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Chapter 1

1. General introduction

Psychiatric disorders are a large class of debilitating mental illnesses that affect everyday life
of patients and people around them. In fact, they result in alteration of thinking, moods,
behavior and increased risk of disability, pain, death, or loss of freedom [1]. Nevertheless, the
exact mechanisms behind these diseases are still unknown. Over the last few years, researchers
focused on the study of abnormalities in brain neurodevelopment [2] genetic mutations, impact
of traumatic events [3], [4] and the interaction between these factors [5]-[7]. In particular, both
genetic and environmental factors may influence brain developmental process throughout
childhood, adolescence and adulthood. Previous studies investigated how genetic and
environmental risk factors act during sensitive brain developmental periods whereby altering
adult behavior and possibly causing vulnerability to neuropsychiatric disorders [8]. Different
brain systems have been involved in the development of psychiatric disorders. However, for
disorders such as attentional deficit hyperactivity disorder (ADHD), schizophrenia, and post-
traumatic stress disorder (PTSD) there are consistent evidence of a major implication of the
dopaminergic and endocannabinoid systems [9]-[14].

Dopamine (DA) plays an important role acting as a trophic factor, in the development of
neuronal cyto-architecture and also modulating neurodevelopmental processes during the
embryonic and postnatal period [8]. In particular, dopaminergic alterations within the
prefrontal cortex (PFC) or Striatum, two brain area involved in cognition, learning and
emotion, have been previously correlated to the etiology of neuropsychiatric disorders like
schizophrenia, autism and ADHD [15]. On the other hand, several studies have related
dysfunctions of endocannabinoid system to psychiatric disorders [16]. In fact, the relationship
between cannabis consumption, especially during critical period of brain development, and
schizophrenia onset has been demonstrated [17].



1.1 “Dopamine hypothesis” of schizophrenia

Schizophrenia is a debilitating psychiatric disorder that affect about 1% of world population
[18]. The etiopathology of schizophrenia is still not clear, and both genetic and environmental
factors are thought to be implicated. The most used drugs to treat schizophrenia are the
antipsychotics [18] which act blocking dopamine 2 receptors (D2R) [9] and suppressing
dopaminergic activity. These drugs ameliorate the positive symptoms (hallucinations,
delusions and disorganized thinking) [1] related to an over activation of D2R, which results in
increased subcortical dopamine release [19]. However, the core symptoms of schizophrenia
include negative symptoms, as well as cognitive impairments [1]. In particular, anhedonia,
social withdrawal and diminished emotional expression are negative symptoms [1] usually
related to hypo-activation of dopamine 1 receptors (D1R) especially in the PFC [19].
Furthermore, cognitive impairment including working memory and attentional deficits are also
correlated with imbalance of D1R and D2R in PFC [20], in particular with hypo-activation of
dorsolateral PFC. In fact, DA plays a pivotal role in several functions including movement,
memory and reward and in modulating higher-order cognitive functions like behavior and
emotion in mammalian, regulating cognitive performance which a U-shaped relationship
where too much or too little DA are related to worse performances [10]. Despite this, the newest
hypothesis about schizophrenia etiology suggests a hyperactive DA transmission in
mesolimbic areas and a hypoactive dopamine transmission in PFC, but a dopaminergic
disruption may be also observed in brain areas related with emotional processing such as
amygdala [21]. Indeed, DA is a neurotransmitter synthesized in dopaminergic neurons, whose
cell bodies are located in ventral tegmental area (VTA) and then projected to Nucleus
Accumbens (NAcc), Striatum and PFC. DA is stored in vesicles and released into the synaptic
cleft where it may act binding dopaminergic receptors, or may be re-uptaken into dopaminergic
neurons by the dopamine transporter (DAT) [22], or metabolized by Catecholamine-O-
methyltrasferase (COMT) [23], [24]. While DAT is mainly expressed in the Striatum, COMT
is abundantly expressed in pyramidal neurons of the PFC [23], [25], likely because of the
scarcity of cortical DA transporters [26]. For this reason, a dysregulation of DAT and/or COMT

activity may lead to a disruption of the dopaminergic system.



1.2 The endocannabinoid system

Cannabis is among the worldwide used psychoactive drugs, with an estimates 125-227 million
consumers all over the world [27]. The most powerful component of cannabis is the A9-
Tetrahydrocannabinol (A9-THC), which acts as agonist on cannabinoid receptors CBRs
modulating several functions such as learning [28], memory [29], cerebral development [30],
but also social and emotional memories [31] and inflammatory responses [32].

Actually, the most active receptor within the central nervous system (CNS) is the cannabinoid
receptor 1 (CB1) [33]-[36], ubiquatary expressed in CNS [37]. Intriguingly, over the last few
years, several studies displayed that CB1 receptor is present on astrocytes and their functioning
in the astrocytes is particularly important in mediating cannabinoid-related effects [38], [39].
Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are endogenous ligands for CBRs,
which are “on demand” synthesized at pre- synaptic level starting from phospholipid precursors
[40]. Unlike other neurotransmitters, AEA and 2-AG did not activate after Ca* signaling, but
because of their lipophilicity cross the cell- membrane and bind pre-synaptic CBRs [40].
However, AEA and 2-AG can act as retrograde neurotransmitters and regulating the release of
“classical” neurotransmitters, including glutamate, GABA [41] and dopamine [42]. Indeed,
AEA and 2-AG are able to act on a wide variety of neuronal populations by means of retrograde
signaling, modulating their synaptic plasticity [34], [36], [43].

As mentioned above, a dysfunction in dopaminergic signaling is the most validated theory
about schizophrenia etiology [9]. Nevertheless, dopaminergic dysregulation is insufficient to
explain the non-psychotic symptoms of schizophrenia, which required alternative conceptual
models of schizophrenia [44].

Several studies have demonstrated an endocannabinoid systems dysfunctions in patients
affected by schizophrenia [45], [46]. In fact, elevated endocannabinoids levels have been
detected in the blood and cerebrospinal fluid [45]-[47] of patients with schizophrenia, which
are normalized with both antipsychotics and clinical remission [44], [45]. In addition, other
studies have demonstrated a strong relationship between heavy cannabis consumption and
higher risk to develop psychosis [48].

Nevertheless, not all cannabis consumers show psychosis, which means that other factors may
be implicated in schizophrenia onset. Since genetic mutation were already proposed as main
factor in developing psychiatric disorders, researchers investigated the role of COMT mutation
in this pathology [17], [49], [50] in humans.



Despite the increased number of scientific reports, the mechanism by which gene X
environmental interaction might cause schizophrenia is still unknown. Further research is
needed to unravel the exact mechanism related to the interaction between genetic modifications
and environmental factors in order to find new pharmacological strategies to ameliorate

patients everyday life.



1.3 The endocannabinoid system and emotion

“Social cognition” is the ability to understand and process information about the other people,
and it is strictly related to the ability to distinguish emotions in the other [51]. However, patients
affected by psychiatric disorders, such as schizophrenia or autism, showed deficits in this set
of abilities. The most used task to diagnose anomalies in social cognition is the facial emotion
recognition task (FERT). In fact, several studies of functional magnetic resonance, performed
during FERT, highlighted brain areas involved in social cognition, such as PFC. Despite this,
mounting evidence from human studies [52]-[55] converged on indicating a strong
involvement of the endocannabinoid system in FERT. Nevertheless, these studies showed
some limitations [53], [55]. In fact, in some cases the sample size was too small [53], in other
cases cannabis users reported alcohol use for more days per month and years than controls and,
although the cannabis users were instructed to remain abstinent from drugs for at least 24 hours
before testing, this was not tested [55]. For these reasons, rodents might help to clarify
biological mechanisms and neural circuits involved in social cognition. However, there is no
evidence that rodents may be able to discriminate individuals on the base of their emotional
state. Although, previous studies identified the existence of a transmission of emotions from
one rodent to a familiar observer, but the cognitive processes by which rodents discriminate
conspecifics emotional states are not still understood. In order to investigate what are the
systems involved in social cognition we designed a new powerful translational test to
investigate emotion recognition in mice. We found that mice are able to discriminate negative
and positive emotions evoked in unfamiliar conspecifics, provided first proof about the

involvement of endocannabinoid system in modulation emotion recognition in mice.



1.4 Aims of the thesis

The overall goal of my doctoral work was to develop and asses new tools with translational
valence to investigate how genetic mutations and/or environmental factors might contribute to
develop psychiatric disorder. In order to ultimately investigate mechanisms behind psychiatric
disorders, we decided to use genetically modified mouse models, which allow us to better
control the impact of specific genetic and environmental factors. In particular, we specifically
focused on these four subtopics:

« ADHD, schizophrenia and bipolar disorder are psychiatric diseases with a
strong genetic component, which share dopaminergic alterations. DAT genetics might
be implicated in all these disorders. However, the effects of DAT hypofunction
especially in developmental trajectories have been poorly addressed. Thus, we
comprehensively studied DAT hypofunctional mice (DAT +/-) from adolescence to
adulthood to disentangle DAT-dependent alterations in the development of psychiatric-
relevant phenotypes [56].

« Adolescence is a critical period for the development of higher-order cognitive
functions. Unlike in humans, very limited tools are available to assess such cognitive
abilities in adolescent rodents. We implemented a modified 5-Choice Serial Reaction
Time Task (5CSRTT) to selectively measure attentiveness, impulsivity, broad
monitoring, processing speed and distractibility in adolescent mice [57]

« The PFC is a crucial hub for the flexible modulation of recent memories
(executive functions) as well as for the stable organization of remote memories. DA in
the PFC is implicated in both these processes and genetic variants affecting its
neurotransmission might control the unique balance between cognitive stability and
flexibility present in each individual. Functional genetic variants in the COMT gene
result in a different catabolism of dopamine in the PFC. However, despite the
established role played by COMT genetic variation in executive functions, its impact
on remote memory formation and recall is still poorly explored. We investigated how
transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) might
affect recent and remote memories. Indeed, COMT genetic over activity produced a
selective overdrive of the endocannabinoid system within the PFC which was
associated with enhanced remote memories [4].

« Social emotion recognition abilities are also evident in non-human primates, as

well as in dogs and sheep. Despite this, there is no evidence that mice, the most widely
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used laboratory animals, might be able to discriminate individuals on the base of their
emotional state. Indeed, we developed a new method to investigate emotion
discrimination abilities in mice. Recent studies demonstrated the endocannabinoid
system implication in psychiatric disorders. Starting from the evidence that astrocytes
express cannabinoid receptors and synthesize endocannabinoids, we hypothesized a

dysfunction in this kind of cell in ‘social’ deficits.
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Chapter 2

Dopamine transporter (DAT) genetic hypofunction in mice produces
alterations consistent with ADHD but not schizophrenia or bipolar disorder
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Latte , Francesca Manago ¢, Felice lasevoli ®, Andrea de Bartolomeis °, Francesco Papaleo ©
a. Department of Pharmaceutical Science, University of Padua, Padua, Italy.
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Italy
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Via Morego 30, 16163 Genova, Italy

1 Mereu M and Contarini G contributed equally to this work.

Abstract

ADHD, schizophrenia and bipolar disorder are psychiatric diseases with a strong genetic
component which share dopaminergic alterations. Dopamine transporter (DAT) genetics might
be potentially implicated in all these disorders. However, in contrast to DAT absence, the
effects of DAT hypofunction especially in developmental trajectories have been scarcely
addressed. Thus, we comprehensively studied DAT hypofunctional mice (DAT+/-) from
adolescence to adulthood to disentangle DATdependent alterations in the development of
psychiatric-relevant phenotypes. From pre-adolescence onward, DAT+/- displayed a
hyperactive phenotype, while responses to external stimuli and sensorimotor gating abilities
were unaltered. General cognitive impairments in adolescent DAT +/- were partially
ameliorated during adulthood in males but not in females. Despite this, attentional and
impulsivity deficits were evident in DAT+/- adult males. At the molecular level, DAT +/- mice
showed a reduced expression of Homerla in the prefrontal cortex, while other brain regions as
well as Arc and Homerlb expression were mostly unaffected. Amphetamine treatments
reverted DAT +/- hyperactivity and rescued cognitive deficits. Moreover, amphetamine shifted
DAT-dependent Homerla altered expression from prefrontal cortex to striatal regions. These
behavioral and molecular phenotypes indicate that a genetic-driven DAT hypofunction alters
neurodevelopmental trajectories consistent with ADHD, but not with schizophrenia and bipolar

disorders.
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2.1. Introduction

Dopamine dysfunction is believed to be significantly implicated in the pathophysiology of
several psychiatric disorders, among these being schizophrenia (SZ), attention deficit
hyperactivity disorder (ADHD), and bipolar disorder (BD)[1]-[4]. These are conceptualized
also as diseases of aberrant synaptic function, possibly on a neurodevelopmental basis [2].
These psychiatric disorders all share a strong genetic component [5]-[7]. However, how
dopamine-related genetic variations might differently affect neurodevelopment, giving rise to
divergent abnormalities consistent with ADHD-, SZ- or BD-related dimensions is still not
clear. Dopamine pathophysiology, especially in subcortical regions, is highly linked to the
function of the dopamine transporter (DAT) [2], whose gene variants have been implicated to
different degrees in the above disorders [6], [8].

Animal models of DAT disruption have mainly focused on mice with a complete absence of
DAT. DAT null mutant (-/-) mice exhibit extreme phenotypes such as lack of ability to re-
uptake dopamine from the synaptic cleft, growth retardation, anterior pituitary hypoplasia,
dwarfism, early life mortality and exorbitant hyperactivity [9]-[11].

In agreement, DAT-/- have been ascribed as a bona-fide model for the DAT deficiency
syndrome, also known as early Parkinson's disease )[12], [13]. In contrast, more subtle changes
in DAT activity could be more suitable for understanding its contribution to phenotypes
relevant to disorders such as ADHD, SZ, and BD, as suggested by human studies [14], [15].
Partial DAT hypofunctioning has been studied prevalently for locomotor responses and
reactivity to psychostimulants such as cocaine and amphetamine, and only in adult mice
(Supplementary Tablel).

Thus, in order to gain insight into the impact of partial DAT genetic disruption on disorders
such as ADHD, SZ and BD, we characterized DAT hypofunctioning mice (DAT+/-) at
different ages. In particular, considering the developmental aspect of these disorders, we
performed behavioral investigations in adolescent and adult animals to follow the trajectory of
dopamine dysfunction in DAT+/- mice.

We also compared male and female DAT+/+ and +/- mice with and without exposure to
amphetamine. Indeed, amphetamines may ameliorate symptoms in ADHD [16], conversely,
these same drugs may precipitate or exacerbate psychotic symptoms in both BD [17] and SZ
patients [18] Moreover, all these psychiatric disorders show sex-dependent differences of the
correlated behavioral abnormalities [19], [20], [21]. Finally, in line with the hypothesis that

dopamine dysregulation in SZ, BP and ADHD has been associated with the common final
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pathway of an aberrant synaptic function influencing all dopamine and glutamate physiology
[1], [22], we investigated in cortical and subcortical brain regions alterations of key transcripts
of the postsynaptic density (Homerla, Homerlb, and Arc). These genes have been
demonstrated to be implicated in the pathophysiology and animal modeling of ADHD, SZ and
BP [23]-[27].
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2.2. Methods and materials

All procedures were approved by the Italian Ministry of Health (permit n.17 B1S/2014) and
Animal Use Committee and were conducted in accordance with guidelines for the care and use
of laboratory animals of the NIH and the European Community Council Directives. Original
DAT-/- mice [10] were backcrossed with C57BL6J mice for at least 8 generations. The
breeding scheme used to obtain the experimental mice involved mating DAT hypofunctioning
(DAT+/-) male mice with C57BL6J (DAT +/+) females. DAT+/+ mice were used as female
breeders in order to avoid altered maternal behavior. Only DAT+/+ and +/- littermates were
used for all experiments. Mice were genotyped by PCR analysis of tail DNA. Mice were group-
housed (two to four per cage) in a climate-controlled animal facility (22 + 2 C) and maintained
on a 12 h light/dark cycle (7am-7pm) with ad libitum access to food and water, unless specified
in particular experiments. All experimental tests were conducted in male and female adolescent
(PND 28e45) and adult (3e7 months old) mice during the light phase. Mice were handled by
the experimenter on alternate days during the week preceding the test. Experimenters were

blind to the genotype during testing.

2.2.1. Acoustic startle response (ASR) and prepulse inhibition (PPI)

Acoustic startle response (ASR) and prepulse inhibition (PPI) were measured using four SR-
Lab System (San Diego Instruments) as previously described [27]-[29]. Startle experiments
test sessions began by placing the mouse in the Plexiglas holding cylinder (5 cm diameter) for
a 5 min acclimation period. After the acclimation period, each subject received 36 trials over
the 9 min test session. There were six different sound levels (in decibels) presented: 70, 75, 80,
85, 90, and 120. Each stimulus was 40 ms and presented four times in pseudorandom order
such that each sound level was presented within a block of six trials. The interval between trials
was 10e20 s. The ASR was recorded for 65 ms (measuring the response every 1 ms) starting
with the onset of the startle stimulus. The maximum startle amplitude recorded during the 65
ms sampling window was used as the dependent variable. The PPI is an attenuation of the
startle response when the startle-eliciting stimulus (pulse), is preceded by a weaker sensory
stimulus (prepulse). In this test, mice were presented with each of seven trial types across six
blocks of trials for a total of 42 trials. Trial types were presented randomly within each block.
The interval between trials was 10e20 s. One trial type measured the response to no stimulus
(baseline movement), and another presented the startle stimulus alone (startle), which was a 40

ms, 120 dB sound. The other five were acoustic prepulse plus acoustic startle stimulus trials.
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Prepulse tones were 20ms at 70, 75, 80, 85, and 90 dB, presented 100 ms before the startle
stimulus (120 dB). The maximum startle amplitude was the dependent variable. A background

level of 70 dB white noise was maintained over the duration of the test session.

2.2.2. Locomotor activity (LMA) and sensitization to psychostimulants

The experimental apparatus consisted of four open field arenas (42 x 42 x 30 cm), illuminated
by overhead white lighting (25 £ 5 lux). To quantify exploratory and locomotor activities a
video tracking system (ANYMAZE®) was used during 1 h of test. Parameters analyzed were
total distance travelled (m) and percentage of time in the internal zone. One week after basal
assessment, mice were treated with amphetamine HCI (1.5 mg/kg i.p) immediately before the
LMA test and the test was repeated for 5 consecutive days.

2.2.3. Temporal order object recognition (TOR) task

The test was performed as previously described [27], [30]. Mice were tested in an experimental
apparatus consisting of an opaque open field box (42 x 42 x 30 cm) with even, overhead white
lighting (25 + 5 lux). Each session was video-recorded using an overhead camera from ANY -
maze (Stoelting Co.). Each mouse was monitored for its locomotor activity in the empty open
field boxes for 1 h. The next day, in the TOR test, the subjects’ ability to differentiate between
two objects presented at different intervals was assessed. The objects presented were
rectangular boxes (3 x 3 x 6 cm), or two laboratory flasks (4 x 6 cm), each either black or white
and too heavy for the animals to displace. The objects were placed in two corners of the open
field apparatus, 8 cm from the sidewalls. This task comprised of two sample phases and one
test trial. In each sample phase, the subjects were allowed to explore two copies of an identical
object for a total of 5 min. Different objects were used for sample phases 1 and 2, with a 1-h
delay between the two sample phases. The test trial (5- min duration) was performed 3 h after
sample phase 2. During the test trial, a third copy of the objects from both sample phase 1 and
sample phase 2 were used. Time spent exploring each object was subsequently scored from the
ANY-maze videos as the number of seconds when each subject was facing the object and 1 cm
away. If temporal order memory is intact, subjects will spend more time exploring the object
from sample 1 (i.e., the object presented less recently compared with the object from sample 2
(i.e., the object minimum of 2 s exploration in the sample or test phases were excluded from
the analysis. Discrimination between the objects was calculated using a discrimination ratio
that takes into account individual differences in the total amount of exploration. In particular,

the discrimination ratio was calculated as the difference in time spent by each subject exploring
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the objects from sample phase 1 compared with the objects from sample phase 2 divided by

the total time spent exploring both objects during the test period.

2.2.4 Five choice serial reaction time task (5CSRTT)

The classical 5CSRTT has been used to measure different aspects of attentional control in
rodents [31], with relevance to numerous clinical disorders such as ADHD [32], [33], SZ [34]
and BD [35]. The first part of the task was performed as previously described [28], while the
implemented modified parts as well as the SARAT paradigm was performed as extensively
described in [36](Huang et al., 2017).

2.2.4.1. Apparatus

Training and testing were conducted in operant chambers (Med Associates, St. Albans, VT,
USA), housed in sound-attenuating and ventilated boxes. Each operant chamber contained a 5
nose-poke hole wall outfitted with a LED stimulus light for each hole. Two additional LED
cue lights (red and green) were installed above each of the 5 nose-poke holes. Nose-poke was
detected by an infrared beam. On the wall the 5-hole array there was a food magazine and a
head entry detector where food reinforcement (14 mg pellets of the 5 TUL purified rodent
tablet, Test Diet®) was delivered by a pellet dispenser. A water dispenser on the latter wall
allowed the mice to have full access to water throughout the test. A house light was located 7
cm above the food magazine. The operant chambers were connected to a Smart Control Panel
and interfaced to a Windows computer equipped with a MED-PC IV software (Med Associates,
St. Albans, USA).

2.2.4.2. Habituation

During the handling sessions, mice were weighed to obtain a baseline of their ad libitum body
weight. Food restriction was imposed on adult mice during the duration of the experiment in
order to maintain at least 90% of body weight. All animals received 1 g pellet after each daily
session. Mice were weighed and then placed into the operant chambers each morning at 9.30

a.m.

2.2.4.3. Training protocol
Each day, adult mice were presented with one session. When head entry to retrieve the free
reinforcement pellet was detected, the first trial began with an inter-trial interval (ITI). Any

nose-pokes during the ITI was recorded as premature responses and resulted in a time-out
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(default 5s) with the house-light turned on. At the end of the time-out, the house-light turned
off and the ITI restarted. Any nose-pokes during the time-out reset the time-out. At the end of
the ITI, the program randomly selected a stimulus location (1 out of 5 stimulus lights) and
turned on the corresponding stimulus light. The stimulus light remained on for the stimulus
duration (SD) value set. The animal has limited hold (LH) time to nose-poke into the lit hole.
If the animal nose-poked into the correct lit hole before the LH time runs out, this was recorded
as a correct response, the first response to stimulus was recorded, the stimulus light was turned
off if not turned off earlier, the correct response latency was recorded and the pellet issued. If
the animal responded to one of the nose-poke holes that was not lit, this was recorded as an
incorrect response, the first response to stimulus was recorded, the stimulus light was turned
off if not turned off earlier, the incorrect response latency recorded, and the house-light turned
on for the time-out period. At the end of the time-out, the house-light was turned back off and
the ITI started. Any nose-poke during the timeout reset the time-out. If the animal did not nose-
poke into any hole before the limited hold time runs out, this was recorded as an omission error,
the first response to stimulus was recorded as 0, the stimulus light turned off if not turned off
earlier, the correct/incorrect response latency was recorded as 0 (this value was not included in
the calculation of correct/incorrect response latencies), and the house-light turned back off and
the ITI started. Any nose pokes during the time-out reset the time-out. Training consisted of 6
stages. To precede to each subsequent stage, mice were required to reach the criterion for 2
consecutive sessions. Each stage was more challenging than the last, with the SD and LH period
decreasing while other criteria (such as the required number of correct trials) become more
demanding. Each 30-min session has a maximum limit of 100 trials. The following measures
were recorded to assess task performance as showed in the results section:

e Correct responses: Number of correct responses divided by total number of trials,
multiplied by 100.

e Correct Latency (average latency to a correct response): Total time from onset of light
stimulus to the performance of a correct response divided by number of correct
responses.

e Choice accuracy: Number of correct responses divided by the sum of number of correct
and incorrect responses, multiplied by 100.

e Incorrect responses: Number of incorrect responses divided by total number of trials,
multiplied by 100.

e Omissions: Number of omissions divided by total number of trials, multiplied by 100.
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e Reward Latency (average latency to collect a food reward): total time from the
performance of a correct response to the retrieval of the food reward from the food
magazine divided by the number of correct responses.

e Premature responses: Number of premature responses divided by sum of correct,
incorrect, premature, perseverative and timeout responses (total number of responses),
multiplied by 100.

e Perseverative responses: Number of perseverative responses divided by total number

of responses, multiplied by 100.

2.2.5. Number of time-out responses
2.2.5.1. Stabilization (basic task)
Upon reaching the final training stage, mice were subjected to one week of testing at this stage

in order to achieve a stable performance.

2.2.5.2. Spatial attentional resource allocation task (SARAT)

The week after, mice were tested on the SARAT protocol. This consisted of 3 different trial
types randomly presented. The trial type 1 (normal trial) was the same as in the stabilization
stage where the stimulus light was turned on randomly in 1 of the 5 nose-poke holes. The
second type of trial (Cued 1 trial) was the same as the normal trial type with the addition of a
red cue light appearing over the correct nose-poke hole from 1 s before to 1 s after the stimulus
light duration (i.e. number of cues= 1). The third type of trial (Cued 5 trial) was the same as
the normal trial type with the addition of a red cue light appearing over each of the 5 nose-poke
holes from 1 s before to 1 s after the stimulus cue duration (i.e. number of cues=5). Any nose-
pokes made during the red cue light was lit, but before the stimulus light was presented, was
considered a premature response and was not rewarded

resulting in a time-out period. Each trial type was presented equally in a random fashion
throughout each session. Mice were exposed to 1 week to this SARAT protocol presented in 2
out of 7 testing days ( Monday and Thursday) while on the other 5 days (Saturday, Sunday,
Tuesday, Wednesday, Friday), a normal stabilization stage was run.
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2.2.5.3. Sub-chronic treatment with low doses of amphetamine

After these different test manipulations, mice were administered daily with low doses of
amphetamine (0.375 mg/kg/10ml i.p.) and immediately tested on the normal stabilization trial
type for 5 consecutive days. After that, the last day immediately after the amphetamine
injection mice were tested on the SARAT protocol. The amphetamine dose was selected based
on the lowest one previously used in the 5CSRTT in mice [28] in order to avoid affecting

locomotor activity.

2.2.6. In situ hybridization

Animals treated with vehicle or amphetamine (1.5 mg/kg, i.p.) were Killed by decapitation 90
min after the last injection. Brains were removed, quickly frozen on powdered dry ice and
stored at -70 °C prior to sectioning. Serial coronal sections of 12 mm were cut on a cryostat at
-18 °C through the forebrain at the level of the prefrontal cortex (PFC) and the middle-rostral
striatum, using the mouse brain atlas by Paxinos and Watson as an anatomical reference.
Sections were thaw-mounted on to gelatin-coated slides, and stored at 70 C for subsequent
analysis. Probes used for radioactive in situ hybridization were oligodeoxyribonucleotides
complementary to sequences of target genes mMRNAs (MWG Biotech, Firenze). Details for all
probes are listed in Supplementary Table 1. All probes were designed from Gen-Bank
sequences and checked with BLAST in order to avoid cross hybridization. For each probe, a
50 ml labeling reaction mix was prepared on ice using DEPC-treated water, 1X tailing buffer,
7.5 pmol/ml of oligodeoxyribonucleotide, 125 units of terminal deoxynucleotidyl transferase
(TdT) and 100 mCi 35S-dATP. The mix was incubated for 20 min at 37 °C. Unincorporated
nucleotides were separated from radiolabeled DNA using ProbeQuant G-50 Micro Columns
(Amersham- GE Healthcare Biosciences, Milano, Italy). Sections were processed for
radioactive in situ hybridization according to previously published protocols. All solutions
were prepared with sterile double distilled water. The sections were fixed in 4% formaldehyde
in 0.12MPBS (pH 7.4), quickly rinsed three times with PBS, and placed in 0.25% acetic
anhydride in 0.1 M triethanolamine/0.9% NaCl, pH 8.0, for 10 min. Next, the sections were
dehydrated in 70%, 80%, 95% and 100% ethanol, delipidated in chloroform for 5 min, rinsed
again in 100% and 95% ethanol and air-dried. Sections were hybridized with 0.4e0.6106 cpm
of radiolabeled oligonucleotide in buffer containing 50% formamide, 600mMNaCl, 80
mMTris-HCI (pH 7.5), 4 mM EDTA, 0.1% pyrophosphate, 0.2 mg/ml heparin sulfate, and 10%
dextran sulfate. Slides were covered with coverslips and incubated at 37 °C in a humidified

chamber for 22e24 h. After hybridization the coverslips were removed in SSC and the sections
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were washed 4 -15 min in 2x SSC/50% formamide at 43e44 °C, followed by two 30-min
washes with 1X SSC at room temperature. The slides were rapidly rinsed in distilled water and
then in 70% ethanol. The sections were dried and exposed to Kodak-Biomax MR
autoradiographic film (Sigma). A slide containing a scale of 16 known amounts of 14C
standards (ARC-146C, American Radiolabeled Chemical) was co-exposed with the samples.
The autoradiographic films were exposed in a time range of 14e30 days. The optimal time of
exposure was chosen to maximize signal-to-noise ratio but to prevent optical density from
approaching the limits of saturation. Quantitation of the autoradiographic signal was performed
using a computerized image analysis system by ImagelJ software (v. 1.46v,
http://rsh.info.nih.gov/ij/). All hybridized sections used for comparative statistical analysis
were exposed on the same sheet of X-ray film. Signal intensity analysis was carried out on
digitized autoradiograms measuring mean optical density within outlined regions of interest
(ROIs) as shown in Fig. 4A. Measurements of optical density within ROIs were converted into
“relative dpm” using a calibration curve based on the standard scale co-exposed to the sections.
14C standard values from 4 through 12 were previously cross-calibrated to 35S brain paste
standards. In order to obtain a calibration curve for each X-ray film, a “best fit” 3rd degree
polynomial was used. For each animal, measurements from 3 adjacent sections were averaged
and the final data reported in relative dpm as mean £ S.E.M. The in situ hybridization procedure

(sectioning, hybridization and quantification) was performed blinded with coded frozen brains.

2.2.7. Statistical analysis

Three and four-way ANOVAs (Analysis of VVariance) were used to analyze the contribution of
the categorization factors taken into account (genotype, sex, developmental stage, repeated
measure) on the outcome of the dependent variable (behaviors and gene expressions).
Newmane Keul's post-hoc test was used for making comparisons between groups when the
overall ANOVA showed statistical significant differences for the main factors or their
interactions. We also performed Student's t-test in each sex subgroup in order to analyze
differences in gene expression levels in

male and female animals separately. The accepted value for significance was p < 0.05. The

statistical analyses were performed using JMP 9.0.1 and Statistica 11 (StatSoft) software.
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2.3. Results

2.3.1. DAT genetic hypo-function did not affect startle reactivity and sensorimotor gating
abilities in adolescent and adult mice

PPI is a sensorimotor gating measure that is highly conserved across mammalian species, and
can be studied experimentally in mice [29]. PPI deficits are evident in patients with SZ [37],
[38] and BD [39], while for ADHD current evidence are negative [38], [40].

