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Abstract. In this note we come back to face a problem regarding
forward-backward parabolic equations like (r(x, t)u)t − uxx = 0 and
r(x, t)ut − uxx = 0 (r is both positive and negative): the continuity of
t 7→

∫
u2(x, t)|r(x, t)| dx.

1. Introduction

We here want to consider a simple, but nonetheless important, problem
when dealing with forward-backward parabolic equations like

r(x)ut − uxx = 0, t ∈ [0, T ], x ∈ [−a, a] (a > 0) (1.1)

where r is both positive and negative. In fact we will treat a more general
result (with r depending also on t), as illustrated in the next section, but to
fix ideas we now focus our attention to the simple equation (1.1).

The solution of the equation (1.1) lives in the space (or in one of its
subspaces)

W = {u ∈ L2(0, T ;H1(−a, a)) | ru′ ∈ L2(0, T ;H−1(−a, a)).

In [8] and [6] it is proved that

[0, T ] 3 t 7→
∫ a

−a
u2(x, t)r(x) dx is continuous and there is c s.t.∣∣∣ ∫ a

−a
u2(x, t)r(x) dx

∣∣∣1/2 6 c ‖u‖W
= c
[
‖u‖L2(0,T ;H1(−a,a)) + ‖ru′‖L2(0,T ;H−1(−a,a))

] (1.2)

which for r ≡ 1 is simply the classical continuous embedding of W in
C0([0, T ];L2(Ω)) (see, e.g, [12], chap. 23).
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The problem we want to deal with is the continuity, for u belonging to
W , of the function

[0, T ] 3 t 7→
∫ a

−a
u2(x, t)|r(x)| dx (1.3)

and to understand if it is possible to get a control of this function by the
norm ‖u‖W , i.e., if it is true that there is c > 0 such that∣∣∣ ∫ a

−a
u2(x, t)|r(x)| dx

∣∣∣1/2 6 c ‖u‖W (1.4)

= c
[
‖u‖L2(0,T ;H1(−a,a)) + ‖ru′‖L2(0,T ;H−1(−a,a))

]
for every u ∈W and every t ∈ [0, T ].

This fact might seem quite meaningless, but on the contrary it turns out
to be important when treating some arguments about forward-backward
parabolic equations, as for instance the regularity (local boundedness and
continuity of the solution, see [10], [9] and the forthcoming paper [7]) because
of the need to control the quantities∫ a

−a
u2(x, t)r+(x) dx and

∫ a

−a
u2(x, t)r−(x) dx

(being r+ and r− the positive and negative part of r) knowing only that
u ∈W and (1.2) holds.

The problem we study in the present paper have already been treated in
[3] and [1], where an equation like (1.1) is considered with r(x) = x, but the
result stated in those papers is the following:

sup
t∈[0,T ]

∫
u(x, t)2|x| dx 6 c ‖u‖L2(0,T ;H1

0 (−a,a))‖xu′‖L2(0,T ;H−1(−a,a)) . (1.5)

There is clearly an oversight in this estimate, since it is sufficient to consider
u independent of t to realise that this clearly cannot be true. Anyway what
is true, and this is a consequence of our main result in the present paper, is
that

sup
t∈[0,T ]

∫
u(x, t)2|x| dx 6 c

[
‖u‖2L2(0,T ;H1

0 (−a,a)) + ‖xu′‖2L2(0,T ;H−1(−a,a))

]
.

(1.6)
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We stress that for a function u ∈ L2(0, 1;H1
0 (−a, a)) such that |x|u′ ∈

L2(0, 1;H−1(−a, a)) it is immediate to have the estimate

sup
t∈[0,T ]

∫
u(x, t)2|x| dx 6 c

[
‖u‖2L2(0,T ;H1

0 (−a,a)) + ‖|x|u′‖2L2(0,T ;H−1(−a,a))

]
but not necessarily the previous one.

We recall that two particular cases had already been considered in [8].
Roughly speaking, we can briefly explain these two situation as follows: in
the first case one needs r to be locally differentiable around the region where
it changes sign (see Proposition 2.8 in [8]), and this request is satisfied by
the example considered by Beals and Aarão r(x) = x; the second is when the
regions where r is negative and r is positive are well separated by a region
where r = 0. Starting from this second situation a characterization for (1.4)
to hold (with r depending also on time) is given in [11]. For this reason in
the present paper, we focus our attention on a simple, but very significant,
situation:

r takes only positive or negative values almost everywhere,

i.e., r = 0 in a set whose measure is zero,

possibly discontinuous on the interface where it changes its sign .

In this note we want to attack directly the problem and to generalise these
particular cases and estimate (1.6) not only, as in (1.4), where the spatial
dimension is 1, but also when the spatial dimension is higher than 1 and the
function r possibly depends also on time and show that the continuity (1.3)
and inequalities like (1.6) or (1.4) are possible and in fact true (at least for
some r’s).

In particular, we want to prove the analogous of (1.3) and (1.4) for func-
tions u belonging to the space which contains the solutions of (here ∆p

denotes the p-Laplacian with p > 2)

(r(x, t)u)t −∆pu = 0 or r(x, t)ut −∆pu = 0. (1.7)

We recall that existence and uniqueness for a solution to these last equation
are given in [8] and [6].

Coming to the structure of the paper: in Section 2, we present the as-
sumptions needed and the fundamental steps, i.e., Lemma 2.4, Lemma 2.6,
Lemma 2.7 and Lemma 2.9, which are summarised in Proposition (2.10).

In Section 2, we suppose that the interface where r changes its sign in
one and of a particular case, i.e., satisfying (H3). The essential assumptions
about r are (H1) and (H2). The first one is a request about the regularity
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of the set where r changes its sign. The second one is just an assumption of
convenience: since equations (1.7) do have solutions even if r is discontinuous
(see [8] and [6]) and if this were the case r could not admit a temporal deriv-
ative, we suppose that r admits a temporal derivative outside the interface
where it changes its sign, even if it may jump on that interface.

Assumptions (H3), (H4), (H5) are just a consequence of (H1), while (H4′)
and (H5′) will be explained in the last section, where some examples are
made.

The third section uses all the results of the second section to prove the
main result, again for one only interface, but more general: we consider a
partition of unity in Ω × (0, T ), and in particular around the set where r
changes its sign, and in each set of this partition we apply the results of
Section 2 and get a global result. A brief section, the fourth, is devoted to
a more general case, when r changes its sign in more than one interface.
The last section, as already said, is devoted to some examples and to an
interesting counterexample.

The proof of (1.5) given by Beals leans on an idea contained in [2] which
is not, in our opinion, the most direct; on the contrary the proof given by
Aarão, despite the oversight, is simple and seems more natural and direct.
Our proof follows, in some sense, this idea.

Finally, we recall that mixed type equations of the kind of (1.1) have been
considered first in [2], than in [5], in [4] and in the already quoted [3] and [1],
and some other papers by the same authors, Pagani and Beals in particular.
In all these papers the coefficient r depends only on x and is always of the
type

sgn(x)|x|p p integer greater or equal to 1.

Among these only Pagani considered a function r different from a polyno-
mial or a positive power, in its paper quoted above he considered r(x) =
sgn(x)|x|p with p ∈ R, p > −1.

Just to conclude, we mention that, but we refer to [4], [5] and the several
paper by Beals for the details, equations of the type (1.1) have some interest
in kinetic theory, finance and stochastic processes.

