 135, 180, 225, 270 and 315) within a radial distance L  (Fig. 25, Yokoyama 

et al., 2002).   To perform terrain analyses maintaining homogeneity with curvature, openness can be 

evaluated considering an n x n moving window (Wood, 2009). Instead of a radial distance, pixels are 

processed if they belong to the considered neighborhood as a function of the window size (ksize). 
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Fig.  25 a) Azimuths D (0, 45, 90, 135, 180, 225, 270 and 315) within a radial distance L; b) Openness for a 

location A, according to azimuth and nadir, considering a defined D. (modified from Yokoyama et al., 2002). 

 

Positive openness 
Lφ  is convex-upward and refers to the calculation with zenith angles; negative 

openness 
Lψ  is concave-upward and refers to evaluation with nadir angles (Yokoyama et al., 2002).  

Along the Azimuth D, the zenith angle 
LD φ   at a grid location is 

LDLD βφ −= 90                                                        20 

 

The nadir angle 
LDψ  is 

LDLD δψ −= 90
         21 

The procedure, therefore, starts from the computation of the elevation angles ( LD β  and LDδ ) 

between the central point of the window and the element within the neighborhood for which the 

line of sight is unobstructed, along the straight line profiles in the eight azimuthal directions D (Fig. 

25). For a computational approach, openness is essentially the solid angle subtended by the visible 

sky at each point. The Yokoyama et al. (2002) article does not mention this explicitly, but the 

procedure it describes can be interpreted as a discrete approximation to this angle, that needs to be 

computed for each location, as described in Fig. 26. 
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Fig.  26 Example of evaluation of elevation angle θ within a moving window of n cells. ZA is the elevation 

measured at the central cell, while ZB is the elevation of the cells for which the line of sight is unobstructed. The 

distance between the two points is a function of the DTM grid size (g).  

 

The elevation angle at each location is calculated in an identical manner to the calculation of profiles 

gradients (Eq. 22).  








 ∆= −

distance
tan 1 Zθ

         22

 

Where distance is the distance between points along the azimuthal direction according to Fig. 27 and 

ΔZ is the difference in elevations between the central cell and the considered ones. 
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Fig.  27 Example of distances to be computed within a moving window of n x n for elevation angle computation. 

g is the DTM resolution and mi is an integer number that goes from 1 (the eight nearest neighbor) to (n/2)+1 

(the boundary cells). 
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This angle is referenced to the level of the origin point, and as a consequence it is positive when the 

profile is higher than the origin point, and negative if the origin is lower than the profile point. Once 

the elevation angles are identified, zenith and nadir are computed for each location within the 

moving window according to (20) and (21). The values to be considered to evaluate openness, are 

the maximum 
LDψ  

or 
LD φ value along the considered azimuth for positive and negative openness 

respectively. 

Positive openness 
Lφ  of a location on the surface is then derived as 

8/)....( 315450 LLLL φφφφ ++=
        23 

and negative openness 
Lψ  is 

8/)....( 315450 LLLL ψψψψ ++=
        24 

 
Maps of negative openness emphasize drainage (higher values) at the expense of convex-overall 

features (Fig. 24a), while maps of positive openness emphasize ridges (higher values) (Fig. 24b) 

(Yokoyama et al., 2002). 

Openness has been used for surface characterization and visual assessment of landform (Prima et al. 

2002, Cavalli et al. 2011), because it offers a clear vision of the landscape without the constraints of 

the more classical hillshade. Hillshaded images are sometimes used to guide surveys, but comparing 

multiple images requires the user knowledge (Fig. 28) and might be time consuming, because the 

user needs to produce multiple outputs by illuminating a surface from multiple directions, to 

enhance visualization of the relief morphology.  

 

Fig.  28 Angle dependence of analytical hill-shading: 315° azimuth illumination (a), and 135° azimuth (b). Note 

the missing features (landslides) that are not visible using some particular azimuths. 
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In the published article, Yokoyama et al. (1999) focused on the interpretation of openness to identify 

the basic relief features, and did not elaborate the physical background and the optimal visualization 

parameters. Other works dealing with this parameter for landform characterization (Yokoyama 2002, 

Prima et al. 2006) used scale of analysis operationally derived, without testing the effect of openness 

scale on the parameter evaluation according to feature extraction. In this thesis, a scale approach has 

been considered elaborating the effect of the dimension of the considered neighborhood on the 

effectiveness of the parameter for feature extractions (Sofia et al. 2011). 

Yokoyama et al. (2002), described openness as a method that is based on estimating the mean 

horizon elevation angle (in eight directions) within a defined neighborhood. The parameter, 

differently from curvature, bases its computation on the native format of a grid DTM (cfr proximal 

interpolation, Chapt. 2.2, Sect. III.Materials and methods), where each grid location is the centre of 

an homogeneous rectangular grid cell: it is actually a proxy for a diffuse relief illumination, and it is 

not a mathematical derivative of the surface. Some authors (Sofia et al. 2011) underlined how its 

computational basis, not depending on differential approaches, might define a more robustness of 

the parameter to DTMs errors. As already described in Chapt. 2.1, Sect. III.Materials and methods, 

depending on the spatial variation of the accuracy and density of the data, and on the suitability of 

the interpolation method for a certain relief, in fact, DTM quality might vary locally and regionally 

(Karel et al. 2006).  

e. Entropy 

A further topographic parameter that can quantify attributes of terrain, offering a measure 

of the elevation organization and its degree of randomness, is the entropy. The concept of entropy 

has its roots in the second law of thermodynamics, being a measure of the degree of organization in 

a system (Resnikoff, 1989). Calculating entropy provides an analytical treatment of information by 

measuring the degree of organization within a system, which can be also interpreted as a measure of 

the quantity of information incorporated in it. Shannon and Weaver (1949) introduced the concept 

of Entropy as a measure of randomness for digital signal processing.  From a geographical point of 

view, entropy can be seen as a measure of how many categories are present in the parameter map at 

a given sampling interval.  As Vieux (1993) and Mendicino (1996) reported, in the field of topographic 

surfaces described by a DTM, entropy can become a measure of spatial variability, since the total 

amount of disorder in elevation data distribution, is interpretable, indirectly, as the DTM information 

content.  For a complete and deep review of entropy in hydrology and connected fields, see Singh 

(2011). Entropy has been used in this thesis for feature extraction, in particular as a filter to discard 

noises (Sofia et al. 2011) and as a topographic parameter to identify anthropogenic features. 

Entropy is evaluated as 
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where pi is the proportion of pixels within the considered neighborhood that are assigned to each 

class i according to (26) 

bins

i
i N

N
p =

          26

 

where Ni is the number of pixel within the considered class i and Nbins is the number of considered 

bins. 

For class and bins evaluation, in this work two approaches have been used. On the channel network 

extraction procedure, the approach was to considered entropy of flow movements (Fig. 29b), 

therefore each class is representative of a particular direction. In another instance to extract 

anthropogenic features, Entropy is considered directly for the DTM elevation values (Fig. 29d). 

Entropy is low when the heights within a local window have similar values (smooth surface) and high 

when they vary significantly.  
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Fig.  29 Two approaches to evaluate entropy for a mountainous context (a,b) and floodplain (c,d). Map b 

represent Entropy of flow movements on surfaces, whereas higher entropy values correspond to irregular 

morphologies. Map d represents entropy of elevations, whereas higher entropy values are related to the 

presence of human disturbances (river levees or surface roughness due to farming activities). 
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3.2  Hydrological terrain parameters 
 

One  of the major tasks in digital terrain analysis is the computation of hydrological parameters used 

to model the hydrological behavior of a watershed. A number of important parameters have been 

proposed, and they are commonly derived from a more fundamental element: the flow model. A 

detailed discussion about hydrological terrain parameters can be found in Wilson and Gallant, 2000. 

In this section, only a brief commentary about the flow model is discussed. 

Calculation of upslope area depends on the way the accumulated area of upstream cells is routed to 

downstream cells. The two main approaches to evaluate flows over a surface are the Single-Flow 

direction (SFD) where the total amount of flow is received by a single neighboring cell that has the 

maximum downhill slope to the current cell, and the multiple-flow direction (MFD), where the flow 

from the current cell is distributed to all lower neighboring cells, according to some specific criteria 

as slope and flow width (Quinn et al. 1991).  

The distribution of area to each downslope cell is generally based on slope according to the term  

∑= h
i

h
iiFlow ββ tan/tan

 
27 

where tanβ is the local slope measured at that location and h is a parameter that controls the flow 

distributions and its ranges is given by ∞≤≤ h0  (Holmgren, 1994b). 

This formulation can be seen as a generalization of the flow direction approaches, where the 

parameter h determines the transition from single directional flow ( ∞=h ) to multidirectional flow (

1=h ). For h>1 steeper slopes receive a higher proportion of the accumulated area (i.e. Tarboton 

1997), while for h values smaller than one are more evenly distributed among the down slope 

directions. A high exponent (h) means that more accumulated area will be distributed in the steepest 

direction, i.e. more similar to single directional flow. The lower the exponent the more equally the 

flow will be distributed among the downslope cells (for a more detailed description see Holmgren, 

1994b, or Quinn et al., 1995).  

Several studies have shown differences connected to the choice of single- and multiple-flow direction 

algorithms on predicting channel networks  (McMaster,  2002;  Endreny and  Wood, 2003), on the  

location of ephemeral gullies (Desmet  and Govers, 1996), on modeled  erosion and sedimentation  

rates (Schoorl  et  al.,  2000),  spatial  patterns  of  saturated  areas (Guntner  et  al.,  2004),  and on 

the  statistical  distributions of terrain attributes (Quinn et al., 1991;  Wolock and McCabe, 1995; 

Desmet  and  Govers,  1996;  Tarboton,  1997).  Locations of ephemeral gullies and channel networks 

are better identified by algorithms with limited flow divergence, but upslope area computed through 

multiple flow algorithms could make it possible the identification of the most depressed parts of the 

channels, likely to be active also under conditions of low or moderate flow and it allows the 

recognition of minor channel features which are involved in flow processes during floods. Multiple 
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direction algorithms tend to produce a more realistic looking spatial patterns than the single flow 

ones by avoiding concentration to distinct lines (Seibert and McGlynn, 2007). The negative outcome 

of this, however, is that multiple flow algorithms tend to produce a dispersive flow pattern, since the 

area from one cell is routed to all downslope cells and thus is dispersed to a large degree even for 

convergent hillslopes. Flow randomization and concentration can be implemented (Schwanghart and 

Kuhnn, 2010) providing correction to this unrealistic behavior, and other algorithms based on 

triangular facets have been developed to overcome these weaknesses (Tarboton, 1997; Seibert and 

McGlynn, 2007). 

In the context of this work, the choice of the algorithm to apply to correctly evaluate flow directions 

is based on literature review. This work is carried out considering high resolution topography, and 

literature underlined that multiple-flow algorithms should be preferred for applications of upslope 

contributing area derived from higher-resolution DTMs (Erskine et al., 2006). Furthermore, previous 

studies demonstrated that computing total contributing area properly when dealing with divergent 

topography, involves suitable algorithms for handling multiple-flow directions (Tucker et al. 2001) as 

the one proposed e.g. by Quinn et al., 1991; Costa Cabral and Burges, 1994; Tarboton, 1997. In 

general, it has been underlined that multiple-flow algorithms are more robust than single-flow 

(Seibert and McGlynn, 2007): using single-flow, a tiny elevation difference between two of the 

neighboring cells can have a large effect as one of the cells receives all the area. With multiple-flow, 

these differences have a less influential effect because both cells receive about the same portion of 

the accumulated area. 

Considering these observations, in this work the attention has been focused on the multiple-flow 

algorithms (Quinn et al., 1991; Costa Cabral and Burges, 1994; Tarboton, 1997).  Algorithms such as 

digital elevation model networks (DEMON) (Costa-Cabral and Burges, 1994), anyway, have not been 

applied because, even if they might have theoretical advantages, they are too complex and case 

specific to be implemented for most applications (Tarboton, 1997).  

The evaluations of flow paths for this thesis have been carried out using as a basis the Quinn et al. 

(1991) multiple-flow algorithm (Eq. 23 with h = 1), according to two main considerations: a) previous 

studies (Endreny and Wood, 2001) demonstrated that, compared to other flow algorithms, MDF 

(Quinn et al., 1991) was the least sensitive to terrain uncertainties, thus it can provide a more robust 

estimation; b) the main disadvantage of Quinn’s MDF (large degree of dispersion even for a 

convergent hillslope), can be supplied by incorporating a weight depending on local topographic 

conditions. Point b) can be found in Kim and Lee (2004), where the authors compared different flow 

direction methods according to their ability to predict the observed stream network, and found that 

a modification of the multidirectional flow accumulation algorithm suggested by Quinn et al. (1991) 

was needed to solve the problem of flow dispersion overestimation in near-stream cells.  
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For the present work, the Quinn’ (1991) flow accumulation algorithm has been modified using a 

weight factor W dependent on local morphology: 

),( rWfAw =             28 

where Aw is the weighted upslope contribution area for a given pixel and r is the pixel location on the 

DTM. The main difference from a conventional MDF flow accumulation is to provide a map of W, 

directly related to geomorphologic form, where surface concavities and convexities are detected. 

Similar modification procedures can be found in Tarboton (2003) and Liu J. et al. (2007), for different 

upslope area computational approaches. 

The weighted upslope area is an implicit description of how much water can be accumulated 

according to the degree of convergence of the surface. Given a defined upslope value, the weighted 

amount depends on upslope contributing area and local convergence of morphology, represented by 

the weight matrix W (Eq. 28, Fig 56D p.124, and 57D p.125). This weight depends on local convexities 

and is derived by their quantification through openness and curvature (see Chapt. 2, Sect. IV.DTA for 

feature recognition). If a pixel relies on a convergent morphology, the value of the upslope area will 

be increased proportionally to its degree of convergence, while if it lies on divergent morphology, its 

value will be diminished.  

 

  



 

80 
 

4. Statistical Background 

In this section, some elementary statistical concepts that provide the necessary foundations for more 

specialized statistical data analysis (Chapt. 4.2 and 4.3) are explained. The selected topics illustrate 

the basic assumptions of most statistical methods applied on the present thesis. Further information 

on each of those concepts can be found in Kachigan (1986), and Runyon and Haber (1976); for a 

more advanced discussion of elementary theory and assumptions of statistics, see the classic books 

by Hays (1988), and Kendall and Stuart (1979). 

Variables differ in how well they can be measured, i.e., in how much measurable information their 

measurement scale can provide. There is obviously some measurement error involved in every 

measurement, which determines the amount of information that we can obtain. Another factor that 

determines the amount of information that can be provided by a variable is its type of measurement 

scale. Referring to the application of digital terrain analysis in this work, two are the mail goals 

searched by applying a statistical approach: i) measure the relation between each topographic 

attribute and its location, and quantify the significance of this relation in terms of scales; and ii) Once 

the appropriate scale is defined, the goal is to extract the feature of interest in an automatic or 

semiautomatic way. 

Specifically, the relationship between topographic attributes and features depends mostly on the 

scale of analysis and on the morphology of the area. In very large samples, even very small relations 

between variables might be significant, whereas in very small samples large relations cannot be 

considered reliable (significant). Thus, in order to determine the level of statistical significance, a 

function is needed, that represents the relationship between “magnitude" and "significance" of 

relations between the value of the observed topographic attribute and the hydrogeomorphic 

processes involved in it, depending on the scale. The probability distribution function is an important 

characteristic which gives significant space domain information regarding the signal, and distributive 

analysis can be considered for these applications. 

Distributive analysis typically consists in estimating summary measures capturing aspects of the 

distribution of every sample points beyond central tendency (i.e. Fig. 30). Simple descriptive statistics 

can provide some information, and they are related to the distribution moments: the first moment 

refers to the mean, the second to the variance (the positive square root of which is the standard 

deviation, σ), the third and fourth moments refers respectively to skewness and kurtosis.   
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Fig.  30 Chart comparing the various dispersion measures in a normal distribution. Includes: Standard 

deviations, cumulative percentages, percentile equivalents, Z-scores and T-scores. Inspired by Ward et al. 

(1999). 
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4.1  Basic statistics 

a.  Standard Deviation 

Standard deviation is a widely used measurement of variability or diversity used in statistics and 

probability theory. It shows how much variation or 'dispersion' there is from the 'average' (mean, or 

expected/budgeted value). A low standard deviation indicates that the data points tend to be very 

close to the mean, whereas high standard deviation indicates that the data are spread out over a 

large range of values. Technically, the standard deviation of a statistical population, data set, or 

probability distribution is the square root of its variance. Three standard deviations account for 

99.7% of the sample population being studied, assuming the distribution is normal (bell-shaped). In 

addition to expressing the variability of a population, standard deviation is commonly used to 

measure confidence in statistical conclusions. The reported margin of error is typically about twice 

the standard deviation–the radius of a 95% confidence interval. In science, researchers commonly 

report the standard deviation of experimental data, and only effects that fall far outside the range of 

standard deviation are considered statistically significant—normal random error or variation in the 

measurements is in this way distinguished from causal variation. A useful property of standard 

deviation is that, unlike variance, it is expressed in the same units as the data.  

Standard deviation is usually defined as  

2)( µσ −= tE
         29

 

where E() represents the expected value of the quantity, and µ is the mean of the sample. 

Tarolli and Dalla Fontana (2009) and Pirotti and Tarolli (2010) used threshold ranges identified as m-

times the standard deviation σ of curvature as an objective method for hollow morphology 

recognition, and channel network extraction from high resolution topography. In Tarolli et al. (2010), 

the standard deviation has been tested also for convexity detection, and in Cazorzi et al (in press) it 

has been used to define a threshold to identify channel network in agrarian landscapes. Always for 

channel network recognition, Thommeret et al. (2010) used thresholds range identified by the 

standard deviation of DTM altimetrical errors spatial distributions. 

b. Interquantile Range 

The Interquartile Range (IQR) is a measure of statistical dispersion, being equal to the difference 

between the third and first quartiles.  

13IQR QQ −=                                 30 

where Q3 and Q1 are third and first quartiles. 
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The IQR is essentially the range of the middle half (50%) of the data, and because of this, is less 

affected by outliers or extreme values.  

c.  Boxplot 

Different authors (Lashermes et al. 2007, Tarolli and Dalla Fontana, 2009, Passalacqua et al. 2010a,b, 

Tarolli et al. 2010, Pirotti and Tarolli, 2010, Sofia et al. 2011) underlined how statistical operators can 

describe natural process signatures on surfaces. However, when moving from a natural context to a 

more engineered one, a statistical approach can be used also to describe anthropogenic features. 

The basic idea is that man-made elements normally show a much sharper shape than natural terrain 

features. Furthermore, they mark local maxima of the elevation, and their heights represent outliers 

in the elevation matrix. Consequently, they represent outliers also within the derived 

geomorphometric parameters. 

One of the most frequently used graphical techniques to analyze a univariate data set and to identify 

outliers is the boxplot, proposed by Tukey (1977).  If Xn={x1,x2,…,xn} is a univariate data set, the 

boxplot is constructed by identifying the sample median (Q2) and the sample first and third quartile 

(Q1 and Q3). The length of this box equals the interquartile range (IQR, Eq. 30) which is a robust 

measure of the scale. 

An interval (fence) is then defined, by considering a lower bound (Fnclow, Eq. 31) and an upper bound 

(Fncup, Eq. 32). 

⋅⋅−= IQRQFnclow 5.11           31 

⋅⋅+= IQRQFncup 5.13          32 

According to Tukey (1977), points outside the fence can be classified as potential outliers. 

d. Mean Absolute Deviation 

The Mean Absolute Deviation (or "MAD")  of a data set is the average of the absolute deviations from 

the mean, and it is a summary statistic of statistical dispersion of variability. It is a more robust 

estimator of scale than the sample variance or standard deviation since it is more resilient to outliers 

in a data set. In the standard deviation, the distances from the mean are squared, so on average, 

large deviations are weighted more heavily, and thus outliers can heavily influence it. In the MAD, 

the magnitude of the distances of a small number of outliers is irrelevant.  

The formula is expressed as follow 

∑
=

−=
n

i
itn 1

1
MAD µ                                                             33

 

where where µ is the mean of the sample.  
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e. Quantile-Quantile Plot 

The quantile-quantile plot (Q-Q plot) is a probability plot consisting in a variable plotted against 

quantiles of a specific theoretical distribution representing the relative likelihood for this random 

variable to occur at a given point in the observation space. The deviation from a straight line 

indicates a deviation of the variable from a standard (normal) distribution. In the work of Lashermes 

et al. (2007) and Passalacqua et al. (2010a,b) Q-Q plots of landform curvature were used to 

objectively define curvature thresholds for channel network extraction. They suggested that the 

deviation from the normal distribution records an approximate break in which higher curvature 

values delineate well organized valley axes and lower (but still positive) values record the disordered 

occurrence of localized convergent topography.  

f. Skewness 

In probability theory and statistics, skewness is a measure of the asymmetry of the probability 

distribution of a real-valued random variable. The skewness can assume positive or negative values. 

Qualitatively, a negative skew indicates that the tail on the left side of the probability density 

function is longer than the right side and the bulk of the values (including the median) lie to the right 

of the mean. A positive skew indicates that the tail on the right side is longer than the left side and 

the bulk of the values lie to the left of the mean. A zero value indicates that the values are relatively 

evenly distributed on both sides of the mean, typically but not necessarily implying a symmetric 

distribution. 

Skewness can be defined as: 

3

3)(

σ
µ−= tE
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where µ is the mean of the sample, σ its the standard deviation, and E() represents the expected 

value. 

Skewness empirical computation for a topographic parameter dataset refers to 
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Where n is the sample size (in this case, the number of pixels of the input grid), TA
i 
 is the value of the 

topographic parameter at each cell i, and 

___

TA  is the mean value of the parameter for the considered 

map. 
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d.  Z-Score 

Z-score is a statistical measure that quantifies the distance (measured in standard deviations) a data 

point is from the mean of a data set.  

The standard score (z-score) is a dimensionless quantity and for the ith observation of a random 

variable x at a point i is given by: 

σ
µ−= i

i

t
zscore

         36

 

where µ and σ are respectively the mean and the standard deviation of the distribution.  

Values that are larger than the mean have positive z-scores and values that are smaller than the 

mean have negative z-scores. If a value equals the mean, then that location has a z-score of 0. The 

mathematics of the z score transformation are such that if every value in a distribution is converted 

to its z score, the transformed scores will necessarily have a mean of zero and a standard deviation of 

one.  Z scores are sometimes called "standard scores". The z score transformation is especially useful 

when seeking to compare the relative standings of items from distributions with different means 

and/or different standard deviations. Z scores are especially informative when the distribution to 

which they refer is normal. In every normal distribution, the distance between the mean and a given 

Z score cuts off a fixed proportion of the total area under the curve.  
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Fig.  31 Example of a topographic attribute map (minimum curvature, A), its Z-Score normalization (B), the basic 

statistics for both maps, and the evaluation of minimum curvature QQplot (C)  

 

 

 

 

 

  



 

 

4.2  Statistics, scales of analysis, and feature 

As already said, an important aspect of the description of a variable is the shape of its distribution, 

which tells the frequency of values from different ranges of the variable. Considering a normally 

distributed sample, the 99.7% of the sample lies betwe

times the standard deviations

of variability. When dealing with topographic attributes and landform, one must consider that only 

values of the elevation of a smoothed terrain tend to have a symmetric distribution in a well selected 

window with slow-changing terrain (Bartels et al., 2005). In the presence of noises, terrain roughness 

or particular morphologies, imbalanced terrain elevation affects t

al., 2008): hydrogeomorphic features appear with lower frequencies, and they enhance the tails of 

the topographic parameter distribution, increasing or decreasing its skewness. This allows to 

consider that different proce

geometry, and by quantifying and labeling these signatures in detail, we can have an inference tool

to define the optimum scale of analysis, to identify a threshold to label where a proc

In the context of feature recognition

of the distribution which is more influenced by the presence of features, according to the 

topographic parameter in analysis. This means that if the topographic parameter is meant to 

describe in detail surface convexities, assigning to ridges higher values in th

side to be analyzed is the positive side (Fig 32). On the opposite, if the topographic parameter is 

meant to underline surface concavities, labeling them with higher values in the negative domain, the 

side of the distribution to be c

dispersion of the topographic attribute values can be a measure of the presence/absence of features.

