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Extracellular matrix (ECM) is a dynamic 3-dimensional network of macro-

molecules that provides structural support for the cells and tissues. Accu-

mulated knowledge clearly demonstrated over the last decade that ECM

plays key regulatory roles since it orchestrates cell signaling, functions,

properties and morphology. Extracellularly secreted as well as cell-bound

factors are among the major members of the ECM family. Proteins/glyco-

proteins, such as collagens, elastin, laminins and tenascins, proteoglycans

and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44
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and integrins, responsible for cell adhesion, comprise a well-organized

functional network with significant roles in health and disease. On the other

hand, enzymes such as matrix metalloproteinases and specific glycosidases

including heparanase and hyaluronidases contribute to matrix remodeling

and affect human health. Several cell processes and functions, among them

cell proliferation and survival, migration, differentiation, autophagy, angio-

genesis, and immunity regulation are affected by certain matrix components.

Structural alterations have been also well associated with disease progres-

sion. This guide on the composition and functions of the ECM gives a

broad overview of the matrisome, the major ECM macromolecules, and

their interaction networks within the ECM and with the cell surface, summa-

rizes their main structural features and their roles in tissue organization and

cell functions, and emphasizes the importance of specific ECM constituents

in disease development and progression as well as the advances in molecular

targeting of ECM to design new therapeutic strategies.

The extracellular matrix architecture

ECM main structural and functional components

at a glance

Extracellular matrices (ECMs) are multiplicate well-

organized 3-dimensional architectural networks with

critical structural and functional roles in tissue organiza-

tion and remodeling and in the regulation of cellular

processes [1,2]. The building blocks of these ultrastruc-

tures are the collagens, proteoglycans (PGs) and gly-

cosaminoglycans (GAGs), elastin and elastic fibers,

laminins, fibronectin, and other proteins/glycoproteins

such as matricellular proteins [3,4]. ECMs operate as

communication liaisons between the cells in organs and

tissues by coordinating multiple signaling inside-out or

outside-in commands [1,2]. As a consequence, ECMs

guide tissue morphogenesis, development and home-

ostasis, through the regulation of cellular physiology,

growth, survival, differentiation, and adhesion. ECMs

undergo extensive remodeling during pathological con-

ditions acting as key players driving disease progression

[5–8]. Specific ECM phenotypes configure the different

tissues (i.e., epithelial, nervous, muscle, and connective

tissues) to meet the requirements for optimal tissue func-

tions [8–13]. Nevertheless, the formulation of ECMs can

constantly be adapted according to biochemical or

mechanical signals, resulting in a fine-tuned vivid ECM

remodeling procedure [14]. Schematic representations of

the main ECM networks and their composition in the

various tissues are given in Fig. 1.

A short introduction to each one of the main

macromolecular components that construct the core of

the ECM networks is given below.