2. Assumptions and preliminary results

Consider Ω an open and bounded set of Rn with Lipschitz boundary,
T > 0 we will define Q := Ω × (0, T ) and given p > 2 we will denote by V
and V ′ the following spaces

V := Lp(0, T ;W 1,p(Ω)), V ′ := Lp
′
(0, T ; (W 1,p(Ω))′).
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Given r ∈ L∞(Q), we denote by R(t) and R the operators

R(t) : L2(Ω)→ L2(Ω), t ∈ [0, T ],

R(t)u := r(·, t)u(·), (2.1)

R : L2(Q)→ L2(Q), Ru := ru.

Notice that R : [0, T ] → L(L2(Ω)), the linear and bounded operators from
L2(Ω) to L2(Ω), and R ∈ L(L2(Q)).

Definition 2.1. We say that R, defined via r ∈ L∞(Q), is regular if

[0, T ] 3 t 7→
∫

Ω
u(x)v(x)r(x, t)dx is absolutely continuous

and there is a constant Λ > 0 such that∣∣∣ d
dt

∫
Ω
u(x)v(x)r(x, t)dx

∣∣∣ 6 Λ ‖u‖W 1,p(Ω)‖v‖W 1,p(Ω) (2.2)

for every u, v ∈W 1,p(Ω).

We refer to [8] and [6] for some examples of possible r. Here, we only
want to stress that r may be discontinuous, for instance r could be

r(x, t) =

{
1 for (x, t) ∈ Q+

−1 for (x, t) 6∈ Q \ Q+

for a suitable Q+ ⊂ Q.
To have an idea of a possible Q+ denote by Ω+(t) = Q+ ∩

(
Ω × {t}

)
,

Ω−(t) = (Q \ Q+) ∩
(
Ω× {t}

)
and consider n = 1. By (2.2) we need

t 7→
∫

Ω+(t)
u(x)v(x)dx−

∫
Ω−(t)

u(x)v(x)dx

differentiable for every u, v ∈ W 1,p(Ω). In dimension 1 we can suppose to
have Ω+(t) = (0, γ(t)) and Ω−(t) = [γ(t), L) for some γ which is a function
of time. Then one get

d

dt

(∫ γ(t)

0
u(x)v(x)dx−

∫ L

γ(t)
u(x)v(x)dx

)
= 2γ′(t)u(γ(t))v(γ(t)),

i.e., (2.2) is satisfied if γ is differentiable and γ′ is bounded. For example, in
a situation like that in Figure 1.a r is regular, while a situation like that in
Figure 1.b is not admitted if r is discountinuous on the graph of γ.

To this purpose see also assumptions (H4′), (H5′) and the comments made
in the last section, in particular (5.1).
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Remark 2.2. Sometimes, we will say that the function r is regular instead
of saying that R is regular, even if r is not differentiable with respect to
time.

If R is regular we will denote by R′(t) and R′ the operators

R′(t) : W 1,p(Ω)→W−1,p′(Ω), t ∈ [0, T ],〈
R′(t)u, v

〉
W−1,p′ (Ω)×W 1,p(Ω)

=
d

dt

∫
Ω
u(x)v(x)r(x, t)dx

R′ : V → V ′〈
Ru, v

〉
V ′×V =

∫ T

0

〈
R′(t)u(t), v(t)

〉
W−1,p′ (Ω)×W 1,p(Ω)

dt.

Given r ∈ L∞(Q) such that R is regular in the sense of Definition 2.1, we
can consider the two spaces

W1
r :=

{
u ∈ V

∣∣ (ru)′ ∈ V ′
}
, W2

r :=
{
u ∈ V

∣∣ ru′ ∈ V ′}.
endowed by the norms

‖u‖1 := ‖u‖V + ‖(ru)′‖V ′ , ‖u‖2 := ‖u‖V + ‖ru′‖V ′ .
In fact the two spaces coincide (see [6]) and the two norms are equivalent.
Indeed

(Ru)′ = R′u+Ru′

and then

‖(Ru)′‖V ′ 6 ‖Ru′‖V ′ + Λ‖u‖V , ‖Ru′‖V ′ 6 ‖(Ru)′‖V ′ + Λ‖u‖V .
So, we will simply denote by Wr the two spaces Wr = W1

r = W2
r , and the

two norms ‖ · ‖1 and ‖ · ‖2 will be simply denoted by . .
We recall that C1([0, T ];W 1,p(Ω)) is dense in Wr (see [8]).

If r is regular there is constant Co such that for every u ∈ Wr (see [8] and
[6]) it holds ∣∣∣ ∫

Ω
u2(x, t)r(x, t)dx

∣∣∣ 6 Co ‖u‖2Wr
, (2.3)

where Co = Co(r) depends (only) on T−1, ‖r‖L2(Q) and ‖R′‖L(V,V ′). We will
denote by

r+ the positive part of r,

r− the negative part of r

in such a way that r = r+ − r− and we will denote by R+(t), R−(t), R+,
R− the operators analogous to (2.1).
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For simplicity, we will suppose that the cylinder Q = Ω× (0, T ) is divided
in two connected regions, one where r is positive, one where is negative, so
that Q = Q+ ∪ I ∪ Q−, Ω = Ω+(t) ∪ I(t) ∪ Ω−(t) with

Q+ :=
{

(x, t) ∈ Q
∣∣ r(x, t) > 0

}
, Q− :=

{
(x, t) ∈ Q

∣∣ r(x, t) < 0
}
,

I := Q \ (Q+ ∪Q−), I(t) := Ω \ (Ω+(t) ∪ Ω−(t)),

Ω+(t) :=
{
x ∈ Ω

∣∣ r(x, t) > 0
}
, Ω−(t) :=

{
x ∈ Ω

∣∣ r(x, t) < 0
}
.

About the “interface” I we assume that Q+ and Q− are open sets, I is a
subset of codimension 1 in Rn+1 with I = ∂Q+ ∩ ∂Q−, I(t) is a subset of
codimension 1 in Rn for every t ∈ [0, T ] with I(t) = ∂Ω+(t) ∩ ∂Ω−(t) and

I is uniformly Lipschitz continuous and
I(t) is uniformly C1,1 for every t ∈ [0, T ],

(H1)

that is I is locally a graph of a Lipschitz continuous function (of n variables)
and for every t ∈ [0, T ] I(t) is locally a graph of a C1 function (of n − 1
variables) whose gradient is uniformly bounded.

We consider r : Ω× (0, T )→ R, r = r+ − r− with r+, r− > 0, satisfying

r regular in the sense defined above
r+, Dtr+ ∈ L∞(Q+), r−, Dtr− ∈ L∞(Q−).

(H2)

Remark 2.3. We observe that the function r could be less regular but here,
only for the sake of simplicity, we suppose Dtr+ ∈ L∞(Q+) and Dtr− ∈
L∞(Q−). Anyway

r could not have temporal derivative in L∞(Q)

and in particular it might possibly be discontinuous in the interface I.
Notice that, under assumption (H2), not only r, but also

r+ and r− satisfy (2.2) and (2.3).

Now, we consider the cube C ⊂ Rn, C = [−1, 1]n, the cylinder

C := C × [0, T ]

and define

C− :=
{
y ∈ C

∣∣ y1 < 0
}

= [−1, 0)× [−1, 1]n−1,

C+ :=
{
y ∈ C

∣∣ y1 > 0
}

= t ∈ (0, 1]× [−1, 1]n−1,

C− :=
{

(y, s) ∈ Q
∣∣ y1 < 0

}
= [−1, 0)× [−1, 1]n−1 × [0, T ],

C+ :=
{

(y, s) ∈ Q
∣∣ y1 > 0

}
= (0, 1]× [−1, 1]n−1 × [0, T ],

J :=
{
y ∈ C

∣∣ y1 = 0
}

= {0} × [−1, 1]n−1.
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Given X a subset of Rn+1 of the type

X =
⋃

t∈[0,T ]

X(t)× {t}, X(t) ⊂ Rn,

we will denote by (x1, . . . xn, t) the coordinates of a point belonging to X
and by {

u ∈ C1(X )
∣∣ ‖u‖pVX :=

∫∫
X

(|u|p + |Du|p)dxdt < +∞
}

(2.4)

with respect to the topology induced by ‖·‖VX , where Du denotes the vector
of the derivatives of u with respect to the first n variables. We will use this
notation with Q+,Q−, C, C+, C− while with X = Q we will simply write V,
the space defined at the beginning of the section.