A detailed analysis on responses to several acoustic startle stimuli and reaction thresholds
revealed no DAT genotype effect in adolescent male (F1,3:= 0.02; p =0.88; Fig. 1A) and female
mice (Fi3s= 0.22; p= 0.63; Fig.1B), as well as in adult male (F1,32 = 0.28; p= 0.60; Fig.1C)
and female mice (F1,23=0.0018; p=0.96; Fig.1D). Similarly, the PP1 of a 120 dB acoustic startle
stimulus showed no DAT-dependent effects in all tested groups (F1,134=0.082; p=0.77, Fig.1E
e H). In all groups, PPI progressively increased with higher prepulse intensities (p < 0.0001).
Again, no DAT-dependent differences were found in the startle amplitude measured
(Supplementary Fig. 1). This is in contrast to DAT-/- mice which have been consistently
reported to show startle and PPI deficits [41], [42] (see Supplementary Table 1). Overall, these
results demonstrate that DAT hypofunctioning throughout the animal’s life did not affect startle
and PP1 measures, discrepant to PPI deficits found in SZ and BD, but consistent with evidence
reporting that these abilities are mostly intact in patients with ADHD.
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Figure 1. Acoustic startle reaction amplitude (in arbitrary units) displayed by DAT+/+ and DAT+/- (A) adolescent
males (+/+ = 15; +/-= 18), (B) adolescent females (+/+= 26; +/-= 12), (C) adult males (+/+= 21; +/-=13), and (D)
adult females (+/+= 15; +/-= 10) after the presentation of 70, 82, 90, 100, 110 and 120 acoustic startle stimuli.
Prepulse inhibition (in percentage) of the 120 dB acoustic startle response displayed by (E) adolescent males (+/+=
15; +/-=21), (F) adolescent females (+/+= 24; +/-= 15), (G) adult males (+/+= 17; +/-= 15), and (H) adult females
(+/+=15; +/-= 12) after the presentation of 70, 75, 80, 85, 90 dB prepulse sound stimuli. Values represent mean
+ SEM throughout all Figures.
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2.3.2. DAT genetic hypofunction produces a hyperactive phenotype from adolescence to
adulthood

Hyperactivity is markedly evident in ADHD as an inherent diagnostic factor and often a
pervasive symptom dimension among clinical manifestations [43], while for SZ and BD levels
of activity may be not substantially affected [44]. The term hyperactivity generally refers to
excessive motor activity and in patients with ADHD might be qualitatively different between
individuals and might vary depending on patient's age and sex [45]. A strong DAT genotype
effect in the distance travelled in an empty open field arena was evident (F1120= 33.82, p <
0.0001; Fig. 2A e D). This effect was independent from the sex of the subjects or their
developmental stage as no DAT-by-sex, DAT-by-developmental stage or DAT-by-sex-by-
developmental stage interactions were present (Fy, 120= 33.82, p > 0.53). In particular, DAT+/-
mice were consistently hyperactive compared to their +/+ littermates (p < 0.0005; Fig. 2).
Moreover, in contrast to +/+ mice, DAT+/- did not show a normal habituation to the novelty
of the open field arena (p < 0.05). No DAT-dependent differences were evident for other
parameters such as time spent in the internal zone compared to the external one (Supplementary
Fig. 2). Despite being significant, this hyperactive phenotype was much weaker than in DAT-
/- mice [10] (see Supplementary Table 1). Thus, previous statistically negative findings in
DAT+/- [10] might derive by the overwhelming DAT-/- phenotype and/or by less sensitive
tracking technology. Finally, general health assessment in DAT +/+ and +/- mice demonstrated
no DAT-dependent differences, and no interactions with sex or developmental stage in body
weight, physical aspect and life expectancy (Supplementary Table 3). Also this was in contrast
with DAT-/- mice which show growth retardation, dwarfism, and very poor survival [46].
Overall, these data show that partial DAT genetic disruption results in a consistent hyperactive
phenotype since adolescence (Fig. 2A e B) that persists throughout the lifespan. This is

consistent with hyperactive phenotypes present in patients diagnosed with ADHD.
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Figure 2. Spontaneous locomotor activity displayed by DAT+/+ and DAT+/- (A) adolescent males (+/+= 18; +/-
=19), (B) adolescent females (+/+= 26; +/-= 15), (C) adult males (+/+= 18; +/-= 11), and (D) adult females (+/+=
16; +/-=13). *p<0.05, **p<0.005, ***p < 0.0005 versus p/p littermates. Discrimination ratio displayed by DAT+/+
and DAT+/- (E) adolescent males (+/+=18; +/-= 14), (F) adolescent females (+/+= 21; +/-= 14), (G) adult males
(+/+=28; +/-=8) and (H) adult females (+/+/=12; +/-= 8) during the 5-min temporal order object recognition test.

**p<0.005 versus +/+ littermates.
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2.3.3. DAT genetic hypofunction disrupts recency memory abilities more during
adolescence than in adulthood

Cognitive deficits have been suggested as core symptoms of SZ (Elvevag and Goldberg, 2000),
ADHD [47] and BD [48]. Thus as a first screening test we tested DAT hypofunctional mice in
a temporal order object recognition task that has a broad implication of the medial prefrontal
cortex (mPFC), hippocampus and perirhinal cortex (PRH)[49]. Temporal order object
discrimination was disrupted in both adolescent males (F1, 30 = 5.98, p= 0.020; Fig. 2E) and
females (F1, 27 = 4.43, p = 0.045; Fig. 2F). In contrast, only adult DAT+/- female mice showed
this cognitive impairment (Fy, 18 = 6.04, p = 0.03; Fig. 2H), while DAT+/- males were not
affected (F1,18=0.02; p =0.95; Fig. 2G). No significant differences among groups were evident
in the total time spent exploring both objects during sample and test phases in both adolescent
(male: Fy,30=0.01, p = 0.90, females: F1,27 = 0.40, p = 0.53; Supplementary Figs. 3A e B) and
adult mice (males: F137= 0.78, p = 0.38, females: F1,18 = 0.40, p = 0.53; Supplementary Figs.
3C e D). Thus, DAT genetic reduction did not alter motivation, curiosity, motor, olfactory,
tactile, or visual functions that might affect object recognition. No previous study assessed
DAT involvement in recency memory in this kind of task. However, in the novel object
recognition task, assessing different cognitive functions and relying on different brain areas
[27], [49], adult DAT-/-, +/- and knock-in mice show impairments in the ability to recognize a
familiar object [42], [50]-[53] (see Supplementary Table 1). Thus, our data indicate that DAT
hypofunctioning produced general cognitive deficits during adolescence that seemed to

diminish in male mice in adulthood.

2.3.4. DAT genetic hypofunction produces selective inattentive and impulsive phenotypes
in adulthood

Based on evidence suggesting an ADHD-like profile in DAT+/- mice (Fig. 2) and a less general
cognitive impairment in DAT+/- adult males (Fig. 2G), we aimed to dissect more subtle and
ADHD-relevant cognitive impairments in adult DAT+/- male mice. To achieve this, DAT+/+
and +/- adult males were tested in the 5SCSRTT which has been designed and validated to assess
ADHD-relevant cognitive deficits at the preclinical level [36], [54]. A DAT genotype effect
was found for parameters such as choice accuracy (F1, 17 =7.23; p= 0.015), incorrect responses
(F117=5.88; p = 0.027), and premature responses (F1,17= 10.39; p = 0.006). In particular,
compared to +/+ littermates, DAT +/- mice displayed a decreased level of choice accuracy (p
< 0.005; Fig. 3C), and they made more incorrect (p < 0.05; Fig. 3D) and more premature
responses (p < 0.005; Fig. 3G).
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Figure 3. Different parameters measured in the 5CSRTT displayed by adult male DAT+/+ (9) and DAT+/- (11)
mice, during one week of stabilization at stage 6 after animals reached the training criteria. (A) Percentage of
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responses. *p<0.05, **p<0.005 versus p/p littermates.
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These deficits were selective as no DAT genotype effect was evident for all other parameters
measured including correct responses (F1,17=0.11; p = 0.74; Fig. 3A), latency to make a correct
response (Fy,17 = 0.39; p = 0.54; Fig. 3B), omissions (F1,17 = 0.048; p =b0.83; Fig. 3E), reward
latency (F1,17=0.38; p = 0.54; Fig. 3F), perseverative responses (F1,15=2.98; p = 0.10; Fig. 3H),
and time out responses (F1,17 = 2.25; p = 0.15; Fig. 31). To our knowledge, DAT mutant mice
have not been previously assessed in this task. Moreover, because of their extreme physical
and hyperactive phenotypes, no meaningful data could be derived by DAT-/- mice. These
current data demonstrate that DAT hypofunctioning produced selective impairments in indices
of attentional and impulsive control, consistent with core behavioral alterations observed in
patients with ADHD.

2.3.5. DAT genetic hypofunction decreases Homer la expression in cortical executive
function-related regions while sparing Arc and Homer 1b

The short Homer protein Homerla is transcriptionally induced only upon neuronal cell
stimulation [23], [55]-[57]. Notably, specific silencing of Homerla reportedly produces a
hyperactive phenotype, and deficits in attentional and learning abilities reminiscent of ADHD-
related behaviors [58] . Moreover, the PFC expression of Homerla gene and protein is
disrupted in male spontaneous hypertensive rats (SHR), the most frequently used animal model
of ADHD (Hong et al., 2009). Gene expression was analyzed by ANOVA. In case of significant
ANOVA, group pairs were compared by the Newman Keul's post hoc test. For clarity, groups
have been subdivided per genders in graphical rendering of gene expression levels. A DAT
genotype effect on Homerla mRNA levels was found in PFC regions particularly related to
executive functions (ACC: Fz12=4.5, p =0.02; MO: F311=10.7, p = 0.001; VO: F31:=18 04,
p= 0.0001; LO: Fz1:1= 10.5, p= 0.001; Fig. 4A e D and Supplementary Figs. 5A and D).
Specifically, DAT +/- mice displayed lower levels of Homerla mRNA compared to +/+
littermates (ACC p=0.003, MO p=0.0004, VO p=0.0001, LO p=0.0002). These effects were
consistent in both male and female animals. No DAT-dependent differences in Homerla
expression were found in lateral regions of the caudate-putamen, nucleus accumbens and in
cortical regions related to motor and sensory functions (p > 0.05; Fig. 4 and Supplementary
Figs. 5BeE). Alternative splicing of the Homerl gene leads to the long isoform Homerlb,
which is a constitutively expressed splice isoform without any activity-dependent regulation.

Within dendritic spines, long Homer isoforms tetrameric complexes, which are required for
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synaptic localization of the post-synaptic proteins Shank and PSD-95 and provide a binding

platform for other synaptic proteins [59].

A

Pl
awo ‘%0 a1

M

ACC
‘034 oL |
\\ul\l
‘

Sab

Cab

ss

B d Q C d Q

DAT++ DAT+- DAT+H+ DAT+- DAT++ DAT+- DAT++ DAT+-

’Q T '* ﬁ‘&

v

mfﬁﬁ%(a(ﬂ
Q( hf.q

tl.l« o g.‘. PR

ENCNENAN

oD

Homerla _‘H‘

Homer1b [

Naive Subchronic ampheta
Arc | Homerla | Homerlb | Arc | Homerla | Homerib
CORTICAL EXECUTIVE FUNCTIONS RELATED ROIS
ACC ) ) )
MO
VO ! ) ) i
LLO
Prl
STRIATUM ROIS
DM ) ! )
DL {
VL
VM )
Cab
Sab {
CORTICAL MOTOR AND SENSORY FUNCTIONS RELATED ROIS
M2
MI )
SS {
1IC )
Al
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(B) Representative autoradiograms of Arc, Homerla and Homerlb mRNA expression throughout cortical and

striatal subregions in naive DAT +/+ and DAT +/- male and female littermates. (C) Representative autoradiograms

of Arc, Homerla and Homerlb mRNA expression throughout cortical and striatal subregions in amphetamine-

treated DAT +/+ and DAT +/- male and female littermates. (D) Summary table showing the DAT genotype

differences of Arc, Homerla and Homerlb mRNA expression in naive and amphetamine-treated DAT +/+ and

DAT +/- mice. Y significant decreased expression versus +/+ littermates. ACC: anterior cingulate cortex; MO:
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cortex.
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DAT hypofunction did not alter expression of the constitutive Homerlb gene throughout the
brain including PFC regions (p > 0.05), striatal (p > 0.05), and other cortical motor and sensory
function-related ROIs (p > 0.05) (Fig. 4, Supplementary Fig. 6). Activity-regulated
cytoskeletal-associated (Arc) postsynaptic signaling complexes are converging point of SZ-
relevant genetic variants. Arc genetic disruption has been associated with SZ [60], [61] and
rodent correlates of SZ symptoms [27]. Moreover, reduced expression of Arc mRNA has been
detected in the PFC of individuals with SZ [62]. DAT genotype effects on Arc expression were
evident only in the ACC and VO (Fs9= 4.1; p= 0.04 and Fs9= 5.1; p= 0.02, respectively). In
particular, mRNA levels in DAT +/- mice were significantly lower than in +/+ littermates
(ACC p= 0.033, VO p= 0.008; Fig. 4 and Supplementary Fig. 7D). Comparison analyses
revealed that these effects were mostly driven by female DAT+/- mice but not present in males
(Supplementary Figs. 7A and D). No DAT-dependent effects were evident for Arc expression
in both striatal (p > 0.05) and cortical motor and sensory functions-related ROIls. Overall, data
from molecular imaging of gene expression in DAT +/- mice were consistent with the
hypothesis that the DAT +/- genotype may be relevant to ADHD, but not to SZ and BD
phenotypes. Indeed, the molecular alterations found in this genotype were strongly divergent,
both quantitatively and topographically, from those reported in clinical and preclinical studies
on SZ and BD.

35



2.3.6. Amphetamine rescues inattentive and impulsive phenotypes produced by DAT
genetic hypofunction

Amphetamines are the first-line pharmacological treatments in the management of ADHD,
since they improve symptomatic domains such as inattentiveness and impulsivity [16]. Thus,
we sub-chronically treated with amphetamine DAT +/+ and +/- adult male mice and tested
them in the different protocols of the 5CSRTT. In contrast to what was found in drug naive
conditions (Fig. 3), DAT +/- treated with amphetamine did not show deficits in parameters
such as choice accuracy (F1,15= 0.39; p= 0.54; Fig. 5C), incorrect (F1,15= 0.30; p= 0.59; Fig.
5D) and premature responses (F1,15= 0.006; p= 0.94; Fig. 5G). As for previous tests, no DAT-
dependent effects were evident for all other parameters. These data indicate that treatment with
amphetamine was sufficient to abolish DAT-dependent alterations in inattentive and impulsive

cognitive domains.
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2.3.7. Amphetamine decreases DAT-dependent hyperactivity in adults in both sexes, but
only in males in adolescence

Amphetamine exacerbates psychotic experiences in patients with SZ, can be psychogenic in
normal human subjects, and its locomotor responses are used in rodents as correlates of SZ-
like positive and BD mania-like symptoms [63], [64]. In contrast, treatment with amphetamines
ameliorates hyperactive phenotypes in patients diagnosed with ADHD [65]. Amphetamine
treatments for 5 consecutive days revealed a DAT genotype-by-sex-by-developmental stage-
by treatment day interaction effect (Fs,260= 2.35,p= 0.05; Fig. 6). In particular, as previously
shown in adult DAT -/- males [11], adult DAT +/- males and females did not show the expected
behavioral sensitization to amphetamine treatment as in DAT +/+ littermates (p < 0.005; Fig.
6 C e D). A similar effect was evident in adolescent DAT +/- males (p < 0.005; Fig. 6A). In
contrast, adolescent DAT +/- females responded to the amphetamine challenges as their +/+
littermates (p = 0.85; Fig. 6B). Overall, these findings indicate that DAT genetic
hypofunctioning produced a paradoxical decreased locomotor response to amphetamine, which

was absent only in adolescent females.

38



Adolescents Adults

>

500 C 500
250 g 250 l
ﬁ 1 E : I
0 0
1 2 3 4 5

500 500

Total Distance (m)
*
*x
Tk
*x
™

w
w

250 ' Q 250
0 0 I
1 2 3 4 5 1 2

3 4 5
Amphetamine Treatment (days) Amphetamine Treatment (days)

—— dededk
1 ek

Total Distance (m)
ks

(] DAT+/+ B DAT+/-

Figure 6. Locomotor activity measure after 5 consecutive days of amphetamine treatments displayed by DAT +/+
and DAT +/- (A) adolescent males (+/+=5; +/-=7), (B) adolescent females (+/+= 8; +/-=7), (C) adult males (+/+
= 10; +/-=13), and (D) adult females (p/p %2 13; p/_ ¥ 11). **p<0.005, ***p < 0.0005 versus p/p littermates at

the same time point.

2.3.8. Amphetamine ameliorates the DAT-dependent altered pattern of expression of
Homerla in the PFC, while extended it at striatal levels

Based on our behavioral findings that amphetamine treatment ameliorates ADHD-relevant
behavioral abnormalities in DAT hypofunctional mice, we next investigated if amphetamine
treatment might also modulate DAT-dependent molecular alterations. In the amphetamine-
treated groups, significant differences in Homerla expression between DAT +/- and DAT +/+
mice were found in fewer executive function-related cortical regions than in drug naive animals
(only ACC: F3, 10= 10.9, p= 0.0017; MO: F3e= 9.4, p= 0.003; VO: F3z10= 34.5, p= 0.0001).
Moreover, the prominent effect of the DAT genotype on gene expression observed in naive
animals was lost (Fig. 4, Supplementary Fig. 5A). Amphetamine treated DAT +/- and DAT
+/+ mice almost did not differ in the levels of PFC Homerla gene expression, and this result
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was more pronounced in the male sub-group (p > 0.05; Supplementary Fig. 8A). In contrast to
drug-naive mice, in amphetamine-treated mice, several DAT-dependent significant differences
appeared in all striatal regions (DM: F3,10=36.5, p ¥4 0.0001; DL: F310= 33.4, p=0.0001; VL:
Fso=81.4, p= 0.0001; VM: F310 = 35, p= 0.0001; Cab: Fzg9= 34.5, p= 0.0001; F39= 15.6, p=
0.0006; Fig. 4, Supplementary Fig. 8 C,F). In particular, DAT +/- displayed significantly lower
levels of Homerla mRNA compared to +/+ mice (DM p= 0.0003, DL p= 0.0008, VL p=
0.0002, VM p= 0.0004, Cab p= 0.001, Sab p= 0.001). Planned comparisons revealed these
effects to be largely driven by DAT +/- males, although similar effects were evident in females
as well (Supplementary Fig. 8F). Homerla expression in cortical regions related to motor and
sensory functions was significantly affected in amphetamine-treated mice (p < 0.05), while in
drug-naive mice this was not the case (Fig. 4, Supplementary Figs. 5 and 8). As for drug-naive
mice, no DAT-dependent effects were evident in Homerlb expression in amphetamine-treated
mice in PFC (p > 0.05; Fig. 4, Supplementary Fig. 9 A, D), striatal (p > 0.05) (Fig. 4,
Supplementary Fig. 9 C, F), and motor and sensory functions-related ROIs (p > 0.05) (Fig. 4,
Supplementary Figs. 9B and E). The pattern of Arc expression in amphetamine-treated mice
closely resembled that observed in naive mice in the same cortical regions (ACC: F3 12=3.63,
p=0.04; VO: F3 12= 5.34, p= 0.014; Fig. 4; Supplementary Figs. 10B and E). Indeed, also after
amphetamine treatment a significant genotype effect was observed on cortical Arc mRNA
expression (ACC p=0.0007, VO p= 0.002), with DAT +/- mice expressing lower gene levels
compared to controls. Conversely, in contrast to drug-naive mice, in the amphetamine treated
groups Arc mRNA levels were significantly different through almost all caudate-putamen
regions analyzed (DM: Fs10- 16.8, p= 0.0003; VL: F311= 9.9, p= 0.001; VM: F312= 80, p=
0.003). A genotype effect was observed in the above-mentioned regions (DM p % 0.0001, VL
p= 0.0005, VM p= 0.0007), and in particular gene levels were higher in DAT +/+ mice
compared to DAT +/- mice (Fig. 4, Supplementary Figs. 10C and F). As concerns cortical
regions related to motor and sensory functions, gene expression assessed by two-way ANOVA
showed significant differences only in SS and IC of amphetamine-treated groups (p < 0.05)
(Fig. 4, Supplementary Figs. 10B and E; Supplementary Table 2). Overall, amphetamine
treatment reverted in large part the altered expression of Homerla in the PFC of DAT +/- mice.
On the other hand, amphetamine reduced the expression of both Arc and Homerla in a DAT-
dependent way mainly in striatal regions. These results parallel previous findings in which
ADHD-like behaviors induced by Homerla down-regulation were reverted by Homerla up-

regulation after methylphenidate administration [58].
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2.4. Discussion

This study demonstrates that genetic variations resulting in DAT hypofunction produce several
core behavioral alterations analogous to those reported in patients with ADHD, but not SZ or
BD. These behavioral abnormalities were associated with a selectively reduced expression of
Homerla in cortical executive function related regions. Amphetamine ameliorated both DAT-
dependent behavioral and molecular alterations. DAT+/- mice were characterized by ADHD-
relevant phenotypes including persistent hyperactivity, cognitive alterations in attentional- and
impulsive-control with intact sensorimotor gating abilities, as well as behavioral amelioration
after treatment with amphetamine. In order to overcome previous weaknesses in DAT related
literature and to get closer to the clinical setting, we specifically addressed two different time
points: adolescence and adulthood. Like in ADHD, these behavioral abnormalities were
evident throughout these developmental periods, while in SZ and BD onset of full-blown
symptoms usually occurs during young adulthood [66], [67]. Consistent with DAT +/-
phenotypes, patients with ADHD may show, starting from childhood, hyperactivity that
persists during adulthood [43], [68]. In SZ patients, increased motor activity is not a trait of the
disease, and when present is a more frequent agitation that is substantially different from
hyperactivity. Moreover, an apparent opposite condition can be detected in SZ patients with
predominating negative symptoms. In BD levels of activity are usually fluctuating, with
episodic mood-congruent hypo/hyperactivity [44], [69]. Cognitive deficits, especially of the
inattentive type, are another core and enduring feature of ADHD [68], [70], even if childhood
ADHD persists into adulthood only in approximately one-half of patients [69]. Similarly, DAT
+/- mice showed cognitive deficits more pronounced in attentional functioning. Indeed, DAT
+/- male mice had a selective reduction in choice accuracy in the 5CSRTT, which is considered
the main index of attention, thought to bypass non-specific influences such as motivational
factors [31]. Similarly, clinical studies in adult ADHD patients demonstrated impaired focused
and sustained attention [71], [72]. In contrast, patients with SZ have relatively spared
visuospatial attentional cuing abilities [73], [74], while presenting more pronounced deficits in
broad monitoring as measured with SARAT tests [75]. These same SZ relevant cognitive
deficits in an equivalent new murine SARAT protocol [36] were completely absent in DAT +/-
mice. Impulsivity indexes are used to describe different ADHD subtypes (e.g. hyperactive-
impulsive, predominantly inattentive and combined type) [76]. DAT+/- mice showed
consistent high levels of impulsive behaviors since premature responses remained high during

the different test challenges. Premature responses are thought to reflect a failure of inhibitory
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response control, appearing when preparatory response mechanisms are disrupted [77]. This is
in further agreement with elevated levels of impulsivity present in ADHD subjects as measured
by a variety of tasks [78]. Finally, available studies in children [79], [80] and adults [38], [40],
[81] diagnosed with ADHD suggest no major alterations in PPl measures in this pathology,
even if these studies are not yet conclusive. Indeed, it should be noted that these evidence are
still mostly underpowered in relationship to sample sizes and might present potentially
confounding factors such as comorbidity with other psychiatric disorders (e.g Tourette's
syndrome) or pharmacological treatments. In contrast, sensorimotor gating deficits are
consistently found in patients with SZ [82], [83] and BD [39] throughout the lifespan. Our
findings disentangle DAT-dependent alterations with remarkable similarity to what have been
used to define and diagnose ADHD.

Molecular outcomes further support DAT +/- as a model strongly related to ADHD but not SZ
or BD. Indeed, previous evidence pointed to a reduction of Homerla mRNA and protein levels
in the PFC of SHR, which is one of the most widely used animal models of ADHD [25].
Furthermore, selective decreased expression of Homerla by intra-cerebroventricular injection
of a miRNA virus in rats resulted in increased locomotor activity and attentional disabilities
[84] reminiscent of ADHD-like and DAT * phenotypes. Moreover, viral restoration of
Homerla, but not Homerlc, into the PFC of homerl-/- mice rescued their persistent
hyperactive phenotype while not influencing their PP1 deficits [26]. Finally, pharmacological
animal models SZ reported an up-regulation of Homerla expression in fronto-cortical and
striatal areas [85], [86]. Combined with previous evidence, our findings indicate that decreased
Homerla expression in the PFC may be relevant to ADHD but not SZ. In contrast, and again
supporting DAT selective relevance for ADHD, but not SZ, is the lesser impact of DAT
hypofunction in Arc expression. Indeed, Arc genetic disruption is gaining increasing relevance
for the neuropathophysiology of Sz [27], [60]-[62], [87], [88]. Taken together, DAT
hypofunctioning appears to implicate a PFC specific alteration of synaptic plasticity processes,
above all those involving Homerla that may be strongly relevant to ADHD. Stimulants such
as amphetamine and methylphenidate are currently the most common treatment for ADHD
[16], [74]. In particular, stimulant medications in ADHD patients ameliorate their hyperactive
phenotype, improve attentional focus and alleviate impulsive behaviors. In contrast, these
drugs may precipitate or exacerbate psychotic symptoms in both BD [17] and SZ patients [18].
In line with ADHD, DAT +/- mouse hyperactivity, attentional deficits and impulsive behavior
were all ameliorated by administration of low doses of amphetamine. Low doses of

psychostimulants, comparable to those used in ADHD patients, preferentially increase
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catecholamine neurotransmission within the PFC enhancing cognitive functions [89]-[91].
Here, DAT dependent alterations of Homerla in the PFC were normalized by amphetamine.
Analogously, methylphenidate administration in male SHRs up-regulated Homerla expression
in their PFC [25]. Also, Homerla silencing by RNA interference induced ADHD-like
behaviors in rats that were reverted by methylphenidate administration, presumably via the up-
regulation of Homerla expression in the PFC [58]. Moreover, over-expression of Homerla
improved attention and cognitive processes in rats [26]. Thus, amphetamine modulation of
Homerla expression in the PFC could mirror the molecular adaptations underlying the
potential beneficial effects of low-dose psychostimulant administration in ADHD patients.
Considering the role of Homerla in the regulation of dendritic spine function and synaptic
plasticity, as well as Homerla responsivity to dopamine perturbation, these findings could
represent, at least in part, a molecular correlate of psychostimulant mechanism of action in
condition of striatal mild hyperdopaminergia. Previous studies on DAT functioning have
mostly used mice completely lacking DAT (see Supplementary Table 1). While being an
optimal mouse model for early Parkinson's disease [12], [13], [92], DAT-/- present
characteristics that might make them less informative for psychiatric pathologies such as
ADHD, SZ or BD. For example, DAT-/- mice exhibit dwarfism, have growth problems, and
must be fed with enriched diet to avoid premature death [46] which, by modulating their
metabolic activity and microbiota, might influence behavior [93]. Furthermore, DAT-/- mice
have to be obtained from DAT +/- or -/- mothers. DAT genetic modifications change maternal
behavior [10] which, in turn, could influence behavior of the offspring. In contrast to DAT +/-
, DAT-/- mice show strong PPI deficits [41], [94], [95]. This is again in agreement with PPI
deficits in Parkinson patients [96] but not with ADHD [40], [79]-[81], [97], [98]. Finally,
although DAT -/- mice show increased locomotor activity, this phenotype is so extreme that it
renders problematic any other kind of behavioral assessment. Investigation of DAT +/- mice
in the current study avoided all these issues. In conclusion, we report that genetic-driven
hypofunction of DAT alter postnatal developmental trajectories consistent with ADHD-, but
not SZ- and BD-relevant behavioral and molecular phenotypes. Particularly, taking into
account different critical developmental periods, genetic mutations and the sex of a subject
might help to implement early and personalized treatment in order to prevent or limit ADHD

abnormalities.
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2.9. Supplementary Tables

29.1Tablel
Mouse Model
Behavioral Tasks DAT-/- DAT+/- DAT-KD DAT-CI DAT-OE C;‘sﬁ"}?;’tﬂ
Locomotor Activity (LMA)"23456.781218.2324 1 = 1 T = T
Psychostimulants sensitization (LMA)#10.11.13 l 1 ! = ! 1
Spatial Memory (Morris water Maze; Y-Maze; T- L ! i ! ! !
Maze)“’ 25
General Learning impairments (Automated H-maze; l = i ! ! !
Elevated Plus Maze)'524
Familiarity to the Object (Novel Object 1 ! 1 ) ! !
Recognition}ﬂi 17,18,19,.20
Recency memory (temporal order object recognition) ! ! li ! i 1
Attention (5-CSRTT) ! ! ! ! ! i
Broad Monitoring (5-CSRTT) 1 I ] ! i =
Impulsivity (5-CSRTT) ! ! i ! ! T
Risky Behavior (lowa Gambling Task)?! / ! 1 ! ! !
Cocaine (5 and 10 mg/kg) induced Conditioned Place = = = i i !
Preference (CPP) 24
Methylphenidate (2-20 mg/kg) induced CPP 222 = = i 1 ! !
Amphetamine (5 mg/kg) induced CPP % 1 ! i ! ! i
Sensorimotor gating (Prepulse Inhibition (PP1))*'6 1 = = = ! =

Supplementary Table 1. Behavioral tasks in dopamine transporter (DAT) mutant mice. Summary table
indicating previous studies in DAT mutant mice according to the following acronyms: DAT-/-= DAT knockout
homozygous; DAT+/- = DAT knockout heterozygous; DAT KD= DAT knockdown; DAT-CI= DAT Cocaine
Insensitive; DAT-OE= DAT overexpressing. The symbols indicate behavioral changes during the task used:

1 signiticant behavioral increase compared to WT mice.

| significant behavioral decrease or impairment compared to WT.

= no behavioral differences compared to WT.

/ no data available.
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2.9.2 Table 2

Probe cDNA length (bp)  cDNA position MRNA Gen-Bank#
Homerla 48 1691-1738 Homerla AF093257.1
Homerlb 48 1714-1761 Homerlb AB019479.1
Arc 48 278-325 Arc NM_018790.3

Supplementary Table 2. Probes used for radioactive in situ hybridization were oligodeoxyribonucleotides
complementary to bases sequence of target genes mRNAs (MWG Biotech, Firenze). All probes were designed

from Gen-Bank sequences and checked with BLAST in order to avoid cross-hybridization.

