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Abstract. We provide local and global controllability results for hyperbolic conservation laws
on a bounded domain, with a general (not necessarily convex) flux and a time dependent source
term acting as a control. The results are achieved for possibly critical states, both continuously
differentiable states and BV states. The proofs are based on a combination of the return method
and on the analysis of the Riccati equation for the space derivative of the solution.
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1. Introduction. We are concerned with the problem of controllability of a one
space-dimensional scalar conservation law on a bounded domain

\partial tu+ \partial xf(u) = 0 , t > 0, x \in [a, b] ,(1.1)

where u = u(t, x) is the state variable and the flux function f : I \mapsto \rightarrow \BbbR is a smooth
map defined on some open interval I \subseteq \BbbR . Most of the literature concerning the
controllability of hyperbolic partial differential equations analyzes the states \psi 

.
=

u(T, \cdot ) that can be reached at a fixed time T > 0, through the influence of boundary
controls acting at the endpoints \{ a, b\} , when an initial condition is given:

u(0, x) = u(x) , x \in [a, b] .(1.2)

In the case of conservation laws (1.1) with a strictly convex flux f , Ancona and Mar-
son [4, 5] and Adimurthi, Ghoshal, and Gowda [1] established a characterization of
the reachable states with boundary controls. A similar characterization of approxi-
mately reachable states for the Burgers equation was provided by Horsin [26]. From
these results it follows that, if we start with a general initial data u \in L\infty ([a, b]), the
profiles \psi that are attainable at a time T > 0 with boundary controls at x = a and
x = b are only those which satisfy suitable Oleinik-type inequalities, provided that

T \geq T (\psi )
.
= max

\Biggl\{ 
sup

x\in (a,b)

x - a

\lfloor f \prime \circ \psi (x)\rfloor +
, sup
x\in (a,b)

b - x

\lfloor f \prime \circ \psi (x)\rfloor  - 

\Biggr\} 
,(1.3)

where \lfloor a\rfloor  - 
.
= max\{  - a, 0\} and \lfloor a\rfloor +

.
= max\{ a, 0\} denote the negative and positive

parts, respectively, of a \in \BbbR .
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GLOBAL CONTROLLABILITY OF SCALAR CONSERVATION LAWS 4315

For conservation laws with general nonconvex flux, L\'eautaud [29] proved the
attainability in finite time of constant states, employing boundary controls, while An-
dreianov, Donadello, and Marson [8] derived sufficient conditions for the reachability
of (nonconstant) states in the case of a nonconvex flux with a single inflection point,
where one regards as controls the initial data. All these results show, in particular,
that conservation laws are not exactly controllable in finite time to critical states (with
vanishing characteristic speed).

Here, in the same spirit of Chapouly [12] and Perrollaz [35], we wish to investigate
how the effect of a control acting through a time dependent source term on the right-
hand side of (1.1), in combination with the boundary controls, allows us to establish
(optimal) local and global controllability results, achieve the reachability of a broader
class of states (including critical states), and realize the exact controllability to such
states in a shorter time than the one required when employing only boundary controls.
Namely, we shall investigate the exact controllability problem for a balance law,

\partial tu+ \partial xf(u) = h(t) , t > 0, x \in [a, b] ,(1.4)

where we regard as controls both the boundary data acting at the endpoints \{ a, b\} 
of the domain and the source term h depending only on time. We recall that there
are two possible settings within which to study this problem. The first possibility
is to consider classical solutions (i.e., Lipschitz continuous functions that satisfy the
equation almost everywhere), assuming that the source and the boundary controls are
regular functions as well. The other possibility is to consider weak (distributional)
solutions which satisfy an entropy admissibility criterion, which are natural in this
framework since in general classical solutions of (1.1) develop discontinuities in finite
time because of the nonlinearity of the equation.

In the first setting Chapouly [12] showed that, when f(u) = u2/2, for every
T > 0 one can drive in time T any preassigned continuously differentiable initial data
u to any continuously differentiable target state \psi with a classical solution of (1.4),
using suitable source h(t) and boundary controls at x = a, x = b. In the same
setting, for quasilinear hyperbolic systems, local [30, 31, 32, 39, 40] and global (in
the linearly degenerate case) [38] controllability results for C1 states were established
employing boundary and distributed controls on the source that depend on both (t, x)
variables. In the second setting and for general strictly convex flux f , Perrollaz [35]
provided sufficient conditions for the reachability (in arbitrarly small time) of a state
\psi \in BV ([a, b]) with boundary and source controls, through entropy weak solutions
of (1.4). In a related result Corghi and Marson [14] established a characterization of
the attainable set for scalar strictly convex balance laws evolving on the whole real
line, with the source term (depending on both space and time) regarded as a control.

In this paper we will first establish the local and global controllability of continu-
ously differentiable states for a conservation law with a general smooth flux, employing
time dependent source and boundary controls. Namely, when the flux has a bounded
derivative we will show that, for a preassigned possibly large time, one can steer the
system between any two smooth states provided that their C1-norm is bounded by a
constant depending on the first and second derivatives of the flux.

Theorem 1.1 (see Theorem 2.3). Let f : I \rightarrow \BbbR be a twice continuously differen-
tiable flux on an open interval I \subseteq \BbbR , with bounded C1-norm and C2-norm. Assume
that for two subintervals I1, I2 \subseteq I one has

[| f | ]Ii
.
= sup

\{ k | Ii+k\subseteq I\} 
inf
u\in Ii

\bigm| \bigm| \bigm| \bigm| f(u+ k) - f(u)

k

\bigm| \bigm| \bigm| \bigm| > 0, i = 1, 2 .
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4316 FABIO ANCONA AND KHAI T. NGUYEN

Then, for any

T > (b - a)

\biggl( 
1

[| f | ]I1
+

1

[| f | ]I2

\biggr) 
and for every u, \psi \in C1([a, b]), with Im(u) \subsetneq I1, Im(\psi ) \subsetneq I2, such that

\| \=u\prime \| C0([a,b]) <
[| f | ]I1

(b - a) \cdot \| f \prime \prime \| C0(I)
, | \psi \prime \| C0([a,b]) <

[| f | ]I2
(b - a) \cdot \| f \prime \prime \| C0(I)

,

the Cauchy problem (1.4), (1.2) admits a classical solution u \in C1([0, T ]\times [a, b]) that
satisfies the terminal condition

u(T, x) = \psi (x) , x \in [a, b] ,(1.5)

for some h \in C0([0, T ]).

Instead, in the case of fluxes with unbounded derivatives considered in Theo-
rem 2.5, we will obtain a global controllability result, i.e., we will show that, for any
fixed time T > 0 and for every smooth initial state u and target state \psi , one can
choose boundary and source controls that drive u to \psi at time T . Next, in the case
of convex (not necessarily strictly convex) conservation laws, Theorem 2.7 will pro-
vide a priori bounds on the total variation of the source control and of the solution
connecting an initial data u to a terminal state \psi , in terms of the positive variation
of \psi and of the negative variation of u. Finally, relying on such BV bounds, we will
show in Theorem 2.11 and in Theorem 2.12 the reachability in finite time of states
\psi \in BV ([a, b]) that satisfy one-sided Lipschitz estimates similar to those stated in [35].
In particular, as a consequence of Theorem 2.12, we obtain the following.

Theorem 1.2. Let f : \BbbR \rightarrow \BbbR be a convex and twice continuously differentiable
map satisfying either

lim
u\rightarrow \infty 

| f \prime (u)| = lim
u\rightarrow \infty 

| f \prime (u)| 
sup
v\leq u

| f \prime \prime (v)| 
= +\infty 

or

lim
u\rightarrow  - \infty 

| f \prime (u)| = lim
u\rightarrow  - \infty 

| f \prime (u)| 
sup
v\geq u

| f \prime \prime (v)| 
= +\infty .

Then, for every T > 0 and u, \psi \in BV ([a, b]) with

\=u(x+z) - \=u(x) \geq  - Cz and \psi (x+z) - \psi (x) \leq Cz for all x, x+z \in [a, b],

for some constant C > 0, there exists h \in BV ([0, T ]) so that the Cauchy problem (1.4),
(1.2) admits an entropy weak solution on [0, T ]\times [a, b]) that satisfies (1.5).

The advantage of this construction is that we obtain the source control and the
corresponding solution as limits of regular solutions which are easier to handle than
the piecewise constant front tracking solutions employed in [35]. In fact, we rely on
the approach developed in the present paper to address similar problems of global
controllability for diagonal systems of conservation laws in the forthcoming paper [6].

We stress the fact that the main feature which distinguishes the results of the
present paper from other controllability results available in the literature is their
applicability to conservation laws with
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\bullet nonconvex flux, for which very limited, partial results have been obtained so
far, due to the quite complex structure of solutions (see [8, 29]);

\bullet flux defined on semilines or bounded intervals (that naturally arise in most
applications), for which, as far as we know, no result has been previously
established.

The examples of applications discussed in section 5 involve conservation laws that
share both of these properties.

Notice that, while the choice of the additional source control is certainly needed
to achieve controllability of a larger class of states including the critical states (which
cannot be reached employing only boundary control; see Remark 2.4), it would be
interesting to investigate whether such states can still be reached with the use of only
a pair of controls acting through the source and a single boundary. Another promising
research direction which seems natural to investigate is to analyze the controllability
of viscous conservation laws in the same setting of the present paper, as the viscosity
parameter vanishes.

Control problems for conservation laws arise in many different applications, in-
cluding vehicular traffic models [2, 3, 13, 17], oil reservoir simulation and sedimen-
tation models [8], supply chain [25, 28], and gas dynamics [22]. In practice a time
dependent source control can be viewed as a control parameter acting on the flux
function of the conservation law letting vary its flux capacity. We refer to [35] for
a discussion of various models where source controls naturally appear to govern the
dynamics of the corresponding balance law.

Since we are assuming to have full control on both endpoints \{ a, b\} of the do-
main, and because boundary conditions for nonlinear hyperbolic equations are quite
involved (e.g., see [9, 37]), it will be simpler to reformulate the controllability problem
in an undetermined form (where the boundary data are not explicitly prescribed).
Therefore, given an initial state u and a terminal state \psi , we will rephrase the prob-
lem of steering (1.1) from u to \psi via boundary and source controls into the equivalent
one of determining a time dependent source h = h(t) and a solution of (1.4) that sat-
isfies (1.2) together with the terminal condition (1.5). The corresponding boundary
controls can be recovered afterwards by taking the traces of u at x = a and x = b.
Because of the time reversibility of isentropic smooth solutions, we will also reduce the
problem of exact controllability of continuously differentiable states to the problem of
null controllability with C1 initial states.

