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Abstract 

Fracture mechanics plays an important role in the material science, structure design and industrial 

production due to the failure of materials and structures are paid high attention in human 

activities. 

For this reason, the fracture mechanics can be considered today one of the most important 

research fields in engineering. The attempts to predict the failure of a material are able to link 

different disciplines: in this dissertation, a very deep use of the statistical physics will be done in 

order to try to introduce the disorder of the medium into the breaking and to a give a new point of 

view to the fracture mechanics. 

In the following, we will introduce a new kind of model to evaluate the genesis of the crack: the 

statistical central force model. As we will see, this model tries to compute the genesis of the 

fracture in a medium by taking into account the presence of defects of the material that are the 

main cause of the differences between the critical theoretical strength of a material and the real 

one. This innovation introduced by this model which is difficult to find in other kinds of techniques 

existing today united to the fact that we try to predict the behaviour of a macro system by 

knowing exactly the statistical behaviour of the micro-components of the system itself (the 

trusses) like in complex systems happens, is the main innovation of the statistical central force 

model. The model consists of a truss structure in which each truss is representative of a little 

portion of the material. Since this model was already applied in static for a porous medium in 

literature, we will study it from a mathematical viewpoint and we will apply it to the study of the 

dynamic of a dry medium before (the applications could be for the study of the fracture in metals 

and composites with loads changing in time) and of a porous medium later (in order to study the 

fracking into soils and the fracture of the concrete). Further developments could bring us to 

develop the same method for the study of the spalling in the concrete because of the application 

of a thermal load. In the dissertation we will introduce the mathematical tools to understand this 

model and some simulation on generic media will be realized. 

 This dissertation consists basically of five chapters. 

In chapter 1 a brief description of the state of the art will be given: we will leave from the birth of 

the classical elastic fracture mechanics and we will shortly talk about the fracture mechanics in a 

plastic field. After this we will describe two important techniques used today for the evaluation of 

the crack: the XFem and the Peridynamics; the first one is a numerical technique allowing the FEM 

to take into account the possibility to create a breaking into the material. This is done, as we will 

see, by adding further degrees of freedom to the finite elements. In this way a single finite 

element will have the possibility to “open” itself and to simulate a discontinuous field of 

displacements, which is the main problem concerning with FEM in calculating the fracture. The 

second one is a theory that postulates that each medium can be divided in particles and that each 

particle interacts with its own neighbours within a given horizon. From which we get the word 

“peri”. By this assumption it is possible to get some integro-equations that can be defined on the 

surfaces of the tips and of the cracks as well. 
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In chapter 2 we will talk about the so called Fiber Bundle Model which is the basis of our statistical 

model. We will talk about the dry FBM that was already studied at the beginning of ’90s from a 

mathematical viewpoint : it consists of a bundle of fibers clamped at one edge and free to move to 

the other one. The model is one dimensional and it is probably one of the most naïve models to 

begin to study the fracture; however, despite to its simplicity, it contains an important tool: the 

possibility to take into account the defects of the medium by introducing the concept of variable 

thresholds in stress. As we will see, these thresholds will be picked up by a probability density 

function. Then we will apply the theory of the statistical ensembles to study one of the extensions 

of the FBM: the continuous fiber bundle model. This is necessary to have an idea of how the 

micro-components of our model, the trusses, behave in a truss structure subject to an external 

load. 

In chapter 3 we will report briefly the theory of the porous medium according to the mixture 

theories of De Boer. So an overview about the equations will be given and then we will discretize 

these equations according to the finite element technique. After this, we will briefly describe in 

which part of the algorithm the concept of imperfection/threshold in stress enters. We will do this 

for a dry medium and for a porous medium in dynamics. 

In chapter 4 we will report the numerical results. Some simulations in dynamics will be done both 

for a dry medium and for a porous medium. Furthermore we will introduce in the end a new 

damage law that will have a precise statistical meaning: it will be the average among all the 

possible realizations of the constitutive laws of our truss structure and for a big number of trusses, 

it will become the constitutive behaviour of our structure from which to get the damage law. And 

this result will take into account the disorder of the medium. 

In chapter 5 we will talk about a controversial argument: the Self Organized Criticality (SOC) that 

was sticked in previous papers to the statistical central model. We will try to understand what SOC 

is and if our system with our algorithm to compute the fracture gets the necessary and sufficient 

conditions to enter into the set of the SOC systems. 

At the end of our journey we will have hopefully done a first step into the description of a new 

numerical tool to evaluate the crack into a generic medium without needing an initial discontinuity 

to develop the crack itself. The next steps will be to validate this technique for existing materials 

and to compare it to other numerical tools like XFem or Peridynamics. After this, the future will be 

to extend the technique passing from trusses to 2D elements. 
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Chapter 1  
Getting started: a basic review about Fracture Mechanics and 

the state of the art 

 “ The Romans supposedly tested each 

new bridge by requiring the design 

engineer to stand underneath while 

chariots drove over it. Such a practice 

would not only provide an incentive for 

developing good designs, but would 

also result in the social equivalent of 

Darwinian natural selection, where the 

worst engineers were removed from 

the profession." 

 T.L. Anderson, Fracture Mechanic 

 

1.1 Fracture Mechanics 

1.1.1 Why Fracture Mechanics? 

How was this branch of the structural mechanics born? In the past, the strength of the materials 
was evaluated according two different approaches: a material was said to fracture if the maximum 
tensile stress or maximum dimension in a body exceeded a certain threshold value. So the 
strength was considered basically dependent on the material properties and the effect of the 
fracture on the strength of a material was not taken into account. The consequence of this last 
idea was to achieve some theoretical strength values which were very high; but actually the 
strength of the material was lower than the actual. Among the earliest brittle fracture accidents, 
we remember the Montrose Bridge in 1830 and the Tay Rail bridge in 1879. The costs brought by 
these accidents and the fail in term of human lives, brought people to think of strength fracture in 
materials. During the years 1930 and 1950 the failure of welded ships and commercial airplanes, 
made this situation more serious. Up to that Griffith and Irwin’s works led to a foundation of a 
new branch of the structural mechanics, known as fracture mechanics; and in the following years 
the studies in this branch growth till today, where a lot of numerical techniques can be used to 
compute the nucleation of the fracture. 
Failures have occurred for many reasons, including uncertainties in the loading or environment, 
defects in the materials, inadequacies in design, and deficiencies in construction or maintenance. 
Design against fracture has a technology of its own, and this is a very active area of current 
research. 
As we know, the strength of structural metals – particularly steel – can be increased to very high 
levels by manipulating the microstructure so as to inhibit dislocation motion. Unfortunately, this 
renders the material increasingly brittle, so that cracks can form and propagate catastrophically 
with very little warning. 
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An unfortunate number of engineering disasters are related directly to this phenomenon, 
and engineers involved in structural design must be aware of the procedures now available to 
safeguard against brittle fracture. 
In the following pages, we will deal with some theoretical concepts in the elastic and elasto-plastic 
fracture mechanics. 
 

1.1.2 The Energy-Balance approach 

 
When A.A. Griffith (1893–1963) began his pioneering studies of fracture in glass in the years just 
prior to 1920, he was aware of Inglis’ work in calculating the stress concentrations around elliptical 
holes, and naturally considered how it might be used in developing a fundamental approach to 
predicting fracture strengths. However, the Inglis solution poses a mathematical difficulty: in the 
limit of a perfectly sharp crack, the stresses approach infinity at the crack tip. This is obviously 
nonphysical (actually the material generally undergoes some local yielding to blunt the crack tip), 
and using such a result would predict that materials would have near zero strength: even for very 
small applied loads, the stresses near crack tips would become infinite, and the bonds there would 
rupture. Rather than focusing on the crack-tip stresses directly, Griffith employed an energy 
balance approach that has become one of the most famous developments in material science. 
The strain energy per unit volume of stressed material is 

𝑈∗ =
1

𝑉
 ∫𝑓 𝑑𝑥 = ∫

𝑓

𝐴

𝑑𝑥

𝐿
= ∫𝜎𝑑𝑥  

(1.1) 

If the material is linear, 𝜎 = 𝐸𝜀, then the strain energy per unit volume is 

𝑈∗ =
𝐸𝜀2

2
=
𝜎2

2𝐸
 

(1.2) 

When a crack has grown into a solid to a depth 𝑎, a region of material adjacent to the free 
surfaces is unloaded, and its strain energy released. Using the Inglis’ solution, Griffith was able 
to compute just how much energy this is. 
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Figure 1.1: development of the crack on a rectangular plate (Roylance, D,2001) 
 
A simple way of visualizing this energy release, illustrated in Fig. 1.1, is to regard two triangular 
regions near the crack flanks, of width 𝑎 and height 𝛽𝑎, as being completely unloaded, while the 
remaining material continues to feel the full stress 𝜎. The parameter 𝛽 can be selected so as to 
agree with the Inglis’ solution, and it turns out that for plane stress loading  𝛽 = 𝜋. The total strain 
energy 𝑈 released is then the strain energy per unit volume times the volume in both triangular 
regions: 

𝑈 =
−𝜎2

2𝐸
𝜋𝑎2 

(1.3) 

Here the dimension normal to the 𝑥 − 𝑦 plane is taken to be unity, so 𝑈 is the strain energy 
released per unit thickness of specimen. This strain energy is liberated by crack growth. But in 
forming the crack, bonds must be broken, and the requisite bond energy is in effect absorbed by 
the material. The surface energy S associated with a crack of length 𝑎 (and unit depth) is: 
 

𝑆 = 2𝛾𝑎 

(1.4) 

where 𝛾 is the surface energy (e.g., Joules/meter) and the factor 2 is needed since two free 
surfaces have been formed. As shown in Fig. 1.2, the total energy associated with the crack is then 
the sum of the (positive) energy absorbed to create the new surfaces, plus the (negative) strain 
energy liberated by allowing the regions near the crack flanks to become unloaded. 
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Figure 1.2: Plot of the curve (𝑆 + 𝑈)-a  
 

As the crack grows longer (𝑎 increases), the quadratic dependence of strain energy on 𝑎 
eventually dominates the surface energy, and beyond a critical crack length 𝑎𝑐 the system can 
lower its energy by letting the crack grow still longer. Up to the point where 𝑎 =  𝑎𝑐, the crack will 
grow only if the stress is increased. Beyond that point, crack growth is spontaneous and 
catastrophic. 
The value of the critical crack length can be found by setting the derivative of the total 
energy 𝑆 + 𝑈 to zero: 

𝜕(𝑆 + 𝑈)

𝜕𝑎
= 2𝛾 −

𝜎𝑓
2

𝐸
𝜋𝑎 

(1.5) 
 
Since fast fracture is imminent when this condition is satisfied, we write the stress as 𝜎𝑓. Solving, 

 

𝜎𝑓 = √
2𝐸𝛾

𝜋𝑎
 

(1.6) 
 
Griffith’s original work dealt with very brittle materials, specifically glass rods. When the material 
exhibits more ductility, consideration of the surface energy alone fails to provide an accurate 
model for fracture. This deficiency was later remedied, at least in part, independently by Irwin and 
Orowan. They suggested that in a ductile material a good deal – in fact the vast majority – of the 
released strain energy was absorbed not by creating new surfaces, but by energy dissipation due 
to plastic flow in the material near the crack tip. They suggested that catastrophic fracture occurs 
when the strain energy is released at a rate sufficient to satisfy the needs of all these energy 
“sinks,” and denoted this critical strain energy release rate by the parameter 𝐺𝑐; the Griffith 
equation can then be rewritten in the form: 
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𝜎𝑓 = √
𝐸𝐺𝑐
𝜋𝑎

 

(1.7) 
 
 
This expression describes, in a very succinct way, the interrelation between three important 
aspects of the fracture process: the material, as evidenced in the critical strain energy release rate 
𝐺𝑐; the stress level 𝜎𝑓; and the size 𝑎 of the flaw. In a design situation, one might choose a value of 

a based on the smallest crack that could be easily detected. Then for a given material with its 
associated value of 𝐺𝑐 ,the safe level of stress 𝜎𝑓 could be determined. The structure would then be 

sized so as to keep the working stress comfortably below this critical value. 
It is important to realize that the critical crack length is an absolute number, not depending on the 
size of the structure containing it. Each time the crack jumps ahead, say by a small increment 𝛿𝑎, 
an additional quantity of strain energy is released from the newly-unloaded material near the 
crack. Again using our simplistic picture of a triangular-shaped region that is at zero stress while 
the rest of the structure continues to feel the overall applied stress, it is easy to see in Fig. 1.3 that 
much more energy is released due to the jump at position 2 than at position 1. This is yet another 
reason why small things tend to be stronger: they simply aren’t large enough to contain a critical-
length crack. 

 
Figure 1.3: development of the crack on a rectangular plate showing two different position of the crack tip ((Roylance, 
D,2001) 
 

 

1.1.3 Compliance calibration 

 
 
A number of means are available by which the material property 𝐺𝑐 can be measured. One of 
these is known as compliance calibration, which employs the concept of compliance as a ratio of 
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deformation to applied load: 𝐶 = 𝛿/𝑃. The total strain energy 𝑈 can be written in terms of this 
compliance as: 
 

𝑈 =
1

2
𝑃𝛿 =

1

2
 𝐶𝑃2 

(1.8) 
 

 
 
Figure 1.4: Plot of the Curve critical length vs Compliance 
 

The compliance of a suitable specimen, for instance a cantilevered beam, could be measured 
experimentally as a function of the length 𝑎 of a crack that is grown into the specimen (see 
Fig. 1.4.) The strain energy release rate can then be determined by differentiating the curve of 
compliance versus length: 
 

𝐺 =
𝜕𝑈

𝜕𝑎
=
1

2
𝑃2

𝜕𝐶

𝜕𝑎
 

(1.9) 
 
The critical value of 𝐺, 𝐺𝑐, is then found by measuring the critical load 𝑃𝑐  needed to fracture a 
specimen containing a crack of length 𝑎𝑐, and using the slope of the compliance curve at this same 
value of 𝑎: 

𝐺𝑐 =
1

2
𝑃2

𝜕𝐶

𝜕𝑎
  

(1.10) 
 
to be calculated for 𝑎 = 𝑎𝑐 
 
 

1.1.4 The stress intensity approach 
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Figure 1.5: Mode |,||,||| representing the opening ways of a material 

 
While the energy-balance approach provides a great deal of insight to the fracture process, 
an alternative method that examines the stress state near the tip of a sharp crack directly has 
proven more useful in engineering practice. The literature treats three types of cracks, termed 
mode I, II, and III as illustrated in Fig.1.5 Mode I is a normal-opening mode and is the one 
we shall emphasize here, while modes II and III are shear sliding modes. 
The semi-inverse method developed by Westergaard shows the opening-mode stresses to be: 
 

𝜎𝑥 =
𝐾𝐼

√2𝜋𝑟
cos

𝜃

2
 (1 − sin

𝜃

2
sin

3𝜃

2
) +⋯ 

 

𝜎𝑦 =
𝐾𝐼

√2𝜋𝑟
cos

𝜃

2
 (1 + sin

𝜃

2
sin

3𝜃

2
) + ⋯ 

𝜏𝑥𝑦 =
𝐾𝐼

√2𝜋𝑟
cos

𝜃

2
 cos

3𝜃

2
sin

𝜃

2
 + ⋯ 

(1.11) 
 
For distances close to the crack tip (𝑟 ≤  0.1𝑎), the second and higher order terms indicated by 
dots may be neglected. At large distances from the crack tip, these relations cease to apply and 
the stresses approach their far-field values that would obtain were the crack not present. 
The 𝐾𝐼 in (1.11) is a very important parameter known as the stress intensity factor. The I subscript 
is used to denote the crack opening mode, but similar relations apply in modes II and III. The 
equations show three factors that taken together depict the stress state near the crack tip: the  

denominator factor  √2𝜋𝑟 shows the singular nature of the stress distribution; σ approaches 

infinity as the crack tip is approached, with a 𝑟−1/2 dependency. The angular dependence is 

separable as another factor; e.g. 𝑓𝑥 = cos 𝜃/2 ∙  (1 − 𝑠𝑖𝑛
𝜃

2
sin 3𝜃/2)… The factor 𝐾𝐼 contains the 

dependence on applied stress 𝜎∞, the crack length 𝑎, and the specimen geometry. The 𝐾𝐼 factor 
gives the overall intensity of the stress distribution, hence its name. 
For the specific case of a central crack of width 2𝑎 or an edge crack of length 2𝑎 in a large sheet, 

𝐾𝐼 = 𝜎∞√𝜋𝑎   and  𝐾𝐼 = 1.12𝜎∞ √𝜋𝑎 for an edge crack of length 𝑎 in the edge of a large sheet. 
(The factor π could obviously be cancelled with the 𝜋 in the denominator of Eq. 1.11, but is 
commonly retained for consistency with earlier work.) Expressions for  𝐾𝐼 for some additional 
geometries are given in Table 1. The literature contains expressions for 𝐾 for a large number of 
crack and loading geometries, and both numerical and experimental procedures exist for 
determining the stress intensity factor is specific actual geometries. 
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Type of crack Stress Intensity factor 𝑲𝑰 

Center crack, length 2𝑎, in an infinite plate 𝜎∞√𝜋𝑎 
Edge crack, length 𝑎, in a semi-infinite plate 1.12 𝜎∞√𝜋𝑎 
Central penny shaped cracked, radius 𝑎, in an 
infinite body  

2 𝜎∞√
𝜋

𝑎
 

Central crack, length 2𝑎, in a plate of width 𝑊 𝜎∞√𝑊 tan (𝜋𝑎/𝑊)  

2 symmetrical edge cracks, each length 𝑎, in a 
plate of total width 𝑊 𝜎∞√𝑊 tan (

𝜋𝑎

𝑊
) + 0.1 sin(

2𝜋𝑎

𝑊
)  

 

Table 1: Values of the stress intensity factor computed for different geometries 

These stress intensity factors are used in design and analysis by arguing that the material can 
withstand crack tip stresses up to a critical value of stress intensity, termed 𝐾𝐼𝑐, beyond which the 
crack propagates rapidly. This critical stress intensity factor is then a measure of material 
toughness. The failure stress 𝜎𝑓 is then related to the crack length a and the fracture toughness by 

 

𝜎𝑓 =
𝐾𝐼𝐶

𝛼√𝜋𝑎
 

(1.12) 
 
where 𝛼 is a geometrical parameter equal to 1 for edge cracks and generally on the order of unity 
for other situations. Expressions for 𝛼 are tabulated for a wide variety of specimen and crack 
geometries, and specialty finite element methods are available to compute it for new situations. 
The stress intensity and energy viewpoints are interrelated, as can be seen by comparing Eqs. 1.1 
and 1.12 (with 𝛼 = 1): 
 
 

𝜎𝑓 = √
𝐸𝐺𝑐
𝜋𝑎

=
𝐾𝐼𝐶

√𝜋𝑎
⟶ 𝐾𝐼𝐶

2 = 𝐸𝐺𝑐 

(1.13) 
 
This relation applies in plane stress; it is slightly different in plane strain: 
 

𝐾𝐼𝐶
2 = 𝐸𝐺𝑐(1 − 𝜐2) 

(1.14) 
 
For metals with 𝜈 =  0.3, (1 − 𝜈2)  =  0.91. This is not a big change; however, the numerical 
values of 𝐺𝑐 or 𝐾𝐼𝑐 are very different in plane stress or plane strain situations, as will be described 
below. 
Typical values of 𝐺𝐼𝑐 and 𝐾𝐼𝑐 for various materials are listed in Table 2, and it is seen that they vary 
over a very wide range from material to material. Some polymers can be very tough, especially 
when rated on a per-pound bases, but steel alloys are hard to beat in terms of absolute resistance 
to crack propagation. 
 
 



 
25 

 

MATERIAL 𝑮𝑰𝑪 (𝑲𝑱 𝒎
−𝟐) 𝑲𝑰𝑪 (𝑴𝑵 𝒎𝟐) 𝑬(𝑮𝑷𝒂) 

Aluminium alloy 107 150 210 

wood 0.12 0.5 2.1 

glass 0.007 0.7 70 

rubber 13 -------------------- 0.001 

PMMA 0.5 1.1 2.5 

Polystirene 0.4 1.1 3 

Steel-mild 12 50 210 

 
Table 2: Critical values of 𝐺𝐼 , 𝐾𝐼 , 𝐸 for different materials 
 

The toughness, or resistance to crack growth, of a material is governed by the energy absorbed as 
the crack moves forward. In an extremely brittle material such as window glass, this energy is 
primarily just that of rupturing the chemical bonds along the crack plane. But as already 
mentioned, in tougher materials bond rupture plays a relatively small role in resisting crack 
growth, with by far the largest part of the fracture energy being associated with plastic flow near 
the crack tip. A “plastic zone” is present near the crack tip within which the stresses as predicted 
by Eqn. 4 would be above the material’s yield stress 𝜎𝑌 . Since the stress cannot rise above 𝜎𝑌 , the 
stress in this zone is 𝜎𝑌 rather than that given by Eqn. 1.11. To a first approximation, the distance 
𝑟𝑝 this zone extends along the x-axis can be found by using Eqn. 1.11 with θ = 0 to find the distance 

at which the crack tip stress reduces to 𝜎𝑌 : 
 

𝜎𝑦=𝜎𝑌 =
𝐾𝐼

√2𝜋𝑟𝑝
 

(1.15) 
 
 

𝑟𝑝 =
𝐾𝐼
2

2𝜋𝜎𝑌
2 

(1.16) 
 
 
This relation is illustrated in Fig. 1.6.  

 
Figure 1.6: Stress limited by yield within zone 𝑟𝑝(Roylance, D,2001) 
 
As the stress intensity in increased either by raising the imposed stress or by crack lengthening, 
the plastic zone size will increase as well. But the extent of plastic flow is ultimately limited by the  
material’s molecular or microstructural mobility, and the zone can become only so large. When 
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the zone can grow no larger, the crack can no longer be constrained and unstable propagation 
ensues. The value of 𝐾𝐼 at which this occurs can then be considered a materials property, named 
𝐾𝐼𝑐. 
In order for the measured value of 𝐾𝐼𝑐 to be valid, the plastic zone size should not be so large as to 
interact with the specimen’s free boundaries or to destroy the basic nature of the singular stress 
distribution. The ASTM specification for fracture toughness testing specifies the specimen 
geometry to insure that the specimen is large compared to the crack length and the plastic zone 
size (see Fig. 1.7): 
 

𝑎, 𝑏, (𝑊 − 𝑎) ≥ 2.5 (
𝐾𝐼
𝜎𝑌
)
2

 

(1.17) 

 
Figure 1.7: Definition of the previous quantities (Royalance, 2001) 

 
A great deal of attention has been paid to the important case in which enough ductility exists to 
make it impossible to satisfy the above criteria. In these cases the stress intensity view must be 
abandoned and alternative techniques such as the J-integral or the crack tip opening displacement 
method used instead. 
 

1.1.5 J Integral 

 
Previously we analysed problems in which the plastic zone was very small if compared with the 
dimensions of the specimen dimensions. 
Now we will present a technique to analyse situations in which there can be a large scale yielding 
and we will determine expressions for the stress components inside the plastic zone; let’s begin 
with the J integral; The J integral is a line integral (path-independent) around the crack tip. It has 
enormous significance in elastic-plastic fracture mechanics. (J. R. Rice, Journal of Applied 
Mechanichs, 1968). 
Consider the path around the crack tip shown below: 
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Figure 1.8: development of the crack on a rectangular plate 
 

In the following, we will use the variables: 

𝑎= crack lenghth  

𝑆= a curve that links the lower and the upper surface 

𝑑Γ⃗⃗ ⃗⃗ = an infinitesimal arc of this curve 

�⃗� = traction vector defined in relation to an outward normal unit vector �⃗� = �⃗� ∙ 𝜎  

�⃗� = vector of the displacements 

So, now let us consider a strain constant experiment neglecting deformation induced blunting of 

the crack tip. 

The total mechanical potential energy of the crack body is  

𝑢𝑀 = 𝑢𝑒 + 𝑢𝑎𝑝𝑝 

(1.18) 

where the first term is the stored strain potential energy while the second one is the potential 

energy of the loads applied; so if we call w the strain energy density, and we know that 

𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝜀𝑖𝑗
 

(1.19) 

𝑑𝐴 is an element of cross section 𝐴 within 𝑆. 

Let’s take now the derivative of the mechanical energy with respect the crack length 
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−
𝑑𝑢𝑀
𝑑𝑎

= ∫(𝑤 𝑑𝑦 − �⃗� ∙
𝜕𝑢

𝜕𝑥
 )𝑑Γ⃗⃗ ⃗⃗ 

𝑆

≡ 𝐽 

(1.20) 

𝐽 represents the rate of change of net potential energy with respect to crack advance (per unit 
thickness of crack front) for a non-linear elastic solid. 𝐽 also can be thought of as the energy 
flow into the crack tip. Thus, 𝐽 is a measure of the singularity strength at the crack tip for the case 
of elastic-plastic material response. 
For the special case of a linear elastic solid, it’s possible to show that 
 

𝐽 = 𝐺 = −
𝑑(𝑃𝐸)

𝑑𝑎
= −

𝑑𝑈𝑀
𝑑𝑎

=
𝐾2

𝐸
(1 − 𝜐2) 

(1.21) 
 
This relationship can be used to infer an equivalent 𝐾𝐼𝑐 value from 𝐽𝐼𝑐 measurements in high 
toughness, ductile solids in which valid 𝐾𝐼𝑐 testing will require unreasonably large test specimens. 
This integral is independent on the path we choose around the tip. In fact it’s possible to show 
that if we chose two different paths 

 
 
 
Figure 1.9: development of the crack on a rectangular plate, considering the elastic and plastic regions 

 
The value of 𝐽 along Γ2 must be the same along Γ1: 
Hutchinson, Rice and Rosengren subsequently showed that J characterizes the singular stress and 
strain fields at the tip of a crack in nonlinear (power law hardening) elastic-plastic materials where 
the size of the plastic zone is small compared with the crack length. Hutchinson used a 
material constitutive law of the form suggested by Ramberg and Osgood 

https://en.wikipedia.org/wiki/Mathematical_singularity
https://en.wikipedia.org/wiki/Constitutive_law
https://en.wikipedia.org/w/index.php?title=Ramberg-Osgood_plasticity&action=edit&redlink=1
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𝜀

𝜀𝑦
=

𝜎

𝜎𝑦
+ 𝛼 (

𝜎

𝜎𝑦
)

𝑛

 

(1.22) 

where σ is the stress in uniaxial tension, σy is a yield stress, ε is the strain, and εy = σy/E is the 
corresponding yield strain. The quantity E is the elastic Young's modulus of the material. The 
model is parametrized by α, a dimensionless constant characteristic of the material, and n, the 
coefficient of work hardening. This model is applicable only to situations where the stress 
increases monotonically, the stress components remain approximately in the same ratios as 
loading progresses (proportional loading), and there is no unloading. 

If a far-field tensile stress σfar is applied to the body shown in the adjacent figure, the J-integral 
around the path Γ1 (chosen to be completely inside the elastic zone) is given by 

𝐽Γ1 = 𝜋(𝜎𝑓𝑎𝑟)
2 

(1.23) 
Since the total integral around the crack vanishes and the contributions along the surface of the 
crack are zero, we have 
 
 

𝐽Γ1 = −𝐽Γ2 

(1.24) 

If the path Γ2 is chosen such that it is inside the fully plastic domain, Hutchinson showed that 

𝐽Γ2 = −𝛼𝐾𝑛+1𝑟(𝑛+1)(𝑠−2)+1𝐼 

(1.25) 

where K is a stress amplitude, (r,θ) is a polar coordinate system with origin at the crack tip, s is a 

constant determined from an asymptotic expansion of the stress field around the crack, and I is a 

dimensionless integral. The relation between the J-integrals around Γ1 and Γ2 leads to the 

constraint 

𝑠 =
2𝑛 + 1

𝑛 + 1
 

(1.26) 

and an expression for K in terms of the far-field stress 

𝐾 = (
𝛽𝜋

𝛼𝐼
)
1/(𝑛+1)

(𝜎𝑓𝑎𝑟)
2/(𝑛+2) 

(1.27) 

where 𝛽 = 1 for plane stress and 𝛽 = 1 − ν2 for plane strain (ν is the Poisson's ratio). 

The asymptotic expansion of the stress field and the above ideas can be used to determine the 
stress and strain fields in terms of the J-integral: 

https://en.wikipedia.org/wiki/Cauchy_stress_tensor
https://en.wikipedia.org/wiki/Yield_(engineering)
https://en.wikipedia.org/wiki/Infinitesimal_strain_theory
https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Work_hardening
https://en.wikipedia.org/wiki/Flow_plasticity_theory
https://en.wikipedia.org/wiki/Polar_coordinate_system
https://en.wikipedia.org/wiki/Plane_stress
https://en.wikipedia.org/wiki/Plane_strain
https://en.wikipedia.org/wiki/Poisson%27s_ratio
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𝜎𝑖𝑗 = 𝜎𝑌 (
𝐸𝐽

𝑟𝛼𝜎𝑌
2𝐼
)

1/(𝑛+1)

𝜎𝑖𝑗 ̃  (𝑛, 𝜃) 

(1.28) 

𝜀𝑖𝑗 =
𝛼𝜀𝑌
𝐸

(
𝐸𝐽

𝑟𝛼𝜎𝑌
2𝐼
)

𝑛/(𝑛+1)

𝜀𝑖𝑗  ̃ (𝑛, 𝜃) 

(1.29) 

where 𝜎𝑖𝑗 ̃  (𝑛, 𝜃) and  𝜀𝑖𝑗  ̃ (𝑛, 𝜃) are dimensionless functions. 

These expressions indicate that J can be interpreted as a plastic analog to the stress intensity 

factor (K) that is used in linear elastic fracture mechanics, i.e., we can use a criterion such 

as       𝐽 > 𝐽𝐼𝑐 as a crack growth criterion. 

Obviously these are the theoretical fundaments of the elasticity and plasticity fracture mechanics.  

However when we begin to analyse more complicated geometries, the calculations begin quite 

complicated. For this reason, in the years different numerical techniques have been developed in 

order to obtain numerical results from quite complicated objects. 

The FEM allowed us to achieve this purpose and today it is fully used by companies and for 

research. However the FEM is not able to simulate a discontinuous field; and this happens in 

fracture mechanics when we observe a crack that begins to propagate. So in order to overcome 

the limitations of FEM and in order to have an instrument that allow us to follow the nucleation or 

the development of the fracture in a material, point by point not to pass through the calculation of 

the fracture mechanics (that can become very complicated for complicated surfaces), different 

numerical techniques were developed: we will analyse two of them: XFEM and Peridynamics. 

 

1.2 XFEM 

1.2.1 XFEM: Generalities 

We will give an overview about the method XFEM (extended Finite Element Method). This new 

method is already implemented in some commercial software, for example ANSYS. For this reason 

our description will be based in introducing few concepts about it from a mathematical viewpoint 

and then we will perform a little numerical simulation in ANSYS in order to understand the basic 

steps.  

The XFEM is a numerical technique used to model the cracks (for this reason it is used very much 

in Fracture Mechanics) and other kind of discontinuities. What’s on the basis of this method? The 

main idea is to enrich the degrees of freedom in some regions of the model with additional 

displacements functions with respect the classical method (FEM). This is necessary in order to 

simulate the jump/discontinuity in displacements at the interface of the crack. In fact, given a 

crack, when this is going  to open because of the load conditions on the structure, we will always 

https://en.wikipedia.org/wiki/Stress_intensity_factor
https://en.wikipedia.org/wiki/Stress_intensity_factor
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notice a jump in displacements. So, In XFEM, it is possible to simulate this particular jump by 

introducing these additional degree of freedom. 

Among the principal features of this method, we remind the possibility to model the cracks 

without explicitly meshing the crack surfaces. In other codes, able to simulate the nucleation of 

the cracks in fact, it is necessary to introduce some parameters in the simulation that determine a 

particular mesh, necessary for the calculation of some quantities like the “stress intensity factor” 

or the J integral (that we recover from the classical fracture mechanics). 

Another feature is that by this method it is possible a random growing of the crack inside the 

mesh. It is not necessary to know a priori the path of propagation of the crack as for example we 

do when we study phenomenon like delamination: in this case in fact it is important to define an 

interface of separation between two laminas of a composite or between two layers of materials: 

we already know that the separation, if it will happen, will develop on the interface we defined a 

priori. By XFEM we do not have the necessity to know this information; the direction of 

propagation of the crack is calculated into the code. 

Furthermore it is not necessary to remesh or to morphing the system for each substep in which 

the crack grows as happens in other codes that use different numerical techniques. 

 

1.2.2 Mathematical formalism 

We will introduce now a brief mathematical formalism in order to describe better this method 

The generalized FEM is a Partition Unity Method with the partition of unity provided by Lagrangian 

FE shape functions. The same method is also known as eXtended FEM. 

Let’s begin with some definitions; let’s consider a body B, and let’s perform a mesh over it in which 

we will find different nodes. 

 

 

Figure 1.10: Open Cover associated with a Finite Element Mesh (Ahmed, A., 2009) 
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A “cloud” or a “patch” 𝜔𝛼 is given by the union of Finite Elements sharing a particular node 𝛼 of 

the Finite Element mesh covering the domain of interest, that we call Ω. 

The set 𝜏𝑁 = {𝜔𝛼}𝛼=1
𝑁  in a Finite Element Mesh with N nodes is an open cover of Ω, i.e: 

Ω = 𝑈𝛼=1
𝑁 𝜔𝛼 

(1.30) 

Now, we know that the Lagrangian shape functions 𝜑𝛼 with 𝛼 = 1, . . , 𝑁 must satisfy the Partion of 

Unity: 

 

∑𝜑𝛼(𝑥 ) = 1

𝑁

𝛼=1

             ∀ 𝑥 𝜖Ω 

(1.31) 

and this must be true for each 𝑥  into the domain Ω. 

This propriety  can be better understood by the following figure: 

 

 

Figure 1.11: One dimensional FE PoU (above) and 2D FE PoU functions𝜑𝛼 (below) (Ahmed, A., 2009) 

 

that show basically that our shape functions are at compact support.  
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Now, let’s introduce the Cloud Space Approximation: to each cloud of our system 𝜔𝛼, we associate 

a 𝐷𝐿(𝛼) dimensional space Θ𝛼of functions which are defined on 𝜔𝛼 

Θ𝛼 = 𝑠𝑝𝑎𝑛{𝐿𝛼𝑗 , 1 < 𝑗 < 𝐷𝐿 , 𝐿𝛼𝑗 ∈ 𝐻} 

(1.32) 

where 𝑗 are the degree of freedom and 𝐻 the usual space of the shape functions of the Finite 

Element Method. The basis functions 𝐿𝛼𝑗 are known as enrichment functions.  

For a precise definition of the spaces 𝐻 and of the topology of the problem, we quote Belytschko 

et al., 2014. 

A cloud approximation   𝑢𝛼
ℎ𝑝⃗⃗ ⃗⃗ ⃗⃗   (𝑥 ) ∈ Θ𝛼 (which is the restriction to Θ𝛼 of the function �⃗�  defined on 

Ω) is: 

𝑢𝛼
ℎ𝑝⃗⃗ ⃗⃗ ⃗⃗   (𝑥 ) =∑𝑢𝛼𝑗⃗⃗ ⃗⃗ ⃗⃗  𝐿𝛼𝑗

𝐷𝐿

𝑗=1

 

(1.33) 

Now we are ready to define the GFEM space: the trial space for GFEM, is given by: 

𝑋(Ω) = 𝑠𝑝𝑎𝑛{𝜑𝛼𝑗 = 𝜑𝛼𝐿𝛼𝑗 , 1 < 𝑗 < 𝐷𝐿 , 1 < 𝛼 < 𝑁} 

(1.34) 

Now the function 

𝜑𝛼𝑗(𝑥 ) = 𝜑𝛼(𝑥 )𝐿𝛼𝑗(𝑥 ) 

(1.35) 

where 𝛼 is a node of the model, is called GFEM shape function. 

A GFEM approximation is given by 

�⃗� ℎ𝑝(𝑥 ) = ∑∑𝑢𝛼𝑗⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐿

𝑗=1

𝑁

𝛼=1

𝜑𝛼(𝑥 )𝐿𝛼𝑗(𝑥 ) = ∑𝜑𝛼(𝑥 )𝑢𝛼
ℎ𝑝⃗⃗ ⃗⃗ ⃗⃗   (𝑥 )

𝑁

𝛼=1

 

(1.36) 

So, from a physical viewpoint, it’s worth to notice that the displacement field over a given cloud 

𝜔𝛼 is obtained by using the classical shape functions 𝜑𝛼(𝑥 ) already defined, multiplied by these 

enrichment functions 𝐿𝛼𝑗(𝑥 ); The product between the 𝐿𝛼𝑗(𝑥 ) and the original degree of freedom 

gives us some new degrees of freedom 𝑢𝛼
ℎ𝑝⃗⃗ ⃗⃗ ⃗⃗   (𝑥 ) that now will be able to be used in order to take 

into account the jump that we could meet into the solution; the possibility to simulate 

discontinuities in the solution depends on the particular kind of functions 𝐿𝛼𝑗(𝑥 ) that we chose. 
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1.2.3 Simulation in ANSYS: Generalities 

 

As we told first the XFEM is already implemented in some trade codes, for example ANSYS. So let’s 

give a numerical example to better understand how this technique works. The technique used in 

ANSYS is called Phantom Node Method: by this we can con consider the jump in displacements 

through the surfaces of the cracks. Here the crack terminates on the face or on the corner of a 

finite element as we see in the figure: 

 

Figure 1.12:  Plate considered in the simulation containing the initial crack 

 

This must be valid when we define the crack: as we notice from the figure, the extension of the 

crack must be introduced for the crack to cover the elements in their length.  If we want a crack 

defined for three elements, a mesh has to be chosen in order to adapte the lenghth of the crack to 

mesh itself. 

Now, if we decide to use the enrichment functions in the region of the crack, we will have this kind 

of situation: 
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Figure 1.13: Phantom nodes in the mesh of the model 

 
By the Phantom Node Method, some additional degrees of freedom are overlapped to the existing 

nodes, defined in the mesh. As we notice from the figure, in black the traditional degrees of 

freedom are represented and in white are represented the phantom nodes. The consequence of 

this introduction leads us to divide in two parts the original element. In dash we notice the 

interface of the crack and all that we must do is to simulate the jump of the displacements at the 

interface of the crack. So the code introduces the phantom nodes and this results into the split of 

the element in two different phantom elements. In this way, from a physical viewpoint, we will 

have a field of displacements above and another field of displacements below and generally these 

two displacement fields can be different in order to simulate the discontinuity. 

Thanks to the phantom nodes superimposed, the displacements of the nodes of our elements can 

be rewritten, using the theory, like 

�⃗� (𝑥, 𝑡) = 𝑢𝑙
1⃗⃗⃗⃗ (𝑡)𝑁𝑙(𝑥)𝐻(−𝑓(𝑥)) + 𝑢𝑙

2⃗⃗⃗⃗ (𝑡)𝑁𝑙(𝑥)𝐻(𝑓(𝑥))   (1) 

Here, 

𝑢𝑙
1⃗⃗⃗⃗  is the displacement vector in the subelement 1, i.e. in the first phantom element. 

𝑢𝑙
2⃗⃗⃗⃗  is the displacement vector in the subelement 2, i.e. in the second phantom element. 

𝑓(𝑥) defines the surface of the crack; in the case 1D, in our example, the crack is obviously a line; 

in 2D instead, this will be a surface. The equation  

𝑓(𝑥) = 0 

(1.37) 

defines the surface of the crack. 
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Then we have the Heaviside function that represent 𝐿𝛼𝑗(𝑥 ) . We decide to introduce it to define 

the discontinuities: as we know, in fact 

𝐻(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 ≤ 0

 

(1.38) 

 

In this figure we can observe what the introduction of the Heaviside functions implicate: 

 

Figure 1.14: definition of the crack region 

 

In dashed we notice the surface of the initial crack  

𝑓(𝑥) = 0 

So, if we move above,  

𝑓(𝑥) > 0 

and so the Heaviside function 𝐻(−𝑓(𝑥)) = 0. So the first term in (1) will be equal to 0. Only the 

contribute of the subelement 2 will remain, and this will have its own field of displacement. 

Instead, if we move below, the second term in (1)  will be equal to 0 and the first term will give its 

displacements to our finite element. So by this way we have two different displacements field that 

can be discontinuous above and below the crack. This means basically that the main trick in 

enriching the degrees of freedom of our element, i.e in the equation 

�⃗� ℎ𝑝(𝑥 ) = ∑∑𝑢𝛼𝑗⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐿

𝑗=1

𝑁

𝛼=1

𝜑𝛼(𝑥 )𝐿𝛼𝑗(𝑥 ) = ∑𝜑𝛼(𝑥 )𝑢𝛼
ℎ𝑝⃗⃗ ⃗⃗ ⃗⃗   (𝑥 )

𝑁

𝛼=1

 

(1.39) 
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is basically to allow the element to split in two different subelements in order to describe the 

crack. From a math viewpoint this is a consequence of the introduction of the enrichment 

functions: the element has more degree of freedom and so it is able to split itself. 

 

During the simulation, the study of propagation of the crack is assumed to be quasi static; so the 

inertial effects are negligible.  

The main steps to do this simulation are the following ones; 

1) To create the mesh by the classical FEM. So we must give position, inclination and 

geometry of the crack/s inside the mesh. 

2) To define the crack growth criterion of the crack; 

 obviously if we consider a structure characterized by a certain external load, the crack can or 

cannot propagate according to the stresses reached locally around the crack. So this phenomenon 

is considered into the code by introducing such criterion. This criterion consists in calculating a 

main tension in the circumferential direction; If this stress is bigger than a fixed value, the crack 

propagates. 

If necessary, we must define the decay of stresses in the new crack segments created. In 

fact if the original crack grows, new crack segments are created and each of them will 

recover the length of one or different elements. These new interfaces created (the new 

crack segments) are modelled by a cohesive law. This means that for them we will have a 

certain degree of strength to the separation. So, we will see that if we choose a certain 

criterion, it is necessary to introduce this  decay law of stresses to simulate the values of 

the stresses when the main crack opens. 

3) For each substep, the solver will evaluate the crack growth criterion, and so it will decide if 

the crack must grow or not. 

4) Perform the crack growth calculation 

The initial position of the crack is chosen by the so called level set method. In order to define the 

position and the original inclination of the crack, we must give the distances from the plane of the 

crack to the nodes 
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Figure 1.15: definition of the crack plane inside one element 

 

In this figure we notice the crack inside the element and then the four distances 𝜑1𝜑2𝜑3𝜑4 

between the crack line and the nodes of the element. By playing with this distances we can decide 

to introduce the crack around an oblique direction as well. 

So we will know a priori what is the distance between the crack and the node. For this reason by 

playing with these distances, we can insert the crack into the element as we wish. This is done in 

the code by some commands. 

 

1.2.4 Criterion of crack 

Now let’s specify the criterion of growth of the crack. When the critical value of this criterion is 

reached, the crack propagates into the elements. The crack segments are such that they fully cut 

elements ahead of the crack. This means that for each progress, the crack covers the dimension of 

an element. Furthermore the distances fi cannot be 0. This means that a crack cannot cut the 

mesh passing through the nodes, but it must cut the element. The crack propagates at the rate of 

only one element at time. For this reason we must use a good number of substeps. 

In order to define the criterion we must the material and the type of criterion: 

1) Maximum stress criterion: it is based on evaluating the maximum value of the 

circumferential 𝜎𝜃𝜃 stress in some sampling points, indicated in the figure when sweeping 

around the crack tip. We can specify the positions at which it will be evaluated, by 

specifying both the distance ahead and of the crack tip and the angles to be scanned, as we 

can see by the figure. Where the stress is maximum, a new crack will be opened. 

2) Circumferential stress criterion based on 𝜎𝑟𝜃 = 0; This criterion looks for the direction in 

this circumferential region in which this cut stress is 0. Here the cirumferential stress will 

be maximum and the crack will propagate in traction according to the mode 1. 



 
39 

 

 
 

Figure 1.16: development of the crack on a rectangular plate 

 

 

 

RESULTS 

So let’s apply these concepts to a test case in ANSYS, in order to understand how the XFEM works. 

We will consider basically a plate characterized by the loads in the figure: 

 

Figure 1.17: development of the crack on a rectangular plate 

 

In this structure we have an initial crack and the loads applied are such that we have a pure shear 

stress. It is interesting to study also the initial value of the propagation of the crack and to 

compare analytically with results that we already know. If we model the structure with plane 

strain elements we have  
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Figure 1.18: Mesh of the plate in ANSYS 

 

We expect in this case the crack propagates in the lower zone; so we should try to define the 

enrichment of the degree of freedom of the elements in the part below. This could be a limit for 

XFEM, i.e. to know in which part of the system the crack will grow. 

The next step is to introduce the crack into the element we are interested: 

 

Figure 1.19: Numeration of the elements of the mesh 

 

By inserting the crack into the an element on the left and on the middle, we have 
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Figure 1.20: inserting the crack inside one element 

 

As we notice, the software has divided in 2 parts the elements in order to create the 2 phantom 

element to study propagation of crack. In this example the example extends till the half of the 

structure but this is only a picture to understand how the software creates it. 

The results is: 

 

Figure 1.21: development of the crack on a rectangular plate 
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Figure 1.22: development of the crack on a rectangular plate 

 

In which we notice that crack growths in the region below. So we do not need to know the 

direction of propagation of the crack because this is computed automatically. If we zoom inside 

the elements, we can notice what happens into the elements. 

 

Figure 1.23: zoom inside the elements 

 

As we notice, the initial crack is represented in white on the above part of the figure. Then the 

software has calculated the evolution and we can observe the new crack segments that will have 

some values of fi, that are the 4 distances from the nodes of an element that will be computed 

automatically. 

We applied this method to compute the development of the crack into the system if a pre existing 

crack was already in the structure. Anyway some recent developments in this field have allowed to 
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calculate the nucleation of the fracture itself (Ernst). We remind to the bibliography to have these 

concepts clearer. 

 

 

1.3 Peridynamics 

1.3.1 Peridynamics: Basic concepts 

 

In the next pages we will deal with an alternative technique developed in the last few years, which 

is called Peridynamics. We have decided to talk about this theory because there are some 

important points in common with the statistic theory we will develop in the next chapters. 

The Peridynamics theory of Mechanics attempts to unite the mathematical modelling of 

continuous media, cracks and particles into a single framework. It does this by replacing the partial 

differential equations of the classic theory of mechanics of solid with integro-differential 

equations. This is a very important point for Peridynamics: in fact the derivatives appearing in 

these equations are not defined on the surfaces of the tips and their surfaces. These equations are 

based on a model of internal forces within a body in which material points interact with each 

other directly over finite distances. To these points we associate some cubic cells that can interact 

one another. In the following pages we will describe briefly the bond based theory taking into 

account the various texts and articles in the bibliography. In doing this we will consider the 

introduction of Matteo Garelli’s thesis which offers a very clear path to the understanding of the 

theory. 

In Peridynamics, the particles represented in cubic cells, suffer an acceleration: in particular it is 

possible to show (Peridynamics: Theory and its applications, Madenci) that the acceleration in the 

direction 𝑥 at the time 𝑡 is  

𝜌�⃗� ̈(𝑥 , 𝑡) = ∫ 𝑓 (�⃗� (𝑥′⃗⃗  ⃗, 𝑡) − �⃗� (𝑥 , 𝑡), 𝑥′⃗⃗  ⃗ − 𝑥 )𝑑𝑉𝑥′ + �⃗� (𝑥 , 𝑡)

𝐻𝑥

 

(1.37) 

where  

𝐻𝑥 is the set of points close to 𝑥 

�⃗�  is the displacement 

�⃗� (𝑥 , 𝑡) the vector of the external forces 

𝜌  the density of the body 
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𝑓  the pairwise function whose value (per unit volume to the power of 2) is equal to the force that 

the particle 𝑥’ applies on the particle 𝑥. Obviously, it is possible to describe the relative position 

among the two particles in the reference configuration, by considering the Eulerian viewpoint: this 

is given by  𝜉 . So, indicating with 𝑥′⃗⃗⃗   and 𝑥  the positions of the two particles with respect an origin, 

their relative position is 

 

𝜉 = 𝑥′⃗⃗⃗  − 𝑥  

(1.38) 

while we consider 

𝜂 = 𝑢′⃗⃗  ⃗ − �⃗�  

(1.39) 

as regards the relative displacements. 

Now, a very important point in peridynamics is about the description of the physical interaction 

between two particles: we call this interaction bond and this, in a first kind of approach, can be 

described by an elastic spring. This concept is one of the main differences between the 

peridynamics and the classical theory: in fact the classical theory is based on the so called contact 

forces in the sense that a particle is able to act only with the particles with whom is in contact; in 

peridynamics instead a particle can interact with them but also with particles that are not in 

contact with it. However the bonds have a particular length that must be chosen a priori: a bond 

associated to a given particle cannot be bigger than a given length which is called horizon of that 

particle.  

It is possible to show that the equations of the linear momentum and the angular momentum are 

respected because the forces of the bonds are equal and changed of sign and directed along a 

vector. This vector links in the actual position, two interacting particles. 

So, if we indicate the horizon with 𝛿, we have 

|𝜉 | > 𝛿   means that 𝑓 (𝜂 , 𝜉 ) = 0  ∀ 𝜂 , 𝜉  

So this rule means that the particle which is located in 𝑥  is not able to have interactions with 

particles that are beyond the horizon. 

By analysing the equations of the linear and angular momentum (Peridynamics and its 

applications), we get two important rules that the pairwise function must satisfy: 

𝑓 (−𝜂 , −𝜉 ) = −𝑓 (𝜂 , 𝜉 )  ∀ 𝜂 , 𝜉   for the conservation of the linear momentum 

𝜉 + 𝜂  𝑥 𝑓 (−𝜂 , −𝜉 ) = 0  ∀ 𝜂 , 𝜉  for the conservation of the angular momentum 

We resume all the concepts introduced in the following picture: 
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Figure 1.12: the concept of horizon in Perydynamics 

 

We understand now the meaning of the word Peridynamics: it comes from the Greek peri which 

means “horizon”. 

 

 

1.3.2 The elastic potential and fracture in Perydynamics 

Now, this as regards the basic concepts; now we will introduce a potential that will be linked to 

the force. 

A material is called microelastic  if the pairwise force function can be derived from a scaling 

micropotential 𝑤: 

𝑓 (𝜂 , 𝜉 ) =
𝜕𝑤

𝜕𝜂 
(𝜂 , 𝜉 )                    ∀𝜂 , 𝜉  

(1.40) 
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The micropotential is the energy of each single bond, and it is dimensionally an energy per square 

volume unit. The energy per unit volume is then given by the summation of all the energies of the 

bonds into the horizon 𝐻𝑥: 

𝑊 = 1/2 ∫ 𝑤 (�⃗� , �⃗� ) 𝑑𝑉𝜉
𝐻𝑥

 

(1.41) 

The factor ½ is due to the fact that the bond holds only half the bond energy. If the body is made 

by a microelastic material, the work carried out by the external forces is "stored" by the 

component and it is recoverable by modifying its shape like in the theory of classical mechanics 

(Theory of Elasticity). It can also be shown that the micropotential depends on the displacement 𝜂   

between the two points; however only to the scalar distance between the deformed points enters 

into the functional form: 

�̃� (𝑦, 𝜉 ) =  𝑤 (𝜂 , 𝜉 )           ∀𝜂 , 𝜉                          

(1.42) 

where  

𝑦 =  |𝜂  +   𝜉  | 

(1.43) 

If we consider equations (1.6) and (1.8) and we differentiate the second with respect  𝜂⃗⃗ , we get: 

 𝑓  (𝜂  , 𝜉 ) =
 𝜉⃗⃗⃗   + �⃗⃗� 

| �⃗�  + �⃗⃗�  |
  𝑓  (| 𝜉  +  𝜂  |, 𝜉 )                 ∀𝜉 ,  𝜂⃗⃗  

(1.44) 

with 𝑓  defined by: 𝑓  (𝑦, 𝜉 ) =
𝜕�̃�

𝜕𝑦
 (𝑦, 𝜉 )          ∀𝑦, 𝜉  

(1.45) 

This satisfies the equations (1.4) and (1.5): 

 �̃� (𝑦, −𝜉) =  �̃� (𝑦, 𝜉)               ∀𝑦, 𝜉  

(1.46) 

The relationships formed by the equation (1.1) and the equation (1.9) contain the parameters we 

need to build a model of non-linear microelastic material with peridinamic theory. 