Similarly, we introduce

HQ+ := L2(Q+; r+).

Define, for y ∈ C and s ∈ [0, T ], the reflexions

S(y1, y2, . . . yn, s) := (−y1, y2, . . . yn, s), (2.5)

s(y1, y2, . . . yn) := (−y1, y2, . . . yn).

We suppose in this section that the interface I is such that I(t) can be
mapped in the cube C in such a way the region where r is negative is mapped
in C− and the region where r is positive in C+. In general this is not true:
for instance, if the spatial dimension is 2, one could have that I is a cylinder
and I(t) a circle for every t ∈ [0, T ]. Then suppose there is (for the moment
only one, but in the next section we will consider a partition of unity around
I) one function line φ : C → Q bijective and such that satisfying

φ : C+ → Q+ bijective

φ : C− → Q− bijective

(−1, 1)n 3 y 7→ φ(y, s) ∈ C1
(
(−1, 1)n

)
and its inverse is C1(Ω) for every s ∈ [0, T ], (H3)

[0, T ] 3 s 7→ φ(y, s), ∂y1φ(y, s), . . . ∂ynφ(y, s) are Lipschitz continuous

and t 7→ φ−1(x, t), ∂x1φ
−1(x, t), . . . ∂xnφ

−1(x, t)

are Lipschitz continuous for every y ∈ [−1, 1]n

φ(y, s) =
(
ϕ(y, s), s

)



Forward-backward parabolic equations 141

so that

ϕ(·, t) : C− → Ω−(t) and ϕ(·, t) : C+ → Ω+(t) are bijective . (2.6)

We will denote by Jφ the Jacobian matrix

Jφ(y, s) =


∂y1φ1(y, s) . . . ∂ynφ1(y, s) ∂sφ1(y, s)

...
∂y1φn(y, s) . . . ∂ynφn(y, s) ∂sφn(y, s)
∂y1φn+1(y, s) . . . ∂ynφn+1(y, s) ∂sφn+1(y, s)



=


∂y1ϕ1(y, s) . . . ∂ynϕ1(y, s) ∂sϕ1(y, s)

...
∂y1ϕn(y, s) . . . ∂ynϕn(y, s) ∂sϕn(y, s)

0 . . . 0 1


and, by the assumptions, there are positive constants M,m,N, Ñ ,K, K̃ and
non-negative constants L, L̃ such that (here | · | denotes the modulus for a
vector, the determinant for a matrix)

m 6 |Jφ(y, s)| 6M, M−1 6 |Jφ−1(x, t)| 6 m−1

‖Dφ(y, s)‖ 6N, ‖Dφ−1(x, t)‖ 6 Ñ , (H4)

|Diφj(y, s)| 6K, |Diφ
−1
j (x, t)| 6 K̃,

|r ◦ φ(y, s)| |Dsϕ(y, s)| 6L, |r(x, t)| |Dtϕ
−1(x, t)| 6 L̃, (H4′)

for every i, j = 1, . . . n, for every y ∈ C and x ∈ Ω and almost every s, t ∈
[0, T ] and where by norm of a m×m matrix A we mean

‖A‖ := max
v∈Rm,‖v‖=1

‖A · v‖.

Notice that, by the last of (H3),[
Jφ
]
n+1,j

=
[
Jφ−1

]
n+1,j

= 0 for every j ∈ {1, . . . n}

and the same holds for the matrix

M(x, t) := Jφ
(
S(φ−1(x, t))

)
· JS

(
φ−1(x, t)

)
· Jφ−1(x, t), (2.7)
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i.e., the matrices Jφ, Jφ−1,M (and JS which indeed is: (JS)ij = δij for
every i, j except (JS)11, which is −1) are of the type

a11 a12 . . . a1n a1n+1
...

an1 an2 . . . ann ann+1

0 0 . . . 0 1

 . (2.8)

Notice moreover that

|M(x, t)| = 1 for a.e. (x, t) ∈ Q. (2.9)

For this reason one has that

|Jφ(y, s)| = |Dϕ(y, s)| and |Jφ−1(x, t)| = |Dϕ−1(x, t)| (2.10)

where Dϕ(y, s) (and similarly Dϕ−1(x, t)) is the n× n matrix

Dϕ(y, s) : =

 ∂y1φ1(·, s) . . . ∂ynφ1(·, s)
...

∂y1φn(·, s) . . . ∂ynφn(·, s)

 (2.11)

=

 ∂y1ϕ1(·, s) . . . ∂ynϕ1(·, s)
...

∂y1ϕn(·, s) . . . ∂ynϕn(·, s)

 .

By (H4), we get that

|Mij(x, t)| 6 1 + 2KK̃. (2.12)

At this moment, we define

Ẽu (y, t) =

{ (
u ◦ φ

)
(y, t) for y ∈ C+(

u ◦ φ ◦ S
)
(y, t) for y ∈ C−.

(2.13)

Notice that by this choice, we have

Ẽu (y1, y2, . . . yn, t) = Ẽu (−y1, y2, . . . yn, t). (2.14)

Then we define the extension operator as

Eu (x, t) = Ẽu ◦ φ−1(x, t) (2.15)

=

{
u(x, t) for (x, t) ∈ Q+

u ◦ φ ◦ S ◦ φ−1(x, t) for (x, t) ∈ Q−.
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Lemma 2.4. Fix q ∈ [1,+∞). For every v ∈ Lq(Ω), one has∫
Ω
|Ev|q(x) dx = 2

∫
Ω+(t)

|v(x)|q dx.

Proof. Since∫
Ω
|Ev|q(x) dx =

∫
Ω+(t)

|Ev|q(x) dx+

∫
Ω−(t)

|Eu|q(x) dx,

we focus our attention on the second addend of the right hand side. We have∫
Ω−(t)

|Ev|q(x) dx =

∫
Ω−(t)

∣∣v(φ ◦ S ◦ φ−1)
∣∣q(x, t) dx

=

∫
Ω+(t)

|v(x)|q|Jφ(t)| dx,

where by φ(t), we denote the function

Ω−(t) 3 x 7→ φ
(
S(φ−1(x, t)

)
.

Since (Jϕ(t) and Jϕ−1(t) are defined in (2.11), s in (2.5))

Jφ(t) = Jϕ(t) · Js · Jϕ−1(t),

we get that |Jφ(t)| = 1 for every t and then thesis. �

Corollary 2.5. Suppose (H1), (H2), (H3), (H4), (H4′) hold. For every u ∈
C1([0, T ];W 1,p(Ω))∫

Ω−(t)
(Eu)2(x, t)Er+(x, t) dx =

∫
Ω+(t)

u2(x, t) r+(x, t) dx

and the function

[0, T ] 3 t 7→
∫

Ω
(Eu)2(x, t)Er+(x, t) dx is absolutely continuous.

Proof. The result follows as in the proof of Lemma 2.4. �

Now, consider the space

H+ := L2(Q;Er+).