The general strategy adopted in section 3 to establish the main results of the
paper is basically an application of the so-called return method introduced by Coron
(see [15]) in combination with the analysis of the Riccati equation governing the
evolution of the space derivative of the solutions. In fact, exploiting the a priori
bounds on the solutions of the Riccati equation, we construct a source control which
steers in a minimal time the initial data u to some constant state, say w1, that can be
quite far from the initial and terminal states u, \psi . Similarly, one can produce a source
control that steers in minimal time some constant states, say w2 (far away from u,
\psi ), to the terminal state \psi . Then, it's straightforward to see that we can connect
w1 and w2 in an arbitarly small time \tau , taking h so that

\int \tau 
0
h(t)dt = w2  - w1. In

the case of convex flux f , the explicit construction of the source control allows us to
provide a priori estimates on the control and on the solution of (1.4) in terms of the
L\infty -norm of u, \psi , of the negative variation of u, and of the positive variation of \psi .
In turn, such a priori bounds are crucial to establish in section 4 the corresponding
controllability results in the BV setting. Some exemplifying applications for traffic
flow and sedimentation models are illustrated in section 5.
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4318 FABIO ANCONA AND KHAI T. NGUYEN

2. Statement of main results. Before stating the main results, we recall the
definition of entropy admissible weak solutions. An entropy/entropy flux pair for
(1.4) is a couple of continuously differentiable maps (\eta , q) : I \rightarrow \BbbR that satisfy D\eta (u) \cdot 
Df(u) = Dq(u) for all u \in I. Observe that, in particular, (\eta , q) = (\pm Id,\pm f(u))
provide two entropy/entropy flux pairs. Then we shall adopt the following definition.

Definition 2.1. A function u : [0, T ] \times [a, b] \rightarrow I is called an entropic weak
solution of (1.4), (1.2) on [0, T ]\times [a, b] if it is a continuous function from [0, T ] into
L1([a, b]; I), which assumes almost everywhere the initial data (1.2), and that is an
entropy admissible distributional solution of (1.4) on (0, T )\times (a, b), i.e., such that for
any entropy/entropy flux pair (\eta , q), with \eta convex, there holds\int T

0

\int b

a

\Bigl\{ 
\eta (u(t, x))\partial t\varphi (t, x) + q(u(t, x))\partial x\varphi (t, x) + \eta \prime (u(t, x))h(t) \cdot \varphi (t, x)

\Bigr\} 
dx dt \geq 0

for all test functions \varphi \in C1
c , \varphi \geq 0, with compact support in ]0, T [\times ]a, b[.

Our first results concern the global controllability of continuously differentiable
states. Throughout the paper, for any continuously differentiable map \varphi : J \rightarrow \BbbR ,
defined on some interval J \subset \BbbR , we shall adopt the notation

\| \varphi \| C(J)
.
= sup\{ | \varphi (x)| : x \in J\} .(2.1)

Moreover, to estimate the maximal speed of the characteristics with which can travel
an initial data taking values in a given set J \prime \subseteq J , we introduce the quantities

[| \varphi | ]J\prime 
.
= sup

\{ k | J\prime +k\subseteq J\} 
inf
u\in J\prime 

\bigm| \bigm| \Delta \varphi (u; k)\bigm| \bigm| (2.2)

with

\Delta \varphi (u; k)
.
=
\varphi (u+ k) - \varphi (u)

k
=

\int k

0

\varphi \prime (u+ v) dv

k
,

and, for every \varepsilon > 0,

arg sup[| \varphi | ]J\prime ,\varepsilon 
.
=

\left\{                   

inf
\Bigl\{ 
k \geq 0 | J \prime + k \subseteq J,

\bigm| \bigm| \Delta \varphi (u; k)\bigm| \bigm| > [| \varphi | ]J\prime  - \varepsilon for all u \in J \prime 
\Bigr\} 

if [| \varphi | ]J\prime = sup
\{ k\geq 0 | J\prime +k\subseteq J\} 

infu\in J\prime 
\bigm| \bigm| \Delta \varphi (u; k)\bigm| \bigm| ,

sup
\Bigl\{ 
k \leq 0| J \prime + k \subseteq J,

\bigm| \bigm| \Delta \varphi (u; k)\bigm| \bigm| > [| \varphi | ]J\prime  - \varepsilon for all u \in J \prime 
\Bigr\} 

if [| \varphi | ]J\prime = sup
\{ k\leq 0| J\prime +k\subseteq J\} 

infu\in J\prime 
\bigm| \bigm| \Delta \varphi (u; k)\bigm| \bigm| .

(2.3)

We will also use the notation Tot.Var.\{ \varphi ; J \prime \} for the total variation of \varphi \in BV (J) on
an interval J \prime \subseteq J (e.g., see [21]).

We make the following standing assumptions on the flux function f :
(H1) f : I = (i - , i+) \rightarrow \BbbR is a twice continuously differentiable map;
(H2) one of the following three conditions holds:

(i) limu\rightarrow i\pm | f \prime (u)| < +\infty and limu\rightarrow i\pm | f \prime \prime (u)| < +\infty ;

(ii) i+ = +\infty , limu\rightarrow +\infty | f \prime (u)| = +\infty , and limu\rightarrow +\infty 
| f \prime (u)| 

supz\in (i - , u)
| f \prime \prime (z)| =

+\infty ;

D
ow

nl
oa

de
d 

05
/1

9/
22

 to
 1

47
.1

62
.1

10
.1

00
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL CONTROLLABILITY OF SCALAR CONSERVATION LAWS 4319

(iii) i - =  - \infty , limu\rightarrow  - \infty | f \prime (u)| = +\infty , and limu\rightarrow  - \infty 
| f \prime (u)| 

supz\in (u, i+)| f \prime \prime (z)| =

+\infty .

Remark 2.2. Any function with a polynomial growth satisfies conditions (ii) and
(iii). Notice that if the flux f satisties condition (ii) of (H2), then it follows that f
satisfies also condition

(ii)\prime i+ = +\infty , lim
u\rightarrow +\infty 

| f \prime (u)| = lim
u\rightarrow +\infty 

\bigm| \bigm| \bigm| \bigm| f \prime (u)f \prime \prime (u)

\bigm| \bigm| \bigm| \bigm| = +\infty .

Of course, condition (iii) of (H2) implies a similar condition on f . On the other hand,
condition (ii) is stronger that condition (ii)\prime since (ii) prevents the possibility of too
many oscillations in the second derivative of f . In fact there exist functions f that
satisfy (ii)\prime but which do not satisfy (ii). To produce a function of this type, consider,
for example, any sequence of twice continuously differentiable maps gn : [0, 2n2] \rightarrow 
[0,\infty ), n \geq 1, such that\left\{       

gn(0) = g\prime n(0) = g\prime n(2n
2) = 0, gn(n

2) = n, gn(2n
2) = 1,

g\prime n(n
2) =

1

n
,

\bigm| \bigm| g\prime n(u)\bigm| \bigm| \leq 2

n
for all u \in [0, 2n2].

Set a0 = 0, an =
\sum n
k=1 2k

2 for all n \geq 1, and define the continuously differentiable
map

g(u) = n+ gn(u - an - 1) if u \in [an - 1, an[ , n \geq 2 .

Then, the function

f(u) =

\int u

0

eg(s)ds, u \in [0,\infty ),

is twice continuously differentiable and satisfies

lim
u\rightarrow \infty 

f \prime (u) = lim
u\rightarrow \infty 

eg(u) = +\infty ,

lim
u\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| f \prime (u)f \prime \prime (u)

\bigm| \bigm| \bigm| \bigm| = lim
u\rightarrow \infty 

1

| g\prime (u)| 
\geq lim

n\rightarrow \infty 

1

sup
u\in [0,n2]

| g\prime n(u)| 
= +\infty .

However, the function f does not satisfy (ii). Indeed, for every n \geq 2, we compute

| f \prime (an)| 
supz\in [0,an) | f \prime \prime (z)| 

\leq | f \prime (an)| 
| f \prime \prime (an - 1 + n2)| 

=
e(g(an) - g(an - 1+n

2))

| g\prime (an - 1 + n2)| 

=
e((n+1+gn(0)) - (n+gn(n

2)))

| g\prime n(n2)| 
= ne(1 - n),

and this implies

lim sup
n\rightarrow \infty 

| f \prime (an)| 
supz\in [0,an) | f \prime \prime (z)| 

= 0,

which in turn is in contrast with

lim
u\rightarrow +\infty 

| f \prime (u)| 
sup

z\in [0, u)

| f \prime \prime (z)| 
= +\infty ,

since an \rightarrow +\infty .
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4320 FABIO ANCONA AND KHAI T. NGUYEN

Throughout the paper we fix the endpoint a < b of the bounded interval where
the space variable takes values.

Theorem 2.3. Let f be a flux satisfying the assumptions (H1), (H2)(i), and as-
sume that [| f | ]I\prime 1 > 0, [| f | ]I\prime 2 > 0 for intervals I \prime 1, I

\prime 
2 \subseteq I. Then, for every u, \psi \in 

C1([a, b]) with Im(u) \subsetneq I \prime 1 and Im(\psi ) \subsetneq I \prime 2 such that

\| u\prime \| C0([a,b]) <
[| f | ]I\prime 1

(b - a) \cdot \| f \prime \prime \| C0(I)
, \| \psi \prime \| C0([a,b]) <

[| f | ]I\prime 2
(b - a) \cdot \| f \prime \prime \| C0(I)

,(2.4)

and for any

T > T \ast := T \ast 
1 + T \ast 

2 with T \ast 
1
.
=

(b - a)

[| f | ]I\prime 1
, T \ast 

2
.
=

(b - a)

[| f | ]I\prime 2
,(2.5)

there exists h \in C0([0, T ]) so that the Cauchy problem (1.4), (1.2) admits a classical
solution u \in C1([0, T ]\times [a, b]) that satisfies (1.5).

