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Minimum-lap-time simulations with quasi-steady-state models and predefined trajectory
have been in use for many years. However, most of the published works deal with two-
dimensional roads and employ the so-called ‘apex-finding’ method. This paper focuses on the
application to three-dimensional roads, both with an extension of the ‘apex-finding’ approach
to three-dimensional scenarios and with an optimal control method. Both approaches are
based on g–g–g diagrams, i.e. the three-dimensional extension of the well-known g–g maps. In
addition, under the assumption that the predefined trajectory is determined from noisy data
(e.g. logged from the real vehicle), the three-dimensional trajectory reconstruction problem
is addressed, to find a smooth and drift-free racing line to be used in the minimum-time
simulation — again an optimal control approach is employed for the trajectory reconstruction.
Examples of application are given both for a car and a motorcycle.

Keywords: minimum-lap time; three-dimensional road; fixed trajectory; g–g–g map; cars;
motorcycles; apex-finding.

1. Introduction

Minimum lap-time simulations (MLTS) of road vehicles have been in use for many years
[1, 2]: they were historically formulated using quasi-steady-state (QSS) vehicle models
on pre-defined two-dimensional trajectories [3–10], and evolved to employ transient ve-
hicle models on three-dimensional roads [11–15], where the trajectory is a result of the
optimization. Free-trajectory methods with QSS models have also been proposed both
for two-dimensional [16] and three-dimensional roads [17, 18].

Although the approaches based on transient vehicle models with free trajectory have
been shown capable of dealing with relatively sophisticated models and simulation sce-
narios including e.g. thermal tyre models [19, 20], variable tyre-road friction coefficients
[21], aerodynamic maps dependent on vehicle trim [22], vehicles with electric motors and
torque vectoring [23, 24], drifting and handbrake manoeuvring [25, 26], they nevertheless
require computation times that are usually roughly one or two order of magnitude larger
than those relate to QSS models on a fixed, i.e. pre-defined, trajectory. This is one of the
reasons why the latter approach remains popular. Another reason is that QSS models
are generally easier to implement.

The most common solution technique for MLTS with a QSS vehicle model on a fixed
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trajectory is the so called ‘apex-finding’ method, which basically consists in i) finding the
apexes of the trajectory (i.e. points where the curvature has peaks), ii) assuming that the
lateral acceleration of the vehicle is maximum at such apexes, and iii) assuming braking
before the apex (i.e. into the turn) and acceleration after the apex (i.e. out of the turn).
The accelerations of the vehicle are constrained to remain on the boundaries of its g–g
map, which is obtained from the solution of the QSS equations of motion and defines the
performance envelope of the vehicle. Apparently, there is no documented literature for
the application of the method on three-dimensional roads, i.e. with a three-dimensional
racing-line trajectory.

The first contribution of this paper is to devise an ‘apex-finding’ method for the MLTS
of road vehicles on three-dimensional roads with pre-defined racing line building upon
g–g–g diagrams [17] (which are an extension of the classic g–g diagrams)—only two-
dimensional apex-finding approaches are documented in the literature. The second con-
tribution is the solution of the MLTS with an optimal control approach, again based on
the g–g–g maps, which is alternative to the apex-finding approach. The third contribu-
tion is related to the trajectory reconstruction problem on three-dimensional roads (most
methods discussed in the literature are two-dimensional). Indeed, the fixed-trajectory
approaches need be fed with the racing-line trajectory. This can be obtained numeri-
cally, e.g. from the solution of a free-trajectory MLTS (any of those referenced above)
or combining the minimum-distance and maximum-curvature trajectories [27–29] or ex-
perimentally, e.g. by direct measurement of the racing line on the track or by estimation
from the sensors mounted on the vehicle [30]. A method based on optimal control is
devised, which is similar to the one used to reconstruct the road.

An example of application is given both for a race car and a racing motorcycle, since
the methods proposed are suitable for application on both vehicles. The Mugello circuit
is considered, because its three-dimensional geometry is available from the literature
[14, 15]. The g–g–g diagrams are generated using the semi-analytical models in [17], in
order to make it simpler to reproduce the results presented. However, such maps can be
derived from more complex models or even experimentally — all the complexity of the
model is embedded in such diagrams and thus the methods proposed are insensitive to
the model complexity.