Lemma 2.6. For every u ∈ C1([0, T ];W 1,p(Ω))

‖Eu‖2H+
= 2 ‖u‖2HQ+

, ‖Eu‖pLp(Q) = 2 ‖u‖pLp(Q+),

‖D(Eu)‖pLp(Q) 6 2C1 ‖Du‖pLp(Q+),

where C1 = 2−1
(

1 +
√
n
(
1 + 2KK̃

)p)
.
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Proof. Fix u ∈ V. By Corollary 2.5, one immediately gets∫∫
Q
|Eu|2(x, t)Er+(x, t) dxdt = 2

∫∫
Q+

|u(x, t)|2r+(x, t) dxdt

and by Lemma 2.4∫∫
Q
|Eu|p(x, t) dxdt = 2

∫∫
Q+

|u(x, t)|p dxdt.

The estimate about the gradient is less immediate: now for a function u ∈
C1([0, T ];W 1,p(Ω)), we denote, as usual, by Du the gradient with respect to
the spatial variables, i.e.,

Du ∈ C1([0, T ];Lp(Ω)),(
Du(t)

)
(x) =

(
D1u(x, t), . . . Dnu(x, t)

)
=
(
Dx1u(x, t), . . . Dxnu(x, t)

)
,

where Di = Dxi denotes the weak derivative with respect to xi, by ∂t the
partial derivative with respect to t which coincides with u′, i.e.,

u′ ∈ C0([0, T ];W 1,p(Ω)),
(
u′(t)

)
(x) = ∂tu(x, t),

while by ∇u, with an abuse of notation, we denote

∇u(x, t) =
(
Du(x, t), ∂tu(x, t)

)
=
(
Dx1u(x, t), . . . Dxnu(x, t), ∂tu(x, t)

)
.

Since M is of the type (2.8) the derivatives Di of Eu do not depend on ∂tu
since (i = 1, . . . n)

Di

(
Eu
)
(x, t) = Diu(x, t), (x, t) ∈ Q+

Di

(
Eu
)
(x, t) =

(
∇u
(
φ ◦ S ◦ φ−1(x, t)

)
· M(x, t)

)
i
, (x, t) ∈ Q−.

Observe that, by (2.12) and since M is of type (2.8), for (x, t) ∈ Q−, one
has that

|Di

(
Eu
)
(x, t)| 6

(
2KK̃ + 1

)
|Du

(
φ ◦ S ◦ φ−1

)
(x, t)|.

Then for (x, t) ∈ Q−
|D
(
Eu
)
(x, t)| 6

√
n
(
2KK̃ + 1

)
|Du

(
φ ◦ S ◦ φ−1

)
(x, t)|.

We conclude that∫∫
Q
|D(Eu)|p(x, t) dxdt

=

∫∫
Q+

|Du|p(x, t) dxdt+

∫∫
Q−
|D(Eu)|p(x, t) dxdt
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6
∫∫
Q+

|Du|p(x, t) dxdt

+
√
n
(
2KK̃ + 1

)p ∫∫
Q−

∣∣Du(φ ◦ S ◦ φ−1
)∣∣p(x, t) dxdt.

As done in the proof of Lemma 2.4, one gets∫∫
Q−

∣∣Du(φ ◦ S ◦ φ−1
)∣∣p(x, t) dxdt =

∫∫
Q+

|Du|p(x, t) dydt

and then finally∫∫
Q
|D(Eu)|p(x, t) dxdt

6
(

1 +
√
n
(
2KK̃ + 1

)p)∫∫
Q+

|Du|p(x, t) dxdt . �

Lemma 2.7. For every u ∈ VQ+ such that (r+u)′ ∈ V ′+, we have that
Eu ∈ WEr+. In particular

‖(Er+Eu)′‖V ′ 6
√

2
[
C2 ‖(r+u)′‖V ′Q+

+ C3 ‖u‖L2(Q+)

]
,

‖(Er+Eu)′‖V ′ 6
√

2
[
C2 ‖(ru)′‖V ′ + C4 ‖u‖L2(Q) + C5‖u‖L2(Q+)

]
,

where

C2 =
√

2N2Ñ2M
2

m2
, C3 =

√
2N2M

m
|Q+|

p−2
2p L̃+ |Q|

p−2
2p L,

C4 = N2M

m
|Q|

p−2
2p L̃, C5 = |Q|

p−2
2p L.

Remark 2.8. The constant 2 in the right hand side of the two estimates of
the previous lemma is due to the change of sign of the function r. Notice
that if r is independent of time the constants, then C3 = C4 = C5 = 0, since
in that case L = L̃ = 0.

Proof. For ψ ∈ C1([0, T ];W 1,p(Ω)) with ψ(0) = ψ(T ) = 0, we have

−
〈(
Er+Eu

)′
, ψ
〉
V ′×V =

(
Er+Eu,ψ

′)
H

=

∫∫
Q
EuEr+

∂ψ

∂t
dxdt

=

∫∫
C
Eu
(
φ(y, t)

)
Er+

(
φ(y, t)

)∂ψ
∂t

(
φ(y, t)

)
|Jφ(y, t)|dydt.
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Recall that (see (H3)) we have that φ(y, t) = (ϕ(y, t), t). Denoting

∂ϕ

∂t
:=

(
∂ϕ1

∂t
, · · · ∂ϕn

∂t

)
and Dψ := (D1ψ, · · ·Dnψ) ,

we have that

∂

∂t

(
ψ(φ(y, t))

)
=
∂ψ

∂t

(
φ(y, t)

)
+

(
Dψ(φ(y, t)),

∂ϕ

∂t
(y, t)

)
and then〈(

Er+Eu
)′
, ψ
〉
V ′×V

= −
∫∫
C
Eu
(
φ(y, t)

)
Er+

(
φ(y, t)

) ∂
∂t

(
ψ(φ(y, t))

)
|Jφ(y, t)|dydt (2.16)

+

∫∫
C
Eu
(
φ(y, t)

)
Er+

(
φ(y, t)

)(
Dψ(φ(y, t)),

∂ϕ

∂t
(y, t)

)
|Jφ(y, t)|dydt.

Now, define ψ = ψ ◦ φ and observe that∫∫
Q
ψ2(x, t)dxdt =

∫∫
C

(
ψ(φ(y, t))

)2|Jφ(y, t)|dydt

> m
∫∫
C

(
ψ(φ(y, t))

)2
dydt

by which ∫∫
C
ψ2(y, t)dydt 6

1

m

∫∫
Q
ψ2(x, t)dxdt. (2.17)

Similarly,∫∫
C
|Dψ(y, t)|2dydt =

∫∫
C
|Dψ(φ(y, t)) ·Dφ(y, t)|2dydt

6 N2

∫∫
C
|Dψ(φ(y, t))|2|Jφ(y, t)||Jφ−1(y, t)|dydt

6 N2m−1

∫∫
C
|Dψ(φ(y, t))|2|Jφ(y, t)|dydt

by which ∫∫
C
|Dψ(y, t)|2dydt 6 N2

m

∫∫
Q
|Dψ|2(x, t)dxdt. (2.18)

Notice that∣∣∣ ∫∫
C
Eu
(
φ(y, t)

)
Er+

(
φ(y, t)

)(
Dψ(φ(y, t)),

∂ϕ

∂t
(y, t)

)
|Jφ(y, t)|dydt

∣∣∣
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6 L
∫∫
C

∣∣Eu(φ(y, t)
)∣∣∣∣Dψ(φ(y, t))

∣∣|Jφ(y, t)|dydt

6 L
(∫∫

C

∣∣Eu(φ(y, t)
)∣∣2|Jφ(y, t)|dydt

∫∫
C

∣∣Dψ(φ(y, t))
∣∣2 |Jφ(y, t)|dydt

) 1
2

= L
(∫∫

Q

∣∣Eu(x, t)
∣∣2 dxdt ∫∫

Q

∣∣Dψ(x, t)
∣∣2dxdt)1/2

=
√

2L
(∫∫

Q+

u2(x, t) dxdt
)1/2(∫∫

Q

∣∣Dψ(x, t)
∣∣2dxdt)1/2

.