 

Fig.  32 Area of interest considering the main me

boxplots) for feature extraction from minimum curvature (left) and maximum curvature (right) for channel 

network and geomorphic features respectively. 
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Statistics, scales of analysis, and feature recognition

As already said, an important aspect of the description of a variable is the shape of its distribution, 

which tells the frequency of values from different ranges of the variable. Considering a normally 

distributed sample, the 99.7% of the sample lies between negative three times and positive three 

times the standard deviations. Similar percentages can be found by considering the other measures 

of variability. When dealing with topographic attributes and landform, one must consider that only 

evation of a smoothed terrain tend to have a symmetric distribution in a well selected 

changing terrain (Bartels et al., 2005). In the presence of noises, terrain roughness 

or particular morphologies, imbalanced terrain elevation affects the histogram distribution (Yuan et 

al., 2008): hydrogeomorphic features appear with lower frequencies, and they enhance the tails of 

the topographic parameter distribution, increasing or decreasing its skewness. This allows to 

consider that different processes leave their signature on the statistical properties of landform 

geometry, and by quantifying and labeling these signatures in detail, we can have an inference tool

define the optimum scale of analysis, to identify a threshold to label where a proc

recognition, the key is to consideranalysis of dispersion focusing on the tail 

distribution which is more influenced by the presence of features, according to the 

topographic parameter in analysis. This means that if the topographic parameter is meant to 

describe in detail surface convexities, assigning to ridges higher values in th

side to be analyzed is the positive side (Fig 32). On the opposite, if the topographic parameter is 

meant to underline surface concavities, labeling them with higher values in the negative domain, the 

side of the distribution to be considered is the negative side (Fig 32). In the tail of interest, then, the 

dispersion of the topographic attribute values can be a measure of the presence/absence of features.

 

Area of interest considering the main measures of dispersion (MAD, IQR, standard deviation and 

boxplots) for feature extraction from minimum curvature (left) and maximum curvature (right) for channel 

network and geomorphic features respectively.  

recognition 
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define the optimum scale of analysis, to identify a threshold to label where a process starts. 

analysis of dispersion focusing on the tail 

distribution which is more influenced by the presence of features, according to the 

topographic parameter in analysis. This means that if the topographic parameter is meant to 

describe in detail surface convexities, assigning to ridges higher values in the positive domain, the 

side to be analyzed is the positive side (Fig 32). On the opposite, if the topographic parameter is 

meant to underline surface concavities, labeling them with higher values in the negative domain, the 

onsidered is the negative side (Fig 32). In the tail of interest, then, the 

dispersion of the topographic attribute values can be a measure of the presence/absence of features. 
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boxplots) for feature extraction from minimum curvature (left) and maximum curvature (right) for channel 



 

 

 

Same consideration can be done for the QQ

topographic parameter is meant to enhance concavities on the positive side, the area to be 

considered for channel extraction has to be the right tail of the distribution (Fig 30). 

Fig.  33 Area of interest considering the qqplot as a measure of dispersion for feature extraction from negative 

(left) and positive openness (right) for channelized features. The same considerations are valid when 

considering maximum curvature for geomorphic feature extraction (where the approach is the same of the one 

proposed on the left), and minimum curvature for hydrologic feature extraction (where the approach is the 

same of the one proposed on the 

 

Feature thresholding at this point can be based on 

median absolute deviation. Graphical operators can also be used: Q

where the distribution is not linear and where deviation from a straight line can indi

of the pdf from Gaussian, underlying 

Passalacqua et al. 2010, 2010b, 

With quadratic approximation (

the topographic variables at different scales using a range of window sizes. The minimum possible 

scale is dictated by the resolution of the DTM grid and the computational constraint, while the 

maximum possible scale is limited by the extent of the DTM itself. Clearly, not all these scales will 

produce meaningful results because of limitations of the elevation data, as well as limitations of the 

analysis method: i) very small windows are most in

especially if the error has very low spatial autocorrelation (Fisher 1998,Heuvelink 1998a, Liu and 

Jezek 1999), and by local morphologies not necessarily connected to features (Pirotti and Tarolli, 

2010, Tarolli et al. 2010, Sofia et  al. 2

that the quadratic equation will be a good descriptor of the topographic surface in the 

neighbourhood of the evaluation point, because the approximation will be rougher.

In the works available in literature, where curvature was evaluated for different scales, the optimum 

one was either identified a posteriori, or selected arbitrarily a priori. The first approach is a time

consuming approach, considering that the optimum scale is defined 
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Same consideration can be done for the QQ-Plot as a measure of disruption from normality: if the 

topographic parameter is meant to enhance concavities on the positive side, the area to be 

considered for channel extraction has to be the right tail of the distribution (Fig 30). 

Area of interest considering the qqplot as a measure of dispersion for feature extraction from negative 

(left) and positive openness (right) for channelized features. The same considerations are valid when 

vature for geomorphic feature extraction (where the approach is the same of the one 

proposed on the left), and minimum curvature for hydrologic feature extraction (where the approach is the 

same of the one proposed on the right). 

his point can be based on standard deviation, interquartile range and 

median absolute deviation. Graphical operators can also be used: Q-Q plots can underline thresholds 

where the distribution is not linear and where deviation from a straight line can indi

of the pdf from Gaussian, underlying different morphological structures (

Passalacqua et al. 2010, 2010b, Tarolli et al. 2010, Sofia et al. 2011). 

With quadratic approximation (Chapt. 2.2, Sect. III.Materials and methods), it is possible to calculate 

the topographic variables at different scales using a range of window sizes. The minimum possible 

scale is dictated by the resolution of the DTM grid and the computational constraint, while the 

s limited by the extent of the DTM itself. Clearly, not all these scales will 

produce meaningful results because of limitations of the elevation data, as well as limitations of the 

ery small windows are most influenced by errors in the 

especially if the error has very low spatial autocorrelation (Fisher 1998,Heuvelink 1998a, Liu and 

Jezek 1999), and by local morphologies not necessarily connected to features (Pirotti and Tarolli, 

2010, Tarolli et al. 2010, Sofia et  al. 2011); and ii) as the evaluation window gets larger, it is less likely 

that the quadratic equation will be a good descriptor of the topographic surface in the 

neighbourhood of the evaluation point, because the approximation will be rougher.

ailable in literature, where curvature was evaluated for different scales, the optimum 

one was either identified a posteriori, or selected arbitrarily a priori. The first approach is a time

consuming approach, considering that the optimum scale is defined through a comparison of all 

s a measure of disruption from normality: if the 

topographic parameter is meant to enhance concavities on the positive side, the area to be 

considered for channel extraction has to be the right tail of the distribution (Fig 30).  
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neighbourhood of the evaluation point, because the approximation will be rougher.  

ailable in literature, where curvature was evaluated for different scales, the optimum 

one was either identified a posteriori, or selected arbitrarily a priori. The first approach is a time-

through a comparison of all 



 

 

extractions for all possible kernel sizes with the reference features (Pirotti and Tarolli, 2010; 

al. 2010). In the second case cases, the scale of analysis is simply an operational choice [i. e. 

Lashermes et al. (2007) and Passalacqua et al. (2010a,b)]. In general, it has been argued that the 

scale of analysis should be about the twice of three times the size of the analyzed features (

and Tarolli 2010, Tarolli et al. 2010

absence of scale optimization techniques, how to select objectively a scale of analysis is an open 

question.  

Giving that the presence of hydrogeomorphic features enhances the tail of the distribution of the 

topographic parameters, the shape of the distribution at different scales can be a diagnostic tool to 

identify the optimum scale of analysis

feature identifications, where features are identified by lower frequencies o

tail of a distribution, Sofia et al. (2011) underlined how the optimum scale size is the one that results 

in the highest values of skewness. It is practically the scale that most enhances the tails of the 

distribution that represent the considered feature. 

This scale can be mathematically identified by having a function defining a continuous relationship 

between skewness of the distribution, and the windows size used to evaluate the topographic 

parameter: 
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Where ksize is the size of the moving window adopted for the evaluation, and 

coefficients. 

By representing this function, and identifying its ‘extreme value’ or ‘inflection points’(

possible to define the optimum scale of analysis (Sofia et al. 2011).

Fig.  34 Example of the polynomial identifying skewness of Minimum Curvature as function of the moving 

windows size for two DTMs (1m and 2m) of the 

( ~15m) on the 2m DTM and around 15 cells (~15m) on 1m DTM.
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extractions for all possible kernel sizes with the reference features (Pirotti and Tarolli, 2010; 
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absence of scale optimization techniques, how to select objectively a scale of analysis is an open 

Giving that the presence of hydrogeomorphic features enhances the tail of the distribution of the 

the shape of the distribution at different scales can be a diagnostic tool to 

identify the optimum scale of analysis (Sofia et al. 2011). Considering the observations done about 

feature identifications, where features are identified by lower frequencies o

tail of a distribution, Sofia et al. (2011) underlined how the optimum scale size is the one that results 
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is the size of the moving window adopted for the evaluation, and 

By representing this function, and identifying its ‘extreme value’ or ‘inflection points’(

possible to define the optimum scale of analysis (Sofia et al. 2011). 

Example of the polynomial identifying skewness of Minimum Curvature as function of the moving 

windows size for two DTMs (1m and 2m) of the same area. Inflection points are identified between 7 and 9 cells  

( ~15m) on the 2m DTM and around 15 cells (~15m) on 1m DTM. 
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between skewness of the distribution, and the windows size used to evaluate the topographic 
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is the size of the moving window adopted for the evaluation, and t are the polinomial 

By representing this function, and identifying its ‘extreme value’ or ‘inflection points’(Fig. 34), it is 

 

Example of the polynomial identifying skewness of Minimum Curvature as function of the moving 

same area. Inflection points are identified between 7 and 9 cells  
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The stationary points are by definition those points where the derivative of the function itself is 

equal to zero, thus they can be automatically identified through a mathematic approach. In figure 34, 

an example is shown for minimum curvature evaluated starting from two different DTM resolution, 

1m and 2m, for the same area. It is clear that for both resolutions, the increasing of the window size 

determines an increasing of the skewness in the negative domain until a maximum value is reached. 

After that point, the increasing of the window size determines a decreasing of the skewness and a 

progressive normalization of the distribution shape (skewness moves towards 0). The stationary 

points of both curves identify automatically an optimum kernel width of about 15 m (7 cells on the 

2m grid, and 15 cells on the 1m grid).  By digitally measuring on the map the channelized element of 

the area, their average width results to be about 15 m (Fig. 35a).  

The curvature map derived with the defined window, is able to identify correctly these elements (Fig. 

35b), and by considering curvature values lower than 2 times the standard deviation of the map, 

these features can be extracted with a high level of effectiveness. 

 
Fig.  35 Example of channelized element (a) as depicted on the DTM, and curvature derived for the same area 

(b) using an automatically defined 15 m kernel. Channels are correctly labeled by considering curvature values 

lower than 2 times the standard deviation of the map. 
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4.3  Statistics and scales of analysis: effects of DTM errors 

The identification of optimal scale expressed in the previous chapter, consider that the shape of a 

topographic parameter distribution is influenced only by morphology. However, it is well known that 

also imbalanced or erroneous terrain heights affect the elevation histogram distribution, increasing 

or decreasing its skewness (Yuan et al., 2008), and topographic derivatives strictly depend on 

elevation distribution. The presence of errors in the DTM, therefore, might also be reflected in the 

relationship skewness/window size (Eq. 37, p.89). In the following section, the effect of errors on the 

skewness-window size relationship is assessed. The method can be summarized by the following 

steps: (1) dataset preparation; (2) processing curvature for different moving windows; (3) evaluating 

skewness of curvature for each map; (4) comparing the relationship between skewness values and 

moving windows over the different maps to identify different behavioral patterns, connected to the 

presence or absence of errors. 

a.  Error simulation: Monte Carlo approach 

The Monte Carlo simulation is the approach commonly applied to assess DTM uncertainty. This can 

be attributed to its relative simplicity in concept, advances in computing power that have facilitated 

the computational demands of this brute force approach, and the “simplifying approximations” 

required of analytical methods in the face of complexity (Heuvelink and Burrough, 2007). The Monte 

Carlo method has been cited as the best method for determining the influence of error on DTM 

derivatives (Veregin, 1997). It is also advantageous because it is not affected by the complexity or 

non-linearity of the model (Burrough, 2002), and is thus generally applicable. Monte Carlo simulation 

is a technique for producing estimates of ‘true’ outcomes of stochastic processes by simply running 

many iterations of the model process and comparing its outcomes. The main disadvantage is the 

numerical load as the process is repeated for typically 50–2000 simulation runs (Heuvelink 1998), but 

the method remains widely recommended. The basis for using the Monte Carlo method in error 

propagation analysis is that the original data is perturbed repeatedly by the realization of the 

modeled error, and the analyses are performed on the perturbed data set (Heuvelink and Burrough, 

2007; Openshaw et al. 1991). Using the results from all the iterations, it is possible to calculate a 

mean value that corresponds to the actual outcome of the algorithm under analysis. In this study 

case, this mean value is considered to be the ‘true’ value that the algorithm would produce in the 

presence of a specific error. The outline for the Monte Carlo process used here is shown in Fig. 36. 



 

 

Fig.  36 Outline of the considered Monte Carlo process. Input clean DTM (DTM

(E), multiple realizations of DTMs with errors (DTM

windows and evaluation of skewness of curvature for each specific moving window. Using the results from all 

the iterations, it is possible to calculate a mean value of skewness for each moving window, considered to be 

the ‘true’ value that the algorithm would produce in the presence of a specific error.(Sofia et al. under review)
  
 

The main assumption of Monte Carlo simulations procedure is that errors exist and their nature and 

extent is unknown, but they can be modeled through a simp

fields. Without having detailed information, the error simulation process starts from the generation 

of disturbance term consisting of random fields that have the same dimensions as the original DTM. 

These random maps (E, Eq. 38,39) can be repeatedly added to the true value of the DTM (

38), creating different realizations of the DTM (

EDTMDTM cE +=
  

Where  

[ ]
mmjitE
⋅

= ,     

Differences in the Monte-Carlo approach rely on the definition of the error grids 

on the shapes of error distributions, and the spatial correlations of errors. Theoretically speaking, the 

accuracy of the Monte-Carlo method is proportional to the square root of the numbers of runs 

(Temme et al. 2008). Heuvelink (1998) defines that as a general rule, 100 simulations can be 

considered as being large enough, and everything below 20 as insufficient. For the present 

DTM realization for each error type have been created.
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Outline of the considered Monte Carlo process. Input clean DTM (DTMc), multiple realizations of errors 

(E), multiple realizations of DTMs with errors (DTME), computation of minimum curvature 

windows and evaluation of skewness of curvature for each specific moving window. Using the results from all 

the iterations, it is possible to calculate a mean value of skewness for each moving window, considered to be 

that the algorithm would produce in the presence of a specific error.(Sofia et al. under review)

The main assumption of Monte Carlo simulations procedure is that errors exist and their nature and 

extent is unknown, but they can be modeled through a simplified approach considering random 

fields. Without having detailed information, the error simulation process starts from the generation 

of disturbance term consisting of random fields that have the same dimensions as the original DTM. 

Eq. 38,39) can be repeatedly added to the true value of the DTM (

38), creating different realizations of the DTM (DTME, Eq. 38).  
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Carlo approach rely on the definition of the error grids E, and in particular, 

on the shapes of error distributions, and the spatial correlations of errors. Theoretically speaking, the 

Carlo method is proportional to the square root of the numbers of runs 

(Temme et al. 2008). Heuvelink (1998) defines that as a general rule, 100 simulations can be 

considered as being large enough, and everything below 20 as insufficient. For the present work, 100 
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A potential problem with the Monte Carlo error simulation as it has been described, is that it does 

not preserve the spatial structure of the landscape elevation. Some authors approached error 

propagation by describing the spatial structure of the original DTM with geostatistical tools, and 

attempted to preserve it by preserving the variogram. However, other authors underlined how the 

variogram estimated from a DTM does not necessarily reflect that of the landscape, and preserving it 

in each realization would be an arbitrary choice (Raaflaub and Collins, 2006). As an operative choice, 

in this work the variogram characterization is not implemented. 

To test the effects of errors on skewness of curvature at multiple scales, curvature evaluation is 

applied considering the same kernel size range of Tarolli et al. 2010 and Sofia et al. 2011, and three 

different DTMs resolutions have been considered (0.5, 1 and 2 m ).  

b. Considered DTMs  

The test is carried out on seven different LiDAR DTMs (Fig. 37). The seven datasets belong to two 

selected areas in the Veneto Region in the northern part of Italy (Fig. 37), within the context of Alpine 

environment and morphology. The height (m a.s.l.) of the areas ranges between 1410 m a.s.l. and 

1930 m a.s.l. (average of 1780 m a.s.l.) for the study site A, and between 1870 m a.s.l.  and 2600 m 

a.s.l. (average 2220 m a.s.l.) for the study site B. The sites present different morphologies, and they 

were therefore considered ideal for this type of study.  

The LiDAR data were acquired by an ALTM 3100 OPTECH, flying at an average altitude of 1000m 

above ground level under snow free conditions. The flying speed was 80 knots, the scan angle 20° 

and the pulse rate 71 kHz. During the LiDAR survey, high-resolution (0.15 m) digital aerial photos 

were also collected (camera Rollei H20). The spatial sampling density of the LiDAR-derived 

topographic datasets is high, with an average density of 7 point/m
2
. Point cloud data were filtered to 

classify terrain and off-terrain points using the Terrascan™ software classification routines and 

algorithms. The vertical accuracy of the final datasets, evaluated by a direct comparison between 

LiDAR and ground DGPS elevation points, was estimated to be about 0.3 m (RMSE) for all the areas, 

an acceptable value for LiDAR analyses in the field of geomorphology (Mckean and Roering, 2004; 

Frankel and Dolan, 2007; Tarolli et al. 2009). 
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Fig.  37 Overview of the seven DTMs (a1-a7) considered for the analysis 

 

c. Datasets preparation 

For each test area, DTMs were obtained by rasterization - at the three different resolutions - of the 

triangulated surface created from the ground points. This procedure was adopted because it is a 

common processing workflow for extracting DTMs from LiDAR point clouds: to achieve a uniformly 

spaced DTM, data-producers typically start with mass points, produce a TIN, and then interpolate the 

TIN triangles to obtain elevations at the DTM's precalculated x/y coordinates (Maune, 2001). 

The choice of three different resolution was done according to literature, considering that the grid 

cell size of a DTM significantly affects derived terrain attributes (Kienzle, 2004), and higher resolution 

might contribute more to the propagation of errors to DTM derived topographic parameters. The 

considered dataset shows different morphologies and different characteristics: a1, a3 and a4 are 

representative of high quality DTMs. They represent areas characterized by different morphological 

structures (Fig. 37): a1 and a3 have channelized elements, whereas a4 has no channels but it 

presents some roughness due to vegetation point filtering. Considering a2, a5, a6 and a7, a first 

analysis underlined how the standard measure of error (RMSE ~ 0.3 m for all areas), shows only 

moderate correlation with a visual assessment of the quality of the DTMs. All four datasets are 

characterized by errors, such as artificial lineaments and fault textures (a5 a6 a7) and erroneous 

heights and local outliers (pits) (a2) (see Fig. 13, p.54 for an example of each error types).  

Both errors are visible on the hillshade representation, but the lower quality of the datasets and the 

different nature of the errors is not quantified by the RMSE. To be able to identify artificial 



 

 

lineaments and fault textures through visual assessment, however, a user needs to produce multiple 

hillshade outputs by illuminating the surface from multiple directions. One of the possible outcomes 

is that light direction might not be correct to highlight the lineaments, and these errors might remain 

unknown. While local outliers are often randomly distributed over a study area, fault texture/striping 

artifacts are systematic (‘spatially structured errors of a

2003), and they have a strong anisotropy in the autocorrelation of the error (

2003). Striping artifacts, in particular, have been described in 

and Olsen, 1978; Hassan, 1988; Klinkenberg and Goodchild, 1992; Brown and Bara, 1994; Garbrecht 

and Starks, 1995; Oimoen, 2000; Arrel et al. 2008.

The seven DTMs have been grouped into a training dataset (a1, a3 and a4) and a test dataset 

comprising maps with errors (a2 a5 a6 a7). The core idea was to provide a set of data representative 

of high-quality DTMs (a1c, a3

the same dataset. The effects of errors are then learned from the training d

test dataset. 

The error generation is carried out in three steps: at first, the error distribution is modeled, then the 

random fields are generated with no spatial correlation, and finally, spatial correlation is added (

38). 

Fig.  38 Proposed approach to model errors. Modeling the different error distribution shapes through alpha

stable variables according to the different parameters (µ σ α β); creation of random fields and simulation of 

error spatial correlations. (Sofia et al. under review)
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lineaments and fault textures through visual assessment, however, a user needs to produce multiple 

hillshade outputs by illuminating the surface from multiple directions. One of the possible outcomes 

ght direction might not be correct to highlight the lineaments, and these errors might remain 

unknown. While local outliers are often randomly distributed over a study area, fault texture/striping 
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1) Modeling error distribution 

Without knowing the detailed shape of the error distribution, there is a clear danger of over- or 

underestimating the actual error (Oksanen and Sarjakoski, 2006). The most common assumptions 

consider Gaussian or Normal distribution of random errors, with a specific mean and standard 

deviation. Hunter and Goodchild (1995) considered normal random errors with mean 0 and standard 

deviation 1. Other authors (Van Niel, et al. 2004; Wechsler, 2000; Wechsler and Kroll, 2006) applied 

this basic model considering normal values from distributions with mean 0 and standard deviation 

equal to the DTM RMSE. This technique is useful, as it doesn’t require the comparison of DTM data 

with higher accuracy data; however, the limitations of a global accuracy measure have been 

presented (e.g. Wise, 2011). The Gaussian model makes only the most general assumptions about 

the processes by which the error has accumulated (Hunter and Goodchild, 1995) and it is not 

accurate to simulate impulsive, heavy-tailed noise (Nolan, 2006). Recently, literature review 

underlined how errors on DTMs have strongly non-Gaussian distributions with long tails (Kyriakidis, 

et al.1999; Lopez, 2000; Bonin and Rousseaux, 2005). Similar error distributions, with long and thick 

tails in the histogram, have also been found in other DTM accuracy studies (Fisher, 1998), which 

confirm that the phenomenon is general (Oksanen and Sarjakoski, 2006). 

After this literature review, the generation of errors in this works starts from the creation of the 

random noise field (E, eq. 35, 35) with values derived from an Alpha-stable random distribution. This 

choice has been done considering that i) In cases of impulsive heavily tailed noise, modeling it 

through stable models offers a robust approach (Nolan, 2006); ii) the Gaussian distribution, as well as 

other well known distributions (i.e. Cauchy and Levy), are special cases of stable distributions, and 

they can be easily modeled through Alpha-stable random formulation, by adjusting some specific 

parameters. 

The Alpha-stable distributions have been evaluated according to the Chambers-Mallows-Stuck (1976) 

formulation. Many other approaches have been proposed in the literature, to evaluate alpha-stable 

variables ( i.e. Bergström, 1952; LePage et al. 1981; Borak et al. 2004).  However, Chambers’ method 

is regarded as the fastest and the most accurate one (Weron, 1996). For a fuller and complete 

bibliography on stable distributions, with references and applications examples in numerous fields, 

refer to Nolan (2006). For a detailed discussion on the Chambers-Mallows-Stuck method for 

simulating skewed stable random variables, see Weron (1996).  

Any stable distribution requires four parameters to be described: a characteristic exponent α (0-2), a 

skewness parameter β (-1- 1), a scale parameter σ and a location parameter µ. For α = 2 the 

distribution reduces to a Gaussian distribution with variance σ
2
 and mean μ; the skewness parameter 

β has no effect  (Nolan, 2006). For α = 1 and β = 0 the distribution reduces to a Cauchy distribution 
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with variance σ
2
 and mean μ (Nolan, 2006). For α = 0.5 and β = 1 the distribution reduces to a Lévy 

distribution with variance σ
2
, mean μ, and a positive skewness β (Nolan, 2006). By setting α = 1, it is 

possible to simulate tails longer than a normal distribution, and by choosing a negative value of β it is 

possible to simulate left heavily tailed distributions. 