The work is organised as follows. In Sec. 2 the basics of the three-dimensional road
modelling and vehicle positioning using curvilinear coordinates are recalled, together with
the derivation of the trajectory curvature (to be used in the apex-finding method). In
Sec. 3 the racing-line reconstruction problem is formulated as an optimal control problem
(OCP). In Sec. 4 the three-dimensional minimum-time problem is formulated, both using
a three-dimensional apex-finding approach and an OCP approach. Finally, in Sec. 5 the
examples of application are given, including both the racing line reconstruction from
noisy data and the MLTS on such reconstructed trajectory with a race car and a race
motorcycle.

2. Road modelling

Road modelling and vehicle positioning using curvilinear coordinates have been already
discussed in the literature in a number of places, including [2, 11, 18, 31]. Therefore, only
the fundamentals relationships are recalled below.
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Figure 1.: Three-dimensional road modelling and vehicle positioning. The Darboux frame
has basis vectors t,n,m and angular rate Ωx,Ωy,Ωz. The vehicle trajectory is described
by the lateral position n from the road centreline and relative orientation χ̂ of the velocity
V with respect to the tangent to the centreline.

2.1. Road kinematics

The road centreline is represented by a space curve, from which the road plane is created
by adding width rw. A moving trihedron, called Darboux frame, moves along the road
centreline remaining tangent to the road surface; see Fig. 1. Its orthogonal basis [t,n,m]
can be given by the attitude-pitch-roll convention as follows

R(θ, µ, φ) = Rz(θ)Ry(µ)Rx(φ) (1)

=

cos θ cosµ − sin θ cosφ+ cos θ sinµ sinφ sin θ sinφ+ cos θ sinµ cosφ
sin θ cosµ cos θ cosφ+ sin θ sinµ sinφ − cos θ sinφ+ sin θ sinµ cosφ
− sinµ cosµ sinφ cosµ cosφ

 ,
where Rz(·), Ry(·), Rx(·) are the elementary matrix around the corresponding (sub-
scripted) axis, while θ, µ, φ are the attitude, slope, and banking angles respectively. All
variables are a function of the travelled distance along the road centreline, i.e. the curvi-
linear coordinate s.

The angles θ, µ, φ are obtained by integration of the relative torsion Ωx, normal curva-
ture Ωy, and geodesic curvature Ωz, which are the angular rates (rad/m) of the Darboux
frame expressed in the Darboux frame itself. The resulting relationships are obtained
from the well-known Frenet-Serret formulaφ′µ′

θ′

 =
1

cosµ

1 sinµ sinφ cosφ sinµ
0 cosµ cosφ − cosµ sinφ
0 sinφ cosµ

Ωx

Ωy

Ωz

 , (2)

where the prime means derivative with respect to s. In practice, the angular rates
Ωx,Ωy,Ωz are estimated from the measured coordinates of the road borders, see e.g.
[2, 11, 18, 31]. The position [xc, yc, zc]

T of the origin of the Darboux frame, expressed
in the absolute frame, is obtained by integration of the tangent vector t, i.e. the first
column of (1) xcyc

zc

 =

∫
tds =

∫ cos θ cosµ
sin θ cosµ
− sinµ

 ds. (3)
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2.2. Vehicle positioning

Once the road has been defined, the vehicle trajectory is described in terms of the lateral
distance n from the road centreline and relative yaw orientation χ̂ with respect to the
tangent to the centreline. It is also worth noting that χ̂ refers to a frame aligned with the
tangent to the racing line, and thus not necessarily aligned with the vehicle axes (unless
the vehicle slip angle is zero). Indeed, when using QSS approaches it is convenient to use
a trajectory-fixed frame which follows the racing line [16, 17] — in this framework, the
hat is used to denote variables related to the trajectory-fixed frame.

The lateral position n and the relative orientation χ̂ can be related to the velocity V
along the trajectory as follows

n′ =
1

ṡ
V sin χ̂, (4)

where ṡ is the speed along the road centreline

ṡ =
V cos χ̂

1− nΩz
. (5)

Equation (4) constraints n and χ̂, while the speed along the centreline ṡ is the link
between the space- and the time-domain formulations, since dx/dt = ṡdx/ds. Indeed,
it is common to solve minimum-time problems in the space domain instead of the time
domain [1].

The angular velocities (rad/s) of the trajectory-fixed frame (expressed in the trajectory-
fixed frame itself) are computed from the road curvatures (rad/m) as follows

ω̂x = (Ωx cos χ̂+ Ωy sin χ̂) ṡ, (6)

ω̂y = (Ωy cos χ̂− Ωx sin χ̂) ṡ, (7)

ω̂z =
(
χ̂′ + Ωz

)
ṡ, (8)

Equations (6) and (7) are necessary when solving the equations of motion, while (8) gives
ω̂z as a function of χ̂′. The accelerations of the vehicle reference point, expressed in the
trajectory-fixed frame, are

âx = V̇ + wω̂y, (9)

ây = V ω̂z − wω̂x, (10)

âz = ẇ − V ω̂y, (11)

where w is the absolute vertical velocity of the trajectory-fixed frame (along the
trajectory-fixed frame itself), given by

w = nΩxṡ. (12)

Note that the terms wω̂y and wω̂x in (9) and (10) are negligible under the common
assumption of small road curvatures Ωx and Ωy.