Remark 2.4. Notice that T \ast 
1 is the controllability time needed to steer the initial

data \=u to 0 while T \ast 
2 is the controllability time needed to steer 0 to the final state

\psi . The controllability time T \ast in (2.5) is in general much smaller than the boundary
controllability time T in (1.3). In particular, we observe that T \ast 

2 \approx 1
supu\in I | f \prime (u)| ,

whereas T (\psi ) \approx 1
infu\in Im(\psi ) | f \prime (u)| . Therefore, whenever the target state \psi is close to a

critical state, i.e., infu\in Im(\psi ) | f \prime (u)| \approx 0, we have T (\psi ) \approx 1
infu\in Im(\psi ) | f \prime (u)| = +\infty , while

this is not the case for T \ast . For example, assume that there exists uc \in Im(\psi ) \subsetneq I \prime 2 =
(i\prime , i\prime \prime ) with f \prime (uc) = 0. Then, clearly one cannot reach \psi at any time T > 0, starting
from any constant state different from uc and employing only boundary controls, since
T (\psi ) = +\infty . On the other hand, it is sufficient to find k such that I \prime 2 + k \subset I, with

infu\in I\prime 2
\bigm| \bigm| f(u+k) - f(u)

k

\bigm| \bigm| > 0, to deduce that [| f ]| I\prime 2 > 0 and hence T \ast 
2 < +\infty . Thus, in

this case, Theorem 2.3 guarantees the reachability of \psi at any time T > T \ast , starting
from an initial data u, with Im(u) \subsetneq I \prime 1, provided that they satisfy (2.4) and that also
[| f ]| I\prime 1 > 0.

Theorem 2.5. Let f be a flux satisfying the assumptions (H1) and (H2)(ii) or
(H2)(iii). Then, for every T > 0 and u, \psi \in C1([a, b]), there exists h \in C0([0, T ]) so
that the Cauchy problem (1.4), (1.2) admits a classical solution u \in C1([0, T ]\times [a, b])
that satisfies (1.5).

Remark 2.6. Clearly the flux f(u) = u2

2 satisifies the assumptions (H1) and
(H2)(ii). Thus, as a particular case, we recover from Theorem 2.5 the global con-
trollability result established in [12] for the Burgers equation (by quite a different
proof). We observe that we achieve the global controllability stated in Theorem 2.5
whenever the derivative of the flux is unbounded and satisfies the assumption (H2)(ii)
or (H2)(iii) because in these cases, for any fixed time T > 0, one can use the source
control h to bend the characteristics of (1.4) with an arbitrary large slope. Thanks
to this property, any smooth initial data u and terminal state \psi can travel out of the
domain (a, b) and exit from the boundaries x = a, x = b in a time smaller than T ,
keeping bounded the derivative of the solution. Instead, in the case of a flux having
a bounded derivative satisfying the assumption (H2)(i), we obtain only the local con-
trollability result given in Theorem 2.3 since the characteristics need at least a time

T > 2(b - a)
\| f \prime \| C0(I)

to cross the interval (a, b), no matter which source control h we choose.

In the particular case where f is affine, one has [| f | ]J = \| f \prime \| C0(I) for any J \subseteq I, and
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thus we find that the controllability time in (2.5) is T \ast = 2(b - a)
\| f \prime \| C0(I)

. But for nonaffine

fluxes f , in general we have T \ast > 2(b - a)
\| f \prime \| C0(I)

. In fact, by the proof of Proposition 3.1

it follows that T \ast is almost optimal as time needed to steer the initial state u to the
terminal state \psi . Similarly, the upper bounds (2.4) on the C1-norm of u, \psi are almost
optimal to guarantee that one can drive u to \psi with a smooth solution.

Theorem 2.7. Let f be a convex map satisfying the assumptions (H1), (H2)(i),
and assume that [| f | ]I\prime 1 > 0, [| f | ]I\prime 2 > 0 for intervals I \prime 1, I

\prime 
2 \subseteq I. Then, given any \rho > 0

and T > T \ast with T \ast \geq 0 as in (2.5), there exists C1 > 0 depending on b  - a, T, T \ast ,
arg sup[| f | ]I\prime i, c1 , i = 1, 2 (c1 being a constant depending on \rho , T  - T \ast ), so that the

following hold. For every u, \psi \in C1([a, b]) with Im(u) \subsetneq I \prime 1 and Im(\psi ) \subsetneq I \prime 2 such that

sup
x\in [a,b]

\lfloor u\prime (x)\rfloor  - \leq 
[| f | ]I\prime 1

(b - a) \cdot \| f \prime \prime \| C0(I)
 - \rho , sup

x\in [a,b]

\lfloor \psi \prime (x)\rfloor + \leq 
[| f | ]I\prime 2

(b - a) \cdot \| f \prime \prime \| C0(I)
 - \rho ,

(2.6)

there exists h \in C0([0, T ]), with

\| h\| C0([0,T ]) +Tot.Var.\{ h; [0, T ]\} \leq C1 \cdot 
\Bigl( 
1 + \| u\| C0([a,b]) + \| \psi \| C0([a,b])

\Bigr) 
,(2.7)

so that the Cauchy problem (1.4), (1.2) admits a classical solution u \in C1([0, T ]\times [a, b])
that satisfies (1.5) and

\| u(t, \cdot )\| C0([a,b]) +Tot.Var.\{ u(t, \cdot ); [a, b]\} (2.8)

\leq C1 \cdot 

\Biggl( 
\| u\| C0([a,b]) + \| \psi \| C0([a,b]) + sup

x\in [a,b]

\lfloor u\prime (x)\rfloor  - + sup
x\in [a,b]

\lfloor \psi \prime (x)\rfloor +

\Biggr) 
for all t \in (0, T ).

Remark 2.8. In the case f is a convex map satisfying the assumptions (H1),
(H2)(i), i+ = +\infty , lim\rho \rightarrow 0 arg sup[| f | ]I\prime ,\rho = +\infty (or i - =  - \infty , lim\rho \rightarrow 0 arg sup[| f | ]I\prime ,\rho =
 - \infty ), the constants C1, c1 > 0 provided by Theorem 2.7 have the following property:
If either T \rightarrow T \ast or \rho \rightarrow 0, then c1 \rightarrow 0 and C1 \rightarrow +\infty .

Remark 2.9. If f is a concave map satisfying the assumptions (H1), (H2)(i) and
[| f | ]I\prime 1 > 0, [| f | ]I\prime 2 > 0 for I \prime 1, I

\prime 
2 \subseteq I, then the same conclusions of Theorem 2.7 hold,

replacing \lfloor u\prime (x)\rfloor  - with \lfloor u\prime (x)\rfloor + and \lfloor \psi \prime (x)\rfloor + with \lfloor \psi \prime (x)\rfloor  - in the inequalities (2.6),
(2.8).

Remark 2.10. If f : I = (i - ,+\infty ) \rightarrow \BbbR is a map satisfying the assumptions (H1)
and (H2)(ii), and I \prime 1, I

\prime 
2 \subset I are bounded intervals, then setting

[| f | ]I\prime , u
.
= sup

\{ k | I\prime +k\subseteq (i - , u)\} 
inf
v\in I\prime 

\bigm| \bigm| \Delta f(v; k)\bigm| \bigm| ,(2.9)

one finds

lim
u\rightarrow +\infty 

[| f | ]I\prime , u
| f \prime (u)| 

= 1 .(2.10)

Hence, taking the limit as u \rightarrow \infty in (2.4), (2.5), (2.6) with [| f | ]I\prime i, u in place of
[| f | ]I\prime i and \| f \prime \prime \| C0((i - , u)) in place of \| f \prime \prime \| C0(I), the controllability time T \ast in (2.5)
becomes zero and the upper bounds in (2.4), (2.6) become +\infty . Therefore, at least
formally, one can deduce the conclusions of Theorem 2.5 from Theorem 2.3. Similar
formal deductions can be carried out in the case f satisfies the assumptions (H1) and
(H2)(iii).

D
ow

nl
oa

de
d 

05
/1

9/
22

 to
 1

47
.1

62
.1

10
.1

00
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4322 FABIO ANCONA AND KHAI T. NGUYEN

Relying on Theorem 2.7 we then establish a global controllability result for BV
states that satisfy one-sided Lipschitz inequalities expressed in terms of Dini deriva-
tives. We recall that

D - \omega (x) = lim inf
h\rightarrow 0

\omega (x+ h) - \omega (x)

h
, D+\omega (x) = lim sup

h\rightarrow 0

\omega (x+ h) - \omega (x)

h
(2.11)

denote, respectively, the lower and the upper Dini derivative of a function \omega at x.

Theorem 2.11. Under the same assumptions of Theorem 2.7, given any \rho > 0
and T > T \ast with T \ast \geq 0 as in (2.5), there exists C2 > 0 depending on b  - a, T, T \ast ,
arg sup[| f | ]I\prime i,c2 , i = 1, 2 (c2 being a constant depending on \rho , T  - T \ast ), so that the
following hold. For every u, \psi \in BV ([a, b]) with Im(u) \subsetneq I \prime 1 and Im(\psi ) \subsetneq I \prime 2 such that\left\{   d

 - .
= supx\in [a,b] \lfloor D - u(x)\rfloor  - <

[| f | ]I\prime 1
(b - a)\cdot \| f \prime \prime \| C0(I)

 - \rho ,

d+
.
= supx\in [a,b] \lfloor D+\psi (x)\rfloor + <

[| f | ]I\prime 2
(b - a)\cdot \| f \prime \prime \| C0(I)

 - \rho ,
(2.12)

there exists h \in BV ([0, T ]), with

\| h\| \bfL \infty ([0,T ]) +Tot.Var.\{ h; [0, T ]\} \leq C2 \cdot 
\Bigl( 
1 + \| u\| \bfL \infty ([a,b]) + \| \psi \| \bfL \infty ([a,b])

\Bigr) 
,(2.13)

so that the Cauchy problem (1.4), (1.2) admits an entropy weak solution on [0, T ] \times 
[a, b]) that satisfies (1.5) and

\| u(t, \cdot )\| \bfL \infty ([a,b]) +\mathrm{T}\mathrm{o}\mathrm{t}.\mathrm{V}\mathrm{a}\mathrm{r}.\{ u(t, \cdot ); [a, b]\} \leq C2 \cdot 
\Bigl( 
\| u\| \bfL \infty ([a,b]) + \| \psi \| \bfL \infty ([a,b]) + d - + d+

\Bigr) (2.14)

for all t \in (0, T )

Theorem 2.12. Let f be a convex map satisfying the assumptions (H1) and
(H2)(ii) or (H2)(iii). Then, for every T > 0 and u, \psi \in BV ([a, b]) with

d - 
.
= sup
x\in [a,b]

\bigl\lfloor 
D - u(x)

\bigr\rfloor 
 - < +\infty and d+

.
= sup
x\in [a,b]

\bigl\lfloor 
D+\psi (x)

\bigr\rfloor 
+
< +\infty ,(2.15)

there exists h \in BV ([0, T ]) so that the Cauchy problem (1.4), (1.2) admits an entropy
weak solution on [0, T ]\times [a, b]) that satisfies (1.5).