By opportunely setting the characteristic parameters (Tab. 4), it is possible to simulate different types 

of errors distribution shapes. For the present work, for all alpha-stable distributions, the considered 

scale and location parameters are σ =1 and  µ = 0 respectively, basic parameters of a standard 

normal distribution, considering that a recent literature underlined how errors in DTMs are 

characterized by a strong clustering of values around the mean of zero (Wise, 2011). The first 

considered error is set to have a Gaussian distribution with mean 0 and σ =1  (EG). A second error 

type is simulated to have the same distribution with equal mean, and standard deviation equal to the 

RMSE of the DTMs (EG*). This particular σ has been set only for the Gaussian distribution and not for 

the other as an operational choice, considering that a) setting the RMSE as a parameter, would 

require the DTM quality to be evaluated first, with the limit that comes from the DTM error 

determination, and b) the RMSE of elevation might not be good predictors of RMSE in curvature 

(Wise, 2011). Cauchy and Levy distributions have been considered as well [EL and ECC]. A particular 

error distribution (EHLT) has been considering, by setting the characteristic exponent α = 1, to 

simulate tails longer than a normal distribution, and the skewness parameter β = -1. These 

parameter values were operationally decided: the result of such approximation is a random heavily 

left tailed distribution whose parameters have no mean of any morphological interpretation other 

than simulate a skewed distributed noise in order to create pits in the map (such as the ones 

detected in the test site a2).  

To simulate all these errors, each ti,j (Eq. 39) within E, is simply represented by a value from one of 

the Alpha-stable random variables (Fig. 38). The considered input DTMs with errors have been 

labeled with a subscript according to table 4 (i.e. a DTM with an uncorrelated error with a levy 

distribution, will be labeled as DTML; a DTM with an uncorrelated error with a heavily left tailed 

distribution, will be labeled as DTMHLT.) 

2) Modeling error spatial correlation 

The above described approach assumes that DTM error is uncorrelated from one elevation to the 

next. However, error models without spatial autocorrelation are known as the ‘worst-case scenario’ 

(Fisher, 1998; Hunter and Goodchild, 1995). Some authors argued that positive spatial 

autocorrelation in the DTM error yields smaller variance in the analysis results, but the nature of 

autocorrelation is difficult to assess due to the complexity associated with DTM errors and potential 

anisotropic nature of error (Wechsler, 2000).  
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To investigate the effects of error spatial correlation in this study, two cases are accounted for: an 

isotropic spatial correlation and an anisotropic spatial correlation. This choice was done in order to 

consider a standard case of correlation (isotropic), and in addition, to simulate the effects of fault 

textures and striping artifacts, that have by nature a strong anisotropy in the autocorrelation of the 

error. 

The isotropic correlation in this work is obtained by applying to the original error matrices a spatial 

moving averages approach according to Oksanen and Sarjakoski (2005). Other approaches are 

available in literature to produce autocorrelation. However, techniques such as pixel swapping (i.e. 

Fisher, 1998; Lee et al. 1992; Veregin, 1997) are too slow to be implemented in a Monte Carlo 

approach (Oksanen and Sarjakoski, 2005), and the use of spatial correlation indexes might give a 

limited perspective to spatial autocorrelation of the data organized in regular matrices (Oksanen and 

Sarjakoski, 2005). 

The spatial moving averages approach, is based on a filter applied to the input random field to 

increase its spatial autocorrelation, while generally keeping the shape of the original distribution. 

Other works in literature underlined how these filters range from 3x3 low pass filters to those that 

account for the distance of spatial dependence as computed on the input DTM (Lee et al. 1992; 

Wechsler, 2000). Considering that there is no practical information about the error correlation range 

in the considered DTMs, its value has been operatively set to be a random number equal to or lower 

than the one applied by Oksanen and Sarjakoski (2005), therefore it varies with the stated constraint 

at each error realization. The Oksanen and Sarjakoski (2005) approach was originally defined for 

errors with a Gaussian distribution, while in this study case, the filter is applied to all the noise 

matrices (E) with different errors distribution. Consequently, the preservation of the error 

distribution shapes has been verified through several numerical tests. A mathematical proof of the 

shape invariance of the filter was not achieved nor looked for, but the preservation of the error 

distribution shape has been checked: distributions are not preserved exactly, but their main 

characteristics (shape, standard deviation, mean, skewness) are maintained.  

The considered error matrices with isotropic autocorrelation, are labeled as SE and followed by the 

subscript representative of the error distribution (Tab. 4). 

The anisotropic spatial correlation is obtained by using an approach derived from image analysis. 

Through the use of motion blur, a static spatial correlation in the direction of motion can be 

obtained. 

Assuming a user might not know the texture orientation, the input E is modified, and a motion blur is 

applied, in order to provide fault noises oriented with random directions, and at the same time 

maintaining the error distribution (Fig. 38). 
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The ‘blurred’ noise matrix can be approximately described by this equation  

( )Φ⋅= hEEB
           40 

where BE is the distorted noise with anisotropic spatial correlation, that simulates the striping 

artifacts, E derives from one of the Alpha-stable random variables (Tab. 4), and h(φ) is the distortion 

operator, also called the point-spread  function (PSF). The PSF describes the degree to which pi,j  is 

blurred, in terms of the angle of the blur φ in degrees, set to be a random value between 0° and 

360°. The distortion operator, when convolved with the input noise matrix E, creates the distortion.  

Again, the Monte Carlo error propagation to spatially correlated errors is the same, the only 

difference is that the error grids are spatially correlated (adding either isotropic or anisotropic 

correlation) before being added to the original DTM.   

 

Table 4:  distributions parameters and derived error matrices 

Distributions parameters  Spatial correlation 

Shape α β σ µ  None  Isotropic Anisotropic 

Gaussian 2 - 1 0  EG SEG BEG 

Gaussian 2 - DTMrmse 0  EG* SEG* BEG* 

Levy 0.5 1 1 0  EL SEL BEL 

Cauchy 1 0 1 0  ECC SECC BECC 

Heavily left tailed 1 -1 1 0  EHLT SEHLT BEHLT 

 

d. Error effects analysis 

Using the results from all the realizations of each error type, it is possible to calculate a mean value 

of skewness for each specific moving window, and this can be considered to correspond to the ‘true’ 

value that the algorithm would produce in the presence of that specific error. The behavior of 

skewness is expressed as a function of the window size (Skewk , Eq. 37 p.89). Figure 39 shows the 

Skewk functions obtained from the clean high quality datasets (a1C, a3C, a4C) and from the lower 

quality dataset (a2*, a5*, a6*, a7*). Figures 40-44 show the Skewk results for a1E, a3E , a4E with each 

of the simulated error type (E).  
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Fig.  39 Values of Skewness for each minimum curvature (Cmin) map evaluated for different windows size (k) and 

for the different grid resolutions (0.5, 1, 2 m) for the clean test dataset (DTMc) and the training dataset (DTM*) 

with errors (Sofia et al. under review). 
 

 
 
Fig.  40 Values of Skewness for minimum curvature (Cmin) evaluated at different windows size (k) and for the 

different grid resolutions (0.5, 1, 2 m) considering DTMs with Gaussian error ( µ =0 and σ =1), without spatial 

correlation (DTMG), with isotropic correlation (SDTMG), and with anisotropic correlation (BDTMG). (Sofia et al. 

under review). 
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Fig.  41 Values of Skewness for minimum curvature (Cmin) evaluated at different windows size (k) and for the 

different grid resolutions (0.5, 1, 2 m) considering DTMs with Gaussian error ( µ =0 and σ = DTMRMSE), without 

spatial correlation (DTMG*), with isotropic correlation (SDTMG*), and with anisotropic correlation (BDTMG*).(Sofia 

et al. under review). 

 
 
Fig.  42 Values of Skewness for minimum curvature (Cmin) evaluated at different windows size (k) and for the 

different grid resolutions (0.5, 1, 2 m) considering DTMs with Levy errors, without spatial correlation (DTML), 

with isotropic correlation (SDTML), and with anisotropic correlation (BDTMLL). (Sofia et al. under review). 
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Fig.  43 Values of Skewness for minimum curvature (Cmin) evaluated at different windows size (k) and for the 

different grid resolutions (0.5, 1, 2 m) considering DTMs with Cauchy errors, without spatial correlation (DTMCC), 

with isotropic correlation (SDTMCC), and with anisotropic correlation (BDTMCC). (Sofia et al. under review). 
 

 
Fig.  44 Values of Skewness for minimum curvature (Cmin) evaluated at different windows size (k) and for the 

different grid resolutions (0.5, 1, 2 m) considering DTMs with heavily-left tail errors, without spatial correlation 

(DTMHLT), with isotropic correlation (SDTMHLT), and with anisotropic correlation (BDTMLHLT). (Sofia et al. under 

review). 
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This section is divided in two parts. In the first part, the presence of errors is simulated on the high 

quality dataset, and compared to a test dataset with lower geomorphological quality, in order to 

provide realistic noise patterns.  

On the second part, effects of all error types on curvature distribution are assessed. 

1) Actual errors effect VS simulated errors effects 

Two error types are accounted for: artificial lineaments and fault textures (a5,a6,a7), hereby labeled 

as type(t) errors, and erroneous heights and local outliers (a2), hereby named type(o) errors.  

Considering that no information exists about the distributions that characterize the two errors, they 

have been simulated by considering different error distribution shapes, and by modeling in a 

different way the error spatial correlation. The aim of this part is, therefore, to a) identify the most 

suitable error distribution for type(o) and type(t) errors; and b) to test what spatial correlation better 

accounts for them. 

If we are able to simulate correctly the error distribution and its spatial correlation, the Skewn 

behavior will be constant in all the datasets, independently from the DTM resolution and from the 

morphology of the area, and it will be similar to the reference behavior as registered in the lower 

quality dataset. The similarity between curves is evaluated considering as index the Modified 

Hausdorff Distance (MHD) (Dubuisson and Jain, 1994). Such distance measure is based on the 

Hausdorff distance between two point sets: the smaller the distance, the more similar the curves. In 

this instance, MHD values have been normalized so that their range goes from 0 (complete similarity 

between curves) to 1 (complete dissimilarity between curves). In table 5, mean MHD values between 

Skewk with each of the different error types, and the reference behavior are reported. 
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Table 5:  average Modified Hausdorff Distance between each simulated error type and reference type(o) and 

type(t) errors. 

0.5 m 1 m 2 m 

EG sEG BEG EG sEG BEG EG sEG BEG 

Type(o) 0.64 0.53 0.50 0.62 0.52 0.46 0.59 0.49 0.41 

Type(t) 0.61 0.49 0.49 0.59 0.48 0.43 0.51 0.42 0.34 

EG* sEG* BEG* EG* sEG* BEG* EG* sEG* BEG* 

Type(o) 0.60 0.49 0.41 0.57 0.51 0.40 0.50 0.43 0.37 

Type(t) 0.59 0.46 0.39 0.54 0.47 0.37 0.43 0.36 0.31 

ECC sECC BEcc ECC sECC BEcc ECC sECC BEcc 

Type(o) 0.07 0.12 0.10 0.08 0.14 0.12 0.11 0.16 0.15 

Type(t) 0.07 0.12 0.10 0.07 0.12 0.10 0.06 0.10 0.08 

EL sEL BEL EL sEL BEL EL sEL BEL 

Type(o) 0.15 0.26 0.20 0.17 0.28 0.23 0.19 0.31 0.24 

Type(t) 0.15 0.28 0.19 0.14 0.28 0.20 0.13 0.26 0.16 

EHLT sEHLT BEHLT EHLT sEHLT BEHLT EHLT sEHLT BEHLT 

Type(o) 0.05 0.07 0.07 0.03 0.09 0.10 0.04 0.11 0.12 

Type(t) 0.07 0.07 0.04 0.07 0.07 0.06 0.06 0.06 0.05 

 

It appears that both error types (type(o) and type(t)) are better represented by distributions with 

longer tails (i.e. Cauchy, Levy and Heavily Left Tailed). Gaussian distributions, correlated or 

uncorrelated, are not able to represent the actual effect of type(o) nor type(t) errors, while by 

considering distributions as the Cauchy or the Levy one, Skewk is more resembling. However, errors 

with Levy's distributions and no spatial correlation or random isotropic correlation, seem to 

determine a ‘check-mark’ shape for Skewk that is never registered in the low quality available 

datasets. 

When considering type(t) errors, distributions with longer tails better account for the effect of this 

type of error on curvature skewness. Between them, the Levy distribution produces the less realistic 

noise pattern (average MHD= 0.20 for the 0.5 m datasets), while the Cauchy and the Heavily Left 

Tailed distribution seem to better resemble the reference Skewk pattern (average MHD=0.10 and 

0.06 respectively for the 0.5 m datasets). The most suitable error distribution appears to be the 

Heavily Left Tailed (average MHD= 0.06), however, only a slight difference is visually assessable 

between the Skewk functions produced by the datasets with these errors. 

The more realistic pattern is produced by errors having a Heavily Left Tailed distribution and no 

spatial correlation, for type(o) errors, or anisotropic spatial correlation (blurred) for the type(t) 

errors. Considering this type of error distribution and the specified correlation, both Skewk shape and 

skewness ranges are consistent with the ones registered in the low-quality datasets (a2, a5, a6, a7). 

One must note that the direction of blur, for the type(t) errors, has no influence at all. By simulating 

randomly all the maps, the average simulated behavior of Skewk reflects the reference one. 
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2) Effects of errors on Skewk 

Considering a gaussian error with µ = 0 and σ = 1 (Fig. 40), correlated or uncorrelated, skewness 

values range remains consistent with that of the original DTMs (Fig. 39): skewness has in all instances 

0 as the nearest order of magnitude. However, differently from what expected, this particular error 

determines a normalization of curvature distributions for the smallest window size (k=3 cells). This 

normalization is more evident for non-correlated noise: while on the clean datasets, the smallest 

window size determined a highly skewed curvature, when adding a Gaussian noise with no spatial 

correlation, skewness of curvature is close to 0 in all instances and for all grid sizes. For all the 

datasets, it appears that the Skewk function becomes independent from errors with this specific 

distribution when curvature is evaluated for windows greater than ~20 m. As expected, the errors 

have greater effects on the DTM 0.5 m. For this grid resolution, the shape of Skewk appears hardly 

modified if compared to that the original dataset, and it assumes a peculiar shape that is constant 

independently from the morphology of the area.  

When the Gaussian error is not correlated (DTMG in Fig. 40), Skewk for the 0.5 m datasets assumes a 

sigmoidal shape. If isotropic spatial correlation is added to the same error distribution (SDTMG in Fig. 

40), the Skewk function for the 0.5 m datasets assumes a wave shape. The peculiar shapes are 

registered just for the defined errors, and appear not to be correlated with the morphology of the 

area, rather they appear to be peculiar of the Gaussian error with the defined parameters suggesting 

their suitability to label a lower geomorphological quality of the dataset and, in particular, to label 

the presence of a non-correlated Gaussian error with µ = 0 and σ = 1 (sigmoidal shape) or correlated 

Gaussian error with µ = 0 and σ = 1 (wave shape). 

When anisotropic spatial correlation is added to the error matrix (BDTMG in Fig. 40), effects of errors 

on Skewk function are slightly visible only for the 0.5 m datasets. One must note that this error 

distribution is not able to account for actual systematic errors, even when the spatial correlation is 

simulated to be similar to the one typical of striping artifacts (DTMB). 

When considering an error with a Gaussian distribution with µ = 0 and σ = RMSE  (DTMG* in Fig. 41), 

Skewk has a hyperbolic shape: starting from a normal shaped curve, skewness progressively increases 

in the negative domain. For this error distribution, if isotropic spatial correlation is added (SDTMG* in 

Fig. 41) , the shape of Skewk does not change, however skewness values increase of about one order 

of magnitude. Differently, from what expected, by adding a Gaussian noise with no correlation, the 

smaller window size used for curvature evaluation results in normal-shaped curvature distributions 

(skewness is close to 0). When considering the DTMs at 1 and 2 m, in all datasets the effect of errors 

on curvature maps disappears when the window size used for curvature calculation increases. This is 

consistent with the fact that too wide window sizes results in a smoothed morphology, that, on the 
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one hand, is not able to correctly capture morphological features, and on the other hand, smoothes 

errors. 

When the anisotropic correlation is applied (BDTMG* in Fig. 41) to simulate type(t) errors (trying to 

obtaining striping artifacts as recorded on a5, a6, a7), it is clear, that even if we try to simulate the 

spatial structure of errors (stripes), Gaussian distributions of values with the considered shape 

parameters are not able to account for the effect of actual striping artifacts on curvature. Again, the 

higher error influence is registered for the 0.5 m datasets, while curvature evaluated from the 2 m 

datasets appears to be independent from errors. However, the Skewk function is slightly modified 

only for the 0.5 m datasets.  

When considering an error with a Levy distribution (DTML in Fig. 42), Skewk function is modified in all 

instances, independently from the DTM resolution. If the error has no spatial correlation (DTML in 

Fig. 42), Skewk function assumes a check-mark shape. If an isotropic spatial correlation is added 

(SDTML in Fig. 42), Skewk assumes a V shape, and skewness after reaching a minimum value for k=5, 

increases almost linearly. If anisotropic spatial correlation is considered (BDTML in Fig. 42), Skewk 

slightly resemble the pattern obtained from the test low quality dataset (a5* a6* a7* in Fig. 42), but 

for the 0.5 m resolutions, Skewk is almost linear. 

Considering errors with a Cauchy distribution (DTMCC in Fig. 43), and errors with heavily left tailed 

distributions (DTMHLT in Fig. 44), their effects on Skewk are similar. However, the Cauchy distributed 

errors show some variability between the different datasets when isotropic spatial correlation is 

added (SDTMCC in Fig. 43), suggesting that in the presence of this type of errors, morphology of the 

area might still have some influence on curvature skewness. 

This analysis underlines that in the presence of noise/errors, Skewk function does not depend on 

morphology, but it is strictly dependent on these errors. Some specific shapes of the Skewk function, 

furthermore, can identify the presence of specific error types: i.e. a checkmark shape is 

representative of errors with a Levy distributions and no spatial correlations, a sigmoidal shape of the 

function is a symptom of the presence of a non-correlated Gaussian error with µ = 0 and σ = 1, or 

again, a wave shape can be an hint of the presence of isotropic correlated Gaussian error with µ = 0 

and σ = 1. When Skewk assumes an asymptotic shape, with value increasing from a highly negative 

value toward 0, the DTM might be characterized by the presence of striping artifact (if skewness 

higher values have at their maximum 1 as the closest order of magnitude), while for the same Skewk 

shape but with skewness values that have at their maximum 2 as the closest order of magnitude, pits 

and outliers might be present. Also, this analysis underlined the suitability of Skewk in identifying the 

optimum scale to analyze channelized features, when dealing with DTMs with high quality (Chapt. 

4.2, sect III.Materials and methods). 
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IV. DTA FOR FEATURE RECOGNITION 

1.   Geomorphic features recognition 

The study area considered for this first DTA application, is the Cordon basin (Chapt. 1.1, Sect. II.Study 

sites ), and the background framework for this application can be found in Chapt. 2.1, Sect. 

I.Introduction. The addressed features are landslide crowns and bank erosion: this type of 

geomorphic features correspond to convex slope breaks forming ridges within the likely unstable 

area. Since ridges are related to surface convexity, for this DTA, maximum curvature (Cmax, Eq. 15) has 

been considered as optimal for feature recognition.  

This first DTA approach aims: 1) to test the effectiveness of different landform curvature maps with 

different smoothing factor for feature extraction; and 2) to test the effect of the choice of different 

statistical parameters as thresholds to label features. Considering 1) a progressively increasing 

moving window size has been considered for the calculation of curvature, in order to incorporate the 

majority of scale variations, and extractions are performed on all curvature maps and compared to 

the reference features. The considered kernels are 3x3, 5x5, 7x7, 9x9, 15x15, 21x21, 23x23, 25x25, 

29x29, 31x31 and 33x33 cells, on a 0.5 m DTM resolution, and they are consistent with the kernel 

size range adopted in other works in literature (Pirotti and Tarolli, 2010). Considering  2), different 

statistical thresholds have been adopted and compared (Tab. 6): a) multiples of curvature standard 

deviation (as proposed by Tarolli and Dalla Fontana (2009) for channel head recognition, and channel 

network extraction), b) interquartile range, c) median absolute deviation (MAD), d) quantile-quantile 

plot (Q-Q plot) defining the threshold of curvature (as proposed by Lashermes et al. 2007). The 

reference statistical background of each parameter is described in Chapt. 4, Sect. III.Materials and 

methods.  

Geomorphic features such as landslide crowns and features related to bank erosion correspond to 

convex slope breaks forming ridges within likely unstable area, and they are related to a lower 

frequency of values (for a fuller discussion, see the statistical background already defined in Chapt. 

4.1 and 4.2 Sect. III.Materials and methods). Consequently, the basic idea of the method, according 

to the background theory expressed in Chapt. 4.2, is to identify potential features where: 

maxmax CmC σ⋅>                                                              41             

max
IQRmax CmC ⋅>                                                          42            

max
MADmax CmC ⋅>                                                               43      

thrmax plot QQ⋅> mC                                                                         44     

where m is a real number (Tarolli et al. 2010).  

Each statistic is evaluated according to the procedures described in Chapt. 4.1.  
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The procedure to identify the QQ-Plot threshold is exemplified in Fig. 33, p. 88. The only difference, 

in this instance, is that the threshold is to be identified in the positive side of the tail. 

 

Table 6: Descriptive statistics for Cmax maps according to window size (k, see Eq. 15 p.67) used for curvature 

evaluation (Tarolli et al. 2010) 

k IQRCmax MADCmax QQ-PlotCmax σCmax 

3 0.72 0.47 0.81 0.63 

5 0.60 0.39 0.62 0.53 

7 0.55 0.38 0.62 0.52 

9 0.55 0.38 0.61 0.53 

15 0.62 0.43 0.66 0.59 

21 0.70 0.48 0.74 0.64 

23 0.73 0.49 0.76 0.65 

25 0.75 0.50 0.78 0.67 

27 0.77 0.52 0.81 0.68 

29 0.79 0.52 0.83 0.69 

31 0.81 0.53 0.85 0.70 

33 0.83 0.54 0.86 0.70 
 
 

1.1 Scale and threshold effects 

To test the effect of windows size in curvature calculation, a visual comparison can provide some 

insightful information. In Fig. 45  maps of Cmax obtained respectively with different kernels of 3x3 (a) 

15x15 (b) and 33x33 (c) cells, and the potential features identified considering 
maxCσ

 
as threshold (a-

cEXT) are showed. The smaller window (3x3, Fig. 45a) does not appear to be suitable for a good 

recognition of surface features. This, because only a limited area is investigated, and as a 

consequence, the map is highly noisy. The 3x3 kernel is the minimum kernel required for any 

topographic parameter, and before the generalization procedure proposed by Wood (1996), scale 

was never considered. This analysis, however, shows that by considering only the 8 nearest 

neighbors for each pixel, the parameter evaluation is negatively influenced by any surface changes 

caused by 1 meter scale features (rocks, boulders and non-significant morphology), and this results in 

a not suitable map to extract the features of interest (aEXT in Fig. 45). Wider window sizes decrease 

noises, resulting in a better surface morphology recognition (Fig. 45 b, bEXT). It can be easily noted 

how ridges (that correspond to positive Cmax, red color in the map) are highlighted in detail.  

However, if on the one hand (until an optimum point) the increasing of the moving window 

corresponds to an improvement of the feature identification, when the considered neighborhood 

becomes too wide (i.e.  33x33 cells, Fig. 45c, cEXT) curvature maps are too smooth to be suitable for a 

correct representation of morphology. For evaluation carried out using such window sizes, the 

investigated area is too large and morphological features sited in place far from erosion areas could 
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be reached in the curvature analysis providing a misinterpretation of erosional features. Based on 

these visual considerations a better result  is related to a not too small or too large kernel. These 

considerations are similar to those obtained in the work by Pirotti and Tarolli (2010), where the 

authors suggested that window size for curvature calculations has to be related to size of the 

features to be detected. In general, the best ratio between information and noise, and thus the best 

results for feature recognition, is found when the window size is about twice-three times the 

maximum size of the investigated features.     

Fig.  45 Landform curvature maps obtained with moving window of a) 3x3, b) 15x15, c) 33x33, and derived 

extractions. 

 
The other parameter that influences the quality of the feature extraction process is the choice of the 

threshold to label meaningful convexities. Fig. 46 shows features derived from a curvature map 

evaluated for ksize=15 cells and using 1, 2, 3 times the QQplotthr (a-c) and the MAD value (d-f) as 

thresholds.      
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Fig.  46 Geomorphic features extracted using the threshold of 1, 2, 3 QQ-Plotthr (a-c) and 1,2,3 MAD (d-f) 

 

The progressively increase of m value (Eq. 41-44) is related to a better ridges recognition, and a 

progressively decrease of noises on hillslopes. However larger values of m are at the same time 

related to a progressive loss of information of extracted features. This behaviour is constant for all 

the considered thresholds, however, different thresholds might lead to slightly different extraction 

quality, considering that the value of each statistic varies (i.e. Tab. 6).  