The problem of rigid rotation is not taken into account because 𝑦 is invariant with respect to body 

rotations. 

A linearized version of the theory of microelastic materials allows us to get: 
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 𝑓  (𝜂  , 𝜉 ) =  𝐶( 𝜉 ) 𝜂               ∀𝜂  , 𝜉  

(1.47) 

where 𝐶, which is a second order tensor, is called micro module function of the material; this is 

defined as 

 𝐶 (𝜉 ) =
𝜕𝑓 

𝜕�⃗⃗� 
 ( 0⃗ , 𝜉 )                  ∀ 𝜉  

(1.48) 

with 

 𝐶 (− 𝜉 ) =  𝐶 ( 𝜉 )                   ∀ 𝜉  

 

Now, if we would like to describe a spontaneous fracture, the concept of breaking limit for non-

linear microelastic material should be introduced. It is assumed that 𝑓  depends solely on the bond 

stretch, defined as: 

𝑠 =  
| 𝜉  + 𝜂  | − | 𝜉  |

| 𝜉  |
 =  

𝑦 − | 𝜉  |

| 𝜉  |
 

(1.49) 

With this particular kind of notation, the elongation "𝑠" with respect to the initial configuration is 

positive when there is an increase in length as regards the bond, and it is negative if there is a 

shortening. If the material is isotropic there is no dependence on 𝑓  from the direction of 𝜉 . The 

most direct way to introduce the concept of breaking limit is to assume that the bond (modelled 

as a spring) breaks if it suffers an elongation 𝑠 bigger than a threshold elongation 𝑠𝐿. When the 

bond breaks, it must not return as it was before the breaking: obviously this happens because the 

breaking process is an irreversible one. This means that the bond must get broken for the whole  

simulation. 

Now let us consider a Prototype Microelastic Brittle material-PMB whose pairwise function is 

defined as: 

𝑓 (𝑦 (𝑡), 𝜉 )  =  𝑔 (𝑠 (𝑡, 𝜉 )) 𝜇 (𝑡, 𝜉 ) 

(1.50) 

where 𝑔 which is a linear function at scalar values given by 

 𝑔 (𝑠) = 𝑐𝑠  ∀𝑠 

(1.51) 

So, we get 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝜇 a scalar function dependent on the previous history that can only 

assume unitary value or it can be equal to 0:  
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𝜇 (𝑡, 𝜉 )  =  { 1   𝑖𝑓 𝑠(𝑡
′, 𝜉 ) < 𝑠0   ∀0 ≤ 𝑡′ ≤ 𝑡

0                               𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
 

(1.52) 

𝜇 = 0 means that the bond is irremediably broken and 𝜇 = 1 indicates that it is integer and its 

length depends on the load that has been applied to it. 

The critical load of the bond, 𝑠0, is assumed constant (Figure 1-213). If the material is initially 

isotropic when the bonds break, the isotropic condition is lost and in the subsequent calculation 

step, the material is generally anisotropic. 

By inserting the breaking condition into the equation of the bond material (1.16), a unique local 

damage condition is defined: in fact it is possible to derive a “damage equation” or “index” 

indicating the ratio between the number of broken bonds and the total bonds in a portion of 

material. The variable damage is defined as 

𝛷 (𝑥 , 𝑡)  =  1 −
∫ 𝜇 (𝑥 , 𝑡, 𝜉 )𝑑𝑉𝜉𝐻𝑥

∫ 𝑑𝑉𝜉𝐻𝑥

 

(1.53) 

where 𝑥  is included as the argument of 𝜇. 𝜑 as we said before, represents the damage and its 

values are into the range 0 ≤ 𝜑 ≤ 1. The value zero represents the state of the initial isotropic 

material in which all the bonds are present, while the value 1 represents the state in which the 

node we are considering is completely disconnected from the nodes with which it was initially 

connected. If the bonds are broken they no longer support any load; for this reason they create a 

localized material weakening; the load in fact does not vary and it is applied to the bonds that are 

still intact. The latter ones are now subject to an increased stress because the same load is now 

subdivided into a lower number of bonds. The remaining bonds are now more likely to reach the 

condition of breaking. A single broken bond creates the conditions for other bonds to break and 

this creates an avalanche effect, well visible in the simulations, allowing the fracture to advance in 

the body. 

The two parameters that govern this mechanism from a physical viewpoint are the constant of the 

spring of the bond (spring constant) indicated by the letter "c" and the critical bond (critical bond 

stretch) indicated with "𝑠0". Now let us consider a homogeneous and isotropic body with constant 

𝑠 for each 𝜉 and with 𝜂 = 𝑠𝜉 .  If we assume 𝜉 = |𝜉| and 𝜂 = |𝜂|,  𝜂 = 𝑠𝜉 and by the equation of 

the micropotential (1.6) we get 

𝑓 = 𝑐𝑠 =  𝑐 𝜂/𝜉  

from which 

 𝑤 =  𝑐𝜂2 / 2𝜉 =  𝑐𝑠2𝜉 / 2  

and from the equation (1.7) we have: 
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 𝑊 =
1

2
∫ 𝑤 𝑑𝑉𝜉  =

1

2
∫ (

𝑐𝑠2𝜉

2
) 4 𝜋𝜉2𝑑𝜉

𝛿

0

 =
𝜋𝑐𝑠2𝛿4

4
 

(1.54) 

Taking into account that the strain we got is the same of the classical theory of elasticity, 

according to which  𝑊 =  9 𝑘𝑠2 /2 , It is possible to obtain the spring spring constant for a PMB 

material that is: 

 𝑐 = 18
𝑘

𝜋 𝛿4
  

(1.55)  

The critical load for breaking the bonds 𝑠0 can be considered as a measurable amount that 

interacts with a flat large internal fracture surface of a sufficiently large homogeneous body. If we 

would like to have a complete body separation in two halves, it is necessary that the fracture 

surface extends between two opposite extremities of the body and that all bonds of the body 

nodes crossing that surface break. The work needed to break a single bond is indicated by 𝑤0(𝑥 ) 

and is given by: 

 𝑤0 (𝜉)  =  ∫ 𝑔 (𝑠) 𝜉 𝑑𝑠
𝑠0

0
                    𝑤𝑖𝑡ℎ 𝜉 =  | �⃗⃗�  |  

and 

 𝑑𝜂 =  𝜉 𝑑𝑠 

In the case of PMB material,  𝑤0(𝜉 )   =  𝑐𝑠0
2𝜉/2. Thus, the work (energy) necessary to break all 

bonds per unit area (of the area of the fracture surface) is defined: 

 𝐺0  =  ∫∫ ∫ ∫ (
𝑐𝑠0

2𝜉

2
) 𝜉2 𝑠𝑒𝑛𝜑 𝑑𝜑 𝑑𝜉 𝑑𝜃 𝑑𝑧

𝑐𝑜𝑠−1𝑧/𝜉

0

𝛿

𝑧

2𝜋

0

𝛿

0

  

(1.56)  

When we solve this multiple integral) and we get  𝐺0, we are able to obtain the numerical value of 

the energy per unit surface (of the fracture surface) necessary to have the complete separation of 

the body in two halves, which is 

𝐺0  =  𝜋 𝑐 𝑠0
2
𝛿5

10
 

(1.57) 

Since for PMB materials the amount of energy is measurable, from equation (1.24) it is possible to 

obtain 𝐺0 for the complete separation with the assumption of absence of other dissipative 

mechanisms. So we get 
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𝑠0  =  √10
 𝐺0

𝜋 𝑐 𝛿5
 =  √5

 𝐺0
9𝑘𝛿

 

(1.58)  

For many materials, PMB hypotheses are not so closed to the reality and it is wrong or not so 

accurate to consider that the conditions of the bonds are independent of the ones of other bonds. 

Therefore, some corrective coefficients and relationships that link bonds affected by fracture with 

the bond states of the rest of the body are introduced. In a micro plastic material, the bond forces 

become: 

 

  𝑓 (𝑠, 𝜉, 𝑡) =  { 𝑐 (𝑠 − 𝑠 (𝑡)̅̅ ̅̅ )       𝑖𝑓  |𝜉| ≤  𝛿

            0                               𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
 

 

(1.59) 

�̅�(0) =  0     

                  𝑠̅  =  {        �̅�                              𝑖𝑓  |𝑠 − �̅�| ≤  𝑠𝑌
              0                                    𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

 

 (1.60) 

At the bond level the material has elastic characteristics combined with features of perfect 

plasticity. At a macroscopic level the material suffers hardening and the bonds do not all slip 

instantly or to the same deformation. 

The “micro” properties of the bonds must not be in contrast with macroscopic property. For a 

micro-fragile material, the bond yields are tied to the maximum engineering strength (in stress 

𝜎𝑢𝑙𝑡) to which all bonds yield if it is reached. From (1.25) we obtain: 

𝜎𝑢𝑙𝑡  =  ∫∫ ∫ ∫ 𝑓𝑌  𝜉
2 𝑐𝑜𝑠𝜑 𝑠𝑒𝑛𝜑 𝑑𝜑 𝑑𝜉 𝑑𝜃 𝑑𝑧

𝑐𝑜𝑠−1𝑧/𝜉

0

𝛿

𝑧

2𝜋

0

𝛿

0

=
𝜋𝑓𝑌𝛿

4

6
 

(1.61) 

with 𝑓𝑌 bond yield strength 

 𝑓𝑦 =  𝑐𝑠𝑌 

(1.62)  

The equation (1.28) is approximated as it is calculated on the undeformed geometry instead of the 

deformed geometry. From the equations (1.21), (1.28) and (1.29) we get the (1.30) that links the 

bond yielding stress with the conventional convention continuum theory: 
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𝑠𝑌 ≈
𝜎𝑢𝑙𝑡
3𝑘

 

(1.63) 

 

1.3.3 Perydynamics and Central Force Model 

In the last pages we described briefly two techniques used currently to consider the genesis of the 

fracture in a medium. The XFem is basically a numerical method and it can be considered like an 

extension of the FEM: as we already said it is based on the assignation of further degrees of 

freedom to the finite elements in order to take into account the fact that they would be able to 

open and to break. 

Basically it is a numerical technique that solves the system of partial differential equations of the 

continuum mechanics and it contains a forcing in order to give us the possibility to break and to 

compute the fracture. 

The peridynamics instead uses a different approach in the sense that it does not solve the partial 

differential equation system that we are normally get used to observe but it leaves from a 

different point of view: the body is made of different particles and each particle is able to interact 

only with the particles that we find within an “horizon” by a mutual micropotential. By using this 

assumption it is possible to get the equations of the motion for each particle: these equations are 

integral and so this makes possible to solve them in correspondence of the surfaces of the halves 

or tips. Furthermore if we represent each particle by a cubic cell, it is possible to transform the 

right term of the equation () in its discretized form 

𝜌�⃗� ̈(𝑥 , 𝑡) =∑𝑓 (𝑢𝑝
𝑛⃗⃗ ⃗⃗ − 𝑢𝑖

𝑛⃗⃗ ⃗⃗ , 𝑥𝑝⃗⃗⃗⃗ − 𝑥𝑖⃗⃗  ⃗) 𝑉𝑝 + 𝑏𝑖
𝑛⃗⃗ ⃗⃗ 

𝑝

 

(1.64) 

where 𝑓  comes from the equation (1.9), 𝑉𝑝 is the volume of the cubic cell representing the point 𝑝 

into the horizon of the point 𝑖, 𝑛 is the time step while the subscript indicates the number of the 

node according to: 

𝑢𝑖
𝑛⃗⃗ ⃗⃗ = �⃗� (𝑥 𝑖, 𝑡) 

(1.65) 

As regards the left hand term, for the calculation of the acceleration, we basically use a finite 

difference formula: 

�⃗� ̈(𝑥 , 𝑡) = 𝑢𝑖
𝑛⃗⃗ ⃗⃗  ̈ =

𝑢𝑖
𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 2𝑢𝑖

𝑛⃗⃗ ⃗⃗ + 𝑢𝑖
𝑛−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

∆𝑡2
 

(1.66) 
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So according to this kind of discretization, we do not need to mesh the whole system and in fact 

this technique enters into the so called meshless methods. 

We can notice however, either XFem and Peridynamics are able to consider the possibility that the 

material cracks but they do not contain inside into their equation the fact that the material is not 

“pure”. As we already said at the beginning of the chapter, each material contains some impurities 

or local defects that create a “local” weakening. And that is the main source of breaking or 

fracture for each material in nature.  

Our purpose in the next pages, will be to develop a theory that could take into account these 

defects into the material. Obviously it is not possible to know exactly where these defects are and 

for this reason we will be forced to consider them into our material from a statistical viewpoint. 

A first way to think about the defects of a material is to introduce the concept of variability into 

the material itself. This can be done by introducing a probability density function according to 

which to get the elastic properties of the medium (like Young modulus 𝐸, Poisson’s coefficient 𝜈 

and Lame’s coefficient 𝐺). A second way to take into account the disorder of the medium is to 

introduce the concept of “threshold” as the Peridynamics did for PBM. However in Peridynamics, 

the threshold was constant and fixed in strain to 𝑠0. We would like to vary this threshold in order 

to take into account the defects of the medium that obviously can affect the “breaking limit” of a 

portion of material, and we would vary it according to a probability density function. 

So this is our starting point. As we will see, at the beginning of the 90’s, a simple mono-

dimensional model called Fiber Bundle Model (FBM) was further studied to take into account the 

possibility to study in a very simple way the breaking of a material through thresholds in stress. 

This model consists in a bundle of parallel fibers clamped at one edge and free to move on the 

other edge. 

In the next chapter we will study extensively this model from a mathematical viewpoint: we will 

introduce an extension of the FBM, the so called Continous Fiber Bundle Model (CFBM) that will 

allow us to begin to study the fracture at a bigger length scale and we will study its properties in a 

strain constant experiment by the Theory of the statistical ensembles. Then we will try to extend 

our knowledge the 2D in order to study the development of the fracture of a porous medium 

taking into account the disorder. 

Before beginning with Chapter 2 it is important to introduce a difference between the 

Peridynamics and our new statistical model:  

as we noted, the Peridynamics supposes the body made by “particles” and that each particle 

communicates with the other ones inside its own horizon. In fact in some Peridynamics 

simulations the system of equations given by (1.67) for each particle, is transformed into a “finite 

element equation system” by considering each bond like a truss with a limit breaking stretch. 

However the interactions we are studying from a physical viewpoint is always among the particles: 

this kind of point of view in fact allows us to get a meshless method and integro equations that do 

not create problems close to the surfaces of the cracks. 

The statistical central force model instead, is son of the FBM: so as we will see in chapter 2, we will 

suppose to divide the material into little portions that will be described by trusses in contact only 
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with its neighbours depending on the geometrical form of the structure we will use to describe the 

continuum. There will not be a horizon; however each truss will be free to “talk” with all the 

trusses of our system by the occurrence of avalanches. This difference (i.e. to discretize the 

material into micro components in contact with its own neighbours with the possibility to 

exchange information through the occurrence of avalanches with the elements of the whole 

system instead of particles communicating with its neighbours inside a horizon) offers a further 

different point of view with respect the peridynamics. Furthermore, the possibility to take account 

of the disorder into the medium for the genesis of the breaking makes the technique of the 

statistical central force model one of the most innovative and original methods to evaluate the 

fracture in a medium. 
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Chapter 2  
Thermodynamic analysis of the Fiber Bundle Model 

 

 “Who ... is not familiar with Maxwell's 

memoirs on his dynamical theory of 

gases? ... from one side enter the 

equations of state; from the other side, 

the equations of motion in a central field. 

Ever higher soars the chaos of formulae. 

Suddenly we hear, as from kettle drums, 

the four beats 'put n = 5.' The evil 

spirit v vanishes; and ... that which had 

seemed insuperable has been overcome 

as if by a stroke of magic ... One result 

after another follows in quick succession 

till at last ... we arrive at the conditions 

for thermal equilibrium together with 

expressions for the transport 

coefficients.” 

 Ludwig Boltzmann 

 

 

 

2.1 Introduction 

We will provide now a brief introduction about the model which is our starting point for the 

building of our technique to study the fracture: the Fiber Bundle Model. 

The FBM is one of the most important tools used by the scientists to study the problem of the 

fracture in disordered media. From an historical viewpoint this model is very ancient: its first 

version is dated 1927 and it is due to Peires to understand the strength of cotton yarns. Daniels in 

1947 introduced for the first time the probabilistic problem inside it. And in the last two decades 

this problem was widely studied and extended to capture more complicated behaviours in media. 

So, the development of the FBMs founded two different challenges: 

a) One of the most important needs of the damage mechanics, is to realize failure models of 

materials that are able to introduce a detailed description of the microstructure of the 

material and of the local stress fields. Such model are optimal to identify the effect of the 
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microstructural parameters assigned to the model on the macrostructural behaviour of the 

system itself (emergent behaviour). 

For this reason the FBMs were during the years the starting point for the study of 

micromechanicals models that found their application in fiber renforced composites, 

widely used in the aeronautical and automotive sector. 

b) The damage and the fracture of disordered media is a new challenge for the statistical 

physics. That’s why it was possible to notice that materials embedded in a disordered 

environment look to show phase transitions or critical phenomena like other kinds of 

systems like gases (in which the disorder is given by the thermal motion). 

For (a) good numerical models were developed to study the behaviour of the fibrous materials 

towards the fracture on a big scale length. For (b) instead the FBMs give us the possibility to 

have a good analytical testing ground to study from a physical viewpoint the behaviour of 

these systems in presence of a critical point. 

In the following pages we will give some snapshots to better understand the dynamics of the 

FBMs and we will discuss its extensions and the reasons for which it was necessary to 

introduce some extensions into the classical FBM. 

 

2.2 Up to the construction of a Fiber Bundle Model 

The construction of a FBM must get through different steps, that are basically the initial 

hypothesis necessary to build these kinds of models. 

1) Discretisation: the solid is represented by 𝑁 different fibers. Obviously these fibers are not 

realistic in the sense that they do not exist in the reality into the solid itself. They are only a 

method to discretize the structure into “micro components”, in which the disorder will be 

introduced, as we will see. The fibers can only support longitudinal deformation or loads. 

So this model allows us to study only loadings parallel to the fibers. This is a big limitation 

of the FBMs that we will try to overcome by a 2D version of the FBM (the central force 

model) 

 

2) Failure law: when a bundle is subject to an increasing external load, the fibers are assumed 

to have a perfectly brittle behaviour. The law that links the stress they feel to the strength 

is basically the Hooke’s law, 

 

𝜎 = 𝐸𝜀 

To each fiber a threshold in stress, 𝜎𝑖𝑐 is assigned. The thresholds are picked up from a 

probability density function as we will see later. When the stress on a fiber reaches its 

strength threshold, the fiber breaks suddenly and irreversibly, so that the stress curve goes 

immediately to 0. Obviously the broken fibers are not restored. In the picture we can have 

a look to the topology of the model and to the constitutive behaviour of a single fiber 
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Figure 2.1: representation of a fiber bundle model whose elements behave elastically (on the left) and 

constitutive elastic behaviour of the th- fiber (Kun et al., 2007) 

 

3) Load sharing rule: it’s possible to perform in this model two kinds of experiments: strain or 

stress controlled. In the second case, because of our boundary condition, when a fiber fails, 

the load which was sustained by it, must be taken by the surviving fibers. This creates an 

avalanche behaviour as we will investigate in the following pages. However, the range or 

form of interaction of the fibers, which is called load sharing rule LSR, has a great 

importance on the micro and macro behaviour of the system. There are basically two 

important LSR: in the first one, called equal load sharing, the stress which was carried by 

one fiber is equally taken by the surviving fibers: so this load will be divided among them 

and the distance between a generic fiber and the failed fiber is not important. This 

“approximation” that introduces large distance correlation (or an approach of infinite 

horizon if we want to use the terminology of the Peridynamics) corresponds to a Mean 

Field approximation of the FBM where the topology of the bundle becomes irrelevant. 

Are there any real situations in which the Mean Field approach is not an approximation? 

The answer is yes, and we are talking about systems in which parallel fibers are loaded 

among perfectly rigid supports (wire cable of a lift). Except for this case, the Equal Load 

Sharing (LSR) is only an approximation; but it is a very important approximation because it 

allows to obtain some important results in closed form from an analytic viewpoint. The 

second LSR corresponds to more realistic physical situations: in this case the load of the 

broken fiber is redistributed among the closest lived fibers, which are chosen depending on 

the distance from the failed fiber. This leads to a stress concentration along the failed 

regions and so by these considerations, we can understand that the macroscopic behaviour 

of the model can be different by this sharing rule. However, because of non trivial spatial 

correlations, this model can be very complicated to study from an analytical viewpoint. 

Numerical simulations are necessary to catch the emergent behaviour of the bundle. 
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4) Distribution of failure thresholds: As we already said, the thresholds in stress are picked up 

by a probability density function (p.d.f.). In fact, assigning thresholds in stress to some 

kinds of fibers means from a physical viewpoint to introduce some tips or imperfections (in 

the way in which they were described in fracture mechanics) in discretised sub-structure of 

our model (the fibers). The fact that the thresholds are variable from a fiber to another one 

is a direct consequence of the way in which these imperfections are spread into the 

substructures/fibers. Which kind of p.d.f. can we use to give thresholds in stress? Basically 

there are two functions widely used in literature: the uniform distribution and the Weibull 

distribution. If we know these probability density functions that we call 𝑝(𝜎), we can build 

a cumulative distribution according to 𝑃(𝜎) = ∫ 𝑝(𝜎′)𝑑𝜎′
𝜎

0
  where 𝜎  is the stress that our 

fiber suffers (Abaimov). 

If we use these considerations as starting point, the FBM can also be used to understand 

the difference between the fracture mechanics and the damage mechanics: as we know 

the classical mechanics is formed by two separate disciplines: theoretical and statistical 

mechanics. In the same way there are two different disciplines that describe the 

destruction of a solid: fracture mechanics and damage mechanics; the first one is a 

deterministic discipline studying the behaviour of separate (a few) defects into the solid 

like theoretical mechanics studies the behaviour of a few degrees of freedom into a 

deterministic system. On the contrary, damage mechanics describes the behaviour of very 

many microdefects stochastically distributed into the system. For this reason the damage 

mechanics fits the statistical physics, studying stochastically the behaviour of many degrees 

of freedom, that in our case are represented by the microdefects we can find inside a solid. 

 

5) Time dependence: According to the time dependence of the fiber strength, two classes of 

FBMs can be taken into account: in static FBMs the thresholds are constant in time during 

the entire history of the loading. So if we would like to model the creep rupture and fatigue 

behaviour of the materials, time dependent strength must be introduced. The literature is 

full of examples in which different modified models were introduced to take into account 

this behaviour. So we quote the literature for the interested reader. [7, 65, 34, 35, 42] 

 

2.3 The Dry Fiber Bundle model 

2.3.1 Strain and stress controlled experiments 

We will describe now very briefly the first model of Fiber Bundle Model; the so called Dry 

Fiber Bundle Model (DFBM). As we already said, this has been the starting point for realizing 

extensions, in order to capture particular behaviours of some materials. 

Basically, the DFBM is made of a set of parallel fibers (fig.2.1) clamped at one edge and free to 

move on the other one. The system is very simple: each fiber has the same Young Modulus 

and the same length. 
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To each fiber we assign a threshold in stress which is taken by a probability density function, 

typically the Weibull or the uniform distribution. 

The fibers can damage only one time: this happens when the stress reaches or gets bigger 

than the threshold; when this situation realizes the fiber breaks. 

So now, it is possible to perform two kind of experiments: the strain constant or the stress 

constant experiment. The behaviour of the model is different in the two cases: let’s consider a 

FBM with a number 𝑁 of fibers; 

 

Figure 2.2: Plot of the curve displacement vs force in a strain controlled experiment (on the left) and stress 

controlled experiment (on the right)  (Hansen et al, 2015) 

Strain controlled experiment: in this case the avalanche behaviour does not exist. Each fiber 

suffers the same value of strain (this depends on the way in which the experimental apparatus 

is built) and the same value of stress as well (this is instead a consequence of fact that the 

fibers have the same Young modulus 𝐸 and are able to damage only one time). So, let’s 

suppose to perform a strain controlled experiment in which the external strain, which is our 

control parameter, is changed very slowly (quasi-static conditions). For a given value of strain, 

the fibers will suffer the same stress, 𝜎 = 𝐸𝜀; if we think to order the thresholds of the fibers, 

so that 

𝜎1𝑐 < 𝜎2𝑐 < ⋯ < 𝜎𝑁𝑐 

we will meet the situation for which 

𝜎𝑖−1𝑐 < 𝜎 < 𝜎𝑖+1𝑐 

so the i-th fiber will fail; obviously the other ones will keep on taking the same load 𝜎, but 

because of the failure the total stress on the bundle at that given strain will suffer a drop. 

That’s the reason of the curve into the figure 2.2 on the left.  

So if we plot the total stress as a function of the displacement we will have different infinite 

constitutive behaviours as shown in the figure 2.3 above, generated by the disorder. However 

it is possible to show that for 𝑁 big, all these different curves collapse into one unique curve 

(Abaimov), and it is possible to notice all the plateau of the constitutive curve because we are 

in a strain constant experiment. 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Alex+Hansen


 
60 

 

 

Figure 2.3: plot of the constitutive behaviour of a DFBM in a strain constant experiment; as it is possible to notice, 

the disorder generates infinite different constitutive behaviour but if we increase the number of fibers, these 

“fluctuations” go to zero and all the curve collapse into a unique curve. The three plots are obtained by numerical 

simulations: on the top and on the bottom we show two different realization for 𝑁 = 50, while in the middle 𝑁 =

5000. The numerical results show that for 𝑁 = 5000 two different realizations have almost the same constitutive 

behaviour. This was proved from a math viewpoint for the DFBM. We will prove that such a behaviour is present 

for the so called continuous fiber bundle model  (Hansen et al, 2015) 

We will prove for the CFBM, the considerations a), b) and c) from a statistical viewpoint. In 

fact these conclusions will come out as results from the theory of the ensembles applied to 

the CFBM. 

Stress controlled experiment: In this experiment the curve must be different; let’s always 

suppose to consider a quasi static experiment, by changing in a very slow way the external 

force 𝐹 (and so the overall stress applied on the bundle). 

Again, the thresholds are ordered so that 

𝜎1𝑐 < 𝜎2𝑐 < ⋯ < 𝜎𝑁𝑐 

and again, each fiber suffers the same strain (like a consequence of the experimental 

apparatus) and the same stress. The fact the stress is the equal for each alive fiber is true only 

according to a Mean Field approximation: in fact if the external stress 𝜎𝑡𝑜𝑡 is such that for a 

given fiber, for example the i-th   

𝜎𝑓𝑖𝑏𝑒𝑟 < 𝜎𝑖𝑐 

this one breaks. 

However the external force applied on the model must remain constant (now it is the new 

boundary condition). From a physical viewpoint the only way to do this is that the other fibers 

alive take the load of the broken fibers. So the strain of these fibers grow (because we are 

loading them by a surplus of stress) while the external force remains constant. That’s the 

reason for which we notice the horizontal length. 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Alex+Hansen
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Obviously, because of the nature of the experiment we will not be able to observe anymore 

all the plateau of the curve but only half of it. 

The same considerations about the curve force-displacement we talked about in the strain 

constant experiment can be applied here: i.e. the disorder generates infinite constitutive 

behaviour that collapse all together in a unique curve for 𝑁 big (Abaimov). 

 

2.3.2 Constitutive behaviours 

We could try now to obtain the constitutive behaviour of the FBM; obviously, the curve 

depends on the kind of experiment we perform. 

 

Figure 2.4: the constitutive behaviour in the strain controlled experiment (solid curve) and the LMF function in the 

stress controlled experiment (Hansen et al, 2015) 

In the figure 2.4 we reported how the force on the bundle varies as a function of the strain, 

that in this case we call 𝑥. In a strain controlled experiment the solid curve is followed. After a 

fiber fails in a force controlled experiment instead, the system follows a horizontal constant 

force line, with increasing 𝑥 until a new stable situation is reached or the whole bundle 

collapses. In the figure this “route” is replaced by a horizontal dashed line. So the resulting 

graph for the force controlled experiment, can be characterized by the least monotonic 

function of 𝑥 that nowhere is less than the elastic function 𝐹(𝑥). The function which must be 

considered in a force controlled experiment is therefore 

𝐹𝑓(𝑥) = 𝐿𝑀𝐹 𝐹(𝑥) 

 

with 𝐿𝑀𝐹 𝐹(𝑥) ≥ 𝐹(𝑥). 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Alex+Hansen
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So, to know the constitutive curve of the bundle in a strain constant experiment allows us to 

get the same curve in a force constant experiment by the least function. 

The same considerations can be applied for the CFBM we will introduce later. What we will 

talk now is the so called avalanche behaviour, which is a very interesting property of the 

DFBM. We will give some snapshots about the theory of Hemmer and Hansen in the case of a 

global load sharing. 

 

2.3.3 Avalanche behaviour in DFBM 

 
To achieve the avalanche behaviour from an analytical viewpoint is very complicated. This can be 

done however for a simple mono dimensional system like the FBM; so we briefly report the 

calculations realized by the two authors, Hemmer and Hensen. 

Again, let us consider fiber characterized by a length 𝑙 and let us assign them a threshold in stress 

that we call 𝑡𝑖. The FBM is a very simple model as we already discussed: when a fiber reaches its 

own threshold in stress, it breaks. So the force response for one fiber will be: 

𝑓𝑖 = {
𝑘𝑥   𝑖𝑓   𝑘𝑥 < 𝑡𝑖
0       𝑖𝑓 𝑘𝑥 ≥ 𝑡𝑖

 

(2.1) 

Here 𝑘 is the elastic constant of each fiber and 𝑡𝑖 the threshold value in stress, which is picked up 

by a p.d.f 𝑝(𝑡) associated to a cumulative probability 𝑃(𝑡), defined like 

𝑝𝑟𝑜𝑏 (𝑡𝑖 < 𝑡) = 𝑃(𝑡) = ∫ 𝑝(𝑢)𝑑𝑢
𝑓

0

 

(2.2) 

Since the elastic constant is the same for each fiber, we can fix the thresholds in strain as well. 

Nothing changes in this case. Let us call 𝑥𝑘 the ordered sequence of failure thresholds in strain 

(they would be the thresholds in displacements supposing that 𝑘 = 1), so that  

𝑥1 < 𝑥2 < ⋯ .< 𝑥𝑁 

where 𝑁 is the total number of fibers. The external load 𝐹 on the whole bundle in the point in 
which the k-th fiber is about to fail, can then be expressed as 
 

𝐹𝑘 = 𝑘 (𝑁 + 1 − 𝐾)𝑥 
(2.3) 

where we add the number one because 𝐾 − 1  fibers already failed and the 𝐾 − 𝑡ℎ is going to fail. 
It is important to do an observation before going ahead: we note that the sequence {𝐹𝑘} of forces 
on the bundle cannot be like a monotonic function because it is the product of a monotonically 
increasing function 𝑥𝑘 and a monotonically decreasing factor (𝑁 + 1 − 𝐾). This will be the force 
expressed by the bundle, which is different from the external force. Obviously at the equilibrium 
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the two forces must be the same, like the equilibrium between internal and external forces in 
structural mechanics. Now we have all the ingredients. For a burst of dimension ∆ begins when 
the k-th fiber is going to fail, two conditions must be satisfied; the first one is the so called forward 
condition for which 
 
                                                                                 𝐹𝑘+𝑗 < 𝐹𝑘    for 𝑗 = 1,2,3, … . , ∆ − 1 

(2.4 a) 
𝐹𝑘+∆ > 𝐹𝑘  

(2.4 b) 
 
that represents the attempt of the bundle in reaching the equilibrium with an external force, 
whose value is exactly 𝐹𝑘: in fact as it is possible to notice from (2.4 a), the force 𝐹𝑘+𝑗 on the left is 

always less than 𝐹𝑘 for 𝑗 = 1,2,3, … . , ∆ − 1; so after the failure of the first fiber, that represents 
our trigger, other ∆ − 1 fibers will fail in the attempt of reaching the equilibrium with the external 
force, represented by the right term of the (2.4 a). After these failures, if 2.4 b is satisfied, then the 
external force is less than the internal force the bundle can express: this guarantees mechanical 
equilibrium at an external force equal to 𝐹𝑘, even if this mechanical equilibrium is paid at the price 
of to get ∆ fibers to fail. This is the physical meaning of the forward condition. 
 
This is not sufficient however. We must ensure that 𝐹𝑘 exceeds the previous values so that 
 

𝐹𝑗 < 𝐹𝑘 

(2.5) 
 
which may be called the backward condition. Otherwise the burst may occur inside a larger burst 
and consequently it will not be recorded in experiments with increasing external load. 
These two conditions can be translated as conditions on the threshold values 𝑥𝑘. So, from the Eq 
(2.3), 
 
 

          𝐹𝑘+𝑗 >< 𝐹𝑘 

(2.6) 
 
is equivalent to  
 

𝑥𝑘+𝑗 >< 𝑥𝑘  
𝑁 + 1 − 𝐾

𝑁 + 1 − 𝐾 − 𝑗
= 𝑥𝑘[1 +

𝑗

𝑁 + 1 − 𝐾 − 𝑗
] 

(2.7) 
 
So, with  

𝛿𝑘 =
𝑥𝑘

𝑁 + 1 − 𝐾 − 𝑗
~

𝑥𝑘
𝑁 − 𝐾

 

(2.8) 
 
Assuming that 𝑗 ≪ 𝑁 − 𝐾. 
So we transformed the equation  
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          𝐹𝑘+𝑗 >< 𝐹𝑘 

(2.9) 
 
in 
 
  

          𝑥𝑘+𝑗 >< 𝑥𝑘 + 𝛿𝑘 

(2.10) 
 
where >< indicates bigger or less than something. 
 
Let us determine at first the probability for the forward condition, that we call 𝜑(∆, 𝑥𝑘 , 𝑘), for a 
burst of length ∆ starting with the 𝑘 − 𝑡ℎ fiber at the threshold value 𝑥𝑘 is fulfilled. By the 
equation (2.10) we see that the ∆ − 1 threshold values 𝑥𝑘+1, … , 𝑥𝑘+∆−1 must fall into the interval 
(𝑥𝑘, 𝑥𝑘 + ( ∆ − 1)𝛿𝑘) and 𝑥𝑘+∆ must be bigger than 𝑥𝑘 + ∆𝛿𝑘. The probability for this event to 
occur is 
 

𝜑(∆, 𝑥𝑘, 𝑘) = (
𝑁 − 𝐾

∆ − 1
)(

𝑃(𝑥𝑘 + (∆ − 1)𝛿𝑘) − 𝑃(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
)

∆−1

(
1 − 𝑃(𝑥𝑘 + ∆𝛿𝑘)

1 − 𝑃(𝑥𝑘)
)
𝑁−𝐾−∆−1

 

(2.11) 
 
Here, we suppose that ∆≪ 𝑁 − 𝑘, so we can expand ∆𝛿𝑘. To the first order, we have 
 

𝜑(∆, 𝑥𝑘, 𝑘) = (
𝑁 − 𝐾

∆ − 1
)(

𝑝(𝑥𝑘)(∆ − 1)𝛿𝑘)

1 − 𝑃(𝑥𝑘)
)

∆−1

(1 −
𝑝(𝑥𝑘)∆𝛿𝑘
1 − 𝑃(𝑥𝑘)

)

𝑁−𝐾−∆−1

 

(2.12) 
 

 

The last factor of (2.12) for large 𝑁 − 𝐾 is basically 

𝑒𝑥𝑝 (−∆𝑥𝑘𝑝(𝑥𝑘)  /1 − 𝑃(𝑥𝑘) ) 

(2.13) 

using 𝛿𝑘 =
𝑥𝑘

𝑁−𝐾
. 

Then another useful approximation regards the binomial coefficient: 

(
𝑁 − 𝐾

∆ − 1
)~

(𝑁 − 𝐾)∆−1

(∆ − 1)!
 

(2.14) 

So in the end, the (2.12) becomes 
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𝜑(∆, 𝑥𝑘, 𝑘) =
1

(∆ − 1)!
(
𝑝(𝑥𝑘)𝑥𝑘(∆ − 1)

1 − 𝑃(𝑥𝑘)
)

∆−1

𝑒𝑥𝑝 (−∆𝑥𝑘𝑝(𝑥𝑘)  /1 − 𝑃(𝑥𝑘) ) 

(2.15) 

It remains to secure that all the ∆ − 1 inequalities (2.4 a) are fulfilled, i.e., that 𝑥𝑘+1 < 𝑥𝑘 + 𝛿𝑘 <
𝑥𝑘 + 2𝛿𝑘 , etc., given that all the ∆ − 1 threshold values fall in the interval (𝑥𝑘, 𝑥𝑘 + (∆ − 1)𝛿𝑘). 
Since the probability density can be considered constant in the small interval (∆ − 1)𝛿𝑘, this is 
equivalent to the following combinatorial problem: ∆ − 1 elements are to be randomly distributed 
among ∆ − 1 numbered slots, and we require the probability 𝜖∆−1 that the first slot contains at 
least one element, the two first slots contain at least two elements, and so on. It is possible to 
show that  
 

𝜖∆−1 =
∆∆−2

(∆ − 1)∆−1
 

(2.16) 
 
So, our desired probability will be the product of �̃�(∆, 𝑥𝑘 , 𝑘) and 𝜖∆−1: 

𝜑(∆, 𝑥𝑘, 𝑘) = �̃�(∆, 𝑥𝑘, 𝑘)𝜖∆−1 =
∆∆−1

∆!
(
𝑝(𝑥𝑘)𝑥𝑘
1 − 𝑃(𝑥𝑘)

)

∆−1

exp(−
∆𝑥𝑘𝑝(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
)  

(2.17) 
 
These are the calculations regarding the forward condition. 
 
Now we are ready to compute the backward probability: 
The backward condition is simply that 𝐹𝑘 should be the largest breaking force that has appeared 
until the k-th fiber (threshold value 𝑥𝑘) fails. For an average force �̅�(𝑥) which is an increasing 
function of the elongation x, it is clear that in general it is the first few neighbouring force values,  
𝐹𝑘−1, 𝐹𝑘−2 ….that are most likely to exceed 𝐹𝑘 due to fluctuations. Let us therefore calculate 
Χ(𝑑, 𝑥𝑘, 𝑘), the probability that none of the values 𝐹𝑘−1 , 𝐹𝑘−2, … , 𝐹𝑘−𝑑 exceed 𝐹𝑘, for 𝑑 ≪ 𝑁. 
For the simplest case 𝑑 = 1 we have by eq 2.17 
 

Χ(1, 𝑥𝑘 , 𝑘) = exp−
∆𝑥𝑘𝑝(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
 

(2.18) 
Since the probability that ,  𝐹𝑘−1 does not exceed   𝐹𝑘 equals  the probability that the forward 
condition for a burst of size Δ = 1 to occur, is fulfilled. To determine Χ(𝑑, 𝑥𝑘, 𝑘) for 𝑑 ≠ 1 we need 
according eq 2.10 the conditions  
 
 

𝑥𝑘−1 < 𝑥𝑘 − 𝛿𝑘  
𝑥𝑘−2 < 𝑥𝑘 − 2𝛿𝑘 

. 

. 

. 
𝑥𝑘−𝑑 < 𝑥𝑘 − 𝑑𝛿𝑘 

(2.19) 
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This implies that a number ℎ not exceeding 𝑑 − 1 of threshold values may stay in the small 
interval (𝑥𝑘 − 𝑑𝛿𝑘, 𝑥𝑘 − 𝛿𝑘) while all the 𝑘 − 1 − ℎ remaining threshold values, below 𝑥𝑘 must be 
smaller than 𝑥𝑘 − 𝑑𝛿𝑘. The probability for this event to occur is  
 

(
𝑘 − 1

ℎ
)(

(𝑑 − 1)𝛿𝑘𝑝(𝑥𝑘))

𝑃(𝑥𝑘)
)

ℎ

(1 −
𝑑𝛿𝑘 𝑝(𝑥𝑘)

𝑃(𝑥𝑘)
)
𝑘−1−ℎ

 

(2.20) 
 

Since 𝑘 is of order 𝑁 and 𝛿𝑘 =
𝑥𝑘

𝑁−𝐾
 of order 1/𝑁 the last factor in the formula is essentially  

 

exp(−
𝑑𝛿𝑘𝑝(𝑥𝑘)𝑘

𝑃(𝑥𝑘)
) 

(2.21) 
 
and the factorial for 𝑘 ≫ ℎ can be approximated to  
 

(
𝑘 − 1

ℎ
)~

𝑘ℎ

ℎ!
 

(2.22) 
 
It remains to secure that the h values in the interval fulfil Eq. (2.19). This is again a combinatorial 
problem with d — 1 slots, so that at most one value should be found in the slot to the right, at 
most two values in the two rightmost slots, etc. 
This problem can be solved, and the probability for all conditions to be fulfilled is 
 

𝜖ℎ,∆−1 = (𝑑 − ℎ)
𝑑ℎ−1

(𝑑 − 1)ℎ
 

(2.23) 
Multiplying together Eq. (2.20) and Eq. (2.23), introducing the simplifications (2.21) and (2.22), and 
summing over the allowed values of h we have 
 

Χ(𝑑, 𝑥𝑘 , 𝑘) = 𝑒−𝑦𝑑∑
𝑑 − ℎ

ℎ! 𝑑

𝑑−1

ℎ=0

 𝑦𝑑ℎ 

(2.24) 
 
with  

𝑦(𝑥𝑘) =
𝑥𝑘𝑝(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
 

(2.25) 
So the eq 2.24 can be written like 

Χ(𝑑, 𝑥𝑘, 𝑘) = (1 − 𝑦)𝑒−𝑦𝑑∑
𝑦𝑑ℎ

ℎ!

𝑑−1

ℎ=0

+ 𝑒−𝑦𝑑
𝑦𝑑𝑑

𝑑!
 

(2.26) 
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Using 𝑦𝑑𝑒−𝑦𝑑 < e~d, the last term on the right-hand side of Eq. (2.26) is seen to vanish when d 
increases. Furthermore, the first term approaches the value it would have had if the sum had 
continued to ∞, viz. (1 −  𝑦). In conclusion, 
 

Χ(𝑑, 𝑥𝑘, 𝑘) → 𝑚(𝑥𝑘) = 1 −
𝑥𝑘𝑝(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
 

(2.27) 
when d increases. This is therefore the probability that the backward condition is fulfilled when 
the k-th fiber fails. 
 
Now, the probability of a burst of size ∆ starting at fiber k with tolerance value 𝑥𝑘 is given by the 
product of the forward and the backward probabilities Eq. (2.17) and Eq. (2.27), 
 

∆∆−1

∆!
(1 −

𝑥𝑘𝑝(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
)(

𝑝(𝑥𝑘)𝑥𝑘
1 − 𝑃(𝑥𝑘)

)

∆−1

exp−
∆𝑥𝑘𝑝(𝑥𝑘)

1 − 𝑃(𝑥𝑘)
  

(2.28) 
 
Finally, we must sum over k, since a burst of size ∆ may occur at any point before complete failure 
of the whole bundle. Since Eq. (2.28) depends only on 𝑥𝑘, we may instead integrate over the 
threshold values that there are using 𝑁𝑝(𝑥𝑘)𝑑𝑥𝑘 k-values in a small threshold interval 𝑑𝑥𝑘 .Thus, 
 

𝐷(∆)

𝑁
=
∆∆−1

∆!
∫ 𝑑𝑥 𝑝(𝑥)
𝑥0

0

(1 −
𝑥𝑝(𝑥)

1 − 𝑃(𝑥)
) (

𝑝(𝑥)𝑥

1 − 𝑃(𝑥)
)

∆−1

exp−
∆𝑥𝑝(𝑥)

1 − 𝑃(𝑥)
 

(2.29) 
 
If we call the average number of fibers that break as result of the load, like 
 

𝑎 = 𝑎(𝑥) = 𝑁𝑝(𝑥)𝑑𝑥 =
𝑥𝑝(𝑥)

1 − 𝑃(𝑥)
 

(2.30) 
the previous formula (2.29) can be written like 
 

𝐷(Δ)

𝑁
=
ΔΔ−1

Δ!
 ∫ [𝑎(𝑥)𝑒−𝑎(𝑥)]

Δ
𝑎(𝑥)−1[1 − 𝑎(𝑥)]

𝑥0

0

𝑝(𝑥)𝑑𝑥 

(2.31) 
 

This function is strongly peaked at the upper limit of integration 𝑓𝑐, since 𝑎(𝑥)𝑒−𝑎(𝑥) is maximal 
for  𝑎(𝑥) = 1. Since 𝑎(𝑥0) = 1, we have this maximum at 𝑥 = (𝑥0). So for large Δ, an expansion 
of the integral around (𝑓𝑐) can give us the dominant contribute; 
The delta-dependent factor around 𝑎 = 1 can be write like 
 

𝑎𝑒−𝑎 = exp[−𝑎 + ln(1 − (1 − 𝑎))] = 𝑒𝑥𝑝 [−1 −
1

2
 (1 − 𝑎)2] 

(2.32) 
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followed by an expansion of 𝑎(𝑓) around 𝑓𝑐. So, at the linear order, this gives 
 

𝑎(𝑥) = 1 + 𝑎′(𝑥0)(𝑥 − 𝑥0) 
(2.33) 
 

with 𝑎′(𝑥0) =
2𝑝(𝑥0)+𝑥0𝑝′(𝑥0)

𝑓𝑐𝑝(𝑥0)
 

 
 Inserting these expressions into the integral and by using Stirling’s approximation 
 

∆! = ∆∆𝑒−∆√2𝜋∆ 
valid for big ∆, i.e. for big avalanches, we have 
 

𝐷(Δ)

𝑁
~(2𝜋)−

1
2Δ−

3
2𝑝(𝑥0)𝑎

′(𝑥0)∫ e−
a′(𝑥0)

2(𝑥−𝑥0)
2
∆

2

𝑓𝑐

0

(𝑥0 − 𝑥)𝑑𝑥 = 

= (2𝜋)−
1
2Δ−

5
2𝑝(𝑥0)𝑎

′(𝑥0)
−1 [e−

a′(𝑥𝑥)
2(𝑥−𝑥0)

2
∆

2 ]
0

𝑥0

 

(2.34) 
 
The lower limit vanishes for large Δ. So the asymptotic behavior of the avalanche size distribution 
is 
 

𝐷(Δ)

𝑁
~𝐶Δ−

5
2 

(2.35) 
 
where 

𝐶 = (2𝜋)−
1
2𝑝(𝑥0)𝑎

′(𝑥0)
−1 [e−

a′(𝑥0)
2(𝑥−𝑥0)

2
∆

2 ]
0

𝑥0

 

(2.36) 
 
So we obtained a general result which is independent on the p.d.f we chose for our thresholds in 
stress. The only assumptions to do are that the p.d.f. is a continuous function and the average force 
< 𝐹(𝑓) > has a single parabolic maximum. 
 
Here for large Δ the maximum contribution to the integral comes from the neighborhood of the 

upper limit, since 𝑎(𝑥)𝑒−𝑎(𝑥) is maximal for  𝑥 = 𝑥0 . The expansion around the saddle point yields 

the asymptotic behaviour 
𝐷(Δ)

𝑁
∝ ∆−5/2. 
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2.4 Extensions of the Fiber Bundle Model 

What we described now is the so called dry fiber bundle model; as we already said, this model 

has suffered different extensions about we will talk in the next pages. We will quote the paper 

“Extensions of Fiber Bundle Model” by Kun, Raischel, Hidalgo and Hermann to give a bigger 

picture about the topic. 

So why are the extensions necessary? They are necessary to describe the fail behaviour of 

some materials, that, otherwise with the dry FBM we would not be able to describe. 

A very important class of materials that can be studied by the FBM are the so called fiber 

reinforced composites (FRC). These materials have two basic ingredients: the fibers (made in 

carbon or glass) and a carrier material called matrix in which the fibers are embedded 

according to a certain geometry. In the last years these materials where extensively used in the 

automotive and aerospace sector: in fact the FRC provide a very high strength at a relatively 

low mass and they are able to maintain their properties in different environment conditions, 

for example at high temperatures or pressure. The mechanical properties of the FRC can be 

controlled by varying the properties of the fibers, of the matrix and of the geometrical 

interface between the fibers and the matrix. This a very important point for FRC: this flexibility 

in changing their properties makes possible the use of such materials in different fields of 

applications 

 

 

Figure 2.5: Representation of a matrix with fibers oriented according to different directions (above) and visualization of 

fibers (below) at the microscope (Kun et al, 2007) 
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The figure (2.5 a) shows the geometry of a FRC: as it is possible to notice, the fibers inside the 

matrix, that are in a dispersed phase, can be characterized by different geometries: they can be 

parallel or simply “dispersed into the matrix” with random directions. Obviously this change in 

orientation can modify the properties of the whole system from a structural viewpoint, that 

appears in the constitutive law of the FRC. 

The figure (2.5 b) instead shows some carbon fibers into the matrix. In this case the fibers are 

ordered in an unique bundle and they are always embedded into the matrix. The characteristic 

length of these fibers is about 10-15 𝜇𝑚, as regards the diameter. 

So the theoretical study of the fracture of the composites must basically undertake two important 

challenges: 

on one hand what we would like to obtain applying  these materials to construction components is 

the development of analytical and numerical models, able to give in output the damage history of 

the material by the knowledge of the micro parameters of the constituents. This is the bigger 

challenge that the physicists in the last years tried to solve. 

On the other hand these models must recover the basic properties of the fracture in a composite 

that are independent on the “micro properties” of the system. So we should develop a model that 

should recover the basic properties of the fracture of a composite taking into account that these 

macroscopic properties can be dependent on the “micro properties” of the system. The 

importance of the these micro properties lays in the fact that by introducing them in our model 

and by considering their existence, it is possible to design monitoring techniques to predict the 

failure (we are now talking about the sound emissions from a sample that is suffering a damage; if 

we use the FBM we can find a direct explanations about these emissions: this is a direct 

consequence of the avalanche behaviour in our model in a stress controlled experiment, that 

depends on the thresholds assigned to the fibers in our model, that are micro properties of the 

systems, describing stochastically the presence of flaws or vacuums). 

So let’s describe briefly the behaviour of a FRC during the fracture; in this way we will understand 

why the extensions are necessary. 

When a FRC is subject to a load parallel to the fibers, most of the load is taken by the fibers. The 

matrix material and the properties of the fiber-matrix interface instead determine the interaction 

among the fibers (we are talking about the sharing load rule). For this reason we can already 

understand that the FBM represents a good tool to study the fracture into a FRC. What happens 

inside a FRC during the development of the damage? In the applications long fiber composites 

loaded parallel to the direction of the fibers often undergo a gradual degradation process; for this 

reason the constitutive behaviour 𝜎(𝜀) develops a plateau regime and the global failure is 

preceded by hardening. So this effect becomes particularly important when the bundle of the 

fibers inside the composite has a hierarchical organization, so that the failure of a little component 

can activate failures in substructures at a bigger scale length. When the fibers are embedded into 

the matrix material, after the breaking of a fiber, the matrix debonds in the vicinity of the crack. 

However because of the frictional contact at the interface the broken fiber is able to contribute to 
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the overall load on the structure, even if it suffered a partial damage. For this reason an extension 

of the dry FBM is necessary to simulate this phenomenon; in this first extension the fibers are 

allowed to fail prescribed numbers of time; this model is called Continuous Fiber Bundle Model 

(CFBM) and in the chapter we will give a further description of it by using the theory of the 

statistical ensembles used by Abaimov, Pride and Touissant for the dry FBM. 

A second possible extension is about the time deformation: under high steady stresses, materials 

may undergo time dependent deformations resulting in failure called creep rupture. This complex 

time behaviour emerges like a consequence of the time dependent deformation of the single 

constituents and because of the gradual accumulation of damage. 

The third extension is about the solid blocks that are often joined together by welding or gluing 

the interfaces, that should sustain different kinds of external loads. Interfacial failure also occurs in 

FRC, where the debonding of the fiber matrix interface can be the dominating mechanism of 

damage when the composite is sheared. So when the interface of our solid is subject to a shear, 

the interface elements do not suffer only longitudinal loads; for this reason this behaviour cannot 

be captured by the simple fiber bundle model, but a more complex model made by beams must 

be introduced (in the figure below) 

 

Figure 2.6: Third extension of the DFBM (Kun et al., 2007) 

The last extension is about the sharing load rule into the model; as we know, this rule plays a very 

important game because in the case of a stress constant experiment, it is the rule that allows us to 

redistribute the load on the “surviving” fibers. So in order to introduce a local distribution of the 

load, we must consider a stress transfer function, 

𝐹(𝑟𝑖𝑗, 𝛾) = 𝑍𝑟𝑖𝑗
−𝛾 

where 𝑟𝑖𝑗 is the distance between the j-failed fiber and the I fiber: 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 

and 𝑍 the normalization function: 
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𝑍 =∑(𝑟𝑖𝑗
−𝛾)

−1

𝑖∈𝐼

 

where the sum runs over the intact elements. So by doing a fine tuning of the parameter 𝛾, it is 

possible to spread the load of the failed fiber among the neighbours, depending on their distance. 