Remark 2.13. By the proofs of Theorem 2.11 it follows that, in its setting, we
obtain an approximate controllability result for classical solutions. Namely, if u, \psi 
are BV states that satisfy conditions (2.12), then for any T > T \ast and for every fixed
\varepsilon > 0, there exist h \in C0([0, T ]) and a classical solution u \in C1([0, T ]\times [a, b]) of (1.4)
that satisfies \bigm\| \bigm\| u(0, \cdot ) - u

\bigm\| \bigm\| 
\bfL \bfone ([a,b])

< \varepsilon ,
\bigm\| \bigm\| u(T, \cdot ) - \psi 

\bigm\| \bigm\| 
\bfL \bfone ([a,b])

< \varepsilon .(2.16)

On the other hand, the same type of approximate controllability result holds also in
the setting of Theorem 1.2. In fact, in this case we can approximate any pair of initial
and terminal data u, \psi \in BV ([a, b]) with u\varepsilon , \psi \varepsilon \in C1([a, b]) so that \| u  - u\varepsilon \| \bfL \bfone <
\varepsilon , \| \psi  - \psi \varepsilon \| \bfL \bfone < \varepsilon . Then, for any T > 0 and for every fixed \varepsilon > 0, applying
Theorem 2.5 we deduce the existence of h \in C0([0, T ]) and of a classical solution
u \in C1([0, T ]\times [a, b]) of (1.4) that satisfies (2.16).
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Remark 2.14. If f is a concave map satisfying the assumptions (H1), (H2)(i) and
[| f | ]I\prime > 0 for I \prime \subseteq I, or (H1) and (H2)(ii), or (H1) and (H2)(iii), then the same
conclusions of Theorem 2.11 and of Theorem 1.2 hold, replacing \lfloor D - u(x)\rfloor  - with
\lfloor D+u(x)\rfloor + and \lfloor D+\psi (x)\rfloor + with \lfloor D - \psi (x)\rfloor  - in the inequalities (2.6), (2.8).

Remark 2.15. Theorem 1.2 shows that, for conservation laws with convex or con-
cave fluxes satisfying the assumptions (H1) and (H2)(ii) or (H2)(iii), by choosing a
suitable source term h in (1.4) we can steer, in any arbitrarly small time T > 0, every
initial BV state u which does not admit shock discontinuities to every BV target state
\psi which does not admit discontinuities generating a rarefaction wave. This result is
included in the ones established in [35], but here we obtain the solution u as limit
of smooth solutions, which are easier to handle both for numeric schemes and for
treating similar problems in the case of diagonal systems of conservation laws.

3. Global controllability of \bfitC \bfone states.

3.1. Reduction to null controllability. Since classical solutions of (1.4) are
time reversible, we can recover the global controllability of C1 states provided by
Theorems 2.3, 2.5, and 2.7 from the null controllability of (1.4). Thus, it will be
sufficient to prove the following.

Proposition 3.1. In the same setting and with the same assumptions of Theo-
rem 2.3, for any T > T \ast 

1 with T \ast 
1 \geq 0 as in (2.5), and for every u \in C1([a, b]) with

Im(u) \subsetneq I \prime 1, and satisfying

\| u\prime \| C0([a,b]) <
[| f | ]I\prime 1

(b - a) \cdot \| f \prime \prime \| C0(I)
,(3.1)

there exists h \in C0([0, T ]) vanishing at t = 0, T so that the Cauchy problem (1.4),
(1.2) admits a classical solution u \in C1([0, T ]\times [a, b]) that satisfies

u(T, x) = 0, x \in [a, b] .(3.2)

Proposition 3.2. In the same setting and with the same assumptions of The-
orem 2.5, for any T > 0, and for every u \in C1([a, b]), there exists h \in C0([0, T ])
vanishing at t = 0, T so that the Cauchy problem (1.4), (1.2) admits a classical solu-
tion u \in C1([0, T ]\times [a, b]) that satisfies (3.2).

Proposition 3.3. In the same setting and with the same assumptions of Theo-
rem 2.7, given any \rho > 0 and T > T \ast 

1 with T \ast 
1 \geq 0 as in (2.5), there exists C1 > 0

depending on b - a, T, T \ast 
1 , arg sup[| f | ]I\prime 1,c1 (c1 being a constant depending on \rho , T - T \ast 

1 )

so that the following hold. For every u \in C1([a, b]), with Im(u) \subsetneq I \prime 1, and satisfying

sup
x\in [a,b]

\lfloor u\prime (x)\rfloor  - \leq 
[| f | ]I\prime 1

(b - a) \cdot \| f \prime \prime \| C0(I)
 - \rho ,(3.3)

there exists h \in C0([0, T ]) vanishing at t = 0, T , with

\| h\| C0([0,T ]) +Tot.Var.\{ h; [0, T ]\} \leq C1 \cdot 
\Bigl( 
1 + \| u\| C0([a,b])

\Bigr) 
,(3.4)

so that the Cauchy problem (1.4), (1.2) admits a classical solution u \in C1([0, T ]\times [a, b])
that satisfies (3.2) and

\| u(t, \cdot )\| C0([a,b]) +Tot.Var.\{ u(t, \cdot ); [a, b]\} \leq C1 \cdot 

\Biggl( 
\| u\| C0([a,b]) + sup

x\in [a,b]

\lfloor u\prime (x)\rfloor  - 

\Biggr) (3.5)

for all t \in (0, T ).
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4324 FABIO ANCONA AND KHAI T. NGUYEN

The following lemmas show that Theorems 2.3, 2.5, and 2.7 are indeed a conse-
quence of Propositions 3.1, 3.2, and 3.3.

Lemma 3.4. Proposition 3.1 =\Rightarrow Theorem 2.3 , Proposition 3.2 =\Rightarrow Theo-
rem 2.5 .

Proof. We provide only a proof of the first implication, the second being entirely
similar. Let T > T \ast , and, given u, \psi \in C1([a, b]) with Im(u) \subsetneq I \prime 1 and Im(\psi ) \subsetneq I \prime 2,
which satisfy (2.4), set

u1(x)
.
= u(x) and u2(x)

.
= \psi (a+ b - x), x \in [a, b] .(3.6)

Observe that u1, u2 satisfy the assumptions (3.1) (with I \prime 2 in place of I \prime 1 for u2). Hence,
by Proposition 3.1 there exist hi \in C0([0, Ti]), Ti > T \ast 

i , i = 1, 2, vanishing at t = 0, Ti,
and ui \in C1([0, Ti]\times [a, b]), i = 1, 2, with T = T1 + T2, that satisfiy

\partial tui + \partial xf(ui) = hi(t) , t \in [0, Ti], x \in [a, b] ,

ui(0, x) = ui(x), ui(Ti, x) = 0, x \in [a, b] .
(3.7)

Consider the function

u(t, x) =

\Biggl\{ 
u1(t, x) if t \in [0, T1], x \in [a, b],

u2(T  - t, a+ b - x) if t \in [T1, T ], x \in [a, b],
(3.8)

and define

h(t) =

\Biggl\{ 
h1(t) if t \in [0, T1],

 - h2(T  - t) if t \in [T1, T ].
(3.9)

Then, relying on (3.7), by a direct computation it follows that u(t, x) is a solu-
tion of (1.4). Moreover, since (3.7) together with h1(T1) = h2(T2) = 0 imply that
u1(T1, \cdot ) = u2(T2, \cdot ) = \partial tu1(T1, \cdot ) = \partial tu2(T2, \cdot ) \equiv 0, we deduce that u is a continu-
ously differentiable map on [0, T ]\times [a, b]. Finally, observe that (3.6), (3.7), (3.8) yield
u(0, \cdot ) = u1 = u, u(T, \cdot ) = u2(a + b  - \cdot ) = \psi , which shows that u is a C1 classical
solution of (1.4) steering the equation from u to \psi .

Lemma 3.5. Proposition 3.3 =\Rightarrow Theorem 2.7 .

Proof. Let T > T \ast and, given u, \psi \in C1([a, b]) with Im(u) \subsetneq I \prime 1 and Im(\psi ) \subsetneq I \prime 2,
which satisfy (2.6), adopting the same setting (3.6) we observe that

\| u1\| C0([a,b]) = \| u\| C0([a,b]), sup
x\in [a,b]

\lfloor u\prime 1(x)\rfloor  - = sup
x\in [a,b]

\lfloor u\prime (x)\rfloor  - ,

\| u2\| C0([a,b]) = \| \psi \| C0([a,b]), sup
x\in [a,b]

\lfloor u\prime 2(x)\rfloor  - = sup
x\in [a,b]

\lfloor \psi \prime (x)\rfloor + .
(3.10)

Hence, relying on Proposition 3.3 and following the same arguments of the proof of
Lemma 3.4 we deduce that the function u defined in (3.8) is a C1 classical solu-
tion of (1.4), with h as in (3.9), steering the equation from u to \psi . Moreover, by
Proposition 3.3 we are assuming that

\| hi\| C0([0,T ]) +Tot.Var.\{ hi; [0, T ]\} \leq C1 \cdot 
\Bigl( 
1 + \| ui\| C0([a,b])

\Bigr) 
, i = 1, 2,(3.11)
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and

\| ui(t, \cdot )\| C0([a,b]) +Tot.Var.\{ ui(t, \cdot ); [a, b]\} \leq C1 \cdot 

\Biggl( 
\| ui\| C0([a,b]) + sup

x\in [a,b]

\lfloor u\prime i(x)\rfloor  - 

\Biggr) (3.12)

for all t \in (0, Ti), i = 1, 2. Observe that, by (3.8)--(3.9), there holds

\| h\| C0([0,T ]) \leq max
i

\| hi\| C0([0,Ti]), Tot.Var.\{ h; [0, T ]\} \leq 
\sum 
i

Tot.Var.\{ hi; [0, Ti]\} ,

\| u(t, \cdot )\| C0([a,b]) \leq 

\Biggl\{ 
\| u1(t, \cdot )\| C0([a,b]) if t \in [0, T1],

\| u2(T  - t, \cdot )\| C0([a,b]) if t \in [T1, T ],

Tot.Var.\{ u(t, \cdot ); [a, b]\} \leq 

\Biggl\{ 
Tot.Var.\{ u1(t, \cdot ); [a, b]\} if t \in [0, T1],

Tot.Var.\{ u2(T  - t, \cdot ); [a, b]\} if t \in [T1, T ].