However, elements identified from curvature only through the thresholding approach, are not 

necessarily related to ground failures and geomorphic features: local convexities might also be 

related to ridges or local changes in morphology (see i.e. Fig. 45). Considering the high morphological 

complexity of the study area (Fig. 3 p.37), and considering that the analysis is focused only on ground 

failures, an improvement of extraction can be obtained by filtering the results. The idea is to label as 

noise, and therefore, discard, elements that are extracted in areas having a slope lower than the 

internal frictional angle at which most of the instabilities in the area occur. Such slope threshold is 

area specific, and it can be identified through laboratory analyses: for the considered study areas, it 

corresponds to 35° (Borga et al. 2002; Tarolli et al. 2008). Potential geomorphic features are 

therefore, only extractions that belong to areas with slope greater than 35° (Fig. 47). Different 
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methods are available in literature for slope calculation (i.e. Zevenbergern and thorn, 1978); in this 

instance, slope is computed through the same background theory and kernels used for curvature 

calculation (Evan’s 1980) (See Chapt. 3.1.a, Sect. III.Materials and methods), in order to guarantee a 

consistency in the analysis. Figure 47 shows the improvement obtained on the extracted features by 

considering different slope maps, and using 35° as the slope threshold. 

 

Fig.  47 Use of slope to improve the extraction derived from curvature evaluated for ksize=15 using the threshold 

of QQ-Plotthr . Different slope maps (a-c), evaluated considering the different ksize, underline areas with slope 

greater than the internal frictional angle (35°) (in blue). Extraction improvement considering each mask are 

shown in d-f. 

 

1.2 Accuracy assessment 

After the considerations done by visual assessment, the different statistical thresholds are compared 

to identify the optimal algorithm for feature extraction. Such kind of evaluation is not meant to 

evaluate the extraction and the matching results in an absolute way, rather, it is used to compare the 

results of different algorithms (Heipke et al., 1997). The final product to test is a raster map 

segmented into two classes: during the thresholding process, individual pixels on the maps are 

marked as ‘object’ pixels (feature) if their value satisfies the thresholding formulation and as ‘non-

object’ pixel otherwise.   

Two significant statistical error may occur during this classification process, type I Error and type II 

Error. The "null hypothesis" corresponds to a default situation (in this case, that an area is not related 

to an erosional feature), while the "alternative hypothesis" is that the area refers indeed to an 
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erosion process. The goal is to determine if the null hypothesis has been correctly discarded in favor 

of the alternative by the extraction methodology. If methodology rejects the null hypothesis when it 

is indeed true (non-erosion areas labeled as erosional features) a type I Error (False Positive) is 

shown, if it accepts the null hypothesis when it is false (actual erosional element marked as non-

erosional features), a type II Error (False Negative) is provided.  

To assess how well results represent the ground truth, the landslide crown and the instability areas 

polylines digitized in the field by DGPS were converted to raster with a buffer of 2 m on each side for 

a total of 4 m width. The buffer size was chosen because it soundly envelopes the convex slope 

breaks among erosion location and allows the correction of issues like the likely shift (< 1 m) due to 

horizontal accuracy that could be present in the DTM respect to GPS ground survey. The resulting 

raster was used as reference and compared with each of the results derived from each of the twelve 

window sizes and multiples of the σCmax , MADCmax, IQRCmax, QQ-Plotthr as thresholds. The matching 

extracted areas are defined as true positive (TP) underlining the fact that the extraction method has 

correctly detected the features (null hypothesis has been correctly discarded), while the un-matching 

extracted areas are considered as false positive (FP) because the extracted features are not correct. 

The areas within the buffer that are not extracted by the methods are interpreted as false negative 

(FN).  

A quality evaluation on performances aims to find the best cutoff value that gives the best result 

according to user’s expectation and that reduces the two types of potential mistakes (FP and FN) in 

the semi-automatic process (Lee et al. 2003). According to Heipke et al. (1997) it is possible to 

measure the “goodness” of the final extraction results through an index (Eq. 45) that takes into 

account the percentage of the reference data, which is explained by the extracted areas as well as 

the percentage of correctly extracted features.  

( )FNFPTP

TP
QUALITY

++
=                                                              45 

Quality therefore vary between 0 for extraction with no overlap between extracted and observed 

features and the optimum value of 1, for extraction where these coincide perfectly.   

The evaluation of cutoff methodologies has been done considering quality results that have been 

compared according to the following factors: 

i. kernel size used for slope evaluation (Fig. 48a)  

ii. kernel size used for curvature evaluation (Fig. 48b) 

iii. choice of m for thresholding (Fig. 48c) 
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Fig.  48 Plots of maximum values of quality index according to (a) ksize for slope  (for all the considered curvature 

maps and m values), (b) ksize for curvature (for all the considered slope filtering and m values), (c) and m (for all 

the considered kernel sizes). (modified from Tarolli et al. 2010) 

 
According to the overall accuracy, all the methodologies show higher precision in classifying the 

features using maps filtered for slope evaluated for ksize of 5 (2.5 m); considering slopes derived from 

wider moving windows, the accuracy of pixel segmentation decreases (Fig 47e-f and 48a). Analyzing 

the choice of ksize for curvature (Fig. 48b), better performances are obtained when ksize reaches 10.5 

m. This result underlines something that was already clear from a visual assessment of the different 

curvature maps: map suitability is optimal when curvature derives from window sizes that are nor 

too small nor too big (fig 48b).  

Referring to the thresholding approach (Fig. 48c), the different statistics give almost the same 

optimal results when m ranges between 1.25 and 1.75 (Fig. 48c). The only registered differences 

appear for extraction based on MAD as thresholds, where highest quality is obtained for m ranging 
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from 2 to 2.5 (fig 48c). This is consistent with the fact that the value MAD is for all maps, the lowest, 

if compared to the other statistics (see i.e. Tab. 6). 

The best approach (Quality = 0.21) considering all the combinations of slope, curvature, and m, is to 

extract features using 1.5 IQRCmax on curvature evaluated for a ksize of 21, and to filter then in a 

second step considering slope evaluated for ksize equal to 5 (Fig. 49). Other algorithms provide similar 

results (Fig. 48c), since the thresholds values for feature extractions are similar (Tab. 6). The best 

results, anyway, always refers to curvature maps evaluated for ksize equal to 21 and filtered according 

to slope evaluated for ksize of 5.  

 
Fig.  49 The figure shows (a) the surveyed features for a comparison (red arrows are related to the extracted 

features representing the main slope instabilities investigated) and (b) the geomorphic features corresponding 

to the best extraction of all proposed methodologies (threshold value of 1.5 IQR of Cmax calculated with a 

21x21cells moving window).   (modified from Tarolli et al. 2010) 

 
Looking at Fig. 49, one can note that the features (red arrows) related to shallow landslide crowns, 

and bank erosions are correctly labeled. However, at the top of the study area, where the 

morphology is complex, the methodology tends to recognize features where convex slope breaks are 

not related to instability. This explains the relatively low values of the quality index of 0.21.  

These results show that a completely-automated feature recognition it is not fully reliable in areas 

with complex morphology. Nevertheless, this methodology should be considered as a first, and 

relatively fast approach to slope instabilities hazard mapping when using high resolution topography. 

According to Fig. 49b, even if a significant number of false positives is detected, it is easy to 

discriminate areas where the main instabilities are located, since these clearly show organized 

patterns of discontinuity, very similar to investigated features (Fig. 49b).  
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2. Channel network recognition 

The procedure proposed in this chapter for feature extraction, even if focused on a different type of 

feature (channel network), is based on the same background considerations of the previous one, and 

it is carried out on the same study area, the Cordon Basin (hereby defined as ‘study area’). The 

background framework for this application can be found in Chapt. 2.1, Sect. I.Introduction. The DTA is 

also tested in another site (Miozza basin, Chapt. 1.2, Sect. II.Study sites), hereby defined as ‘test 

area’). The two areas are different, both in morphological complexity and network characterization 

(Fig. 50).  . 

 

Fig.  50 Different complexity of the study sites.  

 

The Cordon area is a squared area selected site, chosen without any reference to a defined 

watershed, with the only constraint to have a network and a pour point. The Miozza site, instead, is a 

full watershed, with a more complex network. The Cordon area, furthermore, is characterized by a 

highly complex morphology on the northern part (Fig. 3 p.37), while the Miozza morphology is more 

smooth and with fewer abrupt changes. 

For the present DTA application, DTMs were derived with two different interpolation procedures: the 

natural neighbor interpolator (Sibson, 1981) for the Cordon study site, and an algorithm with a spline 

function in the ESRI TOPOGRID tool for the Miozza one (Tarolli and Tarboton, 2006; Tarolli and Dalla 

Fontana, 2009). Depending on the spatial variation of the accuracy and density of the data, and on 

the suitability of the interpolation method for a certain relief, DTM quality might vary locally and 
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regionally (Karel et al. 2006), and for some parts of the Cordon study area, the presence of some 

small artifacts is registered on the DTM, probably due to changes of the bare ground point density 

(Fig. 51). 

 

Fig.  51 Detail of (a) LiDAR point density, (b) generated TIN, and (c) DTM derived from triangulated points. 

Artifacts are visible both on TIN and DTM, where striping artifact oriented approximately north-south or east-

west, corresponding to change in point density, are visible. 

 

When dealing with surface derivatives, one of the limits of their use is that these artifacts constitute 

errors that, even when controlled and limited by appropriate methods, might amplify when 

differentiating (Burrough and McDonnell, 1998; Gallant and Wilson, 2000), and Chapt. 4.2, Sect. 

III.Materials and methods, provided a deep analysis about the matter.  

Considering the different morphology of the areas and the issues related to DTM quality, in this 

application, there was the need to obtain a sound method to detect features, and to resolve some of 

the issues previously identified: 1) independency from errors, 2) choice of the optimum scale of 

analysis and 2) noise discarding in areas with complex morphology. 

Figure 52 shows a flow chart of the complete DTA approach considered in this framework. The 

proposed approach is a three-step method based (a) on the normalization of topographic parameters 

(openness and minimum curvature, see Chapt. 3.1.b and 3.1.d, Sect. III.Materials and methods) to 

highlight local morphology, (b) a weighting of the upslope area according to such normalization to 

identify flow convergences (Chapt. 3.2, Sect. III.Materials and methods), and (c) the choice of a 

statistical parameter as an objective threshold for channel network detection. As a final step, 
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according to the presence/absence of noises, an indication is provided on how to perform a filtering 

approach and then how to connect the network.  

 

Fig.  52 Flow chart of the proposed methodology. Local morphology is enlightened through Topographic 

Attributes (Minimum Curvature Cmin, Positive Openness φL, Negative Openness ψL). The choice of the optimum 

kernel size (n*) is done through the analysis of the relationship between skewness and kernel width. 

Topographic attributes computed considering the optimum kernel are analyzed through QQ-Plot to identify 

thresholds to normalize each map. Flow convergence is done through multiple flow upslope area (AMDF) 

weighted according to a matrix depending on the normalized topographic attributes. Network is then identified 

as positive values of the weighted area standard score. (Sofia et al. 2011) 
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The objective of this study is to delineate the network where surface allows flows to converge. This 

analysis is done through a direct detection of morphology from the digital terrain maps. On the idea 

of proposing an unsupervised extraction of network that did not require an assessment of the input 

data, no correction of DTMs artifacts has been done, but two indexes have been joined to enforce 

local concavity detection: a direct surface derivative (Minimum Curvature, Evans’, 1979), and an 

image of shaded relief and slope angle (Openness, Yokoyama et al., 2002; Prima et al. 2006). The 

choice of curvature has been done considering that numerous works proved its effectiveness for 

feature extraction (e.g. Molloy and Stepinski, 2007; Lashermes et al., 2007; Tarolli and Dalla Fontana, 

2009; Thommeret et al., 2010, Pirotti and Tarolli, 2010; Passalacqua et al. 2010a,b). The choice of 

openness is based on the fact that its measure of convergences relies on an averaging procedure: 

openness values are calculated as averaging angles along azimuths (Yokoyama et al., 2002; Prima et 

al., 2006). This averaging procedure is assumed to be less affected by artifacts in the input data due 

to interpolation techniques. As suggested by Yokoyama et al. (2002), values of both positive and 

negative openness have been compiled. All parameters are carried out through the classical moving 

window approach, providing maps of curvature and openness for window sizes from 3x3 up to 33x33 

cells (Fig. 53). 

 
Fig.  53 Example of kernel size effect on minimum curvature (a) and negative openness (b) for the Cordon area 

according to an increasing window size (ksize) of 3, 15 and 33 cells. (modified from Sofia et al.2011) 
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2.1 Optimum scale selection 

Considering the previous experience, in this approach the idea was to find a way to objectively select 

the scale of analysis. This is carried out through the procedure described in Chapt. 4.2, Sect. 

III.Materials and methods. Values of the height of a smoothed surface tend to have a symmetric 

distribution in a well selected window with slow-changing terrain (Bartels et al., 2005), but in a 

complex and hilly region, imbalanced terrain elevation affects the histogram distribution, increasing 

or decreasing its skewness (Yuan et al., 2008). Values of concavities connected to channels, 

furthermore, have low frequencies, and are usually located in the tails of the distribution. The shape 

of the distribution, therefore, is influenced both by the morphology but also by the kernel size used 

to evaluate the topographic parameters, since the aim of the kernel size approach is to provide a 

filter to mask noises and bring out the meaningful concavities related to channels. An analysis of how 

skewness varies at increasing windows size has been carried out (Fig. 54). Skewness has been 

computed for each topographic parameter according to Eq. (37)  

 

Fig.  54  Skewness for each parameters according to window size (ksize) for the Cordon study site (A) and the 

Miozza basin (B). (modified from Sofia et al.2011) 
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Considering minimum curvature on the Cordon area (Fig. 54) the increasing of widths of the moving 

window causes a progressive and slight decreasing of the skewness of the distributions. This is 

related to the presence of small artifacts in the original DTM that are magnified using  a direct 

surface derivative (minimum curvature). The pattern identified by the skewk function is comparable 

both in shape and values with the pattern analyzed in Chapt. 4.3, Sect. III.Materials and methods, 

related to the presence of striping artifacts (i.e. a5, a6 and a7 in Fig. 39 p.100). 

 Analyzing positive and negative openness in both study cases, instead, and observing minimum 

curvature for the Miozza basin, it is clear that the increasing the window size causes a skewing of the 

distributions of these parameters up to a certain point: skewness values become higher in the 

negative or positive domain until a maximum value is reached. After that, the increasing of the 

window size is related to a decreasing of skewness: the distributions slightly and slowly move toward 

less skewed shapes (Fig. 54a and 54b). This behavior is related to the fact that up to a certain scale 

(the optimal one), the kernel size approach succeeds on enhancing channelized features in spite of 

noises, but when the kernel size becomes too wide, the resulting maps are too smooth, masking all 

noises but at the same time, losing important feature details (Pirotti and Tarolli, 2010; Tarolli et al., 

2010), therefore, the distributions move toward less skewed shapes (skewness slightly decreases in 

the negative domain). Based on the theory expressed in Chapt. 4.2 Sect. III.Materials and methods, 

the optimum kernel width is the one identified at the first point where the change in the window size 

loses its meaningful effect: it refers to the minimum kernel size that determines a break in the 

feature enhancing and noises decreasing effects. To correctly represent the effect of kernel sizes on 

the skewness, for each of the datasets (minimum curvature, positive and negative openness), the 

polynomial defining skewness as a function of window widths in a least square sense (Skewk, Eq. 37 

p.89) has been computed. The identification of stationary points is then mathematical and objective, 

and it is based on a differentiation approach: the stationary point is the point where the derivative of 

Skewk is equal to zero. 

In this peculiar case, considering that, due to errors on the DTM, in the Cordon basin minimum 

curvature Skewk does not have a real inflection point, the approach of defining the polynomial and 

identifying its stationary point is defined as polynomial “fitting/enforcing”. The polynomial orders (n 

in Eq. 37 p.89) is automatically and iteratively chosen in order to provide a curve having at least a 

derivative equal to zero at one point n included within the adopted kernel size range (3–33). It is a 

fitting procedure that is enforced, when it is necessary, to obtain a stationary point within the kernel 

size range. The polynomial “fitting/enforcing” is totally automatic and does not require the user to 

observe the data or to assess them: it is a recursive fitting/differentiating procedure automatically 

executed in a loop, that continues until the condition (stationary point is a real number within the 

window size range) is verified. The accomplishment of the condition forces an immediate exit of the 
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loop code, providing the equation of the polynomial and the value of the optimum kernel size to 

apply. The polynomial “fitting/enforcing” approach has also a further meaning for future practical 

application of the method. The first aim is to avoid some evaluation of topographic parameters: it is 

necessary to compute fewer maps, considering fewer windows; the only constraint is to have the 

minimum (ksize = 3), some average sizes (ksize = 15; ksize = 17) and the maximum width (ksize = 33), to 

evaluate the Skewk behavior. The second aim refers to the objectivity of the method.  

In this case, the “fitting/enforcing” approach allows to define the stationary point even for the 

Cordon case, by forcing the representative minimum curvature Skewk  (Fig. 55).  

 

Fig.  55 Example of the result of the fitting/enforcing approach for the Minimum Curvature in the Cordon study 

area. The fitted Skewk represents the first attempt to define a relationship between the actual values of 

skewness and each moving window size, that has no stationary point. The forced Skewk obtained by the 

proposed procedure, defines a function with an actual inflection point, at about ksize=11. 

 

Once each Skewk is defined, the identification of the stationary point is automatic. For minimum 

curvature, this value refers to ksize = 11.56 for the Cordon area (Fig. 55) and ksize = 10.54 for the 

Miozza one. On the Cordon area, considering positive and negative openness, skewness derivative 

vanishes at ksize = 15.54 for both cases. On the Miozza basin, positive and negative openness 

derivatives vanish for ksize = 15.16 for both cases. 

For topographic parameters elaboration, the kernel size has to be an integer odd number. Therefore, 

stationary point values have been rounded to the closest odd integer. According to the proposed 

procedure, a kernel of ksize = 11 has been chosen for minimum curvature on both areas. To give 

homogeneity to the evaluation of the parameter among zenith and nadir angles, the mean value 

between the values of positive and negative openness’ stationary points coordinates (15.54 and 

15.16 for the Cordon and the Miozza site, respectively) have been rounded to ksize = 15. One should 

note that for both the study areas, according to this methodology, the same windows sizes have 
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been chosen, without any subjective decision. These values are statistically derived, but they do not 

imply a similarity on the areas morphology. The optimum values (15 and 11 cells, corresponding to 

15 and 11m) identified with the proposed procedure coincide with kernel widths that have been 

proven to be the best for feature extractions in the works by Pirotti and Tarolli (2010) and Tarolli et 

al. (2010), respectively. 

2.2 Flow convergences recognition 

Once the scale of analysis is automatically chosen, the approach proceeds with the recognition of 

flow convergences. This operation is based on a multiple flow direction algorithm (Quinn et al., 

1991), slightly modified in order to incorporate local morphological conditions depending on local 

concavity (evaluated according to the two proposed indexes) (See Chapt. 3.2, Eq. 28, p.79). The 

weight matrix applied to the upslope area, derives from the combined use of openness and 

curvature. Obviously, the two parameters do not have comparable values (m
-1

 for curvature and 

degrees for openness), but the interest here is focused on their capability to highlight meaningful 

concavities. The idea is therefore, to normalize both maps, according to a threshold able to highlight 

these concavities. 

For maps normalization, for each attribute map the QQ-Plot threshold is computed (same approach 

as described for maximum curvature and described in Fig. 33 p.88). The choice of the QQ-Plot in this 

instance, has been done considering that the same threshold has been proven to be highly effective 

for network extraction in other studies (Lashermes et al. 2007, Passalacqua et al. 2010a,b). 

Furthermore, while for curvature, the different statistics assume similar values (see i.e. Tab. 6 p. 

108), when using openness, classical statistics as standard deviation assumes values that are too low 

to be considered as thresholds (σ for example, is in all cases lower than the minimum registered 

value), while the QQ-Plot assumes ranges comparable to the actual values registered in the map 

(Tab. 7). 
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Table 7: Comparison of descriptive statistics for openness maps for the Cordon area, according to window size 

(ksize) 

 

Negative openness (°) 

 

Posotive openness (°) 

ksize Min Max Mean σ QQ-plotthr 

 

Min Max mean σ QQ-plotthr 

3 34.37 140.62 87.43 9.85 95.42 

 

33.30 136.21 88.68 9.41 96.42 

5 34.07 128.85 85.02 8.97 90.15 

 

33.30 124.03 86.28 8.60 91.23 

7 33.40 123.54 83.76 8.57 88.70 

 

32.82 119.62 85.03 8.30 89.89 

9 32.54 121.67 82.95 8.37 87.79 

 

32.21 117.80 84.24 8.22 89.13 

11 31.98 121.67 82.36 8.26 87.15 

 

31.90 116.31 83.68 8.25 88.61 

13 31.31 121.61 81.89 8.19 86.68 

 

30.81 115.05 83.25 8.35 88.27 

15 30.86 121.01 81.51 8.16 86.31 

 

29.98 113.07 82.89 8.47 88.00 

17 30.40 120.81 81.18 8.14 86.00 

 

29.73 110.80 82.59 8.61 87.80 

19 30.01 120.81 80.89 8.13 85.73 

 

28.32 109.79 82.33 8.75 87.65 

21 29.76 120.81 80.63 8.12 85.49 

 

27.52 108.75 82.10 8.87 87.53 

23 29.59 120.14 80.40 8.11 85.27 

 

27.45 107.84 81.89 8.98 87.41 

25 29.37 119.58 80.20 8.09 85.08 

 

27.45 107.28 81.70 9.07 87.28 

27 29.25 118.70 80.01 8.08 84.92 

 

27.45 106.49 81.53 9.15 87.19 

29 29.15 117.82 79.83 8.07 84.74 

 

27.38 105.07 81.37 9.22 87.11 

31 29.01 117.19 79.67 8.05 84.60 

 

27.06 103.94 81.22 9.27 87.04 

33 28.85 116.26 79.52 8.04 84.44 

 

26.79 103.38 81.09 9.32 86.96 

 
For negative openness ( 

Lψ  
), the break is considered for the higher values (right tail of distribution), 

while for positive openness ( 
Lφ ), the break is considered for the lower values -left tail- (Eq. 46, 47). 

For Cmin, we evaluate the break on the negative side that, following Evans’ approach, corresponds to 

convergent topography (Evans, 1979; Wood, 1996). 

Resuming these formulations, channels are identified where  

thrplot QQ>Lψ            46 

thrplot QQ<Lφ
          47

 

thrmin plot QQ<C           48
 

Maps normalization has been evaluated according to QQ-Plotth using the procedure 

),
1

( ),( yx
thr

TA TA
QQplot

fN =
       49

 

where NTA stands for the normalized parameter (openness or curvature) considered for a given pixel, 

and TA(x,y) is the topographic attribute at the pixel of interest.  

The obtained weight grid W (Eq. 28 p. 79, Eq. 50, Fig. 56D and 57D) refers to: 

( ) ( )
( )

L

L

N

NN
W

C

φ

ψ⋅
= min

         50

 

where N stands for normalization procedure according to Eq. (49). To assign higher values to 

convergent topography, the positive openness normalized map appears as 1/ 
LNφ  .   
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Fig.  56 Cordon study area: positive (A) and negative (B) openness, minimum curvature (C) and weight matrix 

(D) derived through normalization and overlapping. 
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Fig.  57 Miozza basin: positive (A) and negative (B) openness, minimum curvature (C) and weight matrix (D) 

derived through normalization and overlapping. 
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2.3  Network detection 

Field surveyed channel heads for the study area show that observed contributing areas vary 

significantly (Chapt. 1.1, Sect. II.Study sites) and this suggests that a constant value for network 

extraction might not be a good assumption (Passalacqua et al., 2010b). Average contributing area 

can be used, but the resulting drainage densities are too high (Passalacqua et al., 2010b). Accurate 

and objective location of channel network remains therefore, a challenge. For the present work, the 

idea is to identify these features using an objective threshold dependent on the weighted upslope 

area distribution. Considering that the datasets derived from different distributions, both weighted 

upslope maps have been normalized in order to allow comparison, according to a standard score 

approach (Eq. 36, p.85), indicating how many standard deviations each observation is above or below 

the mean. The network is then identified for zscorei greater than 0, a position in the exact middle of 

the distribution. After this thresholding, the obtained network is still fragmented: direct application 

of openness and curvature produce typically segmentation of the resulting raster, because of the 

numerous local convergences that exist in real surfaces due to inherent noise. To compute correct 

hydrological characterization of the network, its connectivity need to be accounted for. The use of 

the weighted upslope area allows a better connection of the network, but noises are still relevant 

(i.e. Fig. 59). For areas with a low degree of morphological complexity (Miozza), noises can be easily 

discarded on the produced map through simple filtering based on the majority of contiguous 

neighboring cells. When the procedure is applied to areas with complex morphology (Cordon, Fig. 3, 

p.37), noise detection becomes more challenging, as already underlined in the previous DTA 

approach.  