2.9.3 Table 3
DAT+/+ | DAT+/- | DAT+/+ | DAT+H/-
General Health P28-P45 P90-P120
Body Weight (g) 12+1.0 | 12.0+1.0| 25.0+1.0 | 25.0 +1.0
d Physical Abnormalities 0 0 0 0
Life expectancy (months) >12 >12 >12 >12
DAT+/+ | DAT+/- | DAT+/+ | DAT+/-
General Health P28-P45 P90-P120
Q Body Weight (g) 12+1.0 | 12.0+1.0| 20.0+1.0 | 20.0 +1.0
Physical Abnormalities 0 0 0 0
Life expectancy (months) >12 >12 >12 >12

Supplementary table 3. General Health assessment for DAT+/+ and DAT +/-: body weight (g) was checked at
different developmental time points from adolescence (P28-45) until adulthood (P90-120); Physical
Abnormalities and life expectancy were evaluated to detect any physical artifacts that could confound the

interpretation of phenotypes on more complex behavioral tasks.
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2.10. Supplemetary figures
2.10.1. Supplementary figure 1
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Supplementary Figure 1. Startle reaction amplitude displayed in DAT+/+ and DAT+/- mice without stimuli
and after presentation of 120 db acoustic startle stimuli a, b, c, d; in order adolescent male(DAT+/+n=15
DAT+/-n=18) (a), female(DAT+/+n=26; DAT+/-n=12) (b) mice and adult male(DAT+/+n=21; DAT+/-n=13)
(c) and female(DAT+/+n=15; DAT+/-n=10) (d) mice.
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2.10.2. Supplementary figure 2
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Supplementary Figure 2. Time spent in the internal zone displayed by DAT+/+ and DAT +/-: adolescent male
(DAT+/+n=18; DAT+/-n=19) (a) and female (DAT+/+n=26; DAT+/-n=15) (b), adult male (DAT+/+n=18;
DAT+/-n=11) (c) and female(DAT+/+n=16; DAT+/-n=13) (d) mice.
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2.10.3. Supplementary figure 3
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Supplementary Figure 3. Time spent exploring two identical objects displayed by DAT+/+ and DAT +/- mice
during 5 min acquisition session of the temporal order object recognition test. a,b,c,d. Exploration time in seconds
(sec) during the sample and test phases of the temporal order object recognition test displayed by adolescent male
(a) and female (b) and adult male (c) and female (d) mice.
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2.10.4. Supplementary figure 4
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Supplementary Figure 4. Different parameters measured in the novel 5CSRTT Spatial Attentional Resource
Allocation Task (SARAT) protocol displayed by adult male DAT+/+ (9) and DAT+/- (11) mice. (A) Percentage
of correct responses; (B) latency (in seconds) to a correct response; (C) percentage of choice accuracy; (D)
percentage of incorrect responses; (E) percentage of omitted responses; (F) latency (in seconds) to collect a food
reward; (G) percentage of premature responses; (H) percentage of perseverative responses; (1) number of time out

responses.
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2.10.5. Supplementary figure 5
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Supplementary figure 5. Levels of Homerla mRNA expression (expressed in relative dpm) for each Region of

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice without any drug treatment.
Histogram bars illustrate means + SEM. *p<0,05 versus DAT+/+ at the same ROI.
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2.10.6. Supplementary figure 6
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Supplementary figure 6. Levels of Homerlb mRNA expression (expressed in relative dpm) for each Region of

Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice without any drug treatment.
Histogram bars illustrate means + SEM. *p<0,05 versus DAT+/+ at the same ROI.
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2.10.7. Supplementary figure 7
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Supplementary figure 7. Levels of Arc mRNA expression (expressed in relative dpm) for each Region of

Interest (RO, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice without any drug treatment.
Histogram bars illustrate means + SEM. *p<0,05 versus DAT+/+ at the same ROI.
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2.10.8. Supplementary figure 8
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Supplementary figure 8. Levels of Homerla mRNA expression (expressed in relative dpm) for each Region of
Interest (RO, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice subchronically treated with
amphetamine. Histogram bars illustrate means + SEM. *p<0,05 versus DAT+/+ at the same ROI.
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2.10.9. Supplementary figure 9
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Supplementary figure 9. Levels of Homerlb mRNA expression (expressed in relative dpm) for each Region of
Interest (ROI, see Figure 5 for a depiction) displayed by DAT+/+ and +/- mice subchronically treated with
amphetamine. Histogram bars illustrate means + SEM. *p<0,05 versus DAT+/+ at the same ROI.
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2.10.10. Supplementary figure
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Chapter 3

Attentional Control in Adolescent Mice Assessed with a Modified Five
Choice Serial Reaction Time Task

Mariasole Ciampolit, Gabriella Contarini*?, Maddalena Mereu*? & Francesco Papaleo*

1. Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia,
via Morego, 30, 16163, Genova, Italy.

2. Department of Pharmacological and Pharmaceutical Science, University of Padova,
Padova, Italy.

Abstract

Adolescence is a critical period for the development of higher-order cognitive functions. Unlike
in humans, very limited tools are available to assess such cognitive abilities in adolescent
rodents. We implemented a modified 5-Choice Serial Reaction Time Task (5CSRTT) to
selectively measure attentiveness, impulsivity, broad monitoring, processing speed and
distractibility in adolescent mice. 21-day old C57BL/6J mice reliably acquired this task with
no sex-dependent differences in 10-12 days. A protocol previously used in adults was less
effective to assess impulsiveness in adolescents, but revealed increased vulnerability in
females. Next, we distinctively assessed selective, divided and broad monitoring attention
modeling the human Spatial Attentional Resource Allocation Task (SARAT). Finally, we
measured susceptibility to distractions using non-predictive cues that selectively disrupted
attention. These paradigms were also applied to two genetically modified lines: the dopamine
transporter (DAT) and catechol-O-methyltransferase (COMT) heterozygous. Adolescent DAT
hypofunctioning mice showed attentional deficits and higher impulsivity as found in adults. In
contrast to adults, adolescent COMT hypo-functioning mice showed decreased impulsivity and
attentional resilience to distractors. These paradigms open new avenues to study the
establishment of higher-order cognitive functions in mice, as well as an effective tool for drug-

testing and genetic screenings focusedon adolescence.
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3.1. Introduction

Adolescence is a critical transitional period of development from infancy to adulthood in which
neurochemical and hormonal brain maturational processes extensively shape mammalian
behaviors [1]-[3]. In particular, higher order cognitive functions drastically develop and mature
during this time period[4]. Indeed, significant improvements in cognitive functioning are
evident throughout late childhood and adolescence, with the most dramatic progress occurring
in the development of attentional control, processing speed, decision making, planning, and
response inhibition [5]-[7]. The development of attentional control is crucial because this
ability might strongly influence all other cognitive domains[7], [8]. Attentional control abilities
start to emerge in childhood [9], [10], but their full maturation peaks during adolescence [11].
Moreover, the speed of attentional control, its accuracy, inhibitory control towards irrelevant
stimuli and the ability to disengage from one focus to another greatly improve throughout
adolescence. Additionally, it has been observed that adolescents are more prone to risk taking
behavior and impulsiveness, compared to infants and adults [12], [13]. Notably, adolescents
with poorer attentional regulation have worse health, earn less money and commit more crimes
during adulthood [14]. To trace the development of the above mentioned abilities from infancy,
through adolescence, to adulthood, the serial reaction time task and other similar tasks have
been extensively used in human studies [15]-[17]. Animal models are a useful tool to identify
molecular and circuital processes potentially underlying the neurobiological basis of the
maturational changes observed in human adolescence. The most drastic changes in terms of
neuronal architecture and function have been identified within the prefrontal cortical areas
(PFC) [18]-[20]. For example, in the PFC, adolescent rodents show prolonged neuronal
pruning [21], a drastic maturation of the glutamatergic, dopaminergic and GABAergic systems
[21]-[23] and a shift in the balance between mesocortical and mesolimbic systems [24].
Similarly, human neuroimaging studies suggest that adolescence is characterized by changes
in patterns of brain activation, including increased activation in ventral PFC regions [25]-[27]
and exaggerated accumbens activity related to rewarding outcomes compared to children or
adults [28], [29]. However, despite several elegant studies dissecting the changes in brain
circuits and molecular footprints in animal models, very limited behavioral tools that reliably
assess higher order cognitive functions are available for adolescent rodents. Thus, there is still
a significant gap between the extensive and complex human literature on cognitive
development and the scarce equivalent tools in rodents. Behavioral paradigms able to

selectively dissect different forms of attentional control during rodent adolescence could help
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clarify the dynamic changes creditably observed at the molecular level, drawing better
parallelisms with human studies. Finally, because adolescence is considered to be a period of
higher vulnerability and increased risk of onset for several psychiatric disorders [30],
appropriate cognitive tasks for rodents could help to discern the impact of genetic and
environmental factors. Here we validated a modified version of the 5-Choice Serial Reaction
Time Task (5CSRTT) for adolescent mice (Fig. 1a). Available tasks to assess higher-order
cognitive functions have been designed and tested only in adult mice and rats [31]—-[34]. This
is mostly due to the long periods required for training, which are incompatible with the very
short duration of rodent adolescence. Similarly to another recently modified 5CSRTT [35], our
task is acquired by adolescent mice in about 12 days only, in the context of no food restriction
regimens. Additionally, our task is performed minimizing single-housing, since adolescence is
considered to be a delicate period for the development of social skills. Moreover, this new task
did not require any additional cage other than the 5CSRTT apparatus. The novel automatic
paradigms implemented are effective in differentially measuring multiple attentional functions
such as selective and divided attention, broad monitoring, vulnerability to distractors,
impulsivity, speed of processing and motivation in adolescent mice. This was validated in both
males and females as well as in two different genetically modified mouse lines (i.e. DAT and
COMT), highlighting substantial divergences in performance between adolescents and adults.
Combined with the advanced techniques currently available to study the impact of molecular-
, circuital-, cell- and genetic-specific factors in mice, this new behavioral tool will help improve

our understanding of adolescence.
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3.2. Materials and Methods

3.2.1. Mice

All procedures were approved by the Italian Ministry of Health (permit n. 230/2009-B) and
local Animal Use Committee and were conducted in accordance with the Guide for the Care
and Use of Laboratory Animals of the NIH and the European Community Council Directives.
The time period defined as “adolescence” is individually variable, but it generally corresponds
to the onset of puberty (from about 9-12 to 15-17 years old in humans; from about 28 to 45
days old in rodents [1], [36]). We used in-house bred mice within the range of 21-45 days old
C57BL/6J (a total of 19 males and 16 females), or genetically modified (12 DAT+/+, 12
DAT+/—, 7 COMT+/+ and 8 COMT+/-) littermates. Every other generation new C57BL/6J
breeders bought from Charles River were used for the C57BL/6J colony, while the lines of
genetically modified mice were backcrossed with C57BL/6J for at least 10 generations. The
COMT and DAT colonies were the same as described in refs 48 and 70. The breeding scheme
used to obtain the genetically modified mice involved mating a +/— heterozygous male with
C57BL/6J females, in order to avoid altered maternal behavior. Experimenters were blind to
genotype during testing. Mice were weaned at 21 or 26 postnatal day (PND), separated for sex
and housed 2—4 per cage. Mice were housed in a climate-controlled animal facility (22 + 2 °C)
and maintained on a 12-hour light/dark cycle (light on: 7 am—7 pm). All behavioral tests were
conducted during the dark phase of the cycle.

3.2.2. Apparatus

12 operant chambers (Med Associates, St. Albans, VT, USA), housed in sound-attenuating
boxes each containing a fan for ventilation and constant background noise were used
(schematics in Fig. 1a). Two strings of LED lights (one providing warm light and one providing
cool light) were installed onto the ceiling of each of the sound-attenuating boxes controlled by
a timer so that the 12-hour light/dark cycle was regulated (9 Lux when on). Each operant
chamber contains, on 1 wall, 5 nose-poke holes (1 cm in diameter) that were each outfitted
with a recessed stimulus light. Two additional LED pre-cue lights (red and green) were
installed above each of the 5 nose-poke holes. An infrared beam transecting the aperture of
each hole detected nose-pokes. Placed on the wall opposite to the 5-hole array, was a food
magazine with an infrared beam and a head entry detector, where a pellet dispenser (ENV-203-
14P) delivered food reinforcement in the form of a reward pellet (14 mg 5TUL Purified rodent

tablet, TestDiet). Such reward pellets are designed to be a complete diet for the animals. A
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water dispenser into each operant chamber ensured full access to water throughout the
training/test sessions. A house-light was located 7 cm above the food magazine. The operant
chambers were connected to a Smart Control Panel and interfaced to a Windows computer
equipped with a MED-PC IV software (Med Associates, St. Albans, VT, USA).

3.2.3 Experimental design

3.2.3.1 Habituation

We tested different habituation protocols in order to check whether the weaning timing or food
regimen could influence the task performance. In particular, the weaning was done or at 21 or
26 PND. From PND 21 to PND 23 mice were daily exposed to 1-min handling session, given
ten 14-mg pellets of the 5STUL diet and weighted. Training was started or at 24 or 27 PND.
When in the testing cage, mice received food in the form of pellets (5TUL Purified rodent
tablet, Test Diet). Water was always ad libitum. With the “day-time food ad libitum” regime,
mice received their normal food ad libitum when in the regular holding cage. In contrast, with
the “day-time food restriction” regime, mice were not given access to the food when in their
holding cage unless losing weight, in which case extra food was provided during the day in
order to keep the mice at their normal body weight curve of adolescent growth. Such food

regimens were kept throughout the entire test.

3.2.3.2 Training protocol

Throughout training and testing, mice were daily placed into the operant chambers in the
evening between 5 and 5:30 pm and taken out of the chambers the following morning between
10 and 10:30 am to be placed back into their regular holding cages (grouped house as weaned).
Each night (between 7 pm and 7 am), mice were presented with three testing sessions semi-
randomly and automatically presented (with a variable delay between sessions of 2-5 hours).
Mice were weighed every day in the morning immediately after being taken out of the
apparatus. A free reinforcement pellet was delivered at the start of each testing session. When
a head entry was detected, the first trial began with an inter-trial interval (IT1). Any nose-poke
during the ITI was recorded as premature response resulting in a time-out period with the
house-light turned on. At the end of the time-out, the house-light was turned back off and the
ITI restarted. Any nose-poke during the time-out reset the time-out period. At the end of the
ITI, the program randomly selected a stimulus location (1 out of 5 stimulus lights) and turned
on the corresponding stimulus light. The stimulus light remained on for the stimulus duration

(SD) value set. The animal had limited hold time (LH) to nose-poke into the lit hole. A nose-
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poke into the lit hole during the LH, was recorded as a correct response, the stimulus light
turned off if not turned off earlier and a food pellet was delivered in the opposite-wall food
magazine. A nose-poke into any of the other apertures was recorded as an incorrect response.
Errors resulted in the initiation of a 5-sec time out (TO) phase, during which the house light
switched on and all holes were unresponsive. A lack of response within the LH period, was
deemed as omission and resulted in a time-out and no reward. Premature responses (occurring
in the ITI before presentation of the trigger light stimulus) also led to a time-out without reward
and to a resetting of the trial. A perseverative response was scored when mice continued to
poke in the same response hole when it no longer stood for a correct choice. Time from the
onset of the light stimulus to the performance of a correct nose-poke response and from the
correct response to the retrieval of the food reward from the magazine were recorded as correct
latency and reward latency, respectively. Training consisted of 6 stages. To proceed to each
subsequent stage, mice were required to reach the criterion for 2 consecutive sessions. Each
stage was more challenging than the last, with the SD and LH period decreasing while other
criteria become more demanding (see below). Sessions ended after 30 minutes or 100 trials,
whichever comes first. Criteria to reach each subsequent stage:
1.Stage 1t02: SD=20s; LH=30s; ITI=2s.
Criteria: >20 correct trials; >20% correct.
2.5tage2t03:SD=10s; LH=30s; ITI=2s.
Criteria: >30 correct trials; >30% correct.
3.Stage 3t04: SD=8s; LH=20s; ITI =5s.
Criteria: >40 correct trials; >80% accuracy; <60% omission.
4.Stage 4t05:SD=4s; LH=10s; ITI =5s.
Criteria: >40 correct trials; >80% accuracy; <60% omission.
5.Stage 5t06: SD=2s; LH=7s; ITI =535,
Criteria: >45 correct trials; >80% accuracy; <60% omission.
6.Stage 6: SD =15, LH=75;ITI=5s5
Upon reaching Stage 6, mice were subjected to an extra day of testing at Stage 6. After that,
mice were tested with three different test protocols with in between a day of Stage 6 as
explained below and in the timeline (Fig. 1a). The following measures were recorded to assess
task performance as previously described [33], [34]. Accuracy: number of correct responses
divided by sum of number of correct and incorrect responses, multiplied by 100.

e Correct responses: number of correct responses divided by total number of trials,

multiplied by 100.
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e Omissions: number of omissions divided by total number of trials, multiplied by 100.

e Premature responses: number of premature responses divided by sum of correct,
incorrect, premature, perseverative and time-out responses (total number of responses),
multiplied by 100.

e Perseverative responses: number of perseverative responses divided by total number of
responses, multiplied by 100.

e Time-out responses: number of time-out responses divided by total number of
responses, multiplied by 100.

e Correct latency: total time from onset of light stimulus to the performance of a correct
response divided by number of correct responses.

e Reward latency: total time from the performance of a correct response to the retrieval

of the food reward from the food magazine divided by number of correct responses.

3.2.3.35-7 ITI challenge

During the 3 sessions of the night, randomly, in a 20% of the trials the IT1 was increased from
5 to 7 seconds. This implicated that mice must withhold an additional 2 seconds both before
the appearance of the stimulus light and before making their correct choice. The SD and LH

remain unchanged.

3.2.3.4 Spatial Attentional Resource Allocation Task (SARAT)

Two versions of the SARAT test were performed: SARAT vl and v2 (Fig. 2 for a
representative scheme). In SARAT v1 in each of the 3 sessions during the night, three different
trial types were randomly presented: Cued 0, as stage 6. Cued 1, as stage 6 but with the addition
of a red cue light appearing over the correct nose-poke hole from 1 s before to 1 s after the
normal stage 6 yellow stimulus light. Cued 5, as stage 6 but with the addition of a red cue light
appearing over each nose poke hole from 1 s before to 1 s after the stage 6 yellow stimulus
light. Also in the SARAT v2 three different types of trials were randomly presented. Cued 1
trial as for SARAT v1. The Cued 3 trial was the same as the standard trial type with the addition
of 1 red pre-cue light appearing over the correct nose-poke hole and 2 pre-cue red lights
appearing over the 2 nose-poke holes adjacent the correct nose-poke hole from 1 s priorto 1 s
after the stimulus light duration. The third type of trial was the Cued 5 trial as for SARAT v1.
Each trial type was presented an equal number of times in a random fashion throughout each

session.
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3.2.3.5 Distractor test

In this manipulation, two versions of the Distractor test were performed: distractor v1 and v2
(Fig. 2 for a representative scheme). In v1, two different trial types were randomly presented.
Cued 1 (80% of the time) like for the SARAT test. The Distractor (Dist) trial (20% of the time)
was identical to the Cued 1 with the addition of three green cue lights flashing from 1 second
before to 1 second after the normal stage 6 yellow stimulus light. In Distractor v2, the Cued 0
trial (presented 80% of the time within a session) was the standard trial type as in Stage 6. The
Distractor trial occurred 20% of the time and was the same as the Cued O trial with the addition
of a flashing green pre-cue light over the nose-poke holes number 1, 3, and 5. In Distractor v2,
no predictive pre-cue red lights were used. The green pre-cue light over the nose-poke holes
were turned on from 1 s prior to 1 s after the stimulus light duration. Any nose-poke that
occurred while the red/green pre-cue lights were lit, but before the normal stimulus light was

presented, was considered a premature response and was not rewarded, resulting in a time-out.

3.2.4. Statistical Analysis

Results are expressed as mean + standard error of the mean (SEM) throughout. One or two-
way analyses of variance (ANOVAs) with sex (male or female) or genotype (+/+ or +/—) as
between subjects factors and trial type as the within-subject repeated measure was used to
analyze each single parameter measured (body weight, % Correct, % Accuracy, % Omission,
% Time out, % Premature, % Perseverative, Correct latency and Reward latency). Newman-
Keul’s post-hoc test with multiple comparisons corrections was used for making comparisons
between groups when the overall ANOVA showed statistical significant differences for the
main factors or interactions. Student’s t-test was used to compare the days needed to reach the
criteria between males and females, the % Perseverative between DAT+/+ and +/—, the %
Premature between COMT+/+ and +/—. The accepted value for significance was p < 0.05. All
statistical analyses were performed using the Statistica version 12 software (Statistica, StatSoft,

Inc.).
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3.3. Results

Adolescent mice readily acquired the modified 5SCSRTT. In order to keep the duration of the
task within the very short period of mice “adolescence” (i.e. *25-50 days old), the first
challenge we had to face was to shorten the long training which is usually required for the
classical 5CSRTT for adults [37]. The implementation of three testing sessions randomly
presented during the night phase successfully decreased the time needed to acquire the task.
Indeed, about 85% of mice were able to acquire the task in an average of about 12 days (Fig.
1b,c). There was no sex-dependent effect on the number of days needed to reach the final stage
(F1,27 = 2.1, p = 0.15; Fig. 1b). Notably, at the end of the training phase, mice were still in the
middle portion of “adolescence” (=32 days old). This was achieved maintaining a normal
adolescent body weight-growing curve (Fig. 1d,e). If ad libitum access to food was kept in the
home cage during the light phase of the day, mice typically lost weight the mornings that
followed the first 3 nights of testing (F2z, 546 = 3.5, p < 0.0005), but all mice quickly recovered
gradually growing throughout the test (p < 0.0001; Fig. 1d). In contrast, restricting the access
to food during the light phase of the day, as is usually done in adults [34- 37], abolished the
initial morning body weight loss (F2z, 546 = 134.070, p < 0.0005; Fig. 1e). Nonetheless, under
the two food regime conditions, mice performance did not vary in all parameters described
below, a part from the omissions (66.8 + 2.0 or 59.7 + 2.0 for day-time food ad libitum or
restriction, respectively; p = 0.01). This demonstrates that the three test sessions per night were
sufficient to keep the normal growing curve of adolescent mice, while ensuring a quick

acquisition of the task and maintaining a good level of performance.
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Figure 1. (a) The modified 5CSRTT apparatus: (1) modified 5 nose-poke holes wall, each outfitted with a recessed
LED stimulus light and 2 additional LED cue lights (red and green) above each of the 5 nose-poke holes. (2) A
stainless steel grid floor modified for the use in adolescent mice. (3) Food magazine on the wall opposite to the
5-hole array. (4) Water dispenser. (5) House-light. (6) Food pellet dispenser. (7) Smart Control Panel. (All the
standard components were obtained from Med Associates, St. Albans, VT, USA). (b) Number of days taken by
C57BL/6J male and female adolescent mice kept under food ad libitum condition during the light phase of the
day to reach Stage 6 criteria. (c) Number of days taken by C57BL/6J male adolescent mice kept under food
restriction condition during the light phase of the day to reach Stage 6 criteria. (d) Morning body weight
measurements (in grams) of C57BL/6J male and female adolescent mice kept under food ad libitum condition
during the light phase of the day. Ns = 15 males and 14 females. (e) Morning body weight measurements (in
grams) of C57BL/6J male adolescent mice kept under food restriction condition during the light phase of the day.

Ns = 6 males. Values represent mean + SEM in all Figures.
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3.3.1. The 5-7 second inter-trial interval (IT1) shiftis not effective in triggering premature
responses in male C57BL/6J adolescent mice.

Upon reaching the training criteria with the basic stage of the 5CSRTT, adolescent mice were
exposed to different paradigms with different trial manipulations as summarized in Fig. 2. The
impulsivity trait in adult rats and mice becomes appreciable in the 5SCSRTT when the ITI is
increased from 5 to 7 seconds [34- 38]. To test whether a similar outcome could be obtained in
adolescent mice, we tested in our modified 5CSRTT paradigm this same 5-7 ITI challenge
(Fig. 2: impulsivity paradigm).
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Figure 2. Schematic diagrams of the trials type that were presented to the mice during the three different test

manipulation paradigms: Impulsivity; SARAT v1 and v2 and Distractor v1 and v2.
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A significant ITI-by-sex interaction effect was evident for accuracy (F2,54 = 4.94, p =0.01) and
premature responses (F254 = 6.78, p = 0.002). Post-hoc analyses revealed no significant effects
for accuracy (p = 0.6; Fig. 3b), but an increase in premature responding in the 7-s trials in
female adolescent mice (p = 0.008; Fig. 3d), but not in males (p = 0.5; Fig. 3d). As shown in
Fig. 3, the 5- to 7-s ITI shift did not influence any other parameter including correct responses
(F254=0.3, p =0.7), omissions (F254 = 0.1, p = 0.8), perseverative responses (F252= 0.2, p =
0.8), time-out responses (F254 = 1.58, p = 0.2), latencies to correct responses (F252=0.1, p =
0.8) and reward retrieval (F2,54=0.2, p = 0.8). These results indicate that this manipulation was
less effective in inducing impulsive-like behaviors in adolescent mice than in adult mice.
Moreover, similarly to what was reported for adult mice [37], females showed more
vulnerability to impulsivity challenges than males.
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Figure 3. Performance displayed by C57BI1/6J male and female adolescent mice during the Impulsivity screening
at different Inter-trial Interval delays (i.e. ITI of 5 or 7 seconds). Percentage of (a) correct responses (correct
responses/total number of trials*100), (b) accuracy (correct responses/(correct + incorrect responses)*100),(c)
(omitted trials/total number of trials*100), (d) premature responses (premature responses/ (correct + incorrect +
premature + perseverative + time-out responses)*100), (e) perseverative responses (perseverative
responses/(correct + incorrect + premature + perseverative + time-out responses)*100), (f) timeout responses
(time-out responses/(correct + incorrect + premature + perseverative + time-out responses)*100), (g) correct
latency (time in seconds from onset of light stimulus to the performance of a correct response/number of correct
responses) and (h) reward latency (time in seconds from the performance of a correct response to the retrieval of
the food reward from the food magazine/number of correct responses). Data from consecutive sessions were
averaged within each trial type. For clarity, the first depicted trial type represents the performance during the
previous days of only Cued 0 trials, while the other two depicted trial types were the performance during the day
of impulsivity screening. Ns = 15 males and 14 females. *p < 0.05 versus trials with a 5-second ITI. *p < 0.05

versus performance at 5-1T| trials and versus males performance at the 7-1T1 trials.
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3.3.2. Adolescent mice showed faster reaction time with a valid pre-cue, but difficulties
distributing attention broadly.

The Spatial Attentional Resource Allocation Task (SARAT) has been described as a
visuospatial attention paradigm in humans able to selectively investigate broad monitoring
abilities and discriminate dysfunctions in patients with psychiatric disorders such as
schizophrenia [4], [6], [7], [9], [20], [38]. Notably, visuospatial functioning is impaired in
children and adolescents with psychiatric disorders such as schizophrenia, ADHD, autism and
22011.2DS [39]. Thus, here we implemented a variation of the 5CSRTT modelled after the
human SARAT protocol (Fig. 2: SARAT v1 paradigm). The number of cued locations defined
the predictability of the target location. Only 1 cued location (i.e. Cued 1 trials) provided a
precise information about the target, allowing a narrower and more selective attentional focus.
Conversely, the Cued 5 trials increased spatial uncertainty and the need to monitor broadly. As
reported in Fig. 4, a trial effect was evident for correct responses (Fsg1 = 23.4, p < 0.0001),
accuracy (Fsg1 = 123.5, p < 0.0001), omissions (Fsg1 = 13.13, p < 0.0001), premature responses
(F381=54.7, p < 0.0001), perseverative responses (Fz 1= 18.31, p <0.0001), time out responses
(Fs,81= 13.54, p <0.0001), and correct latency (Fz 1= 23.54, p < 0.0001). In particular, the Cued
5 trials produced a consistent decrease in correct responses (p = 0.0001; Fig. 4a) and accuracy
(p = 0.0001; Fig. 4b). Both Cued 1 and Cued 5 trials decreased omissions (p < 0.05; Fig. 4c),
increased time out responses (p < 0.005; Fig. 4f), increased premature responses (p < 0.05; Fig.
4d) and decreased perseverative responses (p < 0.05; Fig. 4e). The Cued 1 trials selectively
triggered faster correct responses (p = 0.0001 Fig. 49). No trial effect was evident for reward
latencies (Fs3, 81 = 2.53, p = 0.06; Fig. 4h). Moreover, no sex-dependent effects were evident for
any parameter (p > 0.4). These findings provide evidence that this SARAT paradigm can be
applied to adolescent C57BL/6J mice. Indeed, as well as that of adolescent mice, the
performance of healthy humans displays faster reaction times in trials with more precise pre-
cues while attentional control is disrupted in trials where the pre-cues provide invalid
information about the target [39]-[42].
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Figure 4. Performance displayed by C57BI/6J male and female adolescent mice during the SARAT test version
1. Percentage of (a) correct responses (correct responses/total number of trials*100), (b) accuracy (correct
responses/ (correct + incorrect responses)*100), (c) omissions (omitted trials/total number of trials*100), (d)
premature responses (premature responses/(correct + incorrect + premature + perseverative + time-out
responses)*100), (e) perseverative responses (perseverative responses/(correct + incorrect + premature +
perseverative + time-out responses)*100), (f) time-out responses (time-out responses/(correct + incorrect +
premature + perseverative + timeout responses)*100), (g) correct latency (time in seconds from onset of light
stimulus to the performance of a correct response/number of correct responses) and (h) reward latency (time in
seconds from the performance of a correct response to the retrieval of the food reward from the food
magazine/number of correct responses). Data from consecutive sessions were averaged within each trial type. For
clarity, the first depicted trial type represents the performance during the previous days of only Cued 0 trials, while
the other two depicted trial types were the performance during the day of SARAT screening. Ns = 15 males and

14 females. *p < 0.05 and ***p < 0.0005 versus performance at all other trials type
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3.3.3. Distracting cues selectively disrupted attentional accuracy in adolescent mice.
Adolescents show less control and more distractibility during cognitive tasks that require high
demand of attention[43]. Moreover, increased distractibility during adolescence has been
identified as a possible risk factor for psychiatric diseases [44]-[46]. Thus, we developed a
protocol able to assess the impact of distracting cues on the cognitive performance of
adolescent mice (Fig. 2: Distractor v1 paradigm). As shown in Fig. 5, a trial effect was evident
for correct responses (Fz g1 = 9.32, p < 0.0001), accuracy (Fz 1= 52.59, p < 0.0001), omissions
(Fzg1= 14.68, p < 0.0001), premature responses (Fsg: = 61.39, p < 0.0001), perseverative
responses (Fzs1 = 14.63, p < 0.0001) and correct latencies (Fss1 = 23.54, p < 0.0001). In
particular, trials with the distracting cues produced a decrease in correct responses (p < 0.0002;
Fig. 5a) and accuracy (p < 0.0001; Fig. 5b). Both the Cued 1 and distractor trials triggered more
premature (p < 0.0001; Fig. 5d) and less perseverative responses (p < 0.0001; Fig. 5e). Finally,
consistent with the SARAT results, in the Cued 1 trials less omissions (p < 0.0001; Fig. 5c)
and faster correct responses were made (p = 0.0005; Fig. 5g).

A marked trial-by-sex interaction effect was evident in the time-out responses (Fsg1= 14.79, p
<0.0001) and reward latency (F3,7s = 4.84, p < 0.05). Adolescent female mice made more time-
out responses (p < 0.05; Fig. 5f) and needed more time to retrieve the food pellet in the
distractor trials (p < 0.05; Fig. 5h). These findings highlight the ability of the distracting

manipulation to disrupt attentional control in both male and female adolescent mice.
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Figure 5. Performance displayed by C57BI1/6J male and female adolescent mice during the Distractor test version
1. Percentage of (a) correct responses (correct responses/total number of trials*100), (b) accuracy (correct
responses/(correct + incorrect responses)*100), (c) omissions (omitted trials/total number of trials*100),

(d) premature responses (premature responses/(correct + incorrect + premature + perseverative + time-out
responses)*100), (e) perseverative responses (perseverative responses/(correct + incorrect + premature +
perseverative + time-out responses)*100), (f) time-out responses (time-out responses/(correct + incorrect +
premature + perseverative + time-out responses)*100), (g) correct latency (time in seconds from onset of light
stimulus to the performance of a correct response/number of correct responses) and (h) reward latency (time in
seconds from the performance of a correct response to the retrieval of the food reward from the food magazine/
number of correct responses). Data from consecutive sessions were averaged within each trial type. For clarity,
the first depicted trial type represents the performance during the previous days of only Cued 0 trials, while the
other two depicted trial types were the performance during the day of Distractor screening. Ns = 15 males and 14

females. *p < 0.05, **p < 0.05, and ***p < 0.0005 versus performance at all other trials type.
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3.3.4 The SARAT and Distractor are distinct paradigms assessing selective attentional
control processes.