(3.13)

Thus, from (3.11)--(3.12) we deduce that the functions h, u defined in (3.9), (3.8),
respectively, satisfy the bounds (2.7)--(2.8) stated in Theorem 2.7 (with a constant C1

different from the one provided by Proposition 3.3).

3.2. Null controllability.

Proof of Proposition 3.1.

Part 1. Given T > T \ast 
1 with T \ast 

1 \geq 0 as in (2.5), and u \in C1([a, b]) with Im(u) \subsetneq I \prime 1,
satisfying (3.1), let \varepsilon 1 > 0 be such that

T > T0
.
=

(b - a)

[| f | ]I\prime 1
\cdot (1 + 2 \varepsilon 1) ,(3.14)

\| u\prime \| C0([a,b]) <
[| f | ]I\prime 1

(b - a)\cdot (1 + 3 \varepsilon 1)\cdot \| f \prime \prime \| C0(I)
.(3.15)

Then, we extend u to a continuously differentiable function on the entire line \BbbR , which
we still denote u (see Figure 1), so that

Im(u) \subsetneq I \prime 1, \| u\prime \| C0(\BbbR ) <
[| f | ]I\prime 1

(b - a)\cdot (1 + 3 \varepsilon 1)\cdot \| f \prime \prime \| C0(I)
,(3.16)

u(x) =

\Biggl\{ 
\alpha  - if x \leq a - \varepsilon 1 \cdot (b - a) ,

\alpha + if x \geq b+ \varepsilon 1 \cdot (b - a) ,
(3.17)

for some constants \alpha  - , \alpha + \in \BbbR .
Observe that, for any h \in C0([0,+\infty ]), the Cauchy problem

\partial tu+ \partial xf(u) = h(t) , t > 0, x \in \BbbR ,

u(0, x) = u(x) , x \in \BbbR ,
(3.18)

admits a classical solution u(t, x) defined on some maximal interval
\bigl[ 
0, Th

\bigr) 
. Given

any fixed x0 \in \BbbR , let x(\cdot ) denote the unique forward characteristics of (3.18) starting
from x0, i.e., the unique solution of

\.x(t) = f \prime (u(t, x(t))), t \in 
\bigl[ 
0, Th

\bigr) 
,(3.19)
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0

aa - \varepsilon 1 b

u(x)

xb+\varepsilon 1

\alpha  - 

\alpha +
u

Fig. 1. Extension of the initial data.

satisfying x(0) = x0. Then, z0(t)
.
= u(t, x(t)) is a Carath\'eodory solution of

\.z0(t) = h(t), t \in [0, Th), z0(0) = u(x0) .

On the other hand, observe that the function w(t, x) = \partial xu(t, x) is a broad solution
on [0, Th )\times \BbbR of the semilinear equation

\partial tw(t, x) + f \prime (u(t, x)) \cdot \partial xw(t, x) =  - f \prime \prime (u(t, x)) \cdot w2(t, x)(3.20)

(e.g., see [11, Theorems 3.1 and 3.6]). Hence, relying on (3.20) we deduce that z1(t)
.
=

\partial xu(t, x(t)) is a Carath\'eodory solution of

\.z1(t) =  - f \prime \prime (u(t, x(t))) \cdot z21(t), t \in [0, Th
\bigr) 
, z1(0) = u\prime (x0) .(3.21)

Then, a direct computation yields

(3.22) z0(t) = u(x0) +

\int t

0

h(\tau )d\tau ,

(3.23) x(t) = x0 +

\int t

0

f \prime (z0(\tau ))d\tau = x0 +

\int t

0

f \prime 
\biggl( 
u(x0) +

\int \tau 

0

h(s)ds

\biggr) 
d\tau ,

and

(3.24)
1

z1(t)
=

1

u\prime (x0)
+

\int t

0

f \prime \prime (z0(\tau ))d\tau 

for all t \in [0, Th).

Part 2. Consider the continuous function (see Figure 2)

h(t) =
t \cdot h
\tau 1

\cdot \chi [0,\tau 1] + h \cdot \chi [\tau 1,T0] +
(T1  - t) \cdot h

\tau 1
\cdot \chi [T0,T1]

 - 16(t - T1) \cdot (\alpha + T0 \cdot h )
3 (T  - T1)2

\cdot \chi \left[  T1,
T + 3T1

4

\right]   - 4 (\alpha + T0 \cdot h )
3 (T  - T1)

\cdot \chi \left[  T + 3T1

4
,
3T + T1

4

\right]  

+

\biggl[ 
 - 4 (\alpha + T0 \cdot h )

3 (T  - T1)
+
4 (4t - 3T  - T1)\cdot (\alpha + T0 \cdot h )

3 (T  - T1)2

\biggr] 
\cdot \chi \left[  3T + T1

4
, T

\right]  ,

(3.25)
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 - 
4(\alpha + T0 h)

3(T  - T1)

\tau 1 T

h(t)

t

h

h

0 T0 T1

Fig. 2. The source control.

where \chi 
J
denotes the characteristic function of an interval J \subset \BbbR , T0 is the time

defined in (3.14), and \alpha \in \{ \alpha  - , \alpha +\} and the constants 0 < \tau 1 < T  - T0, h \in \BbbR will
be chosen later so that

T1
.
= T0 + \tau 1 < Th(3.26)\bigl( 

Th being the maximal time of existence of a classical solution to (3.18)
\bigr) 
and such

that there holds

u(T1, x) = \alpha + T0 \cdot h, x \in [a, b] .(3.27)

Notice that the definition of (3.25), together with (3.27), then implies

u(t, x) = \alpha + T0 \cdot h+

\int t

T1

h(s) ds, t \in [T1, T ] , x \in [a, b] ,(3.28)

which in turn, by a direct computation, yields

u(T, x) = \alpha + T0 \cdot h - \alpha  - T0 \cdot h = 0, x \in [a, b] ,(3.29)

thus showing that condition (3.2) is verified. Hence, in order to conclude the proof of
the theorem we need only to establish (3.26)--(3.27) with \alpha = \alpha  - or \alpha = \alpha +. To this
end, relying on (3.22)--(3.24), we find

z0(t) = u(x0) +
t2 \cdot h
2\tau 1

\cdot \chi [0,\tau 1] +
\Bigl( 
t - \tau 1

2

\Bigr) 
\cdot \=h \cdot \chi [\tau 1,T0] +

\biggl( 
T0  - 

(T1  - t)2

2\tau 1

\biggr) 
\cdot h \cdot \chi [T0,T1]

(3.30)

for all t \in [0, T1] and

x(T1) = x0 +

\int \tau 1

0

f \prime (z0(s))ds+

\int T0

\tau 1

f \prime 
\Bigl( 
u(x0) +

(2s - \tau 1) \cdot h
2

\Bigr) 
ds+

\int T1

T0

f \prime (z0(s))ds

= x0 +

\int \tau 1

0

f \prime (z0(s))ds+
1
\=h
\cdot 
\biggl[ 
f
\Bigl( 
u(x0) +

\Bigl( 
T0  - 

\tau 1
2

\Bigr) 
\cdot h
\Bigr) 
 - f

\biggl( 
u(x0) +

\tau 1\=h

2

\biggr) \biggr] 
+

\int T1

T0

f \prime (z0(s))ds = x0 +

\int \tau 1

0

f \prime (z0(s))ds+ T0 \cdot \Delta f
\bigl( 
\=u(x0); T0 \cdot h

\bigr) 
+
\tau 1
2

\cdot 
\biggl[ 
 - \Delta f

\biggl( 
u(x0);

\tau 1\=h

2

\biggr) 
+\Delta f

\biggl( 
u(x0) + T0 \cdot \=h; - 

\tau 1\=h

2

\biggr) \biggr] 
+

\int T1

T0

f \prime (z0(s))ds .

(3.31)
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Part 3. Since we are assuming that [| f | ]I\prime 1 > 0, and because Im(u) is a closed

interval, recalling definition (2.2) and (3.16) there will be some k such that either

\Delta f(u; k ) > [| f | ]I\prime 1  - 
\varepsilon 1 \cdot (b - a)

2T0
for all u \in Im(u)(3.32)

or

\Delta f(u; k ) <  - [| f | ]I\prime 1 +
\varepsilon 1 \cdot (b - a)

2T0
for all u \in Im(u) ,(3.33)

with \varepsilon 1 as in (3.14)--(3.15). To fix the ideas, assume that (3.32) holds and that k > 0.
Then, choosing

h =
k

T0
,(3.34)

we find

\Delta f
\bigl( 
u(x0); T0 \cdot h

\bigr) 
> [| f | ]I\prime 1  - 

\varepsilon 1 \cdot (b - a)

2T0
.(3.35)

Hence, if x(T1) \in [a, b], and we choose

\tau 1 < min

\biggl\{ 
\varepsilon 1 \cdot (b - a)

6 \cdot \| f \prime \| C0(I)
, T  - T0

\biggr\} 
,(3.36)

combining (3.31) with (3.35), and recalling (3.14), we derive

x0 \leq x(T1) + 3\tau 1 \cdot \| f \prime \| C0(I)  - T0 \cdot \Delta f
\bigl( 
u(x0); T0 \cdot h

\bigr) 
\leq b - T0 \cdot [| f | ]I\prime 1 + 3\tau 1 \cdot \| f \prime \| C0(I) +

\varepsilon 1 \cdot (b - a)

2

< b - T0 \cdot [| f | ]I\prime 1 + \varepsilon 1 \cdot (b - a) = a - \varepsilon 1 \cdot (b - a) .