Finally, the (geodesic) curvature Γ of the racing line is obtained from the ratio of ây
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to V 2

Γ(s) = (χ′ + Ωz)
cos χ̂

1− nΩz
− nΩx(Ωx cos χ̂+ Ωy sin χ̂)

(
cos χ̂

1− nΩz

)2

, (13)

where ây is given by (10) using (5), (6), (8) and (12). The second term in (13) is negligible
if the road curvatures Ωx and Ωy are small.

It is worth noting that the MLTS on two-dimensional roads can be carried out based on
the racing line only, i.e. without any knowledge of the centreline. However, in the three-
dimensional scenario also the road geometry is necessary, because the slope and banking
(as well as their rates) affect the solution of the MLTS. Such geometry is conveniently
expressed as a function of the travelled distance s along the centreline.

3. Racing-line reconstruction

The aim is to identify the lateral position n and relative orientation χ̂ of the vehicle
trajectory, i.e. the racing line, from the noisy data x, y of the vehicle position, e.g. logged
from a GNSS system. It is assumed that the three-dimensional road model corresponding
to the road where the noisy data x, y have been logged is available, in terms of its
centreline and orientation of the road tangent plane. No additional signals, e.g. those
related to an inertial measurement unit (IMU), are assumed available, for simplicity
reasons.

The problem is formulated under OCP framework, in a fashion similar to that used for
the identification of the road model parameters from the noisy coordinates of the road
borders, which has been addressed in a number of places, including [2, 11, 18, 31]. This
time the error is on the racing line, rather than on road borders. In addition, the noisy
x and y coordinates are a projection of the three-dimensional trajectory on the ground
plane. A number of modifications on the approach are thus necessary.

The objective is to minimize the reconstruction error, while at the same time obtaining
a smooth reconstructed trajectory. The OCP takes the following form

minimise
u

J =

∫ sf

si

(
S(x) + U(u)

)
ds, (14)

subject to x′ = f(x,u), (15)

where s is the elapsed distance along the road centreline and sf − si = L is the track
length. The performance index J has two terms: S(x) and U(u). The first aims at min-
imizing the reconstruction error, while the second limits the optimal controls to enforce
a smooth solution—their expressions are given below. The function f(x,u) accounts for
the differential constraints between the road and the trajectory.

The state vector x includes the lateral position n with respect to the centreline, the
relative orientation χ̂ with respect to the tangent to the road centreline together with its
derivative χ̂′, and the travelled distance η0 along the noisy data

x(s) =
[
n, χ̂, χ̂′, η0

]T
, (16)

while the travelled distance along the projection of the reconstructed trajectory on the
ground plane x-y is η; see Fig. 2, where both η and η0 are shown. The state η0(s) is
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Figure 2.: Racing-line reconstruction with three-dimensional road (top) projected on
the ground plane x-y (bottom). The reconstructed trajectory and the noisy data x, y
are shown in solid line and dotted respectively. The travelled distance along the road
centreline is s, the travelled distance along the projection of the reconstructed trajectory
on the ground plane x-y is η, while the travelled distance along the noisy data is η0.

necessary to evaluate the coordinates x and y of the noisy trajectory corresponding to
a given position s along the centreline, and its final value η0(sf ) must be equal to the
length η0f of the noisy trajectory (obtained by numerical integration along the noisy
data).

The OCP controls the rate of change (with respect to s) of the curvature ω̂z/ṡ = χ̂′+Ωz

and rate of change of the noisy travelled distance η0

u(s) = [uω̂z, uη0]
T , (17)

where

uω̂z =
d

ds

(
ω̂z
ṡ

)
, uη0 =

η′0 − η′

η′
. (18)

The ‘stretching’ control uη0 allows to account for the difference between η0 and η, in order
to make it easier to satisfy the final value of η0. This control becomes more important
as the noise in the experimental data increases. It is chosen to control the derivative of
ω̂z/ṡ = χ̂′+Ωz instead of χ̂′ because the geodesic curvature (13)—which needs be smooth
for the successful computation of the MLTS—mainly depends on χ̂′ + Ωz. Indeed, the
speed profile in the MLTS is affected by the geodesic curvature of the trajectory, which
needs be smooth in order to obtain a smooth speed profile.