Obviously the analytical approach is quite complicated, so numerical treatments are necessary. 

So it is possible now to resume the extensions of the dry FBM in this figure: 

 

 

 

 

 

 

Figure 2.7:extensions of the DFBM (Kun et al, 2007) 

In the following pages we will study the CFBM, and we will arrive to its own constitutive behaviour 

in a different way with respect Kun, Hermann and Hidalgo, i.e. by applying the theory of the 

statistical ensembles used by Abaimov,  Pride and Touissant for the dry FBM. 

 

 

 

 

 

 



 
73 

 

2.5 About the Continuous Fiber Bundle Model 

2.5.1 Introduction 

As we already said, we will study a modified version of our fiber bundle model: instead of 

considering a single fiber as broken/no broken, we will suppose that each of them could suffer 

different levels of damage. This extension is necessary for better studying the central force model 

(in which as we know, each truss can damage many times before breaking) and it’s possible to use 

this simple model to study materials suffering a progressive damage during their load conditions 

like reinforced composite materials. 

A collection of 𝑁 fibers is considered; these 𝑁 fibers are strechted between two rigid supports; 

one support is held fixed while the other one is free to move 

 

figure 2.8: image of the experimental equipment for the fiber bundle model (Kloster et al, 1997) 
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In the figure above an external load, a force 𝐹𝑁 is applied on the bottom. Our CFBM will be like a 

black box in which we only know the external load applied. By these assumptions, we are able to 

introduce the overall tension/stress, defined like 

𝜏 =
𝐹𝑁
𝐴𝑓𝑁

 

(2.37) 

where 𝐴𝑓 is the longitudinal area of one fiber and 𝑁 the total number of the fibers themselves. 

It’s possible to define the strain 𝜀 applied to each fiber. When 𝜏 = 0, the length of each fiber is 𝐿0. 

Otherwise the fibers will experiment a variation in their length going to 𝐿; so the strain is defined 

like 

𝜀 =
𝐿

𝐿0
− 1 

(2.38) 

How does the model work? “The rules of the game” will be the following ones: 

1) Each fiber will experiment the same strain 𝜀 . That’s a consequence of the way in which is built 

our experimental apparatus (figure 2.8). 

2) Each fiber, at the beginning, will have the same Young modulus 𝐸 and different strenghts in 

stress (𝜎1𝑐, … . , 𝜎𝑛𝑐). 

These strengths are taken by a probability density function (p.d.f.) 𝑝(𝜎), for which we can define a 

cumulative distribution 𝑃(𝜎) = ∫ 𝑝(𝜎) 𝑑𝜎
𝜎

0
. Obviously the sthrenghts are given according to the 

quenched or the annealed disorder. Why do we impose a pdf over the strenghts and we do not do 

the same for the elastic properties? That’s why the distribution of the elastic properties of 

individual fibers narrows down much faster with the length of the fibers than does the distribution 

of the strength of single fibers, since the elastic properties are like an average along the fiber while 

the strength is determined by its weakest point. 

3) If 𝑓𝑖 ≥ 𝜎𝑖𝑐 

where 𝑓𝑖  is the force acting on the i-fiber and 𝜎𝑖𝑐 its threshold, then the fiber breaks. 

A fiber can break 𝑘𝑚𝑎𝑥  times and every time its Young modulus is reduced by a factor 𝑎 becoming 

𝑎𝑘𝐸 with 0 ≤ 𝑎 < 1. A fiber with a Young Modulus equal to 𝑎𝑘𝑚𝑎𝑥𝐸 will be considered as broken. 

4) It’s possible to realize two different experiments: to apply a strain 𝜀 from the external 

environment or a force 𝐹. In both cases, because of the structure of our experimental apparatus, 

the strain suffered by the fibers will be always the same (rule 1). If we perform a force controlled 

experiment, when a fiber suffers a damage, its Young modulus decreases and its load is taken by 

other fibers. This can create an avalanche behaviour that does not happen in the case of strain 

controlled experiment (Kun et al, 2000). 
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However, the important thing to notice is that, even if 𝜀 is the same for each fiber, in the case of 

strain or stress controlled experiment, there will be a distribution of the forces that each fiber will 

suffer inside the model. That’s why the Young modulus of each fiber is given by 𝐾𝑖 = 𝐸𝑎𝑘  and this 

can be different from a fiber to another one, because it depends on the history of the fiber, i.e. 

from how many times the fiber has damaged before arriving to suffer a given strain. 

4) The quantity of fundamental importance is the probability  𝑃𝑖(𝜀) that during the load of a 

specimen, from 0 to 𝜀, a fiber can damage 𝑘 times with 𝑖 = 0,1, … . , 𝑘𝑚𝑎𝑥. We will define these 

probabilities in the following according to the annealed and quenched disorder. These 

probabilities can be built by the pdf that we introduced previously and they respect the 

normalization condition  

∑ 𝑃𝑖 = 1

𝑘𝑚𝑎𝑥

𝑖=0

 

(2.39) 

 

 

 

So, 

𝑃0(𝜀) = 𝑝𝑟𝑜𝑏 𝑡ℎ𝑎𝑡 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝜀 𝑎 𝑓𝑖𝑏𝑒𝑟𝑖𝑠 𝑛𝑜𝑡 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 

  𝑃1(𝜀) = 𝑝𝑟𝑜𝑏 𝑡ℎ𝑎𝑡 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝜀 𝑎 𝑓𝑖𝑏𝑒𝑟 𝑖𝑠  𝑑𝑎𝑚𝑎𝑔𝑒𝑑 1 𝑡𝑖𝑚𝑒 

. 

. 

. 

  

                   𝑃𝑘𝑚𝑎𝑥(𝜀) = 𝑝𝑟𝑜𝑏 𝑡ℎ𝑎𝑡 𝑎𝑡 𝑔𝑖𝑣𝑒𝑛 𝜀 𝑎 𝑓𝑖𝑏𝑒𝑟 𝑖𝑠 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑘𝑚𝑎𝑥 𝑡𝑖𝑚𝑒𝑠 

These probability density functions were already obtained in literature (Kun et al., 2000). So in the 

following we will introduce their analytical expressions; if we suppose to set the Young modulus of 

the fibers equal to the unity, basically there are two sets of functions   𝑃𝑖(𝜀), depending on the 

kind of disorder we chose:  
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Figure 2.9: stress strain law for the quenched (a) and annealed disorder (Hidalgo, R. C., Kun, F. & Herrmann, 2001) 

In the “quenched” disorder the threshold in stress is fixed during the whole life of the fiber 

(fig.2.9) and in the figure the threshold is called 𝑑𝑖. It’s possible to show that the probability 𝑃𝑖(𝜀) 

can be cast in the form: 

𝑃0(𝜀) = 1 − 𝑃(𝜀) 

and  

𝑃𝑖(𝜀) = 𝑃(𝑎𝑖−1𝜀) − 𝑃(𝑎𝑖𝜀)𝑓𝑜𝑟 𝑖 > 0 

 

(2.40) 

For the “annealed” disorder instead, the threshold is not fixed; if a fiber has got the possibility to 

fail 𝑘𝑚𝑎𝑥  times, after the fail number 𝑖, a new threshold in stress from the same probability 

density function is chosen. From a physical wievpoint this is due to the fact that in the CFBM, a 

fiber represents a portion of a material (for example in the example of the composites, it can 

represent the carbonium fiber and a portion of the matrix around it); for this reason it is possible 

that after the damage, there could be like a reorganization of the structure from a mesoscopic 

viewpoint that can lead to a new threshold, taken obviously by the same p.d.f. This can also 

happen in the quenched disorder, with the difference that the new thresholds taken are so close 

to the previous ones that can be considered the same. So the probability functions for the 

annealed disorder can be written 



 
77 

 

𝑃𝑖(𝜀) = [1 − 𝑃(𝑎𝑖𝜀)]∏𝑃(𝑎𝑗𝜀)

𝑖−1

𝑗=0

   𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑘𝑚𝑎𝑥 − 1 

and  

  

𝑃𝑘𝑚𝑎𝑥(𝜀) = ∏ 𝑃(𝑎𝑗𝜀)

𝑘𝑚𝑎𝑥−1

𝑗=0

   𝑓𝑜𝑟 𝑖 = 𝑘𝑚𝑎𝑥 

(2.41) 

 

5) It’s important to define the variable damage 𝐷; in the simple Fiber Bundle Model, we have 

𝐷𝐹𝐵𝑀 = 1 −
∑ 𝐸𝑖/100𝑀𝑃𝑎
𝑁
𝑖=1

𝑁
 

(2.42) 

where  𝐸𝑖/100𝑀𝑝𝑎 is the Young Modulus of a single truss, normalized to 1. The term  
∑ 𝐸𝑖/100𝑀𝑃𝑎
𝑁
𝑖=1

𝑁
 in this context, could be considered like an order parameter (Vespignani, Zapperi) for 

our model. In fact, by defining the fraction of “alived” trusses like 

𝜑 =
∑ 𝐸𝑖/100𝑀𝑃𝑎
𝑁
𝑖=1

𝑁
 

(2.43) 

it’s obvious that this parameter 𝜑 reflects the simmetry of the system between the two phases 

(the non broken and the broken one). 

So    

                                                                             

𝐷𝐹𝐵𝑀 = 1 − 𝜑 

(2.44) 

 

In the DFBM, by analogy with the FBM, we could define the damage like 
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𝐷𝐷𝐹𝐵𝑀 𝑡𝑜𝑡 = 1 −
∑

∑ 𝐸𝐾𝑚𝑎𝑥
𝑗=0 𝑖𝑗

100𝑀𝑃𝑎
𝑁
𝑖=1

𝑁
    

                                                                                              

(2.45) 

                                                                                                                        

where 𝑁 is always the total number of trusses in our system while 𝐾𝑚𝑎𝑥 represents the 

maximum number of times for which one truss can suffer a damage. However, it makes no sense 

to define 𝐷𝐷𝐹𝐵𝑀 because for a given value of 𝐷𝐷𝐹𝐵𝑀 𝑡𝑜𝑡 we could have different combinations of 

simple damages into the model, i.e. 𝐷0, 𝐷1…  𝐷𝐾𝑚𝑎𝑥, which are the fractions of fibers damaged 0 

times, the fraction of fibers damaged 1 time and so on. That’s why there will be different fractions 

of fibers characterized by a different level of damage. If we defined the damage in analogy with 

the FBM, i.e. like (2.45), in the summation we would lose the way in which the damage is spread 

into the model. For this reason, for the CFBM, it’s important to redefine the damage and to 

consider a “state” of damage made by 

𝐷𝐷𝐹𝐵𝑀 = {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥}                                                                                             

(2.46) 

So, the knowledge of the variable total damage (2.45) , does not allow us to know how the simple  

damages are spread into the model; while the knowledge of the simple damages, 

{𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥} 

(2.47) 

that build the state of damage (2.46) allows us to build the variable “total damage” that is the 

(2.45). In this way we are able to know how many terms 𝑎0𝐸, 𝑎1𝐸,… . , 𝑎𝑘𝑚𝑎𝑥𝐸  there are (i.e. the 

Young modulus of all the fibers) and to build (2.45). 

Obviously, both the single damages 𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥 and so, the total damage 𝐷𝐷𝐹𝐵𝑀 𝑡𝑜𝑡, are 

random variables and the way in which they will appear into the model for a given strain/stress, 

will depend on the way in which the thresholds of our fibers are spread for a given realization. This 

means exactly that, it’s possible to choose the thresholds to assign to the fibers, picking them up 

from a p.d.f. So, if we perform for the first time an experiment in which we pull our sample, we 

will obtain a state of damage 

𝐷𝐷𝐹𝐵𝑀 = {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥} 

(2.48) 

and by knowing these fractions of fibers, we know as well how many terms 𝑎0𝐸, 𝑎1𝐸,… . , 𝑎𝑘𝑚𝑎𝑥𝐸  

there are.So the total damage will be 
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𝐷𝐷𝐹𝐵𝑀 𝑡𝑜𝑡 = 1 −
∑ ∑ 𝐸𝐾𝑚𝑎𝑥

𝑗=0 𝑖𝑗
/100𝑀𝑃𝑎𝑁

𝑖=1

𝑁
 

(2.49) 

If we perform a second time the same experiment, the thresholds given to the fibers will always 

belong to the same p.d.f but they will be different. And for this reason they will give us a new state 

of damage 

𝐷𝐷𝐹𝐵𝑀′ = {𝐷0′, 𝐷1′, … . . , 𝐷𝑘𝑚𝑎𝑥′} 

(2.50) 

and a total damage will be now different, because the fractions of fibers with 

𝑎0𝐸, 𝑎1𝐸,… . , 𝑎𝑘𝑚𝑎𝑥𝐸  will change: 

𝐷𝐷𝐹𝐵𝑀 𝑡𝑜𝑡′ = 1 −
∑ ∑ 𝐸𝐾𝑚𝑎𝑥

𝑗=0 𝑖𝑗
/100𝑀𝑃𝑎𝑁

𝑖=1

𝑁
 

(2.51) 

By these considerations, we understand from a physical viewpoint that the variable “damage” is 

a) A set of Fractions of fibers  that are damaged 0,1, … , 𝑘𝑚𝑎𝑥 times 

So  

𝐷𝐷𝐹𝐵𝑀 = {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥} = {
𝑛0
𝑁
,… . ,

𝑛𝑘𝑚𝑎𝑥

𝑁
} 

(2.52) 

 

b) They are random variables because their apparitions are a direct consequence of the 

thresholds assigned to the fibers (that are random variables themselves). 

 

2.5.2 Microstates and macrostates 

We are ready now to define the microstates and macrostates of our model. Let’s suppose to 

perform a strain constant experiment (from this point we will be working into the 𝜀 ensemble). 

The concept of microstate and macrostate arises in the way of looking to the same system in 

two different modes; in the first one we are looking to our system from a microscopical 

viewpoint; for example, for a gas, this point of wiev gives us the possibility to know the 

position and the velocity of the particles in each time by leaving from initial conditions; the 

knowledge of these “microvariables” allows us to calculate the macrovariables of the system 

like pressure, temperature. These macrovariables describe the system from a macroscopic 

viewpoint, using a bigger scale lenght. So if we leave from the knowledge of a microstate, we 

are able to build the macrostate of the system in each time like a b correspondence; but if we 



 
80 

 

think on the reverse, i.e., we leave from the knowledge of the macrostate and its variables, for 

sure different microstates will correspond to the realization of the same macrostate (for gases 

a given macrostate with pressure and temperature will correspond to different combinations 

of velocity and position of the particles). The bijective correspondence does not exist anymore. 

So the conclusion to which we arrive is that a macrostate can display in different microstates 

of the system. Of course if we think of a gas inside a box, we can understand that the number 

of particles it contains is huge, very close to 1023. The argument used by the statistical physics 

to study such a system, is to imagine that an infinite number of mental copies of the same 

system is generated because of the uncertainty generated by thermal agitation. Obviously 

each mental copy of the system in this model, with its set of positions and velocities is a 

microstate. 

Let’s apply now this argument to our model. 

The fact that we are assigning thresholds in stress to our fibers, creates the same kind of 

uncertainty we observed for a gas: for this reason, even for the FBM we can imagine that 

infinite mental copies of the system are generated because of the extraction of the thresholds 

from the probability density function. And it is obvious that at a given strain, each mental copy 

will have a different state of damage, depending on chosen thresholds.  

What we must define now, is the concept of microstates and macrostates for the FBM. It will 

be easier to understand the point by analysing the model by Abaimov for FBM. In the FBM, the 

microstates are the configurations of intact and broken fibers. For example, if 𝑁 = 3, all the 

possible kind of microstates in which the mental copies of the system fall, are 

{|||} {|| ∗} {| ∗ |}  {∗ ||}{| ∗∗}{∗ | ∗}{∗∗ |} {∗∗∗} 

where * is for broken and | is for intact. In other words, by prescribing that each fiber is 

broken or alive, we make a particular microstate. As we said at first, by knowing a microstate 

of the system, we are able to know exactly the microscopical properties of the system itself: 

for a gas they were position and velocity of the particles; for our FBM, they are the knowledge 

of WHICH KIND OF FIBERS ARE INTACT AND BROKEN (the first one intact, the second one 

broken and so on..). By knowing one microstate of the system, we are able to know the 

correspondent macrostate that will be described by a macrovariable : the damage 𝐷 (for gases 

it was the pressure or the temperature). In fact this variable 𝐷  can be considered like a 

macrovariable because it only gives us the different fractions of broken fibers and it does not 

say us which fibers are broken or not. It’s a variable that introduces the notion of damage from 

a bigger scale length. 

So a fluctuation {{𝐷}} is a macrostate when its damage is 𝐷. For the system 𝑁 = 3,  the three 

microstates {|| ∗} {| ∗ |}{∗ ||} define a fluctuation 𝐷 = 1/3. 

Obviously, as we said above, a macrostate can display in different microstates because the 

bijective correspondence does not exist anymore. We can try to count them but we cannot say 

a priori which of them will correspond to our macrostate like in gas happens. In a gas to a given 

pressure or temperature, different states of position/velocity of the particles will correspond; 

and we cannot say which of them is the one in which the macrostate displays. 
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So the damage is fixed (𝐷 = 1/3); to define a macrostate we are counting the possible ways in 

which this damage can appear,i.e. three. 

The same arguments apply for CFBM; a microstate is a general configuration in which we can 

observe generic states of damage {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥} and in which we know exactly which 

fibers are damaged 0,1, . . , 𝑘𝑚𝑎𝑥 times. A macrostate instead in which we observe a given 

damage 

 

𝒟 = {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥} 

is the set of all the microstates that have a state of damage 𝒟 = {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥} and in 

which the macrostate itself can displays with equal probability. It is described by the 

macrovariable  𝒟 in which we lose the knowledge of which fibers are damaged. We only know 

the fractions of them. Even now, in order to count the microstates associated to our 

macrostate, we fix the state of damage 𝒟 and the single simple damages are exchanged 

among the fibers (like in the example for simple FBM); let’s calculate it analytically. 

From a physical viewpoint, what’s the probability  𝑝𝐷 to observe a microstate? 𝑝𝐷 is the 

probability to have a particular microstate in which we observe a particular state of damage 

𝒟 = {𝐷0, 𝐷1, … . . , 𝐷𝑘𝑚𝑎𝑥}. 

So 

𝑝𝐷 = 𝑃0
𝑁𝐷0𝑃1

𝑁𝐷1𝑃2
𝑁𝐷2 … . . 𝑃𝑘𝑚𝑎𝑥

𝑁𝐷𝑘𝑚𝑎𝑥  

where a generic 𝑁𝐷𝑖 = 𝑛𝑖, i.e. the number of fibers damaged i-times. 

This probability 𝑝𝐷 however, from a physical wievpoint can be written like 

𝑝𝐷 =

=
# 𝑜𝑓 𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒  𝑠𝑦𝑠𝑡𝑒𝑚 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑠𝑝𝑟𝑒𝑎𝑑 𝑖𝑛 𝐷0, 𝐷1. , 𝐷𝑘𝑚𝑎𝑥  

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
 

 

In other words, we can compute the number of all copies of our system (because the disorder into 

the threshold generates infinite systems) and we choose only the number of systems whose 

thresholds, at a given 𝜀, allow to have {𝑛0 𝑛1… . . 𝑛𝑘} fibers damaged 0,1, . . , 𝑘𝑚𝑎𝑥 times.These 

two numbers are impossible to calculate but we can know their ratio; that’s why we are able to 

compute the probability to have a configuration in which we observe {𝑛0 𝑛1… . . 𝑛𝑘} fibers 

damaged 0,1, . . , 𝑘𝑚𝑎𝑥 times. From a mathematical wievpoint, the fact that we are choosing some 

systems into the set of all the possible mental copies of the system given by the disorder, appears 

in the functions 𝑃0 𝑃1… . 𝑃𝐾𝑚𝑎𝑥, that are built by the p.d.f. that generates the disorder itself. 

So, now, we can imagine a big set in which we can insert all the mental copies of the systems 

(which differ one another because of their thresholds, that however are picked by the same p.d.f) 

and at a given 𝜀, each system falls into different subsets in which we have different states of 

damage D, D’, D’’, D’’’ and so on. 
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Figure 2.10: the ensemble of strain: each system drops in a subset depending on its state of damage D 

Each system into a particular subset is different from the other ones into the same subset (in fact 

they have different thresholds but at a given strain they will have the same state of damage 𝐷). 

However in each 𝐷, we can have also systems that have the same damage 𝐷 and in which the 

thresholds of the fibers are manteined and exchanged among the fibers themselves.The number 

of ways in which we can perform this exchange is given by the multinomial coefficient: 

(
𝑁

𝑛0 𝑛1… . . (𝑁 − 𝑛0 −⋯ .−𝑛𝑘𝑚𝑎𝑥
) 

that gives the number of ways in which it’s possible to put 𝑁 objects in 𝑘𝑚𝑎𝑥 boxes, stating that 

𝑛0 are in the first one, 𝑛1 in the second one and so on. 

This means that the total fraction of systems we can find in each subset 𝐷,𝐷’, …, taking into 

account the exchange of the single damages among the fiber, provided by the multinomial 

coefficient, is the probability to have a macrostate or fluctuation {{𝐷}} or state of damage 𝐷 

according to the definition given above. 

So the probability to have a macrostate or in general, a state of damage 𝐷 is: 

𝑃𝐷 = (
𝑁

𝑛0 𝑛1… . . (𝑁 − 𝑛0 −⋯ .−𝑛𝑘𝑚𝑎𝑥
)𝑃0

𝑁𝐷0𝑃1
𝑁𝐷1𝑃2

𝑁𝐷2… . . 𝑃𝑘𝑚𝑎𝑥
𝑁𝐷𝑘𝑚𝑎𝑥  
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Figure 2.11: differences between microstates and macrostates 

 

 

2.5.3 Thermodynamics and Entropy 

We can now introduce the entropy like a Shannon’s measure of the disorder: 

 

𝑆 = −∑𝑝𝐷𝑙𝑜𝑔 𝑝𝐷
𝐷

 

Now let’s consider the definition of entropy (the previous claim is correct for a non degenerate 

system): this physical quantity we introduced into the system can be considered like a measure of 

the disorder. It comes out like a summation over the states of damage and for this reason it is not 

defined only for one copy of the system; so it makes no sense to say that one mental copy of the 

system has got a given entropy; it is an ensemble quantity like the internal energy (as we will see). 

It measures the disorder (that in theory of the information is linked to the knowledge of how are 

deployed the mental copies of the system into the subsets of the ensemble). If it is small, we know 

for certain that almost all the mental copies are in a given subset of damage. For example 𝑆 = 0 

means that all the systems are into the state 𝐷 in which 
𝑛0

𝑁
= 1 or into the state in which       

𝑛𝑘𝑚𝑎𝑥

𝑁
= 1. When it is large instead, it means that a given strain the various mental copies of the 

system are spread into the subsets of damage of the ensemble. So, from a physical viewpoint, it is 

linked to the total fluctuation of the fractions of fibers and we expect to find the same point of 

maximum for these two physical quantities. 

Basically the entropy is “an average ensemble” of the function log  𝑝𝐷  . 
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It is linked to the mean value of the probability to have one microstate with damage 𝐷 (one small 

black point into the previous figure), i.e  𝑝𝐷. In this probability 𝑝𝐷, as we already said there is the 

fraction of systems with different thresholds that have this particular state of damage. However, 

in our system, for a given state of damage 𝐷, there exist “degenerate states”, whose number is 

given by the multinomial coefficient, fixed the state of damage 𝐷; the probability that takes into 

account these degenerate states is the probability to have a macrostate and in order to perform 

the averages in the ensemble, we must consider it; in fact from a physical viewpoint, if we picked 

up from the box of the damage 𝐷 some mental copies of our system, we could have, among the all 

possible results, two identical systems with exchanged and identical thresholds;  for this reason we 

must consider the level of degeneracy in the ensemble averages; from a physical viewpoint the 

degenerate states take part to the mean values, because they can come out from our extraction. 

So in the ensemble averages, the probability of a microstate  𝑝𝐷 with whom we compute in 

thermodynamic the averages like 

< 𝐴 > =∑𝑝𝑖𝐴𝑖
𝑖

 

will have to take inside the corrective factor (multinomial coefficient); so 

< 𝐴 > =∑𝑃𝑖𝐴𝑖
𝑖

 

 

and this concept is true also for the mean value of log  𝑝𝐷 that will be for a degenerate system like: 

𝑆 = −∑𝑃𝐷𝑙𝑜𝑔 𝑝𝐷
𝐷

 

 

If we follow this assumption, we can obtain the same result by Pride Toiussant for the calculation 

of the entropy for the system broken/no broken. 

So now let’s apply the concept of entropy to our system. 

How does this concept apply to our model? We remind that we are in the strain-ensemble. So 

when we move from 𝜀 to 𝜀 + 𝑑𝜀 there will be a work carried out in reversibly way by stretching 

the fibers plus an additional work carried out due to the irreversible fibers breakings. (Pride et al., 

2002) 

Let’s consider for example three subsets of the ensemble, 𝐷, 𝐷’’ 𝑎𝑛𝑑 𝐷’’’. In these two subsets we 

will find different systems at a given strain 𝜀 represented by dots. Due to the breaking or damage, 

some members of the subset D’’’ in the ensemble (in fig 4) will be led out of their current state of 

damage to a new state of damage at 𝜀 + 𝑑𝜀 , while the ones that were previosly at 𝜀 into  other 

subsets, will enter into the state of damage 𝐷. This “flux” of systems is represented by the arrows 

in the figure below. 
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Figure 2.12: flux of the mental copies of the system because of an infinitesimal change of strain 

 

From a mathematical viewpoint, if some systems experience a change in their state of damage in 

moving from 𝜀 to 𝜀 + 𝑑𝜀, the number of systems into the subests of damage 𝐷’’’ changes, so the 

fractions of systems will change as well, being like 𝑑𝑝𝐷. This affects the term 𝑝𝐷𝑙𝑜𝑔 𝑝𝐷 into the 

summation that defines the entropy and so the entropy itself. And the same happens for other 

subsets 𝐷, 𝐷’’, 𝐷 and so on that experience like a variation in number of their members because of 

the flux of system we described at first. So each term of the summation of the entropy 

experiences an infinitesimal change in going from 𝜀 to    𝜀 + 𝑑𝜀: however this last sentence is true 

for a given subset 𝐷’’’ only and only if at the infinitesimal change of strain there will be a variation 

of mental copies of the systems into the subset 𝐷’’’. If yes, in fact this means some mental copies 

of the system have broken in changing the load condition; and it’s fair that the entropy grows! If 

not, no systems in 𝐷’’’ experience a breaking and so the disorder should remain the same. So the 

single term 𝑝𝐷𝑙𝑜𝑔 𝑝𝐷 does not change at all. (The other terms in the summation 

𝑝𝐷′𝑙𝑜𝑔 𝑝𝐷
′       𝑝𝐷′′𝑙𝑜𝑔 𝑝𝐷′′    etc could vary and so they however could affect the variation of the 

summation and so of the entropy). 

It’s possible to introduce the average energy density: 

 

𝑈 =∑𝑃𝐷𝐸𝐷
𝐷

 

                                                                                                                    

(2.53) 

where 𝐸𝐷 is the energy required to create a single state of damage 𝐷 when the strain is  𝜀. 

Furthermore this energy must be averaged over all the members that have been led into the state 

𝐷. In fact, as it will be clearer later, the energy we need to create a single state of damage 

depends on the strenghts of the particular mental copy of the system. So it’s possible to find 

different systems into a a state of damage 𝐷 (everyone of them with different thresholds): at a 

given 𝜀 they all will have the same damage 𝐷. But by having different thresholds, the energy 

required to make them arrive at this damage 𝐷 at this strain 𝜀, can be different! We will need to 

perform an average over the thresholds to sustain that each element into the subset (that have 

the same damage 𝐷) will require the same energy  𝐸𝐷 to be created. 
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Now if we move from 𝜀 to 𝜀 + 𝑑𝜀, the internal energy changes like: 

 

𝑑𝑈 =∑𝐸𝐷𝑑𝑃𝐷 +∑𝑃𝐷𝑑𝐸𝐷
𝐷𝐷

                                                                                                                        

(2.54) 

Here, the first term is the energy we use to change the disorder. So, let us look at the figure (2.12) 

 

 

 

if we always consider the state of damage 𝐷, we are putting out some systems and introducing 

other systems into the set 𝐷 (that thanks to our average became the set 𝐸𝐷 as well). It means that 

some systems are breaking or damaging; in fact we can observe an infinitesimal variation of the 

fraction of systems 𝑑𝑃𝐷. 

Because of this breaking, we should observe a change infinitesimal in the disorder and so in 

entropy. So it’s fair to assume that 

𝑇𝑑𝑆 ≡∑𝐸𝐷𝑑𝑃𝐷
𝐷

 

                                                                                                              

(2.55) 

What about the second term? Each 𝑝𝐷 is fixed here; only 𝐸𝐷 changes; so it means that we are 

increasing the energy of each system without damaging it but only by stretching it. So 

𝑓𝑑𝜀 ≡∑𝑃𝐷𝑑𝐸𝐷
𝐷

 

                                                                                                               

(2.56) 

Be careful in Eq. (2.56), we have also the irreversible changes due to the breakings that do not 

change the occupation numbers 𝑃𝐷 (Pride et al., 2002); for example, by increasing 𝐸𝐷, it will be 

possible that 𝑛 systems will go out from the subset 𝐷 and n systems will enter to 𝐷, so that 𝑃𝐷 

remains constant. 
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NB: We have to notice that it’s correct to use 𝑃𝐷instead of 𝑝𝐷in describing the flux of the mental 

copies of the system; Obviosly if one mental copy of the system suffers a change in damage, its 

degenerate states (which are identical from a physical wievpoint) will do; so it’s correct to find 

𝑑𝑃𝐷into (2.55) and (2.56). 

The proportional constants are defined like: 

𝑇 = (
𝜕𝑈

𝜕𝑆
)
𝜀
 

                   

(2.57) 

𝑓 = (
𝜕𝑈

𝜕𝜀
)
𝑆

 

                 

(2.58) 

That’s why 𝑈 = 𝑈(𝑆, 𝜀). 

So in the end, we obtain 

𝑑𝑈 = 𝑇𝑑𝑆 + 𝑓𝑑𝜀 

                                    

(2.59) 

What can we say about 𝑑𝑈? We know that this term here is the average elastic energy. So on 

average this term here must be related  to  𝜏𝑑𝜀, where 𝜏 is  the overall tension averaged into the 𝜀 

ensemble. A purpose of us will be to compute this quantity. The overall tension 𝜏  is something 

different from the state function 𝑓. 

For this reason, Eq. (2.59) becomes 

(𝜏 − 𝑓)𝑑𝜀 = 𝑇𝑑𝑆 
                   

(2.60) 

A positive increment in  𝑑𝜀 leads us to   𝑑𝑆 > 0 only if   (𝜏 ≠ 𝑓) . And this means that when 𝜏 ≠ 𝑓, 

some systems into our ensemble have suffered damage. 

 

2.5.4 Hamiltonian of the system 

Let’s compute now the energy 𝐸𝐷 associated to the state of damage 𝐷. As we know this is the 

energy required to create this state of damage and as we can imagine, this physical quantity will 

depend on the particular threshold we assign to the system. So as we said at first for a given state 

of damage 𝐷, there will be different energies associated to it, depending on the thresholds given 

to our fibers. 
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Let’s try to show this from a mathematical viewpoint: 

we are dealing with a system that has got 𝑛0 fibers alived, 𝑛1 fibers damaged one times, 𝑛2 fibers 

damaged two times and so on. So the question we are addressing is: what’s the energy required to 

create a state in which the fibers have the state of damage  {
𝑛0

𝑁
, … . ,

𝑛𝑘𝑚𝑎𝑥

𝑁
}? 

If we suppose to apply a constant strain 𝜀 and we want to arrive to this state of damage, the total 

stress on the whole bundle will be: 

𝐹𝑒𝑥𝑡
𝑁𝐴

= 𝐸 𝜀 (
𝑛0
𝑁
+. . +𝑎𝑘𝑚𝑎𝑥−1

𝑛𝑘𝑚𝑎𝑥−1

𝑁
) 

         

(2.61) 

where 𝑁 is the number of fibers in the model while 𝐴, the longitudinal section of one fiber. In 

(2.61) we do not have the last term, i.e. 𝑎𝑘𝑚𝑎𝑥 𝑛𝑘𝑚𝑎𝑥

𝑁
, because we are supposing that the 𝑛𝑘𝑚𝑎𝑥  

fibers have failed and cannot support any load. If we liked to recover the “work hardening” 

behavior, we would have to insert this last term; that’s why the fibers are not allowed to fail and 

so from a given strain applied, everyone of them will have failed 𝑘𝑚𝑎𝑥  times but will be able to 

sustain a load. So, for the work hardening we expect to recover like an elastic behavior.We will see 

later. 

In order to understand easy the mathematical tools we will use, let’s think of the FBM for a 

moment. Using the work of Touissant and Pride, we have already the energy required to create a  

damage 𝐷, where m fibers are broken; by calling the thresholds (in strains) 𝜀1 𝜀2… 𝜀𝑛 ordered 

from the smallest one to the bigger one (we know each of them), the energy will be: 

𝐸𝐷 = ∫ 𝜏(𝑥)𝑑𝑥
𝜀

0

= ∑ ∫ 𝜏𝑚(𝑥)𝑑𝑥
𝜀𝑚+1

𝜀𝑚

= ∑ (1 −
𝑚

𝑁
)(

𝜀𝑚+1
2

2
−
𝜀𝑚
2

2
)

𝑛

𝑚=0

𝑛

𝑚=0

 

(2.62) 

where obviously 𝜏𝑚(𝑥) = 𝑥 (1 −
𝑚

𝑁
) and 𝜀𝑚+1 = 𝜀. 

A direct recursion relation gives us 

𝐸𝐷 = (1 − 𝑛/𝑁)
𝜀2

2
+ ∑

𝜀𝑚
2

2𝑁

𝑛

𝑚=1

 

(2.63) 

where we recognize in the first term the energy that can be recovered by decreasing the strain, 

elastically, while the second one represents the energy irreversibly lost because of the breaking 

process. 
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Fig 2.13: The constitutive law stress- strain for the FBM in a strain controlled experiment: the solid line is the load path 

followed during the experiment while the dashed one is the trajectory path the system would follow if the strain was 

decreased during the experiment. When a fiber breaks at a given strain, the load on the fiber must be reduced; this 

generates a drop into the constitutive law (Pride et al., 2002 ) 

 

It’s possible to recover this relation by looking at the figure 2.13, from a physical viewpoint. The 

thresholds are given in strain for the simple FBM (we will see later the consequences from a 

physical viewpoint) and are ordered. The experiment is a strain constant one; this means, as we 

explained in the introduction that when a threshold is reached, the constitutive behaviour has got 

a vertical drop. In the end we arrive to the final damage 𝜀 with three fibers broken. So in the end, 

the total stiffness of the system has changed from  𝑌(𝐸) = 𝐸 to  𝑌(𝐸) =
𝑁−3

𝑁
𝐸. So, with this 

residual stifness, the system will have an energy that can be recovered from an elastic viewpoint, 

going back to 0 which is: 

𝐸𝑟𝑒𝑐 = (1 − 3/𝑁)
𝜀2

2
 

This is the energy in the figure 2.13. However, because of the breakdown, we spent a further 

amount of energy, that is represented by the area 1, 2, 3. This energy was used to create the state 

of damage 𝐷 = 3/𝑁 but it cannot be recovered anymore because of the breakdown. Let’s 

compute for example the second piece of area; let’s define the area of the triangle 

𝐴𝑖2 =
𝜏2𝜀2
2

 

and 

𝐴𝑓2 =
𝜏2

∗𝜀2
2

 

 

where 𝜏2 is the value of stress into the bundle before reaching the second threshold 𝜀2 and 𝜏2
∗ its 

value after the drop. The amplitude of the drop is given by 
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∆(𝜏) = 𝜏2 − 𝜏2
∗
= (1 −

1

𝑁
) 𝜀2 − (1 −

2

𝑁
) 𝜀2 

So the area we need to calculate (which enters into the plastic energy that cannot be used 

anymore) is: 

𝐴𝑖2 − 𝐴𝑓2 =
∆(𝜏)𝜀2
2

=
𝜀2
2

2𝑁
 

To the same result we can arrive for the first area  

𝐴𝑖1 − 𝐴𝑓1 =
∆(𝜏)𝜀1
2

=
𝜀1
2

2𝑁
 

and for the third one; in general the summation of all these areas above the straight line that is 

swept by the system if we relax it, is: 

𝐸𝑝𝑙 = ∑
𝜀𝑚
2

2𝑁

𝑛

𝑚=1

 

This energy is summed to the elastic energy that we have already computed and that can be 

recovered; so the total energy to create a state of damage 𝐷 is (2.63), i.e. 

𝐸𝐷 = (1 − 𝑛/𝑁)
𝜀2

2
+ ∑

𝜀𝑚
2

2𝑁

𝑛

𝑚=1

 

(2.64) 

 

So, that’s the energy we spend to create a microstate with damage 𝑛/𝑁. And as it’s possible to 

see, this energy (which is the area below the curve) depends on the disorder.  In this picture it’s 

easy to see that the state of damage we are calculating is 𝐷 =
3

𝑁
 . From last Eq above we notice 

that if the three thresholds change, we always obtain a state of damage 3 but in this case the 

energy required to create the state changes. This is obvious by looking at the area below the 

curve: to change the thresholds, means to change the area below the curve and so the energy 

itself. So if we are interested in having one average energy to create a microstate 𝐷 with damage 

𝑛/𝑁, we need to average the term depending on the thresholds over the disorder; so 

ℎ(𝜀) ≡<
𝜀𝑚
2

2
>𝑑𝑖𝑠=

1

𝑃(𝜀)
∫

𝑥2𝑝(𝑥)

2
𝑑𝑥

𝜀

0

 

where 𝑝(𝑥) is the p.d.f. and 𝑃(𝜀) the cumulative distribution in strain. 

So the Hamiltonian of the system will be like: 

𝐻 = (1 − 𝑛𝐷/𝑁)
𝜀2

2
+
𝑛𝐷
𝑁
 ℎ(𝜀) 

that will be the average work density required to create a state with damage 𝐷. 
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Now let’s apply the same arguments to our CFBM, so the threshold in stress (fixed or variable) can 

be thought as associated a 𝑘𝑚𝑎𝑥  thresholds in strain. 

So, by this kind of picture, we can leave from the smallest one and going towards the bigger one 

(it’s possible that two consecutive strain thresholds will belong to the same fiber. This means that 

in increasing the external strain by an infinitesimal quantity, the same fiber will break two 

consecutive times. Then it will be the turn of another one and so on. However, we can imagine 

that when one threshold is reached, we will see a drop into the curve of the strain constant 

experiment.) So let’s calculate the energy which is lost (no more recovered) because of the 

damage of one fiber; let’s consider the 𝑚 − 𝑡ℎ fiber and let’s suppose this has reached its            

𝑖 + 1 − 𝑡ℎ threshold, with 𝑖 + 1 < 𝑘𝑚𝑎𝑥 in strain, 𝜀𝑖. This means as well that our threshold has 

already damaged 𝑖 times; 

The stress before the drop will be 

𝜏𝑖𝑛 = (
𝑛𝑜
𝑁
+. . +𝑎𝑖−1

𝑛𝑖−1
𝑁

+ 𝑎𝑖
𝑛𝑖
𝑁
+. . +𝑎𝑘𝑚𝑎𝑥−1

𝑛𝑘𝑚𝑎𝑥−1

𝑁
)𝐸𝜀𝑖 

while after the drop, 

𝜏𝑓𝑖𝑛 = (
𝑛𝑜
𝑁
+. . +𝑎𝑖−1

𝑛𝑖 − 1

𝑁
+ 𝑎𝑖

𝑛𝑖 + 1

𝑁
+. . +𝑎𝑘𝑚𝑎𝑥−1

𝑛𝑘𝑚𝑎𝑥−1

𝑁
)𝐸𝜀𝑖 

The energy lost because of the damage is: 

𝐴𝑖2 − 𝐴𝑓2 =
∆(𝜏)𝜀𝑖
2

=
𝜀𝑖
2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖) 

So this lost of energy will appear for each threshold of our fiber. This means that the total energy 

lost because of the breakdown of our m-th fiber is 

∑
𝐸𝜀𝑖

2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

𝑘𝑚𝑎𝑥

𝑖=1

 

                          

(2.65) 

while the energy lost because of the breakdown of each fiber is 

∑ ∑
𝐸𝜀𝑖

2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

𝑘𝑚𝑎𝑥

𝑖=0

𝑁

𝑛=1

 

 

(2.66) 

which is obviously the total elastic energy that the system has. Now,  
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∑
𝐸𝜀𝑖

2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

𝑘𝑚𝑎𝑥

𝑖=1

 

 

(2.67) 

does not depend on the history of the other fibers; in fact in this equation the quantities like the 

equivalent Young modulus of the bundle or the fractions of the fibers into the model are not 

present and the reason from a math viewpoint is that this expression comes out from a difference 

in stresses 
∆(𝜏)𝜀𝑖

2
 in which all the other contributes to the Young modulus disappear. For that given 

external strain 𝜀 strain, we meet the 𝑖 −  𝑡ℎ threshold of the 𝑚 −  𝑡ℎ fiber which is 𝜀𝑖 and the       

𝑚 − 𝑡ℎ fiber damages 1 time without affecting the other ones. If the fibers do not feel the history 

of the bundle we can calculate the energy lost because of the damages for a system with 𝑛0 

𝑛1….𝑛𝑘𝑚𝑎𝑥  fibers, simply by summing together the quantities 

∑∑
𝐸𝜀𝑖

2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

𝑟

𝑖=0

𝑛𝑟

𝑛=1

 

 

(2.68) 

This is 

𝐸𝑝𝑙 =∑∑
𝜀𝑗𝑖
2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

1

𝑖=1

𝑛1

𝑗=1

+∑∑
𝜀𝑗𝑖
2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖) + ⋯+ ∑ ∑

𝜀𝑗𝑖
2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

𝑘𝑚𝑎𝑥

𝑖=1

𝑛𝑘𝑚𝑎𝑥

𝑗=1

2

𝑖=1

𝑛2

𝑗=1

 

 

(2.69) 

This is valid in general. Now we must introduce in (2.67) the difference between quenched and 

annealed disorder. 

a) Annealed disorder: in this situation for a fixed j-fiber, we have r different thresholds in stress: 

𝜎𝑗−𝑐𝑟,1, 𝜎𝑗−𝑐𝑟,2, 𝜎𝑗−𝑐𝑟,3, … . , 𝜎𝑗−𝑐𝑟,𝑟 

So the strains in which we will observe the failures will be: 

 

𝜀𝑗1 =
𝜎𝑗−𝑐𝑟,1

𝐸
; 𝜀𝑗2 =

𝜎𝑗−𝑐𝑟,2

𝑎𝐸
; 𝜀𝑗3 =

𝜎𝑗−𝑐𝑟,3

𝑎2𝐸
;… . ;  𝜀𝑗,𝑟 =

𝜎𝑗−𝑐𝑟,𝑟

𝑎𝑟−1𝐸
 

while the plastic energy will be 

𝐸𝑝𝑙−𝑟 =∑( 
𝜎𝑗−𝑐𝑟,1

𝐸2𝑁
(1 − 0) +

𝜎𝑗−𝑐𝑟,2

𝐸𝑎2𝑁

𝑛𝑟

𝑗=1

(𝑎 − 1) + ⋯+
𝜎𝑗−𝑐𝑟,𝑟

𝐸𝑎𝑟−12𝑁
(𝑎𝑟−1 − 𝑎𝑟) ) 
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Now, as we already know, these thresholds in stress are chosen by a p.d.f. independently and in 

sequence (only when the fiber has failed I times, the 𝑖 + 1 − 𝑡ℎ fiber is chosen (Milanese)). In the 

last formula we have a summation of 𝑟 terms, in which the thresholds in stress appear; so this 

energy depends on the particular value of these thresholds. For this reason, we need to perform 

an average as we did for FBM to have a bijective correspondence between state of damage and 

energy. Let’s consider one threshold, for example 𝜎𝑗−𝑐𝑟,𝑖  with 1 < 𝑖 < 𝑟. When we perform the 

average of this stress threshold, we must take into account all the possible values that can be 

taken by 𝜎𝑗−𝑐𝑟,𝑖 in all the possible “constitutive curves” of our fiber that damage r-times (the set of 

all the constitutive curves is the set of all the possible ways in which our fiber can damage r times). 

So when we take the average, we have: 

𝑔(𝑎𝑖−1𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟,𝑖
2

2
>𝑑𝑖𝑠=

1

𝑃(𝑎𝑖−1𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝑎𝑖−1𝐸𝜀

0

 

in which what we know and what we control is the control parameter 𝜀. 

In taking the average, 𝜀 is fixed; the average is done between 0 (limit situation for which all the r 

thresholds coincide one another and are equal to 0) and 𝑎𝑖−1𝐸𝜀(which is another limit situation in 

which all the stress thresholds are such that the strain thresholds coincide one another. In this 

case we notice a continuous drop in 𝜀 ). Obviosly between 0 and 𝑎𝑖−1𝐸𝜀 there are all the possible 

values that the i-threshold of the r-s, associated to the Young modulus 𝑎𝑖−1𝐸 can assume among 

all the possible ways that our fiber has to damage itself r times. And by varying the strain between 

0 and 𝜀 , we visit all these values in stress; and by dividing by 𝑃(𝑎𝑖−1𝐸𝜀) we calculate the mean 

value among these values. 

For the other values in thresholds, we apply the same concepts: 

 

𝑔(𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟,1
2

2
>𝑑𝑖𝑠=

1

𝑃(𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝐸𝜀

0

 

𝑔(𝑎𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟,2
2

2
>𝑑𝑖𝑠=

1

𝑃(𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝑎𝐸𝜀

0

 

. 

. 

. 

𝑔(𝑎𝑟−1𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟
2

2
>𝑑𝑖𝑠=

1

𝑃(𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝐸𝑎𝑟−1𝜀

0

 

In this way we include all the possible values of stress threshold (and so of strain threshold) for the 

first, second,.., r-th failure of the fiber, chosen among all the constitutive behaviour curves, and we 

take the average, varying the strain among 0 and 𝜀. This must be done for all the r-drops of our 

fiber, because for the quenched disorder, they are independent. 
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The 𝑟-th term of the plastic energy becomes: 

 

𝐸𝑝𝑙−𝑟 =∑∑
𝑔(𝑎𝑖−1𝐸𝜀)

𝑁𝐸𝑎2(𝑖−1)
(𝑎𝑖−1 − 𝑎𝑖) =

𝑛𝑟
𝑁
∑

𝑔(𝑎𝑖−1𝐸𝜀)(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟

𝑖=1

𝑟

𝑖=1

𝑛𝑟

𝑗=1

 

b) Quenched disorder: let’s consider the r-term of the summation 

𝐸𝑝𝑙−𝑟 =∑∑
𝐸𝜀𝑗𝑖

2

2𝑁
(𝑎𝑖−1 − 𝑎𝑖)

𝑟

𝑖=1

𝑛𝑟

𝑗=1

 

Let’s take for example the first fiber among the 𝑛𝑟; in the last expression, the energy is written as 

a function of the strain in which we observe the drop; in the quenched disorder the threshold in 

stress is fixed for each fiber; so for our first fiber among the 𝑛𝑟, this will be 𝜎1𝑐; so the values of 

the strains in which we will have the drops, are: 

𝜀𝑗1 =
𝜎𝑗−𝑐𝑟,

𝐸
; 𝜀𝑗2 =

𝜎𝑗−𝑐𝑟,

𝑎𝐸
; 𝜀𝑗3 =

𝜎𝑗−𝑐𝑟,

𝑎2𝐸
;… . ;  𝜀𝑗,𝑟 =

𝜎𝑗−𝑐𝑟

𝑎𝑟−1𝐸
 

So the previous expression becomes 

𝐸𝑝𝑙−𝑟 =∑∑
𝜎𝑗−𝑐𝑟,1
2

2𝑁𝐸𝑎2(𝑖−1)
(𝑎𝑖−1 − 𝑎𝑖)

𝑟

𝑖=0

𝑛𝑟

𝑗=1

 

 

and as it’s possible to notice, it depends on the values of the r-thresholds of the 𝑛𝑟 fibers. For this 

reason, as it was done in the FBM, we must perform an average of 𝜎𝑗−𝑐𝑟,1
2 . How can we do this? 

The problem we must solve is now different from the quenched because we have only one 

threshold in stress for our fiber, which is 𝜎𝑗−𝑐𝑟,1
2 . This is chosen in the beginning and it remains 

always the same. In order to perform a mean value, we must average 𝜎𝑗−𝑐𝑟,1
2  among all the 

possible constitutive curves/realizations of our curve, taking into account that the fiber can 

damage r times. A priori we could realize the mean value of 𝜎𝑗−𝑐𝑟,1
2  in different ways: we know in 

fact that 𝜎𝑗−𝑐𝑟,1
2  is the threshold to which the fiber damages the first time; so we could 

approximate the threshold by 

𝑔(𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟,1
2

2
>𝑑𝑖𝑠=

1

𝑃(𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝐸𝜀

0

 

and we could repeat the same reason for the second drop, the third drop and so on. So what 

number of drop in strain have we to chose to take the correct mean value of 𝜎𝑗−𝑐𝑟,1
2 ? 

𝑔(𝐸𝜀), 𝑔(𝑎𝐸𝜀),… or 𝑔(𝑎𝑟−1𝐸𝜀)? 

The answer is the r-th, the last one. In fact if we performed the average in the i-th drop of the 

constitutive curve, with1 < 𝑖 < 𝑟 , we would have this result from the average of the stress 

threshold 
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𝑔(𝑎𝑖𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟,1
2

2
>𝑑𝑖𝑠=

1

𝑃(𝑎𝑖𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝑎𝑖𝐸𝜀

0

 

In performing the average we could say that our fiber can damage i times from 0 (limit situation in 

which the stress threshold is 0) to 𝑎𝑖𝐸𝜀. But in this last situation, with the i-th drop coinciding in 𝜀, 

the other 𝑟 − 𝑖 strain thresholds would be bigger than  the strain 𝜀 we have fixed from the 

external world. This is not possible and this means that we are not considering the right 

constitutive curves/possible ways of breaking of our fiber, that must damage r times between 0 

and 𝜀. This consideration leads us to conclude that the right way to take the mean value of 𝜎𝑗−𝑐𝑟,1
2  

is 

𝑔(𝑎𝑟−1𝐸𝜀) ≡<
𝜎𝑗−𝑐𝑟,1
2

2
>𝑑𝑖𝑠=

1

𝑃(𝑎𝑟−1𝐸𝜀)
∫

𝑥2

2
𝑝(𝑥)𝑑𝑥

𝑎𝑟−1𝐸𝜀

0

 

In this way in fact we take the mean value of the stress threshold by exploring all the possible 

stress thresholds from 0 (limit situation) to 𝑎𝑟−1𝐸𝜀 when the last r-th drop is recorded at our 𝜀 

fixed from the external environment. Doing this, we are imposing that the fiber has damaged r-

times (from a math viewpoint this appears in the integral thanks to the upper limit 𝑎𝑟−1𝐸𝜀). And 

by performing the average of the stress threshold in correspondence of the last drop, we 

automatically set for each realization, the position of the other drops, by 

𝜀𝑟−1 = 𝑎𝜀𝑟;  𝜀𝑟−2 = 𝑎2𝜀𝑟;   𝜀1 = 𝑎𝑟−1𝜀𝑟 

that will be smaller than 𝜀. 