To test whether the SARAT and the Distractor paradigms could grasp distinct aspects of
attentional control in adolescent mice, we further implemented these two paradigms (Fig. 2:

SARAT v2 and Distractor v2 paradigms), as done in adult mice [47].
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Figure 6. Comparison of the performance in key parameters displayed by C57BI/6J male and female adolescent
mice between the SARAT version 2 and the Distractor version 2 paradigms. Percentage of (a and f) correct
responses (correct responses/total number of trials*100), (b and g) accuracy (correct responses/ (correct +
incorrect responses)*100), (c and h) omissions (omitted trials/total number of trials*100), (d and i) premature
responses (premature responses/(correct + incorrect + premature + perseverative + time-out responses)*100), (e
and j) correct latency (time in seconds from onset of light stimulus to the performance of a correct
response/number of correct responses). Data from consecutive sessions were averaged within each trial type. Ns

=6 mice. *p < 0.05, **p < 0.005 and ***p < 0.0005 versus performance at all other trials type.
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In particular, with the SARAT version 2, we directly linked mice performance to the number
of presented pre-cues (i.e. 0, 1, 3 or 5) as is reported in human studies[39]-[41]. Instead, in the
second version of the Distractor, we eliminated the overlapping presence of the distracting
green lights with the valid red pre-cue light that could generate conflicting information to the
mice (see Fig. 2 for trials illustrations and comparisons). The SARAT v2 demonstrated that
cognitive performance is tightly related to the number of valid pre-cues. Indeed, increasing
spatial uncertainty to three and five pre-cues proportionately decreased the accuracy (Fs15 =
30.32, p <0.0001; Fig. 6b), and increased omissions (Fs,15= 16.70, p < 0.0001; Fig. 6¢). Instead,
providing a more precise predicting cue (Cued 1 trials) greatly ameliorated the performance of
adolescent mice increasing the amount of correct responses (Fz,15 = 9.82, p < 0.0008; Fig. 6a),
decreasing the omissions (Fs15 = 16.70, p < 0.0001; Fig. 6¢) and fastening the speed of a given
correct answer (Fz 15 = 3.28, p < 0.05; Fig. 6e). Other parameters were not altered by this
manipulation. In contrast, the distracting stimuli in the Distractor v2 decreased correct
responses (t =7.82; df = 5; p <0.0006; Fig. 6f) and accuracy (t=—-6.11; df = 5; p <0.001; Fig.
6g) with a stronger effect compared to Distractor v1 (Fig. 5). Other parameters were not altered
by this manipulation. Notably, a direct comparison between the SARAT v2 and Distractor v2
(Fig. 6 first column compared to second) highlighted the distinct pattern of performance
triggered by the different stimuli. Overall, these data demonstrate that attentional control in
adolescent mice can be selectively and differentially assessed by the SARAT and Distractor

paradigms.

3.3.5 Attentional control performance in adolescent DAT and COMT genetically hypo-
functioning mice.

To accentuate the effectiveness of this novel task for adolescent genetically modified mice, we
tested two mice lines which we previously assessed in the 5CSRTT at adult age [47].
Specifically, we tested dopamine transporter (DAT) and catechol-O-methyltransferase
(COMT) heterozygous (+/—) knockout mutant male mice, because they are clinically relevant
mouse models with effects on cognitive functions that recapitulate the effects of similar genetic
variations in humans [34], [48], [49]. The performance of DAT+/+ and COMT+/+ wild-type
littermates followed an identical pattern of performance as that of the C57BL/6J mice shown
in Figs. 1-5. In contrast, compared to +/+ littermates, DAT+/— adolescent mice showed
reduced accuracy during the training phase of the task (F2.20 = 4.37, p < 0.02; Fig. 7a), reduced
levels of perseverative responses in the basic cued O trials (t = 2,29; df = 17; p < 0.04; Fig. 7b),
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and increased premature responding following the 57 ITI challenge (Fs.4s = 3.33, p < 0.01;
Fig. 7c).

Adolescent DAT heterozygous

O- DAT+/+ b
- & DAT+/- ¢
100 OO 18 - 15 - *%
T A o
Fry 2 i
g 80 12 . 210
‘5 @ ©
o 2 £
< 60 4 : £
> o 6 - a 5
® & <
40 0 0+ : ~
27 31 36 40 5 7 5
Age (days) Cued 0 Trials ITI (sec)
Adolescent COMT heterozygous
d O-COMTH+/+ ;
- COMT+- ©
8 60 100 -
*
és ' 8 *edkek g
g 4 - g 30 § 80
o ° <
0 0 - ; 60 , ;
1 Dist 0 1 Dist 0
Cued 0 Trials Trial Type Trial Type

Figure 7. (a—c) Performance displayed by DAT+/+ and DAT+/— adolescent littermates in the modified 5CSRTT
in key parameters which showed a genotype effect. (a) Percentage of accuracy (correct responses/ (correct +
incorrect responses)*100) during the training phase of the test. (b) Percentage of perseverative responses
(perseverative responses/(correct + incorrect + premature + perseverative + time-out responses)*100) during the
basic phase of the test with only trial type 0 without any extra cue. (c) Percentage of premature responses
(premature responses/(correct + incorrect + premature + perseverative + timeout responses)*100) during the 5-7
ITI challenge paradigm. DAT+/+ Ns = 12, DAT+/— Ns = 12. *p < 0.05 and **p < 0.005 versus performance of
DAT+/+ at the same trial type. (d—f) Performance displayed by COMT+/+ and COMT+/— adolescent littermates
in the modified 5CSRTT in key parameters which showed a genotype effect. (d) Percentage of premature
responses (premature responses/ (correct + incorrect + premature + perseverative + time-out responses)*100)
during the basic phase of the test with only trial type 0 without any extra cue. (e) percentage of correct responses
(correct responses/total number of trials*100) and (f) accuracy (correct responses/(correct + incorrect
responses)*100) during the Distractor paradigm. Ns: COMT+/+ = 7 and COMT+/— = 8. *p < 0.05, **p < 0.005
and ***p < 0.0005 versus performance of COMT+/+ at the same trial type.
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No other DAT-dependent effects were evident in any of the other parameters in all other
paradigm manipulations (data not shown). Consistent with data from adult mice [48], these
results highlight that genetic variations reducing DAT produced attentional and impulsive
control deficits since adolescence. Notably, despite the 5-7 ITI shift was confirmed to be
ineffective in wild-type mice, it triggered a consistent increase in premature responding in
DAT+/— mice, suggesting that this challenge is still effective in vulnerable subjects. Finally,
an unexpected DAT effect in reducing compulsive-related phenotypes during adolescence was
detected. Instead, compared to their +/+ littermates, COMT+/— adolescent mice showed
reduced levels of premature responses in the basic Cued O trials (t = 2,31; df = 14; p < 0.05;
Fig. 7d), and increased correct responses (F2,26 = 8.54, p < 0.005; Fig. 7e) and accuracy (F2,26
=3.64, p <0.05; Fig. 7f) in the distractor trials. No other COMT-dependent effects were evident
in all other parameters in the other paradigm manipulations (data not shown). In contrast to
what was found in adult mice [33], these results highlight that genetic variations reducing
COMT are associated with reduced levels of basal impulsivity, and an attentional control that

is more resilient to the detrimental effects of distracting cues in adolescence.
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3.4. Discussion

The data reported here demonstrate that this modified 5CSRTT can effectively test attentional
control abilities in adolescent mice. Moreover, different challenges in the test were able to
detect in adolescent mice: (i) impulsive-like behaviors defined as the ability to refrain to make
a preponderant response, (ii) the ability to maintain focused or broad attention when different
pre-cue stimuli were presented (SARAT) and (iii) the attentional vulnerability to distractors.
While developing the task, preserving the chance to train mice in less than 12 days was crucial
for the effectiveness of the task itself. Training in the 5CSRTT for adult mice usually requires
from thirty days up to several months [33], [36], [50]. However, paradigms longer than twenty
days would exceed the rodents’ short “adolescence” period which is considered to span from
about 28 to 45 days of age [1], [36]. Notably, we were able to achieve this also maintaining the
physiological curve of adolescent-growing body size, limiting the amount of stress and
potential metabolic deficits that could derive from scarce food intake during this developmental
period. Indeed, most of similar operant-based tasks in adult rodents require a food restriction
protocol [33], [35], [51]. However, adolescence is a peculiar period for the vulnerability related
to nutritional factors [22]. For example, an increasing body of literature illustrates a direct
connection between an appropriate nutrition during adolescence and optimal cognitive and
brain function [52]-[54]. Therefore, this novel paradigm can assess higher order cognitive
functions such as attention, compulsivity, impulsivity, distractibility, decision making and
processing speed in adolescent rodents with very few confounding factors. There is very scarce
evidence regarding complex cognitive tasks designed for adolescent rodents. For example,
intra-/extra-dimensional (ID/ED) set-shifting tasks or a two-choice visual discrimination task
(2-CVDT) have been used in adolescent rats [55], [56]. However, in the ID/ED task, adolescent
rats were also impaired in basic compound discrimination and in such studies food restriction
was applied with no regard to the normal body weight growth of this developmental period.
More recently, an all-day and self-pace testing in a similar 5CSRTT have been tested for
adolescent mice[57]. In contrast to our setting, the latter task did not reveal any difference in
performance of adolescents compared to adults, needed an additional cage attached to the
5CSRTT apparatus, required continuous single-housing, and its testing schedule differed from
the one used in humans which is restricted in a consecutive and limited time period. This latter
factor is critical when assessing sustained attention as the self-pace regime greatly reduce the
attentional load. To note, we are not aware of other similar studies using distracting cues in

adolescent mice. However, we chose extra visual cues (i.e. green flashing lights) randomly
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presented within the same session to more directly compare attentional performance with that
of non-distractor trials, in order to avoid potential habituation processes found with noises [57]
and confusion with the use of house lights [58] as reported in adults. Finally, as also previously
discussed [47], we were able to demonstrate clear differences between the SARAT and
distractor paradigms. Briefly, the combination of tasks used in the current work show that the
cue lights were not simply treated as target stimulus lights, as only non-predictive cues
decreased the accuracy and that this was directly proportional to the degree of unpredictability
(e.g. 3 vs 5 vs distracting cues). The fact that accuracy and the speed of making a correct
response were both directly and proportionately modulated depending on the number of valid
pre-cues presented also suggested that the mice used the cues to orient attention in anticipation
of a target, and that there was a difference in this process between predictive and non-predictive
cues. Moreover, our data demonstrate that faster reaction time for correct responses in cued
trials were not a reflection of trials with responses initiated by the cue and executed after the
target light came on. Indeed, the speed of correct responses was proportional on the number of
cues presented (Cued 1 > Cued 3 > Cued 0 and 5 trials), and distracting cues did not trigger
faster reaction responses compared to Cued O trials. Overall, all the characteristics of our
modified automatic task makes it well suitable to dissect different attentional control processes
in adolescent rodents also for large genetic or pharmacological screenings. This could be
relevant in the context of testing early intervention/pharmacological strategies while also
understanding their mechanisms. Indeed, early intervention on cognitive deficits could
potentially be more effective in mitigating or reversing pathological trajectories and ameliorate
the quality of life of individuals at risk for psychiatric disorders [59]. With three different
variations, we were able to selectively measure in adolescent mice subtypes of attentional
control such as impulsivity, focused or broad attentiveness, processing speed and distractibility.
In the “impulsivity” paradigm, adolescent female mice, but not males, increased the premature
responses impulsivity index when the ITIs were changed from 5 to 7 seconds. Previous
literature using delay-discounting tests found that both male and female adolescent rats
exhibited greater levels of impulsive-like behaviors compared to adults [60]. However, other
evidence accounted for a substantial impact of hormones in producing sex-dependent
differences in impulsive actions in rodents[61]. Moreover, it has been demonstrated that in
delay-discounting tasks under mild food restriction, adult female mice are more impulsive than
males63. Premature responses are thought to reflect a failure of inhibitory response control that
occurs when preparatory response mechanisms are disrupted [62]. Thus, the 5-to-7 IT1 shift in

adolescent mice might be applied to assess sex-dependent vulnerability to this kind of
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impulsive control. Notably, our protocol offers another option to study impulsive control in
mice. In particular, in contrast with the 5-7 ITI shift, the pre-cued trials of the SARAT protocol
triggered a consistent increase in premature responding in both male and female mice. This
kind of motor impulsivity is qualitatively different from the one triggered by the increase in
ITI. Indeed, the pre-cue visual stimuli put forth a pre-potent response, which the mice must
withhold from making in order to receive a food reward and then make a correct response.
Thus, this measure of motoric impulsivity is potentially analogous to “false alarm” errors made
in corresponding human tasks. Both these manipulations might constitute a valuable tool to
assess impulsive behaviors in adolescent mice. In the SARAT paradigm, adolescent mice
showed a decreased accuracy in the trials where all the red cue light were turned on (Cued 5),
while faster speed of processing for target cues were evident in trials with more precise pre-
cues (Cued 1). This pattern of performance was very similar to that of human healthy subjects
tested in the original SARAT, where faster reaction times are evident in trials with more precise
pre-cues, while cognitive performance is disrupted in trials where the pre-cues provide invalid
information about the target [39]-[41]. Thus, this SARAT paradigm might be useful to
distinguish deficits in selective attention from deficits in broad monitoring in adolescent mice
with good translational validity concerning human studies. In particular, this could be relevant
for schizophrenia, as patients demonstrate more selective attentional deficits when broad focus
of attention is required, rather than when attention must be focused narrowly [41]. To date, no
study specifically assessed such kind of abilities in adolescent mice, making this an additional
tool in preclinical investigations designed to specifically manipulate spatial selective attention.
In the Distractor test, we observed a selective disruption of attentional accuracy and increased
time out responses in the distractor trials, where non-predictive flashing lights were turned on.
Adolescence is considered to be a time during which many aspects of behavior including
planning, multitasking and the ability to resist distractions, are profoundly shaped [63]. For
instance, teenagers have more difficulties to concentrate and are easily distracted [43]. The
maturation in the resistance to distractors has been associated with a decreased activation in
the superior frontal sulcus between childhood and adulthood [64], possibly linked with
developmental changes in grey matter architecture and long-range connections [65]. In
particular, it seems like cortical brain region fully developed in humans up to the late twenties
or even the early thirties, which is much later than previously thought [43]. Thus, in adolescent
mice as well as in humans, it would be important to unravel the mechanisms of cognitive
vulnerability to distractors, and our modified 5CSRTT might constitute a valid tool in this

respect. A comparison between adolescents’ and adults’ performance in an equivalent task
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might highlight interesting developmental peculiarities. Overall, the performance of adolescent
mice here described was similar to that of adult mice tested in an identical 5CSRTT47, with
few important exceptions. In particular, the sex-dependent differences in adults showing better
performances in females compared to males [47] were not evident in adolescent mice. This
might reflect long-lasting effects of the sexual hormonal changes that start to appear during
puberty [66]-[68], and that are thought to play a critical role in the adult maturation of the
cortex and complex cognitive behaviors [67]-[69]. In line with this and again in contrast with
responses in adults [33], [70], we did not find any effect in C57BL6 male mice in premature
responses when the ITIs were changed from 5 to 7 seconds. Furthermore, adolescent COMT+/—
males showed decreased levels of premature responses (Fig. 7), while adult COMT+/— have
been reported to have increased levels of premature responses [33], even if a direct comparison
with the same 5CSRTT version is still missing. However, these effects parallel recent findings
unraveling a divergent dopaminergic maturation of the PFC from adolescence to adulthood
between males and females [67]. Moreover, these findings raise the intriguing possibility that
the COMT-dependent impact on stress vulnerability in terms of cognitive responses (e.g.
impulsivity as in ref. 34) might develop in male subjects only after adolescence. This adds to
previous evidence reporting that COMT-by-sex interacting effects are noticeable only between
puberty and menopause [67], [71], [72] and with data reporting a different maturation of the
dopaminergic system in males compared to females [67], [71], [73], [74]. Notably, the SARAT
paradigm with only one predictive cue produced attentional advantages in adolescent mice that
were not evident in adults. Indeed, the increase in correct responses and the decreased
omissions seen in adolescents (Fig. 6) were not apparent in adults [47], indicating an higher
attentiveness to extra-cues in adolescents. Other developmental differences in the 5CSRTT
performance were then evident in the distractor paradigm, as distractor trials triggered larger
deleterious effects in adolescents than in adults. Indeed, additional parameters (i.e. premature,
perseverative and time out responses) were altered in adolescent mice other than just accuracy
and correct choices as in adults [47], and accuracy level was diminished to ~40% in adolescents
in contrast with =70% in adults. This might be related to human findings reporting higher
vulnerability to distraction in adolescent subjects compared to adults [45]. Finally, in line with
human findings [67], [75][70], [78], the better performance of COMT+/— in the distractor trials
suggests that this manipulation might be a more sensible tool in order to highlight the cognitive
advantages of COMT genetic reduction in males that were difficult to assess with classical
5CSRTT34. Future studies might want to address trial-by-trial analyses in order to address

whether adolescents might emotionally respond differently from adults following correct or
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incorrect responses. In conclusion, our results demonstrate that even within the brief duration
of rodent adolescence, it is possible to assess different attentional control facets by a modified
5CSRTT paradigm. Indeed, the adopted manipulations allowed to assess different subtypes of
attentional control including impulsivity, focused or broad attentiveness, processing speed and
distractibility. These features suggest that this task could be a useful tool with potential
translational validity concerning human studies, applicable to genetic and pharmacological

studies in mouse models relevant to cognitive abnormalities and psychiatric disorders.

93



3.5. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Schneider, “Adolescence as a vulnerable period to alter rodent behavior,” Cell
Tissue Res., vol. 354, no. 1, pp. 99-106, 2013.

C. L. Sisk and D. L. Foster, “The neural basis of puberty and adolescence,” Nat.
Neurosci., vol. 7, no. 10, pp. 1040-1047, 2004.

L. Steinberg, “Cognitive and affective development in adolescence,” Trends Cogn.
Sci., vol. 9, no. 2, pp. 69-74, 2005.

D. Yurgelun-Todd, “Emotional and cognitive changes during adolescence,” Curr.
Opin. Neurobiol., vol. 17, no. 2, pp. 251-257, 2007.

R. D. Q. G. Prwlrqdo, R. Ri, and D. Q. G. Grohvthqth, ©“) Urqwdo / Reh ) Xqfwlrqlqj
Lq & Klogkrrg.”

J. M. Gold and G. K. Thaker, “Current progress in schizophrenia research cognitive
phenotypes of schizophrenia: Attention,” J. Nerv. Ment. Dis., vol. 190, no. 9, pp. 638—
639, 2002.

M. Zvyagintsev, C. Parisi, N. Chechko, A. R. Nikolaev, and K. Mathiak, “Attention
and multisensory integration of emotions in schizophrenia,” Front. Hum. Neurosci.,
vol. 7, no. October, pp. 1-7, 2013.

J. M. Gold, B. Hahn, G. P. Strauss, and J. A. Waltz, “Turning it upside down: Areas of
preserved cognitive function in schizophrenia,” Neuropsychol. Rev., vol. 19, no. 3, pp.
294-311, 20009.

S. C. L. Deoni et al., “Mapping Infant Brain Myelination with Magnetic Resonance
Imaging,” J. Neurosci., vol. 31, no. 2, pp. 784-791, 2011.

E. M. Gordon et al., “Strength of default mode resting-state connectivity relates to
white matter integrity in children,” Dev. Sci., vol. 14, no. 4, pp. 738-751, 2011.

A. Manuscript, “<2006 - 4-13 yo - Davidson et al., Neuropsychologia.pdf>,” vol. 44,
no. 11, pp. 2037-2078, 2006.

J. Adamek, H. Herrlich, G. S. Abstract, and C. Catego-, “References 1.,” Form. Asp.
Comput., vol. 6, no. 1990, pp. 62-77, 1999.

M. Ernst, T. Daniele, and K. Frantz, “New perspectives on adolescent motivated
behavior: Attention and conditioning,” Dev. Cogn. Neurosci., vol. 1, no. 4, pp. 377—
389, 2011.

T. E. Moffitt et al., “A gradient of childhood self-control predicts health, wealth, and
public safety,” Proc. Natl. Acad. Sci., vol. 108, no. 7, pp. 2693-2698, 2011.

94



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

T. Dalgleish et al., “[ No Title ],” J. Exp. Psychol. Gen., vol. 136, no. 1, pp. 23-42,
2007.

A. B. Clohessy, M. 1. Posner, and M. K. Rothbart, “Development of the functional
visual field,” Acta Psychol. (Amst)., vol. 106, no. 1-2, pp. 51-68, 2001.

K. M. Thomas and C. A. Nelson, “Serial Reaction Time Learning in Preschool- and
School-Age Children,” J. Exp. Child Psychol., vol. 79, no. 4, pp. 364-387, 2001.

P. O&apos;Donnell, “Cortical disinhibition in the neonatal ventral hippocampal lesion
model of schizophrenia: New vistas on possible therapeutic approaches,” Pharmacol.
Ther., vol. 133, no. 1, pp. 19-25, 2012.

F. Papaleo et al., “Dysbindin-1 modulates prefrontal cortical activity and
schizophrenia-like behaviors via dopamine/D2 pathways,” Mol. Psychiatry, vol. 17,
no. 1, pp. 85-98, 2012.

L. Steinberg and A. S. Morris, “Adolescent Devolepmental,” Annu. Rev. Psychol., vol.
52, pp. 83-110, 2001.

S. L. Andersen, A. T. Thompson, M. Rutstein, J. C. Hostetter, and M. H. Teicher,
“Dopamine receptor pruning in prefrontal cortex during the periadolescent period in
rats,” Synapse, vol. 37, no. 2, pp. 167-169, 2000.

“Spear - 2002.pdf.” .

D. Wahlstrom, T. White, and M. Luciana, “Neurobehavioral evidence for changes in
dopamine system activity during adolescence,” Neurosci. Biobehav. Rev., vol. 34, no.
5, pp. 631-648, 2010.

L. P. Spear, <Spear LP 2000 - Review.pdf>, vol. 24. 2000.

C. S. Monk et al., “Adolescent immaturity in attention-related brain engagement to
emotional facial expressions,” Neuroimage, vol. 20, no. 1, pp. 420-428, 2003.

K. Rubia et al., “Functional frontalisation with age: Mapping neurodevelopmental
trajectories with fMRI,” Neurosci. Biobehav. Rev., vol. 24, no. 1, pp. 13-19, 2000.

L. Tamm, V. Menon, and A. L. Reiss, “LIHI Certificate #58 - Union Gas | Low Impact
Hydropower Institute,” vol. 20, pp. 1231-1238, 2017.

M. Ernst et al., “Amygdala and nucleus accumbens in responses to receipt and
omission of gains in adults and adolescents,” Neuroimage, vol. 25, no. 4, pp. 1279-
1291, 2005.

A. Galvan et al., “Earlier Development of the Accumbens Relative to Orbitofrontal
Cortex Might Underlie Risk-Taking Behavior in Adolescents,” J. Neurosci., vol. 26,
no. 25, pp. 6885-6892, 2006.

95



[30] M. P. Purdue et al., “Erratum: A prospective study of 67 serum immune and
inflammation markers and risk of non-Hodgkin lymphoma (Blood (2013) 122:6 (951-
957)),” Blood, vol. 123, no. 18, p. 2901, 2014.

[31] J. McGaughy, J. W. Dalley, C. H. Morrison, B. J. Everitt, and T. W. Robbins,
“Selective behavioral and neurochemical effects of cholinergic lesions produced by
intrabasalis infusions of 192 1gG-saporin on attentional performance in a five-choice
serial reaction time task.,” J. Neurosci., vol. 22, no. 5, pp. 1905-13, 2002.

[32] J. McGaughy, J. Turchi, and M. Sarter, “Crossmodal divided attention in rats: effects
of chlordiazepoxide and scopolamine,” Psychopharmacology (Berl)., vol. 115, no. 1-
2, pp. 213-220, 1994.

[33] F. Papaleo, L. Erickson, G. Liu, J. Chen, and D. R. Weinberger, “Effects of sex and
COMT genotype on environmentally modulated cognitive control in mice,” Proc.
Natl. Acad. Sci., vol. 109, no. 49, pp. 20160-20165, 2012.

[34] D. Scheggia, A. Bebensee, D. R. Weinberger, and F. Papaleo, “The ultimate intra-
lextra-dimensional attentional set-shifting task for mice,” Biol. Psychiatry, vol. 75, no.
8, pp. 660-670, 2014.

[35] A.Bari,J. W. Dalley, and T. W. Robbins, “The application of the 5-choice serial
reaction time task for the assessment of visual attentional processes and impulse
control in rats.,” Nat. Protoc., vol. 3, no. 5, pp. 759-767, 2008.

[36] W. Adriani and G. Laviola, “Elevated levels of impulsivity and reduced place
conditioning with d-amphetamine: Two behavioral features of adolescence in mice,”
Behav. Neurosci., vol. 117, no. 4, pp. 695-703, 2003.

[37] F. Papaleo, L. Erickson, G. Liu, J. Chen, and D. R. Weinberger, “Effects of sex and
COMT genotype on environmentally modulated cognitive control in mice,” pp. 2—7,
2012.

[38] V. Anderson, “Assessing executive functions in children: Biological, psychological,
and developmental considerations,” Pediatr. Rehabil., vol. 4, no. 3, pp. 119-136, 2001.

[39] T.J. Simon, Z. Wu, B. Avants, H. Zhang, J. C. Gee, and G. T. Stebbins, “Atypical
cortical connectivity and visuospatial cognitive impairments are related in children
with chromosome 22q11.2 deletion syndrome,” Behav. Brain Funct., vol. 4, pp. 1-11,
2008.

[40] B. Hahn, T.J. Ross, and E. A. Stein, “Neuroanatomical dissociation between bottom-
up and top-down processes of visuospatial selective attention,” Neuroimage, vol. 32,
no. 2, pp. 842-853, 2006.

96



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

B. Hahn et al., “Visuospatial attention in schizophrenia: Deficits in broad
monitoring.,” J. Abnorm. Psychol., vol. 121, no. 1, pp. 119-128, 2012,

E. Macaluso and F. Doricchi, “Attention and predictions: control of spatial attention
beyond the endogenous-exogenous dichotomy,” Front. Hum. Neurosci., vol. 7, no.
October, pp. 75-80, 2013.

I. Dumontheil, B. Hassan, S. J. Gilbert, and S.-J. Blakemore, “Development of the
Selection and Manipulation of Self-Generated Thoughts in Adolescence,” J. Neurosci.,
vol. 30, no. 22, pp. 7664-7671, 2010.

C. L. Frame and T. F. Oltmanns, “Serial recall by schizophrenic and affective patients
during and after psychotic episodes,” J. Abnorm. Psychol., vol. 91, no. 5, pp. 311-318,
1982.

P. Harvey, K. C. Winters, S. Weintraub, and J. M. Neale, “Distractibility in children
vulnerable to psychopathology,” J. Abnorm. Psychol., vol. 90, no. 4, pp. 298-304,
1981.

O. Slobodin, H. Cassuto, and 1. Berger, “Age-Related Changes in Distractibility:
Developmental Trajectory of Sustained Attention in ADHD,” J. Atten. Disord., 2015.
H. Huang et al., ““A schizophrenia relevant 5-Choice Serial Reaction Time Task for
mice assessing broad monitoring, distractibility and impulsivity,”
Psychopharmacology (Berl)., vol. 234, no. 13, pp. 2047-2062, 2017.

M. Mereu et al., “Dopamine transporter (DAT) genetic hypofunction in mice produces
alterations consistent with ADHD but not schizophrenia or bipolar disorder,”
Neuropharmacology, vol. 121, pp. 179-194, 2017.

D. Scheggia, S. Sannino, M. Luisa Scattoni, and F. Papaleo, “COMT as a Drug Target
for Cognitive Functions and Dysfunctions,” CNS Neurol. Disord. - Drug Targets, vol.
11, no. 3, pp. 209-221, 2012.

N. M. W. J. de Bruin, F. Fransen, H. Duytschaever, C. Grantham, and A. A. H. P.
Megens, “Attentional performance of (C57BL/6J x 129Sv)F2 mice in the five-choice
serial reaction time task,” Physiol. Behav., vol. 89, no. 5, pp. 692—-703, 2006.

T. W. Robbins, “The 5-choice serial reaction time task: Behavioural pharmacology and
functional neurochemistry,” Psychopharmacology, vol. 163, no. 3-4. pp. 362380,
2002.

J. Davis et al., “A review of vulnerability and risks for schizophrenia: Beyond the two
hit hypothesis,” Neurosci. Biobehav. Rev., vol. 65, pp. 185-194, 2016.

L. Desbonnet et al., “Gut microbiota depletion from early adolescence in mice:

97



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Implications for brain and behaviour,” Brain. Behav. Immun., vol. 48, pp. 165-173,
2015.

M. B. Zimmermann, “The role of iodine in human growth and development,” Semin.
Cell Dev. Biol., vol. 22, no. 6, pp. 645-652, 2011.

P. E. Orndorff, T. S. Hamrick, I. W. Smoak, and E. A. Havell, “Host and bacterial
factors in listeriosis pathogenesis,” Vet. Microbiol., vol. 114, no. 1-2, pp. 1-15, 2006.
L. A. Newman and J. Mcgaughy, “Adolescent rats show cognitive rigidity in a test of
attentional set shifting,” Dev. Psychobiol., vol. 53, no. 4, pp. 391-401, 2011.

E. Remmelink, U. Chau, A. B. Smit, M. Verhage, and M. Loos, “A one-week 5-choice
serial reaction time task to measure impulsivity and attention in adult and adolescent
mice,” Sci. Rep., vol. 7, no. January, pp. 1-13, 2017.

N. Amitai and A. Markou, “Comparative effects of different test day challenges on
performance in the 5-choice serial reaction time task,” Behav. Neurosci., vol. 125, no.
5, pp. 764-774, 2011.

M. J. Millan et al., “Altering the course of schizophrenia: Progress and perspectives,”
Nat. Rev. Drug Discov., vol. 15, no. 7, pp. 485-515, 2016.

J.-Q. Engle, K. M.; Mei, T-S.; Wasa, M.; Yu, “NIH Public Access,” Acc. Chem. Res.,
vol. 45, no. 6, pp. 788-802, 2008.

D. W. Bayless, J. S. Darling, W. J. Stout, and J. M. Daniel, “Sex differences in
attentional processes in adult rats as measured by performance on the 5-choice serial
reaction time task,” Behav. Brain Res., vol. 235, no. 1, pp. 48-54, 2012.

Y. Chudasama and T. W. Robbins, “Dissociable contributions of the orbitofrontal and
infralimbic cortex to pavlovian autoshaping and discrimination reversal learning:
further evidence for the functional heterogeneity of the rodent frontal cortex.,” J.
Neurosci., vol. 23, no. 25, pp. 8771-8780, 2003.

S. J. Blakemore and S. Choudhury, “Development of the adolescent brain:
Implications for executive function and social cognition,” J. Child Psychol. Psychiatry
Allied Discip., vol. 47, no. 34, pp. 296-312, 2006.

P.J. Olesen, J. Macoveanu, J. Tegnér, and T. Klingberg, “Brain activity related to
working memory and distraction in children and adults,” Cereb. Cortex, vol. 17, no. 5,
pp. 1047-1054, 2007.