It is generally difficult to obtain relevant indicators automatically without any interaction by the user. 

The approach proposed in this instance is not fully automatic, but it can be used to assist on the task 

of identifying the network and of discarding objectively meaningless extractions.  

To discard false positives (noises), it is useful to analyze regions that show high fragmentation. For 

these areas, it is possible to evaluate disruption magnitude to mark a morphological disorder. The 

idea is that noises can be related to higher randomness of values of the original elevation data, while 

concavities related to channels refer to patterns with a better structure. A good representation of 

the elevation organization can be identified through the analysis of water movement for each cell. 

The basic assumption of the flow function is that if the value of a cell in the immediate eight-cell 

neighborhood is greater than the value of the processed cell, it will flow into the ita. This flow 

corresponds to the way water moves into locations at lower elevations or to the way contaminants 

migrate to areas with less concentration. To test whether a particular neighborhood cell will flow into 

the processing cell, the value of each neighborhood cell is subtracted from the processing cell. If a 

value is positive, the neighborhood cell does not flow into the processing cell; if it is negative, it does. 
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If no cells flow, the location will receive a value of zero. The representation of the combination of 

flow from multiple neighborhood cells is accomplished through a binary representation of the 

considered neighborhood. Each bit of the binary representation for the processing cell correlates to a 

neighborhood cell location—the neighbor to the immediate right is 1, the neighbor to the lower right 

is 2, and so forth—until the value of 128 (powers of two, since representation occurs in binary), the 

neighbor to the upper right, is reached (Fig.58).  

 

 Binary values  Elevation (m)  Flow 

A 32 64 128 B 11 8 13 C    

 16  1  7 10 9   164  

 8 4 2  6 12 8     

 

Fig.  58 Binary representation of a 3x3 neighborhood (A). The central pixel is the processed one for which flow 

accumulation is  computed. In (B) an example of elevation for the neighborhood is given, and in C the 

computation of flow for the central pixel is shown: in this case, pixels that contribute to the flows (highlighted in 

this figure by light grey) are the one having higher elevation than the central one.  The computed flow is given 

by the sum of their binary values, in this case 128+32+4 =164. 

 

 

The above encoding assigns a unique number to each possible combination of upstream numbers. 

The total number of combinations of flow into a processing cell is 255, and flow values range from 0 

to 255. A cell into which no adjacent neighbor flows assume value 0, while a cell into which all 

adjacent neighbors flow would receive a value of 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255.  

In order to test the degree of organization of this map, a statistical measure of randomness, Entropy 

(Chap 3.1.e) can be considered, measuring the distribution of flow direction within a considered 

neighborhood. For class definition (to use in Eq. 26, p.75), 256 classes have been identified, so that 

each bin corresponds to a possible flow value. To maintain homogeneity with the full procedure, cell 

neighborhood for entropy evaluation has been defined according to an average window size (ksize = 

13) between the chosen ones for curvature and openness.  

Minimum entropy occurs when the cell values are all located in the same class, while maximum 

entropy occurs when each cell value is located in a different class interval. The most homogeneous 

areas have therefore, a low spatial entropy; this is the case for channel patterns. The most irregular 

regions have a high entropy.  This entropy map can be used as a guidance tool on areas where 

extraction produces not clear results. Extractions obtained in areas with values of entropy higher 

than the average should be discarded (Fig. 59). 
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Fig.  59 Cordon study area: local entropy according to flow convergences (A) and identification of meaningful 

(blue) and doubtful (red) pixels (B) (Sofia et al. 2011) 

 

 

Some noises can be withdrawn according to this analysis (El. i, ii in Fig. 59). Element iii in Fig. 56 

refers to a channel referenced on maps but actually not active on the area. Therefore, consistently 

with other works (Passalacqua et al., 2010b), it has not been considered for quality evaluation. 

2.4  Network connection 

Once the two filtering approaches are applied (majority filter for the Miozza basin and entropy 

analysis for the Cordon area) the remaining network needs a connection procedure. Approaches to 

network connection have been successfully tested in the work of Passalacqua et al. (2010a,b) where 

channel networks were detected using non linear diffusion and geodesic path. Considering a pour 

point (maximum value of flow convergences), it is possible to identify the most suitable (shortest) 

flow path from each channel head to the pour point. This path is defined as the least accumulative 

cost distance to the pour point over a cost surface. A fuller discussion of accumulated cost surface 

methods, and representational accuracy can be found in Douglas (1994) and Eastman (1989).  

The challenge is to choose among all the possible connecting paths for the missing features the one 

that minimizes the cost of traveling from the channel heads to the pour point. This cost is 

represented by the distance between each possible location and the extracted features. The 

computational approach is to define, for each pixel, this cost value j (Eq. 47 and 48).  



 

129 
 

The cumulative cost evaluation is then based on an eight-neighbour-cell algorithm. For any given 

movement to a cell i the cumulative cost ( )(iJ ) is calculated as the accumulated cost to reach cell i (

∑
−

=

1

1

i

m
mj ) plus the average cost to move through two contiguous cells, multiplied by the cell size (g) (Eq. 

50 and 51).  

For vertical and horizontal generic movements, the cost evaluation refers to: 
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while for diagonal movements the cumulated cost is evaluated through 
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where j is the numerical value representing the cost for each cell (Corry and Lafortezza 2006). 

The ‘shortest path evaluation’ is then carried out using the standard Dijkstra algorithm (Dijkstra 

1959). Dijkstra’s algorithm implementations allow the finding of shortest path by systematically 

generating different path nodes and testing them against a destination node (v). For a given pair of 

vertices s and v, the algorithm finds the path from s to v with lowest cost (Lee and Stucky 1998). The 

algorithm works by keeping for each vertex v the cost d[v] such that some path from s to v has a total 

cost of d[v]. Initially, this value is 0 for the source vertex s (d[s]=0), and infinity for all other vertices. 

By proceeding in the computation, the tentative costs decrease until for each vertex v, d[v] represent 

the cost of a minimum-cost path from s to v (Tarjan 1983). The basic operation of Dijkstra's algorithm 

is vertices partitioning into three sets: unlabeled vertices (with infinite tentative of d[v] evaluation), 

labeled vertices (with finite tentative of cost evaluation whose minimum is yet unknown) and 

scanned vertices (with d[s] corresponding to minimum cost). Computation is applied and in each step 

sets are updated until all values d[v] represent the cost of the shortest path from s to v and all 

vertices are labeled. Main advantage of such kind of approach is that the computation can be 

terminated as soon as each v become definitely labelled and this can be usually translated to 

significant computational savings if the destination nodes are in relatively close proximity to the 

source node (Zhan and Noon 1998). 
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2.5  Accuracy assessment 

The final product is a map representing the channel network (Fig. 60b and 61b). 

 

Fig.  60 Cordon study area: reference network (A) and network extracted through the proposed methodology 

(B). (Sofia et al. 2011) 

 
Fig.  61 Miozza basin: reference network (A) and network extracted through the proposed methodology (B) 

(Sofia et al. 2011) 



 

131 
 

For accuracy assessment, the extracted networks have been compared with a DGPS surveyed 

network (Tarolli and Dalla Fontana, 2009; Pirotti and Tarolli, 2010) (Fig. 60a and 61a). The overall 

quality has been evaluated considering Cohen’s k  index of agreement (Cohen, 1960).  

The quality measure used for this accuracy assessment was defined as  

e
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where Pa is the total agreement probability evaluated according to Eq. (54), and Pe is the agreement 

probability due to chance, according to the formulation in Eq. (55) (Cohen, 1960). 

)(
1
∑

=

=
l

i
iia xPP

         54

 

)()( .
1

. i

l

i
ie xPxPP ∑

=

=           55 

where i is the number of class values, P(x.i), P(xi.) are the columns and rows marginal probabilities, 

respectively and P(xii) are the agreeing extracted values. 

Perfect agreement results in a Cohen’s k value of 1.0, while a value of 0 indicates a level of 

agreement due to chance alone. A reference scale does not exist for Cohen’s k for hydrological 

applications, but some reports about the application of this index in other fields exist. These studies 

suggested a scale for Cohen’s k and its level of agreement between datasets: values of k lower than 

0.20 indicate slight agreement, 0.20-0.40 represent a fair agreement, 0.40-0.60 moderate 

agreement, 0.60-0.80 substantial agreement, and 0.80-1.00 indicates almost perfect agreement 

(Landis and Koch, 1977).  

To evaluate the index, buffer zones were generated around the extracted network as well as the 

reference one. The chosen buffer width was set to 5 m according to a previous work carried out on 

the Cordon area, where analysis of results had been performed using the same quality measure 

(Pirotti and Tarolli, 2010). To maintain homogeneity, the same buffer width has been considered for 

both the Cordon and the Miozza case study.  

The extraction procedure generates a network characterized by a substantial agreement between 

extracted features and reference ones for both applications: Cohen’s k are 0.78 and 0.63 for the 

Cordon area and the Miozza basin respectively.  

A comparison between the proposed morphological approach, and a network derived through a 

constant contributing area threshold is presented in Fig. 62, for the Cordon study site. In the 

proposed example, the extraction based on contributing area uses as threshold the average value of 

the upslope area measured for each actual channel head. Clearly,  the more classic area-threshold is 

not able to correctly represent the network, even if the threshold is computationally realistic. This is 

in line with other works in literature, that underlined how a unique value of contributing area is not 
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able to fully characterize the network, and classic methodologies do not provide a reliable prediction 

of channel heads across drainage basins having different morphology and channel initiation 

depending on different processes (i.e. Passalacqua et al. 2010b, Orlandini 2011).  

 

 

Fig.  62 Comparison with a constant threshold accumulation area extraction for the Cordon study site.  
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3. Testing morphometric parameters for features recognition in 

engineered landscapes 

 
The DTA proposed in this section can be considered a comparative work, where different 

topographic parameters at various scales are compared to extrac features in engineered landscapes. 

In this context, and in particular in floodplains, the creation of the drainage network is strictly 

connected with the creation of a complex system of embankments, and the conformation of the 

plain usually brings to operative choices of building roads and structures on scarps. Topographic 

parameters can be a useful tool to identify these features. The background framework can be found 

in Chapt. 2.1.a, Sect. I.Introduction. The parameters here considered are maximum curvature (Eq. 

15), Residual Topography (Eq. 19) and Entropy (eq. 25) (see Chapt. 3.1, Sect. III.Materials and 

methods, for a fuller description).  For entropy evaluation, classes to be used in Eq. 26 are computed 

considering an interval of 0.01 times the DTM standard deviation, and they range from zero to 100 

times the DTM standard deviation. This choice is in line with the choice of standard deviation for 

network extraction in other works in literature (Pirotti and Tarolli, 2010, Tarolli et al. 2010). The DTA 

starts from a DTM (1 m) available for public authorities in Italy. This DTM derives from a LiDAR survey 

planned to have highly affordable costs: the survey can be easily repeated during time, providing up-

to-date large scale topographic information. 

3.1 Testing different approaches to account for scale 

Some practical considerations need to be done for the DTA approach expressed in this chapter. It has 

already been proven that geomorphometric parameters are strongly scale-dependent (Pirotti and 

Tarolli, 2010; Tarolli et al. 2010, Sofia et al. 2011), and the effects of scales have already been 

assessed in this thesis dealing with natural features in chapts. 1 and 2, Sect. IV.DTA for feature 

recognition. However, scale effects in different environments have not been tested, and scale 

accounting through a square moving window (see Chapt. 2.2, Sect. III.Materials and methods,  and 

Chapt. 1 and 2 Sect. IV.DTA for feature recognition) in engineered landscapes might not be the best 

approach. Within the context of feature classification, in fact, appropriate scales for derivation of the 

local geometry have to be selected according to the semantic terrain model implied by the 

application (Schmidt et al., 2003), and the elevation characteristics captured by terrain are of course 

different, in mountainous environments and floodplains.  

In the two DTA approaches reported in Chapt. 1 and 2 Sect. IV.DTA for feature recognition, as in 

other examples reported in literature (Wood, 1996;  Pirotti and Tarolli, 2010; Tarolli et al. 2010; Sofia 

et al. 2011), filters are computed among a squared window with a local coordinate system (x, y, z) 

defined with the origin at the pixel of interest (central pixel, see Chapt. 2.2, Sect. III.Materials and 
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methods).  In some other applications, however, it is preferable to compute the moving filters in a 

non-rectangular window (Glasbey and Jones, 1997). In particular, for rotationally invariant (i.e. 

isotropic) filters, the window should be circular (Glasbey and Jones, 1997). For example, Davies 

(1984) showed the benefits of circular windows, and octagonal approximations, in the context of 

edge detection. This type of filter is at the base of REA (Eq. 14) evaluation, as it has been applied i.e. 

in Carturan et al. (2009). 

Considering this literature review, and considering that the addressed features are different in shape 

and morphology from the features previously analyzed, for the present DTA example, three different 

shapes of moving window have been applied and tested:  rectangular (Fig. 63a), circular  (Fig. 63b) 

and annulus (63c) shaped kernels. 

 
Fig.  63 Tested kernel shapes: rectangular (a), circular (b) and annulus (c). 
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By defines the shape of a neighborhood as a rectangle (Fig. 63a), the processed pixels defined by the 

kernel size correspond to the same cells in the output block. The kernel sizes need to be large enough 

for a reasonable number of data to be processed, and its minimum width relies on the fact that 

sampling windows are centered on the cell of interest. Size constraints refers to Eq. (56). 

( )12 +≥ mk size           56
 

where ksize is the width of the kernel and m is a positive integer number greater than 0.   

When defining the shape of the kernel as a circle (63b), the corresponding processed block on the 

output raster will be the minimum-bounding square who encompasses the circular neighborhood 

with the diameter 2r. Any cell completely encompassed by the circle will be included in processing 

the neighborhood (Fig. 63b). For the circle shaped kernel, the diameter parameter is measured in 

cells and the computational constraints for the minimum size are two: a) in order to evaluate 

curvature, the minimum number of processed cells is six (considering that surface is approximated by 

a quadratic function with six coefficients (Eq. 1, p.56), and b) as for the rectangular kernel, the 

sampling windows are centered on the cell of interest. Size constraints for the circular kernel, 

therefore, refer to Eq. (57). 
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_
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where 2r  is the chosen diameter and 

_

m  is a positive integer number greater than 2. 

By defining the shape of the kernel as an annulus, the considered neighborhood comprises a smaller 

circle within a larger circle (a donut shape, fig 63c). The corresponding processed block on the output 

raster will be the minimum-bounding square who encompasses the annular neighborhood. The 

required parameters are the inner (2rin) and outer (2rout) diameters: cells that fall outside the 

diameter of the inner circle, but inside the diameter of the outer circle will be included in processing 

the neighborhood. For the annulus shaped kernel, the main size constraint is that the inner diameter 

must be smaller than the outer one. Further constraints are express in Eq. (58) and (59). 
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( )122 +≥ mrin            59 

where 

_

n is a positive integer number greater than 3, while m is a positive integer number greater 

than 0. 

The choice of using different shape of the kernel brings to some algorithm modification for the 

evaluation of Maximum curvature. It has already been underlined that to perform analysis at 

multiple scales, maximum curvature can be evaluated generalizing its computation according to a 
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moving window approach (see Chapt. 2.2. and 3.1.b, Sect. III.Materials and methods). For this DTA 

analysis, the generalization of curvature is carried out according to Eq. 60 

maxmax CurvatureqC ⋅=
                                 60 

where Curvaturemax derives from Eq. 13,  and q  is a generalization parameter connect to the size of 

the processed neighborhood and to the DTM grid size.  

In this example of DTA, curvature generalization has been done considering q evaluated according to 

Eq. 61. 

ngq ⋅=
           61 

where g is the grid size and n is the number of pixels in the processed neighborhood. 

By applying this generalization, if the kernel shape is rectangular, the parameters equal the 

generalization proposed by Wood (1996), described in 3.1.b, Sect. III.Materials and methods, and 

applied in Chapt. 1 and 2 Sect. IV.DTA for feature recognition. 

Considering that in this application features dimensions vary up to 50 m, the analysis has been 

carried out considering scales from 3 up to 55 m for the rectangular kernel, and from 5 up to 55 cells 

for the circular kernel and the annulus shaped one.   

Table 8 shows for the squared kernel and the circular one, the kernel sizes (diameter or width), the 

value of the corresponding analyzed neighboring (in cells), and the correspondent q considered for 

curvature generalization (Eq. 60 and 61). For the annulus kernel, table 9a shows the inner and outer 

diameter sizes and the value of the corresponding analyzed neighboring (in cells), while table 9b 

shows for the same cases the corresponding q.   
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Table 8:Considered kernel shape (Rectangle or Circular) and sizes (ksize) for the rectangular and (2r), extent of 

the analyzed neighboring (in cells) and the correspondent q considered for curvature generalization. 

Rectangle Circle 

ksize or 2r number of cells q number of cells q 

3 9 3 - - 

5 25 5 13 5 

7 49 7 29 7 

9 81 9 49 7 

11 121 11 81 9 

13 169 13 113 11 

15 225 15 149 13 

17 289 17 197 15 

19 361 19 253 17 

21 441 21 317 19 

23 529 23 377 21 

25 625 25 441 21 

27 729 27 529 23 

29 841 29 613 25 

31 961 31 709 27 

33 1089 33 797 29 

35 1225 35 901 31 

37 1369 37 1009 33 

39 1521 39 1129 35 

41 1681 41 1257 37 

43 1849 43 1373 39 

45 2025 45 1517 39 

47 2209 47 1653 41 

49 2401 49 1793 43 

51 2601 51 1961 45 

53 2809 53 2121 47 

55 3025 55 2289 49 
 

  



 

138 
 

Table 9a:  Annulus kernel:  diameters sizes (2rin and 2rout)  and extent of the analyzed neighboring (in cells)

2r out 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

3 - - - - - - - - - - - - - - - - - - - - - - - - - -

5 8 - - - - - - - - - - - - - - - - - - - - - - - - -

7 24 16 - - - - - - - - - - - - - - - - - - - - - - - -

9 44 36 20 - - - - - - - - - - - - - - - - - - - - - - -

11 76 68 52 32 - - - - - - - - - - - - - - - - - - - - - -

13 108 100 84 64 32 - - - - - - - - - - - - - - - - - - - - -

15 144 136 120 100 68 36 - - - - - - - - - - - - - - - - - - - -

17 192 184 168 148 116 84 48 - - - - - - - - - - - - - - - - - - -

19 248 240 224 204 172 140 104 56 - - - - - - - - - - - - - - - - - -

21 312 304 288 268 236 204 168 120 64 - - - - - - - - - - - - - - - - -

23 372 364 348 328 296 264 228 180 124 60 - - - - - - - - - - - - - - - -

25 436 428 412 392 360 328 292 244 188 124 64 - - - - - - - - - - - - - - -

27 524 516 500 480 448 416 380 332 276 212 152 88 - - - - - - - - - - - - - -

29 608 600 584 564 532 500 464 416 360 296 236 172 84 - - - - - - - - - - - - -

31 704 696 680 660 628 596 560 512 456 392 332 268 180 96 - - - - - - - - - - - -

33 792 784 768 748 716 684 648 600 544 480 420 356 268 184 88 - - - - - - - - - - -

35 896 888 872 852 820 788 752 704 648 584 524 460 372 288 192 104 - - - - - - - - - -

37 1004 996 980 960 928 896 860 812 756 692 632 568 480 396 300 212 108 - - - - - - - - -

39 1124 1116 1100 1080 1048 1016 980 932 876 812 752 688 600 516 420 332 228 120 - - - - - - - -

41 1252 1244 1228 1208 1176 1144 1108 1060 1004 940 880 816 728 644 548 460 356 248 128 - - - - - - -

43 1368 1360 1344 1324 1292 1260 1224 1176 1120 1056 996 932 844 760 664 576 472 364 244 116 - - - - - -

45 1512 1504 1488 1468 1436 1404 1368 1320 1264 1200 1140 1076 988 904 808 720 616 508 388 260 144 - - - - -

47 1648 1640 1624 1604 1572 1540 1504 1456 1400 1336 1276 1212 1124 1040 944 856 752 644 524 396 280 136 - - - -

49 1788 1780 1764 1744 1712 1680 1644 1596 1540 1476 1416 1352 1264 1180 1084 996 892 784 664 536 420 276 140 - - -

51 1956 1948 1932 1912 1880 1848 1812 1764 1708 1644 1584 1520 1432 1348 1252 1164 1060 952 832 704 588 444 308 168 - -

53 2116 2108 2092 2072 2040 2008 1972 1924 1868 1804 1744 1680 1592 1508 1412 1324 1220 1112 992 864 748 604 468 328 160 -

55 2284 2276 2260 2240 2208 2176 2140 2092 2036 1972 1912 1848 1760 1676 1580 1492 1388 1280 1160 1032 916 772 636 496 328 168

2r n
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Table 9b: Annulus kernel:  diameters sizes (2rin and 2rout)  and correspondent q considered for curvature generalization 

2r out 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

3 - - - - - - - - - - - - - - - - - - - - - - - - - -

5 3 - - - - - - - - - - - - - - - - - - - - - - - - -

7 5 5 - - - - - - - - - - - - - - - - - - - - - - - -

9 7 7 5 - - - - - - - - - - - - - - - - - - - - - - -

11 9 9 9 7 - - - - - - - - - - - - - - - - - - - - - -

13 11 11 11 9 7 - - - - - - - - - - - - - - - - - - - - -

15 13 13 11 11 9 7 - - - - - - - - - - - - - - - - - - - -

17 15 15 13 13 11 11 7 - - - - - - - - - - - - - - - - - - -

19 17 17 15 15 15 13 11 9 - - - - - - - - - - - - - - - - - -

21 19 19 17 17 17 15 13 11 9 - - - - - - - - - - - - - - - - -

23 21 21 19 19 19 17 17 15 13 9 - - - - - - - - - - - - - - - -

25 21 21 21 21 19 19 19 17 15 13 9 - - - - - - - - - - - - - - -

27 23 23 23 23 23 21 21 19 17 15 13 11 - - - - - - - - - - - - - -

29 25 25 25 25 25 23 23 21 19 19 17 15 11 - - - - - - - - - - - - -

31 27 27 27 27 27 25 25 23 23 21 19 17 15 11 - - - - - - - - - - - -

33 29 29 29 29 27 27 27 25 25 23 21 19 17 15 11 - - - - - - - - - - -

35 31 31 31 31 29 29 29 27 27 25 23 23 21 17 15 11 - - - - - - - - - -

37 33 33 33 31 31 31 31 29 29 27 27 25 23 21 19 15 11 - - - - - - - - -

39 35 35 35 33 33 33 33 31 31 29 29 27 25 23 21 19 17 11 - - - - - - - -

41 37 37 37 35 35 35 35 33 33 31 31 29 27 27 25 23 19 17 13 - - - - - - -

43 37 37 37 37 37 37 35 35 35 33 33 31 31 29 27 25 23 21 17 11 - - - - - -

45 39 39 39 39 39 39 37 37 37 35 35 33 33 31 29 27 25 23 21 17 13 - - - - -

47 41 41 41 41 41 41 39 39 39 37 37 35 35 33 31 31 29 27 23 21 17 13 - - - -

49 43 43 43 43 43 41 41 41 41 39 39 37 37 35 33 33 31 29 27 25 21 17 13 - - -

51 45 45 45 45 45 43 43 43 43 41 41 39 39 37 37 35 33 31 29 27 25 23 19 13 - -

53 47 47 47 47 47 45 45 45 45 43 43 41 41 39 39 37 35 35 33 31 29 25 23 19 13 -

55 49 49 49 49 47 47 47 47 47 45 45 43 43 41 41 39 39 37 35 33 31 29 27 23 19 13

2r n
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An example of the effect of kernel size and shape on Maximum Curvature is shown in Fig. 64. 