So the plastic energy is: 

𝐸𝑝𝑙−𝑟 =∑∑
𝑔(𝑎𝑟−1𝐸𝜀)

𝑁𝐸𝑎2(𝑖−1)
(𝑎𝑖−1 − 𝑎𝑖) =

𝑛𝑟𝑔(𝑎
𝑟−1𝐸𝜀)

𝑁
∑

(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟

𝑖=1

𝑟

𝑖=0

𝑛𝑟

𝑗=1

 

 

Resuming, in general: 

𝐸𝑝𝑙−𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 = (
𝑛1
𝑁
𝑔(𝐸𝜀)∑

(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)
+

𝑟=1

𝑖=1

+
𝑛2
𝑁
𝑔(𝑎𝐸𝜀)∑

(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟=2

𝑖=1

… .+
𝑛𝑘𝑚𝑎𝑥

𝑁
 𝑔(𝑎𝑘𝑚𝑎𝑥−1𝐸𝜀) ∑

(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟=𝑘𝑚𝑎𝑥

𝑖=1

) = 

= (
𝑛1
𝑁
 𝐴1(𝜀) +

𝑛2
𝑁
 𝐴2(𝜀) + ⋯+

𝑛𝑘𝑚𝑎𝑥

𝑁
 𝐴𝑘𝑚𝑎𝑥(𝜀)) 

𝐸𝑝𝑙−𝑞𝑢𝑒𝑛𝑐ℎ𝑒𝑑 =
𝑛1
𝑁
∑

𝑔(𝑎𝑖−1𝐸𝜀)(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟=1

𝑖=1

+
𝑛2
𝑁
∑

𝑔(𝑎𝑖−1𝐸𝜀)(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟=2

𝑖=1

+⋯

+
𝑛𝑘𝑚𝑎𝑥

𝑁
∑

𝑔(𝑎𝑖−1𝐸𝜀)(𝑎𝑖−1 − 𝑎𝑖)

𝐸𝑎2(𝑖−1)

𝑟=𝑘𝑚𝑎𝑥

𝑖=1

= 
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= (
𝑛1
𝑁
 𝑄1(𝜀) +

𝑛2
𝑁
 𝑄2(𝜀) + ⋯+

𝑛𝑘𝑚𝑎𝑥

𝑁
 𝑄𝑘𝑚𝑎𝑥(𝜀)) 

 

By these two expressions, we notice that the plastic energy for the quenched disorder is smaller 

than the one for the annealed. In fact for the coefficients of the two formulas 

𝑄𝑖(𝜀) ≤  𝐴𝑖(𝜀) for 1 < 𝑖 < 𝑘𝑚𝑎𝑥. 

Both the expressions recover the classical FBM if 𝑘𝑚𝑎𝑥 = 1 and 𝑎 = 0, if in this case the 

thresholds were given in stresses; 

 

2.5.5 Most likely state and average state 

 

As we said at first, the probability to have a macrostate which is also the probability to have a 

state of damage is: 

𝑃𝐷 = (
𝑁

𝑛0 𝑛1… . . (𝑁 − 𝑛0 −⋯ .−𝑛𝑘𝑚𝑎𝑥
)𝑃0

𝑛0𝑃1
𝑛1𝑃2

𝑛2 … . . 𝑃𝑘𝑚𝑎𝑥
𝑛𝑘𝑚𝑎𝑥  

 

A good check to verify if this is true is to try to understand if this probability satisfies the 

normalization condition: 

∑𝑃𝐷 = 1

𝐷

 

   

(2.70) 

Now, the summation over all the possible state of damage 𝐷 can be realized  like: 

∑𝑃𝐷 =

𝐷

∑ ∑ …… . ∑ 𝑃𝐷

𝑁−𝑛0−𝑛1−..−𝑛𝑘𝑚𝑎𝑥−2

𝑛𝑘𝑚𝑎𝑥−1=0

𝑁−𝑛0

𝑛1=0

𝑁

𝑛0=0

 

This is  expression is very similar to the summations we find into the so called Multinomial 

Theorem according to, given 𝑥1, 𝑥2… . , 𝑥𝑛  variables 

 

(𝑥1 + 𝑥2+. . +𝑥𝑛 )
𝑁 = ∑ (

𝑁

𝑏1, 𝑏2, . . , 𝑏𝑛
)∏𝑥

𝑗

𝑏𝑗

𝑛

𝑗=1𝑏1+𝑏2+..+𝑏𝑛=𝑁

 

      

(2.71) 
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So we can perform the summation by using the multinomial theorem 

∑ ∑ …… . ∑ (
𝑁

𝑛0, 𝑛1, . . , 𝑛𝑘𝑚𝑎𝑥
)𝑃0

𝑛0𝑃1
𝑛1𝑃2

𝑛2 … . . 𝑃𝑘𝑚𝑎𝑥
𝑁−𝑛0−𝑛1−..−𝑛𝑘𝑚𝑎𝑥−1                                  

𝑁−𝑛0−𝑛1−..−𝑛𝑘𝑚𝑎𝑥−2

𝑛𝑘𝑚𝑎𝑥−1

𝑁−𝑛0

𝑛1

𝑁

𝑛0

 

(2.72) 

By this summation we are able to explore basically all the state of damage into the ensemble: 

in fact by fixing a combination of number of fibers 𝑛0, 𝑛1, 𝑛2, 𝑛3… ..(and this is done in the 

summations), we fix the state of damage and then we calculate the probability of that 

particular state, that is 

𝑃𝐷 = (
𝑁

𝑛0, 𝑛1, . . , 𝑛𝑘𝑚𝑎𝑥
)𝑃0

𝑛0𝑃1
𝑛1𝑃2

𝑛2 … . . 𝑃𝑘𝑚𝑎𝑥
𝑁−𝑛0−𝑛1−.. 

 

However, by the multinomial Theorem, it’s possible to show that (2.72) is equal to: 

(𝑃0 + 𝑃1 + 𝑃2 +⋯ . )𝑁 = 1 

So the normalization condition is satisfied. 

Now, given 𝑃𝐷,which is a likelihood function, we could try to catch its maximum. In fact, 𝑃𝐷 is a 

function of 𝑘𝑚𝑎𝑥  variables, which are 𝑛0, 𝑛1, 𝑛2, 𝑛3 or 𝑁𝐷0, 𝑁𝐷1, . . , 𝑁𝐷𝑘𝑚𝑎𝑥. However, if we 

want to be more precise, this likelihood function depends on 𝑘𝑚𝑎𝑥 − 1 variables because if we 

know 𝑁𝐷0, 𝑁𝐷1, . . , 𝑁𝐷𝑘𝑚𝑎𝑥−1, we already know 𝑁𝐷𝑘𝑚𝑎𝑥  which is 

𝑁𝐷𝑘𝑚𝑎𝑥 = 𝑁 − 𝑁𝐷0 − 𝑁𝐷1−, . . , −𝑁𝐷𝑘𝑚𝑎𝑥−1 

So, we should reach for the values 𝐷𝑜
∗, 𝐷1,…

∗ 𝐷𝑘𝑚𝑎𝑥−1,…
∗  that maximizes this 

probability/likelihood function. 

We can perform the calculation on the variables 𝑛0, 𝑛1, 𝑛2, 𝑛3; nothing changes from 

𝐷0, 𝐷1, 𝐷𝑘𝑚𝑎𝑥−1 but a moltiplicative factor 𝑁. 

Taking into account the last two considerations, i.e 

𝑛𝑘 = 𝑁 − ∑ 𝑛𝑖
𝑘−1
𝑖=0      (conservation of the mass)       

 (2.73a) 

𝑃𝑘 = 1 − ∑ 𝑃𝑖
𝑘−1
𝑖=0       (condition of normalization on probabilities 𝑃𝑖)    

 (2.73b) 

 

we have: 

𝑃𝐷 = (
𝑁

𝑛0, 𝑛1, . . , (𝑁 − 𝑛0 − 𝑛1−. . −𝑛𝑘𝑚𝑎𝑥)
) 𝑃0

𝑛0𝑃1
𝑛1𝑃2

𝑛2 … . . (1

− 𝑃0−. . −𝑃𝑘𝑚𝑎𝑥−1)
𝑁−𝑛0−..−𝑛𝑘𝑚𝑎𝑥−1 
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Let’s do the calculation for one variable 𝑛𝑖. In order to compute the derivative in an easier 

way, we can take the logaritm of the function 𝑃𝐷; this operation enables us to transform a 

product in summation. Indeed, because of its monotonic behavior, the maximum of the 

function log 𝑃𝐷 coincides with the maximum of the function 𝑃𝐷. So, 

log 𝑃𝐷 = log𝑁! − log 𝑛0! − ⋯− log(𝑁 − 𝑛0 − 𝑛1 −⋯− 𝑛𝑘−1)! + 𝑛0 log 𝑃0 +𝑛1 log 𝑃1 +⋯

+ (𝑁 − 𝑛0 −⋯− 𝑛𝑘−1) log(1 − 𝑃0 − 𝑃1 −⋯− 𝑃𝑘−1) 

For big 𝑁, we apply the Stirling approximation for the factorial 

𝑁! = 𝑁 log𝑁 − 𝑁 

retaining only the terms we need to do the derivative, 

≅ −𝑛0 log 𝑛0 + 𝑛0 + 𝑛0 log 𝑃0 + (𝑁 − 𝑛0 −⋯− 𝑛𝑘−1) log(1 − 𝑃0 −⋯− 𝑃𝑘−1)

− (𝑁 − 𝑛0 −⋯− 𝑛𝑘−1) log(𝑁 − 𝑛0 −⋯− 𝑛𝑘−1) + (𝑁 − 𝑛0 −⋯− 𝑛𝑘−1) 

So, 

𝜕 log 𝑃𝐷
𝜕𝑛0

= − log 𝑛0 − 1 + 1

+ log𝑃0 − log(1 − 𝑃0 − 𝑃1 −⋯− 𝑃𝑘−1) + log(𝑁 − 𝑛0 −⋯− 𝑛𝑘−1) − (𝑁

− 𝑛0 −⋯− 𝑛𝑘−1)
(−1)

𝑁 − 𝑛0 −⋯− 𝑛𝑘−1
 − 1 = 0 

In the end, mutandis mutandum, 

log (
𝑃0

1 − 𝑃0 −⋯− 𝑃𝑘−1
) = log (

𝑛0
1 − 𝑛0 −⋯− 𝑛𝑘−1

)  

from which we have 

𝑃0
𝑃𝑘

=
𝑛0
∗

𝑛𝑘
∗ =

𝑛0
∗/𝑁

𝑛𝑘
∗/𝑁

 

In general we have: 

𝑃𝑖
𝑃𝑘

=
𝑛𝑖
∗

𝑛𝑘
∗ =

𝑛𝑖
∗/𝑁

𝑛𝑘
∗/𝑁

 

 

for 𝑖 < 𝑘𝑚𝑎𝑥. 

What can we say about 𝑛𝑘
∗? 

 

We know that 𝑛𝑖
∗ = 𝑛𝑘

∗ 𝑃𝑖

𝑃𝑘
, ando so the various 𝑛𝑖

∗ for 𝑖 < 𝑘𝑚𝑎𝑥 are fixed because they are 

functions of the probabilities 
𝑃𝑖

𝑃𝑘
, that we already know, and of 𝑛𝑘

∗ . 
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So, let’s try to find 𝑛𝑘
∗ ; from (2.73) 

𝑛𝑜
∗ +⋯+ 𝑛𝑘𝑚𝑎𝑥−1

∗ = 𝑁 − 𝑛𝑘𝑚𝑎𝑥
∗ =

𝑛𝑘
∗

𝑃𝑘
∑𝑃𝑖 =

𝑛𝑘
∗

𝑃𝑘
(1 − 𝑃𝑘)

𝑘−1

𝑖=0

 

By which we have 

𝑛𝑘
∗

𝑁
= 𝑃𝑘 

This result allows us to write the previous conditions in a better way, obtaining the following 

equations of state: 

 

{
𝑃0 = 𝑛0/𝑁
𝑃1 = 𝑛1/𝑁 
… = . .

 

{

… = ⋯
𝑃𝑘𝑚𝑎𝑥−1 = 𝑛𝑘𝑚𝑎𝑥−1/𝑁 
𝑃𝑘𝑚𝑎𝑥 = 𝑛𝑘𝑚𝑎𝑥/𝑁

 

 

So, for a given strain 𝜀, the most likely state of damage is given by: 

𝐷∗ = {𝑃0(𝜀), 𝑃1(𝜀),… , 𝑃𝑘𝑚𝑎𝑥(𝜀)}           

(2.74) 

Now, let’s try to find the average value of the state of damage for a given strain 𝜀. 

Let’s consider for example the fraction of fibers damaged i-times 𝐷𝑖 ≡
𝑛𝑖

𝑁
. 

If we liked to calculate its ensemble average for example, we would have to calculate the value 

of 𝐷1 ≡
𝑛1

𝑁
 in each subset of the ensemble of the figure (3) and to multiply it by its probability 

to appear, according to the definition of mean value. So, 

< 𝐷1 >=∑𝑃𝐷𝐷1
𝐷

 

which is 

< 𝐷1 > = ∑ {(
𝑁

𝑛0, 𝑛1, . . , (𝑁 − 𝑛0 − 𝑛1−. . −𝑛𝑘𝑚𝑎𝑥−1)
)𝑃0

𝑛0𝑃1
𝑛1 . . (1

𝑛0+..+𝑛𝑘=𝑁

− 𝑃0−. . −𝑃𝑘𝑚𝑎𝑥−1)
𝑁−𝑛0−..−𝑛𝑘𝑚𝑎𝑥−1 }𝐷1  

 

Now, the Multinomial theorem states that: 
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(𝑥1 + 𝑥2+. . +𝑥𝑛)
𝑁 = ∑ 𝐶𝑖,𝑗,…  

𝑁  𝑥1
𝑖𝑥2

𝑗 …𝑥𝑛
𝑁−𝑖−𝑗−..

𝑖+𝑗+𝑘+..=𝑁                    

(2.75) 

where we have 𝑛 terms𝑥1, 𝑥2, . . , 𝑥𝑛, and where 𝑖, 𝑗, 𝑘 … ≥ 0;  𝐶𝑖,𝑗,…  
𝑁 = ( 𝑁

𝑖,𝑗,..,𝑤)
) is the  

multinomial coefficient (that gives us the number of ways in which we can put 𝑁 objects in 𝑛 

boxes, in which we find 𝑖 objects in the first box, 𝑗 ones in second and so on) and 

let’s differentiate this equation with respect the i-term, for example the second one (if we 

want to compute 
𝑛1

𝑁
) and we have: 

𝑁(𝑥1 + 𝑥2+. . +𝑥𝑛)
𝑁−1 = ∑ 𝐶𝑖,𝑗,…  

𝑁  𝑥1
𝑖𝑗𝑥2

𝑗−1…𝑥𝑛
𝑁−𝑖−𝑗−..

𝑖+𝑗+𝑘+⋯=𝑁

=∑∑ ∑ …𝐶𝑖,𝑗,…  
𝑁  𝑥1

𝑖𝑗𝑥2
𝑗−1…𝑥𝑛

𝑁−𝑖−𝑗−..

𝑁−𝑖−𝑗

𝑘=0

𝑁−𝑖

𝑗=0

𝑁

𝑖=0

 

Let’s multiply now by 𝑥2/𝑁: 

𝑥2(𝑥1 + 𝑥2+. . +𝑥𝑛 )
𝑁−1 = ∑ 𝐶𝑖,𝑗,…  

𝑁  𝑥1
𝑖(𝑗/𝑁)𝑥2

𝑗 …𝑥𝑛
𝑁−𝑖−𝑗−..

𝑖+𝑗+𝑘+..=𝑁

 

So, if we call  𝑥1
𝑖 = 𝑃0

𝑛0, 𝑥2
𝑗 = 𝑃1

𝑛1  … , 𝑥𝑛
𝑁−𝑖−𝑗−.. = 𝑃𝑘

𝑁−𝑛0−𝑛1−⋯,and  
𝑗

𝑁
=

𝑛1

𝑁
, 

we have 

 

𝑃1(𝑃0 + 𝑃1 + 𝑃2+. . +𝑃𝑘)
𝑁−1 = ∑ 𝐶𝑛0𝑛1…  

𝑁  𝑃0
𝑛0
𝑛1
𝑁
𝑃1

𝑛1−1

…𝑃𝑘
𝑁−𝑛0−𝑛1−.. ≡<

𝑛1
𝑁
>

𝑖+𝑗+𝑘+..=𝑁

 

and using the normalization condition over the probabilities 𝑃0 + 𝑃1 + 𝑃2+. . +𝑃𝑘 = 1, we 

have 

𝑃1 =<
𝑛1
𝑁
> 

 

We can apply the same result to the other fractions of fibers; 

So the average state of damage at the strain 𝜀 is given by 

�̅� = {𝑃0(𝜀), 𝑃1(𝜀),… , 𝑃𝑘𝑚𝑎𝑥(𝜀)}                 

(2.76) 

And coincides with the most likely state of damage. 

So we shown that for a given strain 𝜀, 
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𝐷∗ = �̅� = {𝑃0(𝜀), 𝑃1(𝜀),… , 𝑃𝑘𝑚𝑎𝑥(𝜀)}           

(2.77) 

 

2.5.6 Fluctuations 

 

We have just shown that for each strain, the most likely state coincides with the average 

ensemble of the state of damage. But what can we say about the fluctuations? For example, if 

we choose a given fraction of fibers, 
𝑛𝑖

𝑁
, how this fraction change from one subset to another 

one for a given strain? 

To answer this question we must compute the variance of 
𝑛𝑖

𝑁
, i.e: 

∆ (
𝑛𝑖
𝑁
) = √< (

𝑛𝑖
𝑁
)2 > −<

𝑛𝑖
𝑁
>2 

So, what we need now, is to compute the term < (
𝑛𝑖

𝑁
)2 > and in order to do this, we use 

always the multinomial theorem; we know by (24) that 

(𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1

𝑛0+𝑛1+..=𝑁

…𝑥𝑘𝑚𝑎𝑥
𝑛𝑘𝑚𝑎𝑥  

 

with 𝐶𝑛0𝑛1…  
𝑁  the multinomial coefficient 

Let’s calculate the derivative with respect 𝑥𝑖: 

𝑁(𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁−1 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1 . .

𝑛0+𝑛1+..=𝑁

𝑛𝑖𝑥𝑖
𝑛𝑖−1…𝑃𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

Let’s multiply by 
𝑥𝑖

𝑁
: 

𝑥𝑖(𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁−1 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1 . .

𝑛0+𝑛1+..=𝑁

𝑛𝑖
𝑁
𝑥𝑖
𝑛𝑖 …𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

Let’s calculate again the derivative 
𝑑

𝑑𝑥𝑖
: 

( ∑ 𝑥𝑖

𝑘𝑚𝑎𝑥

𝑖=0

)

𝑁−1

+ (𝑁 − 1)𝑥𝑖 ( ∑ 𝑥𝑖

𝑘𝑚𝑎𝑥

𝑖=0

)

𝑁−2

= ∑ 𝐶𝑛0𝑛1…  
𝑁 𝑥0

𝑛0𝑥1
𝑛1 . .

𝑛0+𝑛1+..=𝑁

𝑛𝑖
2

𝑁
𝑥𝑖
𝑛𝑖−1…𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

Let’s multiply again by 
𝑥𝑖

𝑁
: 
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𝑥𝑖
𝑁
( ∑ 𝑥𝑖

𝑘𝑚𝑎𝑥

𝑖=0

)

𝑁−1

+
(𝑁 − 1)

𝑁
𝑥𝑖
2 ( ∑ 𝑥𝑖

𝑘𝑚𝑎𝑥

𝑖=0

)

𝑁−2

= ∑ 𝐶𝑛0𝑛1…  
𝑁 𝑥0

𝑛0𝑥1
𝑛1 . .

𝑛0+𝑛1+..=𝑁

𝑛𝑖
2

𝑁2
𝑥𝑖
𝑛𝑖−1…𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥

≡<
𝑛𝑖

2

𝑁2
> 

 

So again, if 𝑥𝑖 = 𝑃𝑖  we are able to calculate <
𝑛𝑖

2

𝑁2
> by simply knowing the probabilities on the 

left; and we have, by using the normalization condition, 

<
𝑛𝑖

2

𝑁2
>= 𝑃𝑖

2 +
𝑃𝑖(1 − 𝑃𝑖)

𝑁
 

 

So the variance  

∆ (
𝑛𝑖
𝑁
) = √< (

𝑛𝑖
𝑁
)2 > −<

𝑛𝑖
𝑁
>2 

is 

∆ (
𝑛𝑖
𝑁
) = √

𝑃𝑖(1 − 𝑃𝑖)

𝑁
 

 

and this result can be applied on each fraction of fibers (
𝑛𝑖

𝑁
) with 0 < 𝑖 < 𝑘𝑚𝑎𝑥. 

We are able now to derive a very important result by this last equation; as we notice, the 

fluctuations of a given fraction of fibers damaged i times, goes to 0 with 1/√𝑁. This means 

that in the thermodynamic limit, for 𝑁 ⟶ ∞, goes to 0. 

From a physical viewpoint we can catch the following conclusion: in the 𝜀 ensemble, there is 

always a state of damage more likely than the other ones; this is 

𝐷∗ = {𝑃0(𝜀), 𝑃1(𝜀),… , 𝑃𝑘𝑚𝑎𝑥(𝜀)} 

 

and this state of damage coincides with the ensemble average of the state of damage 

�̅� = {𝑃0(𝜀), 𝑃1(𝜀), … , 𝑃𝑘𝑚𝑎𝑥(𝜀)} 

 

Indeed for 𝑁 ⟶ ∞, the fluctuations around each fraction of fibers 
𝑛𝑖

𝑁
 goes to 0 and so this 

particular state of damage 

𝐷 = {𝑃0(𝜀), 𝑃1(𝜀), … , 𝑃𝑘𝑚𝑎𝑥(𝜀)} 
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is also  the only one. 

The claim to whom we arrive by these calculations is: 

 

For a large number of fiber we are able to know the state of damage D with great precision. 

 

 

2.5.7 Average quantities 

 

Now we have all the tools to calculate the average quantities of our system; 

Let’ s begin from the overall tension; as we have already said, the overall tension is defined 

like: 

 

𝜏 =
𝐹𝑁
𝐴𝑓𝑁

 

where 𝑁 is the total number of fibers, 𝐴𝑓 is the longitudinal area of one fiber while 𝐹𝑁 is the 

equivalent force the whole bundle suffers because of our strain experiment. 

For one single realization the overall tension 𝜏 is given by: 

𝜏 = 𝐸 (
𝑛0

𝑁
+ 𝑎

𝑛1

𝑁
+⋯+ 𝑎𝑘𝑚𝑎𝑥−1 𝑛𝑘𝑚𝑎𝑥−1

𝑁
) 𝜀             

(2.78) 

From a physical viewpoint (2.78) is straightforward; the CFBM, is a mono dimensional system in 

which the fibers are connected in parallel. So the fraction not damaged will have a Young modulus 

𝐸
𝑛0
𝑁

 

the fraction of fibers that have failed one time will have a Young modulus  𝑎𝐸
𝑛1

𝑁
 

and so on till to arrive to the fraction of fibers failed 𝑘𝑚𝑎𝑥 − 1 times, that have a Young modulus 

𝑎𝑘𝑚𝑎𝑥−1𝐸
𝑛𝑘𝑚𝑎𝑥−1

𝑁
 

All these fractions of fibers contribute in an equal way to the total stiffness of the bundle and 

obviously, if they are characterized by the same strain (strain constant experiment), they will 

suffer different stresses 𝑓𝑖. In fact, (2.78) could be written like 

𝜏 = 𝑓1 + 𝑓2+. . +𝑓𝑘𝑚𝑎𝑥−1 
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This fact depends on the different stiffness the fibers have because of the failures. 

In (2.78) we did not consider the last term: 

𝑎𝑘𝑚𝑎𝑥𝐸
𝑛𝑘𝑚𝑎𝑥

𝑁
 

That’s why the fibers that have failed 𝑘𝑚𝑎𝑥 times are considered broken. If we added this last 

term into (2.78), it would mean that the fibers failed 𝑘𝑚𝑎𝑥 times can take some of the total load 

on the bundle. So they would not be considered as broken. Furthermore as we can imagine from a 

physical viewpoint, in a strain constant experiment, the system evolves from the state of damage 

𝐷 = {1,0,0, … ,0} 

where all the fibers are not damaged, to the final state of damage, in which 

𝐷 = {0,0,0, . . ,1} 

where 1 =
𝑛𝑘𝑚𝑎𝑥

𝑁
 and in which all the fibers have Young modulus  𝑎𝑘𝑚𝑎𝑥𝐸. If we do not consider 

them as broken, they will take the load on the structure. So, from a physical viewpoint, this means 

that the bundle, will experiment like a transient in which “the” state of damage change with the 

strain (supposing that 𝑁 is large; so it’s possible to talk about unique state of damage), and in 

which the equivalent Young modulus will be 

𝑌(𝐸) = 𝐸 (
𝑛0
𝑁
+ 𝑎

𝑛1
𝑁
+⋯+ 𝑎𝑘𝑚𝑎𝑥−1

𝑛𝑘𝑚𝑎𝑥−1

𝑁
) 

(2.79 a) 

After this state of transient we expect that the equivalent Young modulus is 

𝑌(𝐸) = 𝐸 (𝑎𝑘𝑚𝑎𝑥
𝑛𝑘𝑚𝑎𝑥

𝑁
) 

So the bundle would have like a residual constant stiffness and we expect to recover the so called 

“work hardening”. 

So, now, let’s calculate the average overall tension, in the case that the term 𝐸 (𝑎𝑘𝑚𝑎𝑥 𝑛𝑘𝑚𝑎𝑥

𝑁
) 

does not exist. The ensemble average among all the overall tensions in the ensemble is: 

< 𝜏 > =  ∑𝑃𝐷𝑌(𝐸)𝜀 

𝐷

 

This ensemble average is easy to calculate after the calculations in the previous section: so we 

have 

 

< 𝜏 > = 𝐸{𝑃0(𝜀) + 𝑎𝑃1(𝜀) + ⋯+ 𝑎𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥−1(𝜀)}𝜀 

(2.79 b) 

in which we recognize as well the expectation value of the Young Modulus in the strain ensemble: 
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< 𝑌(𝐸) > = 𝐸{𝑃0(𝜀) + 𝑎𝑃1(𝜀) + ⋯+ 𝑎𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥−1(𝜀)} 

 

A question we could ask is: what about the mistake of 𝜏? 

By definition, 

𝑉𝑎𝑟 (𝜏(𝜀)) =< 𝜏(𝜀) >2 −< 𝜏(𝜀)2 >  

(2.80) 

So, 

< 𝜏(𝜀) >2= (∑𝑎𝑖𝐸

𝑘−1

𝑖=0

𝑃𝑖(𝜀)𝜀)

2

 

and  

< 𝜏(𝜀)2 > = < (
𝑛0
𝑁
)
2

𝐸2𝜀2 +⋯+ (
𝑛𝑘−1
𝑁

)
2

𝑎2(𝑘−1)𝐸2𝜀2 + 2∑∑(
𝑛𝑖
𝑁
 
𝑛𝑗

𝑁
)𝑎𝑖+𝑗𝐸2𝜀2

−

𝑗≠𝑖

𝑘−1

𝑖=0

> 

A quick calculation allows us to say, by the multinomial theorem, that 

𝔼 [
𝑛𝑖
𝑁

𝑛𝑗

𝑁
] = 𝑃𝑖𝑃𝑗  

N − 1

𝑁
 

and as we have already showed  

𝔼 [(
𝑛𝑖
𝑁
)
2

] = 𝑃𝑖
2 +

𝑃𝑖(1 − 𝑃𝑖)

𝑁
 

where with the symbol 𝔼 we have indicated the mean expectation value. 

A very brief algebraic calculation shows that this variance (2.80), with the quantities above 

introduced, goes exactly to 0 for 𝑁 → ∞: 

𝑉𝑎𝑟 (𝜏(𝜀)) = (𝐸𝜀)2 {(∑𝑎𝑖
𝑘−1

𝑖=0

𝑃𝑖(𝜀))

2

−∑𝑎2𝑖 [𝑃𝑖
2 +

𝑃𝑖(1 − 𝑃𝑖)

𝑁
] − 2∑∑𝑎𝑖+𝑗𝑃𝑖𝑃𝑗  

N − 1

𝑁

−

𝑗≠𝑖

𝑘−1

𝑖=0

𝑘−1

𝑖=0

} 

For 𝑁 → ∞, 𝑉𝑎𝑟 (𝜏(𝜀)) → 0. Obviously, it is banal to say that if we consider the total tension on 

the bundle, 𝜏(𝜀)′ = ∑ 𝜏(𝜀)𝑖
𝑁
𝑖=1  and we consider the properties 

a) < 𝜏(𝜀)′ > = < 𝑁 𝜏(𝜀) > = 𝑁 < 𝜏(𝜀) >  for the expectation value 

b)  𝑉𝑎𝑟 (𝜏(𝜀)′) = 𝑉𝑎𝑟 (𝑁 𝜏(𝜀)) = 𝑁2 𝑉𝑎𝑟 (𝜏(𝜀))  that is the theorem of the variance in 

which the covariances are always equal to 0 because in the strain ensemble the fibers are 

not correlated. 

So we have for 𝑁 → ∞ 
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< 𝜏(𝜀)′ > = 𝑁(𝐸𝜀∑𝑎𝑖
𝑘−1

𝑖=0

𝑃𝑖(𝜀)) 

and by De l’Hopital 

𝑉𝑎𝑟 (𝜏(𝜀)′) = 0 

The thing makes sense because we showed in the thermodynamic limit that there exists only one 

state of damage; so each fiber will have only one kind of damage and for this reason the mean 

value of each fiber will be in this limit equal with uncertainty equal to 0. And this leads us to state 

with absolutely precision that  

< 𝜏(𝜀)′ > = 𝑁(𝐸𝜀∑𝑎𝑖
𝑘−1

𝑖=0

𝑃𝑖(𝜀)) 

with a mistake equal to 0. For 𝑁 different from 0 the mean value of each fiber will be always the 

same, 𝜏(𝜀), but there will be an uncertainity associated to it. And this will affect the expectation 

value < 𝜏(𝜀)′ > because of the summation of the variances. 

The effect of seeing one only state in the thermodynamic limit, from a physical viewpoint, can be 

thought as a function of the passage between the discrete and the continuum. In fact for 𝑁 → ∞ 

the bundle becomes a piece of material with a given Young modulus through a direction (the one 

of the fiber). So this material must have a unique state of damage. This is confirmed in some 

different damage laws obtained for the concrete (Mazars). We will see this collapse of all the 

possible state into a unique one in chapter 4 for the statistical central force model as well; there 

will be in fact a unique constitutive curve in the thermodynamic limit and so a unique state of 

damage.  

So in the thermodynamic limit the fluctuations around < 𝜏 > previously computed go to 0 as we 

could expect by the results got in the previous paragraph: in fact if in the thermodynamic limit 

there exist only one state of damage, there must exist only one constitutive behaviour curve as 

well from a physical viewpoint. 

In the same way we can compute the entropy of the system; the entropy is defined according to 

the measure of Shannon: 

𝑆 = −∑𝑃𝐷𝑙𝑜𝑔 𝑝𝐷 ≡< log 𝑝𝐷 >

𝐷

 

where 𝑝𝐷 is the probability of a single microstate; the entropy is an ensemble mean value of the 

logaritm of the microstates by the definition of Boltzmann.Here we can decide to define the 

entropy simply by defining the way in which we count the states. Following the approach of Pride 

and Touissant, we are interested in which fibers and not in how many fibers are damaged. This 

means that the definition of entropy will be given above, taking the mean value of 

log 𝑝𝐷 .However, the total number of microstates into a state of damage 𝐷 is given by 𝑃𝐷; so in 

order to realize the ensemble average of the function log 𝑝𝐷, we must count all the microstates in 

𝐷; this means that we must multiply 𝑝𝐷 by the multinomial coefficient and in this way we obtain 
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the fraction of all the possible systems with damage 𝐷. Then we multiply this term by the function 

log 𝑝𝐷. And by varying 𝐷, we perform the mean value. 

So we need to compute the average value of log 𝑝𝐷. 

Now, 𝑝𝐷 = 𝑃0
𝑛0𝑃1

𝑛1 …𝑃𝑘𝑚𝑎𝑥
𝑛𝑘𝑚𝑎𝑥 . So 

log 𝑝𝐷 = 𝑛0 log 𝑃0 + 𝑛1 log 𝑃1 +… .+𝑛𝑘𝑚𝑎𝑥 log 𝑃𝑘𝑚𝑎𝑥  

So, 

𝑆 = − ∑ (
𝑁

𝑛0, 𝑛1, . . , (𝑁 − 𝑛0 − 𝑛1−. . −𝑛𝑘𝑚𝑎𝑥−1)
)

𝑛0+𝑛1+..=𝑁

𝑃0
𝑛0 …𝑃𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥 ∑ 𝑛𝑖 log 𝑃𝑖

𝑘𝑚𝑎𝑥

𝑖=0

 

Which can be written like: 

𝑆 = −< log 𝑃0 > −< log𝑃1 > −⋯−< log𝑃𝑘 >  

So this means that we have to perform 𝑘𝑚𝑎𝑥 ensemble averages. Let’s take the i-term: 

𝐶𝑛0𝑛1…  
𝑁 𝑃0

𝑛0 … 𝑃𝑘𝑚𝑎𝑥
𝑛𝑘𝑚𝑎𝑥𝑛𝑖 log 𝑃𝑖 

From the multinomial theorem we have: 

(𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1

𝑛0+𝑛1+..=𝑁

𝑥𝑖
𝑛𝑖 …𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

We derive with respect 𝑥𝑖: 

𝑁(𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁−1 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1

𝑛0+𝑛1+..=𝑁

𝑛𝑖𝑥𝑖
𝑛𝑖−1…𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

 

Let’s multiply by log 𝑥𝑖: 

𝑁 log 𝑥𝑖 (𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁−1 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1

𝑛0+𝑛1+..=𝑁

𝑛𝑖 log 𝑥𝑖 𝑥𝑖
𝑛𝑖−1…𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

 

 

Then we multiply by 𝑥𝑖: 

𝑁 𝑥𝑖log 𝑥𝑖 (𝑥0 + 𝑥1+. . +𝑥𝑘)
𝑁−1 = ∑ 𝐶𝑛0𝑛1…  

𝑁 𝑥0
𝑛0𝑥1

𝑛1

𝑛0+𝑛1+..=𝑁

𝑛𝑖 log 𝑥𝑖 𝑥𝑖
𝑛𝑖 …𝑥𝑘𝑚𝑎𝑥

𝑛𝑘𝑚𝑎𝑥  

that gives 

𝑁 𝑥𝑖log 𝑥𝑖 = < 𝑛𝑖 log 𝑥𝑖 > 

So, as usual if we take 𝑥0 = 𝑃0… . . 𝑥𝑘𝑚𝑎𝑥 = 𝑃𝑘𝑚𝑎𝑥, 



 
108 

 

𝑁 𝑃𝑖log 𝑃𝑖 = < 𝑛𝑖 log 𝑃𝑖 > 

 

So if in 𝑆 we find the summation of all these 𝑘𝑚𝑎𝑥  terms here, we get 

𝑆 = −𝑁 ( ∑ 𝑃𝑖 (𝜀) log 𝑃𝑖(𝜀)

𝑘𝑚𝑎𝑥

𝑖=0

) 

 

What about the internal energy? 

As we know, it is defined like : 

𝑈 =∑𝑃𝐷𝐸𝐷
𝐷

 

where 𝐸𝐷is given by the mean value for each subset: 

𝐸𝐷̅̅̅̅ = (
𝑛0
𝑁
+⋯+ 𝑎𝑘𝑚𝑎𝑥−1

𝑛𝑘𝑚𝑎𝑥−1

𝑁
)
𝐸𝜀2

2
+
𝑛1
𝑁
ℎ1(𝜀) + ⋯+

𝑛𝑘𝑚𝑎𝑥

𝑁
ℎ𝑘𝑚𝑎𝑥(𝜀) 

Here, we have decided to indicate with ℎ1(𝜀)… . ℎ𝑘𝑚𝑎𝑥(𝜀) the coefficients 

𝐴1(𝜀), 𝐴2(𝜀),… , 𝐴𝑘𝑚𝑎𝑥(𝜀) 

for the annealed, and 

𝑄1(𝜀), 𝑄2(𝜀),… , 𝑄𝑘𝑚𝑎𝑥(𝜀) 

 

for the quenched.  

So, it’s easy now to calculate the average value: 

𝑈 = (𝑃0 +⋯+ 𝑎𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥−1)
𝐸𝜀2

2
+ 𝑃1(𝜀)ℎ1(𝜀) + ⋯+ 𝑃𝑘𝑚𝑎𝑥(𝜀)ℎ𝑘𝑚𝑎𝑥(𝜀) 

 

Then, as regards the state function 𝑓, we must calculate at first 

𝑑𝐸𝐷
𝑑𝜀

= ∑ 𝐸𝜀𝑎𝑖
𝑛𝑖
𝑁
+ ∑

𝑛𝑖
𝑁
[ℎ(𝜀)]′𝑖

𝑘𝑚𝑎𝑥

𝑗=1

𝑘𝑚𝑎𝑥−1

𝑖=0

 

by which: 

𝑓 =∑𝑃𝐷
𝑑𝐸𝐷
𝑑𝜀

𝐷

= 𝐸𝜀(𝑃0 + 𝑎𝑃1+. . +𝑎
𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥) + ∑ 𝑃𝑖(𝜀)[ℎ(𝜀)]′𝑖

𝑘𝑚𝑎𝑥

𝑗=1
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2.5.8 Plots 

We can now introduce some plots, to better describe all the theoretical quantities we have 

introduced in this last chapter. So, let’s suppose to use the Weibull distribution where the 

parameters of the distribution are set like 

𝑑𝑐 = 0.5;𝑚 = 2 

The Young modulus is put to the unity, 1. 

We will show the shape of the probabilities functions 𝑃0, 𝑃1, … , 𝑃𝑘𝑚𝑎𝑥 ,average constituive 

behaviours (divided by N), the entropies and the fluctuations; 

The number of fibers is 𝑁 = 10000 and 𝑎 = 0.8. 

 

Figure 2.14.a: plot of the fluctuations for annealed disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 
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 Figure 2.14.b: plot of the probabilty functions for annealed disorder; 𝑁 = 10000, 𝑎 = 0.8   𝑘𝑚𝑎𝑥 = 9 

 

Figure 2.14.c: plot of the fluctuations for quenched disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 
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Figure 2.14.d: plot of the probability functions for quenched disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 
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Figure 2.14.e: plot of the entropies for quenched and annealed disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 

 

 

Figure 2.14.f: plot of the constitutive laws for quenched and annealed disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 

 



 
113 

 

As it is possible to notice, the constitutive behaviours are different for quenched and annealed 

disorder: for the annealed the stress is always smaller than the quenched; this is a further 

confirmation about the computation of the plastic energy, which is always less for the annealed 

than the quenched one, as theory showed. 

As regards the functions 𝑃0, 𝑃1, … , 𝑃𝑘𝑚𝑎𝑥, obviously they have a different shape for quenched and 

annealed disorder. These probability functions are characterized by a bell shape and as it is 

possible to notice, their maximum grows with the strain. This means that the function 𝑃0 will have 

a maximum 𝑃0 = 1 in 𝜀 = 0 (how we should obtain because in 𝜀 = 0 all the trusses are alived) 𝑃1 

will have its maximum at a bigger strain,, 𝑃2 at a further bigger strain and so on till arriving to 

𝑃𝑘𝑚𝑎𝑥 which has its own maximum 𝑃𝑘𝑚𝑎𝑥 = 1 at the strain in which all the fibers are broken. As 

we should expect the maximum of the function 𝑃1, 𝑃2, … , 𝑃𝑘𝑚𝑎𝑥−1 is not one; it cannot be one 

because at the strain in which we reach a given maximum for a function 𝑃𝑖  the other probability 

density functions are different from 0. And this must happen because for a given strain there will 

be different fractions of fibers damaged 0 times, damaged one time and so on. It is also correct 

that the maximums of the these functions move to the right in increasing the index 𝑃𝑖: from a 

physical wievpoint the fraction of fibers that can damage more times, reach its maximum value 

later. 

As regards the fluctuations, we obtain again bell shape functions; and these bell functions become 

more and more narrow when the number of total fibers grow. 

Then we have the entropies which are different for quenched and annealed and that show a 

maximum close to region in which we observe the maximum of the constitutive curve. 

We repeat now the same plots for a uniform distribution, in which 

𝑝(𝜎) = 1   𝑓𝑜𝑟 1 < 𝜎 < 2 

and  

𝑝(𝜎) = 0   𝑓𝑜𝑟 𝜎 < 1  𝑎𝑛𝑑 𝑝(𝜎) = 1   𝜎 > 2 

 

We remind that we have considered the Young modulus of the fibers equal to the unit: so 𝐸 = 1. 



 
114 

 

 

 Figure 2.15.a: plot of the fluctuations for annealed disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 

 

 Figure 2.15.b: plot of the probability functions for annealed disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 
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Figure 2.15.c: plot of the fluctuations for quenched disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 

 

Figure 2.15.d: plot of the probabilty functions for quenched disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 
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Figure 2.15.e: plot of the constitutive laws  for quenched  and annealed disorder; 𝑁 = 10000, 𝑎 = 0.8 𝑘𝑚𝑎𝑥 = 9 

 

 

2.5.9 The Boltzmann’s Distribution 

In the previous pages we considered the probability to have a microstate with 𝑛0 𝑛1…𝑛𝑘𝑚𝑎𝑥  

realizations like 

𝑝𝐷 = 𝑃0
𝑛0𝑃1

𝑛1 . . 𝑃𝑘𝑚𝑎𝑥
𝑛𝑘𝑚𝑎𝑥  

This probability must be multiplied by multinomial coefficient to recover the probability to have a 

macrostate in order to take into account the fact the fibers are distinguishable. 

So, we could now try to get the probability to have a particular state with 𝑛0 𝑛1…𝑛𝑘𝑚𝑎𝑥 fibers 

simply by maximazing the entropy we have introduced. 

We know that the entropy, for the way in which we chose to count the states was defined like 

𝑆 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁

𝐷

𝑝𝐷 log 𝑝𝐷 

(2.81) 

Here we do not consider the – sign to make the calculation easier. We will introduce it in the end 

of the calculations. 
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According to the sentence above, we must find the maximum of this function taking into account 

some constraints: 

{
 
 

 
 𝑈 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥

𝑁

𝐷

𝑝𝐷𝐸𝐷̅̅̅̅

1 = ∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷

𝐷
𝜀 = 𝜀𝐷

 

(2.82) 

The only way to catch this maximum taking into account the constraints is to use the Lagrange’s 

multipliers; so we write the following function: 

𝑆 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁

𝐷

𝑝𝐷 log 𝑝𝐷 + 𝛼(∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷

𝐷

− 1) + 𝛽 (∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁

𝐷

𝑝𝐷𝐸𝐷̅̅̅̅ − 𝑈)

+ 𝛾∑(𝜀𝐷 − 𝜀)

𝐷

 

(2.83) 

In which the constants 𝛼, 𝛽, 𝛾 are the Lagrange multipliers. If we erase the last term (it does not 

contain the probability 𝑝𝐷 so it is not important for tha calculation of the derivative), this 

expression can be written like 

𝑆 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁

𝐷

𝑝𝐷(log 𝑝𝐷 + 𝛼 + 𝛽𝐸𝐷̅̅̅̅ ) − 𝛼 − 𝛽𝑈 

(2.84) 

So if we take the derivative with respect 𝑝𝐷, 

𝜕𝑆

𝜕𝑝𝐷
= 𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥

𝑁 (log 𝑝𝐷 + 𝛼 + 𝛽𝐸𝐷̅̅̅̅ ) + 𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 = 0 

(2.85) 

So  

log 𝑝𝐷 = −𝛼 − 1 − 𝛽𝐸𝐷̅̅̅̅  

(2.86) 

and taking the exponential 

𝑝𝐷 = 𝑒−𝛽𝐸𝐷̅̅ ̅̅ 𝑒−(1+𝛼) 

(2.87) 

Obviously  

𝑃𝐷 = 𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑒−𝛽𝐸𝐷̅̅ ̅̅ 𝑒−(1+𝛼) 
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1 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷 =

𝐷

𝑒−(1+𝛼)∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑒−𝛽𝐸𝐷̅̅ ̅̅

𝐷

 

(2.88) 

So 

𝑒(1+𝛼) =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑒−𝛽𝐸𝐷̅̅ ̅̅

𝐷

≡ 𝒬 

(2.89) 

which is the partition function of the strain ensemble. 

Now 

𝜕𝒬

𝜕𝛽
= −∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥

𝑁 𝐸𝐷𝑒
−𝛽𝐸𝐷̅̅ ̅̅ = −𝒬𝑈

𝐷

 

If we know that 

𝑈 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷

𝐷

𝐸𝐷̅̅̅̅  

(2.90) 

and that   

𝐸𝐷̅̅̅̅ = (− log 𝑝𝐷 − (𝛼 + 1))/𝛽 

(2.91) 

 

𝑈 = −
1

𝛽
 ∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥

𝑁 𝑝𝐷(log 𝑝𝐷 + (𝛼 + 1))

𝐷

= −
1

𝛽
(𝑆 + 1 + 𝛼) 

(2.92) 

So, from the previous expression  

−𝛽𝑈 = 𝑆 + 1 + 𝛼 

(2.93) 

and now, if we change the sign of the entropy (because we defined it with the sign +) we have 

𝜕𝑈

𝜕𝑆
= 1/𝛽 

(2.94) 

But   
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𝜕𝑈

𝜕𝑆
= 𝑇 

(2.95) 

from the thermodynamics and so 

𝛽 = 1/𝑇 

(2.96) 

The parameter 𝛽 that comes out from the probability density function obtained by the 

maximization of the entropy is basically the reverse of the temperature. Now, how is it possible to 

identify this parameter and so the equivalent temperature? To answer this question we can follow 

Pride and Toissant; the thermodynamics we defined previously leads us to say that 

𝑎
𝑑𝛽

𝑑𝜀
+ 𝑏𝜀 + 𝑐 = 0 

(2.97) 

where 

𝑎 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷

𝐷

𝐸𝐷(𝑈 − 𝐸𝐷) 

𝑏 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷

𝐷

𝐸𝐷(𝑓 −
𝑑𝐸𝐷
𝑑𝜀

) 

𝑐 =∑𝐶𝑛0𝑛1..𝑛𝑘𝑚𝑎𝑥
𝑁 𝑝𝐷

𝐷

(
𝑑𝐸𝐷
𝑑𝜀

− 𝜏𝐷) 

(2.98) 

which is a differential equation, non linear and so difficult to solve. It was shown for the simple 

FBM that a function 𝛽(𝜀) could be obtained by 

𝛽(𝜀) = −
𝑁

𝜀2 − ℎ(𝜀)
log (

1 − 𝑃(𝜀)

𝑃(𝜀)
) 

(2.99) 

As we noticed now, for the CFBM, it is more complicated to get this function and we must pass 

necessary for the above differential equation. 

 

2.5.9 Stress Ensemble 

The behaviour of the system in the sigma-ensemble is quite different. In this ensemble there is 

obviously a difference with respect the epsilon ensemble: in fact we are now performing a stress 

constant experiment on the system. So even in this case, the disorder generates an infinite 

number of mental copies of the system; and each system is characterized by different thresholds 
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taken by the same p.d.f. So from a theoretical viewpoint the mathematical formalism is identical 

to the one analysed previously for the strain-ensemble. At a given value of our new control 

parameter (the stress), each mental copy of the system will fall into a subset of our ensemble, 

which represents a given state of damage 𝐷. In going from 𝜎 to 𝜎 + 𝑑𝜎, there will be a “flux” of 

systems from subsets to other ones as it happened in the strain-ensemble.  

However the development of the same mathematical formalism analysed in the previous section 

is too hard for this ensemble. The reason is that now, from a math viewpoint we are not able 

anymore the main tool we considered in the strain ensemble: the multinomial theorem; that’s 

why the probability functions 𝑃0(𝜀)…𝑃𝑘𝑚𝑎𝑥(𝜀) will be not anymore constant but they will change 

from one subset to another one because the strains that the various mental copies of the system 

will be different even if the stress will be the same. For this reason, the only way to analyse the 

CFBM in the case of a stress constant experiment is from a numerical viewpoint. By this sentence 

we are forced to certify that we will not able anymore to have all the amount of information we 

had with the strain ensemble. Furthermore for a numerical simulation, it is possible to analyse the 

behaviour of the system only for one realization at time (i.e. for a choice of a set of thresholds 

from our p.d.f.).  

We remind that in this kind of system there is an avalanche behaviour; and that this is a 

consequence of the fact that the external force must remain constant in a stress controlled 

experiment even if one or more fibers can damage or fail because they reach their thresholds. This 

brings us to a redistribution of the load among the alive fibers that can damage again and so on. 

So in order to simulate the behaviour of the model when it suffers this boundary condition, we can 

apply the following rule (Kun, Hermann, Hidalgo): 

We know that the external force 𝐹, is 

𝐹 =∑𝑓𝑖

𝑁

𝑖=1

= 𝜀∑𝑎𝑘(𝑖)
𝑁

𝑖=1

 

 (2.100) 

So by this simple law that expresses the relation between the external force and the single forces 

applied on the fibers, we can calculate the strain 

𝜀 =
𝐹

∑ 𝑎𝑘(𝑖)𝑁
𝑖=1

 

 

(2.101) 

and the forces on the single fibers 
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𝑓𝑖 =
𝐹𝑎𝑘(𝑖)

∑ 𝑎𝑘(𝑖)𝑁
𝑖=1

 

 

(2.102) 

So, in a given stable state of the system, we compute the forces on the single fibers, 𝑓𝑖, and, by 

knowing the thresholds 𝑑𝑖, we already know which fiber will break: it can be found by the ratio: 

𝑟 =
𝑑𝑖

∗

𝑓𝑖
∗ = 𝑚𝑖𝑛

𝑑𝑖
𝑓𝑖
   𝑟 > 1 

 (2.103) 

This means that the fiber that breaks is the one with the minimum value of this ratio. So, for 

example in increasing the load on the bundle from 

𝐹 → 𝑟𝐹 

 

(2.104) 

a given fiber, with index 𝑖∗, will damage; so its damage index will increase from 𝑘(𝑖∗) → 𝑘(𝑖∗) + 1. 

After this damage, the load on the other fibers must be recalculated by the Eq. (2.102) that 

provides the Local Sharing Rule into the model. A new value of the strain is also calculated. 

If there will be other fibers that will reach their own thresholds, they will suffer a further damage 

and the process goes ahead, creating an avalanche whose size number 𝑠 is exactly the number of 

total damages we notice in increasing the force  from 

 
𝐹 → 𝑟𝐹 

in a quasi static way. The process will stop when for the value of the external force 𝑟𝐹, and for a 

given state of damage 𝐷 = {𝐷0, 𝐷1, … , 𝐷𝑘𝑚𝑎𝑥} and a given strain 𝜀 (which is the same for each 

fiber), there will not be further damages anymore. How does the algorithm work?  In increasing 

the force from  𝐹 → 𝑟𝐹, two new quantities will be introduced: the avalanche size 𝑠 we talked 

about first and the number of iteration 𝑖.So at the beginning, it is possible that for 𝐹𝑒𝑥𝑡 = 𝑟𝐹, for 

example 𝑚 fibers will damage because they reach their threshold, according to the quenched or 

annealed disorder. So 𝑖 = 1 and 𝑠 = 𝑚. The Young modulus of the damaged fibers is reduced by 

the factor 𝑎 and the equilibrium for 𝐹𝑒𝑥𝑡 = 𝑟𝐹 is computed again; here 𝑖 = 2 and for example 𝑛 

fibers damage, so 𝑠 = 𝑛 and so on. The process will stop when after 𝑖 iterations, and after a 

number of total avalanches                 𝑆 = ∑ 𝑠𝑖
𝑖
𝑗=1 , for a force 𝐹𝑒𝑥𝑡 = 𝑟𝐹 and at the iteration 𝑖 + 1, 

the number of avalanche 𝑠(𝑖 + 1) = 0, i.e. from a physical wievpoint we reach the equilibrium 

without noticing further damages. After this, the external force is increased to 𝐹𝑒𝑥𝑡 = (𝑟 + 𝑟)𝐹 

and the process goes ahead. Basically in the algorithm, we introduce some “substeps” in order to 

take into account the attempts of the system to reach the equilibrium suffering a particular value 

of the external force. In the constitutive curve stress-strain, these substeps appear into the 
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process like the horizontal lines we noticed in the figure (2), in which obviously the external force 

remains constant because it is the engine that drives the system towards the equilibrium and the 

strain 𝜀 of all the fibers growths (because from a physical viewpoint the strain of the fibers is the 

only physical quantity that the system can vary to reach the equilibrium). 