Proteoglycans consist of a protein core decorated

with negatively charged GAGs including heparan sul-

fate (HS), heparin (Hep), chondroitin sulfate (CS), ker-

atan sulfate (KS), and dermatan sulfate (DS) [15]. PGs

hold both structural and biological roles, as they are

responsible for the mechanical resistance to compres-

sion and hydration of the tissues and also serve to trap

growth factors (GFs) in the ECM [15]. PGs are

divided into four groups depending on their localiza-

tion and homology. Extracellularly secreted PGs

include the hyaluronan (HA) and lectin-binding PGs,

know as hyalectans, and the small leucine-rich PGs

(SLRPs). SLRPs control the tissue spatial properties in

development and homeostasis since they immobilize

GFs in the ECM, and also regulate collagen fibrilloge-

nesis [16]. The hyalectan versican can, in addition to

its binding to HA, can also regulate numerous signal-

ing pathways and cellular functions [17]. Pericellular

PGs, perlecan and agrin, interact with various cellular

receptors and can modulate the cardiovascular and

musculoskeletal systems [18]. The multiplexin collagens

XVIII and XV, which bear GAG chains, also belong

to the pericellular PGs and are expressed in all vascu-

lar tissues and basement membranes (BMs) [16]. Prote-

olytic degradation of the protein core of perlecan by

chymase, matrix metalloproteinases (MMPs) and

cathepsins can generate multiple fragments, with the

most important being endorepellin, which has an anti-

angiogenic activity [19]. Further cleavage of endore-

pellin by proteases and cathepsin L releases a laminin

G-like domain which binds a2b1 integrin [20]. Endo-

statin, an anti-angiogenic and antitumoral fragment, is

released from collagen XVII by several proteases

including cathepsin L and elastase [21]. Cell surface
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Fig. 1. Schematic representation of the composition and structure of ECMs loose connective tissue (A), and specialized connective tissues

such as cartilage (B), bone (C) and cornea (D). (A) Epithelial cells create an adhere line to define a barrier in which tissue cells can prosper

and function. BM is an underlying matrix in contact with epithelial cells composing mainly from interconnected networks of collagens IV and

laminins, nidogens and HSPGs such as perlecan. BM anchors underlying connective tissue with tethering collagens such as VI and VII.

Collagen and elastin networks, PGs and glycoproteins such as fibronectin act as scaffolding and functional biomacromolecules

communicating with cells via cell surface receptors such as integrins, DDRs and syndecans. HA is synthesized by HASes and interact with

CD44 to regulate tissue repair and homeostasis. GFs are attached to various molecules which regulate their bioavailability and presentation

to GF receptors. (B) Cartilage is a thin hydrated tissue with tensile strength. Chondrocytes are surrounded from a pericellular matrix

abundant in collagen VI and perlecan. Hyaline cartilage matrix is composed mainly from collagen II and large aggregates of HA with

aggrecans. SLRPs aid the inter connection of collagens as well as the assembly of aggrecans with collagens. Additionally, the presence of

elastin defines the elastic cartilage providing tissue elasticity. (C) Bone is a specialized strong connective tissue with an ECM rich in

mineralized collagen with hydroxyapatite. PGs and specialized bone proteins regulate collagen assembly, while bone sialoproteins, OPN and

thrombospondins control bone metabolism and collagen mineralization. Cellular components control bone development and homeostasis

through secretion of GFs and consists of bone-forming osteoblasts and bone-resorption osteoclasts, where mature bone tissue encloses

osteocytes. (D) Cornea is a unique organ due to its transparency and refraction capacity achieved by the finely assembly of ECM

components. Cornea is protected from an outer epithelium with its unique BM, which is in contact with Bowman’s layer rich in KSPGs,

collagen I and V. The underlying corneal stroma provides biomechanical stability and shape. Corneal fibroblasts (keratocytes) are embedded

in an ultrastructure of collagens I and V, FACITS and SLRPs. An inner epithelium with a BM called Descemet’s membrane nourishes and

control the homeostasis of the corneal stroma. Both corneal BMs consist of the collagens IV and VII, laminins, nidogens and HSPGs.
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PGs, syndecans and glypicans (GPCs), play a more

direct role in signaling coordination, as they act as

coreceptors via the binding of ligands [22,23]. For

example, GPC-6 seems to be essential for the proper

length of intestines during embryonic development as

it regulates the bioavailability of Wnt5a and presents

Patched1 to Hedgehog (Hh), thus controlling the two

more crucial signaling cascades connected to this elon-

gation process [24]. Serglycin (SRGN) was first discov-

ered as an intracellular PG, but later it was found as a

secreted complex in the matrix. SRGN participates in

the storage and bioavailability of important molecules,

and in plethora of functions such as maturation of

granules and apoptosis of mast cells and immune regu-

lation [25,26].

A GAG with distinct functions is HA. It is not

linked to a protein core and it is not esterified with

sulfate groups. HA contributes to water retention in

tissues and to their structural integrity. It plays a piv-

otal role in embryogenesis and tissue repair, regenera-

tion, and homeostasis. HA has a versatile function

depending on its size, concentration, and interaction

with cell receptors and its ECM binding partners. HA

can regulate signaling in a context- and tissue-specific

manner. HA synthesis occurs through specific hyaluro-

nan synthases (HASes) and is controlled epigenetically

at the post-transcriptional level [27,28]. HASes are also

tissue-specific and can generate HA of different sizes.