(3.37)

Because of (3.17) and (3.30), the inequality (3.37) implies that u(T1, x(T1)) = u(x0)+
T0 \cdot h = \alpha  - + T0 \cdot h, which proves (3.27), choosing

\alpha = \alpha  - .(3.38)

On the other hand, relying on (3.14), (3.16), (3.24), and taking

\tau 1 <
\varepsilon 1 \cdot (b - a)

2 \cdot [| f | ]I\prime 1
,(3.39)

we deduce that if u\prime (x0) \not = 0, then

1

| z1(t)| 
\geq 1

| u\prime (x0)| 
 - 
\bigm| \bigm| \bigm| \bigm| \int t

0

f \prime \prime (z0(\tau ))d\tau 

\bigm| \bigm| \bigm| \bigm| 
\geq 1

\| u\prime \| C0(\BbbR )
 - t \cdot \| f \prime \prime \| C0(I)

>
(b - a)\cdot (1 + 3 \varepsilon 1)\cdot \| f \prime \prime \| C0(I)

[| f | ]I\prime 1
 - T1 \cdot \| f \prime \prime \| C0(I)

>
(b - a) \cdot \varepsilon 1 \cdot \| f \prime \prime \| C0(I)

2 \cdot [| f | ]I\prime 1
for all t \in [0, T1] .

(3.40)
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Therefore, choosing

\tau 1 < min

\biggl\{ 
\varepsilon 1 \cdot (b - a)

6 \cdot \| f \prime \| C0(I)
,
\varepsilon 1 \cdot (b - a)

[| f | ]I\prime 1
, T  - T0

\biggr\} 
(3.41)

and observing that z1(t) \equiv 0 if u\prime (x0) = 0, we deduce from (3.40) that, for every
solution x(t) of (3.19) starting at x0 \in \BbbR , the function z1(t) = \partial xu(t, x(t)) satisfies

| z1(t)| < +\infty for all t \in [0, T1] ,(3.42)

which yields (3.26). This completes the proof of the theorem with the choice of h, \alpha ,
and \tau 1 in (3.25) according to (3.34), (3.38), (3.41), respectively.

Proof of Proposition 3.2. To fix the ideas assume that the flux f satisfies the
assumptions (H1) and (H2)(ii). Given u \in C1([a, b]), set I \prime 1

.
= Im(u) and Iu

.
= (i - , u).

Observe that, because of (H2)(ii) and (2.10), we have

lim
u\rightarrow +\infty 

(b - a)

[| f | ]I\prime 1,u
= lim
u\rightarrow +\infty 

(b - a)

| f \prime (u)| 
= 0

and

lim
u\rightarrow +\infty 

[| f | ]I\prime 1,u
(b - a) \cdot \| f \prime \prime \| C0(Iu)

= lim
u\rightarrow +\infty 

\| f \prime \| C0(Iu)

(b - a) \cdot \| f \prime \prime \| C0(Iu)
= +\infty ,

where [| f | ]I\prime 1,u is defined as in (2.9). Then, given any T > 0, there will be u0 > i - 
such that

T >
(b - a)

[| f | ]I\prime 1,u0

, \| u\prime \| C0([a,b]) <
[| f | ]I\prime 1,u0

(b - a) \cdot \| f \prime \prime \| C0(Iu0 )
.(3.43)

Now, applying Proposition 3.1 to the flux f : Iu0
\rightarrow \BbbR and to the initial data

u \in C1([a, b]), which satisfy the assumptions (H1), (H2)(i), [| f | ]I\prime 1,u0
> 0, and (3.1),

respectively, we deduce the conclusion of Proposition 3.2.

Proof of Proposition 3.3.

Part 1. Given u \in C1([a, b]) satisfying Im(u) \subsetneq I \prime 1 and (3.3), let \varepsilon 1 > 0 (depending
on T  - T \ast 

1 and \rho ) be such that T > T0, with T0 as in (3.14), and

[| f | ]I\prime 1
(b - a) \cdot \| f \prime \prime \| C0(I)

 - \rho <
[| f | ]I\prime 1

(b - a)\cdot (1 + 3 \varepsilon 1)\cdot \| f \prime \prime \| C0(I)
.(3.44)

Then, in view of (3.3), (3.44), we extend u to a continuously differentiable function
on \BbbR , which we still denote u, so that

Im(u) \subsetneq I \prime 1, sup
x\in \BbbR 

\lfloor u\prime (x)\rfloor  - <
[| f | ]I\prime 1

(b - a)\cdot (1 + 3 \varepsilon 1)\cdot \| f \prime \prime \| C0(I)
,(3.45)

\| u\| C0(\BbbR ) \leq 2 \cdot \| u\| C0([a,b]) , Tot.Var.\{ u; \BbbR \} \leq 2 \cdot Tot.Var.\{ u; [a, b]\} ,(3.46)

u(x) =

\Biggl\{ 
\alpha  - if x \leq a - \varepsilon 1 \cdot (b - a) ,

\alpha + if x \geq b+ \varepsilon 1 \cdot (b - a) ,
(3.47)
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for some constants

\alpha  - , \alpha + \in Im(u) .(3.48)

Next observe that if we show that the Cauchy problem (3.18), with h defined as
in (3.25), admits a classical solution u on [0, T1]\times \BbbR , with T0 as in (3.14) and \tau 1 > 0
satisfying (3.36), then by the same arguments of the proof of Proposition 3.1 we
deduce that (3.27), (3.29) hold. Hence, in order to complete the proof that u is a
classical solution of (1.4), (1.2) satisfying (3.2), it remains to prove that (3.26) is also
true. To this end notice that, since f \prime \prime (u) is nonnegative (f being a convex map),
by (3.21) it follows that z1 is a decreasing map on [0, Th). Moreover, if u\prime (x0) > 0
from (3.24) it follows that z1(t) > 0 for all t \in [0, Th). On the other hand, in the
case where u\prime (x0) < 0, relying on (3.14), (3.24), (3.45), and taking \tau 1 as in (3.39), we
deduce

1

z1(t)
\leq 1

u\prime (x0)
+

\bigm| \bigm| \bigm| \bigm| \int t

0

f \prime \prime (z0(\tau ))d\tau 

\bigm| \bigm| \bigm| \bigm| 
\leq  - 1

supx\in \BbbR \lfloor u\prime (x)\rfloor  - 
+ t \cdot \| f \prime \prime \| C0(I)

<  - 
(b - a)\cdot (1 + 3 \varepsilon 1)\cdot \| f \prime \prime \| C0(I)

[| f | ]I\prime 1
+ T1 \cdot \| f \prime \prime \| C0(I)

<  - 
(b - a) \cdot \varepsilon 1 \cdot \| f \prime \prime \| C0(I)

2 \cdot [| f | ]I\prime 1
for all t \in [0, T1] .

(3.49)

Thus, choosing \tau 1 as in (3.41), we derive

 - \infty < z1(t) \leq u\prime (x0) for all t \in [0, T1] , x0 \in \BbbR ,(3.50)

which shows that (3.26) is verified.

Part 2. By the definition of h in (3.25), and because of (3.48), a direct computa-
tion yields

Tot.Var.\{ h; [0, T ]\} =
2 \cdot | k| 
T0

+
8 \cdot | \alpha \pm + k| 
3 \cdot (T  - T1)

\leq 
\biggl( 
6T+2T0 - 6 \tau 1
3T0 \cdot (T - T1)

\biggr) 
\cdot | k| +

8\cdot \| u\| C0([a,b])

3(T - T1)
,

(3.51)

\| h\| C0([0,T ]) \leq 
Tot.Var.\{ h; [0, T ]\} 

2
\leq 
\biggl( 
3T+T0 - 3 \tau 1
3T0 \cdot (T - T1)

\biggr) 
\cdot | k| +

4\cdot \| u\| C0([a,b])

3(T - T1)
,

(3.52)

\bigm| \bigm| \bigm| \bigm| \int t

0

h(s)ds

\bigm| \bigm| \bigm| \bigm| \leq | k| + | \alpha \pm | \leq | k| + \| u\| C0([a,b]) for all t \in [0, T ],(3.53)

where k = T0 \cdot h is a constant choosen so that (3.32) holds which, recalling (2.3),
(3.14), can be taken so that

| k| \leq arg sup[| f | ]I\prime 1,c1 + 1, c1 \leq \varepsilon 1
2(1 + 2\varepsilon 1)

\cdot [| f | ]I\prime 1 .(3.54)
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Then, choosing

\tau 1 < min

\biggl\{ 
\varepsilon 1 \cdot (b - a)

6 \cdot \| f \prime \| C0(I)
,
\varepsilon 1 \cdot (b - a)

[| f | ]I\prime 1
,
T  - T0

2

\biggr\} 
,(3.55)

(3.51), (3.52) imply

\| h\| C0([0,T ]) +Tot.Var.\{ h; [0, T ]\} \leq max

\biggl\{ 
6T+3T0
T0 \cdot (T - T0)

,
8

T - T0

\biggr\} 
\cdot 
\Bigl( 
| k| + \| u\| C0([a,b])

\Bigr) 
,

(3.56)

while from (3.22), (3.45), (3.53), we deduce

\| u(t, \cdot )\| C0([a,b]) \leq | k| + 4 \cdot \| u\| C0([a,b]) .(3.57)

Next, observe that, letting Tot.Var. - \{ u; [a, b]\} denote the negative variation of u
on [a, b] (e.g., see [21]), one has

Tot.Var.\{ u; [a, b]\} \leq 2
\bigl( 
\| u\| C0([a,b]) +Tot.Var. - \{ u; [a, b]\} 

\bigr) 
.(3.58)

Thus, we have

Tot.Var.\{ u; [a, b]\} \leq 2 \cdot (1 + (b - a)) \cdot 

\Biggl( 
\| u\| C0([a,b]) + sup

x\in [a,b]

\lfloor u\prime (x)\rfloor  - 

\Biggr) 
.(3.59)

On the other hand, notice that a classical solution of (3.18) is also the unique entropic
weak solution of (3.18). Hence, since scalar balance laws as in (3.18), with a source
term h only depending on time, admit entropic weak solutions with total variation
nonincreasing in time (e.g., obtained by an operator splitting algorithm; see [16]),
relying also on (3.46) we derive

Tot.Var.\{ u(t, \cdot ); [a, b]\} \leq Tot.Var.\{ u(t, \cdot ); \BbbR \} 

\leq Tot.Var.\{ u; \BbbR \} 

\leq 2 \cdot Tot.Var.\{ u; [a, b]\} for all t \in [0, T ] .