So by these considerations, like in the FBM happened, in the CFBM we will have an avalanche 

behaviour which will be lead by a power law or by an exponential law. The behaviour of the 

system was extensively studied by Hidalgo,Kun, Kovacs, Pagonabarraga (Avalanche dynamics of 

the continuous fiber bundle model) and by Hidalgo Kun and Hermann (Bursts in a FBM with 

continuous damage). 

 In the study of the authors, it was possible to show that the avalanche behaviour depends 

basically on the damage reduction parameter 𝑎 and on the number of allowed failures per fiber 

𝑘𝑚𝑎𝑥. A complex phase diagram was introduced to resume this behaviour, in which we recognize 

three phases and a characteristic curve 𝑎 = 𝑎(𝑘𝑚𝑎𝑥) which separates the phase 2 from the phase 

3, and whose characteristic points 𝑎(𝑘𝑚𝑎𝑥 = 1), 𝑎(𝑘𝑚𝑎𝑥 = 2)…   can be calculated by knowing 

the p.d.f. from which we recover our thresholds: 

 

Figure 2.16: state diagram of the CFBM (Hidalgo et al., 2008) 

Furthermore, we noticed in the strain ensemble, plotting the function (2.78 b) that by 

considering different values of 𝑎 and 𝑘𝑚𝑎𝑥, the constitutive behaviour of the system was a 

function of the same two state parameters. This result was also obtained by Kun Hidalgo and 

Hermann and it was used as starting point by Hidalgo et al to calculate the avalanche dynamics 

in the CFBM. So, in the strain ensemble it was possible to notice that after the initial elastic 

response, the constitutive curve of the CFBM displayed a plateau regime which could be non-

monotonic. We showed that by varying the two state parameters, it is possible to control the 

appearance of these maxima or inflection points. In the work by Hidalgo et al, it is possible to 

show that the presence of these local extreme values can affect the microscopic dynamics of 

the damage and the analytic form of the power law: in a particular way there could be 

situation in which, in the work hardening, an inflection point can appear (fig 2.17) and the 
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order of this inflection point can affect the avalanche dynamics. In their work, it is possible to 

show that the avalanche size distribution is  

𝐷(∆)~∆
−4𝑛+1
2𝑛  

where 𝑛 is the order of the inflection point. For an infinite plateau (this condition is reached if 

𝑘𝑚𝑎𝑥 → ∞) 𝑛 → ∞, so  

𝐷(∆)~∆−2 

 

 So, in the following, we will analyse this constitutive diagram including a brief resume of the 

work by Hidalgo and taking into account the so called work hardening, in which a fiber can fail 

𝑘𝑚𝑎𝑥  times but after these failures, it stores a residual stiffness 

Phase 1: 

When the fibers can fail only once, obviously 𝑘𝑚𝑎𝑥 = 1, and for 𝑎 = 0, we recover exactly the 

behaviour of the dry FBM (which is not present into the figure). Increasing the stress, we will 

arrive to the maximum value into the constitutive curve strain stress, and after it the model 

will fail. If we fix 𝑘𝑚𝑎𝑥 = 1 and we change 𝑎 up to a critical value 𝑎𝑐(1) = 0.3, we are 

considering the situation in which the fibers can fail only once, but they never lose their 

stiffness; so we would expect after an initial transient to recover a residual stiffness for the 

whole bundle: this situation will arise when every fiber will not fail. After this transient the 

behaviour will be elastic and we will have work hardening instead of a critical failure of the 

bundle. 

 

Figure 2.17: constitutive behaviour of the CFBM for different choices of the damage parameters                       

(Hidalgo et al., 2008) 



 
124 

 

Now what happens for 𝑘𝑚𝑎𝑥 > 1? It can be shown from an analytical wievpoint that in the 

case of the work hardening, the constitutive curve has 𝑘𝑚𝑎𝑥  local maxima and at the critical 

value 𝑎 = 𝑎𝑐 the last maximum turns into an inflection point in the figure above. Either the 

maxima and the inflection points are reached into the stress constant experiment for work 

hardening and for the failure. So we can state that for 𝑎 < 𝑎𝑐 and for each 𝑘𝑚𝑎𝑥, the 

avalanche dynamics is characterized by a power law with exponent −5/2. This happens in the 

phase 1, in which we have 

𝐷(∆)~𝑠−5/2 

like in the dry FBM. 

 (Obviously, even if this is the constitutive curve of our model, in a stress controlled 

experiment it is not possible to notice all the waves and all the 𝑘𝑚𝑎𝑥  maxima because of the 

nature of our experiment. So for the work hardening case, we will jump after the flast 

maximum value or after the last inflection point to the asymptotic value while for the case of 

the catastrophic failure, after the maximum/inflection point, the model will fail). 

The critical point 𝑎𝑐(𝑘𝑚𝑎𝑥 = 1) is always a function of the probability density function used 

for the disorder and for the Weibull distribution is work hardening, the constitutive curve has 

𝑘𝑚𝑎𝑥  local maxima and at the critical value 𝑎𝑐 = 0.305. 

 

Phase 2 and 3: 

 The curve 𝑘𝑐(𝑎) separates two different regimes: for the parameter regime below the curve, 

avalanche distribution with an exponential law are obtained, while above this curve the 

avalanche distribution is characterized by a power law where 

  𝑃(𝑠)~𝑠−𝛽 𝛽 = 2.12 ± 0.05 

which is quite different from the power law obtained in the FBM (Hemmer Hansen). In the 

phase 2 it is possible to show that for 𝑘𝑚𝑎𝑥 > 1, the constitutive curve of the model (obtained 

in the strain ensemble) is still caractherized by 𝑘𝑚𝑎𝑥, but the first maximum is smaller than the 

other ones. In the region 3 instead it is possible to show that the constitutive behaviour is not 

characterized by local maxima. 

Each phase shows a common behaviour for 𝑘𝑚𝑎𝑥 → ∞, which is the appearance of a plateau 

whose length depends on the number of allowed failures: the bigger it is,the longer it is. For 

the work hardening case, this transient will not be noticed because we will pass directly to that 

part of the curve with a residual stiffness while for the case of the failure, the model will fail 

when the curve stress-strain will reach the maximum. 

What happens in the case in which a residual stiffness is not allowed but the fibers that have 

failed 𝑘𝑚𝑎𝑥 times are not allowed to withstand further load (catastrophic failure)? The 

behaviour is quite different from the case of the work hardening and it depends at the same 

time on the kind of disorder we chose. When the disorder is quenched the statistics of the 

avalanche shows a power law whose exponent is about -5/2 like in the dry FBM. When 
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𝑘𝑚𝑎𝑥 is bigger, obviously the number of the avalanches growth but the statistics of the 

avalanches themselves do not change at all. For the annealed the situation changes; if 𝑎 < 𝑎𝑐 

the results are similar to the dry FBM. In the region 2 the exponent of the power law is 2.12 ±

0.05 similar to the case with residual stiffness. Below 𝑘𝑐(𝑎) the exponents vary as function of 

the value we assign to k between the two mean field exponents 𝛼 and 𝛽. 

In the following we report the result of a numerical simulation, in which we will analyse the 

constitutive behaviour of one single realization, the avalanche behaviour of the system and the 

order parameter 𝜑 = 1 − 𝐷𝑡𝑜𝑡, and the count of the avalanches vs time (i.e. vs a given value of 

the external force). 

For a sample of 10000 fibers and with thresholds taken by a uniform p.d.f. and using a damage 

reduction parameter 𝑎 = 0.8, we get the following plots: 
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Figure 2.18: characteristic plots for the CFBM in a stress controlled experiment 

As we notice by the plots, we can recognize a different curve from the one described in the 

case of the stress constant experiment. In fact the horizontal lines do not appear in the plot of 

the force per fiber vs strain but only some oblique lines are present. The reason of this 

depends on how we wrote the code: basically in a stress constant experiment we recognize a 

horizontal part in which we notice the appearance of the avalanches followed by a second 

oblique part in which nothing breaks (see fig 2.2 on the right). In our simulation this oblique 

line plus the horizontal line due to the avalanches (in black) is substituted by a unique oblique 

line (in red) obtained by interpolating the first point with whom the oblique line begins and the 

last point of the horizontal line. For this reason it is not possible to notice the so called 

“substeps”. The following figure helps us to understand better the problem: 
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In black we observe the horizontal line in which an avalanche behaviour is present and the 

oblique line in which nothing breaks into the system: this is also the real constitutive curve of 

the system (in blue). In our simulation instead the first point and the last point are used to 

draw the variation of the stress per fiber vs the external force (in red). Basically the behaviour 

of the system is the same. 

As regards the avalanche behaviour as we notice from the figure in red, a first phase is 

observed in which the magnitude of the avalanches is more or less the same. Close to the 

critical point instead we note avalanches of bigger magnitude till to the last one that leads us 

to the catastrophic failure of the whole model. 

The avalanches are then distributed according to p.d.f. fitted quite well by a power law 

𝑃(𝑠)~𝑠−𝜏 

where the exponent 𝜏 = 2.2451 from the statistical analysis of the numerical simulations. 

Other simulations give us the same results with very little differences as regards the power law 

in good agreement with the theory. 

The simulation was realized according to the algorithm previously described in the case of a 

stress constant experiment.  

2.5.10 Close to the critical point 

Another interesting property of the CFBM is about the exponent law close to a local maximum: 

it is possible to show (Hidalgo et al) that even if the exponent of the power law is given by 𝛽, if 

we try to measure this exponent close to a local maximum (that in the case of the dry FBM is 

the only maximum before the failure), the exponent is -1.5. So, it could be possible by 

experimental techniques to try to measure the sound pulses created by the failure of the fibers  

(which are related to the energy lost by the system because of the damage) and by this, to 

understand if we are close to a local maximum (to the failure of our model) or not. In fact the 

energy bursts that come out because of the breakings of the fibers are characterised by a 
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power law which has the same exponent of avalanche size distribution. This last sentence was 

proved first for the simple DFBM (Prahandi, Hemmere Hansen)  

For the simple FBM in fact another way to write the avalanche distribution is  

𝐷(Δ)

𝑁
=
1

𝑁

ΔΔ−1

Δ!
 ∫ [1 −

𝑥𝑝(𝑥)

𝑄(𝑥)
]𝑝(𝑥)[

𝑥𝑝(𝑥)

𝑄(𝑥)
]∆−1

𝑥𝑐

0

exp (−∆𝑥𝑝(𝑥)/𝑄(𝑥))𝑑𝑥 

(2.105) 

where 𝑄(𝑥) = ∫ 𝑝(𝑦)𝑑𝑦
∞

𝑥
 is the fraction of fibers exceeding x. If we consider a uniform 

distribution,  

𝑝(𝑥) =
1

𝑥𝑚 − 𝑥0
 

(2.106) 

The previous expression becomes 

𝐷(Δ)

𝑁
=

1

𝑥𝑚 − 𝑥0

ΔΔ−1

Δ!
 ∫

𝑥𝑚 − 2𝑥

𝑥

𝑥𝑐

𝑥0

 [
𝑥

𝑥𝑚 − 2𝑥
𝑒−𝑥/(𝑥𝑚−2𝑥)]

∆

𝑑𝑥 

(2.107) 

So, introducing the parameter  

𝜀 =
𝑥𝑐 − 𝑥0
𝑥𝑚

 

(2.108) 

and the new integration variable 

𝑧 =
𝑥𝑚 − 2𝑥

𝜀(𝑥𝑚 − 𝑥)
 

we obtain 

𝐷(Δ)

𝑁
=
2ΔΔ−1𝑒−∆𝜀2

Δ! (1 + 2𝜀)
 ∫

𝑧

(1 − 𝜀𝑧)(2 − 𝜀𝑧)2

4/(1+2𝜀)

0

𝑒∆[𝜀𝑧+ln (1−𝜀𝑧)] 𝑑𝑧 

(2.109) 

For small 𝜀, 

𝜀𝑧 + ln(1 − 𝜀𝑧) = −
1

2
𝜀2𝑧2 −

1

3
𝜀3𝑧3 −⋯ 

 

that gives us 
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𝐷(Δ)

𝑁
~
ΔΔ−1𝑒−∆𝜀2

2Δ!
 ∫ 𝑒−∆[

1
2
𝜀2𝑧2] 𝑧𝑑𝑧

4

0

=
ΔΔ−2𝑒−∆

2Δ!
(1 − 𝑒−8𝜀

2∆) 

(2.110) 

and using the Stirling approximation,  

Δ! = ∆∆e−∆√2𝜋∆ 

 

we have 

𝐷(Δ)

𝑁
~(8𝜋)−

1
2∆−

5
2(1 − 𝑒−∆/∆𝑐) 

(2.111) 

with  

∆𝑐=
1

8𝜀2
 

(2.112) 

So, by these considerations, it is possible to write that 

𝐷(Δ)

𝑁
= {

(8/𝜋)1/2𝜀2∆−
3
2
   𝑓𝑜𝑟 ∆≪ ∆𝑐

(8/𝜋)1/2∆−
5
2     𝑓𝑜𝑟 ∆≫ ∆𝑐

 

(2.113) 

A very similar proof can be given for the CFBM but we suggest to consider the paper by Hidalgo et 

al for the calculations. 

 This behaviour gives us the sensation that the physics of the system changes drastically when we 

are close to the critical point of the failure, giving us hints of a possible failure. This could be quite 

important from an experimental viewpoint to understand when the FBM or the CFBM is close to 

the catastrophe. Does this behaviour exist for other systems in nature as well? As we will see the 

answer at the question is yes (Milanese et al., 2016): we are talking about the statistical central 

force model in static for which two kind of exponents for the power law were obtained: one for 

the whole simulation and one for the steady-plastic state; these exponents obviously depend on 

the boundary conditions applied but it is quite interesting to note how the nature follow the same 

scheme for so different systems. 

Before finishing the Chapter, it could be necessary to point out a very important aspect regarding 

the study of the CFBM we previously made: this simple model of fibers was studied in traction only 

and not in compression. This could be a future work to develop by the thermodynamic study in 

order to understand how the system of fibers approaches the phenomenon of the “buckling”. 
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Chapter 3  
About the Porous Media 

 

 “Each soil has had its own history. Like a 

river, a mountain, a forest, or any natural 

thing, its present condition is due to the 

influences of many things and events of 

the past.”  

 Charles Kellogg, The Soils That Support         

Us, 1956 

 

 

3.1 The Physics of porous media 

3.1.1 Introduction 

What is a porous medium? A common definition is “material containing pores or voids”. The pores 

are typically filled with a fluid that can be a liquid or a gas and the skeletal material is obviously a 

solid. According to lines above, we can understand that the definition of porous medium is 

basically abstract, in the sense that a soil or a concrete can be considered like a porous medium; 

but at the same time an amount of sand with a concentration of water inside, both contained into 

a box can be considered a porous medium (Darcy in fact conduced his own experiment about the 

flux of water inside a porous medium by considering this kind of system at the end of ‘800). Even 

the foams are porous media although their solid skeleton is considered very fragile and quasi-fluid. 

However in the following pages we will deal simply with systems like soils or concrete. We will 

analyze the governing equations of this kind of systems (we will see basically two equations: one 

for the equilibrium of the solid and the other one for conservation of the mass of the fluid by using 

the theory of mixtures by De Boer) and then we will introduce a way to solve them. 

 



 
134 

 

 

Figure 3.1: a possible skeletal material associated to the structure of a porous medium 

Before going ahead, it is useful to make a clarification about the notation we will use: we will 

consider vector and matrixes with the unique symbol ⃗⃗  ⃗. This is done to simplify the notation 

itself. 

 

 

3.1.2 Porous media: governing equations 

It is very difficult to describe the mechanics of a porous medium in a microscopic viewpoint for the 

reasons we just gave; so its mechanics  is described on a macroscopic scale assuming that the 

porous medium is continuous everywhere, with air, water and solid grains forming like an 

overlapping continuum. 

 

Figure 3.1: the structure of a porous medium in a mesoscopic scale  
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Figure 3.3: the structure of a porous medium by thinking it of overlapping layers 

If the air pressure is nearly uniform over the domain, and the air flow is not significant, it may be 

assumed that the air pressure 𝑝𝑎 in the unsaturated zones remains at atmospheric pressure or 

simply 

𝑝𝑎 = 0 

3.1.3 Description of the skeleton deformation 

Let us consider a Cartesian coordinate system as reference for our displacements, velocities and 

deformations. 

In continuum mechanics we can try to describe the motion of a single particle by using two 

different approaches: the Eulerian one and the Lagrangian one; in the first one we fix a particular 

point in space, 𝑥, 𝑦, 𝑧 and we concentrate on what happens in that region of the space; on the 

other hand, in the Lagrangian one the situation is quite different in the sense that we fix a 

particular particle and we focus our attention on the variations of the observables on that particle. 

So, for the finite deformation of the solid skeleton it is convenient to consider a Lagrangian 

viewpoint, even if we have no such big differences in small strain or displacements in the two 

approaches. However even if the deformation of the soil skeleton is small, the fluid in the pore 

structure can flow through long distances depending on the drained conditions. It could be 

preferable to use an Eulerian description to describe the fluid flow behavior. 

In the following pages, we will describe both vectors and tensors by the same symbol ⃗⃗  ⃗ in order 

to simplify the notation in the chapter, while the scalars will not be characterized by the arrow on 

their top.  

So, the displacement vector �⃗�  of a typical particle from its initial position 𝑋  to its position 𝑥  at the 

time 𝑡 is  

�⃗� = 𝑥 − 𝑋  

 (3.1) 

For a particle with property 𝐸, its material derivative with respect the time  in a Lagrangian 

viewpoint is 
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𝐷𝐸

𝐷𝑡
= 𝜕𝐸(𝑋 , 𝑡)/𝜕𝑡 

 (3.2) 

while if we use the Eulerian point of view, 

𝐷𝐸

𝐷𝑡
=
𝜕𝐸(𝑥 , 𝑡)

𝜕𝑡
+
𝜕𝐸(𝑥 , 𝑡)

𝜕𝑡
�⃗�   

(3.3) 

where �⃗�   is the velocity of the particle, i.e. 

�⃗�  =
𝜕𝑥 (𝑥 , 𝑡)

𝜕𝑡
 

(3.4) 

Another important quantity we have to define is the porosity of the porous medium: 

𝑛 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑜𝑖𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙
 

          

(3.5) 

If we define  

𝑛𝑆𝑤 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑠𝑜𝑖𝑙
 

(3.6) 

we can note that the actual relative velocity of water is 𝑤 /𝑛𝑆𝑤. 

So the absolute velocity of water (with respect an inertial frame) is 

�⃗⃗�  = �⃗�  +
�⃗⃗�  

𝑛𝑆𝑤
 

            

(3.7) 

where �⃗�    is the velocity of the solid phase and �⃗⃗�   the velocity of the water. 

Porous media like soil, rock and concrete are composed by mass of solid grains separated by 

spaces or voids. As we said first, it is assumed that voids in a porous medium are filled with air or 

water or both. If only air is present the porous medium is defined like dry, while if only water is 

present the porous medium is called saturated. When both air and water are present, the porous 

medium is called partially saturated. For these three conditions, it is very important to define the 

following physical quantities: 
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𝑆𝑤 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑜𝑖𝑑𝑠
 

the degree of saturation of water 

𝑆𝑎
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑜𝑖𝑑𝑠
 

the degree of saturation of air; 

Obviously their summation must be equal to the unit according to 

𝑆𝑤 + 𝑆𝑎 = 1 

 

3.1.4 Effective stress in partially saturated soils 

 

The concept of the effective stress was introduced by Terzaghi, that showed experimentally that 

the effective stress is able to control the deformations of the solid skeleton. For saturated soils, 

Terzaghi related the vector of the effective stress 𝜎 ′ to the total stress and the water pressure 

according to 

𝜎 = 𝜎 ′ − �⃗⃗� 𝑝𝑤 
                                 

(3.8) 

where �⃗⃗� 𝑇 = [1,1,1,0,0,0]. 

The discovery of the principle of effective stress marks the beginning of the era of modern soil 

engineering and it is at the basis of the mathematical theory we are developing. 

For saturated soils, this principle was confirmed with high accuracy, provided that the solid grain is 

small compared with that of the overall solid skeleton. 

For partially saturated soils, the validity of the principle of effective stress has been questioned. 

However if we would like to extend it to the unsaturated zones, we could use the Bishop’s relation 

which states 

𝜎 = 𝜎 ′ − �⃗⃗� 𝑝 

  (3.9) 

where  

𝑝 = Χ𝑝𝑤 + (1 − Χ)𝑝𝑎 
  (3.10) 

where Χ is the Bishop’s parameter, which was suggested like dependent on the degree of 

saturation of water. However it is possible to state that Χ is dependent on other factors like the 

soil structure and the process of wetting and drying. In the previous expression, we can consider 
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the pressure 𝑝 like the pressure acting on the solid grains so that the physical meaning of the 

Bishop’s relation is to relate the pressure on the solid grains to the pressure of water and air inside 

the medium. A typical approximation of the Bishop’s parameter is  

Χ~𝑆𝑤 

so that  

 

𝑝 = 𝑆𝑤𝑝𝑤 + 𝑆𝑎𝑝𝑎 

(3.11) 

 

𝜎 = 𝜎 ′ − �⃗⃗� (𝑆𝑤𝑝𝑤 + 𝑆𝑎𝑝𝑎) 

 (3.12) 

 

In the following equations, we will not consider the vector notation for the symbols already 

introduced. 

The previous equations can be further simplified by the assumption of the zero air pressure so that 

𝑝 = 𝑆𝑤𝑝𝑤 

𝜎 = 𝜎 ′ − �⃗⃗� (𝑆𝑤𝑝𝑤) 

Now, if we would like to take into account the compressibility of the solid grains, the equation of 

the effective stress could be modified according to 

𝜎 = 𝜎 ′′ − �⃗⃗� 𝛼𝑝 

  (3.13) 

 

where 𝜎 ′′ is the real effective stress vector and 𝛼 the coefficient of compressibility of the solid 

grains which is equal to 1 for most soils and goes from 0.4 to 0.6 for rocks or concrete (it is in these 

cases that it is important to take it into account). 

 

3.1.5 Partial saturation and capillary pressure 

There is much evidence that a liquid solid interface resists tensile forces because of the attraction 

between adjacent molecules in the surface. It is such interface tension that causes the 

phenomenon of capillarity. Capillarity enables a dry soil to draw water to elevations above the 

phreatic line and it also enables a draining soil mass to retain water above the phreatic line. The 

height of water column a soil can support, depends on the capillary pressure difference 𝑝𝑐, which 

is defined as 
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𝑝𝑐 = 𝑝𝑎 − 𝑝𝑤 
(3.14) 

The value of the capillary forces is inversely proportional to the size of soil void at the air-water 

interface. Owing to the great difference in the particle size within sands and clays, there will be a 

great difference in the capillary tensions that may develop within two classes of soils, i.e. letting us 

achieve large capillary tensions for clays and very small ones for sands. 

In the hypothesis of zero air pressure, obviously 

𝑝𝑐 = −𝑝𝑤 

So, negative water pressures are thus maintained in the partially saturated soils through the 

mechanism of the capillary force and such negative pressures provide a cohesive effect in the 

partially saturated zones. By the Equations of the capillary pressure and of the pressure on the 

solid skeleton, we can write the effective stress like 

 

𝜎 ′ = 𝜎 − �⃗⃗� 𝑆𝑤𝑝𝑐 
 (3.15) 

Now, the capillary pressure is dependent on the size of the soil void; for a given granular material 

with specific void ratio, and under isothermal conditions, we can assume that there exists a unique 

function  

 

𝑝𝑐 = 𝑝𝑐(𝑆𝑤) 

   (3.16) 

If water flows occurs, by similar arguments, we can state that there exists a unique function such 

that 

�⃗� 𝑤 = �⃗� 𝑤(𝑆𝑤) 

or 

�⃗� 𝑤 = �⃗� 𝑤(𝑝𝑐) 

Obviously the determination of these two last relations was the effect of extensive experimental 

studies. 
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3.1.6 Constitutive relations 

In absence of significant rotations, the constitutive law relating the effective stress change 𝑑𝜎 ′ to 

the total strain 𝑑𝜀 is 

𝑑𝜎 ′ = �⃗⃗� (𝑑𝜀 − 𝑑𝜀 0 − 𝑑𝜀 𝑝) 

(3.17) 

where 𝑑𝜀 0 is the change of initial strain due to the non stress effects like temperature, creep or 

soil wetting. We will assume that these effects are not present. 

Then 𝑑𝜀 𝑝 is the change of volumetric strain due to the uniform compression of the solid grains, 

that can be written like 

𝑑𝜀 𝑝 = −�⃗⃗� 
𝑑𝑝

3𝐾𝑠
 

(3.18) 

where 𝐾𝑠 is the average bulk modulus of the grains. So if we substitute this last equation in the 

constitutive law and we neglect the second contribute, 

𝑑𝜀 𝑝 = �⃗⃗� (𝑑𝜀 + �⃗⃗� 
𝑑𝑝

3𝐾𝑠
) 

(3.19) 

It could be more convenient to write the constitutive law like   

𝑑𝜎 ′′ = �⃗⃗� 𝑑𝜀  

(3.20) 

Forgetting the vector notation.  Comparing the 3.17, 3.18 and 3.19 

we arrive to 

𝛼�⃗⃗� = �⃗⃗� −
�⃗⃗� �⃗⃗� 

3𝐾𝑠
 

(3.21) 

from which, pre multiplying by �⃗⃗� 𝑇, we get 

𝛼 = 1 − 
�⃗⃗� 𝑇�⃗⃗� �⃗⃗� 

9𝐾𝑠
 

(3.22) 

If we are going to consider isotropic materials, the quantity �⃗⃗� 𝑇[𝐷]�⃗⃗�  is equal to 9𝐾𝑡 where 𝐾𝑡 is 

the bulk modulus of the overall soil mixture. So for isotropic materials,  
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𝛼 = 1 − 
𝐾𝑡
𝐾𝑠

 

            

(3.23) 

 

3.1.7 Momentum equilibrium equation 

 

We assume that the system moves with the solid phase and hence the convective acceleration 

applies only to the fluid. For a unit volume of the soil mixture, the overall equilibrium equation 

relates the total stress 𝜎  and the body force �⃗�  to the acceleration of the soil skeleton and the 

relative acceleration of water in the form 

�⃗� 𝑇𝜎 − 𝜌�⃗� = 𝜌�⃗� ̈ + 𝜌𝑤𝑛𝑆𝑤
𝐷

𝐷𝑡
(
�⃗⃗�  

𝑛𝑆𝑤
) 

(3.24) 

where  

�⃗� =

(

 
 
 
 

𝜕𝑥   0   0
0   𝜕𝑦   0

0   0   𝜕𝑧
𝜕𝑦   𝜕𝑥   0

0   𝜕𝑧   𝜕𝑦
𝜕𝑧   0   𝜕𝑥)

 
 
 
 

 

            

(3.25) 

is the differential operator, 𝜌𝑤 the density of the water and 𝜌 the density of the soil mixture, 

which is written like 

 

𝜌 = 𝜌𝑠(1 − 𝑛) + 𝜌𝑤𝑛𝑆𝑤 
                   

(3.26) 

In which 𝜌𝑠 is the density of the grain. The weight of the air is neglected. 

In the next, we introduce the momentum equilibrium equation for water alone. In the case of 

water passing through a soil, the validity of the Darcy law is assumed, so that for a unit volume, 

the Darcy law can be generalized to  
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�⃗� 𝑤
−1
�⃗⃗�  = −∇⃗⃗ 𝑝𝑤 + 𝑝𝑤(�⃗� −

𝐷�⃗⃗�  

𝐷𝑡
) 

(3.27) 

where [𝑘𝑤] is the dynamic permeability matrix of the water. For the isotropic case it is convenient 

to replace by a single 𝑘𝑤 value. In the above the left hand side represents the viscous drag force 

resisting to the water flow and �⃗⃗�   is the actual velocity of water while its acceleration  

𝐷�⃗⃗�  

𝐷𝑡
= �⃗� ̈ +

𝐷

𝐷𝑡
(−

w⃗⃗⃗  

𝑛𝑆𝑤
) 

(3.28) 

 

3.1.8 Water flow continuity equation 

For a unit of soil mixture, the rate of water inflow is given by 

−∇⃗⃗ 𝑇�⃗⃗�   

Now, there are five factors that contribute to the change of water stored in the unit volume of the 

solid-fluid ensemble: 

a) Volumetric strain of the soil skeleton 

�⃗⃗� 𝑇𝜕𝜀 /𝜕𝑡 

 

b) Compressive volumetric strain of the grain due to the pressure changes 

1 − 𝑛

𝐾𝑠

𝜕𝑝

𝜕𝑡
 

c) Compressive volumetric strain of water 

�⃗⃗� 𝑆𝑤
𝐾𝑤

𝜕𝑝𝑤
𝜕𝑡

 

with 𝐾𝑤 bulk modulus of water 

d) Increase of water storage due to the saturation changes 

𝑛
𝜕𝑆𝑤
𝜕𝑡

= 𝑛
𝜕𝑆𝑤
𝜕𝑝𝑤

𝜕𝑝𝑤
𝜕𝑡

= 𝐶𝑠
𝜕𝑝𝑤
𝜕𝑡

 

Where 𝐶𝑠 is the specific moisture capacity which can be in general evaluated from the 

𝑆𝑤 − 𝑝𝑤 curves as 𝑛
𝜕𝑆𝑤

𝜕𝑝𝑤
 

e) Compressive volumetric strain of the grain due to effective stress 

−
1

3𝐾𝑠
�⃗⃗� 𝑇

𝜕𝜎 ′

𝜕𝑡
= −

1

3𝐾𝑠
�⃗⃗� 𝑇�⃗⃗� 

𝜕𝜀

𝜕𝑡
− �⃗⃗� 𝑇�⃗⃗� �⃗⃗� 

1

(3𝐾𝑠)2
𝜕𝑝

𝜕𝑡
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So the final continuity equation can be written like 

 

−∇𝑇�⃗⃗�  = 𝑛
𝑆𝑤
𝐾𝑤

𝜕𝑝𝑤
𝜕𝑡

+ 𝐶𝑠
𝜕𝑝𝑤
𝜕𝑡

+ 𝑆𝑤 [�⃗⃗� 
𝑇 −

�⃗⃗� 𝑇�⃗⃗� 

3𝐾𝑠
]
𝜕𝜀

𝜕𝑡
+ 𝑆𝑤[

(1 − 𝑛)

𝐾𝑠
− �⃗⃗� 𝑇�⃗⃗� �⃗⃗� 

1

(3𝐾𝑠)2
]
𝜕𝑝

𝜕𝑡
 

     

(3.29) 

 

Putting together all the contributes. Using the definitions of 𝑝 and 𝛼,  

−∇𝑇�⃗⃗�  = 𝑛
𝑆𝑤
𝐾𝑤

𝜕𝑝𝑤
𝜕𝑡

+ 𝐶𝑠
𝜕𝑝𝑤
𝜕𝑡

+ 𝑆𝑤𝛼�⃗⃗� 
𝑇
𝜕𝜀

𝜕𝑡
+ 𝑆𝑤[

(𝛼 − 𝑛)

𝐾𝑠
(𝑆𝑤 +

𝐶𝑠
𝑛
𝑝𝑤)]

𝜕𝑝𝑤
𝜕𝑡

 

    

(3.30) 

That is the general equation for the continuity of water flow through a partially saturated porous 

medium. 

3.1.9 Summary of governing equations 

The equations we provided are able to describe the physics of all kinds of porous media including 

rocks, concrete and soils. We will summarize them in the following: 

1) EQUILIBRIUM OF SOIL MIXTURE 

 

�⃗� 𝑇𝜎 − 𝜌�⃗� = 𝜌�⃗� + 𝜌𝑤𝑛𝑆𝑤
𝐷

𝐷𝑡
(
�⃗⃗�  

𝑛𝑆𝑤
) 

2) EQUILIBRIUM OF WATER 

 

𝑘𝑤⃗⃗⃗⃗  ⃗
−1
�⃗⃗� = −�⃗� 𝑝𝑤 + 𝑝𝑤[�⃗� − �⃗� ̈ −

𝐷

𝐷𝑡
(
�⃗⃗�  

𝑛𝑆𝑤
)] 

3) CONTINUITY OF WATER FLOW 

 

−�⃗� 𝑇�⃗⃗�  = 𝑛
𝑆𝑤

𝐾𝑤⃗⃗ ⃗⃗  ⃗

𝜕𝑝𝑤
𝜕𝑡

+ 𝐶𝑠
𝜕𝑝𝑤
𝜕𝑡

+ 𝑆𝑤𝛼�⃗⃗� 
𝑇
𝜕𝜀 

𝜕𝑡
+ 𝑆𝑤[

(𝛼 − 𝑛)

𝐾𝑠
(𝑆𝑤 +

𝐶𝑠
𝑛
𝑝𝑤)]

𝜕𝑝𝑤
𝜕𝑡

 

4) REAL EFFECTIVE STRESS 

𝜎 = 𝜎 ′′ − �⃗⃗� 𝛼𝑆𝑤𝑝𝑤 
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5) CONSTITUTIVE RELATION 

𝑑𝜎 ′′ = �⃗⃗� 𝑑𝜀  

 

6) INCREMENTAL STRAIN 

𝑑𝜀 = �⃗� 𝑑�⃗�  

 

7) PARTIAL SATURATION RELATIONSHIPS 

 

𝑆𝑤 = 𝑆𝑤(𝑝𝑤) 

𝑘𝑤⃗⃗⃗⃗  ⃗ = 𝑘𝑤⃗⃗⃗⃗  ⃗(𝑝𝑤) 

𝐶𝑠 = 𝑛
𝜕𝑆𝑤
𝜕𝑝𝑤

 

 

The above system of equations is the generalized Biot formulation for dynamic behavior of 

saturated/unsaturated porous media. It consists of elementary equations like the 

momentum equation and the continuity equation plus some constitutive and experimental 

equations, introduced to close the system and to have a number of unknowns equal to the 

number of equations 

This system of equation can be solved with some boundary conditions: 

a) Prescribed displacements 

 

�⃗� = 𝑢𝑏⃗⃗⃗⃗   on Γ𝑢 at 𝑡 > 0 

 

b) Prescribed tractions 

 

𝑡 = 𝑡𝑏⃗⃗  ⃗  on Γ𝑡 at 𝑡 > 0   

 

c) Prescribed water flow 

 

�⃗⃗�  = �⃗⃗�  𝑏  on Γ𝑤 at 𝑡 > 0 

 

that can be written as 

 

�⃗� 𝑤 (−∇⃗⃗ 𝑝𝑤 + 𝜌𝑤 [�⃗� − �⃗� ̈ −
𝐷

𝐷𝑡
(
�⃗⃗�  

𝑛𝑆𝑤
)]) = �⃗⃗�   

d) Prescribed water pressure 

 

𝑝𝑤 = 𝑝𝑤𝑏 on Γ𝑝𝑤 at 𝑡 > 0 

 

The initial condition are  

�⃗� = �⃗� 0 
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�⃗�  = �⃗�  0 

𝑝𝑤 = 𝑝𝑤0 

The differential equation system (1-7) is characterized by nine unknowns: 

𝑢,𝑤, 𝑝𝑤, 𝜀, 𝜎, 𝜎
′′, 𝑆𝑤, 𝑘𝑤, 𝐶𝑠. 

Now, to solve this system of equations, which is non linear, can be quite expensive; for this reason 

we have to introduce some simplifications. We will analyze two of them: the partially saturated 

dynamic u-p formulation and the fully saturated dynamic 𝑢 − 𝑝 formulation. 

3.1.10 Partially saturated dynamic U-P formulation 

If we suppose that the acceleration of water with respect the soil skeleton is not significant 

compared to the motion of the soil skeleton itself, the variable 𝑤 can be eliminated by dropping 

the acceleration terms associated with 𝑤 by the assumption that 

𝐷�⃗⃗� 

𝐷𝑡
≪ �⃗� ̈ 

or  

𝐷

𝐷𝑡
(
�⃗⃗� 

𝑛𝑆𝑤

 
) ≪ �⃗�  

The validity of this assumption was discussed by Zienkiewicz et al [40]. The equation system can 

now be reduced by eliminating 𝑤  between the second and the third equations of the system itself. 

So in the end 

 

 

 

{
 
 
 
 
 

 
 
 
 
 �⃗� 𝑇𝜎 − 𝜌�⃗� = 𝜌�⃗� ̈

∇𝑇 [𝑘𝑤⃗⃗⃗⃗  ⃗ (∇𝑝𝑤 − 𝜌𝑤(�⃗� − �⃗� ̈))] =
𝑆𝑤
𝐾𝑤

𝜕𝑝𝑤
𝜕𝑡

+ 𝐶𝑠
𝜕𝑝𝑤
𝜕𝑡

+ 𝑆𝑤𝛼𝑚
𝑇
𝜕𝜀 

𝜕𝑡
+ 𝑆𝑤 [

(𝛼 − 𝑛)

𝐾𝑠
(𝑆𝑤 +

𝐶𝑠
𝑛
𝑝𝑤)]

𝜕𝑝𝑤
𝜕𝑡

𝜎 = 𝜎 ′′ − �⃗⃗� 𝛼𝑆𝑤𝑝𝑤

𝑑𝜎 ′′ = �⃗⃗� 𝑑𝜀 

𝑑𝜀 = �⃗� 𝑑�⃗� 

{
 
 

 
 𝑆𝑤 = 𝑆𝑤(𝑝𝑤)

𝑘𝑤⃗⃗⃗⃗  ⃗ = 𝑘𝑤⃗⃗⃗⃗  ⃗(𝑝𝑤)

𝐶𝑠 = 𝑛
𝜕𝑆𝑤
𝜕𝑝𝑤
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This is the dynamic 𝑢 − 𝑝 formulation for partially saturated porous media where the 

displacements u and the water pressure 𝑝𝑤 are taken like primary unknowns. 

 

3.1.11 Fully saturated dynamic U-P formulation 

When the medium is fully saturated, we have the following conditions: 

𝑆𝑤 = 1 

𝑘𝑤⃗⃗⃗⃗  ⃗ = 𝑐𝑜𝑛𝑠𝑡 

𝐶𝑠 = 0 

𝑝 = 𝑝𝑤 

The above system of equations further simplifies: 

{
 
 
 

 
 
 �⃗� 𝑇𝜎 − 𝜌�⃗� = 𝜌�⃗� ̈

�⃗� 𝑇 [𝑘𝑤⃗⃗⃗⃗  ⃗ (∇𝑝𝑤 − 𝜌𝑤(�⃗� − �⃗� ̈))] = 𝛼�⃗⃗� 𝑇
𝜕𝜀 

𝜕𝑡
+ 𝑆𝑤 [

𝑛

𝑘𝑤
+
𝛼 − 𝑛

𝑘𝑠
]
𝜕𝑝𝑤
𝜕𝑡

𝜎 = 𝜎 ′′ − �⃗⃗� 𝛼𝑝𝑤

𝑑𝜎 ′′ = �⃗⃗� 𝑑𝜀 

𝑑𝜀 = �⃗� 𝑑�⃗� 
𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑚𝑜𝑟𝑒

 

 

We quote other further simplifications of the main differential equation system:  

1) The partially saturated consolidation form   

𝐷

𝐷𝑡
(
�⃗⃗� 

𝑛𝑆𝑤

 
) → 0 

�⃗� ̈ → 0 

(in which we assume the acceleration forces to be negligible) 

2) The partially saturated dynamic undrained form: 

�⃗⃗�   → 0 

𝐷

𝐷𝑡
(
�⃗⃗� 

𝑛𝑆𝑤

 
) → 0 

Where the application of the load is so rapid or the permeability is so small that no important 

drainage occurs; 

3) The fully saturated dynamic undrained form 

 

Equal to the partially saturated dynamic undrained form with the conditions 
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𝑆𝑤 = 1 

�⃗� 𝑤 = 𝑐𝑜𝑛𝑠𝑡 

𝐶𝑠 = 0 

𝑝 = 𝑝𝑤 

That simplify the system 

     4) The fully saturated consolidation form 

             equal to 1) with  

𝑆𝑤 = 1 

�⃗� 𝑤 = 𝑐𝑜𝑛𝑠𝑡 

𝐶𝑠 = 0 

𝑝 = 𝑝𝑤 

Obviously the choice of the approximation depends on the kind of problem we want to solve and 

on the kind of system we are dealing. 

 

3.2 Discretization and solution of the governing equations 

We have presented the governing equations for a porous medium and as we noticed, we are 

dealing with a coupled problem structure-fluid. The non linear equations we derived, are 

extremely difficult to solve from an analytic viewpoint even if in literature we can find some 

examples of solutions for simple systems. Furthermore, some attempts to solve these equations 

through the finite difference methods can be found. But in dealing with problems of complex 

geometry and arbitrary non linearity, the finite difference method is difficult to apply. For this 

reason the finite element method became so popular. 

 

3.2.1 Finite element Discretization 

Generally a boundary value problem can be represented as 

𝐴 (𝑢) = 𝐶 �⃗� + 𝑝 = 0⃗      𝑖𝑛 Ω 
           

(3.31) 

�⃗� (𝑢) = �⃗⃗� �⃗� + 𝑞 = 0⃗        𝑖𝑛 Γ 

         

(3.32) 
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where [𝐶], [𝐷] are differential operators, linear or non linear, 𝑝 , 𝑞  are functions defined in the 

domain Ω and on the boundary Γ and 𝑢 is the exact solution to the previous governing equations, 

subject to the boundary conditions. 

For most practical problems the exact solution can be impossible to find, so some approximate 

methods are necessary. For instance it is possible to build an approximation �⃗� ∗ of the solution �⃗�  

using a series of shape functions with a set of unknown parameters. When the approximation  �⃗� ∗ 

is substituted inside the previous equations, the equations themselves are not satisfied and the 

residual in the domain 

�⃗� Ω = 𝐴 (�⃗� ∗) = 𝐴 �⃗� ∗ + 𝑝    𝑖𝑛 Ω 
             

(3.33) 

is supplemented by a boundary residual  

�⃗�  Γ = �⃗� (�⃗� ∗) = 𝐴 �⃗� ∗ + 𝑞    𝑖𝑛 Γ 

  (3.34) 

These residuals are different from zero but they can be made to zero in some “weighted” sense by 

writing 

∫ �⃗⃗⃗� 𝑇�⃗� Ω𝑑
Ω

Ω +∫ �⃗⃗⃗� ′𝑇�⃗�  Γ𝑑
Γ

Γ = 0 

              

(3.35) 

or 

∫ �⃗⃗⃗� 𝑇(𝐶 �⃗� ∗ + 𝑝 )𝑑
Ω

Ω +∫ �⃗⃗⃗� ′𝑇(�⃗⃗� �⃗� ∗ + 𝑞 )𝑑
Γ

Γ = 0 

      

(3.36) 

where the functions �⃗⃗⃗� 𝑇 and �⃗⃗⃗� ′𝑇 can be chosen independently. The above method is the so called 

weighted residual method. We will not apply it to the saturated dynamic  𝑢 − 𝑝 formulation. 

Let us apply the equation 3.36 to the equilibrium equation of partially dynamic formulation  and 

its boundary condition: 

let us forget the vector notation for the symbol we already introduced. So 

∫ �⃗⃗⃗� 𝑇(�⃗� 𝑇𝜎 − 𝜌�⃗� − 𝜌�⃗� ̈)𝑑
Ω

Ω +∫ �⃗⃗⃗� ′
𝑇
(𝑙 𝑇𝜎 − 𝑡 )𝑑

Γ

Γ = 0 

         

(3.37) 
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Now, if we use the Green’s theorem, the first term on the left hand side can be replaced by 

∫ (�⃗� �⃗⃗⃗� )𝑇𝜎 𝑑Ω + ∮ �⃗⃗⃗� 𝑇

Γ𝑢+Γ𝑡Ω

𝑙 𝑇𝜎  𝑑Γ 

                         

(3.38) 

Limiting the choice of the weighting function to  

𝑊 = 0  𝑜𝑛 Γ𝑢 

and 

𝑊′ = −𝑊  𝑜𝑛 Γ𝑡    

The equation 3.37 is reduced to 

∫ (�⃗� �⃗⃗⃗� )𝑇𝜎 𝑑Ω +∮ �⃗⃗⃗� 𝑇

Γ𝑢+Γ𝑡Ω

𝜌�⃗�  ̈ 𝑑Ω = ∫ �⃗⃗⃗� 𝑇𝜌�⃗�  𝑑Ω + ∮ �⃗⃗⃗� 𝑇𝑡 𝑑Γ
Γ𝑡Ω

 

     

(3.39) 

The continuity equation of water can be rewritten by substituting the equation 

𝑑𝜀 = �⃗� 𝑑�⃗�  

 

 in  

∇𝑇 [𝑘𝑤⃗⃗⃗⃗  ⃗ (∇𝑝𝑤 − 𝜌𝑤(�⃗� − �⃗� ̈))] =
𝑆𝑤

𝐾𝑤

𝜕𝑝𝑤

𝜕𝑡
+ 𝐶𝑠

𝜕𝑝𝑤

𝜕𝑡
+ 𝑆𝑤𝛼𝑚

𝑇 𝜕�⃗� 

𝜕𝑡
+ 𝑆𝑤 [

(𝛼−𝑛)

𝐾𝑠
(𝑆𝑤 +

𝐶𝑠

𝑛
𝑝𝑤)]

𝜕𝑝𝑤

𝜕𝑡
   

 

 

 

as 

 

�⃗� 𝑇[𝑘𝑤⃗⃗⃗⃗  ⃗∇𝑝𝑤 + 𝑘𝑤⃗⃗⃗⃗  ⃗ 𝜌𝑤(�⃗� − �⃗� ̈)] + 𝑆𝑤𝛼�⃗⃗� 
𝑇�⃗� �⃗�  +

1

𝑄∗
𝑝 = 0 

(3.39 a) 

if we define  
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1

𝑄∗
= 𝐶𝑠 + 𝑛

𝑆𝑤
𝐾𝑤

+ 𝑆𝑤
𝛼 − 𝑛

𝐾𝑠
 (𝑆𝑤 +

𝐶𝑠
𝑛
𝑝𝑤) 

         

(3.40) 

From the assumptions  

 

𝐷�⃗⃗� 

𝐷𝑡
≪ �⃗� ̈ 

or  

𝐷

𝐷𝑡
(
�⃗⃗� 

𝑛𝑆𝑤

 
) ≪ �⃗� ̈ 

 

 for the dynamic 𝑢 − 𝑝 formulation, the boundary condition  

�⃗� 𝑤 (−∇⃗⃗ 𝑝𝑤 + 𝜌𝑤 [�⃗� − �⃗� ̈ −
𝐷

𝐷𝑡
(
�⃗⃗�  

𝑛𝑆𝑤
)]) = �⃗⃗�   

 

 can be simplified as 

�⃗� 𝑤 (−�⃗� 𝑝𝑤 + 𝜌𝑤(�⃗� − �⃗� ̈)) = �⃗⃗�        𝑜𝑛 Γ𝑢 

           

 (3.41) 

Again, the weighted residual method to the continuity equation of water flow (3.39 a) and the 

boundary condition (3.41), we can write 

 

∫ �⃗⃗⃗� ∗𝑇[∇⃗⃗ 𝑇 (−𝑘𝑤⃗⃗⃗⃗  ⃗ (�⃗� 𝑝𝑤 − 𝜌𝑤(�⃗� − �⃗� ̈))) + 𝑆𝑤𝛼�⃗⃗� 
𝑇�⃗� �⃗�  +

1

𝑄∗
𝑝  𝑑Ω]

Ω

+∫ �⃗⃗⃗� ∗𝑇[(−𝑘𝑤⃗⃗⃗⃗  ⃗(�⃗� 𝑝𝑤 − 𝜌𝑤(�⃗� − �⃗� ̈) − �⃗⃗�  )
𝑇
)𝑛]

Γ𝑊

 𝑑Γ = 0 

                   

(3.42) 

where 𝑊∗ and �̅�∗ are arbitrary weighting functions. It is assumed that the boundary condition of 

𝑝𝑤 = 𝑝𝑤̅̅̅̅  on Γ𝑝𝑤 is satisfied by the choice of the approximation of 𝑝𝑤. 

Applying the Green’s theorem to the underlined terms of the above equation and limiting the 

choice of the weighting functions so that 
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𝑊 = 0  𝑜𝑛 Γ𝑝 

and 

𝑊′ = −𝑊  𝑜𝑛 Γ𝑤    

The equation (3.42) is now rewritten like 

 

∫ �⃗⃗⃗� ∗𝑇[−(�⃗� �⃗⃗⃗� ∗)
𝑇
(−�⃗� 𝑤 (�⃗� 𝑝𝑤 − 𝜌𝑤(�⃗� − �⃗� ̈))) + �⃗⃗⃗� ∗𝑇𝑆𝑤𝛼�⃗⃗� 

𝑇�⃗� �⃗�  + �⃗⃗⃗� ∗𝑇
1

𝑄∗
𝑝  ]𝑑Ω

Ω

+∫ �⃗⃗⃗� ∗𝑇�⃗⃗�  −𝑇𝑛
Γ𝑊

 𝑑Γ = 0 

               

(3.43) 

Following the standard procedure of the finite element method, the domain Ω is first divided into 

subdomains/elements, then the displacements and pore water pressure fields within an element 

are expressed in terms of a finite number of nodal values and interpolation (shape) functions 

 

�⃗� 𝑒 =∑�⃗⃗� 𝑢𝑖
𝑒  �⃗� 𝑖

𝑒 = �⃗⃗� 𝑢
𝑒�⃗� 𝑒

𝑚

𝑖=1

 

             

(3.44) 

and  

 

 

𝑝𝑤
𝑒 =∑�⃗⃗� 𝑝𝑗

𝑒  𝑝𝑤𝑗
𝑒 = �⃗⃗� 𝑝

𝑒𝑝 𝑤
𝑒

𝑁

𝑖=1

 

            

(3.45) 

where the superscript ‘𝑒’ denotes the element under consideration and 

�⃗� 𝑖
𝑒 = [𝑢𝑖𝑥, 𝑢𝑖𝑦, 𝑢𝑖𝑧] 

               

 (3.46) 

is the displacement at the node 𝑖 
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�⃗̅� 𝑒 = [𝑢1
𝑒𝑇 …𝑢𝑖

𝑒𝑇 … . 𝑢𝑚
𝑒𝑇]𝑇 

                      

 (3.47) 

 

is the nodal displacement vector  

𝑝𝑤𝑗
𝑒  

is the water pressure at node 𝑗 

�̅� 𝑤
𝑒 = [𝑝𝑤1

𝑒 …𝑝𝑤𝑗
𝑒 …𝑝𝑤𝑛

𝑒 ]
𝑇

 

          

 (3.48) 

 

is the nodal water pressure vector 

𝑚 is the number of nodes per element for the shape function of the displacement 

𝑛 is the number of nodes per element for the shape function of the water pressure 

 

�⃗⃗� 𝑢
𝑒 = [𝑁𝑢1

𝑒 𝐼 …𝑁𝑢𝑖
𝑒 𝐼 …𝑝𝑤𝑚

𝑒 𝐼]  

         

 (3.49) 

 

is the shape function for the displacement  (𝐼3 is a 3𝑥3 identity matrix) 

�⃗⃗� 𝑝
𝑒 = [𝑁𝑝1

𝑒 …𝑁𝑝𝑗
𝑒 …𝑁𝑝𝑛

𝑒 ]  

           

 (3.50) 

 

is the shape function for the water pressure. 

As the whole domain is concerned, the summation of all element contributions can be 

represented in terms of global shape functions as 

�⃗� = �⃗⃗� 𝑢�⃗̅�  

              

 (3.51) 
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and  

𝑝𝑤 = �⃗⃗� 𝑝𝑝𝑤̅̅̅̅⃗⃗⃗⃗  ⃗ 

               

 (3.52) 

 

Many choices of elements are flexible, although generally isoparametric elements are chosen, in 

which the coordinates within an element are interpolated with the same shape function as in the 

displacement representation (3.51).  

Now, we introduced all the vector quantities we need to keep on the description of the finite 

element method. For this reason, to make our writing simpler, we will omit it from this point 

ahead. 