The function f(x,u) in (15) is given by

f(x,u) =
[

(1− nΩz) tan χ̂, χ̂′, uω̂z − Ω′z,
1− nΩz

cos χ̂
cα(1 + uη0)

]T
. (19)

The first component is obtained from (4) with (5). The second and the third are the
integrator chains for the relative orientation χ̂. The last component projects the rate of
change of the travelled distance along the reconstructed trajectory on the ground plane.
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Indeed, its three-dimensional components expressed in the ground frame are given by

R(θ, µ, φ)Rz(χ̂)

V/ṡ0
0

 =
1− nΩz

cos χ̂

(cosµ cos χ̂+ sinµ sinφ sin χ̂) cos θ − cosφ sin χ̂ sin θ
cosφ sin χ̂ cos θ + (cosµ cos χ̂+ sinµ sinφ sin χ̂) sin θ

cosµ sinφ sin χ̂− sinµ cos χ̂

 ,
(20)

where R(θ, µ, φ) is from (1). The projection on the ground plane x-y is obtained from
the norm of the first two components of (20)

η′ =
1− nΩz

cos χ̂
cα, (21)

where

cα =
√

(cosµ cos χ̂+ sinµ sinφ sin χ̂)2 + (cosφ sin χ̂)2. (22)

Note that cα ≈ 1 under the often employed assumption of small slope µ and banking φ
angles—however such assumption is not enforced here.

The state- and control-related terms in (14) are

U(u) = Wω̂zu
2
ω̂z +Wη0u

2
η0, (23)

S(x) = [x− x0(η0)]2 + [y − y0(η0)]2 , (24)

with

x = xc + (− sin θ cosφ+ cos θ sinµ sinφ)n, (25)

y = yc + (cos θ cosφ+ sin θ sinµ sinφ)n, (26)

where x0(η0), y0(η0) are interpolations of the measured coordinates of the vehicle position
(expressed as a function of η0), while Wω̂z,Wη0 are control weights. It is worth noting that
the quantities xc, yc, θ, µ, φ,Ωz come from the road model — which is assumed available
— as a function of s. Note also that it has been implicitly assumed, without loss of
generality, that the weights related to x, y errors are unity.

Cyclic conditions are enforced in the case of closed trajectory

n(si) = n(sf ), χ̂(si) = χ̂(sf ), χ̂′(si) = χ̂′(sf ), (27)

while the final value of η0 is enforced identical to that estimated from the noisy data

η0(sf ) = η0f . (28)

4. Minimum-lap-time simulation

Two approaches for the solution of the MLTS on a three-dimensional track with given
trajectory and QSS vehicle models are presented. The first is based on the application of
the ‘apex-finding’ method to three-dimensional roads, while the second is based on the
solution of an OCP. Both approaches build upon g–g–g diagrams, instead of the classic
g–g.
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4.1. g-g-g diagrams

In order to take into account the effects of road three-dimensionality, the classic g–g
diagrams can be extended to g–g–g diagrams, to include the vertical acceleration in
addition to the longitudinal and lateral accelerations. The approach introduced in [17] is
employed. The fundamentals are recalled below.

Remaining within the g–g–g boundaries means satisfying the following condition

ρ̃ ≤ ρ̃max(α̃, V, g̃), (29)

with

ρ̃ =
1

g

√
ã2x + ã2y and α̃ = arctan2 (ãx, ãy) , (30)

where ρ̃ is the engaged friction radius, ρ̃max is the maximum friction radius (boundary
of the g–g–g), α̃ is the orientation of the engaged friction radius, V is the vehicle speed,
g is the gravity acceleration, while ãx, ãy and g̃ are the vehicle’s apparent accelerations.
These terms, in addition to the accelerations âx, ây, âz in (9)–(11), also include the
contributions of the gravitational effects related to the slope µ and banking φ of the
road as well the the centrifugal effects related to the angular rates Ωx,Ωy,Ωz of the road
[17, 18]

ãx = âx + g (sinµ cos χ̂− cosµ sinφ sin χ̂) , (31)

ãy = ây − g (cosµ sinφ cos χ̂+ sinµ sin χ̂) , (32)

g̃ = −âz + g cosµ cosφ. (33)

These effects make the vehicle ‘heavier’ (g̃/g > 1) when driven through a dip or on
corners with banking, and ‘light’ (g̃/g < 1) when driven over the brow of a hill or on
corners with adverse banking. Finally, the values of the maximum friction radius in
different conditions can be interpolated, to give a 4-dimensional (R3 → R) continuously
differentiable hyper-surface.