B. Luna, A. Padmanabhan, and K. O. Hearn,
“Sturio_Publi_Symposium_Albufeira 2000.Pdf,” vol. 72, no. 1, pp. 1-28, 2011.

G. C. Harris and J. E. Levine, “Pubertal acceleration of pulsatile gonadotropin-

98



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

releasing hormone release in male rats as revealed by microdialysis,” Endocrinology,
vol. 144, no. 1, pp. 163-171, 2003.

S. Sannino et al., “Adolescence is the starting point of sex-dichotomous COMT
genetic effects,” Transl. Psychiatry, vol. 7, no. 5, 2017.

C. L. Sisk, H. N. Richardson, P. E. Chappell, and J. E. Levine, “In vivo gonadotropin-
releasing hormone secretion in female rats during peripubertal development and on
proestrus,” Endocrinology, vol. 142, no. 7, pp. 2929-2936, 2001.

M. Arain et al., “NDT-39776-maturation-of-the-adolescent-brain,” Neuropsychiatr.
Dis. Treat., vol. 9, pp. 449-461, 2013.

J. W. Dalley et al., “Nucleus Accumbens D2/3 Receptors Predict Trait Impulsivity and
Cocaine Reinforcement,” Science (80-. )., vol. 315, no. 5816, pp. 1267-1270, 2007.
F. Papaleo, S. Sannino, F. Piras, and G. Spalletta, “Sex-dichotomous effects of
functional COMT genetic variations on cognitive functions disappear after menopause
in both health and schizophrenia,” Eur. Neuropsychopharmacol., vol. 25, no. 12, pp.
2349-2363, 2015.

E. Jacobs and M. D’Esposito, “Estrogen Shapes Dopamine-Dependent Cognitive
Processes: Implications for Women’s Health,” J. Neurosci., vol. 31, no. 14, pp. 5286—
5293, 2011.

K. D. Foust and B. K. Kaspar, “NIH Public Access,” vol. 8, no. 24, pp. 4017-4018,
2010.

J. B. Becker, “Gender differences in dopaminergic function in striatum and nucleus
accumbens,” Pharmacol. Biochem. Behav., vol. 64, no. 4, pp. 803-812, 1999.

B. Hooks, “Feminist Theory: From Margin to Center,” vol. 8, no. January, p. 179,
2000.

99



Chapter 4

Remote memories are enhanced by COMT activity through dysregulation
of the endocannabinoid system in the prefrontal cortex

Diego Scheggia®’, Erika Zamberletti2, Natalia Realini3, Maddalena Mereu'#, Gabriella
Contarini®, Valentina Ferrettil, Francesca Manago?®, Giulia Margiani®, Roberto Brunoro!,
Tiziana Rubino?, Maria Antonietta De Luca®, Daniele Piomelli*, Daniela Parolaro? and
Francesco Papaleo!
1. Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia,
Genoa, Italy
2. Department of Biotechnology and Life Sciences, and Neuroscience Center, University
of Insubria, Busto Arsizio, Italy
3. Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
4. Dipartimento di Scienze del Farmaco, Universita’ degli Studi di Padova, Largo
Meneghetti, Padova, Italy
5. Department of Biomedical Sciences, Universita di Cagliari, Cagliari, Italy
6. Department of Anatomy and Neurobiology, Pharmacology and Biological Chemistry,
University of California, Irvine, Irvine, CA, USA.
7. Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital

Center Lausanne, Prilly-Lausanne CH-1008, Switzerland.

Abstract

The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories
(executive functions) as well as for the stable organization of remote memories. Dopamine in
the PFC is implicated in both these processes and genetic variants affecting its
neurotransmission might control the unique balance between cognitive stability and flexibility
present in each individual.

Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a
different catabolism of dopamine in the PFC. However, despite the established role played by
COMT genetic variation in executive functions, its impact on remote memory formation and
recall is still poorly explored. Here we report that transgenic mice overexpressing the human
COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (450 days) while

having unaltered recent memories (24 h).
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COMT selectively and reversibly modulated the recall of remote memories as silencing COMT
Val overexpression starting from 30 days after the initial aversive conditioning normalized
remote memories. COMT genetic over activity produced a selective overdrive of the
endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was
associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1
receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and
increased PFC dopamine levels. These results demonstrate that COMT genetic variations
modulate the retrieval of remote memories through the dysregulation of the endocannabinoid

system in the PFC.
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4.1. Introduction

The everyday activities of each individual are characterized by the dichotomy between the
formation/manipulation of new memories (recent memories and executive functions) and the
recall of remote memories. Previous studies have demonstrated that freshly formed memories
are mostly dependent on hippocampal formation, whereas remote memories are mainly
integrated by cortical networks converging into the prefrontal cortex (PFC) [1]-[3]. The genetic
footprint of each individual can greatly affect these cognitive functions [4]-[6]. However, how
selective genetic variations might impact the dichotomy between recent versus remote
memories is not yet clear.

Catecholamines within the PFC have an integrative role in the flexible updating of novel
information (executive functions) as well as in the formation of stable remote memories [7],
[8]. Genetic variations leading to individual differences in the enzymatic activity of the
catechol-O-methyltransferase (COMT) produce predominant changes of cortical dopamine,
but not norepinephrine metabolism [8]-[12]. In particular, because more than half of the
dopamine flux in the PFC is accounted by COMT activity, this enzyme has a privileged
position in relationship to PFC-dependent cognitive functions [9], [10], [13].

In agreement, functional COMT genetic variations in both humans and rodents [4], [11], [14]
have been consistently reported to modulate PFC-dependent cognition such as working
memory and executive functions [11], [15], [16].

Furthermore, COMT genetic variations have been associated with mental disorders
characterized by specific alterations in cognitive performance and physiology such as
schizophrenia [17], panic disorder [18] and posttraumatic stress disorder [19]. Despite this, the
impact of COMT genetic variations on remote memory formation and recall is still poorly
understood. Based on the established role played by COMT genetics in the modulation of PFC-
dependent cognitive processes, here we hypothesized that functional COMT genetic variations
might also influence remote memories sparing short-term, hippocampus dependent memories.
In particular, we used a humanized conditional mouse expressing the human COMT-Val gene
(COMT-Val-tg) that simulates human genetic conditions resulting in relative increased COMT
enzymatic activity during the life span. COMT-Val-tg mice recapitulate salient aspects of
human behaviors associated with COMT polymorphisms and establish the biological validity
of these associations. That is, a modest increase of COMT activity disrupts executive functions
while reducing the reactions from anxiety-like states and stressful situations [11]. The

endocannabinoid system has a central role in formation and extinction of long-lasting
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memories [20]-[22] and clinical studies have suggested an interaction of this system with the
human COMT Val genotype [23]. However, the impact of the COMT-Val genotype on this
signaling complex and its potential link with memory functions is still unknown. Thus,
transgenic (tg) mice overexpressing the human COMT-Val-allele provide an unequivocal
model to evaluate the role of genetically determined increases in COMT and the underlying

biology of the observed behavioral abnormalities.
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4.2. Materials and Methods
4.2.1. Mice

All procedures were approved by the National Institute of Mental Health Animal Care and by
the Italian Ministry of Health (permit no. 230/2009-B) and Animal Use Committee in
accordance with the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health and the European Community Council Directives. COMT-Val-tg mice
were mated with control littermates. Construction and development of human COMT Val-tg
mice has been previously described [11]. Mice were identified by PCR analysis of tail DNA.
Mice were group housed (two to four per cage) in a climate-controlled animal facility (22 + 2
°C) and maintained on a 12 h light/dark cycle with ad libitum access to food and water. Testing
was conducted in male mice, 3 to 6 months old, during the light phase. Distinct cohorts of naive
mice were used for each experiment. Experiments were blind to the genotype during behavioral
testing. Mice were handled by the experimenter on alternative days during the week preceding
the tests. At least 1 h before any test manipulation, mice were habituated in a room adjacent to

the testing room.

4.2.2 Behavior

4.2.2.1 Fear conditioning.

Fear conditioning took place in a standard conditioning box (TSE Systems, Bad Homburg,
Germany). The conditioned stimulus (CS) was a tone (4 kHz, 80 dB sound pressure level, 30
s) and the unconditioned stimulus (US) was a scrambled shock (0.7 mA) delivered through the
grid floor that terminated simultaneously with the tone (2 s). On experimental day 1, mice were
placed in the training chamber and after a 2 min habituation period (baseline), three
conditioning trials were presented (tones paired with shock) with an intertrial interval of 90 s.
Then, the animals were returned to their home cages ~ 2 min after the last CS-US pairing.
After 24 h, mice were retested in the same chamber for 5 min without tone or foot shock (recent
contextual memory). At 50 days following training, the mice were returned to the same
conditioning chamber for contextual fear memory test (remote contextual memory). At 1 h
after the recent and remote contextual memory recall, mice were placed in a new chamber and
after 2 min of habituation (baseline) exposed to the conditioning tone for 2 min (cue) to test for
recent and remote cued memory. Then, the animals were returned to their home cages after 2

min (post cue).
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4.2.2.2. Fear extinction.

Mice were tested for fear extinction in the apparatus previously described. On day 1, animals
were placed in the conditioning chamber and after 90 s without tone or shock, received 5
habituation trials (tone alone, 4 kHz, 80 dB sound pressure level, 30 s), immediately followed
by fear conditioning consisting of 5 presentations of the tone that coterminated with foot shocks
(2 s, 0.7 mA). Approximately 90 s after the last CS-US pairing, mice were replaced in their
home cages. After 2 h, mice were returned to the same conditioning chamber and were given
extinction training consisting of 20 tone-alone trials. The extinction training lasted ~ 60 min.
The chamber was cleaned with 70% ethanol and wiped dry before running the first mouse and
after each animal completed the test. Behavior during fear conditioning, fear extinction, recent
and remote recall of contextual and cued fear memories was recorded with digital video
cameras for offline scoring of freezing with stopwatches. The percent time spent freezing
during each trial (the absence of all movements except for respiration) was measured by an

observer blind with respect to group assignment.

4.2.2.3 Conditioned place aversion.

The conditioned place aversion (CPA) was performed in a rectangular Plexiglas box (length,
42 cm; width, 21 cm; height, 21 cm) divided by a central partition into two chambers of equal
size (21 x 21 x 21 cm). One compartment had black walls and a smooth Plexiglas floor,
whereas the other one had vertical black and white striped (2 cm) walls and a slightly rough
floor. During the test sessions, an aperture (4 x 4 cm) in the central partition allowed the mice
to enter both sides of the apparatus, whereas during the conditioning sessions the individual
compartments were closed off from each other. To measure time spent in each compartment a
video tracking system (ANYMAZE) was used. The CPA experiment lasted 52 days and
consisted of three phases: preconditioning test, conditioning phase and post conditioning test.
On day 0, each mouse was allowed to freely explore the entire CPA apparatus for 20 min, and
time spent in each of the two compartments was measured (preconditioning test). Within each
genotype, mice were divided in two groups with similar preconditioning time values in the
preferred and non-preferred compartment of the CPA apparatus. Conditioning sessions took
place on days [1], [3], [24]. During the morning session mice were injected with vehicle (Veh)
and then confined in the non- preferred compartment of CPA apparatus for 30 min a day. After
4 h, mice were treated with naloxone (5 mg kg— 1) and confined for 30 min a day into their
preferred compartment, as determined on preconditioning test. To test recent memory, post

conditioning test was performed on day 4 in the same condition of preconditioning test. On day
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52, mice were treated with Veh or AM251 (1 mg kg— 1) and tested again on postconditioning
test. For each mouse, a place aversion score was calculated as the post conditioning time minus
the preconditioning time (seconds) spent in the conditioning compartment of the CPA
apparatus.

4.2.2.4. Drugs

Doxycycline hyclate (Sigma Aldrich, Dorset, UK) was freshly prepared every day and
administered in drinking water (100 pg ml— 1) for 20 days before testing remote contextual
fear memory. Cannabinoid receptor-1 (CB1R) antagonist AM251 (1-(2,4-Dichlorophenyl)-5-
(4-iodophenyl)-4-methyl-N-1- piperidinyl-1H-pyrazole-3-carboxamide, 1 or 2 mg kg ‘!
intraperitoneal [25]; Sigma Aldrich, UK) was first dissolved in polyethylene glycol 400 (2:8),
then made up to volume with physiological saline (0.9% NaCl) and injected in a volume of 10

ml kg~ ! of body weight. Control mice were injected with the same volume of saline.

4.2.3. In vivo microdialysis

Concentric dialysis probe, with a dialysis portion of 2.0 mm, were prepared as previously
described [26]. Mice were anesthetized with isoflurane and then placed in a stereotaxic frame
(Kopf Instruments, Tujunga, CA, USA) for the probe implantation. The probe was implanted
into the medial PFC (mPFC), according to the Paxinos and Franklin mouse brain atlas [27]
(AP: £ 1.9; ML: £ 0.1; DV:-3.0 from Bregma). Microdialysis sessions started 24 h after the
surgical procedures. Probes were perfused with Ringer’s solution (147.0 mM NaCl, 2.2 mM
CaCl2 and 4.0 mM KCl) at a constant flow rate of 1 pul min— 1. Collection of basal dialysate
samples (20 pl) started 30 min after. To measure dopamine release, after 60 min of basal
sampling, we injected amphetamine (1.5 mg kg— 1, intraperitoneal) followed by another 2 h of
sampling collection. Dialysate samples (20 ul) were injected into high-performance liquid
chromatography equipped with a reverse phase column (C8 3.5 um, Waters, Milford, MA,
USA) and dopamine was quantified by a coulometric detector (ESA, Coulochem II, Bedford,
MA, USA). At the end of the experiment, mice were anesthetized with isoflurane and killed.
Brains were removed and mPFC serial coronal sections were prepared with a vibratome to
identify the location of the probes. All measurements were performed blind to the treatment

and the genotype of the animals.
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4.2.4. Lipid extraction

Tissue fatty acyl ester levels were measured as previously described [28]. Briefly, prefrontal
cortex was weighed (5-7 mg) and homogenized in methanol (1 ml) containing [2H4]-AEA,
[2H4]-OEA, [2H4]-PEA and [2H8]-2-AG as internal standards (Cayman Chemical, Ann
Arbor, MI, USA). Lipids were extracted with chloroform (2 ml) and washed with water (1 ml).
After centrifugation (2500 x g, 15 min, 4 °C), organic phases were collected and dried under
nitrogen. The organic extracts were fractionated by silica gel column chromatography.
Anandamide (AEA), oleoylethanolamide (OEA), palmitylethanolamide (PEA) and 2-
arachidonoylglycerol (2-AG) were eluted with chloroform/methanol (9:1, v/v). Organic phases
were evaporated under nitrogen and reconstituted in methanol/chloroform (9:1, v/v). Liquid
chromatography/mass spectrometry (LC/MS) analyses were conducted on a Xevo TQ UPLC-
MS/MS system (Waters) equipped with a reversed-phase BEH C18 column (Waters), using a
linear gradient of acetonitrile in water. Quantifications were performed monitoring the
following transitions (parent m/z-.daughter m/z, collision energy eV): AEA 348-.62, 20;
[2H4]- AEA 352-.66, 20; OEA 326-.62, 20; [2H4]-OEA 330-.66, 20; PEA 300-.62, 20; [2H4]-
PEA 304-.66, 20; 2-AG 379-.287, 15; [2H8]-2-AG 387-.295, 15. Analyte peak areas were

compared with a standard calibration curve (0.1 nM to 1 mM).

4.2.5. Western blot

For western blot analyses, mice were killed by cervical dislocation and brains were quickly
removed. The cerebral areas of interest (PFC, hippocampus and striatum) were obtained by
regional dissection on ice, immediately frozen in liquid nitrogen and stored at — 80 °C until
processing. The experiments were carried out as previously reported [29]. Briefly, equal
amounts of protein lysates (30 pug) were run on a 10% SDS—polyacrylamide gel. The proteins
were then transferred to polyvinylidene difluoride membranes and blocked for 2 h at room
temperature before incubation overnight at 4 °C with the primary antibody. The following
primary antibodies were used: rabbit polyclonal anti-CB1 (1:1000; Cayman Chemical), rabbit
polyclonal anti-NAPE-PLD (1:3000; Cayman Chemical), rabbit polyclonal anti-FAAH
(1:2000; Cayman Chemical), goat polyclonal anti-DAGL-a (1:1000; Abcam, Cambridge, UK),
rabbit polyclonal anti-MAGL (1:1000; Cayman Chemical) and rabbit polyclonal anti-human
COMT (1:5000; Chemicon International, Temecula, CA, USA). Bound antibodies were
detected with horseradish peroxidase-conjugated secondary anti-rabbit or anti-goat antibody
(1:2000-1:5000; Chemicon International). For normalization, the blots were stripped with
Restore Western Blot Stripping Buffer (Thermo Scientific, Rockford, IL, USA) and reblotted
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with mouse anti-B-actin monoclonal antibody (1:10 000; Sigma Aldrich, Milan, Italy)
overnight at 4 °C. Bound antibodies were visualized using Clarity Western ECL Substrate (Bio-
Rad Laboratories, Hercules, CA, USA) and bands were detected with a GBOX XT camera
(Syngene, Cambridge, UK). Optical density of the bands was quantified using Image Pro Plus
7.0 software (MediaCybernetics, Bethesda, MD, USA). The density of the bands was

normalized to B-actin and expressed as percentage of controls.

4.2.6. Immunofluorescence

Mice were deeply anesthetized with a 400 mg kg— 1 dose of chloral hydrate and then perfused
with 4% paraformaldehyde. Following extraction, brains were stored at 4 °C in 4%
paraformaldehyde for 24 h and cryoprotected in 30% sucrose for a minimum of 24 h. Brains
were included in O.C.T. Compound (Sakura, Alpheen aan den Rijn, The Netherlands), cut in
40 pm-thick sections using a cryostat and stored at — 20 °C in anti-freezing solution (30%
glycerol, 30% ethylene glycol and 0.02% sodium azide in phosphate-buffered saline (PBS)).
For CBL1 receptor, fatty acid amide hydrolase (FAAH) and N-acylphosphatidyl-lethanolamine
phospholipase D (NAPE-PLD) immunofluorescence, free-floating sections were incubated in
sodium citrate 50 mM, pH 9, for 10 min at 90 °C for antigen retrieval. After blocking
peroxidase activity with 3% H202 in PBS for 20 min, sections were incubated in blocking
buffer (10% normal goat serum, 0.3% Triton X-100 in PBS) for 3 h at room temperature and
then with rabbit polyclonal anti-CB1 antibody (1:200, Cayman Chemical), rabbit polyclonal
anti-FAAH antibody (1:500, Cayman Chemical) or rabbit polyclonal anti-NAPE-PLD
antibody (1:300, Cayman Chemical) in blocking solution overnight at 4 °C. On the second day,
the sections were washed with PBS-Tryton 0.5% and signal was revealed by incubating
sections with Alexa Fluor 594 goat anti-rabbit antibody (1:2000; Invitrogen, Eugene, OR,
USA) for 2 h at 4 °C. After several washes in PBS, sections were mounted onto Superfrost
slides, dehydrated and coverslipped with ProLong Gold antifade reagent with 4',6-diamidino-
2-phenylindole (Invitrogen). For double immunofluorescence, free-floating sections were
processed for antigen retrieval, preincubated in blocking solution for 2 h at room temperature
and then incubated with goat polyclonal anti-CB1 antibody (1:500; Santa Cruz Biotechnology,
Santa Cruz, CA, USA) in blocking solution overnight at 4 °C. On the second day, the sections
were washed with PBSTryton 0.5% and incubated with Alexa Fluor 488 donkey anti-goat
antibody (1:2000; Invitrogen) for 2 h at 4 °C and then with rabbit polyclonal anti-VGLUT
(1:1000; Abcam), vesicular GABA transporter (1:1000; Novus Biologicals, Littleton, CO,
USA) or dopamine transporter (1:500; Sigma Aldrich, Italy) in blocking solution overnight at
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4 °C. After washing, signal was revealed by incubating sections with Alexa Fluor 594 goat
anti-rabbit antibody (1:2000; Invitrogen) for 2 h at 4 °C. After several washes in PBS, sections
were mounted onto Superfrost slides, dehydrated and coverslipped with ProLong Gold antifade
reagent with 4',6-diamidino-2-phenylindole (Invitrogen). Digital Images were captured using
Retiga R1 CCD camera (QImaging, Surrey, BC, Canada) attached to an Olympus BX51
(Tokyo, Japan). polarizing/light microscope. Ocular imaging software (QImaging) was used to
import images from the camera. Images were acquired by first delineating the brain sections
and the regions of interest at low magnification (x4 objective) and the region of interest outlines
were further refined under a x 40 objective. Three sections per mouse were analyzed. Digital
images were adjusted only for contrast and brightness and digitally merged to visualize the
colocalization of signals using Adobe Photoshop (5.0, San Jose, CA, USA). JACoP plugin
embedded in the ImageJ software (NIH, Bethesda, MD, USA) was used to calculate
colocalization statistics [30]. Merged color images were separated into individual red, green
and blue components using the RGB split feature, and Pearson’s coefficient, overlap coefficient

and Mander’s coefficients were calculated as quantitative measures of colocalization.

4.2.7. Statistical analysis

Results are expressed as mean + s.e.m. throughout. No statistical methods were used to
predetermine sample size. No exclusion criteria were used and all animals and samples tested
were included in the analysis. All behavioral manipulations performed on each animal were
determined randomly. All randomization was performed by an experimenter, and no explicit
randomization algorithm was used. Two-way analysis of variance with genotype (controls and
COMT-Val-tg) as the between-subject factor and time as the within-subject repeated measure
factor was used to examine the percentage of freezing during the repeated exposure to the
context environment, and during the habituation, conditioning, extinction and recall phases of
the fear extinction paradigm. As normality tests have little power to detect non-Gaussian
distributions with small data sets, we did not explicitly test for the normality of our data sets.
For the analysis of lipids (AEA, OEA, PEA and 2-AG) and of enzymes responsible for
synthesis and degradation/reuptake of the endocannabinoids (NAPE-PLD, diacylglycerol
lipase-a (DAGL-a), FAAH, monoacylglycerol lipase (MAGL)) we found similar results in
naive animals and in mice after remote memory recall, and thus data were pooled together.
Data were expressed as fold changes compared with control Veh. The post hoc analyses for
individual group comparisons employed Newman—Keuls analyses. The accepted value for

significance was P<0.05. Result sheets of statistical tests detailing (wherever applicable)
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estimates of variance within each group, confidence intervals and comparison of variances

across groups are available on request.
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4.3.Results

4.3.1 Increased remote fear memory in COMT Val-tg mice

To study the effect of genetically dependent increase in COMT enzymatic activity on remote
memories, we tested COMT-Val-tg mice in a Pavlovian fear conditioning. This paradigm
combines the advantages of the formation of long-lasting memories following a single training
experience with a well-known knowledge of timedependent brain circuits involved [24]. Re-
exposure to the same context.Contextual fear memories have been shown to strongly depend
on hippocampus functioning up to 28 days after training [31]. Thus, to tackle remote memories
that are critically dependent on the functioning of the PFC [32], [33], we re-exposed the mice
to the conditioning context again after 50 days. In contrast to normal recent memory, COMT-
Val-tg mice showed higher expression of fear during the remote memory recall compared with
their control littermates (Figure 1a). Indeed, while control mice showed a normal weakening
of freezing behavior, COMT-Val-tg mice showed the same levels of freezing at 24 h and 50
days after conditioning. Fear reaction in both genotypes groups was context specific. Indeed,
when we exposed the mice to a modified context, very little COMT-independent freezing
behavior was observed 24 h and 50 days post conditioning (Figure 1b). Similarly, COMT
independent reactions to cued fear memory were evident in a novel modified context
(Supplementary Figures 1a and b). These results indicate that genetic variations resulting in
increased COMT enzymatic activity were associated with a more stable recall of contextual
remote memory. To rule out the possibility that COMT over activity might alter the ability to
extinguish conditioned fear memories, we next tested fear extinction in COMT-Val-tg and
control mice. During training, conditioned responses increased gradually in control and
COMT-Val-tg mice (Figure 1c), demonstrating a rapid acquisition of conditioned freezing to
the tone independent on the COMT genotype. Similarly, a classical extinction procedure [34]
demonstrated that both control and COMT- Val-tg ce were able to rapidly extinguish the
conditioned freezing in a COMT-independent way (Figure 1d). Thus, genetic variations
increasing COMT do not affect the ability to extinguish fear memories. Silencing COMT
overexpression during late consolidation/recall re-established a normal expression of remote
memories. To determine whether the enhanced expression of remote memories in COMT-Val-
tg mice was determined by concurrent increase of COMT activity or to chronic and/or
developmental effects, we silenced the expression of the COMT transgene. Administration of
doxycycline for 20 days, in drinking water, turned off the tetracycline-regulated COMT

transgene expression (Figure 1e). Moreover, silencing of the COMT transgene also restored

111



normal levels of extracellular dopamine in the mPFC that were reduced in COMT-Val-tg mice
(Figure 1f). In agreement with previous literature [9], [12], [11], [35] norepinephrine tissue
content was unaffected in COMT-Val-tg mice compared with controls (Supplementary Figures
2b and c).
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Figure 1. Increased remote memories in catechol-O-methyltransferase (COMT) Val-transgenic mice. (a)
Behavioral paradigm: after 2 min of habituation in the conditioning chamber (Baseline), animals were presented
with three tone—shock pairings. Mice were then tested for recent and remote memory in the same conditioning
context respectively after 24 h and 50 days. Increased freezing behavior of COMT-Val tg mice (n=8) on the
remote memory recall compared with control mice (n=11; two-way analysis of variance (ANOVA), F, 4= 3.54,
p< 0.05), but not on recent memory (p= 0.64). No difference between controls and COMT -Val-tg mice on baseline
freezing behavior (p =0.99). *p < 0.05 vs control at same stage. (b) Freezing reaction of COMT-Val-tg (n=8) and
wild-type control mice (n=11) during exposure to a modified context 24 h and 50 days after conditioning. Fear
reaction to novel context after 24 h was negligible in both groups. At 50 days after the conditioning training,
COMT-Val-tg and control mice showed relatively little level of freezing. No differences between groups (two-
way ANOVA: Fq, 17= 0.00, p= 0.92). (c) Freezing behavior observed during fear conditioning and (d) extinction
in COMT-Val-tg (n=6) and their control littermates (h=10). No COMT-dependent difference was present during
the habituation phase in the experimental chamber (two-way ANOVA: F(, 14= 0.87, p= 0.37). We found no
COMT genotype difference in both conditioning training (two-way ANOVA: F, 14= 0.03, p= 0.86) and extinction
(two-way ANOVA: F¢, 14= 0.06, p= 0.81). (e) Representative western blot of the effect of vehicle (Veh) and
doxycycline (DOX) on COMT levels in the prefrontal cortex (PFC) of control and COMT -Val tg mice. (f) Basal
extracellular dopamine levels in the medial PFC (mPFC) of control (Veh n=7, DOX n=6) and COMT-Val-tg mice
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(Veh n =7, DOX n=5) over a period of 60 min. Dopamine levels were lower in COMT-Val tg compared with
control vehicle-treated mice (two-way RM ANOVA: F¢, 11y= 7.02, p< 0.05). Silencing of the COMT Val transgene
restored dopamine up to control-like levels (two-way RM ANOVA: F, 11)=1.16, P =0.30). *p< 0.05 COMT-Val-
tg vs control after same treatment (Veh- DOX). (g) Freezing behavior in controls (Veh n=12, DOX n =11) and
COMT-Val-tg (Veh n=8, DOX n =13) on recent and remote memory recall. Silencing of COMT transgene by
DOX administration reduced freezing behavior in COMT-Val-tg mice compared with Veh treatment (two-way
ANOVA: F, s0)= 2.39, p< 0.05). No effect of DOX treatment in control mice (p =0.86). We observed no COMT
genotype (p =0.31) and DOX treatment (p =0.43) effects during recent context memory test. *p< 0.05 vs all other
conditions at same stage. (h) No differences of freezing behavior during exposure to a novel context 24 h and 50
days after conditioning between COMT-Val-tg (Veh n=8, DOX n =13) and wild-type control mice (Veh n=12,
DOX n=11) (two-way ANOVA: F, 4= 0.25, p= 0.85). Values represent mean +s.e.m. throughout Figures 1, 2,
3, 4.24 h after conditioning showed no differences in the expression of recent fear memory between COMT-Val-
tg and control mice (Figure 1a). These data indicate an intact learning and expression of recent fear-conditioned

memories in COMT-Val-tg mice.