Substituting the approximations (3.51) and (3.52) for the displacement and water pressure into 

the equations (3.43) and (3.61) and taking the shape functions themselves as the weighting 

functions by the Galerkin method, we arrive to 

 

∫ (�⃗� �⃗⃗� 𝑢)
𝑇
𝜎  𝑑Ω +∫ �⃗⃗� 𝑢

𝑇𝜌�⃗⃗� 𝑢�⃗�  𝑑Ω = ∫ �⃗⃗� 𝑢
𝑇𝜌�⃗�  𝑑Ω

ΩΩΩ

+∫ �⃗⃗� 𝑢
𝑇𝑡  𝑑Γ

Γ𝑡

 

       

 (3.53) 

 

and 

 

∫ (∇⃗⃗ �⃗⃗� 𝑝)
𝑇
�⃗� 𝑤∇⃗⃗ �⃗⃗� 𝑝𝑝𝑤 𝑑Ω

Ω

−∫ (∇⃗⃗ �⃗⃗� 𝑝)
𝑇
�⃗� 𝑤𝜌𝑤�⃗�  𝑑Ω 

Ω

+∫ (∇�⃗⃗� 𝑝)
𝑇
�⃗� 𝑤𝜌𝑤�⃗⃗� 𝑝�⃗� ̈ 𝑑Ω 

Ω

+∫ �⃗⃗� 𝑝
𝑇𝑆𝑤𝛼�⃗⃗� 

𝑇�⃗� �⃗⃗� 𝑢�⃗�   𝑑Ω + ∫ �⃗⃗� 𝑝
𝑇  
1

𝑄∗
�⃗⃗� 𝑝𝑝  𝑑Ω + ∫ �⃗⃗� 𝑝

𝑇 �⃗⃗�  𝑇𝑛 𝑑Γ = 0 
Γ𝑊ΩΩ

 

      

 (3.54) 
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with the representation of 𝜎  in equation (3.13) and 𝜚 in equation (3.26), (3.53 and 3.54) can be 

written as 

 

∫ �⃗� 𝑇𝜎 ′′𝑑Ω − Q⃗⃗ 𝑝 𝑤 + �⃗⃗� �⃗� ̈ = 𝑓 𝑢

Ω

 

          

 (3.55) 

 

�⃗⃗� 𝑝 𝑤 + 𝐺 �⃗� ̈ + �⃗� 𝑇�⃗�  + 𝑆 𝑝  𝑤 = 𝑓 𝑝 

         

 (3.56) 

 

We will not use anymore the vector notation from now in order to simplify the notation. 

In the previous formula 

𝐵 = 𝐿𝑁𝑢 

is the strain operator 

𝑄 = ∫ 𝐵𝑇𝑆𝑤𝛼𝑚𝑁𝑝𝑑Ω
Ω

 

                 

(3.57) 

 

the coupling matrix 

 

 

𝐻 = ∫ (∇𝑁𝑝)
𝑇
𝑘𝑤 ∇𝑁𝑝 𝑑Ω

Ω

 

            

 (3.58) 

 

the permeability matrix 
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𝑀 = ∫ 𝑁𝑝
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛𝑆𝑤 ] 𝑁𝑢 𝑑Ω

Ω

 

        

 (3.59) 

 

the mass matrix 

𝐺 = ∫ (∇𝑁𝑝)
𝑇
𝑘𝑤𝜚𝑤𝑁𝑢  𝑑Ω

Ω

 

         

 (3.60) 

 

the dynamic seepage forcing matrix 

𝑆 = ∫ (𝑁𝑝)
𝑇 1

𝑄∗
𝑁𝑝  𝑑Ω

Ω

 

            

 (3.61) 

 

the compressibility matrix, with 

 

𝑓𝑢 = ∫ 𝑁𝑢
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛𝑆𝑤 ] 𝑏 𝑑Ω + ∫ 𝑁𝑢

𝑇𝑡 𝑑Γ
Γ𝑡Ω

 

        

 (3.62) 

 

𝑓𝑝 = ∫ (∇𝑁𝑝)
𝑇
𝑘𝑤𝜚𝑤𝑏 𝑑Ω − ∫ 𝑁𝑝

𝑇𝑤 𝑇 𝑛 𝑑Γ
Γ𝑡Ω

 

          

 (3.63) 

 

It is important to notice that the choice of the shape functions 𝑁𝑢 and 𝑁𝑝 must be of 𝐶0 continuity. 
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Now, let us analyse the first term in (3.55): this term here represents the internal force and it is a 

function of displacement written as 

 

∫ 𝐵𝑇𝜎′′𝑑Ω = P(u)
Ω

 

             

 (3.64) 

 

For the isotropic linear elastic case, the constitutive relation can be replaced as 

𝜎′′ = 𝐷𝑒𝜀 = 𝐷𝑒𝐿𝑢 = 𝐷𝑒𝐿𝑁𝑢𝑢 = 𝐷𝑒𝐵𝑢 
           

 (3.65) 

 

So the internal force term can be written as 

∫ 𝐵𝑇𝜎′′𝑑Ω = ∫ 𝐵𝑇𝐷𝑒𝐵𝑢 𝑑Ω =
ΩΩ

𝐾𝑒𝑢 

            

 (3.66) 

 

In which we clearly recognize the elastic stiffness matrix, which is symmetric. However, in general 

problems characterized by a non linearity, the stiffness matrix can be a function of the 

displacements or of the strains: so function of the solution itself. The problem in these cases is non 

linear and only the tangential stiffness matrix can be written 

𝐾𝑇 =
𝜕𝑃(𝑢)

𝜕𝑢
= ∫ 𝐵𝑇𝐷𝑒𝐵 𝑑Ω

Ω

 

           

 (3.67) 

 

What about the effect of the dynamic seepage matrix? Its effect can be can be of importance only 

in the high frequency range where the 𝑢 − 𝑝 formulation is no longer valid. Here we will assume 

that the dynamic seepage forcing term 𝐺�̈� is negligible and therefore omitted in the later 

discussions. 

The resulting forms of the equations obtained can be summarized like: 
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1) dynamic form 

 

∫ 𝐵𝑇𝜎′′𝑑Ω − Q𝑝𝑤 +𝑀�̈� = 𝑓𝑢

Ω

 

𝐻𝑝𝑤 + 𝑄𝑇𝑢 + 𝑆𝑝 𝑤 = 𝑓𝑝 

 

2) consolidation form  

 

 

∫ 𝐵𝑇𝜎′′𝑑Ω − Q𝑝𝑤 = 𝑓𝑢

Ω

 

𝐻𝑝𝑤 + 𝑄𝑇𝑢 + 𝑆𝑝 𝑤 = 𝑓𝑝 

 

 

 

3) dynamic undrained form 

∫ 𝐵𝑇𝜎′′𝑑Ω − Q𝑝𝑤 +𝑀�̈� = 𝑓𝑢

Ω

 

𝑄𝑇𝑢 + 𝑆𝑝 𝑤 = 𝑓𝑝 

 

 

4) static drained form  

 

∫ 𝐵𝑇𝜎′′𝑑Ω − Q𝑝𝑤 = 𝑓𝑢

Ω

 

𝐻𝑝𝑤 = 𝑓𝑝 

For the fully saturated case, even if the equation system takes the same form as represented 

above, the matrixes are clearly different and this must be taken into account;  

Resuming, we have: 
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Partially saturated 

 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑄 = ∫ 𝐵𝑇𝑆𝑤𝛼𝑚𝑁𝑝𝑑Ω

Ω

𝑀 = ∫ 𝑁𝑝
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛𝑆𝑤 ] 𝑁𝑢 𝑑Ω

Ω

𝐻 = ∫ (∇𝑁𝑝)
𝑇
𝑘𝑤 ∇𝑁𝑝 𝑑Ω

Ω

𝑆 = ∫ (𝑁𝑝)
𝑇 1

𝑄∗
𝑁𝑝  𝑑Ω

Ω

𝑓𝑢 = 𝑁𝑢
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛𝑆𝑤 ] 𝑏 𝑑Ω + ∫ 𝑁𝑢

𝑇𝑡 𝑑Γ
Γ𝑡

𝑓𝑝 = ∫ 𝑁𝑢
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛𝑆𝑤 ] 𝑏 𝑑Ω + ∫ 𝑁𝑢

𝑇𝑡 𝑑Γ
Γ𝑡Ω

 

with 

{

𝑘𝑤 = 𝑘𝑤(𝑝𝑤)
1

𝑄∗
= 𝐶𝑠 + 𝑛

𝑆𝑤
𝐾𝑤

+ 𝑆𝑤
𝛼 − 𝑛

𝐾𝑠
 (𝑆𝑤 +

𝐶𝑠
𝑛
𝑝𝑤)
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Fully saturated 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑄 = ∫ 𝐵𝑇𝑆𝑤𝛼𝑚𝑁𝑝𝑑Ω

Ω

𝑀 = ∫ 𝑁𝑝
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛𝑆𝑤 ] 𝑁𝑢 𝑑Ω

Ω

𝐻 = ∫ (∇𝑁𝑝)
𝑇
𝑘𝑤 ∇𝑁𝑝 𝑑Ω

Ω

𝑆 = ∫ (𝑁𝑝)
𝑇 1

𝑄∗
𝑁𝑝  𝑑Ω

Ω

𝑓𝑢 = 𝑁𝑢
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛 ] 𝑏 𝑑Ω + ∫ 𝑁𝑢

𝑇𝑡 𝑑Γ
Γ𝑡

𝑓𝑝 = ∫ 𝑁𝑢
𝑇[𝜚𝑠(1 − 𝑛) + 𝜚𝑤𝑛 ] 𝑏 𝑑Ω + ∫ 𝑁𝑢

𝑇𝑡 𝑑Γ
Γ𝑡Ω

 

with 

{

𝑘𝑤 = 𝑐𝑜𝑛𝑠𝑡
1

𝑄∗
=

𝑛

𝐾𝑤
+
𝛼 − 𝑛

𝐾𝑠
 
 

For the accuracy of the solution for these systems of equations, we quote Lewis et al., (1998). 

In the next pages, we will discretize in time these last two systems of equation by using the GN22 

Newmark algorithm. 

 

 

3.2.2 Discretisation in time 

If we write this system of equation at the time step 𝑛 + 1, we have 

 

[∫ 𝐵𝑇𝜎′′𝑑Ω]𝑛+1 − 𝑄𝑛+1𝑝𝑛+1 +𝑀𝑛+1�̈�𝑛+1 = 𝑓𝑢
𝑛+1

Ω

 

𝐻𝑛+1𝑝𝑛+1 + 𝑄𝑛+1
𝑇𝑢 𝑛+1 + 𝑆𝑛+1𝑝 𝑛+1 = 𝑓𝑝

𝑛+1
 

that can be written in matrix form like: 

(
𝑀𝑛+1 0
0 0

) (
�̈�𝑛+1
�̈�𝑛+1

) + (
𝐶𝑛+1 0

𝐻𝑛+1
𝑇 𝑆𝑛+1

) (
𝑢 𝑛+1
𝑝 𝑛+1

) + (
𝐾𝑛+1 −𝑄𝑛+1
𝐻𝑛+1

𝑇 𝑆𝑛+1
) (
𝑢𝑛+1
𝑝𝑛+1

) = (
𝑓𝑢

𝑛+1

𝑓𝑝
𝑛+1

) 

where we added the damping matrix 𝐶 for the solid part and where  
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𝑝𝑛+1 = 𝑝𝑤  

Before analysing the algorithm of discretization in time for this system it is useful to understand 

how it is possible to discretize the same system without fluid inside. 

3.3 The case of the solid without fluid 

3.3.1 Equations 

In order to compute the dynamical evolution of a simple elastic system without fluid, we need to 
use the Finite Element Method (FEM) to discretize in space and the Newmark method to discretize 
in time, the last one the most popular for dynamic analysis. 
 
The system of differential equation we have to solve is, by switching off the fluid 
 

{
 
 

 
 

𝐿𝑇𝜎 − 𝜌𝑏 = 𝜌�̈� + 𝜇𝑢 
𝑛𝑜 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑤𝑎𝑡𝑒𝑟
𝑛𝑜 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠

𝑑𝜎 = 𝐷𝑑𝜀
𝑑𝜀 = 𝐿𝑑𝑢

𝑛𝑜 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑣𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠

 

 

 
where we have considered a linear viscous type resistance, resulting in a unit volume force like 𝜇𝑢 .  
In the above, 𝜇 is a viscosity parameter which expresses a frictional resistance opposing to the 
motion. This may be due to the microstructure movements, air resistance etc. This kind of force is 
often related to the velocity in a non linear way, but for simplicity we will suppose that it will be 
𝜇𝑢  with 𝜇 constant. 
 

3.3.2 Discretization in time for the solid problem 
 
So using the FEM, again switching of the fluid, the discretization in space gives us the following 
matrix equation 
 

𝑀�̈� + 𝐶𝑢 + 𝐾𝑢 = 𝑓 
            
 (3.68) 
where 𝑀 is the mass matrix, 𝐶 is the damping matrix and 𝐾 the stiffness matrix while 𝑢  is the 
vector of the displacements of the nodes of the structure, 𝑢  the vector of the velocities and �̈� the 
vector of the accelerations. 𝑓 instead is the vector of the nodal forces. The following step is to use 
a method to discretize in time the Equation (3.68). For this purpose we can use the method GN22 
of the Newmark’s family (Zienkiewicz, the finite element method, volume 1) 
  
From Zienkiewicz, it is possible to write this vector and the velocity vector like a Taylor expansion: 
 

𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡𝑢𝑛 +
1

2
(1 − 𝛽2)∆𝑡

2�̈�𝑛 +
1

2
(𝛽2)∆𝑡

2�̈�𝑛+1 
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 (3.69) 

 

𝑢 𝑛+1 = 𝑢 𝑛 +
1

2
(1 − 𝛽1)∆𝑡

2�̈�𝑛 + 𝛽1∆𝑡 �̈�𝑛+1 

        
 (3.70) 

 
 
where the two parameters 𝛽1 = 𝛽2 = 0.5. 
These two equations together to the dynamic equation written for the station 𝑛 + 1, 
 
 
 

𝑀�̈�𝑛+1 + 𝐶𝑢 𝑛+1 + 𝐾𝑢𝑛+1 = 𝑓𝑛+1 
          
 
(3.71) 

 
 
allow us the three unknowns 𝑢𝑛+1, 𝑢 𝑛+1, �̈�𝑛+1 to be determined. If we express the (3.69) in terms 
of  
 
𝑢𝑛+1 we have 

�̈�𝑛+1 = �̈�𝑛+1̂ +
2

𝛽2∆𝑡2
𝑢𝑛+1 

             
 (3.72) 

 
 

𝑢 𝑛+1 = 𝑢 𝑛+1̂ +
2𝛽1
𝛽2∆𝑡

𝑢𝑛+1 

           
 (3.73) 

 
 
where 
 
 

�̈�𝑛+1̂ = −
2

𝛽2∆𝑡2
𝑢𝑛 −

2

𝛽2∆𝑡
𝑢 𝑛 −

1 − 𝛽2
𝛽2

�̈�𝑛 

           
 (3.74) 
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𝑢 𝑛+1̂ = −
2𝛽1
𝛽2∆𝑡

𝑢𝑛 − (1 −
2𝛽1
𝛽2

)𝑢 𝑛 − (
𝛽2 − 𝛽1
𝛽2

)∆𝑡�̈�𝑛 

        
 (3.75) 

 
 
These values are substituted into (3.71) and we get 
 
 

𝑢𝑛+1 = −𝐴−1(𝑓𝑛+1 + 𝐶𝑢 𝑛+1̂ +𝑀�̈�𝑛+1̂) 
         

(3.76) 

 

where  

 

𝐴 =
2

𝛽2∆𝑡2
𝑀 +

2𝛽1
𝛽2∆𝑡

𝐶 + 𝐾 

                                 

 (3.77) 

 

 

We can compute then the accelerations by the (3.72) and (3.73). 

 

Newmark’s algorithm is used to solve a problem 

𝑀�̈� + 𝐶𝑢 + 𝐾𝑢 = 𝑓 
    

So, it is possible to apply it to the porous medium if we write the system 

[∫ 𝐵𝑇𝜎′′𝑑Ω]𝑛+1 − 𝑄𝑛+1𝑝𝑛+1 +𝑀𝑛+1�̈�𝑛+1 = 𝑓𝑢
𝑛+1

Ω

 

𝐻𝑛+1𝑝𝑛+1 + 𝑄𝑛+1
𝑇𝑢 𝑛+1 + 𝑆𝑛+1𝑝 𝑛+1 = 𝑓𝑝

𝑛+1
 

as 
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(
𝑀𝑛+1 0
0 0

) (
�̈�𝑛+1
�̈�𝑛+1

) + (
𝐶𝑛+1 0

𝐻𝑛+1
𝑇 𝑆𝑛+1

) (
𝑢 𝑛+1
𝑝 𝑛+1

) + (
𝐾𝑛+1 𝑄𝑛+1
𝐻𝑛+1

𝑇 𝑆𝑛+1
) (
𝑢𝑛+1
𝑝𝑛+1

) = (
𝑓𝑢

𝑛+1

𝑓𝑝
𝑛+1

) 

 (3.78) 

 

where  

𝑀𝑒𝑞 = (
𝑀𝑛+1 0
0 0

) 

 (3.79) 

𝐶𝑒𝑞 = (
𝐶𝑛+1 0

𝐻𝑛+1
𝑇 𝑆𝑛+1

) 

 (3.80) 

𝐾𝑒𝑞 = (
𝐾𝑛+1 𝑄𝑛+1
𝐻𝑛+1

𝑇 𝑆𝑛+1
) 

(3.81) 

The following step is to assembly the mass matrix 𝑀, the stiffness matrix 𝐾 and the damping 

matrix 𝐶. We will describe this step in Chapter 4. 
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Chapter 4  
The statistical central force model 

 

 “Fracking ensures that the age of oil-and 

it's princely hydrocarbon cousin, the 

natural gas molecule-will not end 

because we have run out of fossil fuels. 

But it may end because burning these 

wonderful fuels puts the planet farther 

down a path we don't want to head 

down”  

                                                       Russel Gold 

 

 

In this chapter we will implement the method of the force central model applied for the dynamics. 

Milanese Schrefler and Molinari (2016) already applied it to a generic medium and to a porous 

medium in static. The following step is to apply it to the dynamics; the reason for which we apply 

it to the dynamics is that in many circumstances in the fracture processes, it is not possible to 

forget the dynamics effects on the structure: when a force changes in time not slowly in fact we 

need to consider the inertial and damping effects on the whole structure. Second, this tool was 

originally realized to give a response about the fracking in the soils. Obviously it is possible to 

extend it to other kind of processes, from the simple fracture in a material to the spalling into the 

concrete because of a thermal load from the external environment; but if we think about the 

phenomenon of the fracking, it is not possible not to take into account that in this process the 

dynamical effects come into play. 

4.1 Analogies between RFM and FBM 

4.1.1 Introduction 

Why the necessity to extend the CFBM to a generic medium? In more realistic situations, the solid 

is not homogeneous and the disorder, in forms of microcracks or vacancies, strongly affects the 

nucleation process. Cracks for example may start from different defects and they can coalesce in 

contrast with the theories of Griffith. 
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The idea to apply this algorithm was born from a paper by Vespignani, Zapperi and Stanley on the 

so called Random Fuse Model (RFM). This particular kind of model is quite simple because of its 

scalar nature, given by the law  

𝐾𝑉 = 𝐼 

(4.1) 

where 𝐼 is the current, 𝑉 the potential and 𝐾 the conductivity. 

 

Figure 4.1: a simple image of the RFM (Zapperi et al., 1999) 

Let us describe briefly the RFM; consider a lattice whose dimensions are 𝐿𝑥𝐿. Our lattice is 

characterized by a number of bonds which are linked by a given network (fig 4.1). At each bond of 

the lattice, we associate a fuse in which the conductivity is 𝐾𝑖 = 1. A potential 𝑉 is applied to the 

system at the edges of the lattice: on one edge it is fixed while on the other edge it changes very 

slowly; so a global potential ∆𝑉 will act on the lattice and it will change in time allowing us to state 

that the system is loaded in static conditions. So a resultant current will cross the system and each 

bond; this current will be found by solving the so called Kirchoff equations for each node. If the 

current in a bond exceeds a threshold 𝐷𝑖,  which is spread out according to a p.d.f. for each bond, 

the bond itself becomes an insulator (𝐾𝑖 = 0). The equilibrium is computed again into the system 

and because of the breaking of one bond, it is possible that other bonds will break, giving rise to 

an avalanche behavior. The process will stop when for a given ∆𝑉 imposed from the external 

environment, the system will be in equilibrium without further breakings. So in this kind of model, 

either the bonds are operational or are damaged. 
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Obviously the study of the RFM according to the introduction of the disorder is a direct application 

of the FBM to a different but similar physical problem and it is the extension to the 2D of a 1D 

problem represented by the dry FBM itself. 

 

 

4.2 Extension of the CFBM to a Truss Lattice Model 

4.2.1 Description of the model 

So in this case we could bring the fibers of the “bundle” in a 2D lattice. Why to extend the CFBM to 

a truss lattice? 

 The dry FBM and one of its extension, the CFBM, are able to analyze the breakdown of a simple 

mono dimensional problem; for given value of the damage parameter 𝑎, it is possible to recover 

the constitutive behavior of some ceramic composites (Kun, Hermann, Hidalgo) but in this context 

it is not possible to pick up all the features of a 2D or 3D fracture process; for example in 2D in a 

real structure, pulled from two edges, we expect that because of the load, the structure damages 

in different points but we expect that a channel of fracture develops and growths into the system 

till bringing us to the final fracture; and this can happen without breaking each element of the 

system itself. So the extension to the 2D or to the 3D allows us to extend the fiber bundle model 

for it to be able to catch the fracture that was not able to do in 1D where the whole model arrived 

to a catastrophic breakdown. 

So let us consider the figure below: 

 

Figure 4.2: Image of the geometry of the truss lattice considered in the analysis 
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As we notice by the figure the extension in 2D of the FBM is made by a truss structure whose 
topology is described by the snapshot above. 
We could load the system by forces placed on the nodes of the right edge, while the system is not 
able to move on the left one. However by using this load condition, we would not be able to 
observe the full stress strain curve of our system. 
To each truss we assign a damage parameter 𝑎 as it happened in the CFBM so that when its 
threshold, taken by a p.d.f., is reached, the Young modulus of the truss decreases to 𝑎𝐸. 
What’s the physical meaning of our model? The lattice system represents a particular kind of 
material (for example, it could be Aluminum, Iron or a Composite) from a macroscopic viewpoint, 
while each truss is representative of the mesoscopic behavior of a part of the system itself, i.e. it is 
the representation of a small portion of material that may damage different times before arriving 
to the final breakdown (in order to reproduce the same mechanism of damage that we observe in 
the composites, chap. 3). As we already said, we assign each truss a Young Modulus which is 100 
Mpa, so that our medium will be general at the moment. The system is homogeneous because the 
mesoscopic Young modulus is the same for each truss (we could obtain a composite structure if 
we gave a particular Young modulus to the horizontal trusses and a different one to the vertical 
ones). 
The disorder is present in the system because each truss has a different threshold spread out 
according to a given distribution. 
Why did we choose trusses to represent the medium from a mesoscopic viewpoint? That’s why 
trusses are very simple systems, suffering only an axial force. They broke if they are stretched or 
pulled. So they are very simple to be used in a Finite Element Method and by knowing their 
thresholds for axial stresses, we are able to count the avalanches, as we’ll see later. If we had used 
a 2D element as a membrane, for example, everything would have been more complex and we 
would have had to introduce a more complex method to count avalanches too. But this could be 
obviously a further extension or development of this model. 
Simulations are performed over square lattices of side 𝐿 =  64 𝑚𝑚. The lattice is meshed 
according to three sizes 𝐿 =  16, 32, and 64 𝑚𝑚, where L is the number of trusses aligned on the 

side direction. The size of vertical and horizontal bonds is 𝑙𝑣 = 𝑙ℎ =
64

𝐿
 𝑚𝑚; the size of diagonal 

bonds is  𝑙𝑑 =
64√2

𝐿
𝑚𝑚. Trusses in the figure 4.2 above concurring to determine the global 

stiffness matrix [𝐾] have specific area values to reproduce the same behaviour of a four-node 
shell element. If we consider two squares into the truss structure in the figure 4.2, we get a 20-
truss grid that can be divided into four 6-truss smaller grids, each of them sharing 2 trusses with 
the adjacent 6-truss grids. Equalizing the stiffness of the six-truss square grid to the stiffness of a 
four-node shell element it is possible to determine the following values for the truss area (J. 
G.VanMier, Concrete Fracture: A Multiscale Approach (CRC Press, Boca Raton, FL, 2012)),  

𝐴1 = 𝐴2 =
3

8
𝑙𝑡 

(4.5) 
 

𝐴3 =
3√2

8
𝑙𝑡 

(4.6) 
where 𝐴1, 𝐴2, and 𝐴3 are the sectional areas for the horizontal, vertical, and diagonal trusses, 
respectively, that will be introduced into the local stiffness matrixes in order to build the general 
stiffness matrix. Obviously 𝑙 is the length of the horizontal and vertical elements, and t is the 
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thickness. So, by this kind of work, it could be possible to obtain an equivalence between the 
biquadratic Lagrangian element with four nodes and thickness 𝑡, and a truss structure made by 
cells. That is possible if we consider the areas given by (4.5) and (4.6) coming out from the study of 
Van Mier. The figure below explains in a simple way how it is possible to discretize a bi-
dimensional body Ω characterized by a load 𝑞(𝑥) on the boundary by truss element cells and 
bilinear lagrangian elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equivalence we are talking about is energetic: what is possible to show is that this equivalence 
is valid for the load conditions in the figure below, for which we are able to obtain the same 
displacements than a bilinear lagrangian elements. 
 
 
 
 
 
 
This means that if we load a bilinear lagrangian element with the same forces in the same points 
and we fasten it with the same boundary conditions above represented, we are able to get the 
same displacements on the nodes. 
Instead for the following conditions of load, the equivalence is not satisfied: 

Ω 

∂Ωf
_ 

∂Ωc
_ 

∂Ωl 

𝒒(𝑥) 

𝑷𝒊 

𝑷𝒊 

Lagrangian  

Bilinear  

Elements  

Truss 

Cell elements 
𝐴1 

l  

𝐴3 𝐴2 

l  

l  

l  

F F F F 

F 

F 
F 

F 

F 

F 

F 
F 

F 

F 
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However it could be quite reasonable supposing that, by improving the quality of the mesh simply 
by increasing the number of the elements, the solution provided by Lagrangian bilinear elements 
and truss cell elements will coincide. In order to sustain this intuitive idea we performed some 
simple simulations by a commercial software in which with the same boundary conditions and the 
same applied load, we evaluated the solution coming out from the discretization by Lagrangian 
bilinear elements and we compared it with the truss cell one. 
 
The results are given below: 
 
 

 
 

Disp x 
Bilinear 
element 

Disp y 
Bilinear 
element 

Disp x 
Truss 
element 

Disp y 
Truss 
element 

Comparison 
∆𝑥/|𝑥| 

Comparison 
∆𝑦/|𝑦| 

Number 
of 
divisions 

-0.0923 -0.1343 -0.0874 -0.1278 5% 5% 8 

-0.0685 -0.1015 -0.0574 -0.0867 16% 15% 4 

-0.0461 -0.0706 -0.0337 -0.0529 27% 25% 2 

-0.0406 -0.0497 -0.019 -0.0286 53% 42% 1 

 

F 

F 

x 

y 

x 

y 

F 

F 

x 

y 

x 

y 

F 

F 

x 

y 

x 
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Disp x 
Bilinear 
element 

Disp y 
Bilinear 
element 

Disp x 
Truss 
element 

Disp y 
Truss 
element 

Comparison 
∆𝑥/|𝑥| 

Comparison 
∆𝑦/|𝑦| 

Number 
of 
divisions 

-0.1907 -0.0923 -0.1802 -0.0874 6% 5% 8 

-0.1486 -0.0685 -0.1298 -0.0574 13% 16% 4 

-0.1031 -0.0461 -0.0871 -0.0337 16% 27% 2 

-0.0802 -0.0406 -0.0571 -0.019 29% 53% 1 

 
As we can notice, even in the cases in which the energetic equivalence in not proved (because of 
the previous load conditions), the bigger is the number of divisions/cells of truss elements, the 
closest is the solution provided by the bilinear Lagrangian elements and the truss elements 
themselves. 
 
So it is reasonable to represent a body by truss cells and as we shown, by increasing the number of 
cells, from a math viewpoint the solution gets closer and closer to the one provided by bilinear 
elements. Furthermore, as we already explained, in our approach each single truss will represent a 
portion of material. For this reason the structure we are studying is not a real truss structure but a 
lattice model. This prevents us to study more complex phenomena that could happen inside the 
structure itself like buckling: in compression in fact trusses can damage or break because they 
represent simply the increasing of damage inside the volume they represent. It would not make 
sense to introduce more complex phenomena like buckling happening in real structures. 
 
Now, our model is similar to the previous RFM. This means that we can assign to each truss a 
Young Modulus 𝐸, that in our simulations is 100 MPa, and a stress threshold spread according to a 
p.d.f. (an uniform one between 0 MPa and 1 Mpa).  When the stress in a truss goes beyond the 
threshold, the Young Modulus becomes 𝑎𝐸 and the truss itself is damaged. A truss can damage 
only  𝑘𝑚𝑎𝑥 times so that in the simulation when 𝐸 < 𝐸𝑘𝑚𝑎𝑥, 𝐸 = 0 .  
 
 

F 

F 

x 

y 

x 
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4.2.2 Assembly of the Mass, stiffness and damping matrixes 

Our truss structure is made by different bars moving into the plane 𝑥 − 𝑦 according to the 

following picture already shown in Chapter 3: 

 

 

Figure 4.3: Local and global frames on a single truss 

The figure 4.3 above shows an element of length 𝑙 = 𝑥𝑗 − 𝑥𝑖, with constant section 𝐴, Young 

modulus 𝐸 and density 𝜌.  Obviously, given the nature of our system, each node can move 

independently both in axial direction (causing a displacement 𝑢𝑖) and in orthogonal direction, with 

a displacement 𝑤𝑖 so that, for a single element 

{𝑢𝑖}
𝑇 = {𝑢𝑖 , 𝑤𝑖, 𝑢𝑗 , 𝑤𝑗}

𝑇 

(4.7) 

 The displacement of a generic point inside the element, 𝑃, can be expressed as function of the 

displacements of the nodes or as a function of the adimensional coordinate  

𝜉 =
𝑥 − 𝑥𝑖
𝑥𝑗 − 𝑥𝑖

 

(4.8) 

If we use linear shape functions, shown in the figure below, 
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Figure 4.4: shape functions for the element truss 

the axial displacement 𝑢 and the orthogonal displacement 𝑤 of each internal point become 

function of the nodal displacements according to: 

𝑢(𝜉) = (1 − 𝜉)𝑢𝑖 + 𝜉𝑢𝑗  

(4.9 a) 

 

𝑤(𝜉) = (1 − 𝜉)𝑤𝑖 + 𝜉𝑤𝑗  

(4.9 b) 

So if we would like to compute the mass matrix of the truss element according to the variational 

approach, we can use the expression of the kinetic energy of the element: 

𝑇 = 1/2∫ 𝜚𝐴(𝑢 2 + 𝑤 2)𝑑𝑥 = 1/2
𝑙

0
𝜚𝐴𝑙 (∫ 𝑢 2𝑑𝜉

1

0
+ ∫ 𝑤 2𝑑𝜉

1

0
)   

(4.10) 
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Using the expressions 4.9a and 4.9b and making the calculations we get 

∫ 𝑢 2𝑑𝜉
1

0

= ∫ [(1 − 𝜉)𝑢 𝑖 + 𝜉𝑢 𝑗]
2
𝑑𝜉 =

1

3
𝑢𝑖 

2 + 𝑢 𝑖𝑢 𝑗 + 𝑢𝑗 
2 

1

0

 

∫ 𝑤 2𝑑𝜉
1

0

= ∫ [(1 − 𝜉)𝑤 𝑖 + 𝜉𝑤 𝑗]
2
𝑑𝜉 =

1

3
𝑤𝑖 

2 + 𝑤 𝑖𝑤 𝑗 + 𝑤𝑗 
2 

1

0

 

(4.11) 

Now, let us gather the nodal displacements into the vector  

{𝑢𝐸}
𝑇 = {𝑢𝑖, 𝑤𝑖, 𝑢𝑗 , 𝑤𝑗}

𝑇 

and if we remind that the mass of the element is 𝑚 = 𝜚𝐴𝑙, the Eq (4.10) takes us to the definition 

of the following mass matrix of the element 

[𝑀𝐸]= 𝑚/6  (

2  0  1  0
0  2  0  1
1  0  2  0
0  1  0  2

)      

(4.12) 

Let us compute now the stiffness matrix by using the expression of the potential energy of an 

infinitesimal element: 

𝑑𝑉 =
1

2
𝑁 𝑑𝑢 

(4.13) 

where 𝑁 is the axial stress and 𝑑𝑢 an infinitesimal displacement. By using the expressions of the 

force and of the axial displacement, 

𝑁 = 𝐸𝐴
𝜕𝑢

𝜕𝑥
 

(4.14) 

and 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 

(4.15) 

we get the following expression for the elastic energy: 

𝑉 =
1

2
∫ 𝐸𝐴
𝑙

0

(𝜕𝑢/𝜕𝑥)2𝑑𝑥 =
1

2
𝐸𝐴/𝑙 ∫ (𝜕𝑢/𝜕𝜉)2

1

0

𝑑𝜉 

(4.16) 

If we develop the calculations 
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∫ (𝜕𝑢/𝜕𝜉)2
1

0

𝑑𝜉 = ∫ (𝑢𝑗 − 𝑢𝑖)
2

1

0

𝑑𝜉 = (𝑢𝑗 − 𝑢𝑖)
2

 

(4.17) 

and so we can get easily the stiffness matrix of the element: 

 

[𝐾𝐸]= 𝐸𝐴/𝑙  (

1  0 − 1  0
0   0   0   0 
−1 0  1  0
0   0  0  0

)     

(4.18) 

 

As regards the damping matrix [C], we use simply a linear combination of the mass and stiffness 

matrix according the so called Rayleigh’s damping: 

[𝐶] = 𝛼[𝐶] + 𝛽[𝐾]      

(4.19) 

where 𝛼 and 𝛽 are simply two scalar constant depending on the physical features of the material 

and that in our code will be taken equal to 0.5. 

So the dynamic equations for the single element, taking into account possible axial forces or shear 

forces applied on the nodes, are: 

[𝑀𝐸]{𝑞�̈�} + [𝐶𝐸]{𝑞𝐸 } + [𝐾𝐸]{𝑞𝐸} = {𝐹𝐸}     

(4.20) 

where {𝐹𝐸} = {𝑁𝑖, 𝑇𝑖, 𝑁𝑗 , 𝑇𝑗}
𝑇 

 

4.2.3 The global problem 

We can try now to build the truss structure in the figure below to introduce a simple example of 

how it is possible to build the matrixes of the whole system. In the figure we have basically two 

different bars that we call A and B and three nodes, 1, 2, 3.  
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We can note that, because of the different orientation of the two bars, the axial displacement of 

the bar A corresponds to a shear displacement for the bar B, while an axial displacement for the 

bar B corresponds to a shear displacement for the bar A. This very simple example let us notice 

that the mass, stiffness and damping matrixes in local coordinates are not able to take into 

account of the real orientation of the bar in global RCC frame. So, in order to overcome this 

problem we are forced to describe the two degrees of freedom associated to each node by the 

displacements in global coordinates. For example the coordinate transformation from the global 

RCC frame to the local RCC frame for the first bar is given by: 

{

𝑢1,𝐴
𝑤1,𝐴

𝑢2,,𝐴
𝑤2,𝐴

} = {

𝑥1 cos 𝛼 + 𝑦1 sin 𝛼
−𝑥1 sin 𝛼 + 𝑦1 cos 𝛼
𝑥2 cos 𝛼 + 𝑦2 sin 𝛼
−𝑥2 sin 𝛼 + 𝑦2 cos 𝛼

} 

(4.21) 

where (𝑥𝑖, 𝑦𝑖) represents the displacements of the i-th node in the global frame. It is possible to 

show that the coordinate transformation of both bars can be written by the following matrix 

formulation: 

 

{

𝑢𝑖
𝑤𝑖

𝑢𝑗
𝑤𝑗

} = (

cos 𝛼𝑖   sin 𝛼𝑖   0   0
− sin 𝛼𝑖  cos 𝛼𝑖 0   0
0    0 cos 𝛼𝑖  − sin 𝛼𝑖

     0    0   − sin 𝛼𝑖      cos 𝛼𝑖

)     

(4.22) 

The previous formula can be rewritten like 

{𝑞𝐸} = [𝑅]{𝑞}   

(4.23) 
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where {𝑞𝐸} is the vector of the local coordinates of the element, {𝑞} represents the vector of the 

absolute coordinates and [𝑅] the orthonormal rotation matrix between the two frames. The 

matrix [𝑅] allows us to transform the nodal forces 𝐹 expressed in absolute coordinates, in axial 

and shear forces 𝐹𝐸 in the frame of the element according to 

{𝐹𝐸} = [𝑅]{𝐹}     

(4.24) 

So, pre multiplying by [𝑅]𝑇the equation (4.20), we can get the equations in the global frame for 

each element: 

 

[𝑅𝑇][𝑀𝐸][𝑅]{�̈�} + [𝑅𝑇][𝐶𝐸][𝑅]{𝑞 } + [𝑅𝑇][𝐾𝐸][𝑅]{𝑞} = [𝑅𝑇][𝑅]{𝐹} = {𝐹}   

(4.25) 

It is simple to verify that the mass matrixes in the global and in the local frame are equal, while the 

stiffness matrixes in the two frames are different; so 

[𝑀] = [𝑅𝑇][𝑀𝐸][𝑅] = [𝑀𝐸]   

(4.26 a) 

[𝐾] = [𝑅𝑇][𝐾𝐸][𝑅] ≠ [𝐾𝐸]   

(4.26 b) 

As regards the damping matrix [𝐶], this is a linear combination of the mass and stiffness matrixes; 

for this reason, by using the (4.26), we will have 

[𝐶] = [𝑅𝑇][𝐶𝐸][𝑅] ≠ [𝐶𝐸] 

(4.27) 

After having changed all the matrixes in global coordinates, we can assembly the correspondent 

matrixes for the whole structure and we are able to write the motion equations 

[𝑀𝑡𝑜𝑡]{𝑞𝑡𝑜𝑡̈ } + [𝐶𝑡𝑜𝑡]{𝑞𝑡𝑜𝑡 } + [𝐾𝑡𝑜𝑡]{𝑞𝑡𝑜𝑡} = {𝐹𝑡𝑜𝑡}        

(4.28) 

In this way we are able now to compute the matrixes in global coordinates. If we use the two 

orthonormal matrixes 

[𝑅𝐴] =
√2

2
(

1 − 1  0  0
1  1  0  0
0  0  1 − 1
0   0   1    1

) 

(4.29) 
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[𝑅𝐵] =
√2

2
(

1   1  0  0
−1  1  0  0
0  0  1   1
0   0  − 1  1

) 

(4.30) 

we compute the mass, stiffness and damping matrixes of each element  

[𝐾𝐴] =
𝐸𝐴

2𝐿
(

1 − 1 − 1   1
−1    1    1 − 1
−1      1       1 − 1
1  − 1  − 1    1

) 

(4.31) 

[𝐾𝐵] =
𝐸𝐴

2𝐿
(

1    1 − 1  − 1
1    1   − 1 − 1
−1 − 1       1     1
−1  − 1       1    1

) 

(4.32) 

 

[𝑀𝐴] = [𝑀𝐵]= 𝑚/6  (

2  0  1  0
0  2  0  1
1  0  2  0
0  1  0  2

) 

(4.33) 

[𝐶𝐴] = 𝛼[𝑀𝐴] + 𝛽[𝐾𝐴] 

(4.34) 

[𝐶𝐵] = 𝛼[𝑀𝐵] + 𝛽[𝐾𝐵] 

(4.35) 

 

and then we build the global matrixes of the system: 

[𝑀𝑡𝑜𝑡] = 𝑚/6

(

  
 

2  0  1  1  0  0
0  2  0  1  0  0
1  0  4  0   1  0
0  1  0  4  0  1
0  0  1  0  2  0
0  0  0  1  0  2)
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[𝐾𝑡𝑜𝑡] =
𝐸𝐴

2𝐿

(

  
 

1 − 1 − 1  1  0  0
−1  1  1 − 1  0  0
−1  1  2  0 − 1  1
1 − 1  0  2  1 − 1
0  0 − 1 − 1  1  1
0  0 − 1 − 1  1  1)

  
 

 

 

[𝐶𝑡𝑜𝑡] = 𝛼[𝑀𝑡𝑜𝑡] + 𝛽[𝐾𝑡𝑜𝑡] 

 

The same approach will be used for assembling the mass, stiffness and damping matrixes for our 

truss lattice. 

4.2.4 The damage algorithm  

Till now we simply implemented a discretization in space for our system by using the FEM and the 

GN22 Newmark’s method to get a discretization in time. The next step is to introduce the damage 

algorithm in our model. So let’s consider the time interval from 𝑡 to 𝑡 + 𝑑𝑡. In the hypothesis we 

introduced above, our system is absolutely linear so we do not need to apply the Newton Raphson 

method to get the solution 𝑢𝑛+1. This should be done if we introduced a not linear constitutive 

law for our material depending on the strain. We will clarify now this claim. 

So, how the damage enter into the model? Basically, the method used is an extension of the CFBM 

as we already said before and so the algorithm works by introducing the concept of iteration and 

avalanche. This means that we fix for each truss a threshold in stress (that can remain constant or 

can be changed according to the quenched or annealed disorder) and we apply the load on the 

right edge of the structure while the left edge is fixed. So for a given external load 𝑓𝑛 at a given 

time step 𝑛, one or more trusses will reach their thresholds in stress. For this reason, their Young 

modulus will be reduced by a factor 0 ≤ 𝑎 < 1 and now it will be equal to 𝑎𝑖𝐸 where 

                 0 ≤ 𝑖 − 1 < 𝑘𝑚𝑎𝑥 is the number of damages already suffered by the truss. So, because 

of this damage process the global stiffness matrix and the damping matrix will change and the 

system cannot be anymore in equilibrium under the external load; let us introduce the following 

scheme of 4 trusses to better explain the way of reaching the equilibrium: 

 

iteration n.avalanche Truss1 Truss2 Truss3 Truss4 

1 3 1 0 1 1 

2 2 1 0 0 1 

3 1 0 1 0 0 

4 0 0 0 0 0 

𝐼 = 3 
 

𝑆 = 6 
 

𝐸1 = 𝑎2𝐸1 𝐸2 = 𝑎1𝐸2 𝐸3 = 𝑎1𝐸3 𝐸4 = 𝑎2𝐸4 
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So, for a given external load 𝑓𝑛 we get some displacements, velocities and accelerations as solution 

of the numerical algorithm. However 3 trusses reach their thresholds and so their Young modulus 

is reduced. We are at the iteration number 1 and the number of avalanche 𝑆  which is the number 

of damages into one iteration, is equal to 3.The equilibrium is not still achieved because under our 

external load the stiffness of the system has changed. So a further iteration is necessary storing  

the external load always equal to 𝑓𝑛and recomputing the equilibrium taking into account the new 

stiffness and damping of the system. Obviously some new displacements, velocities and 

accelerations will be achieved. Here the number of avalanche is equal to 2. The process goes 

ahead till at the 𝑖 − 𝑡ℎ iteration (in our example the fourth one) where the number of damaged 

trusses is equal to 0 and where we get the final values of 𝑢𝑛, 𝑢 𝑛, �̈�𝑛. Only now it is possible to 

increase the external load passing to the following station which is 𝑓𝑛+1. 

As we can note, the way of computing the equilibrium is identical to the case of the CFBM for the 

stress controlled experiment where we had a redistribution of the load lost by the damaged fiber 

on the other ones. 

 What about the behavior of the system in terms of linearity? Basically in our FEM model we are 

introducing a damage model in which the stiffness matrix (and so the damping matrix) changes. 

However the concept of damage we introduce is different from the theories of the deterministic 

damage, in which the damage 𝐷 is a function of the strain of the model (Bazant); to this damage 

law 𝐷 = 𝐷(𝜀) we arrive by thermodynamic considerations. In this case the stiffness matrix (and 

the damping matrix as well ) is also a function of the strain. In this deterministic case the problem 

is not linear and so we would need to iterate because the various matrixes are functions of the 

solution. In the extension of the CFBM to the 2D instead, the damage is a variable which depends 

obviously on the history of the external load but it is a stochastic variable as well, depending on 

thresholds picked up from the chosen p.d.f. 

 

Figure 4.5: Annealed and quenched disorder for a single realization on a truss 
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As we notice from the pictures above in the case of the annealed and quenched disorder, for each 

truss the 𝜎 − 𝜀 law is globally not linear, depending on the thresholds we meet. However locally, 

after we meet one threshold, the slope of the curve decreases and we notice a drop but till we 

meet another threshold, the curve 𝜎 − 𝜀 is linear, passing always for the origin. This fact 

introduces some important aspects to the solution algorithm to compute the equilibrium. 

 This is the main difference between the two damage models. In fact when we impose a force or 

external displacements the system reaches a set of strains and so of stress. In this moment we can 

check for the threshold and eventually to change the Young modulus. If this happens we compute 

again the equilibrium for the system. But in the 𝑖.th iteration, when 𝑛 trusses have damaged 

already and we try to reach the equilibrium with our boundary conditions already imposed 

checking if any truss damage, we get a path in which each truss has a 𝜎 − 𝜀  law which is linear. 

For this reason during this path we do not need to iterate because the stiffness matrix is constant. 

The only iteration we need to consider is the iteration that allows us to verify if any trusses have 

suffered damage. The situation would be different if between a threshold and another one for the 

various trusses the 𝜎 − 𝜀 law would have been not linear: not as the one of the picture above. In 

this case (for example for a quadratic law) in the path between two thresholds the stiffness would 

have been function of the solution. So a threshold iteration would have called a Newton Raphson 

iteration and the two kinds of iterations calling each other would have stopped when no more 

trusses have damaged and when the tolerance for the Newton Raphson algorithm would have 

been reached. This is not our case because of the constitutive law for single truss we introduced. 

So we do not need to use Newton Raphson’s algorithm but only the threshold iteration algorithm. 

A CFBM iteration could call one Newton Raphson iteration and so on, only if between one 

threshold and another one, the 𝜎 − 𝜀 law was not linear. 

 Now, one single truss can damage 𝑘𝑚𝑎𝑥 = 30 times before breaking in our simulation and the 

damage parameter 𝑎 = 0.9; if the initial Young modulus is the same for all the trusses (for the 

same reasons we explained into the FBM chapter), 𝐸 = 100 𝑀𝑃𝑎, the Final value of the Young 

modulus to which a truss will considered completely broken will be 𝐸 = 0.930100 = 4.24 𝑀𝑃𝑎. 

After this value, the stiffness of the broken truss will be removed by the global stiffness matrix. So 

its mass from the global mass matrix and its damping from the damping matrix (this last 

cancelation is a direct consequence of the Rayleigh’s damping we chose to write the damping into 

the structure, which is simply a linear combination of the mass and stiffness matrixes). 
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4.3 The case of the porous medium 

4.3.1 Extension of the model for a coupled problem 

The problem for the porous medium (in the case of fully or partially saturated), is equivalent for 

the solid part. So the mass, stiffness and damping matrixes are equivalent. We need now to 

assembly the coupling matrix 𝑄 and the permeability matrix 𝐻. 

In our Matlab code we choose to represent the fluid by continuous elements characterized by four 

nodes; we used these four nodes elements to build the permeability matrix 𝐻. 

The coupling matrix 𝑄 instead is the link between the solid part and the fluid part: the elements of 
the matrix make up the link between the fluid field and the solid one: in fact it is possible to show 
(Milanese, Molinari, Schrefler) how a variation in pressure brings about a variation in the 
displacement field even in the absence of external forces. So in order to assembly the coupling 
matrix how can we represent the solid part by continuous elements if we already choose four 
nodes elements for the fluid part? The answer is quite simple: the elements must be chosen 
carefully in order to satisfy the inf-sup condition (also known as the Babuska-Brezzi condition) on 
the existence and uniqueness of the solution for mixed formulations. The condition is satisfied 
choosing a nine-node formulation for the displacements and a four-node formulation for the 
pressures. So this will be our chose in order to assembly the coupling matrix. 
In the figure below we represent the three different choices to assembly the matrixes into the 
problem: a nine node truss element in green for the stiffness matrix for the solid part, a nine node 
continuous element for the solid part into the coupling matrix and a four node continuous 
element for the fluid part into the permeability and coupling matrix. 
 

 

 

Figure 4.6: Representation of the solid part (truss structure), fluid part (four node element in blue) and coupling 

between the solid and the fluid part (nine node element in brown). Taken by Milanese et al., 2016 
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As regards the damage algorithm, we can say that it is equivalent to the damage algorithm of the 

solid. The damage will be calculated according to the same approach into the solid part but now 

also the fluid will be able to influence the solid part because of the coupled nature of the problem. 

 

4.4 Results of the simulations 

4.4.1 Static for a dry medium 

We report the results of the simulations for a dry medium supposing that it is pulled from the four 

edges in static with the damage algorithm we introduce before. We will perform a “strain 

constant” experiment applying some displacements. This will allow us to look at the plateau of the 

constitutive behaviour. This configuration was already simulated by Milanese, Yilmaz, Molinari, 

Schrefler. We rewrote the code and we found that the results are the same. 

Simulation 1: Static for dry medium 

Young modulus E of the trusses 100 MPa 

Displacement applied at each step on the 
nodes 

1/5000 mm 

Mesh 16 x 16 

Length L 64 mm 
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Development of the fracture in the  mesh. We represent in yellow the trusses with high Young modulus and in red the trusses more damaged. 

One truss in the algorithm can be damaged up to 30 times before being considered broken in the simulation. The deformed configuration is 

plotted over the undeformed one.  

Development  of the  fracture in the mesh and  undeformed configuration. In deep blue we represent the trusses with low stresses 

while in light blue the trusses with high Young modulus. 

 

𝜎𝑖 = 0 

ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒  

𝑎𝑡 𝑐𝑟𝑎𝑐𝑘 𝑡𝑖𝑝 

Average stress as function of the step . 

Stepo 2000 Decreasing  in 

stiffness due to the  opening  

of the main fracture 

(STEP 1677). 

Final deformed 

configuration of the 

system 
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At each time step in the simulation, we increased the displacement of a rate 1/5000. Let us 

consider the constitutive behaviour: in the first part of the curve we notice a linear behaviour, 

which is followed by a plastic part in which the medium begins to suffer a damage. The oscillations 

we have in the plateau of the plastic phase are due to the fact that the trusses begin to damage. 

At a certain point, we have a drop in the curve. This is due to the fact that a big failure event 

occurs, and this corresponds to the creation of the first part of the fracture. After this first drop, 

we keep on imposing displacements on the boundaries and even if other trusses damage, the 

average stress go back to increase. This process arrives up to the second “catastrophic” point in 

which we record another big failure event where another big amount of trusses break. In point of 

the curve stress-step, the channel of the fracture creates and the connectivity of the structure 

goes to 0.  

The thing we notice is that the channel of the fracture does not create in a unique step but needs 

more steps to create; there is a certain intermittency in creating the channel: the channel is not 

created by a “fraying” of the truss fabric but by different openings of the fabric itself: the system 

needs more “catastrophic” events to create the channel of the fracture.  

As we noticed by the figures, when the first opening creates between the step 1600 and 1800, we 

notice some trusses still attached and existing in the channel of the fracture. They are very 

damaged but not still broken. How could we read this situation from a physical viewpoint? A 

possible explanation could be that in this region the fracture channel is not opened yet and there 

are some residual stresses: this could be a cohesive method approach entrance in our method, in 

the sense that the Central Force Model predicts some residual stresses close to the point in which 

the fracture is going to open. Our model allows us to see this phenomenon according to another 

point of view. 