4.2. Three-dimensional apex-finding

The extension of the classic two-dimensional apex-finding method to three-dimensional
scenarios in combination with the g–g–g diagrams is illustrated in this section.

The method begins with finding the apexes of corners on the given racing-line trajec-
tory, where the vehicle is assumed to achieve maximum lateral acceleration. Before the
apex, the vehicle is assumed to slow down, while after the apex the tyres are engaged with
traction forces so as to remain along the g-g-g envelope; see Fig. 3. First, the positions
sk of the corner apexes are obtained by finding the peaks of the racing-line curvature in
(13)

sk = arg max
si≤s≤sf

|Γ(s)| . (34)

Secondly, the maximum achievable lateral acceleration ây of the vehicle on each apex is
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Figure 3.: Apex-finding method. The vehicle speeds up after the corner apex k and slows
down before the corner apex k+1; the two speed profiles intersect at the crossover point.

obtained by solving the following non-linear programming (NLP) problem for V and âx

maximise
V, âx

|ây| , (35)

subject to ρ̃(ãx, ãy) = ρ̃max(α̃, V, g̃). (36)

In practice, the problem is to find the point of the g–g–g diagram that gives the maximum
lateral acceleration, for the road geometry at the apex sk. It is worth stressing that only
in basic vehicle models the maximum ây on flat roads is attained with âx = 0, while in
general small and negative âx are necessary to maximize ây on flat roads, in order to
have zero longitudinal force on the tyres (the vehicle slows down due to aerodynamic
drag, rolling resistance, transmission losses, etc.). In three-dimensional roads even the
basic vehicle models attain the maximum ây for non-zero âx. This is the reason why also
âx is a decision variable of the NLP.

Once the speed of the k-th corner is known, a mesh between the previous and successive
apexes is defined and the forwards and backwards speed profiles are computed by solving
the following algebraic system for Vj and âx j on each mesh point j sequentially

ρ̃(ãx j , ãy j) = ρ̃max(α̃j , Vj , g̃j), (37)

Vj − Vj−1
sj − sj−1

=
1

2

[
1

ṡj−1
(âx j−1 − wj−1ω̂y j−1) +

1

ṡj
(âx j − wjω̂y j)

]
, (38)

where (37) constraints the vehicle to remain on the g-g-g envelope, while (38) stems from
the integration with the trapezoidal rule of

V ′ =
1

ṡ
(âx − wω̂y) , (39)

which is obtained from (9) with ṡ given by (5). The subscript j means evaluating the
corresponding quantity at the mesh point j. All quantities at sj−1 are known from the
previous mesh point, while for j = 0 (where s = sk, see Fig. 3) they are given by the
solution of the corresponding corner apex. The algebraic system in (37)-(38) remains the
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same for both the forwards and backwards speed profile: sj > sk when exiting the apex
(forward solution), while sj < sk when braking into the apex (backward solution). In
addition, for the forward solution a guess on the upper side of the g–g–g is provided,
while a guess on the lower side is used for the backward solution. Between the corners k
and k + 1, the backwards and forwards integrations continue step by step until crossing
each other at the crossover point; see Fig. 3. As a side remark, equation (38) can be
analytically solved for Vj and introduced in (37) thus reducing the system to a single
algebraic equation with unknown âx j .

Regardless the complexity of the model used to generate the g–g–g, the equations of
the resulting apex-finding remain the same. The NLP in (35)–(36) is simple (only two
decision variables and one equality constraint) and the algebraic system in (37)–(38) is
a simple root-finding problem (one or two equations and as many variables, depending
on the implementation). It goes without saying that a smooth racing line is fundamental
to avoid unrealistic speed profiles in the MLTS.

4.3. Three-dimensional fixed-trajectory OCP

The MLTS on a three-dimensional road with fixed trajectory can also be solved as an
OCP problem: the objective is to perform a lap along the given racing-line trajectory
in the minimum time, while remaining within the acceleration envelope of the vehicle
(g–g–g diagram).

The state of the OCP is the vehicle speed V , while the control manipulates the longitu-
dinal acceleration âx. The differential constraint of the OCP is (39) with ṡ given by (5).
It is worth stressing that the lateral position n, relative orientation χ̂ and its derivative
χ̂′ are given functions of s, since the vehicle trajectory is known (and fixed). The time
derivatives of accelerations (i.e. the jerks) are usually controlled to obtain smooth solu-
tions, as shown e.g. in [17]. However, in this work the longitudinal acceleration âx has
been preferred to improve the comparison with the apex-finding method. Indeed, apex-
finding methods are characterized by speed profiles with cusps at the crossover points,
which are difficult to obtain when using a jerk control, which tends to smooth the speed
profiles around such points.