The catabolism of HA is controlled by hyaluronidases

(HYALs; mainly HYAL1, HYAL2, PH20), reactive

oxygen species (ROS), and nitric oxide synthase

(NOS). HA interacts with several receptors such as

cluster of differentiation 44 (CD44), HARE (also

known as stabilin-2), LYVE-1, the receptor for

hyaluronan-mediated motility (RHAMM), also known

as CD168, and layilin, which can also bind other

ECM molecules and activate function-targeted signal-

ing pathways [29]. Interaction of HA with CD44 can

generate receptor clustering, for instance with Toll-like

receptor 4 (TLR4) [30]. HA binding to CD44 and

RHAMM guide the muscle development via the regu-

lation of migration and growth of myogenic progeni-

tors [31]. Articular cartilage acquires an archetypal

ECM rich in hydrated aggrecan-HA aggregates con-

tributing to its architecture. HA aids aggrecans to

interact with cell membrane, while concomitantly is

connected to HAS or bound to CD44 [32].

Collagens are the main occupants, over 30%, of

ECMs and especially the collagen type I, II, and III,

which make up 80–90% of the overall body collagen.

Collagens possess a characteristic triple-helix morphol-

ogy consisting of homo- or hetero-trimeric a-chains.
Collagens operate as supportive tissue material, while

at the same time bringing elasticity and stability. The

collagen family consists of 28 members and depending

of their supramolecular structure and function are

classified into several subfamilies [33–35]. Some types

of collagens are found widespread in tissues, such as

type I and III, which are often co-distributed, as well

as types VIII and VI. Collagen IX is abundant in con-

nective tissues and often is co-distributed with collagen

II. Collagens such as XI, XXIV, XXVII, XII, XIV,

XX, and X are present mainly in connective tissues

such as tendons and cartilage. On the other hand, col-

lagens XIII and XVII are found in epithelial tissues.

Some of them, such as collagens IV, VII, XV, XVII,

and XIX, are constituents of BM and collagen type

XXVIII is more tissue-specific as it is present in the

BM of glial cells in the peripheral nervous system. One

collagen, type XXII, has a very specific localization, in

myotendinous junctions [34].

Organs such as arteries, lungs, and skin are abundant

in elastic fibers. In the circulatory system, the elastic

property is crucial for the even blood flow and pressure

produced by the heart. Tropoelastin (TE), which is

secreted from specific elastogenic cells, creates the elas-

tin meshwork via cross-linking upon a scaffold of fib-

rillins and other microfibrils proteins [36]. Fibrillins

additionally aid binding proteins to harbor elastin, but

also participate in cell signaling through interaction

with syndecans and integrins, and the storage of trans-

forming GF b (TGFb) family of GFs in the matrix [37].

Elastin is shaped during development and childhood

and gradually decomposes during adulthood and aging

[38]. Upon proteolytic action of elastases, the elastin-

derived peptides (EDPs) can manipulate signal trans-

duction and as a consequence the physiologically main-

tenance of arteries and the prevention of skin

photoaging, among other events [39].

Lysyl oxidase (LOX) and LOX-like (LOXL) pro-

teins initiate the covalent cross-linking of TE and col-

lagen fibrils, which stabilizes the corresponding

networks [40]. Moreover, they can act as signaling

manipulators due to the interaction with various GFs

such as fibroblast GF 2 (FGF2) and TGFb, or due to

the oxidation of platelet-derived GF b (PDGFRb), for
example. LOX and LOXL participate in development,

tissue repair, and remodeling and their expression

levels are altered in pathological situations [40]. Their

regulation can be controlled by ECM proteins, inhibi-

tors and PGs. For instance, fibromodulin and synde-

can-4 facilitate the interaction of LOX proteins with

collagens [41]. Recently, thrombospondin-2 arose to be

a modulator of skin elasticity, as its knockdown

resulted in reduced collagen fibrillogenesis and LOX

levels [42].
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Another macromolecule forming supramolecular

assemblies is fibronectin which regulates mechanical

properties, such as tension due to conformational

changes of its fibers; active-stretching versus relaxed

fibronectin fibers. Fibronectin also interacts with inte-

grins regulating cellular adhesion, as well as with GFs,

cytokines, and ECM molecules [43,44].