 

 

Fig.  64 Effect of kernel shape and size on Maximum Curvature 
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3.2 Feature recognition 

 

Different authors (Lashermes et al. 2007, Tarolli and Dalla Fontana, 2009, Passalacqua et al. 2010a,b, 

Tarolli et al. 2010, Pirotti and Tarolli, 2010, Sofia et al. 2011) proved how statistical operators can 

describe natural process signatures on surfaces and the previous three DTA approaches, underlined 

the same aspects. The idea to test in the present work is that a statistical approach can be used also 

to describe anthropogenic features. In the context of floodplains and agrarian landscape, the basic 

idea is that embankments normally show a much sharper shape than natural terrain features. 

Furthermore, levee crests mark local maxima of the elevation, and their heights represent outliers in 

the elevation matrix. Consequently, they represent outliers also within the derived topographic 

parameters (Maximum Curvature, Residual Topography and Entropy). In this case, the outliers are 

identified according to the boxplot approach by Tukey (1977) (Chap 4.1.c Sect. III.Materials and 

methods), where points outside the fence can be classified as potential outliers. The idea is that 

features can be identified by geomorphic parameters values falling outside the upper bound (Eq. 62) 

TAupFncTA >
 62 

Where TA is the considered topographic parameter (Maximum Curvature, Entropy, Residual 

Topography) and Fncup is the upper bound as defined in Eq. 32 p.83. 

Figure 65 shows an example of Residual Topography map (a) evaluated for the rectangular kernel 

(ksize=21), the derived boxplot and the identified threshold, and the features derived after 

thresholding the map (b). 

. 

Fig.  65 Example of Residual Topography map (a) evaluated for the rectangular kernel (ksize=21), the derived 

boxplot and the identified threshold (Fncout=0.23 m), and the features derived after thresholding the map (b). 
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3.3 Extraction improvement 

As in all the other DTA application, after the thresholding, the product is a binary map with pixel 

values 1 for potential features and 0 for landscape pixels. The binary map can be automatically 

clustered into fragments (potential features) having the same values (i.e. elements A and B in Fig. 

66). These fragments might comprise extraneous details as well as the actual features, and this 

usually requires the user to select manually which elements are features and which ones are instead 

false positives. In this section, an automatic procedure is proposed, to improve further the quality of 

the extractions. The proposed idea is to discard automatically extractions according to their 

dimension, eliminating small details that can be considered as background noise. The basic 

assumption is that scarps and levees are elongated elements; therefore, the length of each fragment 

within the extraction can be a diagnostic tool: when the length of a fragment is an outlier respect the 

whole extraction, that is the element is ‘too short’, that fragment can be eliminated. Outlier lengths 

are identified with the same technique described for the extraction procedures (Eq. 62), but 

considering, in this case, elements with lengths shorter than the lower fence (Eq. 31 p.83). 

A simplified approach is proposed to evaluate fragment length, where the length of each fragment is 

defined to be the ratio between the area (number of pixels) of the potential feature and its width. 

The main advantage of this approach is that it does not require any skeletonization procedures to 

measure an actual length, avoiding common errors, such as loops or neckings, that are difficult to 

resolve through automatic procedures, and might require manual interpretation. A further 

advantage is given by the fact that in this way, also the extent of each fragment (areas and widths) 

are accounted when evaluating lengths: elements with more round shapes results in smaller lengths 

and are therefore discarded. In this evaluation the width of each element is computed considering an  

inverse Euclidean distance transform of the binary map. For each potential-feature pixel, the inverse 

Euclidean distance transform assigns a number that is the distance between the centre of that pixel 

and the nearest zero value pixel (landscape pixel). Higher distances are related to pixels that are on 

the centerline of the fragment (thus they potentially represent half of the actual width of the 

fragment in that location) (Fig. 66).  
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Fig.  66 Example of inverse Euclidean distance for two separate clusters of pixels. Higher values of distance are 

located on the clusters centerlines. In the considered example, the derived features width is 4.05 m for cluster A, 

and 4.01 m for cluster B. 

 

To evaluate the overall fragment width, local maximum distance values are computed among a given 

neighborhood (8 nearest connected neighborhood), and the potential-feature width is assumed to 

be twice the average value of this local maxima. Lengths, as in the ratio between the area and the 

width of each fragment, are then automatically evaluated for all the potential features in the area, 

and their lower fence (Eq. 31 p. 83) is identified. Extractions to discard are at this point the ones 

having a length smaller than the lower fence. By eliminating from the input map the fragments 

identified through the proposed procedure, the extraction result more clean, and local extraneous 

details are automatically removed (Fig. 67). 

 

Fig.  67 Extraction derived after thresholding procedure (a) and the improvement obtained after automatic 

filtering (b): local extraneous details are automatically removed. 
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3.4  Accuracy assessment 

The evaluation of the proposed methods is made by comparison of the automatically extracted 

features with the field surveyed ones used as reference data, and is processed in two steps: (1) 

matching of the extraction with the references and (2) calculation of quality measures. For the 

matching process, a buffer is created around the reference features with variable widths, according 

to the average actual width of the anthropogenic feature as measured on the field. Extractions that 

agree with the surveyed features are labeled as True Positive (TP), missing extractions are labeled as 

False Negative (FN) and extractions that do not correspond to actual features are marked as False 

Positive (FP), as already described in Chapt. 1, Sect. IV.DTA for feature recognition. 

The evaluation of the different methodologies has been done considering at first an overall quality 

and how this quality is influenced by the following factors: 

i. kernel size used for evaluation (ksize for rectangular kernel, 2r for circular kernel and 2rin and 

2rout for annulus kernel) 

ii. choice of topographic parameters. 

On a second step, three different measures have been evaluated in order to underline better the 

differences between the approaches, and to underline how the filtering procedure improved the 

results. 

The overall quality is evaluated considering Cohen’s k  index of agreement (Cohen, 1960), defined as 

already explained in Eq. 53-55. This overall quality measure, as used in Pirotti and Tarolli (2010) and 

Sofia et al. (2011), aims at assessing exhaustivity as well as geometrical accuracy of the results. In this 

study case it is also used to compare the results of the different geomorphic parameters and kernel 

approximations.  

To provide a complete quality evaluation on performance, to better underline the differences 

between the approaches, and to underline how the filtering procedure improved the results, three 

further quality measure have been proposed (Eq. 63-65) and evaluated (before and after the filtering 

approach): Correctness, Completeness, and Branching (Heipke et al. 2007, Lee et al, 2003). 

FPTP

TP
sCorrectnes

+
=

         63 

FNTP
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+
=

         64 
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FP
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          65 

Correctness is related to the probability of an extracted linear piece to be indeed a scarp or a levee; it 

is a measure of the accuracy of the correctly extracted features. Completeness instead expresses how 

much is missing of the features of interest. Branching offers a measure of the overestimation of the 

extractions. Values of correctness and completeness range between 0 and 1, where 1 represent a 
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perfect extraction. Branching values instead range from 0 to + ∞, where 0 represent perfect 

extractions.  

To quantify the improvement offered by the proposed filtering approach, quality measures (Cohen’s 

k, Completeness, Correctness and Branching) have been evaluated before and after the filtering 

approach for all extractions, and their maximum values have been analyzed according to the kernel 

shape, without considering the kernel sizes (Tab. 10). 

 

Table 10: Maximum values of quality indexes for all extractions before and after filtering. 

 

Cohen's k Completeness Correctness Branching 

Before After Before After Before After Before After 

Rectangular  

RT 0.74 0.80 0.73 0.72 0.81 0.97 2.75 0.18 

Entropy 0.73 0.75 0.91 0.91 0.76 0.79 4.33 1.34 

Cmax 0.68 0.75 0.78 0.78 0.65 0.97 2.67 1.26 

Circular  

RT 0.74 0.80 0.72 0.71 0.81 1.00 5.46 2.16 

Entropy 0.73 0.75 0.91 0.90 0.78 0.79 5.46 0.86 

Cmax 0.66 0.75 0.90 0.90 0.55 0.79 1.94 1.22 

Annulus  

RT 0.75 0.80 0.73 0.72 0.82 0.99 2.07 0.28 

Entropy 0.73 0.75 0.91 0.90 0.80 0.80 39.63 15.86 

Cmax 0.61 0.76 0.99 0.80 0.55 0.82 15.70 2.28 

 

It is clear how the filtering approaches enable an increase of the overall quality of the extractions, for 

all parameters, with Cohen’s k increasing of about 10% for Cmax and RT for all applications. Maximum 

curvature is the parameter that more benefits from the filtering, with an increase of the maximum 

overall quality of about 10% for the rectangular kernel up to 15% for the annulus one (Cohen’s k 

passes from 0.61 to 0.76).  

The filtering approach guarantees an increase of the correctness of the extractions and contributes 

to a diminishing of the false positives (Branching diminishes for all instances). Extractions derived 

from residual topography, showed higher quality even before the filtering approach, but the 

application of the filter allows to obtain almost 100% of correctness (all extractions are indeed actual 

features). Entropy is the parameter that is less influenced by the filtering approach, and this suggests 

a higher suitability of the parameters if the users do not want to post-process results: overall quality 

and correctness of extractions carried out through entropy show values comparable with the ones 

obtained by residual topography, and entropy derived extractions show a higher completeness. 

Cohen’s k is evaluated for each final extraction, after the filtering procedure, are represented for all 

geomorphic parameters for the rectangular kernel in Fig. 68, for the circular kernel in Fig. 69 and for 

the annulus kernel in Fig. 70. All quality measures (Cohen’s k, Completeness, correctness and 

branching) are also shown in Table 11 for the extractions considered as optimal according to Cohen’s 
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k, and they are expressed for the same extractions before and after the filtering. Best extractions 

according to Cohen’s k are shown in figure 71. 

 

 

Fig.  68 Cohen’s k values for all geomorphic parameters  for the rectangular kernel
 

 

 

Fig.  69 Cohen’s k values for all geomorphic parameters  for the circular kernel
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Fig.  70 Cohen’s k values for all geomorphic parameters  for the annulus kernel: Residual Topography (a), 

Maximum curvature (b) and Entropy (c). 
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Table 11: Quality indexes for the best extractions, before and after filtering. 
 

Cohen's k Completenes Correctness Branching 

Before After Before After Before After Before After 

ksize 

RT 23 0.73 0.80 0.73 0.72 0.75 0.93 0.34 0.08 

Entropy 17 0.73 0.75 0.82 0.80 0.69 0.73 0.45 0.36 

Cmax 17 0.65 0.75 0.78 0.78 0.59 0.75 0.71 0.34 

2r 

RT 29 0.73 0.80 0.72 0.71 0.77 0.92 0.30 0.09 

Entropy 17 0.73 0.75 0.84 0.82 0.68 0.73 0.47 0.38 

Cmax 19 0.64 0.75 0.85 0.82 0.54 0.73 0.85 0.38 

2rin; 2rout 

RT 13;15 0.75 0.80 0.73 0.72 0.78 0.93 0.27 0.07 

Entropy 21;25 0.73 0.75 0.83 0.82 0.68 0.72 0.47 0.38 

Cmax 3;21 0.55 0.76 0.76 0.74 0.47 0.82 1.13 0.22 

 

 

 

 

 

 

Fig.  71 Best extractions according to Cohen’s k for each geomorphic parameter and kernel shape. Reference 

features are also shown.
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The main element influencing the quality of the extractions, independently from the chosen 

topographic parameters, is the size of the neighborhood considered when evaluating the indexes. 

The increasing of the area of analysis (increasing ksize or 2r), results in a progressive increasing of the 

quality of the extraction, until a maximum value is reached. Then, the increasing of the window size 

corresponds to a decreasing of the overall quality of the extraction (Fig. 68,69 and 70). When 

considering the annulus shaped kernel, the increasing of the inner diameter contributes as well to an 

increase of the overall quality until a maximum is reached. As suggested for other parameters in this 

work, if the area is too wide resulting maps are less noisy, but they lack of precision. At the same 

time, if investigated area is too small, quality is negatively influenced by noises that are extracted and 

wrongly labeled as features (Sofia et al. 2011, Pirotti and Tarolli, 2010; Tarolli et al. 2010). The overall 

quality of the extraction seems to be just slightly influenced by the shape of the adopted kernel: 

similar Cohen’s k are obtained for the three geomorphic parameters by considering different shapes 

at different scales (Tab. 11). Overall quality slightly benefits of the annulus shaped kernel when 

considering maximum curvature. For the same topographic parameter, the annulus shaped kernel 

offers also a better correctness and reduces the number of false positives.  

One must note, anyway, that the similarities between extractions carried out considering parameters 

evaluated for different kernel shapes are mostly determined by the post processing of the 

extractions (filtering). When reading the quality measures for the same maps, before the filtering 

(Tab. 11), clearly the shape of the kernel has more importance, accentuating or diminishing the 

number of false positives and thus decreasing or increasing the quality of the extraction (i.e. quality 

and correctness of Residual Topography were higher when considering the annulus shaped kernel 

instead of the rectangular or the circular ones). Analyzing in detail the best extractions, results 

underlined that Residual Topography, independently from the shape of the analyzed area, shows the 

higher correctness of extraction and the lower degree of overestimation (minimum branching).  The 

use of the annulus shaped kernel, results in a slight diminishing of branching. A better completeness 

of extractions is guaranteed by the use of Maximum Curvature (especially when evaluated with the 

circular or the annulus shaped kernels) and Entropy (evaluated with the rectangular kernel), but this 

is also connected to a higher overestimation of extractions (higher branching). One must note (Fig. 

71) that for Entropy, the overestimation is due to the fact that identified features are larger than the 

surveyed one, while for Maximum Curvature overestimation is actually due to the fact that wrong 

features are extracted. Among all parameters, Maximum Curvature is the most sensitive to change in 

surface concavities-convexities also related to tillage practice and convexing, and these false 

positives are not entirely discarded by the automatic post processing filtering.  
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By visually assessing the extractions, the best product is obtained by Residual Topography evaluated 

with a 23 m rectangular kernel: for this extraction, all features are correctly identified and the 

number of false positive is almost null. 
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4. Drainage network detection in engineered landscapes 

The background framework for this DTA application can be found in Chapt. 2.1.b, Sect. I.Introduction, 

while information about the considered study sites are provided in Chapt. 2, Sect. II.Study sites. The 

study areas will be hereby labeled as ‘control area’ (site A, Chapt. 2.1, Sect. II.Study sites) and 

‘application area’ (site B in Chapt. 2.2, Sect. II.Study sites). This nomenclature has been chosen 

considering that for study site A, an accurate field survey was carried out, providing detailed 

information about the considered features. In this site, a comparison between actual measurement 

and derived measurement can be carried out, assessing the correctness of the procedure (hence the 

definition of ‘control area’). Study site B instead, has been chosen to test if the proposed approach 

can be feasible for large scale applications. The procedure starts from a grid DTM readily available for 

public authorities in Italy, the same DTM considered in the previous application.  

The proposed DTA aims to the detection of an artificial drainage network, and to its geometric 

characterization. In particular the aim is to assess over specific areas the network total length, 

drainage density, and storage capacity within the channels. The proposed procedure does not 

consider at this stage any hydrological characterization of the network: neither its connectivity nor 

the flow directions are accounted for.  

The method can be conceptualized in two main steps: 1. From a high resolution DTM, the network is 

automatically detected, and, always in an automatic fashion, a width and a length index are 

computed. From these indexes, network length and network drainage density are computed directly. 

2. In a second step, by associating some characteristic cross-section area to specific width ranges, it is 

possible to derive the network storage capacity. While the first step is completely automatic, the 

second step requires the user to identify roughly some width ranges and cross section shapes. Once 

these are defined, the network storage capacity is evaluated automatically. 

The width and length indexes are evaluated directly from a raster map, without any skeletonization 

procedure. This because even if algorithms for such operations are available in many contemporary 

GIS, they usually produce highly irregular skeletons that are a poor representation of the channel 

itself, and they require additional filtering and connection. However, considering that the DTM has a 

constraint due to the grid size (1 m) that is constant all over the map, two assumptions need to be 

underlined: i) this constraint makes inapplicable the reading of cross section geometry directly on the 

DTM (Fig. 72), but it allows an approximation of the ditches widths, considering that their minimum 

width is about 1 m (equal to the DTM grid size); ii) an exact local characterization of the ditches is not 

expected, rather the aim is a characterization of the network for each considered drainage unit. 
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Fig.  72 Example of cross section geometry as depicted by the DTM (gray) compared to the surveyed ditch 

geometry (black). 

 

4.1  Network detection 

Drainage network such as ditches and channels in agrarian landscapes are usually represented by 

linear and regularly distributed features. Land reclamation ditches are commonly low ‘amplitude’ 

elements, considering amplitude as the difference in relief between low points on the ditch and 

height areas to either side, and they are topographically subtle in comparison with the underlying 

plain, especially for areas where the landscape gradient is relatively low. The proposed approach is 

based on consideration of having to extract local small-scale, low-relief features from the DTM and to 

eliminate as far as possible the large-scale landscape forms from the data. The considered parameter 

is the REA (Eq. 18 p.69). Such choice is done considering the previous DTA assessment (Chapt. 3, Sect. 

IV.DTA for feature recognition), when compared to other topographic parameters, the use of residual 

topography was assessed to be optimal for the floodplain context. 

When working in engineered landscapes, some issues arise due to human disturbances. DTM based 

on laser scanning are highly accurate, buildings as  well  as  vegetation are  normally already filtered. 

However, laser-based DTMs also show all man-made modifications of the earth's surface such as 

large roads, stamps of urban areas, high banks etc. For extraction procedure based on relief control, 

prior to local relief evaluation, it is necessary to identify and roughly mask these manmade terrain 

features on the original DTM, at least where their density is high. This masking approach allows a 

better detection of the actual channels, decreasing considerably false detections, avoiding peak 

values on the relief index due to artificial elements. 

Once the DTM has been roughly masked, Eq. 17 and 18 are applied, obtaining a map that carries only 

the signature of the main topographic features, detrending the landscape. 

In figure 73 the input DTM for an area is shown (a). On the DTM some narrow linear element 

representing the drainage network are visible. In figure 73b the derived REA map is shown, 

highlighting the network features with higher values of the parameter.  
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Fig.  73 Input DTM (a), derived REA map (b), and the threshold identified to detect the network. REA peak values 

corresponding to ditches for the sections surveyed in b are shown in the profile graph. The boolean map 

detecting the drainage network derived after thresholding is shown (c) 

 

To detect the network it is necessary to label the REA peak values, and this is done through a 

thresholding approach. The theoretical basis of such approach are the same ones described in Chapt. 

4.2, Sect. III.Materials and methods. In this instance, the chosen threshold is the standard deviation 

of REA (Fig. 73). The result (Fig. 73c) represents a boolean map with features taking only binary 

values, 1 or 0 for network pixels and landscape pixels respectively.  

4.2  Network geometric characterization 

Once the network is detected, the interest moves toward its geometrical characterization, that starts 

from the Boolean map (Fig. 73c). This map is composed by clusters of pixels (groups of connected 

cells having the same value). A single cluster does not necessarily imply the identification of a single 

network reach: each cluster might be a composed by multiple reaches with different geometries. 

Figure 74 shows an example of three different clusters: while cluster B corresponds to a single ditch 

with a specific and constant width, cluster A comprises two ditches with different widths.  
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Fig.  74 Clusterization approach and cluster parameters evaluation. Cluster A is composed by reaches with 

different geometries, while cluster B is a single reach with constant width. On the overview, an example of the 

pixel width evaluation is proposed: the red arrows show, for the considered pixel (red dot), the four directions D 

(0-180, 45-225, 90-270, 135-315) used for width evaluation (modified from Cazorzi et al. In press). In this 

example, the derived pixel width for the pixel in analysis is 2. 

 

Simple shape-related quantities, as area, width and length can be consistently calculated for each 

cluster. Knowing the DTM grid size, the surface for each cluster (sc) simply refers to the sum of the 

areas of the pixel within the cluster.  

In the previous DTA, cluster width was approximated by the use of the inverse distance transform. In 

this DTA, instead, the procedure is slightly different and the network width index is computed for 

each cluster according to the following steps.  

For each pixel on the cluster, the connected neighboring cells along four directions D (0-180, 45-225, 

90-270, 135-315) are counted (Fig.  74), and the width wpx associated to each pixel is computed as 

),,,min( 31513527090225451800 pxpxpxpxpx countcountcountcountw −−−−=     66 

where Dcountpx is the number of pixels connected to the considered one (px) along the direction D 

(Cazorzi et al. in press).  

In the example provided in Fig. 74, for the pixel of interest the evaluated wpx is 2. 

The width index Windex  for each cluster is then represented by the average value of pixel widths 
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where wpx derives from Eq. (66) and n is the number of pixel within the cluster (Cazorzi et al. in 

press). 
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The length index  Lindex  is analytically derived  as the ratio between the cluster area and the cluster 

width index (Windex) (Cazorzi et al. in press). 

index

c
index W

s
L =

          68

 

 

In Fig. 75, an example of the two indexes is provided. 

 

Fig.  75 Example of indexes derived for a drainage unit: width (Windex) and length (Lindex) index for each clusters 

of pixels.  

 

Knowing both indexes for each cluster, it is possible to evaluate the areal drainage length (DLu) and 

drainage density (DDu). Drainage Length is evaluated as the sum of Length indexes of the clusters 

belonging to the considered unit. Knowing the unit surface, drainage density (DDu) is evaluated as the 

ratio between drainage length and the actual surface of the unit of interest (Cazorzi et al. in press).  

The definition of network storage capacity starts from the availability of some field measures: field 

surveying allows to define some representative cross-sectional areas for specific width ranges (see 

Chapt. 2.1, Sect. II.Study sites). This characterization is a user choice: it is an averaged 

characterization of cross-sections for widths ranges, and it may vary in different areas according to 

the digging techniques adopted to create the ditches. 

This approach considers a simplified representations of ditches cross-sections such as nested 

trapezoids, single trapezoids, or rectangular cross-sections, as derived by field survey. An optimal 

stream channel description should include detailed measurements of how depth varies with 
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increasing widths, but, due to the highly regular shape of agrarian drainage networks, this simplified 

estimation procedure is justified, and the averaging characterization accounts also for the differences 

in network geometry that might be present over different plots due to farmer choices. It should be 

pointed out, anyway, that a) this process results in an average characterization of the network per 

unit of interest; and b) the relationship between width ranges and cross-sectional areas as it is 

formulated, cannot be applied for watersheds with a more natural network, such as mountainous 

watersheds of similar drainage area that are not likely to have regular channel geometries.  

Once the width index is automatically derived, it is possible to associate the user-defined cross-

sectional areas (Aindex) to the whole network, and the network storage capacity for drainage unit (SCu) 

is defined as  
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where Lindex  is the length index for each cluster (j), Su is the surface of the considered drainage unit 

(Cazorzi et al. in press), and A is the associated cross sectional areas such as 

   
)( jindexindex WfA =

         70 

Where Windex derives from Eq. 67 (Cazorzi et al. in press). 

4.3  Accuracy assessment 

The accuracy of the methodology has been tested considering some comparisons based on the 

availability of actual network statistics. Whereas channel lengths and channel geometries (bankfull 

width, depth and cross-sectional areas) are available in detail for the control area, acquiring channel 

geometry measurements for the whole network of the application area (total length about 900 km) 

would have been time-consuming and cost-prohibitive due to the large extent of the site (3000 ha). 

Available reference network statistics listed by sources are express in table 12. 

 
Table 12: Reference statistics availability. 

 
Network reference statistics Control Area (80 ha) Application Area (3000 ha) 

Network positioning DGPS field survey Manually Updated RTC 
Drainage Length Field survey Manually Updated RTC 

Channel Geometry Field survey (170 control points) Field survey (15 control point) 
Storage Capacity Field survey None 

 
 

Considering the problems of the Regional Technical Map, high-resolution digital aerial photos 

collected for the application area during the same flight that provided the LiDAR dataset have been 

used in a time-consuming approach to update manually the RTMs where needed, in order to provide 

a better information for quality assessment.  
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Assessment of drainage network positioning accuracy was performed by calculating distances 

between the location of channels of the available reference data, and the corresponding derived 

network. Median distance of reference points to extracted drainage network for the study site is 

registered to be about 1 m (consistent with the DTM grid size constraint). In some instances, the 

procedure detects localized pixels, that do not correspond to the actual network location, and that 

can be classified as either noises or localized macro-depression on the soil. When compared to the 

actual land use, the proposed procedure represents the network in its real conformation, while the 

original RTMs are not updated (Fig. 76). 