 

4.4.2 Test case for dynamic: the consolidation 

As regards the code in dynamics, it was validated by a comparison with ANSYS software as regards 

the problem of consolidation. As we know, in this phenomenon we load our system on one edge 

by a constant load fastening it on the opposite side. The phenomenon is analysed in dynamic so 

we are able to observe the transient. What happens in nature? Due to the coupled nature of the 

porous medium, in a first moment the load is taken by the water and it does not affect the 

structure; however after a certain time interval, depending basically on properties of the system, 

in particular by the permeability (i.e. the capability the water has to move inside the system), the 

water moves and the load is taken by the solid skeleton that suffers a lowering in the opposite 

direction of the load. So, the solid skeleton takes the load and after a transient everything reaches 

the stationarity condition. As regards the time required for the simulation, we decided to consider 

basically some steps, divided by a time of 0.1 sec. However, due to the large times we meet in this 

phenomenon, we were forced to increment the time interval 𝑑𝑡 about 1.5 times. So the time we 

will get in the x-axis of the plots we will show, will be related to the variable STEP according to 

𝑡𝑖+1 = 𝑆𝑇𝐸𝑃𝑖+1𝑑𝑡 1.5
𝑖 𝑠𝑡𝑒𝑝 
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The simulation was realized with a total of 43 steps. As regards the load applied on the structure, 

it acted on the top of it, on the nodes: till the step 10 it was growing linearly leaving from 0 N, 

After the step 10 it remained constant at a value of 0.1 N in each node. The structure was not free 

to move on the right, the left and the bottom while the pressure was put equal to 0 on the 

perimeter. We report the results of the test case: 
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Figure 4.7: Representation of the deformed structure and of the distribution of the pressure of the water inside the 

medium due to the consolidation 

So, as we notice at the time step 43 where all the displacements and pressures are constant and 

no more variables in time, the solid skeleton suffered a lowering of few millimetres (we can notice 

in the first picture the undeformed solid skeleton in blue) while the distribution of the pressure 

inside the medium is given by the second picture. We report some plots as regards the story of 

displacement and pressure in one point of the system: it is possible to recover the same trend of 

curves for each point of the system. 



 
188 

 

 

Figure 4.8: plots of the vertical displacements of one point of the structure and of the pressure in one point as function 

of time 

The curves can change from point to point but it is interesting to notice that a stationary state is 

reached everywhere. So the phenomenon of consolidation is described by our code. The structure 

suffered on average a lowering of some millimetres and this mixed element numeric model was 

verified by comparing it with a benchmark case for the isothermal consolidation. 
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4.4.3 The dynamic of the porous medium 

4.4.4 The problem of the Fracking 

The truss lattice analysed in static belongs to the so called SDIDT systems: the acronym SDIDT 

stays for slowly driven interaction dominated threshold system that we will discuss in chapter 5, 

and that if some conditions are satisfied, falls into the set of SOC (Self Organised Criticality) 

systems.  

As we know, in nature, earthquakes are the result of the movement of the faults. These 

movements however occur very slowly (about 1 cm per year): for this reason a good first model to 

describe this natural phenomenon is the code elaborated by Milaneseet al., (2017), in which they 

applied, in one of the cases treated, some shear and mixed boundary conditions. They worked in 

static and the assumption of the static is obviously satisfied because of the extremely slow 

movement of the faults. We will talk better about this problem in the next paragraph. 

However what about the fracking? In fracking we pump water into a fracture of the land and we 

basically propagate the hole or the fracture by the pressure of the water. So if we would like to 

emulate the phenomenon of fracking inside the land in our statistical central force model, we 

would simply try to increase the flux in a point and to observe the creation of a hole or fracture. 

However the assumption of “static condition” could not be true anymore. Fracking is dynamic and 

the way in which we pump water inside the soil could be characterized by a frequency. So it is 

correct to give a description of fracking by our dynamic model. 

What happens however in dynamics as regards the avalanche behaviour first analysed?  

To answer this question, let us try to give a physical interpretation of the algorithm of the FBM. 

Basically, analysing back these two algorithms (which are the two faces of the same coin), we 

notice that when we apply some boundary conditions from the external world on the edges, the 

system tries to reach the equilibrium: and the way by it tries to reach it, is by the concept of 

iterations and avalanches. For example at iteration 1 the number of avalanche is 𝑛; at iteration 2 it 

will be 𝑚 and so on till we arrive at the iteration 𝑖 where the number of avalanche is 0. So the 

system has reached the static equilibrium for these boundary conditions. It could be possible now 

to associate an intrinsic time to our system, that we call “characteristic system time”. How much is 

the amount of this time?  

Basically this is the time required for having the complete relaxation of the system; so let us 

suppose to analyse the case of a constant load on the edges in dynamics: here when we apply a 

constant displacement on the four edges of the structure, as result of the load applied, some 

pressure waves begin to cross our system. These waves can interact among each other, can suffer 

reflections on the opposite edges and can be damped as well depending on the damping chosen 

into the system. These are in fact the result of our external forces acting on the system: the 

system breaks because of the passage of these waves, that create variations of stresses and they 

depend on the external boundary conditions we have just apply on the edge. Because of the 

damping we introduced into the dynamic equation, these pressure waves are forced to dissipate 

their energies till to “die”. When they finish to cross the system, the system itself reaches the 
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equilibrium for the constant displacement applied from the external world; after that, the external 

load is increased; this is what happens in static (we analysed a static case in dynamics to notice the 

so called “transient”) and for this reason in static it is not important to estimate this time. The 

system in fact has always got its own time to relax and to do all the necessary iterations and 

avalanches to reach the equilibrium before the increment of the external load. And the time in 

which this happens is the damping time of the pressure waves that correspond from a physical 

viewpoint to the relaxation time the system needs to reach the equilibrium. We call this 

equilibrium like “static equilibrium”. 

We report some plots to better understand the problem: 

 

 

Figure 4.9: Variation of the displacement s of the penultimate point on the bottom, in the right part of the structure as 

function of time because of the application of constant displacement at the four edges of the structure. As it is possible 

to notice, the damping is quite visible 

where the external displacements on the edges is equal to 2/5000 m  (analysing the problem in 

the SI system) and the damping coefficients in the Rayleigh damping 𝛼 and 𝛽are equal to 0.1. In 

the first picture we can visualize what we just explained some rows before; the complete damping 

due to the dissipation of the pressure waves into the system occurs after about 300 steps that 

correspond to 30 seconds (each step takes a time of 0.1 seconds). 
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4.4.5 Numerical results 

We analyze now the numerical results in dynamic. Three sets of simulations will be considered; in 

the first one we will pull the medium from the four edges, emulating a strain constant experiment.  

We will apply a step in displacement in order to notice the differences with the simulation 1 we 

reported in the previous pages. In the second one we will increase the flux in the central point 

using a flux step and we will clamp the medium on the left and on the bottom, considering a 

condition of free flow on the nodes of the perimeter (0 Mpa). In the third one, with the same 

boundary conditions, we will apply a pressure on the central point always by a step function.  

Simulation 2: Dynamic for a porous medium 

Young modulus E of the trusses 100 MPa 

Displacement step 10/5000 

Mesh 64 x 64 

Length L 64 mm 

∆𝑡 2 seconds 

Boundary conditions Pulled on the four edges 

 

 

As we notice, by pulling from the four edges, the structure trivially breaks close to the edges 

themselves: it is not possible in this case to reproduce the effects of the static because of the 

“wall” induced by the inertia and the damping. Where the structure breaks on the edges we 

observe some rises in pressure. 
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Simulation 3: flux applied to the central point:  

Young modulus E of the trusses 100 MPa 

 Flux on the centre of the mesh 3 ∗ 10−2 𝑚𝑚3/𝑠 
Mesh 64 x 64 

Length L 64 mm 

∆𝑡 2 seconds 

Boundary conditions Pressure = 0 MPa on the four edges; clamped 
on the left and on the bottom 

 

 

 

We report the values of damage now a series of graphics for different time steps: in the first ones 

we show on the top the damage in the structural part created by the increasing of the pressure 

(the level of damage increases from the yellow to the red); on the bottom the value of the 

pressure in the fluid part expressed in MPa according to the scale on the right side of the figure. 
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Figure 4.10: Damage (on the top) and pressure (on the bottom) into the system with a flux step applied in the central 

point of the mesh 
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In the remaining plots instead, we show the values of the stresses that the trusses of the structural 

part have to suffer (the stress is normalized with respect the maximum value of stress into the 

system and it increases going from the dark blue to the light blue)  
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Figure 4.11: Stress of the trusses normalized with respect the maximum stress into the structural part of the system 

 

Comments: 

Let us try to give a physical explanation to the plots of the pressure we noticed above. 

If we impose a constant flux in the central point of the mesh, the pressure increases on average in 

the system with respect the initial condition (pressure equal to 0 MPa) because we are pumping 

water. This is the general trend and associated to this we observe some drops in pressure close to 

the crack tip that creates in the solid part of the system. Why? Let us try to give an explanation 

about this. 

The flow effect is transmitted to the solid through the pressure coupling term in the effective 

stress. The solid is loaded and upon rupture produces a sudden increase of the volumetric strain. 

This in turn produces a drop in pressure. Hence pressure drop upon rupture. Furthermore, the 

bigger is the variation of the stiffness (the damage), the bigger is the radius in which it will be 

possible to feel the change in the pressure inside the system. 
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In the next figure we show some points of the system in order to control the trend of the pressure 

in time and to evaluate its oscillations taking into account the development of the fracture. 

 

 

 

 

 

 

Figure 4.12: Points in the liquid part of the porous media selected for studying the trend in pressure 
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Figure 4.13: Pressure vs time in the points A, B, C, D.  
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As we notice the points B and C are almost unaffected by the pressure step while the drops are 

quite consistent on the points A and D (the point D represents the crack tip). In the end, when the 

fracture channel creates, the pressure assumes the same value in the four points because the 

water finds a “channel” to go out from the system. This is evident from the figures 4.10 

 

Simulation 4: pressure applied to the central point:  

Young modulus E of the trusses 100 MPa 

Pressure on the centre of the mesh 1 𝑀𝑃𝑎 

Mesh 64 x 64 

Length L 64 mm 

∆𝑡 2 seconds 

Boundary conditions Pressure = 0 MPa on the four edges; clamped 
on the left and on the bottom 

 

 

 

 

Because of the application of the pressure to the central node of the mesh, the solid skeleton 

damages and breaks and so the pressure increases into the system. We briefly report below the 

trends of the damages  (yellow is not damage while red is close to the breaking point) and 

pressures expressed in MPa according to the scale on the right side of the figure . 
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Comments: 

In this case some rises are observed close to the crack tip. The explication is the following one: if a 

load, pressure , assigned displacement and an opening of the grid (advancing fracture) is applied 

suddenly the fluid takes initially almost all because its immediate response is as undrained and it is 

much less compressible than the solid skeleton: it discharges the solid. Then through the coupling 

(volumetric strain) with the fluid, the overpressure dissipates and the solid is reloaded Hence we 

have a pressure rise upon rupture. 

These drops (for flux applied) and rises (for pressure applied) were already obtained by Milanese 

et al.,2017 in static and they do have an experimental evidence. This particular damage model is 

able to predict these oscillations that other models, like XFEM or cohesive models, are not able to. 

In our code, mixed to these drops or rises, we find also the inertial and damping effects. So in 
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dynamic we can have a complete description of the phenomenon that in static was not possible to 

pick up. 

 

4.5 The average on all the possible realizations on a truss lattice 

4.5.1 The idea of average 

In chapter 2 we developed the theory of the statistical ensembles in order to get the average 

behavior of a bundle of fibers. In particular we showed that during a strain constant experiment, 

the average constitutive behavior can be written like 

< 𝜏 > = 𝑁𝐸{𝑃0(𝜀) + 𝑎𝑃1(𝜀) + ⋯+ 𝑎𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥−1(𝜀)}𝜀 

where 𝑁 is the total number of fibers into the bundle. 

Obviously, we already explained the meaning of this expression: < 𝜏 > is the value of the stress on 

the bundle averaged among all the possible realizations of the disorder obtained by assigning 

different thresholds to the fibers of the bundle itself; 𝜀 is the strain acting on the bundle which is 

constant in the strain ensemble, while 𝑃0(𝜀), 𝑃1(𝜀),… . , 𝑃𝑘𝑚𝑎𝑥−1(𝜀) are the probability density 

functions we introduced in chapter 2.  

We also talked about the variances and we showed that the variance ∆ (
𝑛𝑖

𝑁
) expressing the 

fluctuation in finding the fraction of fibers damaged 𝑖 times is: 

∆ (
𝑛𝑖
𝑁
) = √

𝑃𝑖(1 − 𝑃𝑖)

𝑁
 

So one important consequence of this equation is that for a large number of fibers 𝑁, all the 

fluctuations go to zero and there exists only one state of damage given by 

𝐷 = {𝑃0(𝜀), 𝑃1(𝜀), … , 𝑃𝑘𝑚𝑎𝑥(𝜀)} 

We remind to the chapter 2 to recover all the conclusions about the statistical study of the CFBM. 

Now, how can we apply our considerations to the truss lattice? 

 In the previous pages, we showed that Schrefler, Milanese and Molinari linked the average stress 

into the truss lattice to the average strain into the same structure and varying the boundary 

conditions they obtained a constitutive behaviour of the whole structure calculating average stress 

𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 and average strain 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 point by point. Basically, applying some boundary 

conditions on the edges in static and varying them was equivalent to catch point by point the 

equivalent constitutive behaviour of the whole structure (i.e. the curve 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 , 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 

for one single realization of the disorder). The physical meaning of this is that it is possible to get 

the macroscopic behaviour of the lattice by leaving from the microscopic one. Now we are going 

to do the same with the important difference that we are not considering one realization like in 

the simulation but the disorder will be already averaged into some < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 > −𝜀 curves 
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we will assign to the single trusses. After this we will compute the mean value of these                           

< 𝜏𝑡𝑟𝑢𝑠𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 > (that will be affected by a mistake  because each   < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑠𝑖𝑛𝑔𝑙𝑒 >  will have a 

mistake depending on its associated strain) and the mean value of the strains 𝜀 into the structure. 

The result is that we will get by points an average constitutive behaviour of the truss lattice 

varying 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 (𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 varies as consequence of the displacements applied on the 

boundaries) like in the previous pages for one single realization, with an important difference: the 

constitutive behaviour curve we will get, will be the real constitutive behaviour in the 

thermodynamic limit. There would not be differences if we decide to change the geometry of the 

truss structure because by increasing the number of truss from a physical viewpoint we reach in a 

good approximation the continuum. So the new curve 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒  we get should 

be characterized by the same values for different geometries and because of the theorem of the 

variance its mistake would be equal to 0 for 𝑁 big. 

When we perform a stress/strain constant experiment on our truss lattice, obviously as result of 

the displacements applied on the edges, a set of strains on the trusses of our system will develop. 

These strains will be different one another and so the stresses for each truss. So, if we know that a 

particular strain 𝜀 acts on one truss of the truss lattice, by the study of the CFBM we also know 

that  

< 𝜏 > = 𝐸{𝑃0(𝜀) + 𝑎𝑃1(𝜀) + ⋯+ 𝑎𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥−1(𝜀)}𝜀       

(4.36) 

will be the stress acting on that truss averaged among all the possible realization given by the 

disorder. Obviously now we are talking about the constitutive behaviour of one single truss: for 

this reason 𝑁 = 1 in the last equation.  

So, resuming, we can state that if we apply an imposed displacement on the lattice, each truss 

will have an expected Young modulus 

< 𝑌(𝜀) >= 𝐸{𝑃0(𝜀) + 𝑎𝑃1(𝜀) + ⋯+ 𝑎𝑘𝑚𝑎𝑥−1𝑃𝑘𝑚𝑎𝑥−1(𝜀)}     

(4.37) 

and an expected stress 

< 𝜏(𝜀) > =< 𝑌(𝜀) > 𝜀 

(4.38) 

where 𝜀 changes for each truss of the truss structure. 

But what about the mistake about the calculation of this last observable? 

At this point we should remind that our original bundle is made now only by one truss and if we 

consider the mean stress for the single truss, by recovering the expression of chapter 2, we have 
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< 𝜏(𝜀) > = lim
𝑁→∞

∑𝐸𝜀(𝑎𝑖  
𝑛𝑖
𝑁
)

𝑘−1

𝑖=0

= ∑𝐸𝜀(𝑎𝑖 𝑃𝑖(𝜀))

𝑘−1

𝑖=0

 

(4.39) 

where the terms 
𝑛𝑖

𝑁
  for 𝑁 → ∞ represent from a physical viewpoint no more the fraction of fibers 

damaged 𝑖 times but how many times our truss has damaged 𝑖 times over 𝑁 experiment for 𝑁 →

∞. In chapter 2 we began our calculations saying that the probabilities functions 𝑃𝑖  represented 

the probability for a single fiber to damage 0,1,2, … , 𝑘 times, and we built them according to this 

definition (Hermann, Kun, Hidalgo). Then we showed, by the theory of the ensembles that these 

functions also represent, in a bundle, the average fraction of fibers damaged 0,1,2, … 𝑘 (Chapter 

2). However, we are not able anymore to enjoy the fact that 𝑁 → ∞   and to erase the variance of 

this mean value in the thermodynamic limit. Here 𝑁 = 1,so we expect a certain uncertainty about 

the stress on a truss. So our situation now is very similar to an experiment we are performing in 

which we pick up 𝑁 different trusses pulling them to a given strain that we call 𝜀. The variance of 

the stress of one single truss pulled at a strain 𝜀 is defined like: 

𝑉𝑎𝑟 (𝜏(𝜀)) =< 𝜏(𝜀) >2 −< 𝜏(𝜀)2 >  

(4.40) 

So a single realization for 𝜏 is given by: 

 

𝜏 = 𝐸𝜀𝐷 

(4.41) 

where 𝐷 is a random variable, basically the random variable damage associated to the truss. This 

variable damage in fact can assume the following spectrum of values 𝐷 = {𝑎0, 𝑎1, …… , 𝑎𝑘𝑚𝑎𝑥}. 

 In 𝑁 experiments, the mean value of 𝜏 is  

< 𝜏(𝜀) >=∑𝐸𝜀(𝑎𝑖  
𝑛𝑖
𝑁
)

𝑘−1

𝑖=0

 

with 0 ≤ 𝑖 ≤ 𝑘𝑚𝑎𝑥. 

So as we said before for 𝑁 going to infinite, 
𝑛𝑖

𝑁
 becomes the probability 𝑃𝑖  and  

< 𝜏(𝜀) > = lim
𝑁→∞

∑𝐸𝜀(𝑎𝑖  
𝑛𝑖
𝑁
)

𝑘−1

𝑖=0

= ∑𝐸𝜀(𝑎𝑖 𝑃𝑖(𝜀))

𝑘−1

𝑖=0

 

as seen in (4.39) . 

This means that this last probability 𝑃𝑖  can be seen now from a statistical viewpoint as the 

probability to get the value 𝑎𝑖  of the variable damage 𝐷 associated to the single truss at a strain 

𝜀. A single realization for 𝜏2 is 
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𝜏2 = (𝐸𝜀)2𝑎𝑗 

or 

𝜏2 = (𝐸𝜀)2𝑎2𝑖  

(4.42) 

with 2𝑖 = 𝑗. 

Now, if we perform 𝑁 experiments, the mean value of 𝜏2 is  

< 𝜏2(𝜀) >=∑𝐸𝜀(𝑎2𝑖  
𝑛2𝑖
𝑁
)

𝑘−1

𝑖=0

 

with 0 ≤ 2𝑖 ≤ 𝑘𝑚𝑎𝑥, and for 𝑁 going to infinite,  

< 𝜏2(𝜀) >= ∑𝐸𝜀(𝑎2𝑖 𝑃2𝑖)

𝑘−1

𝑖=0

 

 

Basically we computed in Chapter 2 the variance of a bundle of fibers and we showed that in the 

thermodynamic limit, 𝑁 → ∞, this “mistake” on the stress went to 0. Now, in the case in which 

𝑁 = 1, so by a simple calculation 

𝑉𝑎𝑟 (𝜏(𝜀)) = (𝐸𝜀)2 {(∑𝑎𝑖
𝑘−1

𝑖=0

𝑃𝑖(𝜀))

2

−∑𝑎2𝑖𝑃2𝑖(𝜀)

𝑘−1

𝑖=0

} ≠ 0 

(4.43) 

In this way we are now able to compute the variance 𝑉𝑎𝑟 (𝜏(𝜀)). 

So for a given 𝜀, each truss will have a mean value < 𝜏(𝜀) > and a given variance that we can 

compute by supposing to realize 𝑁 different experiment for each value of 𝜀.  

Now, let us indicate each truss of our truss structure with the index 𝑛. So the strain each truss will 

suffer into the structure will be 𝜀𝑛 and the average stress at that strain 𝜀𝑛 will be < 𝜏𝑛(𝜀𝑛) > in 

the new notation. 

So each truss suffers a strain 𝜀𝑛 , has got a 𝜏𝑛(𝜀𝑛), which is obviously a random variable because of 

the disorder; but this random variable has got an average < 𝜏𝑛(𝜀𝑛) > and a variance 𝑉𝑎𝑟 (𝜏(𝜀)) 

as well. 

Now before going ahead, let us resume some properties of the mean value and of the variance: if 

𝑎 and 𝑏 are  constant, 𝑋 and 𝑌 two random variables and 𝑍 another random variable defined as 

𝑍 = 𝑋 + 𝑌 

Mean value 

a) < 𝑎𝑋 > = 𝑎 < 𝑋 >  



 
208 

 

 

b) < 𝑎 + 𝑋 > = 𝑎 + < 𝑋 >  

 

c) < 𝑍 > =  < 𝑋 + 𝑌 > = < 𝑋 >  + < 𝑌 >   
 

d) < 𝑎𝑋 + 𝑏𝑌 > = 𝑎 < 𝑋 > + 𝑏 < 𝑌 >    

 

Variance: 

e) 𝑉𝑎𝑟 (𝑎𝑋) = 𝑎2 𝑉𝑎𝑟 (𝑋) 
 

f) 𝑉𝑎𝑟 (𝑎 + 𝑋) =  𝑉𝑎𝑟 (𝑋) 

 

g) Theorem of the variance: 

 

If 𝑍 is a random variable defined like 𝑍 = ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1  , then 

 

𝑉𝑎𝑟(𝑌) =∑𝑎𝑖
2

𝑛

𝑖=1

𝑉𝑎𝑟(𝑋𝑖) +∑∑𝑎𝑖𝑎𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝑗≠𝑖

𝑛

𝑖=1

 

We can observe that this last relation is valid both when the random variables are 

statistically independent and when they are dependent because of the appearance of the 

covariance. 

Now, we have basically the function 

 𝜏𝑡𝑟𝑢𝑠𝑠 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 𝜏𝑡𝑟𝑢𝑠𝑠 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝜏1(𝜀1), 𝜏2(𝜀2),… . , 𝜏𝑁(𝜀𝑁)) ≡ ∑  
1

𝑁
 𝜏𝑛

𝑁
𝑛=1  

(4.44) 

which is the function that we compute for one single realization of our disorder. What is its mean 

value? By d), we have 

< 𝜏𝑡𝑟𝑢𝑠𝑠 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > =<∑ 
1

𝑁
 𝜏𝑛

𝑁

𝑖=1

> =  
1

𝑁
  ∑  < 𝜏𝑛 >

𝑁

𝑛=1

 

(4.45) 

In this way we computed the mean value associated to the constitutive behaviour of the truss 

lattice for a given 𝑁. This means from a statistical viewpoint that we are considering the average 

value < 𝜏𝑡𝑟𝑢𝑠𝑠 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > among infinite curves 𝜏𝑡𝑟𝑢𝑠𝑠 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 given by the disorder. 

Let’s have an example to better understand this concept; in (4.45) we compute the average value 

among the mean values on all the possible realizations of each truss. And we showed this is 

equivalent to do infinite simulations of the same truss structure characterized by the same 

boundary conditions and computing the mean value among  the infinite mean stresses obtained. 
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What about the variance of < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 >?  

By the theorems about variance above shown, we have 

𝑉𝑎𝑟(𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒) =
1

𝑁2
(∑𝑉𝑎𝑟 (𝜏𝑛 ) +∑ ∑ 𝐶𝑜𝑣(𝜏𝑛 , 𝜏𝑚 )

𝑚≠𝑛

𝑁

𝑛=1

𝑁

𝑛=1

) 

(4.46) 

 

Again, if we think of (4.45), this is the mean value among 𝑁 terms, the 𝑁 trusses: each of them has 

got a different value of strain and so a different value of mean stress; and each of them has got a 

different variance depending on 𝜀. Furthermore it is possible that each truss is correlated with the 

other ones because of the avalanches that are the result of the presence of the truss structure. 

We already computed 𝑉𝑎𝑟 (𝜏𝑛 ) in (4.40). What about the 𝐶𝑜𝑣(𝜏𝑛 , 𝜏𝑚 )? 

By definition, 

𝐶𝑜𝑣(𝜏𝑛, 𝜏𝑚) = 𝔼[𝜏𝑛(𝜀𝑛) 𝜏𝑚(𝜀𝑚)] − 𝔼[𝜏𝑛(𝜀𝑛)]𝔼[𝜏𝑚(𝜀𝑚)] 

(4.47) 

where the notation 𝔼(𝑋) is the symbol used in statistic to indicate the mean value of a random 

variable 𝑋. 

Now,  

𝔼[𝜏𝑛(𝜀𝑛)] =< 𝜏𝑛(𝜀𝑛) > 

𝔼[𝜏𝑚(𝜀𝑚)] =< 𝜏𝑚(𝜀𝑚) > 

 

and we already computed these two mean values previously. 

As regards 𝔼[𝜏𝑛(𝜀𝑛) ∙ 𝜏𝑚(𝜀𝑚)], one single realization of the object  𝜏𝑛(𝜀𝑛) ∙ 𝜏𝑚(𝜀𝑚)   is given by 

𝑎𝑛𝐸𝜀𝑛 ∙ 𝑎
𝑚𝐸𝜀𝑚 = 𝑎𝑛+𝑚𝐸2𝜀𝑛𝜀𝑚 

(4.48) 

and 

𝔼[𝜏𝑛(𝜀𝑛) ∙ 𝜏𝑚(𝜀𝑚)] = ∑𝑎𝑖,𝑛𝐸𝜀𝑖,𝑛

𝑘−1

𝑖=0

∑𝑎𝑗,𝑚𝐸𝜀𝑗,𝑚

𝑘−1

𝑗=0

 𝑃(𝜏𝑛(𝜀𝑛), 𝜏𝑚(𝜀𝑚)) 

(4.49) 

 

where 𝑃(𝜏𝑛(𝜀𝑛), 𝜏𝑚(𝜀𝑚) is the joint probability associated to the two random variables 

𝜏𝑛(𝜀𝑛) 𝜏𝑚(𝜀𝑚). We do not have obviously this joint probability so let us assume that this last 

quantity is different from 0. 
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In the end we arrive to say that  

𝐶𝑜𝑣(𝜏𝑛(𝜀𝑛), 𝜏𝑚(𝜀𝑚))

= 𝐸2  [∑𝑎𝑖,𝑛𝐸𝜀𝑖,𝑛

𝑘−1

𝑖=0

∑𝑎𝑗,𝑚𝐸𝜀𝑗,𝑚

𝑘−1

𝑗=0

 𝑃(𝜏𝑛(𝜀𝑛), 𝜏𝑚(𝜀𝑚))

− 𝜀𝑛∑𝑎𝑖,𝑛𝑃𝑖(𝜀𝑛) ∙ 𝜀𝑚

𝑘−1

𝑖=0

∑𝑎𝑗,𝑚𝑃𝑗(𝜀𝑚)

𝑘−1

𝑗=0

] 

 (4.50) 

that can be generally different from 0. 

However we can state from the theorem of the variance (4.49) that  𝑉𝑎𝑟(< 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 >) goes 

to 0 for 𝑁 (number of trusses into the structure) going to infinite. So by the theorem of the 

variance  (e) we can state that the fluctuations around the average constitutive behaviour among 

all the possible realizations goes to 0 for big 𝑁. Basically this result is quite similar to the one found 

for the CFBM. 

So, resuming: basically, because of the disorder spread into our truss structure because of the 

thresholds we assign, we will have infinite constitutive behaviour 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒. We 

can also compute < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > −𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 which is, as we shown above, the average 

among infinite numerical experiments about our truss lattice. So, for 𝑁 number of trusses fixed, 

we could think of a distribution of curves 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 with its mean value. The 

curves 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 are obtained by the numerical experiments while the curve 

    < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > −𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 is their average. We showed that for big number of trusses, all 

the curves derived from the numerical experiments collapse into the curve 

< 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > −𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒  

because the variance goes to 0. This is exactly what happens in the CFBM as well. In the 

thermodynamic limit, the mistake associated at this curve goes to 0 and the last curve becomes 

THE constitutive behaviour of the structure, from which we can state in which point of the curve 

the model breaks, how it breaks (for big 𝑁 there will be only one way in which the model will 

break: it will form an X.  

A probabilistic law (depending on the threshold and so on the disorder) gets a deterministic law in 

the thermodynamic limit. 

 For small 𝑁 we obtain always this “average” behaviour but the single realizations will be far away 

from this average because of the growth of the variance, like happened in the CFBM) and the 

damage law. 

In this way it is possible by the statistics to determine from the microscopic behaviour of one 

element, the macroscopic behaviour of the whole structure and to get the statistic constitutive 

behaviour of a material, that for a large number of truss IS the constitutive behaviour. By the 

average curve < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > −𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 then it is possible to get a global damage law  
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𝐷 = 1 − 𝐸(𝜀𝑎𝑣)/𝐸0   

(4.51) 

which is a function of the average constitutive behaviour. This damage law we are able to obtain 

now, is a function of the elastic properties of the material (𝐸), it is a function of the way in which a 

single microscopic elements breaks (the damage parameters 𝑎 and 𝑘𝑚𝑎𝑥  that must be computed 

in an experimental viewpoint) and it contains already the disorder which is averaged according to 

the technique we introduced before. In the past we remind Mazars (1986) that was able to 

recover a damage law by thermodynamic considerations on the concrete in which the variable 

damage was expressed like: 

𝐷 = 𝛼𝑡𝐷𝑡 + 𝛼𝑐𝐷𝑐 

(4.51) 

where 

𝐷𝑡 = 𝐹𝑡(𝜀) 

(4.53) 

with 

𝐹𝑡(𝜀) = 1 −
(1 − 𝐴𝑖)

𝜀
−

𝐴𝑖
exp(𝐵𝑖(𝜀 − 𝐾0))

 

(4.54) 

𝑖 = 𝑡, 𝑐 

In this relation 𝐴𝑖and 𝐵𝑖 are coefficients that must be recovered by experimental measures while 

the weight coefficients 𝛼𝑡 and 𝛼𝑐 are chosen in this way: 

In traction 𝛼𝑡 = 1, 𝛼𝑐 = 0 and 𝐷 = 𝐷𝑡 

In compression 𝛼𝑐 = 1, 𝛼𝑡 = 0 and 𝐷 = 𝐷𝑐. 

This is one of the many damage laws developed during the last years and as we can state it 

depends on the strain applied and on the properties of the material. For this reason to have built a 

new global damage law that contains both the elastic properties and the breaking properties of 

the micro-elements and the especially the disorder of the medium, is a great result for the 

statistical central force model. 

So in order to get the average constitutive behaviour of the truss lattice model we need to know 

the average constitutive behaviour of one single truss.  

A good benchmark would be to match our average constitutive model with the result of one 

simulation. For a truss lattice model, one truss had a Young Modulus 𝐸 = 100 𝑀𝑃𝑎 and it could 

damage 30 times before breaking with a damage parameter equal to 0.9. So 𝑎 = 0.9 and 

    𝑘𝑚𝑎𝑥 = 30. The probability density function instead is a uniform distribution: 
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𝑝(𝜎) =
1

𝑠2 − 𝑠1
  

where 𝑠1 = 0 𝑀𝑝𝑎 and 𝑠2 = 1 𝑀𝑝𝑎. So all the thresholds are picked up from this p.d.f.  

The constitutive behaviour of one single truss, according to these hypothesis, will be represented 

in the following picture: 

 

Figure 4.10: strain stress curve that we assign to each truss of our lattice as result of the theory of the ensembles 

This constitutive law, obtained by a uniform probability density function, is quite complicated to 

insert into the code because of the presence of little waves on the plateau. Basically what we do is 

to assign this constitutive behaviour to each truss of our lattice model (without porous medium) 

and to apply some imposed displacements in static on the top, bottom, left and right edge: the 

same imposed displacements applied for the central force model in Milanese, Molinari and 

Schrefler. At the moment we do not consider the porous medium because our purpose is only to 

give the basic idea of the method. Obviously the stiffness matrix of the whole truss structure, will 

contain the Young modulus of each truss) that will be now a function of the strains obtained into 

the model for each truss according to the curve plotted above: so the model is clearly not linear 

and a Newton Raphson iterative algorithm must be applied. 
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4.5.2 Results of the simulations 

Some simulations were performed for the system without water in static to show this concept. 

A good benchmark about this is to consider the simple code written in static, without water and to 

compare the constitutive curves of the code obtained by the thresholds (Par 4.4.1.1) and the new 

code that uses a constitutive behaviour assigned to each truss (Par 4.5.1). If the theory is correct, 

by making 𝑁 grow, all the possible realizations of the curves 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 we 

calculate by the first algorithm should collapse towards < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > −𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 that we 

compute by the Newton Raphson iterative algorithm because of the lowering of the variance 

around the mean value for 𝑁 → ∞. For N not so big instead, we should notice some differences 

among single realizations 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − 𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒  (which are obtained by the first algorithm) 

and the mean value < 𝜏𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > −𝜀𝑡𝑟𝑢𝑠𝑠−𝑙𝑎𝑡𝑡𝑖𝑐𝑒 (obtained by the second algorithm): that’s 

why the variance is not close to 0. 

We report some results very briefly. 

 

Figure 4.14: Constitutive behaviour for the Statistical central force model with 272 trusses: in blue, green and red three 

different realizations given by the disorder. In Yellow the average among all the possible the constitutive behaviours  
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Figure 4.15: Constitutive behaviour for the Statistical central force model 1056 trusses: in blue, green and red three different 

realizations given by the disorder. In yellow the average among all the possible the constitutive behaviours 

As we notice, the yellow curve stops at a certain point: in fact from the numerical code, the matrix 

becomes singular and it is not possible to invert it. So from a physical viewpoint, this numerical 

instability could be considered as the point in which in our truss lattice the fracture channel is 

born: that’s why the yellow curve is the average among all the possible numerical experiments 

that can be considered by assigning different thresholds in stress to our trusses and so the point in 

which we record this instability is the average among all the possible breaking points. 

The theory can be applied to the dynamic and to a porous medium as well. In fact the problem of 

the porous medium is simply a coupled problem and the stochastic part regards only the truss 

structure part. 
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Chapter 5  
Self Organised Criticality  

 

 “An unlikely event is likely to happen 

because there are so many unlikely 

events that could happen.”  

 Per Bak, How nature works 

 

 

 

 

5.1 Complex systems 

5.1.1 Generalities 

The system we will be studying, made of trusses, can be considered like a complex system. So an 

overview about the complexity is necessary. 

The study of the complex systems like an unified science has become recognized only in the few 

recent years and it is linked to many different disciplines, going from the human brain to the 

physiology, from the physics to the complex networks, from the “life” as we are used to call it, to 

the economy. For this reason we will try to give a generic definition of complex system. 

What’s basically a complex system? To answer this question, we must first understand the 

difference between the word complex and complicated. The dictionary claim of complex is              

“consisting of interconnecting or interwoven parts” and this comes from the Latin “cum-plexere”. 

As regards the word complicated, this comes always from the Latin “cum-plicare” and this means 

like made of different parts that can be bended. 

This important difference that we can recognize by studying the dictionary, says to us an 

important claim: 

1) A complicated system can be studied by breaking it down in subsets and it can be 

understood by analysing the dynamics of each of them. 

2) A complex system instead, is made by interwoven parts. So this particular structure hints 

us that its study should be done by considering it in its whole and by studying the 

interactions among its subsets/elements. 
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This difference between 1) and 2) is also at the basis of the struggling between two different 

approaches to the study of the physics: we are talking about Reductionism and Holism. 

From a philosophical viewpoint, the Reductionism tries to understand the nature of complicated 

things by reducing them to the descriptions of its parts. This has been on the basis of the physics  

for many years in the past. Obviously this approach fails with complex systems: in fact, how is it 

possible that a system made by different subsets, interacting among them, shows a behaviour 

completely different with respect the single parts? (we can have an example of this phenomenon 

by observing the fly of a flock of birds: we know exactly the rule according to a single bird behaves, 

i.e. it follows the direction of its own neighbours but we are not able to understand why the whole 

flock moves in a given direction). 

To answer this question maybe we should consider another important point of view in studying 

the different physics systems, which is given by the Holism: in it, we find the idea that the 

properties of the system cannot be determined or explained by its component parts alone, but 

they are rather explained in terms of the interactions among the parts. “The whole is more than 

the sum of the parts”. This summarizes the point of view of this philosophical stream. And this is 

also the basis of a new discipline, which is the complex system physics. 

So this discipline, born in the last years, called physics of the complex systems is a new 

interdisciplinary field of science studying how parts of the system give rise to a collective 

behaviour of the system and how the system interacts with its environment. 

Qualitatively, to understand the behaviour of a complex system, as we already said, we must 
understand not only the behaviour of the parts but how they act together to form the behaviour 
of the whole. It is because we cannot describe the whole without describing each part, and 
because each part must be described in relation to other parts, that complex systems are difficult 
to understand.  
This is relevant to another definition of “complex”: “not easy to understand or analyse.”  
 
These qualitative ideas about what a complex system is, can be made more quantitative. On the 
basis of the definition we gave about the complex systems, we can understand that we are 
basically surrounded by them: from the system “atmospheric weather” to the human brain; from 
the community of the ants to the fly of a flock of birds into the sky; and so on. The complex 
systems can be founded in every discipline that human beings developed in the centuries. 
However for many years, professional specialization has led science to progressive isolation of 
individual disciplines. How is it possible now that well-separated fields such as molecular biology 
and economics can suddenly become unified in a single discipline under the underlined concept of 
the complexity? How does the study of complex systems in general pertain to the detailed efforts 
devoted to the study of particular complex systems? In this regard one must be careful to 
acknowledge that there is always a dichotomy between universality and specificity. 
A study of universal principles does not replace detailed description of particular complex systems. 
However, universal principles and tools guide and simplify our inquiries into the study of specifics. 
For the study of complex systems, universal simplifications are particularly important. Sometimes 
universal principles are intuitively appreciated without being explicitly stated. However, a careful 
articulation of such principles can enable us to approach particular systems with a systematic 
guidance that is often absent in the study of complex systems. A pictorial way of illustrating the 
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relationship of the field of complex systems to the many other fields of science is indicated in the 
Figure below. This figure shows the conventional view of science as progressively separating into 
disparate disciplines in order to gain knowledge about the ever larger complexity of systems. It 
also illustrates the view of the field of complex systems, which suggests that all complex systems 
have universal properties. Because each field develops tools for addressing the complexity of the 
systems in their domain, many of these tools can be adapted for more general use by recognizing 
their universal applicability. Hence the motivation for cross disciplinary fertilization in the study of 
complex systems. 

 
Figure 5.1: representation of the evolution of the world of complex systems (, Y.B. Yam, Dynamics of complex system, 
1992) 
 

Some interesting examples of complex systems we can find daily around us are given by: the 
Governments, the Body, the human life, the brain, the weather, a computer and a person. 
Instead, examples of simple systems are given by an oscillator, a pendulum and an orbiting planet. 
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5.1.2 Features of complex systems 
 
Obviously after having given examples of  complex system we must give a quantitative  more 
precise definition of its properties and we need to describe them as well; we will make a list of the 
of the main features that characterize a complex system and assign them a measure that provide a 
first way of classification;  
 
• Elements (and their number) 
• Interactions (and their strength) 
• Formation/Operation (and their time scales) 
• Diversity/Variability 
• Environment (and its demands) 
• Activity(ies) (and its[their] objective[s]) 
 
For example let us consider the system life: its elements are the organisms that interact one 
another by non linear interaction like reproduction, competition, predation and communication. 
Its formation consists in evolution and the activity of each organism consists in the survival, 
reproduction, consumption and excretion. We could repeat the same considerations by 
considering human economies and societies, the physiology, the proteins and the neural networks 
by considering the following scheme: 
 

SYSTEM ELEMENT INTERACTION FORMATION  ACTIVITY 

Proteins Aminoacids bonds Protein folding Enzymatic 
activity 

Nervous system Neurons synapses learning Behaviour 
thought  

Physiology Cells Chemical 
messengers 

Developmental 
biology 

movement 

Life Organisms Reproduction 
Competition 
Predation 
communication 

evolution Survival 
Reproduction 
Consumption 
excretion 

Human 
economies and 
societies 

Human beings 
Technology  

Communication 
Confrontation 
cooperation 

Social evolution Same as life? 
Exploration? 

Truss lattice Trusses Bonds ------ To support the 
external load by 
“talking” one 
another 

 
In the scheme above, in the last row we have inserted the truss lattice model we studied in the 
last chapter. This kind of system can be considered like complex; it is made of different sub 
elements, that we call trusses, that behave in the same way according to a constitutive behaviour 
fixed by thresholds. And at the same time they can “communicate” one another in order to reach 
the equilibrium because of imposed displacements from the external environment.  
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1.3 Emergence 
 

In general there are two approaches to organize the properties of complex systems: 
 

1) The first of these is the relationship among elements, parts and the whole. Since there is 
only one property of the complex system that we know for sure — that it is complex—the 
primary question we can ask about this relationship is how the complexity of the whole is 
related to the complexity of the parts. As we will see, this question is a compelling question 
for our understanding of complex systems. 
From the examples we have indicated above, it is apparent that parts of a complex system 
are often complex systems themselves. This is reasonable, because when the parts of a 
system are complex, it seems intuitive that a collection of them would also be complex. 
However, this is not the only possibility. 
Can we describe a system composed of simple parts where the collective behaviour is 
complex? This is an important possibility, called emergent complexity. Any complex system 
formed out of atoms is an example. The idea of emergent complexity is that the behaviours 
of many simple parts interact in such a way that the behaviour of the whole is complex. 
Elements are those parts of a complex system that may be considered simple when 
describing the behaviour of the whole. 
Can we describe a system composed of complex parts where the collective behaviour is 
simple? This is also possible, and it is called emergent simplicity. A useful example is a 
planet orbiting around a star. The behaviour of the planet is quite simple, even if the planet 
is the Earth, with many complex systems upon it. This example illustrates the possibility 
that the collective system has a behaviour at a different scale than its parts. On the smaller 
scale the system may behave in a complex way, but on the larger scale all the complex 
details may not be relevant. 

Let us open a brief discussion about the truss lattice introduced in the previous chapter. 
Does our system show emergent behaviour? If we analyse the simulations in static, we notice that 
for little meshes of the system the channel of the fracture comes out because of a fraying of the 
system: different trusses damage or break and in the end we notice the appearance of the 
“channel” which is the result of the “fraying” of the lattice. This behaviour disappears for big 
meshes, in which the channel of the fracture suddenly appears without fraying. It is like the 
trusses talk one another in order to decide where to make it appear into the model with their 
simple behaviour, represented by their constitutive law and by the mechanism of sharing the load 
that they are not able to withstand. From their simple behaviour a global property of the system 
comes out: the genesis of the fracture into the medium. This behaviour can be considered 
emergent (we can talk about simple emergence because a “channel of the fracture” comes out 
from the interaction among many elements) and it is more evident when the number of trusses 
growths, i.e. for big meshes (we underline the fact that in our code the algorithm is built in such a 
way that the “total mass” of the system is always the same and independent on the number of 
trusses used to mesh the system itself). It is not banal that the truss lattice breaks because of the 
sudden appearance of a channel instead of breaking because of the fraying of the system itself. 
For this reason we can describe this behaviour of the whole system like emergent. In static, if we 
suppose that our truss lattice describes a medium pulled in 4 different directions, we showed that 
there is a limit number of squares on the edges from which the emergent behaviour of the 
fracture appears. This number is 22. If we increase the number of square (more than 22) this 
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behaviour is more and more evident. What is the dimension of the discretization we should stop? 
To answer this question an experimental analysis would be important.                                                                      
 

2) The second approach to the study of complex systems begins from an understanding of the 
relationship of systems to their descriptions. The central issue is defining quantitatively 
what we mean by complexity. What, after all, do we mean when we say that a system is 
complex? Better yet, what do we mean when we say that one system is more complex 
than another one? Is there a way to identify the complexity of one system and to compare 
it with the complexity of another system? To develop a quantitative understanding of 
complexity in physics tools of both statistical physics and computer science- information 
theory and computation-theory are used. According to this understanding, complexity is 
the amount of information necessary to describe a system.  However, in order to arrive at a 
consistent definition, care must be taken to specify the level of detail provided in the  
description. 

 
One of our targets is to understand how this concept of complexity is related to emergence—
emergent complexity and emergent simplicity. Can we understand why information-based 
complexity is related to the description of elements, and how their behaviour gives rise to the 
collective complexity of the whole system? 
 
So, resuming: the objectives of the field of complex systems are built on fundamental concepts— 
emergence, complexity—about which there are common misconceptions. Once understood, these 
concepts reveal the context in which universal properties of complex systems arise and specific 
universal phenomena, such as the evolution of biological systems, can be better understood. 
A complex system is a system formed out of many components whose behaviour is emergent, that 
is, the behaviour of the system cannot be simply inferred from the behaviour of its components. 
The amount of information necessary to describe the behaviour of such a system is a measure of 
its complexity. In the following we will try to give some tools to describe from a quantitative 
viewpoint the complexity. 
  

 

5.1.3 Complexity: how to measure it 
 

A concept that is central to complex systems is a quantitative measure of how complex a system 
is. Loosely speaking, the complexity of a system is the amount of information needed in order to 
describe it. The complexity depends on the level of detail required in the description. A more 
formal definition can be understood in a simple way. If we have a system that could have many 
possible states, but we would like to specify which state it is actually in, then the number of binary 
digits (bits) we need to specify this particular state is related to the number of states that are 
possible. If we call the number of states Ω then the number of bits of information needed is 
 

𝐼 = 𝑙𝑜𝑔2Ω 
 
To understand this we must realize that to specify which state the system is in, we must 
enumerate the states. Representing each state uniquely requires as many numbers as there are 
states. Thus the number of states of the representation must be the same as the number of states 
of the system. For a string of N bits there are 2N possible states and thus we must have 
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Ω = 2𝑁 

 
which implies that N is the same as I above. Even if we use a descriptive English text instead of 
numbers, there must be the same number of possible descriptions as there are states, and the 
information content must be the same. When the number of possible valid English sentences is 
properly accounted for, it turns out that the best estimate of the amount of information in English 
is about 1 bit per character. This means that the information content of this sentence is about 120 
bits, and that of this book is about 3 106 bits. 
For a microstate of a physical system, where we specify the positions and momenta of each of the 
particles, this can be recognized as proportional to the entropy of the system, which is defined as 
 

𝑆 = 𝐾 𝑙𝑜𝑔Ω 
 
where 𝑘 = 1.381023 𝐽𝑜𝑢𝑙𝑒 / ° 𝐾𝑒𝑙𝑣𝑖𝑛 is the Boltzmann constant which is relevant to our 
conventional choice of units . Using measured entropies we find that entropies of order 10 bits per 
atom are typical .The reason k is so small is that the quantities of matter we typically consider are 
in units of Avogadro’s number (moles) and the number of bits per mole is 6.021023 times as large . 
Thus, the information in a piece of material is of order 1024 bits . There is one point about the 
equation above that may require some clarification. The positions and momenta of particles are 
real numbers whose specification might require infinitely many bits. Why isn’t the information 
necessary to specify the microstate of a system infinite? The answer to this question comes from 
quantum physics, which is responsible for giving a unique value to the entropy and thus the 
information needed to specify a state of the system. It does this in two ways. First, it tells us that 
microscopic states are indistinguishable unless they differ by a discrete amount in position and 
momentum—a quantum difference given by Planck’s constant h. Second, it indicates that particles 
like nuclei or atoms in their ground state are uniquely specified by this state, and are 
indistinguishable from each other. There is no additional information necessary to specify their 
internal structure. Under standard conditions, essentially all nuclei are in their lowest energy state. 
The relationship of entropy and information is not accidental , of course , but it is the source of 
much confusion . The confusion arises because the entropy of a physical system is largest when it 
is in equilibrium . This suggests that the most complex system is a system in equilibrium . This is 
counter to our usual understanding of complex systems . Equilibrium systems have no spatial 
structure and do not change over time . Complex systems have substantial internal structure and 
this structure changes over time . 
The problem is that we have used the definition of the information necessary to specify the 
microscopic state (microstate) of the system rather than the macroscopic state (macrostate) of the 
system. We need to consider the information necessary to describe the macrostate of the system 
in order to define what we mean by complexity. 
One of the important points to realize is that in order for the macrostate of the system to require 
a lot of information to describe it, there must be correlations in the microstate of the system. It is 
only when many microscopic atoms move in a coherent fashion that we can see this motion on a 
macroscopic scale.  
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5.2 “How nature works” 
5.2.1 The power law and the origin of SOC 

 
We said first that the science was split in a series of different disciplines (figure 5.1). Well, we can 
say that there are a number of empirical observations across the individual sciences that is 
impossible to understand by following the techniques developed within the specific scientific 
domains. These phenomena are the occurrence of some large catastrophic events, fractals, noise 
1/f in a particular way. Why are they universal? In the following we will report some simple 
examples about these phenomena 
 
EARTHQUAKES: as we already said, because of their composite nature, the complex systems can 
show catastrophic behaviour, in which one part of the system can affect the other ones. A typical 
example of this phenomenon is given by the cracks in the Earth crust. The scientists studying the 
physics of the earthquakes looked at the earthquakes themselves on a big timescale in order to 
get a law that could characterize the single one. For this reason it was possible to obtain a simple 
law, called Richter-Gutenberg law. Basically by this law, it turns out that every time there are 1000 
earthquakes of magnitude 4 on the Richter scale, 100 earthquakes of magnitude 5, 10 of 
magnitude 6 and so on. In the figure we show this particular law, applied for a particular region of 
the Earth (the zone of New Madrid in USA) and in a restricted temporal period (between 1974 and 
1983). The scale is obviously logarithmic, so the numbers on the vertical axes are 1,10,100. 

 
Figure 5.2: Gutenberg Richter law (on the left) and representation of points in which earthquakes occurred in New 
Madrid (How nature works, P.Bak) 

 
In the figure on the right instead we report the specific points in the area in which we measured 
earthquakes (with the bigger dots representing the biggest ones). 
This law is quite important because the dynamics of a complicated system as the crust of the 
Earth, with lakes, mountains, volcanos can be resumed by a simple power law; and this law also 
suggests that the large earthquakes, from a physical viewpoint do not play a special rule with 
respect the smallest ones, but they are basically the faces of the same coin. 
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MANDELBROT’S LAW: In Economics it is possible to find a version of the Gutenberg Richter law. 
Benoit Mandelbrot pointed out that the variation of the prices of the cotton, stocks and other 
commodities follows a very simple statistical law which is known as Levy’s law. Mandelbrot 
collected data for the variation of the prices of the cotton for many years, month to month; then 
he counted how often the variation was between the 10 and 20 percent, how often between the 
10 and 5 percent and so on. Just like for the Gutenberg Richter law in the region of New Madrid. In 
this case the distribution follows again a power law: 

 
Figure 5.3: Mandelbrot’s law (How nature works, P.Bak, 1992) 

 
Mandelbrot studied different commodities and he found that they followed basically the same 
pattern. 
The strange thing is that the economists have ignored for many years the works of Mandelbrot 
because the general picture they followed is that large and contingency events, like the crash of 
the 1929, are caused by abnormal circumstances. Basically the mistake made is to cut the data 
before of the analysis; obviously in this way it is not possible to build a general theory that could 
give  like a general pattern of the phenomenon excluding some pieces of data. 
 
EXTINCTIONS: In biological evolution, the professor Raup from University of Chicago, pointed out 
that the distribution of the extinction events could follow a power law. By using different data put 
together by the fossil records of thousands of marine species, he arrived to the following law: 
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Figure 5.4: histogram of percent extinction vs number of geological stages ((How nature works, P.Bak, 1992) 
 

 
In this simple histogram, it is possible to note that the events that lead to the extinction of a 
number of species on the earth crust between the 0 and the 10 percent, occurred many times, for 
more than 50 geological stages, while big extinction processes like the extinction in the Permian 
which made almost the 60 percent of the species on the Earth disappeared, occurred only one 
time. The technique used by Raup, was the same used by Mandelbrot and the same used for the 
Gutenberg Richter law. The same law, plotted as function of the time gives us: 
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Figure 5.5: time vs percent of extinction ((How nature works, P.Bak, 1992) 
 

What is important in these power law from a physical viewpoint? Although the large events occur 
with a well defined probability, this does not mean that the phenomenon could be considered like 
periodical. The fact that a large earthquake did not appear for a long time does not mean that it is 
due! The only thing we can assess is that these events will occur always with the same probability, 
given by a power law. The fact that the regularity must not be confused with the periodicity 
suggests that the same identical mechanism works at all the scales, from the extinction taking 
place every day, to the largest one, that caused the extinction of the 95 percent of the species on 
the Earth. 
 