(3.60)

Then, combinig (3.59), (3.60), we obtain

Tot.Var.\{ u(t, \cdot ); [a, b]\} \leq 4 \cdot (1 + (b - a)) \cdot 

\Biggl( 
\| u\| C0([a,b]) + sup

x\in [a,b]

\lfloor u\prime (x)\rfloor  - 

\Biggr) 
.(3.61)

Hence, (3.56), (3.57), (3.61) show that the estimates (3.4), (3.5) are satisfied with

C1 = max

\biggl\{ 
(6T+3T0) \cdot (1 + | k| )

T0 \cdot (T - T0)
,
8 (1 + | k| )
T - T0

, 4 (2 + (b - a)) + | k| 
\biggr\} 
,(3.62)

where k satisfies the bound (3.54). This completes the proof of the theorem.

4. Controllability of BV states.

Proof of Theorem 2.11. Given u, \psi \in BV ([a, b]) with Im(u) \subsetneq I \prime 1 and Im(\psi ) \subsetneq I \prime 2
such that (2.12) holds, relying on Lemma 6.1 in the appendix there will be sequences
\{ un\} n\geq 1, \{ \psi n\} n\geq 1 \subset C1([a, b]) with Im(un) \subsetneq I \prime 1 and Im(\psi n) \subsetneq I \prime 2 such that

un \rightarrow u , \psi n \rightarrow \psi in L\bfone ([a, b]) ,(4.1)
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and

sup
x\in [a,b]

\lfloor u\prime n(x)\rfloor  - \leq 
[| f | ]I\prime 1

(b - a) \cdot \| f \prime \prime \| C0(I)
 - \rho , sup

x\in [a,b]

\lfloor \psi \prime 
n(x)\rfloor + \leq 

[| f | ]I\prime 2
(b - a) \cdot \| f \prime \prime \| C0(I)

 - \rho .

(4.2)

Then, applying Theorem 2.7 for each pair un, \psi n \in C1([a, b]), we deduce the existence
of \{ hn\} n\geq 1 \subset C0([0, T ]), with T > T \ast , and \{ un\} n\geq 1 \subset C1([a, b] \times [0, T ]) that are
classical solutions of

\partial tun + \partial xf(un) = hn(t) , t \in [0, T ], x \in [a, b] ,(4.3)

un(0, x) = un(x), x \in [a, b] ,(4.4)

un(T, x) = \psi n(x), x \in [a, b] ,(4.5)

which satisfy the estimates

\| hn\| C0([0,T ]) +Tot.Var.\{ hn; [0, T ]\} \leq C1 \cdot 
\Bigl( 
1 + \| u\| C0([a,b]) + \| \psi \| C0([a,b])

\Bigr) 
(4.6)

and

\| un(t, \cdot )\| C0([a,b]) +Tot.Var.\{ un(t, \cdot ); [a, b]\} (4.7)

\leq C1 \cdot 
\biggl( 
\| u\| C0([a,b]) + \| \psi \| C0([a,b]) +

[| f | ]I\prime 1 + [| f | ]I\prime 2
(b - a) \cdot \| f \prime \prime \| C0(I)

\biggr) 
for all n \geq 1, t \in (0, T ).

Observe that each un is also a weak entropic solution of (4.3) and that, since
(4.7) provides a uniform bound on the total variation of un(t, \cdot ) for all t \in [0, T ],
applying [16, Theorem 4.3.1] we deduce that t \rightarrow un(t, \cdot ) is Lipschitz continuous in
L\bfone ([a, b]) on [0, T ]. Moreover, by (4.7), \{ un(t, \cdot )\} n\geq 1 are uniformly bounded for all
t \in [0, T ]. Therefore, invoking a consequence of Helly's compactness theorem (e.g.,
see [11, Theorem 2.4]), we deduce the existence of a function u \in L\bfone ([0, T ]\times [a, b]; I),
which is Lipschitz continuous from [0, T ] into L\bfone ([a, b]; I) and such that, up to a
subsequence, there holds

un(t, \cdot ) \rightarrow u(t, \cdot ) in L\bfone ([a, b]) for all t \in [0, T ] .(4.8)

On the other hand (4.6) provides a uniform bound on \{ hn\} n and on their total varia-
tion. Hence, by Helly's compactness theorem there will be a function h \in BV ([0, T ])
so that, up to a subsequence, there holds

hn \rightarrow h in L\bfone ([0, T ]) .(4.9)

Hence, relying on (4.8)--(4.9) and on the fact that each un is an entropic weak solution
of (4.3), we deduce\int T

0

\int b

a

\Bigl\{ 
\eta (u)\partial t\varphi + q(u)\partial x\varphi + \eta \prime (u)h(t) \cdot \varphi 

\Bigr\} 
dx dt

= lim
n\rightarrow \infty 

\int T

0

\int b

a

\Bigl\{ 
\eta (un)\partial t\varphi + q(un)\partial x\varphi + \eta \prime (un)hn \cdot \varphi 

\Bigr\} 
dx dt \geq 0

(4.10)D
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for every entropy/entropy flux pair (\eta , q) with \eta convex. Thus (4.10), together
with (4.1), (4.4), (4.8), proves that u is an entropic weak solution of the Cauchy
problem (1.4), (1.2), while (4.1), (4.5), (4.8) show that the terminal condition (1.5) is
satisfied. Finally, we observe that, by the lower semicontinuity of the total variation
with respect to the L\bfone convergence, and because of (4.8), (4.9), we recover the esti-
mates (2.13) and (2.14) from (4.6) and (4.7), respectively. This concludes the proof
of the theorem.

Proof of Theorem 2.12. To fix the ideas assume that the flux f satisfies the as-
sumptions (H1) and (H2)(ii). Then, given u, \psi \in BV ([a, b]) satisfying (2.15), and
T > 0, setting I \prime 1

.
= Im(u), I \prime 2

.
= Im(\psi ), Iu

.
= (i - , u), by the same arguments and

with the same notations of the proof of Theorem 3.2, we deduce that there will be
u0 > i - such that

T > (b - a) \cdot 
\biggl( 

1

[| f | ]I\prime 1,u0

+
1

[| f | ]I\prime 2,u0

\biggr) 
,

sup
x\in [a,b]

\bigl\lfloor 
D - u(x)

\bigr\rfloor 
 - <

[| f | ]I\prime 1,u0

(b - a) \cdot \| f \prime \prime \| C0(I)
 - \rho ,

sup
x\in [a,b]

\bigl\lfloor 
D+u(x)

\bigr\rfloor 
 - <

[| f | ]I\prime 2,u0

(b - a) \cdot \| f \prime \prime \| C0(I)
 - \rho 

(4.11)

for some \rho > 0. Hence, according to Lemma 6.1 there are sequences \{ un\} n\geq 1, \{ \psi n\} n\geq 1

in C1([a, b]) with Im(un) \subsetneq Im(u) and Im(\psi n) \subsetneq Im(\psi ), which satisfy (4.1), (4.2).
Now, applying Theorem 2.7 to the flux f : Iu0

\rightarrow \BbbR which satisfy the assumptions
(H1), (H2)(i), [| f | ]I\prime 1,u0

> 0, [| f | ]I\prime 2,u0
> 0, and to each pair un, \psi n \in C1([a, b]) that

satisfy the estimates (2.6), by the same arguments of the proof of Theorem 2.11 we
deduce the conclusions of Theorem 1.2.

5. Some applications. In this section we discuss the application of the con-
trollability results established in the paper to some examples of conservation laws
describing vehicular traffic and sedimentation processes. Traffic source control can
be implemented in a variety of ways so as to modulate the flux capacity of the road,
e.g., route recommendation panels, variable speed limit regulation [23], integrated
vehicular and roadside sensors [20], and autonomous vehicles [24]. Control strategies
adopted in the process of continuous sedimentation taking place in a clarifier-thickener
unit, or settler (used, for example, in waste water treatment), usually consist in mod-
ulating the inflow and outflow of the settler containing solid particles dispersed in a
liquid [18, 19].

5.1. LWR traffic flow models. Consider the Lighthill, Whitham [33], and
Richards [36] (LWR) model describing the evolution of unidirectional traffic flow along
a stretch of road, say parametrized by x \in [a, b], given by the conservation law

\partial t\rho + \partial xf(\rho ) = 0 ,(5.1)

where \rho (t, x) denotes the (normalized) traffic density taking values in the interval [0, 2],
and where f(\rho ) = \rho v(\rho ) is the flux (the so-called fundamental diagram) depending
on the average traffic speed v(\rho ). We first assume that, according to Greenshields'
relationship, v(\rho ) = 2 - \rho which leads to the strictly concave flux

f1(\rho ) = \rho (2 - \rho ), \rho \in [0, 2] .(5.2)
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f1(\rho )
f1(\rho )

\rho 

3

4
0 5

4
2

\rho 

0 3

2
2

I1,1
I1,2 I1,3

I1,1

3

4

Fig. 3. Flux f1(\rho ) = \rho (2 - \rho ).

Then, in connection with the sets I1,1 = [0, 34 ], I1,2 = [ 34 ,
5
4 ], I1,3 = [ 32 , 2] (see Figure 3),

by a direct computation we find

[| f1| ]I1,1 = f \prime 1
\bigl( 
3
4

\bigr) 
= 1

2 , [| f1| ]I1,2 =

\bigm| \bigm| \bigm| \bigm| f1( 32 ) - f1(
3
4 )

3
4

\bigm| \bigm| \bigm| \bigm| = 1
4 , [| f1| ]I1,3 =

\bigm| \bigm| f \prime 1 \bigl( 32\bigr) \bigm| \bigm| = 1 .