Then coming back to (2.16), we get∣∣〈(Er+Eu
)′
, ψ
〉
V ′×V

∣∣ 6M ∣∣∣〈(Ẽr+ Ẽu
)′
,ψ
〉
V ′C×VC

∣∣∣
+
∣∣∣(Ẽr+ Ẽu,Dψ(φ(y, t)) · ∂ϕ

∂t
(y, t)|Jφ(y, t)|

)
L2(C)

∣∣∣
6M‖

(
Ẽr+ Ẽu

)′‖V ′C‖ψ‖VC +
√

2L ‖u‖L2(Q+)‖Dψ‖L2(Q)

6
MN2

m
‖
(
Ẽr+ Ẽu

)′‖V ′C‖ψ‖V +
√

2L |Q|
p−2
2p ‖u‖L2(Q+)‖Dψ‖Lp(Q)

and, taking the supremum over all ψ whose norm in V is less or equal to 1,∥∥(Er+Eu
)′∥∥
V ′ 6

N2M

m

∥∥(Ẽr+ Ẽu
)′∥∥
V ′C

+
√

2L |Q|
p−2
2p ‖u‖L2(Q+). (2.19)

Now, we estimate the first term on the right hand side.
Consider η ∈ C1([0, T ];W 1,p(C)) such that η(0) = η(T ) = 0. We have〈(

Ẽr+ Ẽu
)′
, η
〉
V ′C×VC

= −
(
Ẽr+ Ẽu, η

′)
L2(C).

Define the operators S+ and S− (S defined in (2.5))

S+η
′ (y, t) =

{
η′(y, t) for y ∈ C+(
η′ ◦ S

)
(y, t) for y ∈ C−,

S−η′ (y, t) =

{ (
η′ ◦ S

)
(y, t) for y ∈ C+

η′(y, t) for y ∈ C−.

Notice that, by the simmetry of the domain C and of Ẽr+ Ẽu, one has that
one of the two following chain of inequalities is always true:(

Ẽr+ Ẽu,S−η′
)
L2(C) 6

(
Ẽr+ Ẽu, η

′)
L2(C) 6

(
Ẽr+ Ẽu,S+η

′)
L2(C)

or
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Ẽr+ Ẽu,S+η

′)
L2(C) 6

(
Ẽr+ Ẽu, η

′)
L2(C) 6

(
Ẽr+ Ẽu,S−η′

)
L2(C).

For sake of simplicity, we denote by Sη′, the simmetric function (chosen
among S+η

′ and S−η′) which makes true

−
(
Ẽr+ Ẽu, η

′)
L2(C) 6 −

(
Ẽr+ Ẽu,Sη′

)
L2(C).

Then, for every η as before, one gets〈(
Ẽr+ Ẽu

)′
, η
〉
V ′C×VC

= −
(
Ẽr+ Ẽu, η

′)
L2(C) 6 −

(
Ẽr+ Ẽu,Sη′

)
L2(C)

= −
(
Ẽr+ Ẽu, (Sη)′

)
L2(C) = −2

(
Ẽr+ Ẽu, (Sη)′

)
L2(C+)

= 2
〈(
Ẽr+ Ẽu

)′
,Sη

〉
V ′C+×VC+

.

Now, since if ‖η‖VC 6 1, one gets that ‖Sη‖VC+ 6 1, we derive that∥∥(Ẽr+ Ẽu
)′∥∥
V ′C
6 2

∥∥(Ẽr+ Ẽu
)′∥∥
V ′C+

. (2.20)

Now, consider η ∈ C1([0, T ];W 1,p(C+)) such that η(0) = η(T ) = 0. We have
that 〈(

Ẽr+ Ẽu
)′
, η
〉
V ′C+×VC+

= −
∫∫
C+
Ẽr+ Ẽu

∂η

∂t
dydt

= −
∫∫
C+
r+ ◦ φ(y, t)u ◦ φ(y, t)

∂η

∂t
(y, t)dydt

= −
∫∫
Q+

r+(x, t)u(x, t)
∂η

∂t
(φ−1(x, t))|Jφ−1(x, t)|dxdt.

Now, since

∂

∂t

(
η(φ−1(y, t))

)
=
∂η

∂t

(
φ−1(y, t)

)
+
(
Dη(φ−1(x, t)),

∂ϕ

∂t

−1

(x, t)
)
,

we get〈(
Ẽr+Ẽu

)′
, η
〉
V ′C+×VC+

= −
∫∫
Q+

r+(x, t)u(x, t)
∂

∂t
(η ◦ φ−1(x, t))|Jφ−1(x, t)|dxdt

+

∫∫
Q+

r+(x, t)u(x, t)

(
Dη(φ−1(x, t)),

∂ϕ

∂t

−1

(x, t)

)
|Jφ−1(x, t)|dxdt.
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Defining η := η ◦ φ−1 similarly to (2.17) and (2.18), one gets∫∫
Q+

η2(x, t)dxdt 6M
∫∫
C+
η2(y, t)dydt,∫∫

Q+

|Dη(x, t)|2dxdt 6 Ñ2M

∫∫
C+
|Dη|2(y, t)dydt,

by which, similarly to (2.19),∥∥(Ẽr+Ẽu
)′∥∥
V ′C+
6
Ñ2M

m
‖(r+u)′‖V ′Q+

+ L̃ |Q+|
p−2
2p ‖u‖L2(Q+). (2.21)

By this last estimate, (2.19) and (2.20), we finally get∥∥(Er+Eu
)′∥∥
V ′ 6 2

N2M

m

Ñ2M

m
‖(r+u)′‖V ′Q+

+

[
2
N2M

m
L̃|Q+|

p−2
2p +

√
2L |Q|

p−2
2p

]
‖u‖L2(Q+)

which concludes the proof of the first inequality.
Now, reconsider (2.20). We have that for every w ∈ VC〈(

Ẽr+ Ẽu
)′
, w
〉
V ′C+×VC+

=
〈(
Ẽr+ Ẽu χC+

)′
, w
〉
V ′C×VC

,

where χC+ = 1 in C+ and χC+ = 0 in C \ C+. Now, in fact, for every function

v ∈ VC such that v′ ∈ V ′C and v χC+ ≡ Ẽr+ Ẽu χC+ in C+ (2.22)

one has 〈(
Ẽr+ Ẽu

)′
, w
〉
V ′C+×VC+

=
〈
(vχC+)′, w

〉
V ′C+×VC+

.

Then, we have∣∣〈(Ẽr+ Ẽu
)′
, w
〉
V ′C+×VC+

∣∣ 6 ‖(vχC+)′‖V ′C+‖w‖VC+ 6 ‖v
′‖V ′C‖w‖VC+

and taking the supremum over all functions w ∈ VC+ such that ‖w‖VC+ 6 1,

one finally concludes ∥∥(Ẽr+ Ẽu
)′∥∥
V ′C+
6 ‖v′‖V ′C .