 

Fig.  76 Accuracy of evaluated network (red) and network as digitalized from official cartography (Regional 

Technical Map –RTMs-) (black) before updating. The underlying ortophoto shows how official cartography 

needs some update and adjustment.  

 

A first quality assessment has been done considering the width index (Windex) and the actual width 

derived from field survey (Wobs). One must note that, by definition, the proposed indexes are a 

unique averaged value for each cluster of pixels, and each cluster does not necessarily represent an 

individual reach, but it might be composed by multiple network reaches with different cross-section 

geometries (see i.e. Fig. 74). To test the effectiveness of the procedure, some specific locations have 

been considered, where the considered cluster was actually a single reach of the network with a 

constant surveyed width (Fig. 77a). For the same clusters, the length index (Lindex) has been compared 

to the field surveyed length (Lobs) (Fig. 77b). 
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Fig.  77 Comparison between a) width (Windex ) and b) length (Lindex) indexes and the correspondent surveyed 

measures (Wobs and Lobs). (Cazorzi et al. In press) 

 

The result shows that when the considered cluster is representative of a reach, the width index is 

generally also a correct local estimation, with a measured RMSE of about 0.2 m. The same 

consideration can be done about the length index: in this case, the RMSE is estimated to be about 2 

m.  

Using a transitive relationship, if the field measured cross-sectional areas (Aobs) are strictly correlated 

to the field measured widths (Wobs), and the field measured width (Wobs) is in turn related to the 

width index (Windex) (Fig. 7 p.42), then cross-sectional areas can be also related to width index. By 

associating some characteristic cross-section area to specific width ranges, it is possible to 

automatically derive the network storage capacity.  

When the storage capacity is compared to the field surveyed one in the control area, a good 

concordance among measures is registered: the field surveyed storage capacity for the area is about 

156.14 m
3
/ha and the one estimated by the procedure is 154.11 m

3
/ha. The procedure slightly 

underestimates the surveyed storage capacity (SCu= 0.98 SCobs), and this is consistent with the 

approximation in the width and length indexes (Windex= 0.98 Wobs  and Lindex= 0.96 Lobs  ). For the 

application area, storage capacity ranges between 50 m
3
/ha to about 300 m

3
/ha: low values of 

channel storage capacity can underline deficit in the network, and they can outline areas whose 

hydrological behavior is potentially critical during floods.  

The regression technique was chosen to investigate the relationship between evaluated network 

statistics (Drainage length, drainage density and storage capacity) versus control values considering 

at the same time values derived from the field survey for the control area with the values derived 

from the updated Regional Technical Map for the application area. The underlying assumption is that 

a similarity exists between the two sites. The main idea is to integrate the RTC-derived information 

with the field surveyed one, even if derived on a different site. The quality evaluation of the 
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methodology can be then estimated more accurately by using the existing field surveyed values as an 

auxiliary base.  

Evaluated drainage lengths (DLu) have been tested against drainage length derived from field survey 

(in the control area) and updated from cartography (application area) highlighting how a strong 

linear relationship (R
2
= 0.97) exists between the evaluated characteristic and the measured one in all 

cases (Fig. 78). The evaluated RMSE for the network length is estimated to be around 1.5 m and it is 

consistent with the values registered for the cluster length index. 

 

 

Fig.  78 Drainage length derived by the proposed procedure (DLu)  and field surveyed Drainage Length (DLobs) for 

the control area and for each one of the drainage units of the application area (Cazorzi et al. in press) 

 

The values of evaluated drainage length and field derived one for the control area, behave in a 

similar way when considering length ranges between 0 and 60 km (Fig. 78a). For the control area, the 

evaluated Drainage Length is about 17 km, while the surveyed one is 19.50 km. In this case, the 

procedure slightly underestimates the measures. 

When evaluating drainage density (Fig. 79), correlation between the measured values and the 

evaluated ones is less strong, but still valuable (R
2
= 0.67). Testing R

2 
with two-tailed Student’s t-tests 

for statistical significance and α = 0.05, anyway, shows that this value represents a significant linear 

relationship between the two variables for the considered datasets.  
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Fig.  79 Drainage density derived by the proposed procedure (DDu)  and field surveyed Drainage density (DDobs) 

for the control area and for each one of the drainage units of the application area. (Cazorzi et al. in press) 

 

As mentioned before, due to the large extent of the application area, it was not possible to have 

detailed information about storage capacity within the network, but for this study case, regression 

techniques, anyway, indicated that the evaluated storage capacity is strongly related (R
2
 = 0.83) to 

drainage density (Fig. 80), that has been proven to be related to the correspondent control values 

(Fig. 79).  

 

Fig.  80 Relationship between the Storage Capacity (SCu) derived by the proposed procedure and the evaluated 

Drainage Density (DDu) for the control area and for each one of the drainage units of the application area 

Cazorzi et al. in press) 

 

The strength of correlation between REA derived values and the surveyed ones, in the majority of the 

instances, suggests a high reliability of the method. Some small inconsistencies between values exist, 
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due to the DTM grid cell constraint that determines a slight underestimation of the derived 

parameters.  

However, the method allows the definition of indexes generally available only through time-

consuming and cost-prohibitive field surveys, such as information about storage capacity within the 

channels and drainage density (Fig. 81). This assessment is a crucial tool for flood management: low 

values of channel storage capacity can underline deficit in the network, and they can outline areas 

whose hydrological behavior is potentially critical during floods.  

Fig.  81 Drainage density and storage capacity maps, derived for the application area. Low values of the indexes 

are related to specific land uses, such as urban areas or non-irrigated land. 
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5. Final remarks 

This work analyzed different objective methodologies to extract features in mountainous and 

enginereed environments, through the use of topographic parameters. 

The first DTA approach (Chapt. 1, Sect. IV. DTA for feature recognition) was carried out considering 

geomorphic features (landslide crowns, and bank erosion), and it considered the statistical analysis of 

variability of landform curvature in order to define a likely threshold for feature extraction. In the 

same approach, the suitability of different smoothing factors for the landscape curvature calculation 

has been tested, suggesting the minimal standards required for such analyses. The results of the 

approach reflect similar considerations as those suggested in previous works on channel network 

extraction through landform curvature (Tarolli and Dalla Fontana 2009; Pirotti and Tarolli 2010). The 

most reliable window size for curvature calculations has to be related to the morphology, and 

features size to be detected: a topographic parameter evaluated at scale that is not able to fully 

capture the features is not suitable for a good recognition, since only a limited area is investigated. 

Very large window sizes are not so representative as well, since the topography approximation is too 

smooth, and morphological features sited in place far from areas actually interested by the 

investigated process could be reached, providing a misinterpretation. In the considered case, a 

window size of 10.5 m was found to be the optimal for surface representation. However, some 

noises related to the complex morphology of the upper part of the study area affected the 

performance of the method. Automatic extraction of geomorphic features as landslide crowns and 

bank erosion based on thresholding operations was proven to be efficient in terms of time 

consumption, and valid to associate shapes and pattern derived from high resolution topography 

with real topographic signature of earth surface processes on the ground. The approach, anyway, 

presented some limits, especially in areas with complex morphology where also other surface 

features not related to slope instabilities have been detected. Nevertheless, this fast and preliminary 

interpretation could meet the requirements for emergency planning. The extraction of geomorphic 

features from airborne LiDAR data according to the proposed approach can be at this stage 

considered for modeling integration (i.e. terrain stability and erosion models) and can be used to 

interactively assist the interpreter/user on the task of shallow landslide and bank erosion of debris 

flow channel hazard mapping.  

The issue of a full automatic feature extraction in area with different morphologies, and with 

different feature sizes was anyway still a subject research, and some open question remained, as in 

how to objectively select the scale of analysis, if no information about the feature size is available, 

and how to deal with noises derived by complex morphologies. 
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The second approach to DTA addressed in this work (Chapt. 2, Sect. IV. DTA for feature 

recognition) analyzed a mathematical and statistical approach to a combination of topographic 

attributes for an unsupervised channel network identification in complex mountainous terrains. 

Considering the results obtained by the previous application, the primary focus has been to develop 

and present a method that could describe accurately the drainage network considering objective 

thresholds without an a priori knowledge of the study area or of the input dataset. The methodology 

included two main aspect: (a) normalization of openness and minimum curvature maps according to 

their QQ-plotthr and their combination with upslope area to highlight potential surface convergences, 

and (b) a thresholding procedure based on standardized values of the weighted upslope area. To 

assess the feasible objectivity of the method, the DTA has been applied to two areas with different 

morphologies: a rectangular area with no reference to a complete hydrologic unit and a fully-

organized basin used as a test site. The results showed at first that a joined use of two topographic 

parameters, a direct surface derivative and an approximation of surface relief, allowed a sort of 

independency of the procedure from errors in the input data. Thus, a first goal was obtained: the 

proposed procedure does not require a user to assess the quality of the considered map. It is true 

that such analysis should be always accounted for, but the most common situation faced by users, is 

that maps are provided with only an RMSE, routinely used as indicators of maps quality. However, 

this index might not be a good proof of the actual quality of the DTM, and  assessment of the 

multiple factors that contribute to DTM uncertainty, and their propagation to topographic 

parameters is a complex process for users to be likely to spend time on it. In this study case, the 

skewness/kernel evaluation through the polynomial ‘fitting/enforcing’ approach allowed to select 

optimum scale of analysis without assessing the quality of the input maps, and it was able to identify 

kernels that had already been proven as optimal for other works carried out for the same study area. 

The approach based on distribution analysis also, allowed independency from assessing the 

morphology of the areas: skewness is statistically identified and does not imply morphological 

similarities of the basins, because it does not consider the spatial location and organization of 

concavities and convexities, but, more in general, their location among distributions. The use of 

statistical operators as objective indexes, results on a network correctly delineated and strongly 

consistent with surface morphology, without assessing the study areas. Automatic detection of 

network based on thresholding operations was demonstrated to be valid to associate shapes and 

pattern with actual topographic signature of flow processes. The proposed approach, anyway, 

presented again some limits. As in the DTA for geomorphic features, also in this case areas with 

highly complex morphology, other surface features not related to the actual process networks are 

detected. Network extraction carried out using openness and curvature independently shows some 

flaws detecting localized patterns and misleading noisy cells, which do not actually represent the 
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features. The method, yet, can provide a quantitative and qualitative description of the network and 

can give an overall information about position and orientation of local convergences. The analysis of 

surface entropy has been proven in this case to be a useful and objective tool to assist the user on 

discarding doubtful extractions. The only flaw is showed by the fact that entropy has to be applied 

interactively to assist on the task of automatic network mapping, but noises can be objectively 

discarded (Entropy higher than the mean). In area with lower morphological complexity, the 

procedure is instead fully automatic in all its steps. The results obtained by the method on two areas 

with different complexity, considering morphology, network shape and also structural shape, shows 

promising effectiveness for practical applications. 

However hydrological processes span outside the less disturbed mountainous environments, and 

there is nowadays an increasing interest in relating hydrological research to interpretative studies, 

including approaches that account for changing in watershed condition due to human disturbances. 

It is the case of analyses carried out in enginereed landscapes, where direct human alteration of 

processes is significant, and even if it is aimed toward servicing the needs of human populations, it 

might results also in changes of the watershed behavior that directly affect and influence the 

landscape. The present work, therefore, assessed DTA also for such type of environments (Chapt. 3 

and 4, Sect. IV. DTA for feature recognition).  

The use of different topographic parameters, and different approaches to account for scale have 

been assessed trying to answer two main question: in an environment where features assume 

different characteristic and shapes, what topographic parameter is more feasible for application? 

Does the shape of the analyzed area and its size have influence on the quality of the analyses (as it 

was assessed in the DTA for geomorphic features)? A further question has been assessed, as in how 

to improve the extractions, considering that when dealing with disturbed environments, as in 

mountainous ones, local morphologies due to human alteration might be present but not necessarily 

related to the features in analysis. 

In the proposed DTA, therefore, different parameters have been considered and compared, both in 

terms of shape of the analyzed area and scale of analysis scale (Chapt. 3, Sect. IV.DTA for feature 

recognition). In this study case, considering that levees and banks, being artificial elements in a 

floodplain context, might be represented by outliers respect the elevation of the general surface, the 

boxplot has been considered to identify outliers and label anthropogenic features. As a final step, a 

filtering procedure is proposed, to improve the quality of results. As already found for mountainous 

environment, this analysis underlined how statistical parameters can effectively describe and 

characterize features starting from geomorphic maps. In line with other works, the research 

underlined that the effectiveness of topographic parameters to actually identify anthropogenic 

features is strictly related to the dimension of the investigated areas, rather than on its shape. The 
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shape of the considered neighborhood, in fact, has just a slight importance in improving or 

decreasing the quality of the extractions. However, the greatest improvements are provided by the 

post-processing and the automatic filtering. While the effectiveness of residual topography had 

already been proven, the proposed DTA underlined how the use of maximum curvature or entropy 

can anyway provide good extractions in anthropogenic landscapes, with overall quality comparable 

to the one offered by residual topography. The higher sensitivity of curvature to surface convexities 

(highlighted also in the first two DTA for geomorphic and hydrologic feature extraction in 

mountainous environment) might determine a higher suitability of the parameter to identify smaller 

features, such as the one derived, for example, from farming activities. Entropy, as a new parameter, 

has been proven to be reliable for feature extractions, with the only limitation that the extracted 

features are slightly wider than the investigated one. Results underlined also how the proposed 

automatic post processing of the extractions, based on the dimension of the fragments and on a 

statistical threshold to discard them, can be an effective automatic tool to improve the quality of the 

extractions.  

The final DTA (Chapt. 4, Sect. IV.DTA for feature recognition), presented a method for fast drainage 

network detection and quantification of water storage capacity and other network main statistics for 

agrarian landscape within floodplains. Considering the comparison between topographic parameters, 

the approach was based on the quantification of elevation residuals, as the main parameter to detect 

the network. The performance testing has demonstrated that this implementation can be efficient 

on gathering detailed and correct information for large datasets, thanks to the modern mapping 

technologies that can rapidly produce large DTMs at high resolutions. The accuracy assessment using 

field surveyed control values and information derived from a manually updated cartography, 

provided insight into the accuracy of drainage network derived through the proposed procedure. The 

strength of correlations between derived values and the control values in the majority of the 

instances suggests a promising and valuable reliability of the method, especially considering the 

regularity of shapes and structures of agrarian drainage network. The method is still not perfect, 

considering that some small inconsistencies between values exist, due to the DTM grid cell constraint 

that determines a slight underestimation of the derived parameters. However, the network extracted 

through the methodology has been proven to be more reliable than the information provided by the 

cartography, when updates on the maps are not available. The method, furthermore, allows the 

definition of indexes generally available only through time-consuming and cost-prohibitive field 

surveys (network geometry): it was possible to identify correctly some network characteristics over a 

large extent (3000 ha), and using only few control points (15), to derive information previously 

unknown about the storage capacity within the channels. This assessment is a crucial tool for flood 
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management: low values of channel storage capacity can underline deficit in the network, and they 

can outline areas whose hydrological behavior is potentially critical during floods.  

This fast processing of large DTM datasets opens their application to a new level of detail and spatial 

extent, for example, in rapid response operations, and they can become a useful tool in regions 

where available cartography needs to be updated or correct according to the land-use changes, 

especially in agrarian/urban contexts. 

In this specific DTA, scale was accounted for through the use of the REA index, and the results 

suggest that the conceptually simple approach of removing large scale landscape features to extract 

small linear element is suitable, fast and enough accurate for anthropogenic environments. Also, 

even in this case, the use of the standard deviation as a threshold to detect the network has been 

proven to be reliable, underlining the power of statistics as an inference tool to label elements. 
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V. CONCLUSIONS AND FUTURE CHALLENGES 

The need for developing comparative principles and tools for implementing management of land and 

water resources has long been recognized. Most management efforts require a broad spatio-

temporal context based on a process-oriented understanding of how landscapes work in a spatially 

distributed context and a recognition of the spatial and temporal scales over which natural systems 

operate. However, the challenge of upscaling process understanding gained in smaller, experimental 

scales to larger scales, where management decisions are needed, requires an empirically based 

conceptualization of these scale processes and how they integrate to produce new processes, which 

emerge at larger scales. Process conceptualization and classification is therefore central, and it has 

been suggested that there should be a focus on the form of catchments, how and why they are 

geomorphologically, ecologically and pedologically structured in the way that they are. Further, there 

is the need to understand and quantify the ways in which this form determines how and why 

catchments function hydrologically and behave dynamically (Wagener et al., 2007). However, while 

the variables influencing catchment dynamics might be clear, it has been difficult to quantify and 

generalize them, and the approach to catchment characterization and classification, and consequent 

comparison, remain still a challenge (Sivapalan 2005; Wagener et al. 2007). In hydrological sciences, 

it has been argued that a paradigm shift is needed towards the development of unifying ideas and 

organizing principles that might facilitate extrapolation and prediction of processes in different 

provinces and across scales (e.g. McDonnell et al. 2007). In regional studies too, there is growing 

recognition of the need to move beyond single region case studies in order to examine the operation 

of similar processes across different places.  

Due to the heterogeneities in landscape properties and climatic inputs, all processes are highly 

variable and complex at all scales. Therefore, to gain correct insight about the actual behavior of 

hydrologic systems it would be useful, or even necessary, to measure the relevant data at all of these 

scales, for a complete understanding and/or prediction of these processes. However, this is not 

practical nor feasible for all applications, and observations are generally carried out at one scale, 

either dictated by technical limits or operative choices, that does not necessarily correspond to the 

inherent scale of the process. As a consequence, there is the general need of understanding and/or 

transforming the process at the scale of interest, from the corresponding process at the 

observational scale. Moreover, generalization tools are needed, as analytical frameworks to provide 

a basis for cross-scale characterization and prediction. Such principles require the definition of 

indicators of similarities and attributes of spatial units characterizing the behavior of catchments and 

regions.  
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Despite considerable ongoing progress in conceptualization, there remains the need for better 

coordination in research and collaborative comparative studies to develop transferable tools to 

integrate theoretical perspectives and empirical studies.  Hydrological data collection is invariably 

carried out for different reasons, in different regions, in different ways, over varying scales, by people 

with different backgrounds, biases and inevitable budget constraints (Hamilton, 2007). As a 

consequence, there is often a barrier between the hydrological research and the actual application of 

the proposed models. While high resolution topography is nowadays available not only to 

researchers, but also for public authorities, this is not always true for the models that derive from the 

application of such high-res information: they are in some cases too complex to be feasible for fast 

and efficient direct applications. The study by Sivakumar (2005), for example, highlighted the 

negative effect of the increasing emphasis on techniques that serve mostly ‘the specialists,’ rather 

than a more generalized approach that would serve everyone. Discussing the role of ‘thresholds’ in 

hydrologic systems and the various implicit forms in which they are already being adopted, for 

example, Sivakumar (2005) comments: “Looking at the direction in which hydrologic research is 

moving, with our emphasis on specific data analysis techniques than common hydrologic problems 

[an opinion may not be shared by everyone], we could end up with enormous difficulties in 

understanding hydrologic literature [dealing with thresholds]. This is immediately evident [from the 

above examples], since [I suspect] not many hydrologists who are familiar with the concept of self-

organized criticality are also familiar with the concept of artificial neural networks and/or nonlinear 

deterministic and chaos theories. It is obvious that the [above] situation would only become worse 

when hydrologic concepts, research activities and model success/failure need to be explained and 

disseminated to new and emerging hydrologists (e.g. undergraduate and graduate students), water 

managers and policy makers.”  

Comparison of catchment behavior in different geographical areas is an obvious need that will aid 

meaningful classification and lead to a more systematic understanding of catchment similarities and 

dissimilarities in catchment form and function. Given the importance of heterogeneity at all scales, 

this requires the development of diagnostic classification tools that integrate measurement and 

consider factors such as topography to develop indices of similarity. The improvement of 

computational abilities and of remote sensing detection, facilitated extensive data collection (both in 

time and in space), formulation of sophisticated methods (including those for studying the inherent 

hydrologic nonlinearities and scaling), and development of models. There are no doubts that we 

today have a far greater ability to represent real hydrologic systems, and we possess a much better 

understanding and predictive ability of hydrologic phenomena than we did not long ago. From this, 

there is a need for simple rules and/or clear procedures to determine the dominant processes 

operating in different catchments, and how these reflect variations in landscape controls. Developing 
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such tools would allow a much more systematic approach to understanding the interactions between 

catchment form and function in different parts of the world. Literature review showed that, in 

general, hydrology is facing the need for moving beyond the notion of ‘modeling everything’ to the 

notion of ‘capturing the essential features’. From features capturing, then, and the identification of 

the dominant processes, the further step is the development of models that correctly represent the 

investigated process. The DTA proposed in this work can be framed in the mentioned context. As 

main outcomes, the proposed DTA underlined that: 1) If physical processes do leave important 

signatures on the statistics of landscapes, and if we can quantify these signatures in detail, statistics 

can be used in assisting modeling, prediction and observatory design across scales and across 

environments; 2) since statistical properties of land-surface models are also scale dependent, 

studying their variation across scales can be effective in identifying ‘characteristic scales’ in the digital 

context, and therefore, can be a useful tool to identify the optimum scale for the desired analysis in 

the hydrogeomorphic realms. At the catchment scale, light detecting and ranging (LiDAR) is now 

becoming increasingly available and has the ability to resolve catchment land surfaces to the scale of 

a few centimeters in DTMs. The proposed approaches, based on statistics, are feasible for fast 

application and easy to be repeated. The derived hydrological features from DTM are not only 

accurate, but also they accelerate the processing speed of modeling of projects like water resource 

management and hazard modeling in different environments. At this point, some open questions still 

remain: Are statistically-distinct hydrological features the result of physically-distinct processes? Do 

differences in laws governing processes leave their signature on the statistical properties of landform 

geometry, and how much of the behavior of the coupled hydrologic/geomorphologic system is 

reflected in the statistics that we can digitally derive? Now that we can assess landforms with a high 

level of detail thanks to high resolution topography, some of these questions can be answered.  
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Over the past years expertise has been built up GIS systems in diverse areas, including hydrology, 

ecology, process technology and distribution technology. GIS-technology has been widely used to 

support the integration of various fields of knowledge to develop innovative tools and concepts. GIS 

software are the ideal platform for Digital Terrain Analysis and spatial analysis in general, and they 

have been widely applied starting from the 1990s. When referring to hydrology, a classical 

hydrological modeling problem is initially conceived in the geographical context, and the spatial 

features are the first to be considered when dealing with a river system, therefore, GIS capabilities 

are indispensable for feeding spatial models and analyzing their results. For hydrological application, 

the GIS support represent the beginning and sometime the ending step of a modeling procedure: its 

capability to derive spatial attributes from multiple sources, such as remote sensing, sampling, 

interpolation and digitizing existing maps and to store them in a geographic database simplifies the 

collection of input for a model and analyzing model results is helped by the possibility of 

simultaneous graphic display of spatial attributes on the GIS itself.  A further step to ease this work, 

implies the GIS to incorporate the additional feature of modeling: often spatial and non-spatial 

analyses are combined, and while GIS software provides powerful tools for spatial analysis, non-

spatial analysis tools are sometimes deficient in GIS environments. On the opposite hand, usually, 

script softwares do not include spatial analysis capability (Pullar, 2004).  

The integration of spatial and non-spatial analysis software aims at providing a combination of the 

most efficient and powerful tools available in both environments (Brenning, 2008). The main result is 

that simulations performed in a script environment can be presented as features of a GIS project, 

with all the advantages of geographical referencing and integration with other features typical of a 

GIS environment, such as Digital Picture Processing (Kak and Rosenfeld, 1982).  

There are various examples where this has been accomplished using access links between different 

software packages. JGrass, for example, provides integration of the statistic R package into the 

scripting environment (Rigon et al., 2008). RSAGA provides access to SAGA GIS geoprocessing 

functions from within the R statistical data analysis environment (Brenning, 2008). Maas et al., (1997) 

were pioneers in using MATLAB software (the MathWorks) to solve simple and complex hydrological 

problems in their daily work. Recently contribution to the endeavor for combining powerful GIS tools 

for geomorphical and hydrological application with the vast functionality of Matlab® have been 

showed (Swhanghart et al., 2010). 