FRACTAL GEOMETRY: Mandelbrot coined the word fractal for geometrical structures which are 
present at all the length scales and was among the first to make the assumption that the nature is 
characterized by a fractal behaviour. Basically, if we consider a fractal and we increase one of its 
part, we can get the same starting structure again. In the figure below we report the Mandelbrot’s 
fractal: 
 

 
 
Figure 5.6: Mandelbrot’s fractal ((How nature works, P.Bak, 1992) 
 

 
The nature produces a great example of fractals. For example in a tree, each branch is more or less 
similar to the whole tree and every little branch is similar to its own branch and so on. The fractals 
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are present in the geomorphical profiles of the mountains or in the ice crystals, in the clouds and 
so on; the nature is full of these kind of objects. So how is it possible to build such kind of objects 
from a mathematical viewpoint? There is a substantial difference between an Euclidean object 
and a fractal which depends on the way in which we build them: a curve on the plane in fact is 
built by a function  
 

𝑓(𝑥(𝑡), 𝑦(𝑡)) = 0 

 
which describes the position of the point on the curve by varying the time 𝑡. 
If we would like to build a fractal instead, we cannot use a curve but only an algorithm, i.e. a 
method that cannot be necessarily numerical and that must be repeated an infinite number of 
times. After a certain number of iteration the human eye is not able to see the difference 
anymore. 
Each fractal is characterized by a “dimension”. Let’s consider for example the cost of the Norway 

 
Figure 5.7: fractals in the coast of Norway ((How nature works, P.Bak, 1992) 
 
 
 

which is characterized by a hierarchical structure of fjords within fjords and fjords within fjords of 
fjords. So the question we could formulate is: how long is a typical fjord? Two considerations: first, 
if we saw a part of a fjord or a part of a coastline, we would not be able to say how large it is if the 
picture would not show a ruler. Second: the length measured depends on the resolution of the 
ruler for the measurement. In fact a large ruler would give us a rougher estimate than a smaller 
ruler which would be able to take into account smaller length scales. So, one way to represent this 
is to measure how many boxes (in the figure above) or circles of size 𝛿 we need to cover the coast. 
Obviously, the smaller the box, the more boxes are needed to cover the coast. After having done 



 
228 

 

this, we repeat the whole process decreasing the dimension of the boxes till 𝛿 → 0. If we plot the 
logarithm of the length 𝐿 measured by the boxes as a function of the logarithm of the sizes of the 
boxes, we have  
 

 
Figure 5.8: measure of the dimension of a fractal ((How nature works, P.Bak, 1992) 
 
 
 

Still a power law, whose exponent is 𝜏 = 1.52. This exponent is called fractal dimension of the 
coast and the fact that it is between 1 and 2 suggests the Norwegian coast is a complex fractal 
object whose dimension is between the dimension of a line on a plane and of a surface. 
A lot of work was done for determining the geometrical properties of the fractals, like the fractal 
dimension we described above but the question about their origin still remained. 
  
1/𝑓 NOISE: The last phenomenon we describe is the so called 1/𝑓 noise; this was observed in 
different systems, like the flow of the river Nile, the light from a quasar and the highway traffic. 

 
Figure 5.9: 1/f noise ((How nature works, P.Bak, 1992) 
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The figure above shows the light from a quasar measured in a period of 80 years. There are 
features of all sizes: rapid variations over minutes and slow variations over years. This kind of 
signal can be considered like the superposition of bumps of all sizes; so from a physical viewpoint 
it looks like a Norwegian coastline in time rather than in space. Equivalently, it can be considered a 
superposition of periodical signals of all frequencies; this means that there are features at all time 
scales. The strength or power of its frequency component is inversely proportional to 𝑓. For this 
reason it is called 1/𝑓 noise. This signal is so different from the white noise, in which there are no 
correlations between the value of the signal from one moment to the next. 

 
Figure 5.10: white noise ((How nature works, P.Bak, 1992) 
 
 
 

In the figure above in fact it is possible to note that there are no slow fluctuations, i.e. large 
bumps. 
 
 
So by all these examples, we can state basically that all these different systems, that are complex 
according to the description given at the beginning of the chapter, can be described by a power 
law, i.e: 
 

𝑁(𝑠) = 𝑠−𝜏 
 
𝑠 in this case depends on the system we are considering: it could be for example  the energy 
released by an earthquake and 𝑁 the number of earthquakes. 𝑠 could be the length of a fjord and 
𝑁(𝑠) the number of fjords with that particular length (Bak, how nature works). The same pattern 
always repeats for all our systems. Obviously the exponent 𝜏 is a characteristic of the system itself.  
The physical meaning that comes out from the power law is the so called scale invariance: the 
straight line that we found from an experimental viewpoint into the systems we described looks 
the same everywhere: 
every little branch is similar to the tree, every little fjord is similar to the bigger one, every 
distribution of earthquakes recorded for a limited value of time is similar to the distribution 
recorded for million of years.  
From a mathematical viewpoint it is possible to notice it by the structure of the power law: if we 
change the scale of the independent variable 𝑠 by 𝑐𝑠,   we have: 
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𝑁(𝑐𝑠) = 𝑐𝑠−𝜏 = 𝑐−𝜏𝑠−𝜏 = 𝑐𝑜𝑛𝑠𝑡 ∙  𝑠−𝜏 

 
Thanks to this law, all the fractal objects/phenomena follow a distribution with a long tail where 

there is no a typical value around whom they spread. For the no fractal objects we see a different 
situation: the distribution of the values is a Gaussian and there is an average value well define 

with the large number of the objects around it. 

 
 
If we try to increase a smaller part of the Gaussian we do not get a Gaussian again. So the 
phenomena ruled by this law do not show invariance scale. 
So, resuming: according to a naïve point of view, the nature should follow a pattern given by the 
Gaussian distribution; if this was true, there would exist a mean value (which would be the most 
likely one) and other values spread around it according to the variance of the Gaussian. So if we 
applied this picture to the complex systems in nature we would see probably one unique 
Norwegian fjord as regards the spatial structures (the concept can be applied to the channel of a 
fracture, to the distribution of the sand grains on a beach and so on), one unique earthquake 
characterized by a fixed magnitude and one unique degree of extinction. There would be recorded 
also little variations from the average value because of the mistakes expressed from a math 
viewpoint by the variance, but basically we would observe always the same pattern for each 
complex system. Furthermore the large events, so different and so far away from the average 
value would be a consequence of abnormal events and so they could be not considered in the 
statistical analysis (that’s the reason for which the economists did not considered the Lavy’s law 
for much time).  This mean value would be also a “special” value for our system, the unique one. 
However the nature does not behave in this way; the statistical law followed is the power law, 
that shows scale invariance: this means that there are no fjords smaller than a particle or bigger 
than Norway. But between the two extremes there are the features of all the length scales and 
there is no a special value. Obviously our power law says to us that the number of bigger fjords is 
smaller than the number of smaller fjords in size. But it also says us that there is no a special mean 
value around all the dimensions of fjords spread; all the scale lengths appear and have the same 
importance. 
That’s the way in which complex systems work. 
In the same way, the same thought can be applied for earthquakes and extinctions.  
An important characteristic of the systems we analysed is that they exhibit the so called 
“punctuated” equilibrium: periods of stasis, in which nothing happens are interrupted by 
intermittent extinctions, earthquakes or changes of prices that we will call in our approach 
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“avalanches”. Obviously this kind of picture must be applied to phenomena depending on the time 
(not for the spatial structures like fjords).  
In all these examples, we described basically systems that are not in equilibrium. A complex 
system cannot be in balance.” If an equilibrium system is disturbed slighthly, for example by 
pushing a grain of sand somewhere, nothing interesting happens. In general systems in 
equilibrium are not able to show any of the interesting behaviour discussed above like large 
catastrophes, 1/𝑓 noise and fractals (Bak, How nature works)”. In the past a lot of scientists have 
assumed that large systems in Economy or Biology were in equilibrium, like the flat sand on a 
beach. If we are in a balance state obviously for little perturbations introduced into the system, 
the system itself reacts by a little answer: it is linear. Small freak events cannot have dramatic 
situations. Large fluctuations events can occur only if many random events pull in the same 
direction, which is highly unlikely. For this reason these large catastrophes are not considered 
form a statistical viewpoint. However an equilibrium theory is not able to explain the state of the 
systems we analysed. Why these systems are not in equilibrium? The answer depends on the scale 
length of the human lifetime; the changes are so small compared with human lifetime that the 
concept of equilibrium seems natural. As pointed by Gould and Eldrige for the system “life”, this 
apparent equilibrium is only a period of tranquillity in which many species become extinct 
definitely and other ones do appear. This theory is known as theory of the punctuated equilibrium. 
“Large intermittent bursts have no place in equilibrium systems but they appear in biology, 
geophysics, history”. (How nature works, Bak) 
 
So, these phenomena we have described from an experimental viewpoint seem to have the same 
mathematical law: the power law. Can there be a Newton’s law 𝐹 = 𝑚𝑎 for complex systems?  
Maybe the answer to this question is the quoted power law. The Self Organized Criticality (SOC) 
was born to give an interpretation to these phenomena. 
 

5.2.2 The birth of SOC 
 
A perceived idea to unify the above two aspects of fractality (in space and time) led Bak, Tchang 
and Wiesenfeld (BTW) to the so called postulate of SOC. Apparently they were guided by the 
observation of scaling in space and time (fractals and noise 1/𝑓) in equilibrium and non 
equilibrium systems. They believed basically that these two phenomena were correlated in some 
way, i.e. manifestations of the two sides of the same coin.  According to BTW self organized 
systems drive themselves to a critical state in which we notice the invariance scale without the self 
tuning of an external parameter like happens for systems in Biology, Economy and History and the 
process of the self organization takes a lot of time, i.e. a very long transient before reaching the 
critical state. 
 
So after having realized that complex systems exhibit this kind of characteristics BTW tried to build 
a simple model that could be able to fit the behaviour of self organised systems: the sandpile 
model; a sandpile exhibits punctuated equilibrium behaviour where periods of stasis are 
interrupted by periods of activity. The sand avalanches are caused by a domino effect in which a 
particular grain of sand pushes towards one or more grains causing different avalanches. These 
grains can interact with other grains in a chain reaction. We will now analyse from a quantitative 
viewpoint the behaviour of this model, which is the paradigm of all the SOC systems. 
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A final consideration is however due: the paper of BTW, (which is resumed for the main part into 
the considerations we gave above) led many readers to different perceptions of SOC i.e. what the 
SOC is. The result is shown in the picture: 
 
 
 
 
 
 
 
 

 
 
Figure 5.11: big picture about perceptions of SOC (Watkins et al., 2016) 

 
The first idea is that self tuned phase transitions exist in nature and this is the core idea 
enunciated by BTW (above) in the SOC postulate as dynamical origin of the space-temporal 
fractals. In some contexts Milovanov and Iomin (2014) have shown that this idea can be further 
proved using their topological approach. 
 
The second and the third perceptions are considered as wrong. Jensen (1998) and Sornette (2006) 
gave a particular interesting overview of power laws observed in nature which are caused by 
processes that are fundamentally different from SOC. 
 
The fourth interpretation of SOC is like a “vision” and it is very interesting from a philosophical 
viewpoint: it comes out from the paper of the 1989 of BTW and it is quite speculative in its form. If 
this picture is correct for the real world we must accept the instability and catastrophes like 
unavoidable.  Not only: large catastrophic events, like the extinction in Precambrian are caused by 
the same mechanisms than the smaller everyday events. They cannot be erased from our analysis. 
The contingency (considered like extraordinary and rare event) is caused by the self organized 
critical state reached by complex systems in punctuated equilibrium and they are not a 
consequence of large abnormal events “pushing all in the same directions”.  
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 We will discuss now the first perception in the following and we will give a basic introduction of 
the paradigm model of SOC: the sandpile model. 
 
 
 
 

5.3 The SOC Models 
 
There are different versions of SOC models. In less than 20 years more than two thousand papers 
have been published, and comprehensive reviews has not yet appeared.  
A closer look at the literature reveals that the number of original models can be greatly reduced by 
noting that most of them are variations of prototype models. Using a “Draconian” approach, we 
can distinguish just two main families of SOC models. The first is represented by the stochastic 
SOC models such as the sandpile or forest-fire model, in which the self-organization process is the 
output of a stochastic dynamics. The second family groups together the so-called “extremal” or 
“quenched” models which are defined by a deterministic dynamics in a random environment. 
Examples of the latter family are the Invasion Percolation (IP) and the Bak-Sneppen model. The 
central Force Model we have described in the previous pages falls into this last kind of class. In the 
following  we will describe the structure of the stochastic models using a Mean Field approach by 
Vespignani and Zapperi. We will deal with this kind of models only in order to have a clear 
example of what SOC is from a quantitative viewpoint, in order to understand the concept of 
critical state and self tuned phase transition. 
   

5.3.1 The stochastic models: the sandpile 
 
The sanpiles models are cellular automa with an integer or continuous variable 𝑧𝑖 defined in a 
lattice 𝑑-dimensional. Each site is characterized by a threshold 𝑧𝑐 which is generally fixed for each 
element of the system. How the system works? Basically a “grain” of energy is dropped randomly 
into the system and the different sites are able to store different grains till their threshold 𝑧𝑐. 
When the threshold is reached for a particular site 𝑖, it relaxes and the quantity of grains changes 
according to 
 

𝑧𝑖 → 𝑧𝑖 − 𝑧𝑐 
 
and the grains are transferred to the neighbours according to 
 

𝑧𝑗 → 𝑧𝑗 − 𝑦𝑗 

 
The relaxation of a site can induce to the relaxation of other sites that can induce to the relaxation 
of further sites and so on, following a domino reaction which is called avalanche. The dimension of 
an avalanche is the number of active sites. 
For conservative systems the transferred energy is equal to the energy lost by a site on average, 
i.e. 
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∑𝑦𝑗 = 𝑧𝑐  

 
The only form of dissipation for these systems is by the drop of the grains from the boundaries of 
the systems that must be opened. It is worth to remind that during an avalanche the drop of the 
energy from the external world must stop until the system is again in equilibrium. This implies an 
infinite timescale separation between the external force and the internal dynamics of the system. 
So in these conditions, it is possible to show that the system reaches a critical state in which the 
law of distribution of the avalanches is given by 
 

𝑃(𝑠)~𝑠−𝜏 
where 𝑠 is the avalanche size. 
In the original model introduced by BTW, 𝑧𝑐 = 2𝑑 and 𝑦𝑗 = 1 but there are other interesting 

variations of this model like Manna’s model (reference) 
In the figure below we report the way of creating avalanches for the sandpile 
 

 
Figure 5.12: avalanches in the sandpile model 

 
 This critical state (we will see according to the Mean field approach why it is critical) is also 
stationary: in fact it is possible to show that the average density of the particles on the lattice (that 
for example in 2D would be 𝛿 = ∑ 𝑧𝑖𝑗/𝑁𝑖,𝑗  with 𝑁 the number of sites on the plane lattice) is 

constant in the critical state, in which we note the power law avalanche behaviour. This means 
that on average for a conservative systems, the number of particles dropped from the top into the 
system is equal to the number of particles that fall out from the boundaries.  Why this model can 
be considered like an example of SOC? The answer is very simple: the model is driven by a slow 
external force (the adding of sand grains on the lattice); this is the only influence with the external 
environment. However the input we are giving to our system is like a “chance” that we give to the 
system in order to reach the critical state, which is always the same, and it is characterized by the 
same power laws, correlations etc. We are putting only the system in simple dynamic conditions, 
exchanging energy with it (from the top and from the boundaries) and we are not tuning any 
parameters for it to reach the critical state (as it happens for the phase transitions in water or 
ferro/para magnetism). In this sense we talk about criticality which is self organized: thanks to the 
little input we give to the system from the external world, the components of the system itself talk 
one another in order to reach the critical state without the tuning of any external control 
parameter! And if we repeat the experiment the critical state reached is always the same. 
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As we said before the avalanches are instantaneous with respect the external force. This rule is 
very simple to implement in a computer algorithm that allows to take into account two different 
timescales. This however corresponds to a non local interaction in which the evolution in time of 
each site depends on the configuration of the whole lattice. This is hard to describe and in order to 
do this we should fix a reference timescale and measure the driving rate on that scale. For this 
reason let’s consider a generalized sandpile in which we introduce the probability ℎ per unit of 
time that a particular site will receive a grain of sand. We can define the total energy flux 𝐸 = ℎ𝐿𝑑 
and we fix the typical driving timescale among avalanches like 

𝜏𝑑~1/ℎ 
For ℎ → 0 we recover the slow driving limit. The system during an avalanche does not reach 
energy and in fact the timescale separation  

𝜏𝑑 → ∞ 
 
If we remove the timescale separation commonly accepted in the simulation, we are able to 
recover the locality into the model, that allows us to have a simple description of the model. 
 

 
 

5.3.2 Mean field analysis of the sandpile 
 
So the only way to study this system is by the laws of probability. For this reason the authors 
define the complete set 𝜎 = {𝜎𝑖} of lattice variable that specifies the state of the system, where 𝜎𝑖 
is the state in which a particular square of the lattice is. These values 𝜎𝑖 can take three different 
values or states: 𝜎𝑖 = 𝑠 for the stable sites in which the local energy < 𝑧𝑙𝑖𝑚 , 𝜎𝑖 = 𝑐 for the 
“critical” sites in which 𝑧 = 𝑧𝑙𝑖𝑚 , and 𝜎𝑖 = 𝑎 for the active sites where 𝑧 > 𝑧𝑙𝑖𝑚. So the dynamical 
evolution of the system is determined by the transition probability 𝑊(𝜎|𝜎′) from the 
configuration 𝜎′ to the configuration 𝜎. At a particular time step the state of a given site depends 
on the state of the same state at the previous step and from the states of the sites interacting with 
it. The most general form of the transition probability is given by: 
 

𝑊(𝜎|𝜎′) =∏𝑤(𝜎𝑖|𝜎′)

𝑛

𝑖=1

 

                                                                                                   
(5.1) 
 
where 𝑤(𝜎𝑖|𝜎′) is the one transition probability, depending on the driving and reaction rates: it 
specifies the probability that a particular site is in the state 𝜎𝑖 if previously it was in a certain state 
and the other sites on the lattice were in other particular states. Everything is specified by the 
state system  𝜎′. However in a non equilibrium system like this, it’s very important to introduce 
the probability distribution 𝑃(𝜎, 𝑡) to have a certain state 𝜎 at a time 𝑡. If we know this probability 
distribution, we are able to compute the average value of any function according to: 
 

< 𝐴(𝑡) >=∑𝐴(𝜎)𝑃(𝜎, 𝑡)

𝜎

 

 
The evolution in time of this probability function is given by solving the Master Equation 
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𝜕

𝜕𝑡
𝑃(𝜎, 𝑡) =∑𝑊(𝜎|𝜎′)𝑃(𝜎′, 𝑡) −𝑊(𝜎′|𝜎 )𝑃(𝜎, 𝑡)

𝜎

 

                                                           
(5.2) 
 
The specific form of 𝑊(𝜎|𝜎′) determines the dynamics of the system and the steady state 
distribution. Tipically SOC systems show a stationary state in which all the averages are time 
independent. To this state corresponds a stationary distribution 𝑃(𝜎) = 𝑃(𝜎, 𝑡 ⟶ ∞). For 
equilibrium system, this has the form of Gibbs 𝑃(𝜎) ≈ exp (−𝛽𝐻(𝜎)) where 𝐻(𝜎) is the 
Hamiltonian. For SOC system, as every not equilibrium system, there is no a general criterion and 
we are forced to solve the Master Equation in the stationary limit and to do this we have to use 
some approximate methods. Now, if we define the average densities 𝜌𝑎, 𝜌𝑐 , 𝜌𝑠, active, critical and 
stable, (which are the number of certain sites over the total number of sites into the lattice), for 
homogeneous systems these densities can be written as  
 

𝜌𝑘 =∑𝛿(𝜎𝑗 − 𝑘)𝑃(𝜎, 𝑡)

{𝜎}

 

                                                                                                  
(5.3) 
 
If we substitute these densities in (5.2), we have 
 

𝜕

𝜕𝑡
𝜌𝑘(𝑡) =∑∑𝛿(𝜎𝑗 − 𝑘){(∏𝑤(𝜎𝑖|𝜎

′)

𝑛

𝑖=1

)𝑃(𝜎′, 𝑡) −
{𝜎}{𝜎′}

(∏𝑤(𝜎𝑖′|𝜎 )𝑃(𝜎, 𝑡)

𝑛

𝑖=1

)} 

        
(5.4) 
 
that can be simplified by using the normalization equation for transition probability (Vespignani et 
al., 1998) giving: 
 
 

𝜕

𝜕𝑡
𝜌𝑘(𝑡) =∑𝑤(𝑘|𝜎′)𝑃(𝜎′, 𝑡) − 𝜌𝑘(𝑡)

{𝜎′}

 

                                                                            
(5.5) 
where 𝑘 = 𝑎, 𝑠, 𝑐 and     𝜎′ = {𝜎𝑖

′, 𝜎𝑖+𝑒
′ } refers to a particular set of interacting sites that depends 

on the dynamics we consider into the system.  For no local interactions 𝜎′ corresponds to the 
entire system. In this moment we introduce the Mean Field Approximation for the sandpile: the 
probability of each configuration 𝜎, can be approximate to  
 

𝑃(𝜎) =∏𝜌𝜎𝑖
𝑖

 

                                                                                                                  
(5.6) 
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The statistical meaning of this approximation is simple: we decide to approximate the probability 
of each configuration as the product of the probabilities of the single sites probabilities; so we 
decide to neglect all the possible statistical correlations among the sites. 
Introducing the MF approximation in (5.4), we arrive to the following equation for the time 
evolution of the densities in the model: 
 
 

𝜕

𝜕𝑡
𝜌𝑘(𝑡) =∑𝑤(𝑘|𝜎′) ∏𝜌𝜎𝑖

′(𝑡) − 𝜌𝑘(𝑡)

𝑖{𝜎′}

 

                                                                       
(5.7) 
 
The next step is to develop the term  ∑ 𝑤(𝑘|𝜎′) ∏ 𝜌𝜎𝑖

′(𝑡) − 𝜌𝑘(𝑡)𝑖{𝜎′}  for each density 𝜌𝑘 and to 

take the stationarity limit of the three equations; this is possible to do from an analytic viewpoint 
and in the end we have the values of the three densities (active, critical and stable) for 𝑡 → ∞: 
 

𝜌𝑎 =
ℎ

𝜀
          𝜌𝑐 =

1

𝑔
          𝜌𝑠 =

𝑔 − 1

𝑔
   

 
with the condition 𝜌𝑎 + 𝜌𝑐 + 𝜌𝑠 = 1. Here ℎ is the probability per unit time that a square of the 
lattice receive a quantum of energy, 𝜀 is the dissipation parameter (it can be present to take into 
account the average energy dissipated in a elementary process but it’s obviously present in 
conservative systems as well in order to consider the dissipation of the energy quantum from the 
boundaries and the fact that the system is finite) and 𝑔 the number of sites involved in the 
dynamical relaxation process (For further details (Vespignani, Zapperi, How self organized 
criticality works,1997)). 
Now, how it is possible to notice a stationary state is always reached: it comes out from our 
equations taking the limit 𝑡 → ∞. We must now discuss the critical behavior of the system: the 
balance between the conservation laws and dissipation is fundamental for the critical behavior of 
the system. 
So in our model we can define two control parameters, which are ℎ and 𝜀: they are parameters 
that we can fix from the external world and are responsible of the exchange of energy between 
the system and the external world. The order parameter instead is linked to a scalar quantity that 

must underline the symmetry of the system. So we can chose  𝜌𝑎 =
ℎ

𝜀
. The model is critical just in 

the double limit ℎ, 𝜀 → 0 and 𝜌𝑎 → 0. (We will see in fact that the susceptibility of the system goes 
to infinite). However the critical point is a point in the space of phase and we are able to notice 
different regimes according to the different values of the two parameters ℎ, 𝜀 as it is possible to 
notice in the figure below 
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Figure 5.13: phase diagram for the sandpile model (Vespignani et al., 1998) 
 
 

The model is supercritical when ℎ > 0 , 𝜀 > ℎ while it is subcritical when ℎ → 0 , 𝜀 > 0 .  
An image of the critical, subcritical and supercritical state is reported below 
 

 
 

 
 



 
239 

 

 
 
Figure 5.14: Critical, subcritical and supercritical regimes: 
In the three pictures above we represented the sandpile model like a domino and we reported the critical subcritical 
and supercritical state. 

 
This diagram (which is very similar to the diagram magnetic field-temperature) could be extended 
as well on the left by including  𝜀 < 0; however in this case we would have the birth of a trivial 
regions because we would have a sandpile in which a positive net amount of energy enters the 
system during the avalanche activity (negative dissipation). Furthermore another trivial region 
opens into the diagram and it is the region for which ℎ > 𝜀:  this region makes no sense because 
𝜌𝑎would be greater than 1. This means that the conservation rules play a crucial role: the two 
control parameter cannot be varied independently but they are linked because the global 
conservation law imposes that  𝜀 > ℎ.  
So let’s begin to study the first region, the subcritical line. 
 

5.3.2.1 The subcritical regime 
 
As it is possible to note from phase diagram, the subcritical regime corresponds to a straight line; 
this is also the field of the numerical simulation because ℎ → 0 and the only parameter we can 
vary is the dissipation rate 𝜀. Obviously the order parameter 𝜌𝑎 = 0. 
 So before analysing the behaviour of the system in the subcritical regime it’s important to study 
the propagation of a perturbation in the regime itself. 
For small perturbations in the stationary state, we must introduce the response function or 
generalized susceptibility function: 
 

𝜒ℎ,𝜀(x − x′; t − t′) 

 
which is a function depending on the time and on the space and that describes the variation of the 
order parameter into the system according to: 
 

𝑑𝜌𝑎 = 𝜒ℎ,𝜀(x − x′; t − t′)Δℎ 𝑑𝑑𝑥′𝑑𝑡′ 
 
Integrating in the space and in the time we have the total variation of active sites into the system 
because of the perturbation: 
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∆𝜌𝑎(𝑥, 𝑡) = ∬  𝜒ℎ,𝜀(x − x′; t − t′)Δℎ 𝑑𝑑𝑥′𝑑𝑡 

 
 
Let’s apply now a time dependent perturbation to the stationary state ℎ(𝑥, 𝑡) and Let’s suppose 
the system is homogeneous in space and time so that the averages on two points depend only on 
the time and space displacement. 

Let’s consider then an impulsive disturbance ∆ℎ(𝑥′, 𝑡′) = 𝛿(𝑡)𝛿𝑑(𝑥); from a physical viewpoint 
we are adding a sand grain on the top of the stationary average driving field. Inserting this 
perturbation into ∆𝜌𝑎, by the properties of the Dirac’s delta, we have 
 

∆𝜌𝑎(𝑥, 𝑡) = 𝜒ℎ,𝜀(𝑥, 𝑡) 
expression that will be useful later. 
The total susceptibility of the system can be computed by integrating in space and time the 
generalized susceptibility function: 
 

𝜒ℎ,𝜀 = ∫𝑑𝑡∫𝜒ℎ,𝜀(𝑥, 𝑡) 𝑑
𝑑𝑥 

 
From a physical viewpoint it defines the total response of the system to an external perturbation. 
Instead, the total number of active sites is obtained integrating in space and time the density of 
the active sites, which is obviously a function of time and space [1/𝑠𝑒𝑐 ∗ 𝑚^𝑑] 
 

𝑁𝑎 = ∫𝑑𝑡∫∆𝜌𝑎(𝑥, 𝑡) 𝑑
𝑑𝑥 = 𝜒ℎ,𝜀 

 
Now, If the external field is absent, i.e. ℎ → 0, the only active sites present into the system are due 
to the delta perturbation; so all the active sites are connected in time and space and so they form 
an avalanche whose average size is  
 

< 𝑠 >= 𝑁𝑎 
 
This last statement is stated by the following expression 
 

𝜒𝜀 ≡ lim
ℎ⟶0

𝜒ℎ,𝜀 = 𝑁𝑎 =< 𝑠 > 

Let’s  consider now a different kind of perturbation ∆ℎ(𝑥′, 𝑡′) = ∆ℎ for 𝑡′ < 𝑡 corresponding to a 
uniform driving in space and time. It is possible to show (Vespignani, Zapperi) that integrating for 
this kind of perturbation like we did for the Dirac’s delta 
 

∆𝜌𝑎 = ∆ℎ𝜒ℎ,𝜀 
 
So for an infinitesimal perturbation in the stationary state, 
 

𝜒ℎ,𝜀 = lim
∆ℎ⟶0

∆𝜌𝑎
∆ℎ

=
𝜕𝜌𝑎
𝜕ℎ

 

 
And again  
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𝑁𝑎 =< 𝑠 >= 𝜒𝜀 = lim
𝜕𝜌𝑎
𝜕ℎ

ℎ⟶0

 

 
following the same pattern applied before. 
We are now ready to study the behavior of the system in the subcritical line. If we already know 
the expression of 𝜌𝑎(ℎ) in the stationary regime, a simple derivative gives us 
 

𝜒𝜀 = 1/𝜀 
 
which goes to infinite for 𝜀 → 0: this means that the system is in a subcritical regime for any 𝜀 
different from 0 while for 𝜀 = 0 the susceptibility diverges and the response function becomes 
long ranged. 
So close to the  critical point the scaling behavior is characterized by the scaling law 𝜒𝜀~𝜀

−𝛾 with 
𝛾 = 1 and the correlation length diverges like 𝜉~𝜀−𝜐. 

Since the energy is transferred locally and isotropically, the net energy current is given by 𝑗~
𝜕𝜒

𝜕𝑟
. 

For local conservative models the energy current must satisfy on average the conservation law. 
 

∫𝑗𝑑𝜎 = 𝑐𝑜𝑠𝑡 

 
where 𝑑𝜎 is the 𝑑 − 1 dimensional surface element. This ensures that the energy that enters into 
the system in the stationary state is equal to the energy dissipated. For large 𝑟 we have the 
solution  
 

𝜒~𝑟2−𝑑 
 
However in the presence of boundary or intrinsic dissipation, the system acquires a finite 
correlation length: in fact from a physical viewpoint the correlation length must go to 0 when the 
system size is reached. Obviously this affects also the susceptibility function: how can we express 
this from a mathematical viewpoint? If we denote by  𝜉  always the value the correlation length 
would have in an infinite system at temperature  , then the cut off takes place when 𝑟 > 𝜉. As long 
as 𝜉 ≪ 𝑟 the value of  𝜒𝜀  should be the same as that for the infinite system. We can express this by 
the  general scaling form  
 

𝜒𝜀~𝑟
2−𝑑Γ(𝑟/𝜉) 

 
where Γ(𝑟/𝜖) is a cut off function that behaves like 
 
𝜒𝜀~𝑟

2−𝑑       for  𝜉 ≪ 𝑟 
 
𝜒𝜀~0        for  𝜉 ≫ 𝑟 
 
Obviously the way the function Γ(𝑟/𝜉) cuts the value of the susceptibility depends on its 
functional form. This is an example of finite size scaling. In general this phenomenon occurs for all 
the observables of our model if the dimension of the model itself is finite. (Generally, this behavior 
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of the observables is used in the numerical simulations in statistical physics in order to catch the 
exponents of the power laws that characterize the observables in an infinite system. This is done 
by a fit that involves systems of increasing size: the method is known as “finite size scaling 
method”).  
So from a physical viewpoint this cut off, appears always in the scaling relations because of the 
finite size of the system. But as we will see it will not make sense to take the thermodynamic limit 
by applying the finite size scaling method to compute the exponent in an infinite system; in fact in 
this way we would obtain as result of the fits an infinite system in which the boundaries can be 
scaled out the system because their dimension is negligible with respect the core of the system; 
but the boundary is the only form that the system has to dissipate energy. As result: “the 
boundary cannot be scaled out in the limit of large system as usually done in physical statics” 
 
 By this we can calculate the zero field susceptibility 
 

𝜒𝜀 = ∫𝜒𝜀(𝑟)𝑟
𝑑−1𝑑𝑟~𝜉2 

 
So by this we find the correlation exponent 𝜐 = 1/2. 
Now, in the conservative systems, when the size is increased, the effective dissipation rate 
depends on the size of the system. For this reason we can assume that  
 

𝜀~𝐿−𝜇 
 
In fact the dissipation rate is given by the probability to find a border site into the system. So the 
exponent 𝜇 links the dissipation rate with the finite size of the system providing a general picture 
of locally dissipative and open boundary model. In the conservative systems, the characteristic 
length of an avalanche must go like 𝜉~𝐿 to ensure dissipation through the boundaries. This 
implies that 𝜇𝜐 = 1 by which   𝜇 = 2. Furthermore, if we know that  
 

𝜒𝜀~ < 𝑠 > 
 
for sure 𝜒𝜀~𝐿

𝜇𝛾   and this gives us the scaling law  
 

< 𝑠 > ~𝐿2   𝑓𝑜𝑟 𝐿 → ∞ 
 
Resuming, we found some of the mean field exponents by using the conservative laws: 
 
 𝛾 = 1                       𝜇 = 2                         𝜐 = 1/2 
 
As regards the other exponents, we should try to compute the exponent of the avalanche size 
distribution: following Grassberger and Latorre, the size distribution is characterized by a finite 
size scaling form according to: 
 

𝑃(𝑠, 𝜀) = 𝑠−𝜏𝐺(𝑠/𝑠𝑐) 
where 𝑠𝑐~𝜀

−1/𝜎 is the cutoff of the avalanche size.  
In the same way 
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𝜌𝑎(𝑡)~𝑠
𝜂𝐹(𝑡/𝑡𝑐) 

 

where 𝑡𝑐 defines the characteristic time which scales like 𝑡𝑐~𝜀
−Δ (why they scale like epsilon)??? 

 
The mean field analysis brings us to 
 

𝜏 =
3

2
       𝜎 =

1

2
          𝜂 = 0       Δ = 1      

 
(Vespignani et al., 1998) 
 
Some considerations before finishing: it is important to remark that the numerical value of these 
exponents is the same as in other MF approaches, but their significance is different because they 
were derived with respect scaling fields. 
Furthermore the degree of universality is overstated like in every MF approach: in particular the 
exponents do not depend on the dimension d and these exponents in low dimensions are in 
general wrong. The Mean field theories work better in high dimensions. However this approach 
was important to understand the method used to derive the exponents in a mean field approach 
and in order to understand the basic characteristic of a SOC system, that we will analyse later in 
detail by a resume. 
 
 
 

5.3.2.2 The supercritical regime 
 

The region of the supercritical regime is characterized by a finite density of the active sites, i.e. a 
non zero order parameter. Close to the critical point ℎ ≪ 1    𝜀 ≪ 1  and ℎ < 𝜀 . 
The important information is that the external force varies not so slowly, so the concept of 
avalanche size could lose its own meaning: that’s why different quantum of energy could drop on 
the lattice when an avalanche is still occurring into the system and This could bring to overlap 
different avalanches caused by different external forces. However in this part of the phase space 
this situation is avoided if the condition  
 

ℎ ≪ 𝑡𝑐
−1~𝜑 

 
is satisfied; this condition states that the external force varies very slowly with respect the 
characteristic time of the system to reach equilibrium with avalanches.  
 We remind to the paper of Vespignani and Zapperi, How self-organized criticality works: A unified 
mean-field picture, to better have details as regards this region. 
 
 
 
What is important to notice in the end of these calculations is that if we exchange energy with the 
system by adding quantum energies on the top and we suppose that the fact that the system loses 
its energy from the boundaries is a way to dissipate energy, we have: 
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a) The system always reaches a stationary state; this is contained in the equations we 
analyzed. this can be subcritical or supercritical. The critical point is reached in the double 
limit ℎ → 0  𝜀 → 0  𝜌𝑎 → 0. In this critical point the avalanche size is infinite (from a 
physical viewpoint this is obvious because we are erasing the dissipation way of the system 
putting 𝜀 → 0   . The system is not able anymore to dissipate energy and an infinite 
avalanche characterizes all the system even if a single grain of energy is added ) and we 
approach this point by a so called second order phase transition. What is the characteristic 
of this kind of transition? They have the peculiar feature that in correspondence of a 
critical point, i.e. for a particular value of the control parameter, correlations become long-
ranged (from a mathematical viewpoint they follow a power law) and the fluctuations 
occur on all length scales: the first statement means that “everyone speak with everyone” 
while the second one means that there is no a characteristic size and in order to satisfy the 
fact that the fluctuations occur at all length scales, the size distribution of the fluctuations 
show a power law dependence with no trivial exponent. Moreover the order parameter, an 
observable whose presence distinguishes the two phases vanishes in one phase while it is 
different from zero in the other one. Indeed the susceptibility, the physical quantity that 
measures the answer of the order parameter to the external impulse and fluctuations (by 
the linear response theorem) diverges with system size. And this is exactly the same kind of 
phenomenon we observe in the sandpile, different from a first order phase transition in 
which the correlations are not at all scale length and there is a characteristic size into the 
system (An example of 1st order phase transition is given in the system water; if we try to 
move from water to gas before the critical point, the water boils and it changes phase: but 
in this case there is only a characteristic length and in fact the boils have always the same 
shape and the same measure. The situation is different when we cross the two phases 
from the liquid to the gas in the critical point: here the system is cloudy if we try to observe 
it and in fact all the characteristic sizes are present into the system itself; the transition is 
of the second order). 

b) The system is characterized by a finite size scaling: this is a consequence of the fact that the 
boundaries cannot be erased like it happens in statistical physical; here this happens 
because the dimension of the volume is big with respect the dimension of the boundary in 
the thermodynamic limit; so it is possible to not consider the boundaries; but in a SOC 
system the situation is different because the only way the system has to dissipate energy is 
by the boundaries; so they cannot be scaled out like in statistical physics in the 
thermodynamic limit because otherwise if we applied this approximation the system would 
not be able to dissipate! And the dissipation is fundamental to reach the critical state. 

c) The system is critical and self organized because it always reaches a sub/super critical 
state. We do not do the fine tuning of any parameter like it happens for example in the 
Ising model to observe the criticality but we give to the system the opportunity to 
exchange energy with the external world, by storing it and by dissipating it from the 
boundaries. Then the system organizes itself to reach one of three regions above 
described, depending on the rates of energy exchange. 
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5.4 Necessary and sufficient conditions for SOC 
 
The separation between the cause and the effect has been always problematic since the paper 
published by BTW in 1989. We will try to introduce now the necessary and sufficient conditions for 
these systems by using the paper by Watkins et al., 2016. 
 

5.4.1 Necessary conditions 
 
Some of the necessary conditions for SOC were listed before: 
 

1) Non trivial scaling (finite size scaling, no dependence on a control parameter): as we 
noticed before in the traditional critical phenomena the control parameter can be tuned till 
to observe the critical point: this happens for example for temperature that can be set at a 
given value from the external world till observing the change of phase. This is not the case 
of SOC as we already said before. Indeed in the traditional critical systems, the phenomena 
observed and the measurements taken can approximate the infinite system in the 
thermodynamic limit by increasing the size of the system as the control parameter is tuned 
closer and closer to the critical point. This is not the case of SOC systems in which it is not 
possible to take a thermodynamic limit that would erase the boundaries and so the 
capability of dissipation of the system, with the result that all the observables that display 
any form of scaling or that are expected to be divergent in the thermodynamic limit, will 
depend on the size of the system with a cut off function. 

2) Space temporal law correlations 
3) Apparent self tuning to the critical point (of a possibly identified, underlying second order 

phase transition): this happened in the sandpile model, where the system reached a 
sub/super critical state alone and the phase transition to the critical point always occurred 
with the features of a second order transition. 

 
 

5.4.2 Sufficient conditions 
 
The sufficient conditions are considered basically like the key ingredient to have SOC, in the 
sense that if a system satisfies these conditions, for sure can be considered like a SOC 
system. 
Resuming by the papers of BTW and all the works of 25 years of SOC, we have 
 
4) Non linear interaction: this is allowed by the thresholds into the system 
5) Avalanches (Intermittency that is expected in presence of thresholds + slowly driven 
external force) 
6) Separation of time scales (in order to “count and sustain” the avalanches) 
 
Together with the necessary conditions, we can state that “a SOC is slowly driven, 
avalanching system, with no linear interactions that display  non trivial power law 
correlations (cut off by the system size) as known from ordinary critical phenomena, but 
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with internal self organized rather than external tuning of a control parameter (to a non 
trivial value)”. Watkins et al., 2016. 
 
Now the sufficient conditions 4), 5), 6) are the basic conditions which are satisfied by SDIDT 
systems (slowly driven, interaction dominated thresholds), with intermittency implied by 
the slow drive. The SDIDT is sufficient for the occurrence of SOC: this was conjectured by 
Jensen (Jensen, 1998). Another class of model that maintains the characteristics about we 
talked first but the slowly driven, are the IDT:  these models, which are studied to these 
days, are in fact characterized by a finite drive. So now, the following Venn’s diagram is 
able to make us understand what is actually the situation to define a SOC system: 
 

 
Figure 5.15: relations among SOC, SDIDT and IDT systems (Watkins et al., 2016) 

 
The relation between IDT and SDIDT is obvious; SDIDT are always a subset of IDT: in fact 
they have the same features of IDT plus the slowly driving. The relation between SDIDT and 
SOC is not so clear: according to the definitions 4) 5) and 6) and the identification given by 
Jensen, the systems SDIDT should exhibit a SOC behaviour: this is what Jensen stated and 
this is indicated in the figures a) and b). But to say that all the SOC phenomena are 
restricted to SDIDT like in figure b) is a very strong affirmation. This affirmation was proved 
only in one direction, i.e. all the systems SDIDT are SOC; but we do not know if there is SOC 
outside SDIDT! So we do not know what is correct between a) and b). b) would be correct if 
the conditions 4) 5) 6) would not be too narrow. 
Indeed a study about the so called Forest Fire lack model (Pruessner and Jensen, 2002) 
could bring us to say that the conditions 4)-5)-6) are incomplete so only some SDIDT 
systems can show SOC! So maybe the figure c) could be the correct one where SOC is a 
subset of SDIDT.  
All these considerations bring us to say that we are basically in a work in progress and that 
actually when we have a particular kind of system we can talk about “hints of SOC”. In fact 
what we can state is only to understand if a system is SDIDT, but the only case in which the 
world of SOC coincides with the world of SDIDT is given in the figure b). 
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5.5 Are the FBM and the Central force model like SOC? 
 
We are now ready to answer the main question: is the central force model a SOC model? In many 
papers, (Milanese et al., 2017) it was stated that in the central force model applied to the porous 
media we could find hints of SOC. Let’s try to analyse the problem; as regards the sufficient 
conditions 4), 5), 6) we can assume they are fulfil satisfied in static; this could not be true in 
dynamic regarding the condition 6): so in dynamic, the Central Force Model does not respect the 
SDIDT conditions. Instead in static this is a SDIDT model at all. According to the picture b) that 
identifies SDIDT with SOC, we could state that the central force model is SOC; also the figure a) 
says to us the same because the central force model falls inside the SDIDT set, which is SOC. If the 
conditions 4) 5) 6) are incomplete instead, it could be possible that the central force model falls 
outside the SOC set even if it is a SDIDT model. So if we do not know exactly what picture is the 
correct one what we can say as told above, is “hints of SOC”. 
If we have a look to the necessary conditions instead what could we say? Obviously we know that 
if they are satisfied we are not sure the model is SOC (a condition can be necessary to have a 
phenomenon but no sufficient!) while if we know that they are not satisfied for sure the model is 
not SOC. So as regards the trivial scaling, we can state that our system has got a cut off as we can 
observe in the figure 
 

 
Figure 5.16: avalanches in the statistical central force model (Milanese et al., 2017) 

 
where the model was pulled in the four directions and cut off scales with system size. Clearly the 
exponent of the cut off and the exponent of the probability density function depends on the 
boundary conditions. 
 There are then space temporal power law correlations: it is possible to notice this for the manner 
in which the channel of the fracture grows into the system: it does not grow at pieces like result of 
a progressive damaging or breakdown of the trusses, but it seems that since the moment in which 
we reach the stationary state, the trusses “talk one another” giving more importance to the 
channel that is growing with respect other micro channel that could come out from the damaging 
of the trusses. This could lead to think of possible long ranged correlations in space and time into 
the system. 
 
 As regards the phase transition of the second order the situation is controversial: if we perform a 
strain constant experiment or a stress constant experiment we will always have an avalanche 
behaviour. Obviously it would be better to study the system in a strain constant experiment 
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because we would be able to see the plateau of the constitutive behaviour. The difference with 
respect the FBM is that when the channel of the fracture is born the process stops: we can have a 
bigger avalanche or some bigger avalanches in the end but the order parameter of the system 
(that measures the ratio of “alive” trusses) does not go to 0 like in a second order transition where 
in the first phase is different from 0 and in the second one equal to 0 or vice versa. 
The only quantity that goes to 0 is the connectivity that however is not an order parameter. 
So in this case it is difficult to talk about a second order transition because it is difficult to talk 
about a phase transition in general, i.e. about the complete change in phase between a first phase 
(no broken) to a second phase (broken), like happened in the dry FBM of Abraimov for stress 
controlled experiment and in the CFBM always in the stress controlled case that we analysed from 
a numerical viewpoint. 
So the third necessary condition is not satisfied and so the central force model is not expected to 
be SOC according to the picture above. 
Furthermore in the best of our hypothesis, even if the necessary conditions were satisfied a 
problem would arise as regards the sufficient conditions: in fact they are true till the system 
breaks; at this point in fact we have no more avalanche behaviour, and separation of time scales 
(that would coincide); the systems SOC exchange energy with the external world; the sandpile 
dissipates it from the boundary while the central force model does it “breaking or damaging” a 
truss. But it is this way of dissipating energy which introduces a fundamental difference between 
sandpile and central force model: in the first one the thresholds are some limits in energy that 
each site on the lattice can withstand; when this threshold is reached the site relaxes and an 
avalanche leaves from it in the pattern we described above. However the threshold and the 
capability of the site to store energy remains always the same; the way that the system has to 
dissipate energy is from the boundaries. Nothing breaks in the sandpile. In the central force model 
instead when a threshold is reached, a truss damages decreasing its Young modulus. Then the 
avalanche leaves from it because the boundary condition (in strain/stress controlled experiment) 
must be satisfied, but the system has already dissipated an amount of energy by the damaging and 
it has stored only the amount of energy it was able to. This is the difference: in an avalanche the 
sandpile does not necessary lose energy; the Central force model (CFM) yes; in an avalanche the 
sandpile maintains its characteristics while the CFM changes its state of damage; and as we know 
the damage is an irreversible process and after some steps (a bit or much) the system will break. 
Not only: before the total breaking, the channel of the fracture will be born and so the process will 
stop. SOC systems are supposed to be brought by an “attractor to the critical/stationary point and 
they remain there for all the life of the universe if they keep on exchanging energy with them” 
So this last consideration would distance the concept of SOC from the CFM. 
For the CFBM we have the same situation: in the case of a stress controlled experiment, we could 
think of the maximum reached stress like a spinodal point that separates metastable states from 
unstable states like in the dry FBM; but when we reach the this point the model fails and the 
process stops. 
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Conclusions 

and future 

works 

 

 

The present work showed an extension of a new technique, previously implemented by Milanese et al., in 

order to study the development and the nucleation of the fracture in a porous medium. 

The innovative idea of the technique consists in representing the concept of disorder into the medium by 

the introduction of thresholds randomly spread according to a probability density function in the structural 

part, made by trusses. 

As it was already discussed, the idea of using the concept of thresholds randomly spread into the system, 

was born by a way of studying the Random Fuse Model engaged by Stanley, Vespignani and Zapperi: the 

three physicists studied the “fracture” into this electrical model by considering the same algorithm built in 

the Fiber Bundle Model in order to reach the equilibrium.  

For this reason, the natural extension of the work performed by the three scientists embeds to the world of 

the structural mechanics. 

Basically, this PhD work developed in two different branches joining in the last part of chapter 4 when we 

talked about the constitutive behaviour of the truss lattice model that can be seen as the mean among all 

the possible realizations given by the disorder. The following picture clarifies the mental path which we 

developed: 
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The starting point of the job is the study of the algorithm used by Stanley, Zapperi and Vespignani for the 

RFM. The application of this algorithm to the structural mechanics created the Statistical Central Force 

Model. The study of this last model was divided in two parts:  

- from a theoretical viewpoint in Chapter 2 we addressed the study of the CFBM in an innovative 

viewpoint, by using the same approach by Pride and Touissaint for the DFBM. This new point of 

view allowed us to introduce the concept of entropy, internal energy, equivalent temperature and 

to study the CFBM during a strain constant experiment reproducing its constitutive behaviour to 

which we assigned a precise statistical meaning. This regards the right branch in the figure above. 

- from a numerical viewpoint instead, we concentrated on the study of the hydraulic fracture. 

Previous works were realized by Milanese et al, 2016. The main problem in the simulations in their 

paper regarded the fact that the simulation were performed in static. Indeed, the fracking, a 

complex phenomenon in which the soil is filled by a liquid of some kind, cannot be considered as 

static but it occurs in dynamics. This was the main objective we reached during our simulation in 

Chapter 4 by which we reproduced the same results, from a qualitative viewpoint, for pressure 

rises and drops observed in the experimental tests during the fracking. We used the adjective 

qualitative because the material we used in our simulation is not real; the code needs to be 

validated and the present job only shows the potentiality of this kind of technique. This was the 

topic in the left branch in the figure above. 

Statistical Cental 
Force Model 

2) CFBM 
thermodynamic 

study 

1) fracking 

3) Constitutive 
behaviour 

4) Hints of 
SOC 
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- The connection between the two branches is given by the achievement of a damage law to assign 

to our truss lattice for a dry medium by using the same constitutive behaviour we obtained for a 

bundle of fibers and applying it to a single fiber. The constitutive behaviour we got is assumed to 

be, by a statistical analysis, the mean value among all the possible realizations given by the disorder 

into the truss lattice. 

- In chapter 5 in the end, we realized a research in order to understand if the Statistical Central Force 

Model can be included into the SOC systems. The answer for the dynamic is NO, while for the static 

we it is fair to talk about “hints” of SOC, as already mentioned in Milanese et al. 

 

- Future works can be developed using the same technique 

 

 

1) for a partially saturated porous medium and to develop a model in order to take into account     

that the permeability changes during the fracture. In our model the medium was totally 

saturated and the permeability was fixed in the beginning of the simulation. These would be 

the first and next improvements to get inside the Statistical Central Force Model to close it to 

reality. 

2) It could be obvious to think about a 3D extension of the Statistical Central Force Model and to 

apply this extension to the static and the dynamic. It could be interesting to get the new 

statistical law of regarding the distribution of the avalanches. This should be different from the 

same distribution obtained for the system in 2D: as noticed in Statistical Physics, in fact, the 

exponents describing the observables change if the dimension is increased. 

3)  To extend the study of the Statistical Central Force Model in order to include inside another 

unknown into the system: by this, we could pass from a u-p system to a u-p-T system. 

Furthermore, a further complication to the problem could be introduced by considering water 

vapour into the system and the possibility that water changes its state: this could lead us to a 

triple couple problem among structure, liquid and air; in our model only the coupling between 

liquid and structure was analysed. By loading the system by a thermal load (a heat flux or a 

temperature gradient) it could be possible for example to simulate a particular kind of fracture 

very close to the explosion in concrete due to high temperatures, called spalling. 

4) A Further extension of the model could be represented by the use of 2D elements in the 

structural part instead of trusses. In fact trusses were used because it is very simple to count 

avalanches and furthermore a strong equivalence exists between a truss structure and a 2D 

element structure. This process should lead us to results closest to the reality even if a study 

regarding the way of breaking of the 2D elements should be performed before going any 

further. 

5) It would be interesting to investigate by the CFBM the mechanical behaviour of wood, which 

exhibits avalanche like behaviour. 

6) From a theoretical viewpoint it would be interesting to extend the study of the CFBM to the 

stress ensemble and to use the same path we covered for the strain ensemble in CFBM for the 

statistical central force model, where the boundary conditions should be represented by the 

“nodal force ensemble” or the “strain edge ensemble”. This study could make light regarding a 

possible phase transition into a 2D medium but, of course, it could be quite “painful” from an 

analytic viewpoint.  
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