The cost function of the OCP is the manoeuvre time

J =

∫ sf

si

1

ṡ
ds, (40)

and cyclic conditions are enforced in the case of closed trajectory (e.g. in MLTS)

V (si) = V (sf ). (41)

Finally, the vehicle is constrained to remain within the g–g–g envelope by enforcing (29).
Regardless the complexity of the model used to generate the g–g–g, the resulting OCP

remains simple (one state and one control), which can be solved with one of the direct
or indirect methods reported in the literature [1, 31]. As is in the apex-finding method,
a smooth racing line is fundamental to avoid unrealistic speed profiles.
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Table 1.: Weighting factors used in the racing-line reconstruction OCP.

Symbol Description Value

uη0,max maximum value of uη0 0.1
Wω̂z weighting on the control uω̂z 0.02
Wη0 weighting on the control uη0 1

5. Examples of application

The examples are given for a car and a motorcycle, since the methods presented are suit-
able for application to both vehicles. The selected circuit is Mugello (Italy), because its
geometry is available from the literature [14, 15]. The vehicle datasets and corresponding
g–g–g maps are taken from [17], and resemble those of a Formula One car and a MotoGP
bike. They are not reported here to avoid repetitions.

As a first step, the approach illustrated in Sec. 3 is employed to identify the racing
line in terms of lateral position n and relative orientation χ̂ from a noisy set of x and y
coordinates (racing-line reconstruction problem). As a second step, the three-dimensional
apex-finding and OCP methods described in Sec. 4 are used to perform the MLTS on
the reconstructed racing line. All the OCP in this work are solved using the direct
transcription method in GPOPS-II [32], together with the NLP solver IPOPT [33].

5.1. Racing-line reconstruction

In order to test the proposed reconstruction approach, noisy datasets are artificially
generated starting from the reference optimal racing line (x and y coordinates) computed
numerically in [17]. These are re-sampled at 10 Hz, which is a typical sampling frequency
of GNSS technologies. Then, noise is injected in the x and y coordinates of the racing line,
so as to represent the typical disturbances. Three frequency distributions for the noise are
considered to investigate the robustness of the reconstruction technique: white, i.e. Power
Spectral Density (PSD) with slope 0 in a log-log diagram, flicker, i.e. PSD with slope
−1, and ‘random walk’, i.e. PSD with slope −2. These are typical frequency distributions
of coloured noise in GNSS technologies [34, 35]. The noise is generated from the PSD
through inverse Fourier transform [36], using the PSD frequencies between 0.5 Hz and
5 Hz. The horizontal (radial) accuracy is assumed 2.5 m with confidence level of 95%,
which is a typical positioning accuracy under good multipath conditions [37, 38]. This
accuracy is obtained by injecting Gaussian noise with a standard deviation of σ = 1.02 m
into the x and y coordinates (according to the selected frequency distribution), to give a
Rayleigh distribution with a scale parameter of σ, which gives an accuracy in the radial
direction of 2.45× σ with confidence level of 95% [39].

The parameters used in the reconstruction are shown in Tab. 1. All variables in the
OCP are scaled according to a length scale of 50 m. The solver starts with a coarse
mesh consisting of 41 mesh points, which means 205 equations to solve. The solution
takes about 12 s (on a Intel Core i7-7700HQ processor, running on Windows 10) and 5
mesh refinements with a mesh tolerance below 10−5. The corresponding mesh consists of
approximatively 4250 mesh points with mesh spacing between 0.17 m and 8.3 m, resulting
in 21250 equations.

Fig. 4(a) shows the result of the reconstructed racing-line against a sample noisy (mo-
torcycle) racing line, while Fig. 4(b) shows the reconstructed trajectory in terms of lat-
eral position n, relative orientation χ̂ and local geodesic curvature Γ against the ref-
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(a) (b)

Figure 4.: Result of the racing-line reconstruction: (a) motorcycle noisy data (dots) and
reconstructed racing-line (solid line) around Scarperia and Palagio (turns 10 and 11 of
the Mugello circuit) with distances in meters; (b) lateral position n with road borders
in dash-dot (top), relative orientation χ̂ (middle), and geodesic curvature Γ (bottom) of
the reconstructed (solid) vs. original unperturbed racing line (dashed).