Then, to explore whether the reduced dopamine level in COMT-Val-tg mice was established
by an increased catabolism or reduced release, we measured amphetamine-induced synaptic
release of dopamine in the mPFC. We found no difference in the rate of dopamine-induced
release between control and COMT-Val-tg mice (Supplementary Figure 2), further confirming
that increased COMT activity elevated dopamine catabolism, but not release, in the mPFC. We
next turned off the COMT transgene after 30 days from the initial conditioning until the remote
memory recall (day 50). This manipulation selectively tackled the hippocampal-independent
late consolidation and/or retrieval phases, but not the encoding of fear memory [2]. Silencing
of the COMT transgene exclusively during late consolidation and retrieval phases was
sufficient to rescue the enhanced expression of remote fear memory in COMT-Val-tg mice
back to the level of their control littermates (Figure 1g). Fear reactions on recent and remote
memory recall were context specific, as when we exposed the mice to a modified context we
observed negligible and COMT-independent fear reactions (Figure 1h). Moreover, the altered
freezing responses in COMTVal- tg mice during remote memory recall were not associated
with any alteration in active coping behaviors (Supplementary Figure 1c), which have also
been used to assess conditioning induced fear memory [37]. Overall, these findings
demonstrate that increased COMT activity is the cause of the increased expression of remote
memories. Moreover, this effect is reversible and not developmental, and it is restricted to

COMT modulation on late consolidation/recall of remote memories.
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4.3.2. Increased COMT activity produced an overdrive of the endocannabinoid system in
the PFC

In order to explore possible molecular bases of the increased expression of remote memory in
mice with increased COMT activity we first analyzed overall gene expression in the PFC.
Indeed, COMT has a crucial role in the regulation of dopamine levels in the PFC [10], [13] and
remote memories are thought to be stored in this cortical region [24], [38]. One of the genes
for which the expression was tightly regulated by COMT was the CB1R. Indeed, we found a
decreased CB1R expression in COMT-Val-tg mice (Figures 2a and b) and increased expression
in COMT knockout mice (Supplementary Figure 3). The endocannabinoid system has a central
function in formation and extinction of long-lasting aversive memories and CB1R deficiency
is associated with a protracted expression of contextual fear memories [22]. Moreover, human
COMT Val carriers are most likely to exhibit psychotic symptoms and to develop
schizophreniform disorders if exposed to cannabis [23]. Thus, because the impact of the COMT
Val genotype on the endocannabinoid system and its potential link with memory functions is
unknown, we investigated more in detail the possible modulatory function of COMT genetics
towards the endocannabinoid system. At the protein level, we confirmed a decrease of CB1R
in the PFC of COMT-Val-tg mice compared with controls (Figures 2b and c) in both naive and
fear-conditioned mice. A more detailed immunohistochemical analysis (Figures 2d and e and
Supplementary Figure 4) revealed that the reduction of CB1R in COMT-Val-tg mice was
specifically localized in the glutamatergic terminals in the PFC, the primary site of expression
of COMT [11], [13]. Concurrent silencing of the COMT Val transgene was sufficient to re-
establish normal levels of CB1R (Figures 2b, ¢ and e). These data demonstrate that CB1R
expression in the PFC is tightly regulated by COMT enzymatic activity. To investigate whether
the decrease of CB1R levels in the PFC of COMT-Val-tg mice was associated with changes of
its signaling, we measured the levels of endocannabinoids. We observed an increase of AEA
in COMT-Val-tg mice that was reversed after silencing of the COMT Val transgene (Figure
2f). In contrast, we found no effects of the COMT Val genotype for the levels of the 2-AG
(Figure 2g), OEA (Figure 2h) and PEA (Figure 2i). We next analyzed NAPE-PLD and FAAH,
the main enzymes respectively responsible for synthesis and degradation of anandamide in the
brain, and DAGL-o and MAGL that respectively modulate synthesis and degradation of 2-AG
[38].
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Figure 2. Increased catechol-O-methyltransferase (COMT) activity produced an overdrive of the
endocannabinoid system in the prefrontal cortex (PFC). (a) Overview of the experiment. COMT-Val-tg and
control mice were conditioned on day 1, and then tested for recent memory recall on day 2. On day 30, mice were
administered with vehicle (Veh) or doxycycline (DOX) in drinking water for 20 days. On day 50, mice were tested
for remote memory recall. After testing mice were killed and PFC was removed for analysis of the
endocannabinoid system. Because we found similar results in naive (before conditioning) and in COMT -Val-tg
and control mice after remote memory recall, data were pooled together. (b, left). Decrease of CB1R protein levels
in the PFC of COMT-Val-tg mice (Veh n =7, DOX n=7) compared with controls (Veh n=9, DOX n=7; two-way
analysis of variance (ANOVA): genotype x treatment, F(1, 26)= 8.23, p< 0.05) and representative western blot
images. DOX treatment in COMT-Val-tg mice restored normal levels of CB1R in the PFC (p=0.50 vs control
Veh), whereas it has no effect on control mice (p=0.66). *p<0.005 vs all other groups. (b, right) Reduction of
CB1R mRNA expression in the PFC of COMT-Val-tg (n =6) compared with control mice (n =7; unpaired t-test:
t=2.16, d.f.=11, p< 0.05). (c) Immunoreactivity (n=3 mice each group, 3 slices per mice) of CB1R in the PFC of
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COMT-Val-tg and control mice after Veh or DOX administration. Images are shown at x 400 magnification. (d)
Immunohistochemistry on sections of PFC for CB1 receptors (green) and vesicular glutamate transporter
(VGLUT, red) from controls and COMT-Val-tg after Veh or DOX treatment. Scale bar 100 uM. (¢) CB1R
reduction colocalized with VGLUT (two-way ANOVA: F(1, 8)=9.48, P< 0.05), but not with vesicular GABA
transporter (VGAT) and dopamine transporter (DAT) in the PFC of control and COMT -Val-tg mice following
Veh or DOX administration. *p< 0.005 vs control Veh. (f) Increase of anandamide (AEA) in the PFC (two-way
ANOVA: genotype x treatment, F, 255= 4.69, p< 0.05) in COMT-Val-tg (Veh n =9, DOX n=5) compared with
control mice (Veh n=10, DOX n= 5) was reversed by silencing of COMT transgene by DOX (p= 0.84 vs control
Veh). *p< 0.005 vs control Veh. (g) No significant change of 2AG in the PFC (two-way ANOVA: genotype x
treatment, F, 2= 2.23, P =0.14) of COMT-Val-tg (Veh n=9, DOX n=5) and control mice (Veh n=9, DOX n=5).
(h) A significant interaction between COMT genotype and DOX treatment was evident for oleoylethanolamide
(OEA) levels in the PFC in COMT-Val-tg (Veh n=9, DOX n=5) compared with control mice (Veh n=10, DOX
n=5; two-way ANOVA: genotype x treatment, F(, 25=5.64, P00.05). However, post hoc comparisons did not
show any significant difference between groups (p=40.10). (i) No significant effect for the endocannabinoid PEA
in the PFC of COMT-Val-tg (Veh n =10, DOX n=5) and control mice (Veh n =10, DOX n=5; two-way ANOVA:
genotype x treatment, F(, 2= 3.07, p= 0.09). Data in (f-i) are expressed as fold changes compared with control
Veh.

Both NAPE-PLD and FAAH levels (Figures 3b, c and g and Figures 3b, e and h, respectively)
were elevated in the PFC of COMT-Val-tg mice. Similarly, in COMT-Val-tg mice we found a
25% increase in FAAH enzymatic activity compared with control mice (Figure 3e). Restoring
the endogenous COMT levels normalized both enzymes to control-like levels (Figures 3b, ¢
and g and Figures 3b,e and h, respectively). On the contrary, we found no COMT-dependent
changes for the DAGL-a and MAGL (Figures 3d and f). Collectively, these findings indicate
that genetic variations increasing COMT produce a hyperactive NAPE-PLD, anandamide and
FAAH endocannabinoid pathway in the PFC. In contrast, the DAGL-a, 2-AG and MAGL
endocannabinoid pathway was unaffected. These alterations were not permanent as turning off

the COMT Val transgene normalized endocannabinoid signaling.
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Figure 3. Increased catechol-O-methyltransferase (COMT) activity produced a hyperactive N-acyl phosphatidyl-
lethanolamine phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH) endocannabinoid pathway
in the prefrontal cortex (PFC). (a) Overview of the experiment. On day 50, mice were tested for remote memory
recall. After testing mice were killed and PFC was removed for analysis of the NAPE-PLD, diacylglycerol lipase-
a (DAGL-a), FAAH and monoacylglycerol lipase (MAGL). Because we found similar results in naive (before
conditioning) and in COMT-Val-tg and control mice after remote memory recall, data were pooled together. (b)
Representative western blot images of DAGL- a, FAAH, NAPE-PLD and MAGL in the PFC of control and
COMT-Val-tg mice after vehicle (Veh) or doxycycline (DOX) treatment. (c) Increase of NAPE-PLD (two-way
analysis of variance (ANOVA): genotype x treatment, F(1, 25)= 4.45, p< 0.05) in the PFC of COMT-Val-tg (Veh
n= 6, DOX n=8) compared with control mice (Veh n=9, DOX n=9). DOX in COMT-Val-tg mice restored NAPE-
PLD to control-like levels (p =0.70 vs control Veh). *p< 0.005 vs all other groups. (d) No differences of DAGL -
a (two-way ANOVA: genotype x treatment, F(i, 29= 1.04, p= 0.31) levels in the PFC in COMT-Val-tg (Veh n=7,
DOX n=8) and controls (Veh n=9, DOX n=9). (e) Increase of FAAH levels (two-way ANOVA: genotype x
treatment, F(1, 28)=9.93, P00.005) in COMT-Val-tg (Veh n=6, DOX n=8) in the PFC compared with control
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mice (Veh n=9, DOX n=9). DOX in COMT-Val-tg reversed FAAH increase back to control-like levels (p= 0.99
vs control Veh). *p < 0.005 vs all other groups. Inset shows increased FAAH enzymatic activity (expressed as
pmol min— 1 mg— 1) in the PFC of COMT-Val-tg (unpaired t-test: t=2.87, d.f.=9, *p< 0.05). (f) No differences of
MAGL (two-way ANOVA: genotype x treatment, F, s0= 1.31, p= 0.26) levels in the PFC in COMT-Val-tg (Veh
n=7, DOX n=9) and controls (Veh n=9, DOX n=9). (g) Representative immunoreactivity (n=3 mice each group,
3 slices per mice) of NAPEPLD in the medial PFC (mPFC) in control and COMT-Val-tg after Veh or DOX
administration. Images are shown at x 400 magnification. (h) Representative immunoreactivity (n=3 mice each
group, 3 slices per mice) of FAAH in the mPFC in control and COMT-Val-tg after Veh or DOX administration.

Images are shown at x 400 magnification.

4.3.3 Increased COMT activity did not alter the endocannabinoid system in hippocampus
and striatum.

Given the role played by the hippocampus in memory consolidation [1], [39] and that a relative
increase of COMT activity in mice might also alter dopamine release in the striatum [40] we
also analyzed possible COMT-dependent effects on the cannabinoid system in these two brain
regions. In contrast to the PFC, in the hippocampus we found no differences in CB1R levels
(Supplementary Figures 5a and b), or in the levels of the endocannabinoids AEA, 2-AG, OEA
and PEA (Supplementary Figures 5¢—f) between COMT-Val-tg and control mice. Moreover,
in the hippocampus there were no COMTdependent changes for the enzymes responsible for
synthesis (NAPE-PLD and DAGL-a, Supplementary Figures 5g and j) and degradation (FAAH
and MAGL, Supplementary Figures 4h and j) of the endocannabinoids. Similarly, all these
measures of the endocannabinoid system did not differ between COMT-Val-tg and control
mice in the striatum (Supplementary Figure 6). Thus, genetic variations increasing COMT
enzymatic activity specifically modulated the endocannabinoid system in the PFC, and not in

the hippocampus or in the striatum.

4.3.3. CB1R blockade restored remote memories alterations dependent on COMT
genotype

A reduction of CBI1R, in the context of increased NAPE-PLD, AEA and FAAH pathways
found in the PFC of COMT-Val-tg mice, might indicate a compensatory mechanism to cope
with an overdrive of the endocannabinoid system. To test directly the causal role of the altered
endocannabinoid system on the stronger remote memory found in COMT-Val-tg mice, we
tested the prediction that blocking the endocannabinoid signaling on CB1R during the remote
recall could restore a normal expression of fear memory in COMT-Val-tg mice. To this end,
50 days after fear conditioning, we injected Veh or the CB1R antagonist AM251 30 min before
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the remote memory recall to reach the maximum effect of the drug [25]. Blockade of CB1R
increased remote memory expression in controls, such that freezing behavior did not differ
from Veh-treated COMT-Val-tg mice (Figure 4a). Conversely, in COMT-Val-tg mice the
CB1R antagonist AM251 reversed the enhanced remote memory back to control levels (Figure
4a). Active fear-coping behaviors during the remote memory recall test did not change
depending on either the COMT genotype or AM251 treatment (Supplementary Figure 7a).
Thus, blockade of CB1R signaling had opposite effects on remote memory in animals with
normal or increased COMT activity. Finally, we addressed whether the COMT-by-
endocannabinoid interaction found in fear conditioning paradigms could be generalized to
other form of remote aversive memories. In particular, we tested control and COMT-Val-tg
mice in a naloxone-induced CPA, a well-established task to assess negative affective states in
mice [41]. COMT-Val-tg mice showed higher aversion for environmental cues paired with
naloxone injections received 50 days earlier during conditioning (Figure 4b), whereas we did
not observe genotype-dependent differences on recent memory recall (Supplementary Figure
7b). Conversely, AM251 had no effect on CPA in control mice (Figure 4b). This same
treatment with AM251 increased extracellular dopamine in the mPFC, in particular we
observed a peak in COMT-Val-tg 30 min after injection. Overall, these findings demonstrated
that increased COMT activity modulated remote memories through an overactivation of the

endocannabinoid system.
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Fear conditioning Conditioned Place Aversion (CPA)
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Figure 4. CB1 receptor blockade restored remote memory alterations dependent on catechol-O-methyltransferase
(COMT) genotype. (a) Freezing behavior in controls and COMT-Val tg mice on remote memory recall after
vehicle (Veh) or AM251 treatment (n=8-11 each group). AM251 reduced freezing behavior in COMT-Val tg
mice (two-way analysis of variance (ANOVA): F, 4= 12.03, p< 0.0005) compared with COMT-Val tg Veh (p<
0.05) and Veh-treated control animals (P =0.21). Increased freezing reaction in controls after CB1-R antagonist
AM251 compared with Veh (P00.05). Control: *P00.05 vs Veh., #p< 0.05 vs COMT-Val tg AM251 (2 mg kg—
1). COMT-Val tg: *p< 0.05 vs Veh. (b) Remote memory, assessed using conditioned place aversion (CPA), was
increased in COMT-Val tg mice (two-way ANOVA: genotype, F(, 33= 7.22, p< 0.05). Administration of AM251
reduced CPA in COMT-Val-tg (unpaired t-test: t =2.97, d.f.=14, p< 0.05), whereas it had no effects in controls
(unpaired t-test: t =0.87, d.f.=19, P =0.39). Conditioning with Veh did not produce place aversion (one-way
ANOVA: Fy, 39= 4.51, p< 0.05 vs control naloxone (Nal) and COMT-Val-tg Nal). (c) Extracellular dopamine
levels in the medial prefrontal cortex (mPFC) of controls (h=8) and COMT-Val-tg (n=8) mice following AM251
(1 mg kg— 1, intraperitoneal). Systemic injection of CBIR blocker AM251 elevated dopamine levels in the mPFC
(two-way ANOVA: time, F, s0)= 10.75, p <0.0005). In particular, COMT-Val-tg showed a peak of

dopamine 30 min after AM251 injection, compared with baseline (p< 0.005). (d) Proposed model of the
dysregulation of endocannabinoid system by genetically increased levels of COMT. In ‘Normal’ conditions in the

PFC dopamine exerts an inhibitory control over the activity of glutamatergic pyramidal neurons. Dopaminergic
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terminals may modulate pyramidal neurons activity directly through synaptic contacts to the pyramidal neuron
spines or, alternatively, inhibition may occur indirectly via activation of GABAergic (y-aminobutyric acid)
inhibitory interneurons. In subjects with increased COMT activity (‘COMT-Val’) extracellular dopamine in PFC
is decreased, resulting in lower inhibition of cortical pyramidal neurons. To counterbalance this reduced
inhibition, the system will then produce an overactive anandamide tone by acting at CB1R. However, prolonged
stimulation of CB1R by anandamide in the PFC enhanced the stability of remote memories. These alterations can

be rescued increasing cortical dopamine levels by either blocking COMT or CB1R over activity.
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4.4. Discussion

Using a conditional humanized mouse overexpressing the COMT Val gene we demonstrated
that remote memory recall is modulated by COMT genetic variations. Moreover, we
established that the COMT Val genotype has a selective and reversible impact on the
endocannabinoid system at the level of the PFC that was the cause of increased remote
memories in COMT Val mutants. Mice with a relative increased COMT activity display an
exaggerated recall of remote memories. This finding illuminates human neuroimaging studies
showing a COMT-dependent effect on prefrontal activation during long-term memory
encoding and retrieval [17], [42], [43]. In particular, in the present work we demonstrated that
this effect on remote memories was reversible and selectively dependent on COMT concurrent
activity. Furthermore, the more stable expression of remote memories in COMT-Val-tg mice
was not influenced by factors such as deficits in conditioning/ extinction learning (present
study) or increased levels of anxiety [11]. Notably, a wealth of evidence from humans and
genetically modified mice established COMT as an exquisite and selective modulator of
executive functions [11], [44]-[50]. In particular, COMT-Val-tg mice as well as humans
carrying the COMT Val-allele show poorer executive functions, including deficits in cognitive
flexibility and working memory [35], [51], [52]. In contrast, here we found that COMT-Val-tg
mice show exaggerated remote memories recall, unraveling a more stable organization of these
types of memories. This tradeoff between a genetic effect that disrupts cognitive flexibility
(executive functions) but exaggerates remote memories provides a biological substrate on the
dichotomy between stable maintenance of information and cognitive flexibility. COMT
activity finely regulates dopamine levels in the PFC that, together with the balance between
D1 and D2 receptor activation, have been proposed as the neurobiological basis regulating
cognitive flexibility/stability balance [53]. In contrast, despite also being a COMT substrate,
norepinephrine levels in the PFC are negligibly affected by COMT genetic variations [9]-[11],
possibly because of the abundance of its norepinephrine transporter in this brain region [9].
However, even if our own data did not show any major COMT dependent effect on
norepinephrine levels in the PFC, we cannot exclude a possible involvement of this
neurotransmitter given its relevance in the strengthening of aversive memories [54], [55]. Thus,
our results suggest that the enhanced remote memories in subjects with increased COMT
activity (and in turn reduced extracellular dopamine) may reflect a sort of ‘inflexibility’ of the
PFC. This hypothesis is also consistent with the current model of remote memories storage that

points to a more prominent role of the PFC over the hippocampus [2]. In relationship to the
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clinical setting, our findings might indicate a possible role of COMT in psychiatric conditions
associated with inappropriate retention of past aversive memories, such as posttraumatic stress
disorder (PTSD). COMT genetics have been associated with both PTSD vulnerability and
severity of symptomatology, even if the directionality of the effects are controversial [21],
[56]-[58]. The discrepant results might be related to the ethnicity of the subjects, as in
Caucasians (both children and adults) the COMT Val allele was associated with higher
vulnerability and more severe PTSD symptoms, whereas the opposite effect was found in
African-American children [57], [58]. Another factor to consider is the interaction between sex
and the developmental stage of the individuals. Indeed, COMT genetic variants affect cognitive
functions in opposite way in males and females but only during adulthood (between puberty
and menopause) [44], [45], [59]. However, because relatively lower COMT increases anxiety
states and vulnerability to stressful events [35], [60], [61], whereas increased COMT enhances
aversive remote memories (present work), both too little and too much COMT activity could
contribute to PTSD development and manifestations. In agreement, in a study with 236 Iraq
War veterans, both Met/Met and Val/Val subjects were at increased risk for PTSD compared
with Val/Met carriers [56]. Finally, our findings uncover an interaction between the COMT
Val genotype and the cannabinoid system that has been previously suggested in schizophrenia
development. Specifically, individuals carrying the COMT Val allele present higher risk to
develop schizophrenia if exposed to cannabis [23]. Despite this coincidental evidence, the
biological bases through which COMT genetics might influence cannabis-induced psychosis
vulnerability are still unknown. The endocannabinoid overdrive we found in the PFC of
subjects with genetic variations increasing COMT activity (COMT Val) could be one of the
biological causes of these clinical associations. Damage of the ventromedial PFC reduce the
occurrence of PTSD [62] and the PFC have been consistently implicated in the manifestation
of schizophrenia-relevant cognitive phenotypes [63], [64]. Moreover, endocannabinoids are
important in the regulation of memory for emotional events [65]. For example, aversive
experiences stimulate the release of anandamide into the medial PFC to induce the formation
of a strong memory trace [66]. This is in line with our finding of increased anandamide in the
PFC of animals with higher COMT activity, leading to exaggerated expression of aversive
memories. The COMT-dependent dysregulation of the endocannabinoid system also included
a reduction of CB1R that seemed to be restricted to the glutamatergic terminals. This is in
agreement with previous evidence that a primary localization of COMT is within glutamatergic
pyramidal neurons in the PFC [9], [11], and suggesting this as the main site of COMT-

endocannabinoid interaction. However, because of the presence of COMT in astrocytes [13]
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and the role of endocannabinoids in astrocytes [67] we cannot exclude astrocytes as a potential
contributing site of action. At excitatory synapses, endocannabinoids function as retrograde
messengers, binding to presynaptic CB1R that in turn mediates the suppression of glutamate
release [65]. Moreover, dopamine in the mPFC inhibits glutamate outputs by acting at D2
receptors on pyramidal neurons reducing neurotransmitter release probability at glutamatergic
synapse [68], [69]. Thus, in the context of reduced extracellular dopamine in the mPFC (as
found in COMT Val subjects), we might interpret the increase in tonic anandamide activity at
CB1R in glutamatergic neurons as an adaptive mechanism to control an excessive
glutamatergic excitatory drive. In line with this hypothesis, the reduction of CB1R would be
the result of a compensatory phenomenon to cope with increased endocannabinoid tone.
Accordingly, acutely blocking CB1R signaling by AM251 was sufficient to normalize remote
memories recall in COMT-Val-tg mice and increased extracellular dopamine levels within the
mPFC (general model depicted in Figure 4b). In this study, we unraveled an outstanding role
of the PFC, while hippocampus and striatal regions were seemingly not involved. The selective
effects of the COMT Val genotype in the regulation of the endocannabinoid system within the
PFC are in line with a more prominent role of COMT enzymatic activity in the cortex [9] and
with the theory that the neocortex represent a key site for permanent storage of long-term
memories [2], [32]. Afferents from the PFC coordinate the integration of CS and US pairing
within the lateral amygdala [70]. Moreover, the central amygdala is widely considered the
major output center that controls brainstem and hypothalamic systems necessary for the
expression of emotionally related conditioned responses such as freezing [71] and place
aversion [72] In our paradigm we did not find differences in remote auditory cued fear memory
that is known to be stored in the amygdala [70]. However, COMT genotype has been suggested
to affect the processing of emotional stimuli in the amygdala and in the cortex as well as the
functional connectivity between these two brain regions [60], [73]. Furthermore, cannabinoid
transmission within the basolateral amygdala strongly modulates the formation of associative
fear memory via functional interactions with the PFC [74]. Thus, the significance and possible
involvement of COMT dependent changes in PFC—amygdala circuits might represent an
important subject for future studies. In conclusion, we showed that a genetic condition of
increased COMT activity enhanced aversive remote memories. We propose that COMT
activity can modulate the stability of remote memories in the PFC at the expense of cognitive
flexibility. The effect of COMT on dopamine metabolism in this cognitive balance might help
us to better understand in mechanistic terms the derailment of cognitive and emotional

functions in nervous system diseases like PTSD and schizophrenia. In this context, we found a
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selective biological interaction between COMT genotype and the endocannabinoid system in
the PFC. Thus, COMT-dependent alterations in the endocannabinoid system might explain
some of the individual differences in the effects of cannabis use, and more in general COMT

polymorphisms could influence the response to medication targeting the cannabinoid system.

4.5. Conflict of interest

The authors declare no conflict of interest.

4.6. Acknoledgement

We thank Dr M Morini, D Cantatore, C Chiabrera, A Parodi and G Pruzzo for technical
assistance. We thank Dr DR Weinberger and the USA National Institutes of Health for donating
the COMT Val mutant breeders. We thank Dr A Contarino for discussion on the CPA
paradigm. This research was supported by the Istituto Italiano di Tecnologia, the Marie Curie
Grant 268247, the 2015 NARSAD Independent Investigator Grant 23234 and by the
Compagnia di San Paolo grant 2015-0321.

125



4.7. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

T. Kitamura et al., “Adult Neurogenesis Modulates the Hippocampus-Dependent
Period of Associative Fear Memory,” Cell, vol. 139, no. 4, pp. 814-827, 2009.

P. W. Frankland and B. Bontempi, “The organization of recent and remote memories,”
Nature Reviews Neuroscience. 2005.

C. L. Beeman, P. S. Bauer, J. L. Pierson, and J. J. Quinn, “Hippocampus and medial
prefrontal cortex contributions to trace and contextual fear memory expression over
time,” Learn. Mem., vol. 20, no. 6, pp. 336-343, 2013.

F. Papaleo, B. K. Lipska, and D. R. Weinberger, “Mouse models of genetic effects on
cognition: Relevance to schizophrenia,” Neuropharmacology, vol. 62, no. 3, pp. 1204—
1220, Mar. 2012.

T. W. Robbins and S. Kousta, “Uncovering the genetic underpinnings of cognition,”
Trends Cogn. Sci., vol. 15, no. 9, pp. 375-377, 2011.

W. Davies, T. Humby, S. Trent, J. B. Eddy, O. a Ojarikre, and L. S. Wilkinson,
“Genetic and pharmacological modulation of the steroid sulfatase axis improves
response control; comparison with drugs used in ADHD.,”
Neuropsychopharmacology, vol. 39, no. 11, pp. 262232, 2014.

R. Cools and M. D’Esposito, “Inverted-U-shaped dopamine actions on human working
memory and cognitive control,” Biol. Psychiatry, vol. 69, no. 12, pp. e113-e125, 2011.
D. Shohamy and R. A. Adcock, “Dopamine and adaptive memory,” Trends Cogn. Sci.,
vol. 14, no. 10, pp. 464-472, 2010.

E. M. Tunbridge, P. J. Harrison, and D. R. Weinberger, “Catechol-o-
Methyltransferase, Cognition, and Psychosis: Vall58Met and Beyond,” Biol.
Psychiatry, vol. 60, no. 2, pp. 141-151, 2006.

L. Yavich, M. M. Forsberg, M. Karayiorgou, J. A. Gogos, and P. T. Mannisto, “Site-
Specific Role of Catechol-O-Methyltransferase in Dopamine Overflow within
Prefrontal Cortex and Dorsal Striatum,” J. Neurosci., vol. 27, no. 38, pp. 10196—
10209, 2007.

F. Papaleo et al., “Genetic dissection of the role of catechol-O-methyltransferase in
cognition and stress reactivity in mice.,” J. Neurosci., vol. 28, no. 35, pp. 8709-23,
2008.

E. M. Tunbridge, “Catechol-O-Methyltransferase Inhibition Improves Set-Shifting

Performance and Elevates Stimulated Dopamine Release in the Rat Prefrontal Cortex,”

126



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Neurosci., vol. 24, no. 23, pp. 5331-5335, 2004.

M. Matsumoto et al., “Catechol O-methyltransferase mMRNA expression in human and
rat brain: evidence for a role in cortical neuronal function.,” Neuroscience, vol. 116,
no. 1, pp. 127-137, 2003.

A. G. Nackley et al., “Human Catechol-&It;em&gt;O&It;/em&gt;-Methyltransferase
Haplotypes Modulate Protein Expression by Altering mRNA Secondary Structure,”
Science (80-.)., vol. 314, no. 5807, p. 1930 LP-1933, Dec. 2006.

I. Dumontheil, B. Hassan, S. J. Gilbert, and S.-J. Blakemore, “Development of the
Selection and Manipulation of Self-Generated Thoughts in Adolescence,” J. Neurosci.,
vol. 30, no. 22, pp. 7664-7671, 2010.

J. H. Barnett, P. B. Jones, T. W. Robbins, and U. Miiller, “Effects of the catechol-O-
methyltransferase Val158Met polymorphism on executive function: A meta-analysis
of the Wisconsin Card Sort Test in schizophrenia and healthy controls,” Mol.
Psychiatry, vol. 12, no. 5, pp. 502-509, 2007.

A. Bertolino et al., “Prefrontal-Hippocampal Coupling During Memory Processing Is
Modulated by COMT Vall158Met Genotype,” Biol. Psychiatry, vol. 60, no. 11, pp.
1250-1258, 2006.

C. Rothe et al., “Association of the Vall58Met catechol O-methyltransferase genetic
polymorphism with panic disorder,” Neuropsychopharmacology, vol. 31, no. 10, pp.
2237-2242, 2006.

I. T. Kolassa, S. Kolassa, V. Ertl, A. Papassotiropoulos, and D. J. F. De Quervain,
“The Risk of Posttraumatic Stress Disorder After Trauma Depends on Traumatic Load
and the Catechol-O-Methyltransferase Vall58Met Polymorphism,” Biol. Psychiatry,
vol. 67, no. 4, pp. 304-308, 2010.

J. A. Wojtalik and D. M. Barch, “An FMRI study of the influence of a history of
substance abuse on working memory-related brain activation in schizophrenia,” Front.
psychiatry, vol. 5, p. 1, Jan. 2014.

M. Morena and P. Campolongo, “The endocannabinoid system: An emotional buffer
in the modulation of memory function,” Neurobiol. Learn. Mem., vol. 112, pp. 3043,
2014,

G. Marsicano et al., “The endogenous cannabinoid system controls extinction of
aversive memories,” Nature, vol. 418, no. 6897, pp. 530-534, 2002.

A. Caspi et al., “Moderation of the effect of adolescent-onset cannabis use on adult

psychosis by a functional polymorphism in the catechol-O-methyltransferase gene:

127



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Longitudinal evidence of a gene X environment interaction,” Biol. Psychiatry, vol. 57,
no. 10, pp. 1117-1127, 2005.

P. W. Frankland, B. Bontempi, L. E. Talton, L. Kaczmarek, and A. J. Silva, “The
Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory,”
Science (80-.)., vol. 304, no. 5672, p. 881 LP-883, May 2004.

S. Tambaro, M. L. Tomasi, and M. Bortolato, “Long-term CB1receptor blockade
enhances vulnerability to anxiogenic-like effects of cannabinoids,”
Neuropharmacology, vol. 70, pp. 268-277, 2013.

F. Manago et al., “Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in
Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia,” Cell Rep., vol.
16, no. 8, pp. 2116-2128, 2016.

G. Paxinos, K. B. J. Franklin, K. B. J. Paxinos, G and Franklin, G. Paxinos, and K. B.
J. Franklin, Mouse Brain in Stereotaxic Coordinates. 2001.

G. Astarita and D. Piomelli, “Lipidomic analysis of endocannabinoid metabolism in
biological samples,” Journal of Chromatography B: Analytical Technologies in the
Biomedical and Life Sciences. 2009.

E. Zamberletti, M. Gabaglio, P. Prini, T. Rubino, and D. Parolaro, “Cortical
neuroinflammation contributes to long-term cognitive dysfunctions following
adolescent delta-9-tetrahydrocannabinol treatment in female rats,” Eur.
Neuropsychopharmacol., vol. 25, no. 12, pp. 24042415, 2015.

S. Bolte and F. P. Cordelieres, “A guided tour into subcellular colocalization analysis
in light microscopy,” Journal of Microscopy. 2006.

A. K. Hall, U. Rutishauser, and D. Biol, “Modality-Specific Retrograde Amnesia of
Fear Author (s ): Jeansok J . Kim and Michael S . Fanselow Published by : American
Association for the Advancement of Science Stable URL :
https://www.jstor.org/stable/2876873 JSTOR is a not-for-profit service that,” vol. 256,
no. 5057, pp. 675-677, 2018.

J. J. Quinn, Q. D. Ma, M. R. Tinsley, C. Koch, and M. S. Fanselow, “Inverse temporal
contributions of the dorsal hippocampus and medial prefrontal cortex to the expression
of long-term fear memories,” Learn. Mem., vol. 15, no. 5, pp. 368-372, 2008.

L. Restivo, G. Vetere, B. Bontempi, and M. Ammassari-Teule, “The Formation of
Recent and Remote Memory Is Associated with Time-Dependent Formation of
Dendritic Spines in the Hippocampus and Anterior Cingulate Cortex,” J. Neurosci.,
vol. 29, no. 25, pp. 8206-8214, 20009.

128



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. R. Milad and G. J. Quirk, “58005 51..106,” vol. 420, no. NOVEMBER, pp. 1-5,
2002.

F. Papaleo et al., “Genetic Dissection of the Role of Catechol- O - Methyltransferase
in Cognition and Stress Reactivity in Mice,” vol. 28, no. 35, pp. 8709-8723, 2008.

J. A. Gogos et al., “Catechol-O-methyltransferase-deficient mice exhibit sexually
dimorphic changes in catecholamine levels and behavior,” Proc. Natl. Acad. Sci., vol.
95, no. 17, pp. 9991-9996, 1998.

A. Gozzi et al., “A neural switch for active and passive fear,” Neuron, vol. 67, no. 4,
pp. 656666, 2010.

V. Di Marzo, N. Stella, and A. Zimmer, “Endocannabinoid signalling and the
deteriorating brain,” Nat. Rev. Neurosci., vol. 16, no. 1, pp. 30-42, 2015.

J. Gréff et al., “Epigenetic priming of memory updating during reconsolidation to
attenuate remote fear memories,” Cell, vol. 156, no. 1-2, pp. 261-276, 2014.

E. H. Simpson et al., “Genetic variation in COMT activity impacts learning and
dopamine release capacity in the striatum,” Learn. Mem., vol. 21, no. 4, pp. 205-214,
2014.

A. Contarino and F. Papaleo, “The corticotropin-releasing factor receptor-1 pathway
mediates the negative affective states of opiate withdrawal,” Proc. Natl. Acad. Sci.,
vol. 102, no. 51, pp. 18649-18654, 2005.

B. H. Schott, “The Dopaminergic Midbrain Participates in Human Episodic Memory
Formation: Evidence from Genetic Imaging,” J. Neurosci., vol. 26, no. 5, pp. 1407—
1417, 2006.