In particular, defining g̃ ∈ VC as g̃(y, t) := g ◦ φ(y, t) for g ∈ V, the function

v = r̃ũ satisfies (2.22)

and then ∥∥(Ẽr+ Ẽu
)′∥∥
V ′C+
6 ‖(r̃ũ)′‖V ′C . (2.23)
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Now, proceeding as done to get (2.21), one gets that

‖(r̃ũ)′‖V ′C 6
Ñ2M

m
‖(ru)′‖V ′ + L̃ |Q|

p−2
2p ‖u‖L2(Q).

Then from this last estimate, (2.19), (2.20), and (2.23), we derive∥∥(Er+Eu
)′∥∥
V ′

6 2
N2M

m

[Ñ2M

m
‖(ru)′‖V ′ + L̃ |Q|

p−2
2p ‖u‖L2(Q)

]
+
√

2L |Q|
p−2
2p ‖u‖L2(Q+)

=
√

2
[√

2N2Ñ2 M
2

m2
‖(ru)′‖V ′ +

√
2N2M

m
L̃ |Q|

p−2
2p ‖u‖L2(Q)+

+ L |Q|
p−2
2p ‖u‖L2(Q+)

]
which concludes the proof. �

By the previous lemma, one can immediately derive the following state-
ment, without adapting the previous proof.

Lemma 2.9. For every u ∈ VQ+ such that r+u
′ ∈ V ′+, we have that Eu ∈

WEr+. In particular,

‖Er+(Eu)′‖V ′

6
√

2
[
C2 ‖ru′‖V ′ + C4 ‖u‖L2(Q,|r|) + C5‖u‖L2(Q+,r+) + C6‖u‖V

]
,

where C6 = Λ(C1 + C2).

Proof. Since Ru′ = (Ru)′ −R′u, we get that

‖Er+(Eu)′‖V ′ 6 ‖(Er+Eu)′‖V ′ + ‖(Er+)′Eu‖V ′
6 ‖(Er+Eu)′‖V ′ + 2Λ‖Eu‖V
6
√

2
[
C2 ‖(ru)′‖V ′ + C4 ‖u‖L2(Q) + C5‖u‖L2(Q+)

]
+ 2Λ

(
2‖u‖Lp(Q) + C1‖Du‖Lp(Q)

)
.

Since

‖(ru)′‖V ′ 6 ‖ru′‖V ′ + Λ‖u‖V ,
we finally conclude that

‖Er+(Eu)′‖V ′ 6
√

2
[
C2 ‖ru′‖V ′ + ΛC2 ‖u‖V + C4 ‖u‖L2(Q)

+ C5‖u‖L2(Q+)

]
+ 2Λ

(
2‖u‖Lp(Q) + C1‖Du‖Lp(Q)

)
.

�
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We can summarise the estimates of Lemma 2.6, Lemma 2.7, and Lemma

2.9 in the following proposition. Here, the positive constant C̃ can be ex-
plicitly derived, but depend only on C1, C2, C3, C4, C5,Λ, |Q|, p (and then by

n,K, K̃,N, Ñ ,M,m,Λ, Co, |Q|
p−2
2p , where C1, C2, C3, C4, C5 are derived in

the previous lemmas).

Proposition 2.10. Under assumptions (H1), (H2), (H3), (H4), and (H4′),
one can consider the operator E defined in (2.15) which extends in a suitable
way a function from Q+ to Q. Then for every u ∈ VQ+

‖Eu‖2V 6 22/p C̃‖u‖2V 6 2 C̃‖u‖2V
and for every u ∈ VQ+ such that (r+u)′ ∈ V ′+, we have that Eu ∈ WEr+ and

‖(Er+Eu)′‖2V ′ 6 2 C̃
(
‖(ru)′‖2V ′ + ‖u‖2V

)
‖Er+(Eu)′‖2V ′ 6 2 C̃

(
‖ru′‖2V ′ + ‖u‖2V

)
.

In all the three estimates the factor 2 is due to the change of sign of r.

3. The main result

In the previous section, we presented a simple situation, i.e., when it
is needed only one function φ satisfying (H3), but more than one such a
function could be needed. In this section we consider this more general
situation.

We will still suppose that the set where r changes its sign satisfies

I is a connected subset of Q,

but we could need more than one function φ satisfying (H3). A typical
example, if Ω ⊂ R2, is if I(t) is a circle. We recall that I, I(t),Q, C, C are
defined at the beginning the previous section.

Fix ε > 0 and, for every t ∈ [0, T ],

Iε(t) =
{
x ∈ Ω

∣∣dist
(
x, I(t)

)
< ε
}

and denote

Iε−(t) =
{
x ∈ Iε(t)

∣∣ r(x, t) < 0
}
, Iε+(t) =

{
x ∈ Iε(t)

∣∣ r(x, t) > 0
}

Moreover, denote by

Iε :=
⋃

t∈[0,T ]

Iε(t), Iε+ = Iε ∩Q+, Iε− = Iε ∩Q−.
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Notice that

Iε ⊆
{

(x, t) ∈ Ω× (0, T )
∣∣dist

(
(x, t), I

)
< ε
}

and in general is a proper subset. An example is shown in the figure below,
where Ω is an interval, time in the vertical direction and Q is a square. The
curve divides Q into Q+ and Q−, no matter which is one and the other. The
set Iε is the region between the two dashed lines and, as one can see, it may
not be uniform in t. This is why we require (H5′) and (H4′), but we will
discuss briefly this issue in the last section.

a b

T

x

t

Figure 1.a
a b

T

x

t

Figure 1.b

By the assumptions, we can find a finite partition of unity of Q made by
H + 2 functions, with bounded overlapping,

η+ : U+ → [0, 1], η− : U− → [0, 1], ηh : Uh → [0, 1], h = 1, . . . H (3.1)

with

η2
+(x, t) +

H∑
h=1

η2
h(x, t) + η2

−(x, t) = 1

#{x ∈ Ω : ηh(x, t) 6= 0} 6 A for every t ∈ [0, T ].

and where

U+ ⊂ Q+ \ Iε/2, U− ⊂ Q− \ Iε/2, Uh ⊂ Iε, h = 1, . . . H,

and where, once denoted Uh(t) := Uh ∩
(
Ω× {t}

)
. We suppose that

H⋃
h=1

Uh = Iε and
H⋃
h=1

Uh(t) = Iε(t).
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Finally, we define

Uh,+ := Uh ∩Q+, Uh,− := Uh ∩Q−.

For every h ∈ {1, . . . H}, we suppose that there is φh (φh(y, s) = (ϕh(y, s), s))
satisfying (H3), (H4), and (H4′) with constants independent of h. We will
moreover suppose that

ηh ∈ Lip (Q),

|Dηh(x, t)| 6 2

ε
, a.e. in Q, (H5)

|r(x, t) ∂tηh(x, t)| 6 L̂ a.e. in Q. (H5′)

Once defined

J =
{
y ∈ C : y = (0, y2, . . . yn), τ ∈ [−1, 1]

}
and for every ȳ := (0, ȳ2, . . . ȳn) ∈ J

Σȳ =
{
y ∈ C : y = (τ, ȳ2, . . . ȳn), τ ∈ [−1, 1]

}
,

thanks to assumption (H1),ST we can also suppose that

ϕh(·, t)
(
J
)

= I(t) ∩ Uh(t)
ϕh
(
Σȳ, t

)
is a segment othogonal to I(t) for every ȳ ∈ J. (3.2)

as shown in the picture below, where in Figure 2.a, we represented the cube
C, in Figure 2.b a possible Uh(t).