The laminin family contains more than 16 members

and each molecule consists of three chains: a, b, and
c. The distribution of laminins is tissue- and cell-speci-

fic, as laminin-111 can be found mainly in embryos

and laminins 521 and 511 in adult tissues. Laminins

211 and 221 have a more specific distributions, and

they are present in the BM of skeletal and cardiac

muscles, whereas laminins 411 and 421 are found in

the BM of endothelial cells and laminin-332 in the BM

of the epithelium [45,46].

The tenascin (TN) family members belong to the

group of matricellular proteins and comprise four

members: TN-C, TN-R, TN-W, and TN-X. TNs

include three different domains, EGF-like domains,

fibronectin-type III domains and a fibrinogen-like

globe. Many of these domains interact with several

other ECM proteins, like collagens, fibronectin, fib-

rillins, PGs, GFs, chemokines, and other soluble fac-

tors. Moreover, TNs modulate cell adhesion through

their interaction with integrins. They play important

roles during embryonic development and pathogenesis

but probably also in tissue homeostasis [47]. TN-C is

involved in tissue morphogenesis, and its presence in

adult tissues is limited to some stem cell niches, lym-

phoid organs, and tendons [48]. TN-C becomes re-

expressed upon tissue injury serving as endogenous

danger associated molecular pattern molecule (DAMP)

orchestrating tissue repair but also promoting patholo-

gies such as chronic inflammation, fibrosis, myocardi-

tis, and cancer when TN-C expression remains high.

TN-X is involved in organogenesis as it is ubiquitously

expressed in late embryos [49]. TN-W is implicated in

osteogenesis and is abundant in specific stem cell

niches and dense connective tissues [50,51], while TN-

R is expressed in the central nervous system (CNS)

and is mostly connected to neurogenesis [52].

In the following parts of the article, a more detailed

description of the types, structure variability, and main

biological functions of the ECM components is pre-

sented. These parts involve the following: In the sec-

tion of the ECM as tissue-distinctive functional

meshwork, the structural organization and functions

of BM and loose connective tissue, cartilage, bone,

and cornea are presented. The section of the PGs as

key players in ECM organization and cell properties

includes the main types of the extracellularly secreted,

the cell surface, the intracellular, and the BM/pericellu-

lar PGs with reference in their GAG moieties, the tis-

sue distribution, the matrix phenotype as well as the

biological role and prognostic value in malignancies.

In following section, the matrisome, that is, the ECM

databases and interaction networks, a modern field

with significant impact to understand the matrix com-

ponents interactomes is presented. The GAGs, the

sweet regulatory partners of ECM, constitute the

branches of the PG tree with enormous structural vari-

ability and distinct biological roles. Here emphasis is

given to hyaluronan and particularly to its biosynthe-

sis, degradation, and functions. The hyaluronan recep-

tors, multifaceted cell-matrix interaction partners, are

presented separately as they play key roles also trigger-

ing intracellular signaling. Particular emphasis is given

in CD44 and its role in malignancies and human dis-

ease; the collagen family as the major structural com-

ponents of the ECM networks with numerous

functions and close association with human diseases as

well as the main collagen rectors are presented and dis-

cussed. The next sections involve important types of

ECM macromolecules that also play critical roles in

structural architecture and function of ECM, and

involve the elastic fibers that preserve tissue elasticity;

the laminins as the three-armed ECM adhesion pro-

teins; the integrins as adhesion and signaling mediators

between ECM and cells, their ligands and activation as

well as their roles in pathophysiology. The last part of

this guide is dedicated to the physiological and patho-

logical functions of the critical proteolytic and gly-

colytic enzymes implicated in tissue remodeling and

human disease.