The coupled use of spatial modelling tools (GIS), statistical packages and hydrologic approaches 

provides a powerful combination for investigating landform structure in relation to landform 

processes. However, basic problems within this framework are (1) storage and exchange of various 

data types, and (2) a missing interoperability of different methods and investigation techniques. 
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The ability to perform multiscale surface characterization (Wood, 1996), relies just on some 

softwares (LandSerf, Wood, 1996) that offers the opportunity to examine how measurements taken 

from a surface model are dependent on the scale at which they are taken. To evaluate multiple 

analysis (as the effect of kernel size on topographic attribute evaluation) and multiple statistics at 

once, algorithms largely based on sparse matrix algebra and image processing techniques can be 

used and implemented through scripts on different software supports.  For the present work, to 

avoid issues as large efforts in data exchange between different software packages and format and 

to guarantee a unique tool for multiple statistical analysis, each topographic attribute function and 

statistical evaluation have been implemented in Matlab-code (*.m-files) that can be easily modified 

and adapted to specific needs. 

MATLAB stands for 'MATrix LABoratory'. It handles a range of computing tasks in engineering and 

science, from data acquisition and analysis to application development. The MATLAB environment 

integrates mathematical computing, visualization, and a powerful technical language. It is used in a 

variety of application areas, including signal and image processing, control system design, earth and 

life sciences, finance and economics, and instrumentation. Because the data is stored in matrices of 

multiple dimensions, a quick data access in 3D and 4D is also possible. 

In many ways, the evolution of MATLAB resembles the evolution of GIS, although in most application 

areas it has made a quicker transition from the universities to the industries. However, this does not 

hold true for applications in hydrology. This is due to the fact that hydrologists have built their 

models with the existing (numerical) modelling software. All their site-specific knowledge has been 

fed into these models, making them very valuable. There is an ongoing trend however to put this 

knowledge into GIS, so they become available to a broader group of (potential) users. 

Some problems may be tackled effectively with GIS techniques whereas others are more suitable for 

processing with MATLAB tools (e.g.3D and 4D modelling and visualization/animation). For these 

purposes a lot of AML's, Avenue scripts and MATLAB m-files have been developed over the past 

years. 

MATLAB eased the procedure proposed on this work by enabling the completing of the following 

tasks: 

- design custom digital filters in MATLAB and apply them to DTM in order to evaluate 

topographic parameters at different scales (chance already offered by Landserf (Wood, 

1996) but not implemented as automatically reiterative); 

- Simulate errors on DTMs to test their influences on topographic parameters (Chapt. 4.3, 

Sect. III.Materials and methods) 

- graphically visualize results in 2-D and 3-D plots to gain insight of the results immediately, 

without needing of converting files from one format to another; 
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- develop applications to enable the chance to execute advanced statistical analysis and 

tests; 

- automatic measurements that are difficult to acquire manually or need to be acquired 

multiple times; i.e. Curvature at multiple window size in order to evaluate the optimum 

scale of analysis through the polynomial fitting-enforcing approach (Sofia et al. 2011) (see . 

Chapt. 4.2, Sect. III.Materials and methods) 

For Digital Terrain Analysis, one must note that DTMs and topographic attributes maps themselves 

are most commonly represented as rectangular grids where values are assigned to each cell. 

Mathematically, this kind of data model is a matrix where the elements are referenced either by 

specifying rows and columns of each respective scalar in the matrix or by a linear, row-wise 

increasing index (Swhanghart et al. 2010). Their representation through MATLAB does not require a 

dimensioning procedure: matrices are a series of numbers, independent of the size of the pixels. All 

the digital terrain analysis, therefore, can be performed without requiring to manage the 

dimensioning of the input data: matrix are handled using pixel-oriented algorithms, treated as 

Boolean surfaces and performing Boolean, mathematical or statistical operations on the pixel-by-

pixel basis where the geographic location of each pixel is determined according to its position within 

the matrix (row and column). This allows to solve technical computing problems, especially those 

with large matrix and vector formulations, in a very effective way. The MATLAB environment itself 

offers a comprehensive set of built-in functions, and many toolboxes have been developed, and are 

often freely available, for more specialized needs (Swanghart et al., 2010).  

Scripts to measure surface parameters at different scales can be implemented using the concept of 

moving windows, and they can be designed to incorporate scale-based analysis into surface 

parameterization. Each given parameter (e.g. curvature, openness etc.) can be evaluated at once for 

different ranges of scale, and statistical analysis can be carried out simultaneously to identify the 

scale at which that parameter is most extreme (see Chapt. 4). This can be used to explore scale 

sensitivity of a surface. Parallel computing can also be implemented, resulting in a time consumption 

compared to different GIS approach. 

The main advantage for the present work, is the chance of using detailed statistical analysis of the 

data directly on the original matrixes, thus avoiding the need of manually extract statistical values 

most of the time not available on common GIS package (qqplot thresholds, skewness, z-scores etc.). 

Another issue is related to the fact that, while different softwares packages are present that can 

offers all these analyses (multiscale feature parameterization, statistical analysis of data, graphical 

visualization of results), the outputs that they produce are sometimes not directly compatible and 

data have to be converted if they need to be processed and transferred from software to another. 



 

198 
 

This causes a large time consumption that can be easily avoided using a unique software for all 

evaluations. 

 

The form of description investigated in this work refers to the parameterization of a surface 

model (DTM). For effective geomorphologic parameterization, two criteria are required. Firstly, 

terrain parameters should be sensitive to geomorphologic process as well as form. For example, 

altitude, slope and surface curvature (0, 1st and 2nd derivatives) are all affected by or influence 

geomorphologic processes. Secondly, a complete surface parameterization must include analysis of 

scale-based characteristics. The effects due to the scale of sampling and the way in which the surface 

model is stored should be separated from actual processes and surface scale-dependencies as far as 

possible. This chapter will briefly express the implementation of surface parameterization not 

constrained by the grid resolution of the DTM, as in Landserf (Wood,1996) as it is applied to the 

MATLAB environment. The theoretical background is expressed in Chapt. 2.1 sect III.Materials and 

methods. 

Generally, the techniques for morphometric characterization of DTMs are constrained by the 

resolution of the model. The information derived using these techniques is relevant only to the scale 

implied by the resolution of the DTM. Since this scale is often arbitrarily defined and not necessarily 

related to the scale of characterization required, derived results may not always be appropriate. 

Indeed, most of the acknowledged problems of morphometric characterization result from either 

variation at a finer scale than the DTM ('noisy data') or variations on a coarser scale ('flat regions'). 

What is required are characterization techniques that are somewhat independent of the resolution 

of the database used to store topographic information. This process is fundamentally based on 

techniques using neighborhoods. The key idea is that an analysis which is performed on a pixel of a 

DTM, depends not only on this pixel but also on its neighboring area, and this neighborhood is 

defined by all those pixels that are connected to the one of interests. This kind of analysis is achieved 

through a so called ‘sliding neighborhood operation’. 

A sliding neighborhood operation is an operation that is performed a pixel at a time, with the value 

of any given pixel in the output being determined by the application of an algorithm to the values of 

the corresponding input pixel's neighborhood. A pixel's neighborhood is some set of pixels, defined 

by their locations relative to that pixel, which is called the center pixel. The neighborhood is a block, 

and as you move from one element to the next in a matrix, the neighborhood block slides in the 

same direction.  

The center pixel is the actual pixel in the input being processed by the operation. If the neighborhood 

has an odd number of rows and columns, the center pixel is actually in the center of the 

neighborhood.  
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To perform a sliding neighborhood operation, the basic steps after selecting the pixel of interest, are 

1. Define the pixel's neighborhood size and shape 

2. Defining a function to apply considering the values of the pixels in the neighborhood.  

3. Find the pixel in the output whose position corresponds to that of the center pixel in the 

input. Set this output pixel to the value returned by the function. 

In the following sections, these three steps will be described, and some extracts of the needed codes 

to evaluate topographical parameters in matlab will be provided.  

1. Kernel definition  

It is necessary to define the concept of connectivity as the criteria that describe how pixels within a 

discrete matrix form a connected group. The two most common examples of connectivity  refer to: 

- 4 connected neighborhood: the central pixel has only four neighboring pixels (Fig. IA); 

- 8 connected neighborhood: the central pixel has eight neighboring pixels (Fig IB). 

 

A m     B    

   Xm,n     Xm,n  

         

  n   

Figure I Concept of neighboring: 4- connected (A) and 8-connected (B) neighborhood. 

 

For the present work, different shapes of moving window during the evaluation of the geomorphic 

parameters have been considered (Fig. 69). The tested kernels have been:  rectangular, circular, and 

annulus shaped kernels. The basic approach is to create creates a morphological structuring element, 

of the type specified by shape. The morphological element is then passed through the input matrix, 

and element labeled with 1 are included in processing the neighborhood, while element labeled with 

0 are excluded. 

The morphological element is created through the use of the function  

SE = strel(shape, parameters)    
 

That creates a structuring element, SE, of the type specified by shape. Depending on shape, strel can 

take additional parameters.  

To create the classical rectangular kernel, the correspondent function would be  

kernel   = strel('arbitrary', ones(kernelsize)); 
 

where ‘arbitrary’ impose the square shape, and ones(kernelsize) determine the kernel to have the 

desired shape and be filled with ones. 
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To create the circular kernel, SE = strel('disk', RadiusSize, 0) creates a flat, disk-shaped structuring 

element, where the structuring element members consist of all pixels whose centers are no greater 

than RadiusSize (R) away from the origin (i.e. Fig. II). 

 

Figure II Representation of the circular kernel in Matlab®. 

 

The creation of the annulus kernel, starts from the creation of two disks, one by setting its diameter 

according to the desired final inner diameter of the annulus (2rin), the other setting its diameter 

according to the desired final outer diameter of the annulus (2rout). 

The difference between the two objects, creates the annulus kernel, as expressed in Fig. (III). 

 

2rout = 5: 

     0     0     1     0     0   

     0     1     1     1     0 

     1     1     1     1     1 

     0     1     1     1     0 

     0     0     1     0     0 

 

 

 

2rin = 3: 

0     0     0     0     0 

0     0     1     0     0  

0     1     1     1    0 

0     0     1     0     0 

0     0     0     0     0 

 

 

 

annulus 

     0     0     1     0     0 

     0     1     0     1     0 

     1     0     0     0     1 

     0     1     0     1    0 

     0     0     1     0     0 
 
 

Figure III Representation of the annulus kernel in Matlab®. 
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The creation of the kernel is implemented in a complete function, ‘ktype.m’ that requires as input the 

choice of the kernel shapes, and its dimensions. 

 

 
function kernel=ktype(size,type); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% create a kernel with different shapes: circle, re ctangle or annulus 
% shape. 
% if type is  
%           'rect' the kernel is a n x n kernel wit h size 'size' 
%           'disk' the kernel is a circle with diam eter 'size' 
%           'hole' the kernel is a doughnuts shaped  kernel with internal 
%                  diameter size(1) and external si ze(2). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
switch type 
  case {'rect'} % Smoothing filter 
     siz = size; 
     kernel   = getnhood(strel('arbitrary', ones(si z,siz))); 
  case {'disk'} % Disk filter (minimum size = 5!) 
     rad   = (size-1)/2; 
     SE = strel('disk', rad,0); 
     kernel = getnhood(SE); 
      
  case {'hole'}  % doughnuts shaped area (minimum s ize 3*5) 
     radint   = (size(1)-1)/2; 
     radext = (size(2)-1)/2; 
     SEEXt = strel('disk', radext,0); 
     SEINT = strel('disk', radint,0); 
     kernel= %difference between SEEXt and SEINT; 
end 

 

 

Function I ktype.m  Representation of the kernels in Matlab®. 
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2. Curvature evaluation 

The basic assumption of the polynomial interpolation can be found in Chapt. 2.1 Sect. III.Materials 

and methods, while curvature equations are found in Chapt. 3.1.a, Sect. III.Materials and methods. 

Curvature evaluation within matlab basically require the solution of Eq. I  

( ) zGGG TT ⋅= −1ι   (I) 

where z is the elevation matrix within the moving neighborhood, ι is the coefficient matrix (a-f) and 

G is the coordinate matrix as function of the local coordinate system within the moving window (for 

fuller description, refer to Chapt. 2.1, II.Materials and methods). 

While z  is directly read from the DTM, the only requirement is the creation of the matrix G and as a 

consequence, the definition of  (G
T
G)

-1
G

T
. 

This is obtained by creating the coordinate matrix for each pixels as a function of the DTM grid size, 

and in a second step, G is computed. 

This procedure is implemented in the function quadFit.m 

function G =quadFit(KernelSize,g); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% evaluate coefficient to solve quadratic equation 
% Required Inputs: 
%   kernelSize= kernel width (in cells) 
%   g = pixel size of the input DTM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
padsize=(KernelSize-1)/2; 
matX= g*repmat(0+(-padsize:padsize), KernelSize,1);  
matY= g*repmat(reshape(0-(0+(-padsize:padsize)),[], 1),1,KernelSize); 
% Evaluate G to solve the bi-cubic equation 
F = ones(KernelSize ^2,6); 
for kk= 1: KernelSize ^2  
    x=matX(kk); 
    y=matY(kk); 
    G_=[x^2,y^2,x*y,x,y_] ; 
    G(kk,1:5)=F_; 
end 
end 
  

Function II: quadFit.m  Representation of the matrix G in Matlab®. 

 

(G
T
G)

-1
G

T 
 is simply obtained then by transposing G and applying the formulation. This steps need to 

be evaluated just once, for the considered moving window. Curvature can then be found by 

considering as input the DTM (where to read the z values) and deriving G for the considered kernel 

size using the function quadFit.m (Fun. II). 
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Curvature is implemented in the function Kfast.m. 

 

function k=kfast(z,g,G,type) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% k = curvature according to Evan’s (1979) formulat ion 
% Required inputs: 
% z = elevation within the DTM 
% g = pixel size of the input DTM 
% G = coordinate matrix as function of the local co ordinate system, as % 
 derived by the function quadFit.m 
% type= type of desired curvature: 
%  ‘min’ = minimum curvature 
%  ‘max’ = maximum curvature 
%  ‘mean’ = mean curvature 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
warning off all 
ker=size(z);             
%evaluate coefficient 
zvalue= reshape(z',1,[])'; 
coefficient = zvalue*(G’*((G’*G)^(-1))); 
a=coefficient(1); 
b=coefficient(2); 
c=coefficient(3); 
     
switch type 
case {'max'} 
 k= ksize*g*(-a-b+sqrt((a-b)*(a-b) + c*c)); 
  case {'min'} 
 k= ksize*g* (-a-b-sqrt((a-b)*(a-b) + c*c))  ; 
 case {'mean'} 
 Kmax= ksize*g* (-a-b+sqrt((a-b)*(a-b) + c*c))  ; 
 Kmin= ksize*g* (-a-b-sqrt((a-b)*(a-b) + c*c))  ; 
 k=(Kmin+Kmax)/2; 
 otherwise 
 error('Unknown curvature type'); 
end 
end 

 

Function III: Kfast.m  evaluation of curvature in Matlab®. 

 

  



 

204 
 

3. Openness evaluation 

The basic assumption for openness evaluation can be found in Chapt. 3.1.c Sect. III.Materials and 

methods. 

Openness evaluation within matlab requires as a first step, the definition of elevation angles 

between each visible location within the moving window and the central pixel (Eq. 18). Therefore, at 

first, a matrix identifying the central pixel is created, and the distance between each pixel and the 

central one are automatically computed, by using the function bwdist. 

D = bwdist(BW) computes the Euclidean distance transform of the binary image BW. For each pixel in 

BW, the distance transform assigns a number that is the distance between that pixel and the nearest 

nonzero pixel of BW. bwdist uses the Euclidean distance metric by default, where the Euclidean 

distance between two points A and B, with coordinates (xa,ya) and (xb,yb) is simply given by 

���� − �	
2 +	��� − �	
2
2

   (II) 

As a second step, elevation angles are computed according to Eq. 18.  

Both computation are implemented in the function elevangle.m 

function Angle=ElevAngle(z,g) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Elevation angle for a given input matrix 
% required inputs: 
% z= matrix of elevations 
% g= pixel size of the input DTM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%evaluate binary matrix identifying the position of  central pixel 
Mat0=zeros(size(z)); 
Mat0(floor(size(z)/2)+1,floor(size(z)/2)+1)=1; 
distances=bwdist(Mat0)*g; 
Angle= atan ((z-z(floor(size(z)/2)+1,floor(size(z)/ 2)+1))./distances); 
End 
 

Function IV ElevAngle.m  evaluation of elevation angle in Matlab®. 

 

The second step, requires the definition of the azimuths D (Eq. 16, 17, 19, 20 and Fig. 23) upon which 

to compute the zenith and nadir angles. 

This is done by the use of the morphological element, in a similar fashion as explained in the first 

section of this appendix for the creation of the kernel, in this case applying the option ‘line’ and a 

direction to consider. 

SE = strel('line', length, D)   

The basic results, is then rotated to obtain all the azimuths, as exemplified in Fig. IV 



 

205 
 

 

Figure IV Representation of azimuths, for a squared moving window, in Matlab®. 

 

Once the azimuths are compared, the computation of openness requires the identification, among 

each direction, of all the visible points. Basically, considering the elevation angle, the requirement is 

to identify the maximum value on each direction. Once these local maxima are evaluated, openness 

is computed according to Eq. 16, 17, 19, 20. 

Openness computation is implemented in a function ‘openness.m’. 

function O=Openness(z,g,type) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% O = positive or negative openness 
% Required inputs: 
% z= matrix of elevations 
% g= pixel size of the input DTM 
%  type= ‘neg’ for negative openness or ‘pos’ for p ositive 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%evaluate distances 
Angle= ElevAngle(z,g); 
%matrices of directions 
   % direction matrix  
        D225_45= getnhood(strel('line', kernelSize( 1)+2, 45)); 
        D135_315= flipud(D225_45); 
        tempM=imrotate(D225_45, 45); 
        D0_180=tempM(3:end-2,3:end-2); 
        D270_90=imrotate(D0_180, 90); 
    %%%%%% 
switch type 
case {'pos'} 
        OpN = min(90-(angles for direction N))); 
        OpNE = min(90-(angles for direction NE)); 
        OpE = min(90-(angles for direction NE)); 

%… repeat for all directions         
        O=mean( %openness in each direction); 
  case {'neg'} 
        OpN = min(90+(angles for direction N)); 
        OpNE = min(90+(angles for direction NE)); 
        OpE = min(90+(angles for direction NE)); 

%… repeat for all directions         
        O=mean( %openness in each direction); 
end; 
end  

Function V: Openness.m  evaluation of openness in Matlab®. 
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4. Implementing the moving window approach 

Once the function that computes the parameter is implemented, it can be applied on the input DTM, 

through a moving window filter function already provided within the software (nlfilter). The moving 

window filter is included in MATLAB within the image processing toolboxes and relies on linear and 

nonlinear filtering procedures. Regardless of whether field this generalization procedure belongs, or 

what frequency ranges or timescales they work on, the mathematical theory of linear and nonlinear 

filters is universal, therefore it can be applied to grid DTMs, since they share with images a matrix 

structure. 

To briefly introduce, the linear filter is an operation where at every pixel xm,n of a matrix, a function is 

evaluated on the pixel and its neighbors to compute a new pixel value ym,n (Fig. V). 
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where x is the input, y is the output, and h is the filter impulse response.  

 

 

 

 

 

 

 

Figure V: Concept of filtering: input(A) and output (B). 

 

The code below is an example of implementation of a general filters in matlab. 

[M,N] = size(DTM); 
Y = zeros(size(DTM)); 
r = (WindowSize-1)/2;     % Adjust for desired wind ow size 
for n = 1+r:N-r 
    for m = 1+r:M-r 
        % Extract a window of size (2r+1)x(2r+1) ar ound (m,n) 
        X = DTM(m+(-r:r),n+(-r:r)); 
        % ... filter equation here ... 
        Y(m,n) = Filter(X); 
    end 
end 
 

Function VI: Computational implementation of a general filter in Matlab®.   

 

Different choices of h (Eq. II) lead to filters that smooth, sharpen, and detect edges, to name a few 

applications for image filtering applications. For the case of morphological application, the key is to 

A m     B    

   Xm,n     Ym,n  

         

  n   
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build a filter that incorporates the general procedures (Eq. II) and to apply as h the equation 

representing the topographic parameters (ex. Curvature, Openness ….). 

For example, if the aim is to evaluate Mimimum Curvature on a moving window of 3x3, the required 

information are simply the curvature function and the size of the kernel of interest. 

Once the function is defined, it can be provided as an anonymous function to the Matlab filter 

function (nlfilter, see MATLAB for detailed explanations) 

 

fun = @(z) Kfast(z,g,G); 
 
 
Output = nlfilter(Input,[3 3],fun); 

 
  Chosen window size 
          The DTM 
 

Starting from the top right of this syntax statement, the term Kfast represents the body of the 

function (as for example the code described in fun. III). This can consist of any single, valid MATLAB 

expression. Next is a list of input arguments to be passed to the function (for the minimum 

curvature, the z values, the pixel size and the coefficient matrix). The term @(z) represent the 

anonymous function handle (Matlab). What this code says, is to read on the input DTM a series of 

nxn values (where n is the size of the moving window ), and to store them in a temporary matrix z 

and pass them as argument for the function Kfast. 
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5. Evaluation of the optimum scale of analysis  

The basic assumption of the selection of optimum scale can be found in Chapt. 4.2 Sect. III.Materials 

and methods. 

The procedure requires the definition of a function representing skewness of the topographic 

attributes as a function of the kernel size (Eq. 37). The procedure is implemented in the code 

fit_enforce.m 

 
function Opt_scale =fit_enforce(dtm,g); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% fitting_enforcing procedure to evaluate optimum k ernel size 
%     Required inputs 
%     dtm = the input DTM 
%     g = the pixel size 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%% beginning of routine for the polynomial fitting 
count = 0; 
for kernelSize=3:33; 
count = count+1; 
TA = % topographic attribute of interest for the de fined kernelSize (i.e. curvature 
or openness) 
% evaluate skewness of the array for the specific w indow size 
Skew(count,1) = skewness(TA(:)); 
end     
% evaluate polynomial, derivative and optimum kerne l 
% indexing initiation 
n = 2; % it starts from a 2 nd order polynomial 
% repeat the fitting/enforcing for polynomial with different degrees (up to 50) 
while isempty(optimumKernel); 
n=n+1; 
% fit the polynomial 
p = polyfit(kernels,Skew,n); 
% polynomial simulation 
skewn = poly2sym(p); 
% derivative 
der= diff(skewn);  
% solve the derivative 
Khypotesis=solve(der); 
% check whether there is at least one true derivati ve within the window size range 
for j = 1:length(Khypotesis); 
        solution = sym2poly(Khypotesis (j)); 
        if solution > 3 && solution < 33; 
        optimumKernel = solution; break % break the  fitting if the condition is 
verified and produce the optimum kernel value 
        else 
        end 
    end 
end 
end 
Opt_scale= optimumKernel; 
End 
 
 

Function VII: Polynomial Fitting-enforcing in Matlab®. 
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6. Graphical-user interface 

A graphical user interface (GUI) is a pictorial interface to a program. A good GUI can make programs 

easier to use by providing them with a consistent appearance and with intuitive controls like 

pushbuttons, list boxes, sliders, menus, and so forth. The GUI should behave in an understandable 

and predictable manner, so that a user knows what to expect when he or she performs an action. For 

example, when a mouse click occurs on a pushbutton, the GUI should initiate the action described on 

the label of the button. This chapter introduces the basic elements of the MATLAB GUI that includes 

all the processes described in the previous sessions. The chapter does not contain a complete 

description of components or GUI features, but it provides only the basics description of the 

produced GUI. The advantage of such element, is that it provides the user with a familiar 

environment in which to work, instead of requiring the actual programming of each code. This 

environment contains pushbuttons, toggle buttons, lists, menus, text boxes, and so forth, all of which 

are already familiar to the user, so that he or she can concentrate on using the application rather 

than on the mechanics involved in doing things.  

The Topographic parameter GUI elements are visible in Fig. VI. 

 

Figure VI: Topographic parameters GUI 
 

 

The GUI is created in order to allow the user to select the input DTM (A, in Fig. VI), and to save the 

map of the produced topographic parameter. However, a checkbox (‘Save output rasters’) allows the 

user to decide whether to save or not the output.  

A 

B 
C1 

C2 
D 
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Different topographic parameters (openness and curvature) can be computed (B in Fig. VI) 

considering a user defined kernel size (option ‘manual’ in C1), or by applying the fitting-enforcing 

procedure (option ‘automatic’ in C1). If the user selects the manual option, C2 becomes active and 

allows to write the desired kernel size. 

If the user select the automatic option, C2 is not editable, but it is automatically filled by the software 

once the optimum kernel is computed through the polynomial fitting-enforcing approach. 

The GUI automatically computes for the desired topographic parameter, all the statistics (D). 
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