Figure 2.a Figure 2.b

Now, consider u ∈ Wr. We define an operator E as follows: first, we consider
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H extension operators

Ehv (x, t) =

{
v(x, t) for (x, t) ∈ Uh,+
v ◦ φh ◦ S ◦ φ−1

h (x, t) for (x, t) ∈ Uh,−
(3.3)

for a generic function v : Q → R. Notice that

v ∈ Wr =⇒ ηhv ∈ Vh, (rηhv)′ ∈ V ′h,

where

Vh = VUh (defined in (2.4)).

By Proposition 2.10, we have

∥∥Eh(ηhu)∥∥2

V 6 2 C̃H

H∑
h=1

‖ηhu‖2V 6 2 C̃H
(

1 +
2

ε

)2
‖u‖Vh .

Again by Proposition 2.10, we get

‖
(
Ehr+Eh(ηhu)

)′‖2V ′ 6 2 C̃
(
‖(rηhu)′‖2V ′ + ‖ηhu‖2V

)
6 2 C̃

[
2
(

1 +
2

ε

)2
‖(ru)′‖2V ′h + 2L̂2 ‖u‖2L2(Uh) +

(
1 +

2

ε

)2
‖u‖2Vh

]
(3.4)

6 2 C̃
[
2
(

1 +
2

ε

)2
‖(ru)′‖2V ′h +

(
2L̂2 +

(
1 +

2

ε

)2)
‖u‖2Vh

]
.

Similarly, again by Proposition 2.10,

‖Ehr+

(
Eh(ηhu)

)′‖2V ′
6 2 C̃

[
2
(
1 + 2

ε

)2 ‖ru′‖2V ′h +
(

2L̂2 +
(
1 + 2

ε

)2 )‖u‖2Vh] . (3.5)

Theorem 3.1. Suppose (H1), (H2), (H3), (H4), (H4’), (H5), and (H5′) to
hold. If u ∈ Wr, then the function

[0, T ] 3 t 7→
∫

Ω
u2(x, t)|r|(x, t)dx (3.6)

is continuous and there is a constant Ĉo, depending only on n,K, K̃, N, Ñ ,

M, m, Λ, Co, |Q|
p−2
2p , ε−1, such that for every t ∈ [0, T ]∫

Ω
u2(x, t)|r|(x, t)dx 6 2 Ĉo

[
‖u‖2V + ‖(ru)′‖2V ′

]
, (3.7)∫

Ω
u2(x, t)|r|(x, t)dx 6 2 Ĉo

[
‖u‖2V + ‖ru′‖2V ′

]
.
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Remark 3.2. If r is independent of t the continuity of the function in (3.6)
could be stated in a simpler and more direct way as

Wr continuously embeds in C0([0, T ];L2(Ω; |r|)),

where C0([0, T ];L2(Ω; |r|)) is the completion of C0
c (Ω) with respect to the

topology induced by the norm
(∫

Ω u
2(x)|r|(x) dx

)1/2
.

Proof. We prove only the first inequality, proof for the seond one is the
same. Since, by (2.3) we have that

max
t∈[0,T ]

∣∣∣ ∫
Ω
u2(x, t)r(x, t)dx

∣∣∣ 6 Co[‖u‖2V + ‖(ru)′‖2V ′
]
,

we conclude and get the thesis if we show that

max
t∈[0,T ]

∫
Ω
u2(x, t)r+(x, t)dx 6 Ĉo

[
‖u‖2V + ‖(ru)′‖2V ′

]
for some constant Ĉo. We have∫

Ω
u2(x, t)r+(x, t)dx

=

∫
Ω
η2

+u
2(x, t)r+(x, t)dx+

∫
Ω

( H∑
h=1

)
η2
hu

2(x, t)r+(x, t)dx

=

∫
Ω+(t)

η2
+u

2(x, t)r+(x, t)dx+
H∑
h=1

∫
Ω
η2
hu

2(x, t)r+(x, t)dx.

Clearly, since η+ is supported in U+ and η+u ∈ Wr, we have∫
Ω+(t)

η2
+u

2(x, t)r+(x, t)dx =

∫
Ω
η2

+u
2(x, t)r(x, t)dx

6 Co
[
‖η+u‖2V + ‖(rη+u)′‖2V ′

]
.

Now, take into account the other terms of the sum. Notice that (2.3) holds
also for Ehr+ with some constant Co,h 6 Co. Then, by (3.4) and (3.5),∫

Ω
η2
hu

2(x, t)r+(x, t)dx 6
∫

Ω

(
Ehηhu

)2
(x, t)Ehr+(x, t)dx

6 Co
[
‖Eh(ηhu)‖2V + ‖(Ehr+Eh(ηhu))′‖2V ′

]
6 Co

[
2 C̃ ‖ηhu‖2V + 2 C̃ ‖(rηhu)′‖2V ′

]
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6 Co
[
2 C̃
(

1 +
2

ε

)2
‖u‖2Vh

+ 2 C̃
[
2
(

1 +
2

ε

)2
‖(ru)′‖2V ′h +

(
2L̂2 +

(
1 +

2

ε

)2)
‖u‖2Vh

]]
6 2 C̃o

[
‖u‖2Vh + ‖(ru)′‖2V ′h

]
,

where

C̃o = Co C̃
[
2L̂2 + 2

(
1 +

2

ε

)2]
which depends on n, K, K̃, N, Ñ , M, m, Λ, Co, |Q|

p−2
2p . Summing up, we

have (remember that A is the maximum number of overlappings)∫
Ω
u2(x, t)r+(x, t)dx

6 (H + 1)
[[
‖η+u‖2V + ‖(r

H∑
h=1

2 C̃o

[
‖u‖2Vh + ‖(ru)′‖2V ′h

]]
6 (H + 1)

[
2
(

1 +
2

ε

)2
‖(ru)′‖2V ′ +

(
2L̂2 +

(
1 +

2

ε

)2)
‖u‖2V

+ 2A C̃o

[
‖u‖2V + ‖(ru)′‖2V ′

]]
= 2 Ĉo

[
‖u‖2V + ‖(ru)′‖2V ′

]
.

As regards the continuity, by assumptions (H2), we get that

[0, T ] 3 t 7→
∫

Ω
u2(x, t)r+(x, t)dx is continuous

for every u ∈ C1([0, T ];W 1,p(Ω) and then, by density, for every u ∈ Wr.
Since analogous arguments can be done to estimate

∫
Ω u

2(x, t)r−(x, t)dx and
prove its continuity, we are done. �

4. A more general result

Suppose now to have more than one interface, i.e., I is not a connected
set anymore, but

I = I1 ∪ . . . ∪ IN
for some integer N > 1 and where each Ij , j = 1, . . .N, is a connected subset
of Q and satisfies assumptions made above for I and Q is divided in N + 1
connected regions.
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Suppose moreover there is ε > 0 such that (Iε defined at the beginning of
the previous section)

dist(Ijε, Ikε) = inf
{
|x− y| : x ∈ Ijε, y ∈ Ikε

}
> 0

for every j, k between 1 and N. Then the following is a direct consequence
of Theorem 3.1.

The only thing to do is to prove that it is localize estimate around one
interface and then sum all the N estimates. We do not know if these estimates
are sharp, but in the next section, we have an example which shows that the
constant in the right hand side must increase with the number of interfaces.

Theorem 4.1. Suppose (H1), (H2), (H3), (H4), (H4′), (H5), and (H5′) hold.
If u ∈ Wr, then the function

[0, T ] 3 t 7→
∫

Ω
u2(x, t)|r|(x, t)dx

is continuous and there is a constant Ĉo, depending only on n,K, K̃,N, Ñ ,

M,m,Λ, Co, |Q|
p−2
2p , ε−1, such that for every t ∈ [0, T ]∫

Ω
u2(x, t)|r|(x, t)dx 6 2N Ĉo

[
‖u‖2V + ‖(ru)′‖2V ′

]
,∫

Ω
u2(x, t)|r|(x, t)dx 6 2N Ĉo

[
‖u‖2V + ‖ru′‖2V ′

]
.