M. Wimber et al., “Prefrontal dopamine and the dynamic control of human long-term
memory,” Transl. Psychiatry, vol. 1, no. June, pp. 1-7, 2011.

F. Papaleo, S. Sannino, F. Piras, and G. Spalletta, “Sex-dichotomous effects of
functional COMT genetic variations on cognitive functions disappear after menopause
in both health and schizophrenia,” Eur. Neuropsychopharmacol., vol. 25, no. 12, pp.
2349-2363, 2015.

F. Papaleo, L. Erickson, G. Liu, J. Chen, and D. R. Weinberger, “Effects of sex and
COMT genotype on environmentally modulated cognitive control in mice,” pp. 2—7,
2012.

S. Sannino et al., “COMT genetic reduction produces sexually divergent effects on
cortical anatomy and working memory in mice and humans,” Cereb. Cortex, vol. 25,
no. 9, pp. 2529-2541, 2015.

129



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

E. Jacobs and M. D’Esposito, “Estrogen Shapes Dopamine-Dependent Cognitive
Processes: Implications for Women’s Health,” J. Neurosci., vol. 31, no. 14, pp. 5286—
5293, 2011.

T. P. White et al., “Sex differences in COMT polymorphism effects on prefrontal
inhibitory control in adolescence,” Neuropsychopharmacology, vol. 39, no. 11, pp.
2560-2569, 2014.

D. Scheggia, A. Bebensee, D. R. Weinberger, and F. Papaleo, “The ultimate intra-
/extra-dimensional attentional set-shifting task for mice,” Biol. Psychiatry, vol. 75, no.
8, pp. 660670, 2014.

G. E. Bruder et al., “Catechol-O-methyltransferase (COMT) genotypes and working
memory: Associations with differing cognitive operations,” Biol. Psychiatry, vol. 58,
no. 11, pp. 901-907, 2005.

M. F. Egan et al., “Effect of COMT Val108/158 Met genotype on frontal lobe function
and risk for schizophrenia,” Pnas, vol. 98, no. 12, pp. 6917-6922, 2001.

A. K. Malhotra, L. J. Kestler, C. Mazzanti, J. A. Bates, T. Goldberg, and D. Goldman,
“A functional polymorphism in the COMT gene and performance on a test of
prefrontal cognition,” Am. J. Psychiatry, 2002.

D. Durstewitz and J. K. Seamans, “The Dual-State Theory of Prefrontal Cortex
Dopamine Function with Relevance to Catechol-<em>0</em>-Methyltransferase
Genotypes and Schizophrenia,” Biol. Psychiatry, vol. 64, no. 9, pp. 739-749, Sep.
2017.

D. Mueller, J. T. Porter, and G. J. Quirk, “Noradrenergic Signaling in Infralimbic
Cortex Increases Cell Excitability and Strengthens Memory for Fear Extinction,” J.
Neurosci., vol. 28, no. 2, pp. 369-375, 2008.

C. Y. Kao, G. Stalla, J. Stalla, C. T. Wotjak, and E. Anderzhanova, “Norepinephrine
and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like
symptoms in mice,” Eur. J. Neurosci., vol. 41, no. 9, pp. 1139-1148, 2015.

R. Clark et al., “Predicting post-traumatic stress disorder in veterans: Interaction
oftraumatic load with COMT gene variation,” J. Psychiatr. Res., vol. 47, no. 12, pp.
1849-1856, 2013.

K. L. Humphreys, M. S. Scheeringa, and S. S. Drury, “Race Moderates the Association
of Catechol- O -methyltransferase Genotype and Posttraumatic Stress Disorder in
Preschool Children,” J. Child Adolesc. Psychopharmacol., 2014.

E. A. Winkler et al., “COMT Vall58Met polymorphism is associated with post-

130



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

traumatic stress disorder and functional outcome following mild traumatic brain
injury,” J. Clin. Neurosci., vol. 35, pp. 109-116, 2017.

S. Sannino et al., “Adolescence is the starting point of sex-dichotomous COMT
genetic effects,” Transl. Psychiatry, vol. 7, no. 5, 2017.

C. 0. Val et al., “Val 158 Met Genotype and Neural Mechanisms Related to Affective
Arousal and Regulation,” Imaging, vol. 63, no. 12, pp. 1396-406, 2006.

A. Heinz and M. N. Smolka, “The effects of catechol O-methyltransferase genotype on
brain activation elicited by affective stimuli and cognitive tasks.,” Rev. Neurosci., vol.
17, no. 3, pp. 359-67, 2006.

M. Koenigs et al., “Focal brain damage protects against post-traumatic stress disorder
in combat veterans,” Nat. Neurosci., vol. 11, no. 2, pp. 232-237, 2008.

H.Y. Tan, J. H. Callicott, and D. R. Weinberger, “Dysfunctional and compensatory
prefrontal cortical systems, genes and the pathogenesis of schizophrenia,” Cereb.
Cortex, vol. 17, no. SUPPL. 1, pp. 171-181, 2007.

D. M. Barch and A. Ceaser, “Cognition in schizophrenia: Core psychological and
neural mechanisms,” Trends Cogn. Sci., vol. 16, no. 1, pp. 27-34, 2012.

B. Lutz, G. Marsicano, R. Maldonado, and C. J. Hillard, “The endocannabinoid system
in guarding against fear, anxiety and stress,” Nat. Rev. Neurosci., vol. 16, no. 12, pp.
705-718, 2015.

M. Morena et al., “Endogenous cannabinoid release within prefrontal-limbic pathways
affects memory consolidation of emotional training,” Proc. Natl. Acad. Sci., vol. 111,
no. 51, pp. 18333-18338, 2014.

J. F. Oliveira da Cruz, L. M. Robin, F. Drago, G. Marsicano, and M. Metna-Laurent,
“Astroglial type-1 cannabinoid receptor (CB1): A new player in the tripartite synapse,”
Neuroscience, vol. 323, pp. 35-42, 2016.

C. D. Paspalas, “Presynaptic D1 Dopamine Receptors in Primate Prefrontal Cortex:
Target-Specific Expression in the Glutamatergic Synapse,” J. Neurosci., vol. 25, no. 5,
pp. 1260-1267, 2005.

J. K. Seamans and C. R. Yang, “The principal features and mechanisms of dopamine
modulation in the prefrontal cortex,” Prog. Neurobiol., vol. 74, no. 1, pp. 1-57, 2004.
H. C. Bergstrom, “The neurocircuitry of remote cued fear memory,” Neurosci.
Biobehav. Rev., vol. 71, pp. 409-417, 2016.

S. Duvarci and D. Pare, “Amygdala microcircuits controlling learned fear,” Neuron,

vol. 82, no. 5, pp. 966-980, 2014.

131



[72]

[73]

[74]

S. Tanimoto, T. Nakagawa, Y. Yamauchi, M. Minami, and M. Satoh, “Differential
contributions of the basolateral and central nuclei of the amygdala in the negative
affective component of chemical somatic and visceral pains in rats,” Eur. J. Neurosci.,
vol. 18, no. 8, pp. 2343-2350, 2003.

M. N. Smolka, “Catechol-O-Methyltransferase val158met Genotype Affects
Processing of Emotional Stimuli in the Amygdala and Prefrontal Cortex,” J. Neurosci.,
vol. 25, no. 4, pp. 836-842, 2005.

H. Tan, N. M. Lauzon, S. F. Bishop, N. Chi, M. Bechard, and S. R. Laviolette,
“Cannabinoid Transmission in the Basolateral Amygdala Modulates Fear Memory
Formation via Functional Inputs to the Prelimbic Cortex,” J. Neurosci., vol. 31, no. 14,
pp. 5300-5312, 2011.

132



4.8. Supplementary figures
4.8.1 Supplementary figure 1
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Supplementary Figure 1. COMT and CB1R blockade did not affect proactive behavior. (a), Cued fear memory
recall 24 hours after fear conditioning in control and COMT-Val tg mice. We did not find differences in freezing
behavior during baseline, presentation of the cue and post-cue period (two-way RM ANOVA: genotype X time,
F(2,34= 0.02, p= 0.97; n=8-11 each group). (b), Cued fear memory recall 50 days after fear conditioning. Freezing
behavior was similar during baseline, presentation of the cue and post-cue period in control and COMT-Val tg
mice (two-way RM ANOVA: genotype x time, F,34= 0.06, p= 0.93; n=8-11 each group). (c), Proactive behavior
on remote memory recall after Veh or DOX treatment (n=9-12 each group). No differences between controls and
COMT-Val tg mice (two-way ANOVA: genotype X treatment, F,3g= 0.05, p= 0.80).
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4.8.2 Supplementary figure 2
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Supplementary Figure 2. Increased COMT enzymatic activity did not affect synaptic release of dopamine and
norepinephrine levels in the mPFC. (a), Amphetamine-induced (1.5 mg/kg, i.p.) dopamine release in the mPFC
of control (n=7) and COMT-Val-tg (n=7) mice. We found no differences between groups over a period of 60
minutes after amphetamine injection (two-way RM ANOVA: F(10= 0.19, p= 0.66). (b), Total mPFC content of
norepinephrine in control (n=6) and COMT-Val-tg (n=8) mice (unpaired t-test: t=0.28, df=12, p=0.78).
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4.8.3 Supplementary figure 3
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Supplementary Figure 3. CB1R were increased in COMT knock-out mice. Increase of CB1R gene expression
in the mPFC of COMT knock-out mice (-/-, n=6) compared to wild-type controls (+/+, n=6; one-way ANOVA:
F14= 4.42, p<0.05). *p< 0.05 vs COMT +/+.
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4.8.4 Supplementary figure 4
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Supplementary Figure 4. CB1R reduction in COMT-Val tg mice did not involve dopaminergic and GABAergic
terminals in the PFC. (a), Immunohistochemistry on sections of PFC for CB1 receptor (green) and vesicular
GABA transporter (VGAT, red), and colocalization coefficient for controls and COMT-Val-tg mice after VVeh or
DOX treatment. (b), Immunohistochemistry on sections of PFC for CB1 receptor (green) and dopamine
transporter (DAT, red), and colocalization coefficient for controls and COMT-Val-tg mice after Veh or DOX

treatment.
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4.8.5 Supplementary figure 5
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Supplementary Figure 5. Increased COMT activity did not alter the endocannabinoid system in the
hippocampus. (a), Representative western blot images of DAGL-a, FAAH, CB1R, NAPE-PLD and MAGL in the
Hippocampus of COMT-Val-tg and control mice after Veh or DOX treatment. (b), No change of CB1R (two-way
ANOVA: genotype X treatment, F(1,29=2.34, p= 0.13) in the hippocampus of COMT-Val-tg (Veh n=7, DOX n=8)
and controls (Veh n=9, DOX n=9) after the remote memory recall. (c), No change of AEA in the hippocampus of
COMT-Val-tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall (two-
way ANOVA: genotype X treatment, F 26=0.03, p=0.85). (d), No change of 2AG in the hippocampus of COMT -
Val-tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall 2AG (two-way
ANOVA: genotype x treatment, Fq,26=0.03, p= 0.84). (e), No change of OEA in the hippocampus of COMT-
Val-tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall (two-way
ANOVA: genotype x treatment, F( 26)= 0.61, p= 0.43). (f), No change of PEA in the hippocampus of COMT-Val-
tg (Veh n=10, DOX n=5) and controls (Veh n=9, DOX n=6) after the remote memory recall (two-way ANOVA:
genotype X treatment, Fe 2= 7.90, p=0.91). (g), No change of NAPE-PLD in the hippocampus of COMT-Val-tg
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(Veh n=6, DOX n=9) and controls (Veh n=9, DOX n=9) after the remote memory recall (two-way ANOVA:
genotype x treatment , F(120= 2.59, p=0.11). (h), No change of FAAH in the hippocampus of COMT-Val tg (Veh
n=7, DOX n=9) and controls (Veh n=9, DOX n=9) after the remote memory recall (two-way ANOVA: genotype
X treatment, Fq30=3.25, p=0.08). Inset, no change of FAAH enzymatic activity (expressed as pmol/min/mg;
unpaired t-test: t=0.40, df=13, p=0.68). (i), No change of DAGL-a in the hippocampus of COMT-Val-tg (Veh
n=7, DOX n=8) and controls (Veh n=9, DOX n=8) after the remote memory recall (two-way ANOVA: genotype
X treatment , F(1,2¢= 0.35, p= 0.55). (j), No change MAGL in the hippocampus of COMT-Val-tg (Veh n=7, DOX
n=9) and controls (Veh n=9, DOX n=9) after the remote memory recall (two-way ANOVA: genotype x treatment,
F(,30=0.10, p= 0.74).
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4.8.6 Supplementary figure 6
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Supplementary Figure 6. Increased COMT activity did not alter the endocannabinoid system in the striatum. (a),
Representative western blot images of DAGL-a, FAAH, CB1R, NAPE-PLD and MAGL in the striatum of
COMT-Val-tg and control mice after Veh or DOX treatment. (b), No change of CB1R (two-way ANOVA:
genotype x treatment, F,14= 0.19, p= 0.66) in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and control
mice (Veh n=4, DOX n=5) after the remote memory recall. (c), No change of AEA in the hippocampus of COMT-
Val-tg (Veh n=8, DOX n=5) and control mice (Veh n=6, DOX n=6) after the remote memory recall (two-way
ANOVA: genotype X treatment, F,21= 0.10, p= 0.75). (d), No change of 2AG in the striatum of COMT-Val-tg
(Veh n=8, DOX n=5) and controls (Veh n=7, DOX n=6) after the remote memory recall 2AG (two-way ANOVA:
genotype X treatment, F122= 0.68, p= 0.41). (e), No change of OEA in the striatum of COMT-Val-tg (Veh n=8,
DOX n=5) and controls (Veh n=7, DOX n=6) after the remote memory recall (two-way ANOVA: genotype x
treatment, F(1,22= 1.80, p=0.19). (f), No change of PEA in the striatum of COMT-Val-tg (Veh n=8, DOX n=5)
and controls (Veh n=7, DOX n=6) after the remote memory recall (two-way ANOVA: genotype X treatment,
F(122=2.00, p=0.17). (g), No change of NAPE-PLD in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and
controls (Veh n=4, DOX n=5) after the remote memory recall (two-way ANOVA: genotype X treatment,
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F(114=0.01, p=0.89). (h), No change of FAAH in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and controls
(Veh n=4, DOX n=5) after the remote memory recall (two-way ANOVA: genotype X treatment, F(,14=0.12,
p=0.72). (i), No change of DAGL-a in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and controls (Veh n=4,
DOX n=5) after the remote memory recall (two-way ANOVA: genotype X treatment, F(114=0.02, p=0.87). (j), No
change of MAGL in the striatum of COMT-Val-tg (Veh n=4, DOX n=5) and controls (Veh n=4, DOX n=5) after
the remote memory recall (two-way ANOVA: genotype X treatment, F(1,14=0.00, p=0.93).
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4.8.7 Supplementary figure 7
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Supplementary Figure 7. (a), Proactive behavior on remote memory recall after Veh or AM251 treatment
(n=6-8 each group). No differences between control and COMT-Val-tg mice (two-way ANOVA: genotype X
treatment, F(124)= 0.38, p=0.53). (b), Nal administration induced conditioned place aversion 24 hours after
conditioning (one-way ANOVA: treatment, F(223= 1.79, p< 0.0005 vs Veh). No difference between COMT -
Val-tg and control mice (p=0.38).
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Abstract

Social cognition is a fundamental ability that influences development, survival and evolution
of animals. Human social cognition is assessed measuring the ability to recognize others’
emotions, a function that remains elusive for laboratory animals. Here, we revealed that mice
are able to discriminate unfamiliar conspecifics based on negative- or positive-valence
emotional states. This process was distinct from sociability or observational transfer of
emotions and was differently dependent on olfactory and visual cues. We showcase the value
of the mouse emotion recognition paradigm unraveling the role of endocannabinoid system in

social cognition.
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5.1. Introduction

Social interactions are fundamentally dependent on the ability to distinguish expression of
emotions in others. This biologically innate process defined as “social cognition” has profound
implications in everyone’s life [1], [2]. Consistently, disturbances in social cognition are early
and distinctive features of many neuropsychiatric, neurodevelopmental and neurodegenerative
disorders [2]. Abnormalities in social cue identification define autism spectrum disorders [3],
and patients with schizophrenia have marked impairments in processing non-verbal social
affective information while showing normal affect sharing and emotion experience [4].
Notably, social cognitive impairments in these individuals have a more deleterious impact on
daily functioning than non-social cognitive deficits [5]. Emotion recognition tasks are the most-
extensively used paradigms to assess human social cognition [2], [4]. Indeed, the ability to
“read” others’ emotions is fundamental to achieve more complex and high-level social
processes. In agreement, several training programs targeting facial emotion perception have
been implemented for individuals with schizophrenia and autism [6], [7]. Social emotion
recognition abilities are also evident in non-human primates, as well as in dogs and sheep [8].
Despite this, there is no evidence that mice, the most widely used laboratory animals, might be
able to discriminate individuals on the base of their emotional state. Previous studies identified
the existence of a transmission of pain/fear responses from one rodent to a familiar observer, a
process possibly related to affect sharing and empathy [9]-[12], and thought to be an automatic
response [13]. However, the cognitive processes by which rodents discriminate conspecifics
emotional states are poorly evaluated. In this study, we developed a new method to investigate
emotion discrimination abilities in mice. We reliably showed measurable indices of mice
discrimination of negative and positive emotions evoked in unfamiliar conspecifics. These
measures were disconnected from any possible sign of automatic mimicry, contagion or basic
social exploration processes. The initial application of the mouse emotion recognition task
established the role of endocannabinoid system in social cognition. In fact, starting from
evidence from fMRI studies that showed deficits in emotion recognition task in cannabis users
[14]-[16], we hypothesized an involvement of CB1 receptors in this set of abilities. In
particular, CB1 receptors within the astrocytes have been indicated to have profound effects in
behavioral outputs [30]. More generally, astrocytes play a central role in controlling synapse
formation and maturation, but also in the modulation of many aspects of synapses physiology,
network activity, and cognitive functions [17]. In the context of emotion recognition, a brain

region of particular interest indicated by several human studies is the prefrontal cortex (PFC),
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which is thought to regulate the top down control of emotion recognition abilities. Intriguingly,
within the PFC, astrocytes have been recently reported to have a major and peculiar impact in
dopaminergic homeostasis [18]. Thus, according with our data about the selective interaction
between dopaminergic and endocannabinoid system within the PFC in the modulation of
cognitive functions [19], we hypothesized that a CB1 dysfunction in prefrontal astrocytes might
lead to ‘social’ deficits. In order to investigate the role of astrocytic CB1R we decided to
remove the receptor selectively in prefrontal astrocytes using CB1 floxed mice. Altogether, our
results demonstrate the potential of this method to increase our knowledge of the mechanisms

underlying social cognition in rodents, with a translational perspective.
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5.2. Materials and Methods
All procedures were approved by the Italian Ministry of Health (permits n. 230/2009-B and

107/2015-PR) and local Animal Use Committee and were conducted in accordance with the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the
European Community Council Directives. Males and females C57BL/6J mice, and CB1 floxed
mice all of 3-6 month-old were used. Animals were housed two to four per cage in a climate-
controlled (22+2 C) and specific pathogen free animal facility, with ad libitum access to food
and water throughout, a standard environmental enrichment (material for nest and cardboard
house), and with a 12-hour light/dark cycle (7pm/7am schedule). Experiments were run during
the light phase (within 10am-5pm). All mice were handled on alternate days during the week
preceding the first behavioral testing. Female mice were visually checked for estrus cycle
immediately after the test and no correlation was found between estrus status and performance
in the test. Behavioral scoring was performed a posteriori from videos by trained experimenters
blind to the manipulations of both the observers and demonstrators. A sniffing event was
considered when the observer touched with the nose the demonstrators’ wire cup or when the

observer’s nose directly touched the demonstrator.

5.2.1. Emotion recognition task.

Habituation of the mice to the testing setting occurred on three consecutive days before the first
experiment; each habituation session lasted 10 minutes. Test observer mice were habituated
inside a Tecniplast cage (35.5x23.5x19 cm) to a separator and two cylindrical wire cups (10.5
cm in height, bottom diameter 10.2 c¢cm, bars spaced 1 cm apart; Galaxy Cup, Spectrum
Diversified Designs, Inc., Streetsboro, OH), around which they could freely move, as occurred
during the test. A cup was placed on the top of the wire cups to prevent the observer mice from
climbing and remaining on the top of them. The separator (11x14cm) between the two wire
cups was wide enough to cover the reciprocal view of the demonstrators while leaving the
observer mice free to move between the two sides of the cage. The wire cups, separators and
experimental cages were replaced with clean copies after each subject to avoid scent carryover.
Similarly, the rest of the apparatus was wiped down with water and dried with paper towels for
each new subject. After each testing day, the wire cups, separators, and cubicles were wiped
down with 70% ethanol and allowed to air-dry. Testing cages were autoclaved as standardly
performed in our animal facility. Demonstrator mice — matched by age, sex and genotype to

the observers — were habituated inside the same Tecniplast cage (35.5x23.5x19 cm), under the
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wire cups for three consecutive times, ten minutes each. During both habituation and behavioral
testing, the cages were placed inside soundproof cubicles (TSE Multi Conditioning Systems)
homogeneously and dimly lit (6£1 lux) to minimize gradients in light, temperature, sound and
other environmental conditions that could produce a side preference. Digital cameras (imaging
Source DMK 22AUC03 monochrome) were placed facing the long side of the cage and on top
of the cage to recorded from different angles the three consecutive two-minute trials, using the

program Anymaze (Stoelting).

5.2.1.1.0bservers.

Before the test, mice were habituated to the experimental setting as reported above. The third
day of habituation, mice were also habituated to the tone cue (4 kHz, 80 dB sound pressure
level, three times for 30 seconds each with an intertrial interval of 90 seconds) without any
conditioning. One hour prior to behavioral testing, mice were placed in the testing cage, in
experimental setting (i.e. separator and two wire cups), in a room adjacent to the testing room.
Five minutes before the experiment, the testing cages containing the observer mice were gently
moved in the testing cubicles. After having placed one emotionally ‘neutral’ and one
“emotionally altered” demonstrator mice under the wire cups, the 6-minute experiment began.
The order of insertion of the neutral or emotionally-altered demonstrator was randomly

assigned.

5.2.1.2. ‘Neutral’ demonstrators.

In the days before the test, all neutral mice were habituated to the experimental setting as
reported above. For the “relief” condition, neutral demonstrators underwent no manipulation
the day before the test. For the “fear” condition, the day before the test, neutral demonstrators
were habituated to the tone cue inside the cups as for the experimental setting and as done for
the observer mice. The day of the test, neutral demonstrators were brought inside their home
cages in the experimental room one hour before the experiment began. Demonstrators were
test-naive and used only once. In some cases, we re-used the same demonstrator for maximum
two/three times, with always at least one week between each consecutive test. No differences
were observed in the performance of the observer mice depending on the demonstrators’

previous experience.
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5.2.1.3. ‘Relief’ demonstrators.

The days before the test, mice were habituated to the experimental setting as reported above.
‘Relief” demonstrators were then water deprived 23 hours before the experiment. One hour
before the test ad libitum access to water was reestablished, and mice were brought inside the
experimental room in their home cages. Food was ad libitum all the time and some extra pellets

were put inside the home cage during the 1-hour water reinsertion.

5.2.1.4. ‘Stressed’ demonstartors

The days before the test, mice were habituated to the experimental setting as reported above.
“Stress” demonstrators were put in the restrainer 15 minutes before the task. Stressed mice
were put in the restrainer only once. In the rare case of a second exposure to the test, these
demonstrators were re-exposed to the restrainer at least one week apart from the previous

exposure.

5.2.1.5°Fear’ demonstrators.

The days before the test, mice were habituated to the experimental setting as reported above.
‘Fear’ demonstrators were fear conditioned using the parameters and context previously
described?, and using the same tone delivered to the observers and neutral demonstrators
during their habituation process. In particular, the conditioned stimulus was a tone (4 kHz, 80
dB sound pressure level, 30 sec) and the unconditioned stimulus were three scrambled shocks
(0.7 mA, 2-s duration, 90-s intershock interval) delivered through the grid floor that terminated
simultaneously with the tone (2 sec). The day of the test these mice were habituated, inside
their home cages, in a room adjacent to the testing room for one hour prior to the test; they
were consequently brought inside the experimental room one by one, before placing them
under their designated wire cup. Fear mice were conditioned only once and in a separate room
and apparatus (Ugo Basile SRL, Italy) respect to where the emotion recognition task would be
performed. In the rare case of a second exposure to the test, these demonstrators were just re-
exposed to the same conditioned tone, at least one week apart from the previous exposure and

maximum 1 month from the initial conditioning.

5.2.1.6. Shock” demonstrators.
This manipulation was performed for direct comparison with a rat protocol and was performed

as previously described [20]. In particular, these demonstrator mice were exposed to two
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footshocks (1 mA, 5-s duration, 60-s intershock interval) immediately before the 6-minute test

session. All other procedures were identical to the other demonstrators as described above.

5.2.1.7. Habituation- dishabituation task.

Social interaction in freely interacting mice was tested as previously reported [21]. Briefly,
mice were individually placed in the testing cage 1 h prior to the testing. No previous single
housing manipulation was adopted to avoid any instauration of home-cage territory and
aggressive behaviors. Habituation — dishabituation task consisted of 5 trials (1 minute each),
with 3 minutes interval lasted from each trial. Testing began when a stimulus mouse (S1),
matched for sex and age, was introduced into the testing cage for the first 1-min period
interaction. S1 mouse was showed to the test mouse for four time. A new stimulus mouse (S2),
matched for sex and age, and was introduced during trial 5. During behavioral testing, the cages
were placed inside soundproof cubicles (TSE Multi Conditioning Systems) homogeneously
and dimly lit (521 lux) to minimize gradients in light, temperature, sound and other
environmental conditions that could produce a side preference. Digital cameras (imaging
Source DMK 22AUC03 monochrome) were placed facing the long side of the cage and on top
of the cage to recorded from different angles the five 1 minute trials, using the program

Anymaze (Stoelting).

5.2.1.8. One-on-one social exploration tests.

This test was similarly performed as previously described®. One hour prior to behavioral
testing, each experimental subject was placed into a Tecniplast cage (35.5x23.5x19 cm) with
shaved wood bedding and a wire lid, in a room adjacent to the testing room. Five minutes
before the experiment, the testing cages containing the observer mice were gently moved in
the testing sound proof cubicles. To begin the test a demonstrator mouse was introduced to the
cage for 6 minutes (as for the emotion recognition task), and exploratory behaviors initiated by
the test subject were timed by two independent experimenters blind to the manipulations.
Demonstrators mice were used only once. Each observer was given tests on consecutive days:
once with an unfamiliar naive conspecific, once with an unfamiliar fear conspecific (fear
conditioning exactly as above), once with an unfamiliar relief conspecific (manipulated exactly
as above), and once an unfamiliar stressed conspecific (stressed as previously explained). Test

order was counterbalanced.

148



5.2.1.9. Sensory modality assessment.

In the “complete darkness” experiments, mice were tested as above, but eliminating all sources
of light within the testing cage as well as in the entire testing room. Videos were recorded for
successive scoring either with an infrared thermal camera (FLIR A315, FLIR Systems) or with
Imaging Source DMK 22AUC03 monochrome camera (Ugo Basile). The two cameras setting
gave the same experimental results. For acoustic stimuli experiments, ultrasonic vocalisations
(USVs) were recorded during the test phases performed as above in two different experimental
settings: 1) exactly as above with one observer mouse and two demonstrators, and 2) with only
one demonstrator for each emotional condition present in the apparatus. This was done to make
sure that the USVs recorded could be attributed to a single emotional state and/or to a
communication between demonstrators and observer. The ultrasonic microphone (Avisoft
UltraSoundGate condenser microphone capsule CM16, Avisoft Bioacoustics, Berlin,
Germany), sensitive to frequencies between 10 and 180 kHz, was mounted 20 cm above the
cage to record for subsequent scoring of USV parameters. VVocalisations were recorded using
AVISOFT RECORDER software version 3.2. Settings included sampling rate at 250 kHz;
format 16 bit. For acoustical analysis, recordings were transferred to Avisoft SASLab Pro
(Version 4.40) and a fast Fourier transformation (FFT) was conducted. Spectrograms were
generated with an FFT-length of 1024 points and a time window overlap of 75% (100% Frame,
Hamming window). The spectrogram was produced at a frequency resolution of 488 Hz and a
time resolution of 1 ms. A lower cut-off frequency of 15 kHz was used to reduce background
noise outside the relevant frequency band to 0 dB. Call detection was provided by an automatic
threshold-based algorithm and a hold-time mechanism (hold time: 0.01 s). An experienced user
checked the accuracy of call detection, and obtained a 100% concordance between automated
and observational detection. Parameters analysed for each test day included number of calls
and duration of calls. Quantitative analyses of sound frequencies measured in terms of
frequency and amplitude at the maximum of the spectrum were not performed because of the
paucity of emitted USVs in all conditions performed. For odor stimuli experiments, observers
were tested as described above, but presenting as “demonstrator” only cotton balls impregnated
with the odor of demonstrators. Odors were separately collected from neutral, relief (after the
1 hour ad libitum access to water), fear (immediately after the delivery of the conditioned tone
cue) and stressed (immediately after 15 minutes in the restrained) demonstrators by gently
brushing the cotton ball all over the body of the mice (especially including the nose, body and
anogenital parts). Odors were taken from one single mouse, which was not reused. Odors were

used only once and always freshly taken.
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5.2.2. Place conditioning.

The place conditioning paradigm was performed in a rectangular Plexiglas box (length, 42 cm;
width, 21 cm; height, 21 cm) divided by a central partition into two chambers of equal size
(21x21x21 cm) as previously described??. One compartment had black walls and a smooth
Plexiglas floor, whereas the other one had vertical black and white striped (2 cm) walls and a
slightly rough floor. During the test sessions, an aperture (4x4 c¢cm) in the central partition
allowed the mice to enter both sides of the apparatus, whereas during the conditioning sessions
the individual compartments were closed off from each other. To measure time spent in each
compartment a video tracking system (Anymaze) was used. The place conditioning experiment
lasted 5 days and consisted of three phases: preconditioning test, conditioning phase and post
conditioning test. On day 1, each mouse was allowed to freely explore the entire apparatus for
20 min, and time spent in each of the two compartments was measured (preconditioning test).
Conditioning sessions took place on days 2 and 4. Mice were divided in two groups: neutral
and relief. Mice of the same home- cage were assigned to the same group. As for the same
manipulation in the emotion recognition test, the relief group was assigned to receive a 23-hour
water deprivation period before the two conditioning sessions on the day 2 and 4, when they
were confined with their cage mates in one of the two compartments for 1 hour with free access
to water and food (conditioning). Food in the home cage was available all time. Other than the
two 23-hr deprivation periods, water was available all time. The neutral group was exposed to
the same procedure but without any water deprivation periods. Post conditioning test was
performed on day 5 in the same condition of preconditioning test. For each mouse, a
conditioning score was calculated as the post conditioning time minus the preconditioning time

(in seconds) spent in the conditioning compartment of the apparatus.

5.2.3. Corticosterone assay

Corticosterone concentration was analyzed from mice plasma. Immediately after the
behavioral test, each mouse was sacrificed by decapitation. The blood was quickly collected in
EDTA(0,5M)-coated tubes and centrifuged at 2500 rpm for 10 min; the supernatant obtained

was stored at -20°C until the assay. The corticosterone concentration was detected by a

commercially available Detect X® corticosterone enzyme-linked immunoassay (ELISA) kit
(Arbor Assays, MI, USA; Cat N K014-H1) following the manufacturer's protocol. The level of

corticosterone was expressed as fold changes compared to the control group average.
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5.2.4. Stereotaxic Injections.