erence (unperturbed) racing line. Half-thousand noisy datasets are generated from the
same reference racing line, and the reconstruction problem is solved as many times. The
resulting RMS error between the reconstructed trajectory and the noisy data ranges
between 1.25 m and 1.28 m (depending on the noise frequency distribution), while the
RMS error between reconstructed and reference trajectory from 0.44 m to 0.53 m, with
larger values related to the white noise. The travelled distance along the noisy data η0
is typically 33–52 m larger than that along the reconstructed data η; see Fig. 2. When
enforcing uη0 = 0 in the OCP, the RMS errors with respect to the noisy data and refer-
ence trajectory increase to 3.04–3.34 m and 1.57–2.18 m respectively, which are at least
2 times larger than the above RMS errors. Therefore, the ‘stretching’ control uη0 helps
significantly the reconstruction.

The comparison is repeated using the optimal trajectory of the car on the same circuit,
again obtained from the free-trajectory optimization perturbed with noise. Again, half-
thousand repetitions noisy datasets are generated from the reference racing line. The
RMS error between the reconstructed trajectory and noisy data ranges between 1.26 m
and 1.27 m, while the RMS error between reconstructed and original trajectory from
0.49 m to 0.54 m, again with larger values in the case of white noise. The travelled distance
along the noisy data is typically 18–27 m larger than that along the reconstructed data.
When enforcing uη0 = 0, the RMS errors with respect to the noisy data and reference
trajectory increase to 2.87–2.91 m and 0.99–1.21 m respectively. The results have the
same order of magnitude in both the motorcycle and car scenarios. Therefore, the method
proposed shows robust against the typical GNSS perturbations.

5.2. Minimum lap time

The three-dimensional apex-finding and OCP methods are now employed for the car and
the motorcycle running on the corresponding trajectory obtained, starting from those in
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(a) (b)

Figure 5.: (a) overview of the Mugello circuit with motorcycle’s racing line; all distances
are in meters. (b) lateral position n (top) and racing-line geodesic curvature Γ (bottom)
of the motorcycle (solid) vs. car (dashed). The circles denote the numbering of the turns.

[17], through the reconstruction in the previous subsection; see Fig. 5. The results of
the two methods are compared against each other and the effect of racetrack three-
dimensionality is investigated.

In both cases, the g–g–g need be obtained. For the example presented the diagrams have
been generated with speed V varying from 0 to 95 m/s by steps of 5 m/s, orientation α̃
is varied with steps of 1 deg, and acceleration g̃/g from 0.6 to 2 by steps of 0.1. For each
vehicle, the g–g–g diagrams are combined to give the adherence radius hyper-surface
ρ̃max(α̃, V, g̃) and then interpolated. Finally, the fixed-trajectory OCP and the apex-
finding method are run with the motorcycle and the car on the corresponding trajectory.

5.2.1. Apex-finding vs. OCP

When using the fixed-trajectory OCP, the lap times of motorcycle and car are 106.502 s
and 79.637 s respectively, while they are 106.489 s and 79.637 s when employing the apex-
finding method. In all lap-time simulations performed in this work the elapsed (running)
time obtained with the apex-finding method, as compared with the corresponding so-
lution found using the fixed-trajectory OCP, is below 0.02 s. Fig. 6 compares the speed
profiles of the two method for the motorcycle and car. It is found that the speed profiles
are in practice indistinguishable from each other, with maximum speed difference below
0.9 m/s.

All OCP have been started with a coarse mesh consisting of 41 mesh points; the
tolerance for the mesh refinement in GPOPS-II is 10−5. The solution is found after 8–10
mesh refinements and 25–45 s (on a Intel Core i7-7700HQ processor, running on Windows
10), depending on the vehicle. The corresponding mesh consists of approximatively 800
points, which means 1600 equations to solve. When using the apex-finding method on
the mesh of the corresponding fixed-trajectory OCP, the problem consists of roughly
800 equations to solve, while the solution is found after 9–11 s, again depending on the
vehicle. Therefore, the apex-finding method is 3–4 times faster than the fixed-trajectory
OCP, in the current implementation.
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As a final remark, 15 corner apexes are identified for the motorcycle in the apex-
finding method. These actually correspond to the peaks of the racing-line curvature;
see Fig. 5(b). On the contrary, the corner apexes reduces to 13 in the case of the car.
Indeed, the car does not slow down in turns 13 and 14 at 3900–4000 m, even though the
racing-line curvature has peaks there; see the two vertical dash-dot lines denoting turns
13 and 14 in Fig. 6(b). The speed profiles obtained from these corners when considered
isolated are higher than the speed profile obtained while simulating the whole lap, see
the two dotted lines in Fig. 6(b). In other words, the speed profile when braking with the
car into turn 13 never intercepts the speed profile related to the acceleration out of turn
12. Similarly, the speed profile when accelerating out of turn 13 never finds the braking
into turn 14. This highlights that the identification of apexes may require some manual
intervention.