(4.1)

5. Comments, examples and counterexamples

In this section, we want to comment briefly some assumptions and to show
some examples.

To simplify, we consider examples with n = 1. Suppose the domain is
[−a, a]× [0, T ] as in the figures below, suppose r 6= 0 almost everywhere and
suppose that the two regions separated by a curve Γ in the set [−a, a]× [0, T ]
are the regions where r is positive and negative, no matter which is one and
which is the other.

We focus our attention on the function ϕ defined in (H3) and in the
assumption (H4′)∣∣∣r(φ(y, s)

)∂ϕ
∂s

(y, s)
∣∣∣ 6 L, ∣∣∣r(x, t) ∂ϕ

∂t

−1

(x, t)
∣∣∣ 6 L̃. (5.1)
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t

Figure 3.a
−a a

T

x

t

Figure 3.b
−a a

to

T

x

t

Figure 3.c

−a a

to

T

x

t

Figure 3.d
−a a

to

T

x

t

Figure 3.e

In Figure 3.a, there is the set C, which could represent also a possible
situation when r is independent of time and clearly in this case also ϕ does
not depend on time and (5.1) is easily satisfied. This is the simplest situation.

The curve Γ in examples in Figure 3.b and Figure 3.c as it may be as
the graph of a function γ : [0, T ] → [−a, a]. A possible choice for the
function ϕ introduced in (H3) (suppose r is negative in the left hand side of
[−a, a]× [0, T ]) is

ϕ : C− → Q−, ϕ(y, s) = ya+ (1 + y)γ(s)

by which
∂ϕ

∂s
(y, s) = (1 + y)γ′(s).

If γ ∈ C1 and γ′ is bounded, (5.1) is satisfied, whatever the choice of r is.
For instance, we could admit also discontinuous r like

r = 1 in one region and r = −1 in the other one. (5.2)

If γ is differentiable everywhere except in a point to, as in the example in
Figure 3.c, where

lim
t→to

γ′(t) = +∞,
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the choice of r like in (5.2) is not possible. To have (5.1) the continuity
of r through the interface where r changes its sign, at least in the point
(γ(to), to), is needed, i.e., r(γ(to), to) has to be 0.

The example shown in Figure 3.d does not satisfy all the assumptions,
since there is no a φ from C to Q satisfying (H3). Nevertheless, the result
trivially holds anyway. Suppose for simplicity that r depends only on t. The
assumption (H2) about r, in particular that (2.2) holds, implies that r is
continuous (and in fact Lipschitz continuous), so that r(to) = 0. Then the
estimate∫ a

−a
u2(x, t)|r(t)| dx = |r(t)|

∫ a

−a
u2(x, t) dx

6 c
[
‖u‖L2(0,T ;H1(−a,a)) + ‖(ru)′‖L2(0,T ;H−1(−a,a))

]
for t = to becomes trivial and for t < to and t > to simply follows from (2.3),
since in particular

u ∈{v ∈ L2(0, T ;H1(−a, a)) | (ru)′ ∈ L2(0, T ;H−1(−a, a))} =⇒
u ∈ {v ∈ L2(0, to;H

1(−a, a)) | (ru)′ ∈ L2(0, to;H
−1(−a, a))} and

u ∈ {v ∈ L2(to, T ;H1(−a, a)) | (ru)′ ∈ L2(to, T ;H−1(−a, a))}.
The example 3.e is more delicate, since we have a “flat part” in the interface,
as in example 3.d, but in example 3.e, r depends both on x and t. The main
problem is clearly for t = to since ϕ(·, t)(C) = Ω for every t except than for
t = to. Our conjecture is that Theorem 3.1 holds also in this case, but it
does not satisfy our assumptions.

The constant Ĉo. Suppose now to have more than one interface, as in
the figure which follows, and suppose in the central strip r is positive and in
two other regions is negative or vice versa.

In this case, in (3.7), we should have 4, and not 2, in front of Ĉo because

for every change of sign, we have a factor 2. Moreover, since Ĉo depends on
ε−1, the constant may increase not only for the number of interfaces, but
also depending on their proximity. For example, in the situation considered
in Figure 4, one could prove the same result as in Section 3 and in particular
the following estimates, as stated in Theorem 4.1:∫

Ω
u2(x, t)|r|(x, t)dx 6 4 Ĉo

[
‖u‖V + ‖(ru)′‖V ′

]
,∫

Ω
u2(x, t)|r|(x, t)dx 6 4 Ĉo

[
‖u‖V + ‖ru′‖V ′

]
.
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What we want to stress is that the constant in (3.7) does depend on r, but
not on |r|, since it depends on E, and may explode changing r even if |r|
does not change.

−a a

T

x

t

Figure 4

The following example (already shown in [11]) shows this fact: consider

a function ϕ ∈ H1
0 (−a, a) and ψα(t) =

√
α e−αt

2/2 consider the function
uα(x, t) = ψα(t)ϕ(x). Now, consider the function r(x) which is −1 in (−a, 0)
and 1 in (0, a), extend it periodically to the whole R and define rh(x) :=
r(hx) with h ∈ N. Notice that |rh(x)| = 1 for every h ∈ N. Then u belongs
to

Wrh := {u ∈ L2(−1, 1;H1
0 (−a, a)) : rhu

′ ∈ L2(−1, 1;H−1(−a, a))}

for every h ∈ N. Moreover, notice that if we consider the function |x| defined
between −a and a, and extend it periodically to the whole R and call this
function s, then one has that r(x) := s′(x) and, if we define sh(x) := s(hx)
with h ∈ N and x ∈ (−a, a), we also have that

rh(x) =
1

h
s′h(x).

We have that, being rh(uα)t ∈ L2,

‖|rh|uα‖2C([−1,1];L2(−a,a)) = ‖uα‖2C([−1,1];L2(−a,a)) = α ‖ϕ‖2L2(−a,a),

‖uα‖2L2(−1,1;H1
0 (−a,a)) = α

∫ 1

−1
e−αt

2
dt

∫ a

−a
(ϕ′(x))2 dx 6

√
απ ‖ϕ′‖2L2(−a,a),



Forward-backward parabolic equations 161

‖rh(uα)t‖2L2(−1,1;H−1(−a,a)) =
1

h2
‖s′h‖∞‖ϕ‖2L2(−a,a)

∫ 1

−1

(
ψ′α(t)

)2
dt

6
1

h2
‖ϕ‖2L2(−a,a)

α3/2√π
2

→h→+∞ 0 .

Then it is clear that it is not possible to have a constant C independ of h
such that

α ‖ϕ‖2L2(−a,a) 6 C
[√

απ ‖ϕ′‖2L2(−a,a) +
1

h2
‖ϕ‖2L2(−a,a)

α3/2√π
2

]
.

Indeed letting first h go to +∞ and then choosing α big enough, we can
disprove the above inequality for whatever C.

Notice that, taking instead of a constant α = hs for some positive power
s one realizes that the right hand side is minimum for s = 2. Then taking
α = h2, one gets

h ‖ϕ‖2L2(−a,a) 6 C
[√

π ‖ϕ′‖2L2(−a,a) + ‖ϕ‖2L2(−a,a)

√
π

2

]
and this is true for every h only if C is proportional to h, i.e., to the number
of points where rh changes its sign. This is coherent with (4.1).

Acknowledgments. Author is grateful to the anonymous referee for pre-
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