Mice were anesthetized with 2% isoflurane in O2 by inhalation and mounted into a stereotaxic
frame (Kopf) linked to a digital reader. Mice were maintained on 1.5 - 2% isoflurane during
the surgery. Brain coordinates of injections were chosen in accordance to the mouse brain atlas
(Paxinos and Watson, 1998): mPFC (AP: +1.9 mm; L: £ 0.25 mm; DV: -2.5 mm). Mice had
been injected with AAV-GFAP-mCherry-egfp (control) or AAV-GFAP-mCherry-Cre virus
and were allowed 1 month to recover and for the viral transgenes to adequately express before
undergoing behavioral experiments. The injected volume virus was 60 nl volume. Only mice

with appropriate placements were included in the reported data.

5.2.5. Statistical analyses.

Results are expressed as mean+standard error of the mean (s.e.m.) throughout. Each observer
behavior towards the two different demonstrator mice were analyzed using a within-groups
Repeated Measures ANOVA. The behaviors of the two demonstrators were analyzed by Two-
Way ANOVAs with emotional state as between-subjects factors, and the within-session 2-min
consecutive intervals as a repeated measure within-subject factor. The behaviors of the
observer mice in the one-on-one setting were analyzed by Two-Way ANOVAs with the
emotional state of the demonstrator as between-subjects factors, and the within-session 2-min
consecutive intervals as a repeated measure within-subject factor. Two or One-Way ANOVAS
were used for social interactions when different genotypes and treatments were involved.
Newman—Keul’s post-hoc test with multiple comparisons corrections was used for making
comparisons within groups when the overall ANOVA showed statistically significant
differences. The accepted value for significance was p<0.05. Statistical analyses were
performed using Statistica 13.2 (StatSoft).
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5.3. Results

5.3.1. Mice are able to discriminate unfamiliar conspecifics based on negative-valence
emotional states.

We hypothesized that mice could discriminate altered emotional states of unfamiliar
conspecifics, showing selective behavioral responses. To test this hypothesis, we placed an
“observer” mouse in a cage containing two age- and sex-matched unfamiliar conspecifics
(“demonstrators™), in a wire cup that allowed visual, tactile, auditory and olfactory
communication (Fig. 1a). This setting focused the task on social approach initiated by the
observer mouse, similar to emotion recognition tests performed in humans [2], avoiding
potential confounders resulting from aggressive or sexual interactions. In the first condition,
we measured observer’s ability to discriminate between a ‘“Neutral” demonstrator and a
demonstrator that was previously fear-conditioned to a tone cue, or stressed (“Fear”; Fig. 1b;
“Stress; Fig 2b), enabling the induction of a negative-valence state upon the tone presentation
or restrained condition. In particular, in order to compare observers’ behaviors before, during
and after the induction of this negative emotion, we used a 3-consecutive 2-minute trials in
which the tone cue was delivered only during the second 2-minute trial (Fig. 1b). As expected,
freezing response, and associated reduced rearing, were present only in the “fear”” demonstrator
and exclusively during the 2-minute tone presentation (Fig. 1c). No other behavioral
parameters differed between the two demonstrators during the whole 6-minute test session (Fig.
Ic). Thus, this design allowed to tightly link any detectable observers’ behavior with the
triggered alteration of the emotional state in one of the demonstrators. We found that both male
and female observers displayed increased sniffing towards the fear demonstrator compared to
the neutral one (Fig. 1d-e). In particular, the discriminatory sniffing was observed specifically
in the last 2-minute trial, thus only after the altered emotion was triggered, but not during the
tone presentation when the fear demonstrator was freezing. Observer discrimination during the
last trial did not correlate with the quantity of freezing showed by the fear demonstrator, but a
significant inverse correlation was evident during the 2-minute tone presentation (Fig. 1f-g).
This indicate that freezing observation inhibited the observer approach during trial 2, but did
not influence successive discriminatory behaviors. In light of previous evidence [10], [11],
[20], [22] we searched for signs of potential fear-transfer or emotional contagion from the
demonstrator to the observer, and we did not detect any. In particular, observers showed no

freezing behavior, escape attempts or stress-related behaviors, no changes in rearing and
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grooming (Fig. 1h) during the whole test. Similarly, no altered behaviors were evident when
the observer was exposed to two neutral demonstrators. However, as expected, observers did
not discriminate between two neutral demonstrators (Fig. S2). Observers’ corticosterone levels

did not differ when exposed to two neutral or to a neutral and a fear demonstrators (Fig. S3).
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Figure 1. Mouse emotion recognition task for negative emotions. (a) Schematic drawing of the task setting.
(b) Timeline of Pre-Test and Test procedures to trigger in one of the demonstrator a “fear” emotional states during
the middle of the test phase. (c) Observable behaviors displayed by the neutral and fear demonstrator mice during
the 6 minutes of the emotion recognition test, divided by three consecutive 2-minute time bean. No demonstrator
defecated or urinated during the whole test session. Emotion-by-time statistical interaction for sniffing (F23s=
2,72, p= 0.08), grooming (F23=1,07, p=0.35), rearing (F23=5,09, p=0.01), biting (F23=1,28, p=0.29), and
freezing (F2,36=48,82, p<0.0001). *p<0.05, and ***p<0,0001 versus all other points. N=10 demonstrators per

group. (d, e) Time (in seconds) spent sniffing demonstrators in neutral (grey bars) or tone-induced fearful states
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(red bars) displayed by (d) male and (e) female observer mice during the 6 minutes of the emotion recognition
test, divided by three consecutive 2-minute time bean. Conditioned tone delivered between 2-4 minutes of the test
(last 2-min RM ANOVA for males F115=6,51, p=0.022, and females F11:=10,98, p=0.006). *p<0.05 versus the
exploration of the neutral demonstrator. N=8-15 observers per group. (f, g) Correlation analyses between (in y
axis) the time spent freezing by the fear-conditioned demonstrator and (in x axis) time spent by the observer mouse
sniffing the fear-conditioned demonstrator (f) in the time 2-4 or (g) in the time 4-6 of the emation recognition test.
(h, ) Other observable behaviors displayed by the same observer mice during the 6 minutes of the emotion

recognition test, divided by three consecutive 2-minute time bean.

These findings suggest that an observer mouse can evaluate and discriminate unfamiliar
conspecifics based on a negative emotional state. Thus, we then investigated whether
discriminatory behaviors could be detected even when negative-valence states was induced
before the task. In fact, we exposed observer to a neutral demonstrator and to another that was
put in the restrainer 15- minutes before the task (“Stress”; Fig. 2a-b). As expected, increased
grooming response was found the “stress” demonstrators during all the 3- consecutive trials
(Fig. 2c). No other behavioral differences were noticed between the two demonstrators during
the whole 6-minutes test session (Fig. 2c). We found that both male and female observers
showed increased sniffing towards the stress demonstrator compared to the neutral one (Fig.
2d-e). In particular, the discriminatory sniffing was observed specifically in the first 2-minute
trial. Nevertheless, observer discrimination during the first trial did not correlate with the
quantity of grooming showed by the fear demonstrator (Fig. 2f). Moreover, the observers did
not show any other discriminatory behaviors such as changes in rearing and grooming patterns

towards the demonstrators (Fig. 29).
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Figure 2. Mouse emotion recognition task for negative (stress) emotions. (a) Schematic drawing of the task
setting. (b) Timeline of Pre-Test and Test procedures to induce in one of the demonstrator “stress” emotional
states during the first phase of the task. (c) Behaviors showed by the neutral and stress demonstrator mice during
the 6 minutes of the emotion recognition test, divided by three consecutive 2-minute time bean. No demonstrator
defecated or urinated during the whole test session. Emotion-by-time statistical interaction for sniffing (0-2 min:
F1,15=115.77; p= 0.09), grooming (F115=74.04, p= 0.0002); 2-4 minutes: Fy15= 27.413, p=0.001; 4-6 minutes
(F1.15=32.89 p=0.005), rearing 0-2 min: (F1,15=70.73, p=0.57), biting 0-2 min: (F115=4.17, p=0.11), and freezing.
*p<0.05, and ***p<0,0005 versus all other points. N=16 demonstrators per group. (d, €) Time (in seconds) spent
sniffing demonstrators in neutral (grey bars) or restrainer induced stressful state (blue bars) displayed by (d) male
and (e) female observer mice during the 6 minutes of the emotion recognition test, divided by three consecutive
2-minute time bean (0- 2-min ANOVA for males F117= 19.64, p=0.0004, and females F1 1, = 5.76, p=0.03).
*p<0.05 , ***p<0.0005 versus the exploration of the neutral demonstrator. N=13-18 observers per group. (f)
Correlation analyses between (in y axis) the time spent grooming by the stress demonstrator and (in x axis) by the

observer mouse sniffing the stress demonstrator (f) in the time 0-2 of the emotion recognition test. (g) Other
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observable behaviors displayed by the same observer mice during the 6 minutes of the emotion recognition test,

divided by three consecutive 2-minute time bean.

5.3.2. Mice are able to discriminate unfamiliar conspecifics based on positive-valence
emotional states.

Emotion recognition paradigms to assess human social cognition include the presentation of
positive-valence emotions [2]. Thus, we then investigated whether discriminatory behaviors
could be detected even towards positive-valence states. Observers were exposed to a neutral
demonstrator and to another that received a 1-hour ad libitum access to water following 23-
hour water deprivation (Fig. 3a-b). Water was selected as a rewarding factor to avoid odor-
related cues that could differentiate the two demonstrators. We assumed that the relief from the
latter distressful situation would result in a positive-valence emotional state (“relief”).
Supporting this, we found that the 1-hour ad libitum access to water resulted in a conditional
place preference only in mice that experienced the 23-hour water deprivation, but not in mice
in the ad libitum water condition (Fig. 3c-d). We found no measurable behavioral difference
between relief and neutral demonstrators (Fig. 3e). However, observers of both sexes equally
showed more sniffing towards the relief demonstrator compared to the neutral, only in the first
two minutes of the task (Fig. 3f-g and Fig. S1). The observers did not show any other
discriminatory behaviors such as changes in rearing and grooming patterns towards the
demonstrators (Fig. 3h). Moreover, observers did not show freezing behavior, escape attempts
or stress-related behaviors during the entire test session. Observers’ corticosterone levels did
not differ when exposed to two neutral or to a neutral and a relief demonstrators (Fig. S2).
These data indicate that mice are able to discriminate emotions with a positive valence in

unfamiliar conspecifics.
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Figure 3. Mouse emotion recognition task for positive emotions. (a) Schematic drawing of the task setting. (b)
Timeline of Pre-Test and Test procedures to trigger in one of the demonstrator a “relief” emotional states during
the test phase. (c) Timeline of the Place Conditioning procedures used to assess if the “relief” manipulation was
associated with a negative-, neutral- or positive-valence affective state. (d) Place conditioning scores (in seconds)
displayed by mice conditioned during a neutral (grey bar) or relief (yellow bar) emotional state. For each mouse,
a place conditioning score was calculated as the post- minus the preconditioning time spent in the conditioning-
paired compartment of the apparatus. A positive score indicate place preference, a negative score a place aversion,
0 no place conditioning. N=7 per group. *p<0.05 versus the neutral group. (e) Observable behaviors displayed by
the neutral and relief demonstrator mice during the 6 minutes of the emation recognition test, divided by three
consecutive 2-minute time bean. No demonstrator defecated or urinated during the whole test session. No
significant emotion-by-time statistical interaction was evident for sniffing, grooming, rearing, biting, and freezing.
N=10 demonstrators per group. (f, g) Time (in seconds) spent sniffing demonstrators in neutral (grey bars) or
water-induced relief state (yellow bars) displayed by (f) male and (g) female observer mice during the 6 minutes

of the emotion recognition test, divided by three consecutive 2-minute time bean (first 2-min RM ANOVA for

157



males F114=15.07, p=0.001, and females F114=14,60, p=0.001). **p<0.05 versus the exploration of the neutral
demonstrator. N=15 observers per group. (h,) Other observable behaviors displayed by the same observer mice

during the 6 minutes of the emotion recognition test, divided by three consecutive 2-minute time bean.

5.3.3. Emotion discrimination abilities are a stable trait, not overlapping with sociability.
Human emotion recognition paradigms present strong test-retest reliability [23], which is a
critical feature for longitudinal, drug response, psychobiological and clinical trials studies. In
agreement with this human evidence, the ability to distinguish unfamiliar conspecifics based
on emotional states remained unchanged when the same observer mouse was re-exposed to the
same paradigm or even if the same mouse was tested in the two different paradigms (Fig. 4a).
This indicated that emotion discrimination in mice is a stable trait, and that this setting is well-
suited to be used for mechanicist pharmacological manipulations. Human emotion recognition
tasks measure the ability to label or discriminate emotions in others, which is distinct from
sociability (defined as the time spent interacting with others). Thus, we also evaluated the
sociability of a mouse towards a neutral, fear, relief or stress conspecific measuring their free
social interaction in one-on-one setting (Fig. 4b). We found that the levels of social exploration
of the test mouse toward the subjects in neutral, negative or positive emotional states did not
differ (Fig. 4b). In contrast, a recently published protocol in rats showed equivalent social
interaction data in one-on-one and one-on-two settings [20]. The discrepancy might rely on the
scalability feature of emotions [23]. Indeed, exposing the demonstrator immediately after the
shock (Fig. 4c and [20]), generated a general aversion during the whole test session (Fig. 4c).
Taken together, these data suggest that the changes in exploratory behavior we found in our
setting (Fig. 1-3) indicate a specific discriminatory behavior between two different emotional

states rather than a generalized index of sociability.
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Figure 4. Reliability, distinction from sociability, and sensory modalities implication in the mouse emotion
recognition task. (a) Schematic drawing of the test-retest reliability validation and time (in seconds) spent by
observer mice sniffing the two demonstrators in the fear and relief paradigms during their first and second
exposure to the 6-minute emotion recognition test. Time spent sniffing neutral demonstrators are depicted in grey,
fear in red and relief in yellow. RM ANOVA for the “fear” manipulation, last 2-minute session, Test: F1,13=6,10,
p=0.028; Re-Test: F1,13=8,59, p=0.012. RM ANOVA for the “relief” manipulation, first 2-minute session, Test:
F1,10=5,15, p=0.046; Re-Test: F1,10=22,88, p=0.0008. *p<0.05, and **p<0,005 versus the exploration of the neutral
demonstrator. N=11-14 observers per group. (b) Schematic drawing of the one-on-one test setting and time (in
seconds) spent by observer mice sniffing a single demonstrator in a neutral, fear, stress or relief state during a 6-
minute free interaction test. Time spent sniffing neutral demonstrators are depicted in grey, fear in red, stress in

blue and relief in yellow. The tone for which only the fear demonstrator was fear-conditioned, as reported in the
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methods section, was delivered between 2-4 minutes of the test. ANOV As revealed only a time effect with normal
decreased exploration throughout the 6 minutes (F256=132.01, p<0.0001). N=12 observers. (c) Schematic drawing
of the task setting and timeline of Pre-Test and Test procedures to trigger in one of the demonstrator a “shock”
emotional state. The bar graph show the time (in seconds) spent by the observer mice sniffing demonstrators in
neutral (grey bars) or shocked emotional state (green bars) during the 6 minutes of the emotion recognition test,
divided by three consecutive 2-minute time bean (RM ANOVA, 0-2 min: F16=2.40, p=0.17; 2-4-min; F16=5.43,
p=0.05; 4-6 min: F16=8.11, p=0.02). *p<0.05 versus the exploration of the neutral demonstrator. N=7 observers.
(d) Schematic drawing of the test setting performed in complete darkness, and time (in seconds) spent by observer
mice sniffing neutral (grey), fear (red), stress (blue) or relief demonstrators (yellow) during the 6 minutes of the
negative and positive valence versions of the emotion recognition test. RM ANOVA for the fear manipulation, 2-
4 minutes: F15=5.63, p=0.04; 4-6 minutes: F1s= 28.08, p= 0.0007; for the stress manipulation, 0-2 minutes: F1 5=
10.43, p= 0.02 for the relief manipulation, 0-2 minutes: F15= 33.32, p= 0.002. **p< 0.005 and *p< 0.05 versus
the exploration of the neutral demonstrator. N=6/9 observers per group. () Schematic drawing of the test setting
to record USVs, mean number of USV calls per minute, and mean duration of USVs in milliseconds emitted by
mice during the fear, stress and relief emotion recognition tasks. N=6 observers per group. (f) Schematic drawing
of the test setting to record USVs, mean number of USV calls per minute, and mean duration of USVs in
milliseconds emitted by a single demonstrator mouse in neutral, fear, stress or relief emotional state. N=6
demonstrators per group. (g) Schematic drawing of the test setting performed only with demonstrators odors, and
time (in seconds) spent by observer mice sniffing the odors from neutral (grey), fear (red), stress (blue) or relief
demonstrators (in yellow) during the 6 minutes of the negative and positive valence versions of the emotion
recognition test. RM ANOVA for the fear manipulation, 4-6 minutes: Fie= 9.15, p= 0.02; for the stress
manipulation, 0-2 min: F16= 33.64, p= 0.001; for relief manipulation, 0-2 min: F1 2= 4.25, p= 0.05 *p<0.05 ,

**p< 0.005 versus the exploration of the neutral odor. N=7/10 observers per group.

5.3.4. Visual and olfactory cues differently influence measures of emotion recognition.

Human emotion discrimination paradigms mostly rely on visual detection of facial and body
expressions. The visual system in rodents is developed enough to acquire information as
evident from observational transfer of fear/pain paradigms[11], [25]. However, in our setting
the ability of mice to discriminate others’ emotions might also implicate information conveyed
by auditory and olfactory signals. Thus, we addressed the impact of visual, acoustic and
olfactory stimuli in the ability of the observer mice to discriminate emotions in unfamiliar
conspecifics. To test the value of visual cues, we performed the task in complete darkness (Fig.
4d). Observer mice showed increased sniffing towards the negative and positive emotionally
altered demonstrators compared to neutral demonstrators (Fig. 4d), as found with lights on
(Fig. 1-2). However, the lack of visual information extended the discrimination period. In fact,
in the “fear” condition, the observer anticipated the discriminatory behavior at the presentation

of the tone, while the discriminatory behavior in the “relief” paradigm tended to last for the
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whole session. This evidence suggests a potential inhibitory control of visual cues in mouse
emotion discrimination. To investigate the role of auditory information, we recorded ultrasonic
vocalizations (USVs) in the fear, stress and relief manipulations. We used two different
conditions: the standard setting with two demonstrators and the observer (Fig. 4e), and the
isolated demonstrators (Fig. 4f). We found very few vocalizations, and no differences among
the different conditions or emotional states (Fig. 4e-f). In agreement with previous evidence
[28], our data indicated that USVs in mice do not communicate negative or positive emotions,
and that auditory information are not necessary for emotion discrimination. To test the impact
of olfactory cues on observer performance, we used a modified version of our setting in which
the observer was presented to cotton balls enriched with the odor from neutral, fear, stress or
relief demonstrators (Fig. 49), instead of the demonstrators themselves. However, the relief
odor induced in the observer the same pattern of discriminatory behavior as that found in the
presence of the relief demonstrator. This suggests that odor cues are involved in emotion
recognition, but the impact on the observer’s discriminatory behavior is linked to the presence
of the demonstrators. Overall, this set of data indicates distinct implications of both visual and

olfactory social cues in the expression of mouse emotion discrimination.

5.4.5. Astrocytic CBL1 receptor in PFC modulates emotion recognition in mice.

We then asked whether this newly identified social cognitive ability in mice might be mediated
by conserved neurobiological mechanisms consistent with those implicated in humans. The
endocannabinoid system plays a crucial role in facial emotion identification in human, in fact,
deficits in both identification and discrimination of facial emotions in cannabis dependent
patients have been demonstrated [15], [16]. However, the exact mechanisms by which
endocannabinoid system is involved in social cognition are poorly understood. In order to
understand the role of CB1 receptor in PFC in social cognition we decided to switch off the
CB1 receptor selectively in astrocytes (Fig.4a). After the surgery, we left the animal recovery
for one months and then they were tested in the classical habituation- dishabituation task and
in the emotion recognition task. While CB1 floxed mice injected with AAV-GFAP-mCherry-
Cre did not show an impairment in sociability and social memory abilities in the classic
habituation- dishabituation task, we found that CB1 floxed mice injected with AAV-GFAP-
mCherry-Cre spent significantly less time to interact with familiar mice during trial 2 and trial
3 in the social habituation- dishabituation task (Fig.4b).
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Figure 5
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Figure 5. Astrocytic CB1 receptor in PFC modulates emotion recognition in mice. (a) Schematic drawing of viral
vector used to infect PFC of CB1 floxed mice. (b)Time spent sniffing (in seconds) during the habituation-
dishabituation task by CB1 floxed mice injected with control AAV-GFAP-mCherry- egfp (blue) or AVV-GFAP-
mCherry-Cre (red). t test for trial *p < 0.05 vs Gfap- egfp mice. (c-e) Time (in seconds) spent sniffing each wire
cage containing two stimulus mice during the emotion recognition test, and shown separately for each emotion
by CB1 floxed mice injected with control AAV-GFAP-m Cherry- egfp or AVV-GFAP-mCherry-Cre. Time spent
sniffing stimulus mice with neutral emotional state are depicted in grey and represented by grey bars. Time spent
sniffing stimulus mice with (c) tone- induced fearful (last 2-min) or restrainer- induced stress (first 2-min) or
water-induced happy state (first 2-min) are depicted in red, blue and yellow respectively. RM ANOVA Fear last
2-min, CB1 floxed mice injected with AVV-GFAP- egfp F 13= 13.43 p= 0.0035, CB1 floxed mice injected by
AVV- GFAP-mCherry- Cre F13= 39.24, p= 0.91; stress first 2-min CB1 floxed mice injected with AVV- GFAP-
egfp: Fis= 34.699, p= 0.001; CB1 injected by AVV- GFAP-mCherry- Cre F111= 10.541, p= 0.007 ; relief first
2-min, CB1 floxed mice injected with AVV- GFAP-mCherry- egfp: F15-10.098, p=0.025; CB1 injected by AVV-
GFAP-mCherry- Cre F110= 0.026, p= 0.875. N=4-12 . observers per group. *p<0.05; **p<0.005 versus the
exploration of the neutral demonstrator.

Relevantly, in CB1 floxed mice injected with AAV-GFAP-mCherry-Cre we identified emotion
recognition deficits in both the fear and relief conditions (Fig. 4c-e), but not in stress condition
(Fig.4 d). These data unravel a clinically-relevant genetic variation which concurrently

produced deficits in emotion recognition abilities.
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5.4. Discussion

The mouse emotion recognition test, inspired by human paradigms, extends the opportunity to
study in mice the ability to discriminate negative and positive emotional states in conspecifics.
We characterized the sensory modalities involved in emotion recognition and identified
specific features, which differentiate this ability from basal sociability and other higher-order
social processes such as emotional contagion. Furthermore, we provided initial proofs that the
endocannabinoid system may modulate social cognition and emotion recognition in mice. The
developed paradigm revealed detectable and measurable mice’ ability to discriminate
unfamiliar conspecifics based on either negative or positive emotions. Notably, observers’
emotion discrimination was evident after (and not during) the induction of the altered emotional
state in the demonstrators. This is in line with theories that emotional states are differentiated
from simple reflex responses in their persistence after the disappearance of the triggering
stimuli®*. The manipulations performed in demonstrator mice were designed to alter emotional
states in conditions of minimal physical distress. These features are distinct from previous
settings designed to study the phenomena of observational transfer of pain/fear responses from
a demonstrator to an observer[9]- [12], [16]. Indeed, transfer of fear/pain responses requires
the direct observation of the demonstrator under pain or a foot shock physical challenge®®. In
agreement, no transfer of freezing, state-matching, escape behaviors or altered corticosterone
levels were observed in our setting in the observer mice. This is also in line with the effort we
made to design a paradigm which is centered on measuring innate social abilities in the
observer mouse. In particular, the fact that the observers’ discriminatory behaviors were
different depending on the intensity of manipulations (e.g. fear versus shock), on visual cues
(e.g. seeing or not freezing), or on olfactory cues (e.g. with or without the demonstrator) suggest
some internal social cognitive appreciation of the context by the observer. This is distinct from
previous evidence on emotional contagion processes, such as observational transfer of fear/pain
which implies automatic responses to negative-emotional states!® or from reported consolatory
behaviors which require a strict reciprocal connection and familiarity between the observer and
the demonstrator®'2, Altogether, this evidence indicates that our paradigm mimics what is
commonly measured in humans with emotion recognition tasks and defined as “social
cognition” [2]-[4].

To detect emotion discrimination abilities, observer mice were simultaneously exposed to
different conspecifics in different emotional states. Intriguingly, observer mice showed similar

increased sniffing towards demonstrators in negative- or positive-valence emotional states. The
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study of the sensory modalities involved in the processing of negative and positive emotions,
however, provided some insight on possibly different ethological meaning of the three
paradigms. In particular, exposing an observer to a relief mouse, with or without visual cues,
or only to the odor of a relief mouse led to a similar approaching behavior, possibly implying
general “attracting” signals. In contrast, while the exposure of an observer to a fear or stressed
mouse induced an approach behavior, isolated fear and stress odor cues as well as exposure to
a shocked mouse determined an aversion. Rodents have been reported to actively escape from
intense aversive stimuli[11], from aversive USVs calls induced by heavy distress [25], [27],
and from odors emitted by a shocked, heavily stressed, defeated, or sick conspecific[28]- [30].
Thus, the different directions and tunable nature of the discriminatory behaviors we observed
point to the possibility to study with this novel setting different social cognitive processes
possibly related to “attract”, “alarm” or “help” social information.

Social discriminatory data in our emotion recognition paradigm were not predictive of
exploratory sociability as assessed in one-on-one. This distinction indicates a true
discriminatory social behavior dissociated from general sociability or automatic responses. In
contrast, previous research on higher-order social functions is based on a one-on-one setting
[9], [11] or reproduce similar exploratory results in a one-on-one and a one-or-two setting [20].
This provide further evidence that our paradigm addresses a different aspect of rodents’ social
abilities, complementing previous available tools. The first direct application of the new
paradigm developed led us to reveal the role of astrocytic CB1 receptor in PFC, an essential
brain area mediating emotion recognition [4]. Increasing studies showed that massive use of
cannabis produced an impairment in social cognition in human [14]- [16]. However, heavy
cannabis users usually take several kind of drugs at the same time, including alcohol. For this
reason, it could be difficult to understand the exact mechanisms regulating these functions. For
the first time, we provided a proof that astrocytic CB1 receptor regulate emotion recognition
in mice. In fact, we removed receptor exclusively in the prefrontal astrocytes showing that this
procedure cause deficits. This important result could be used for feature research that aim to
discover new pharmacological treatment to rescue social deficits in psychiatric disorders. In
conclusion, this set of findings provides a new method to address still scarcely explored aspects
of rodents social cognition. This could support more translational approaches between rodent
and human social cognitive studies, with relevance to circuits, genetics and neurochemical

systems involved in different psychiatric disorders.
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5.6 Supplementary figures

5.6.1 Mice did not discriminate unfamiliar two neutral conspecifics.
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Supplementary figure 1. No discrimination towards two neutral demonstrators. Schematic drawing of the task
setting, and time (in seconds) spent sniffing two demonstrators in neutral (grey bars) states displayed by observer
mice during the 6 minutes of the emotion recognition test, divided into three consecutive 2-minute time beans.
RM ANOVAs reveled no significant differences for the 0-2, 2-4, and 4-6 minutes test periods.

168



5.6.2 Corticosterone levels
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Supplementary figure 2. Corticosterone levels. (a) Blood corticosterone levels displayed by observer mice
immediately after being tested in the emotional recognition task with two neutral demonstrators (grey bar), one
neutral and one fear demonstrators (red bar), and one neutral and one relief demonstrators (yellow bar). Data are
expressed as fold changes compared to observers exposed to two neutral demonstrators (One-Way ANOVA:
F213=0.90, p=0.43). N=5/6 observers per group. (b) Blood corticosterone levels displayed by demonstrator mice
immediately after a period of 24-hour water deprivation (grey bar) or after a period of 1-hour ad libitum access to

water following 23-hour water deprivation (yellow bar). (T-test: df: 19; p=0.05). *p=0.05 versus water deprived

mice.
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Chapter 6

6.1 General discussion and conclusions

In the first part of my work, we demonstrated that genetic variations resulting in DAT
hypofunction produced several core behavioral alterations analogous to those reported in
patients with ADHD, but not schizophrenia. In order to get closer to the clinical setting, we
specifically addressed two different time points: adolescence and adulthood. Indeed,
adolescence is a critical transitional period of development from childhood to adulthood in
which neurochemical and hormonal changes occur. In particular, higher order cognitive
functions develop and mature during this time period. We provided a modified 5CSRTT to
investigate behavioral changes in adolescent mice. We demonstrated that even within the short
duration of mice adolescence, it is possible to evaluate different attentional control aspects
using our modified 5SCSRTT paradigm. Moreover, thanks to this new protocol we were able to
asses cognitive abnormalities in both adolescent and adult DAT +/- mice throughout the
lifespan. Furthermore, consistent with DAT +/- phenotypes, patients with ADHD may show,
starting from childhood, hyperactivity and cognitive impairments that persists during
adulthood. Taken together, these results could have a potential translational validity concerning
human studies, applicable to genetic and pharmacological studies in mouse models relevant to
cognitive abnormalities and psychiatric disorders.

In the second part of my studies, we started to characterize endocannabinoid system in COMT-
Val tg mice. We found that increased COMT activity enhanced aversive remote memories and
starting from this evidence, we proposed that the effect of COMT on dopamine metabolism in
this cognitive balance might help to understand in mechanistic terms the dysfunction of
cognitive and emotional functions in nervous system diseases like PTSD and SZ. In order to
investigate the role of endocannabinoid system in emotional processes we assessed a new
method to investigate emotion recognition in mice. In addition, our results could be important
for translational approaches between rodent and human social cognitive studies. In fact, thanks
to “emotion recognition task” we provided a proof about the role of astrocytic CB1 receptor.
This is the first step to find new pharmacological treatments to recover deficits in social
cognition in psychiatric disorders. In conclusion, our findings provided new methods to study
different aspects of cognition in mice, giving new translational approaches between rodents
and humans that could be used to better investigate biological mechanisms and neuronal

circuits implicate in psychiatric disorders.

170



Acknowledgements

First, I would like to express my gratitude to my supervisors Dr. Francesco Papaleo for the
continuous support of my PhD and research, for his knowledge, motivation and enthusiasm. |
also would like to thank also my supervisor Prof. Pietro Giusti, for his constant support and
constructive suggestions. A special thanks to Maddalena Mereu, especially for her cooperation
in the work described in the chapter 2. | would like to thank Federica Maltese, Giulia
Castellani, Marco Nigro, Francesca Scarsi, Gabriella Trigilio, Enrico Sozza, Francesca
Manago, Valentina Ferretti and Diego Scheggia for their support and friendship during the
period spent in Genova. To Stephen Skaper, Carla Argentini, Laura Facci and Massimo
Barbierato | want to thank for their advice and for the technical support during the period spent
in Giusti’s Lab. I would also like to thank Claudia Chiabrera, Giacomo Pruzzo, Alessandro
Parodi, Massimo Rizza and the Animal Facility Staff for excellent technical assistance. A
special thanks to Angela Galota for English editing.

171