(5.3)

On the other hand, we have f \prime \prime 1 (\rho ) =  - 2. Hence, invoking Remark 2.9 for (5.1) with
f(\rho ) = f1(\rho ), we deduce that we can produce a source control h(t) which steers any
u \in C1([a, b]) to any target profile \psi \in C1([a, b])

\bullet in a time T > T \ast 
1,1+T

\ast 
1,2 = 6 (b - a), provided that Im(u) \subsetneq I1,1, Im(\psi ) \subsetneq I1,2,

and

sup
x\in [a,b]

\lfloor u\prime (x)\rfloor + <
1

4 (b - a)
, sup

x\in [a,b]

\lfloor \psi \prime (x)\rfloor  - <
1

8 (b - a)
;

\bullet in a time T > T \ast 
1,3+T

\ast 
1,1 = 3 (b - a), provided that Im(u) \subsetneq I1,3, Im(\psi ) \subsetneq I1,1,

and

sup
x\in [a,b]

\lfloor u\prime (x)\rfloor + <
1

2 (b - a)
, sup

x\in [a,b]

\lfloor \psi \prime (x)\rfloor  - <
1

4 (b - a)
.

Observe that in the first case we are controlling a state u to a target state \psi with
possibly vanishing characteristics since f \prime 1(1) = 0 and 1 \in I1,2. Notice that the choice
of the intervals I1,1, I1,2, I1,3 is made only to simplify the computation, but one can
derive similar results for any pair of intervals I \prime 1, I

\prime 
2 \subsetneq [0, 2] such that [| f1| ]I\prime 1 > 0,

[| f1| ]I\prime 2 > 0 by first solving the optimization problem related to the definition (2.2) of
[| f1| ]I\prime i , i = 1, 2, and then carrying out similar computations as above. On the other
hand, relying on Remark 2.14 we can produce a source control h(t) which steers any
u \in BV ([a, b]) to any target profile \psi \in BV ([a, b])

\bullet in a time T > T \ast 
1,1+T

\ast 
1,2 = 6 (b - a), provided that Im(u) \subsetneq I1,1, Im(\psi ) \subsetneq I1,2,

and

sup
x\in [a,b]

\lfloor D+u(x)\rfloor + <
1

4 (b - a)
, sup

x\in [a,b]

\lfloor D - \psi (x)\rfloor  - <
1

8 (b - a)
;

\bullet in a time T > T \ast 
1,3+T

\ast 
1,1 = 3 (b - a), provided that Im(u) \subsetneq I1,3, Im(\psi ) \subsetneq I1,1,

and

sup
x\in [a,b]

\lfloor D+u(x)\rfloor + <
1

2 (b - a)
, sup

x\in [a,b]

\lfloor D - \psi (x)\rfloor  - <
1

4 (b - a)
.
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3

5

\rho 

20

f2(\rho )

I2,2

I2,1

4

3
1

Fig. 4. Flux f2(\rho ) = \rho e
 - 

\rho 

(2 - \rho ) .

Next, we assume that the traffic speed has the expression v(\rho ) = e - 
\rho 

(2 - \rho ) according
to Bonzani and Mussone's model [10], which leads to the (nonconcave) bell-shaped
flux

f2(\rho ) = \rho e
 - 

\rho 

(2 - \rho ) , \rho \in [0, 2] .(5.4)

Then, in connection with the set I2,1 = [ 43 , 2], I2,2 = [ 35 , 1] (see Figure 4), by a direct
computation we find

[| f2| ]I2,1 \approx 
\bigm| \bigm| \bigm| \bigm| f2( 43 ) - f2(

4
3  - 0.717)

0.717

\bigm| \bigm| \bigm| \bigm| \approx 0.298 [| f2| ]I2,2 =
\bigm| \bigm| \bigm| f2( 85 ) - f2(

3
5 )
\bigm| \bigm| \bigm| \approx 0.361 .

(5.5)

On the other hand, we have \| f \prime \prime 2 \| C0([0,2]) = f \prime \prime 2 (
11+

\surd 
13

9 ) \approx 2.323 and
[| f2| ]I2,1

\| f \prime \prime 
2 \| C0([0,2])

\approx 

0.128,
[| f2| ]I2,2

\| f \prime \prime 
2 \| C0([0,2])

\approx 0.155. Hence, invoking Remark 2.9 for (5.1) with f(\rho ) = f2(\rho ),

we can produce a source control h(t) which steers any u \in C1([a, b]) to any target
profile \psi \in C1([a, b])

\bullet in a time T > T \ast 
2,1+T

\ast 
2,2 \approx 6.125 (b - a), provided that Im(u) \subsetneq I2,1, Im(\psi ) \subsetneq 

I2,2, and

sup
x\in [a,b]

\lfloor u\prime (x)\rfloor + <
0.128

(b - a)
, sup

x\in [a,b]

\lfloor \psi \prime (x)\rfloor  - <
0.155

(b - a)
.

Similarly, relying on Remark 2.14, we can produce a source control h(t) which steers
any u \in BV ([a, b]) to any target profile \psi \in BV ([a, b])

\bullet in a time T > T \ast 
2,1+T

\ast 
2,2 \approx 6.125 (b - a), provided that Im(u) \subsetneq I2,1, Im(\psi ) \subsetneq 

I2,2, and

sup
x\in [a,b]

\lfloor D+u(x)\rfloor + <
0.128

(b - a)
, sup

x\in [a,b]

\lfloor D - \psi (x)\rfloor  - <
0.155

(b - a)
.

Again, we observe that these results guarantee the controllability of possibly critical
states since f \prime 2(3 - 

\surd 
5) = 0 and 3 - 

\surd 
5 \in I2,2.

5.2. Kynch's sedimentation model. According to the solid-flux theory by
Kynch [27], the sedimentation of a suspension of small particles dispersed in a viscous
fluid can be described by a conservation law,

\partial tu+ \partial xf(u) = 0 ,(5.6)
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I3,1

0
1 u

f3(u)

2

3

1

3

I3,2

Fig. 5. Flux f3(u) =  - u (1 - u)2.

where u(t, x) denotes the solid fraction, taking values in the interval [0, 1], and where
the flux function (also called drift-flux) has the same type of expression of the LWR
flux, i.e., f(u) = u v(u) with v(u) denoting the local settling velocity of the particles.
Typically f is a concave-convex map with one inflection point. Here we consider
the sedimentation of a solid substance suspended in a cylindrical batch of height L,
parametrized so that the bottom is located at x = 0 and the top at x = L, with the
drift-flux function proposed in [34] which, up to normalization, in this case can be
written as

f3(u) =  - u (1 - u)2, u \in [0, 1] .(5.7)

Then, in connection with the set I3,1 = [ 23 , 1], I3,2 = [ 13 ,
2
3 ] (see Figure 5), by a direct

computation we find

[| f3| ]I3,1 = [| f3| ]I3,2 =

\bigm| \bigm| \bigm| \bigm| f3(1) - f3(
2
3 )

1
3

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| f3( 23 ) - f3(
1
3 )

1
3

\bigm| \bigm| \bigm| \bigm| = 2

9
\approx 0.222 .(5.8)

On the other hand, we have \| f \prime \prime 3 \| C0([0,1]) = | f \prime \prime 3 (0)| = 4, and thus
[| f3| ]I3,1

\| f \prime \prime 
3 \| C0([0,1])

=

[| f3| ]I3,2
\| f \prime \prime 

3 \| C0([0,1])
\approx 0.055. Hence, invoking Remark 2.9 for (5.6) with f(u) = f3(u), we

can produce a source control h(t) which steers any u \in C1([a, b]) to any target profile
\psi \in C1([a, b])

\bullet in a time T > T \ast 
3,1+T

\ast 
3,2 = 9 (b - a), provided that Im(u) \subsetneq I3,1, Im(\psi ) \subsetneq I3,2,

and

sup
x\in [a,b]

\lfloor u\prime (x)\rfloor + <
1

2 (b - a)
, sup

x\in [a,b]

\lfloor \psi \prime (x)\rfloor  - <
1

2 (b - a)
.

Similarly, relying on Remark 2.14, we can produce a source control h(t) which steers
any u \in BV ([a, b]) to any target profile \psi \in BV ([a, b])

\bullet in a time T > T \ast 
3 = 9 (b - a), provided that Im(u) \subsetneq I3,1, Im(\psi ) \subsetneq I3,2, and

sup
x\in [a,b]

\lfloor D+u(x)\rfloor + <
1

2 (b - a)
, sup

x\in [a,b]

\lfloor D - \psi (x)\rfloor  - <
1

2 (b - a)
.

Again, we observe that these results guarantee the controllability of possibly critical
states since f \prime 3(

1
3 ) = 0 and 1

3 \in I3,1.

6. Appendix. The approximation of the BV function satisfying a one-sided Lip-
schitz condition in terms of smooth functions satisfying the same Lipschitz condition
(used in the proof of Theorem 2.11) is guaranteed by the following lemma. The result
is standard, but we provide a proof for completness.
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Lemma 6.1. Let \varphi \in BV ([a, b]), with Im(\varphi ) \subsetneq I, satisfy

D+\varphi (x) < M for all x \in [a, b] ,(6.1)

for some M > 0. Then, there exists \{ \varphi n\} n\geq 1 \subset C1([a, b]) with Im(\varphi n) \subseteq I, for all n
sufficiently large, and satisfying

\varphi \prime 
n(x) < M for all x \in [a, b] , for all n \geq 1 ,(6.2)

such that

\varphi n \rightarrow \varphi in L\bfone ([a, b]) .(6.3)

Proof. Observe that, because of (6.1), the map x \mapsto \rightarrow \psi (x) = \varphi (x) - Mx is strictly
decreasing on [a, b]. Let \rho n \in C\infty 

c (\BbbR ), n > 0, be a standard mollifier, i.e.,

\rho n \geq 0, sup(\rho n) \subseteq ( - 1
n ,

1
n ), and

\int 
\BbbR 
\rho n(x)dx = 1.

Then, we have that \psi n = \rho n \ast \psi \in C\infty ([a, b]), with Im(\psi n) \subsetneq I for all n sufficiently
large, and

\psi n \rightarrow \psi in L\bfone ([a, b]) .

Moreover, for every x1 < x2, there holds

\psi n(x2) - \psi n(x1) =

\int 
[\psi (x2  - y) - \psi (x1  - y)] \cdot \rho n(y)dy < 0.

Thus, one has D+\psi n(x) < 0 for all n, and the sequence \varphi n = \psi n +Mx does the
job.
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