5.2.2. Effect on racetrack three-dimensionality

The effect of racetrack three-dimensionality is now investigated with both the fixed-
trajectory OCP and apex-finding method. When running on the flat (two-dimensional)
Mugello, the lap times of motorcycle and car increase by 4.167 s and 3.177 s with the
fixed-trajectory OCP, while they increase by 4.188 s and 3.182 s when using the apex-
finding method. Again, it is found that the speed profiles are in practice indistinguishable,
with speed difference less than 0.5 m/s. The results found with the two approaches are
both in line with those presented in [14, 15, 17], which employ full-dynamic models and
free-trajectory QSS models.

When running on the two-dimensional road, small negative longitudinal acceleration
at the corner apex is generally necessary to have zero traction force, so as to maximize
the lateral acceleration. As a consequence, in this case the speed minima are always
after the corresponding corner apex, see dashed-lines in Fig. 7. On the contrary, in the
case of three-dimensional scenarios the longitudinal acceleration at the corner apex may
be either negative (as in flat roads) or positive (e.g. when going downhill) to have zero
traction force, and thus the speed minima may be either after or (slightly) before the
corresponding corner apex. As opposite examples, compare the turn 9 with the motorcy-
cle (solid line in Fig. 7(a)), where the speed minimum occurs 50 m after the corner apex,
since the vehicle is going uphill (slope around +5 deg), and turn 6 with the car (solid line
in Fig. 7(b)), where the speed minimum occurs about 1 m before the corner apex, since

(a) (b)

Figure 6.: Speed profiles on the Mugello circuit with the fixed-trajectory OCP (solid)
and the apex-finding method (dashed): (a) motorcycle and (b) car. The speed profiles
are in practice indistinguishable from each other.
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(a) (b)

Figure 7.: Three- (solid) and two-dimensional (dashed) speed profiles on the Mugello
circuit obtained with the apex-finding method: (a) motorcycle around turn 9 (Arrabbiata
2), and (b) car around turns 6-7 (Casanova and Savelli). The black dots are the speed
minima, while the vertical dash-dot lines denote the locations of corner apexes, where Γ
has peaks.

the vehicle is going downhill (slope around −4.5 deg).

5.2.3. Effect of the racing line

As a final investigation the MLTS of the motorcycle running on the car trajectory and
the car running on the motorcycle trajectory are performed with the two methods, in
order to highlight the effect of the racing line (an input to the methods presented in this
work). With the fixed-trajectory OCP, the motorcycle and the car are 2.367 s and 0.580 s
slower when switching the reference trajectories. Similarly, when using the apex-finding
method the lap times increase by 2.370 s and 0.589 s respectively. The two methods give
again similar results.

6. Conclusion

Two methods for the minimum lap time of road vehicles with quasi-steady-state models
on a fixed three-dimensional racing line have been proposed, which extend the two-
dimensional methods reported in the literature. The first method is an extension of the
classic ‘apex-finding’ method to three-dimensional scenarios (i.e. including road elevation,
slope and banking), while the second is based on the solution of a relatively simple
optimal control problem (OCP), and is alternative to the apex-finding approach. Both
approaches are based on the application of g–g–g diagrams, which are a generalisation
of the classic g–g diagrams to three-dimensional scenarios. The racing line used in the
minimum-lap-time problems is obtained from a noisy set of x and y coordinates (e.g.
logged via GNSS or from trajectories drawn by hand). A solution to the trajectory
reconstruction problems based on an optimal control approach has been proposed and
tested with the typical noise of GNSS. The proposed method is able to account for the
three-dimensionality of the racetrack—this is again an extension of the two-dimensional
methods reported in the literature. Examples of application have been given for a race
car and a race motorcycle on the Mugello circuit. The road three-dimensionality affects
significantly the lap time (3-4 s in the examples provided), and the results reported are in
line with those obtained in the literature with free-trajectory methods, both with quasi-
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steady and full-dynamic vehicle models. The computation time of the three-dimensional
‘apex-finding’ is 3-4 times lower than the fixed-trajectory OCP, in the implementation
by the authors. Both methods require computation time that are roughly one order of
magnitude lower than those corresponding to approaches involving quasi-steady-state
models without pre-defined trajectory, and about two orders of magnitude lower than
dynamic vehicle models with free trajectory.
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