ECMs as tissue-distinctive functional
meshworks

Structural organization and functions of

basement membrane and connective tissue

Depending on the topographical position, ECMs are

divided into (a) a pericellular matrix enhancing cellular

attachment and (b) an interstitial matrix providing tis-

sue integrity (Fig. 1A). The first one is a tightly orga-

nized network which is in contact with the cells

creating cross-junctions via integrins, discoidin domain

receptors (DDRs) and PGs such as syndecans [3]. A

typical example of pericellular ECM is the BM, which

is rich in laminin isoforms and collagen IV. Both of

them create self-assembled networks that are con-

nected through ninogens and the HSPGs, perlecan and

agrin. These components create an adhesive microenvi-

ronment for the resident cells, providing support via

5The FEBS Journal (2021) ª 2021 Federation of European Biochemical Societies

N. K. Karamanos et al. Composition and functions of the extracellular matrix



the tethering role of laminins with the cytoskeleton

[8,53]. Laminins possess dual roles in scaffolding and

in signaling. Their N-terminal domain interacts with

several BM biomacromolecules, defining the architec-

ture of BM. Their C-terminal domain binds to cell-

surface receptors, such as a3b1, a6b1, a6b7, and a7b1
integrins, creating a link between the biochemical sig-

nals and the cells facilitating adhesion, migration, sur-

vival, differentiation, and apoptosis [54,55]. Integrins

create a bridge between the outside ECM and the

inside, in particular the cytoskeleton through which

they affect cell signaling [56,57]. A recent study

revealed that the cooperation of a3 and a6 integrin

subunits is responsible for crucial functions such as

adhesion, proliferation, and migration of kidney

epithelial collecting duct cells [58]. The simultaneous

deletion of these a subunits results in a bigger reduc-

tion of these properties and a greater impairment of

signaling cascades and minimized cellular reaction to

FGF-10 and glial cell line-derived neutrophilic factor,

in contrast with the milder alterations observed upon

the deletion of a single subunit [58]. BM also contains

matricellular proteins such as secreted protein acidic

and rich in cysteine, cartilage oligomeric matrix pro-

tein (COMP), thrombospondins (THBSs), TNs, pig-

ment epithelium-derived factor (PEGF), and

osteopontin (OPN) contributing to tissue-specific func-

tions and play a role in tissue homeostasis.

Underlying the BM is the so-called interstitial con-

nective tissue that encloses, separates, and supports tis-

sues. Its ECM composition can be variable to create

specific environments for distinct tissue function and

loose, dense, and specialized connective tissues can be

distinguished. Collagens, mainly type I, but also type

III resist to tensional loads and elastin may further

support additional tissue stretching. On the contrary

PGs, also abundant in these ECMs, opposite compres-

sion forces. Moreover, specialized matrix components

such as PGs and proteins boost the tissue

mechanochemical properties [8]. Bone and cartilage

consist of specialized ECM. Cartilage ECM is com-

posed mainly of a viscous gel enriched by mostly avas-

cular PG aggregates, while bones consist of rigid

mineralized and vascularized ECM.

ECM composition in cartilage

The distribution, concentration, and ratio of the

various ECM molecules, together with their post-

translational modifications such as glycosylation and

cross-linking, determine the unique biomechanophysi-

cal properties of distinct tissues (Fig. 1B). Cartilage, a

specific type of connective tissue, depending on its

composition can be divided in hyaline, elastic and

fibrocartilage. Hyaline cartilage is a thin, translucent

matrix found on rids, nose, larynx, and trachea,

whereas articular hyaline cartilage can be found at

diarthrodial joints. The main components of hyaline

matrix are collagen II, SLRPs such as decorin, bigly-

can, and fibromodulin and aggrecans aggregates medi-

ated by HA. The SLRP decorin, as expected from its

engagement in collagen II fibrils alignment, is crucial

for the assembly of aggrecans with collagen II [59]. In

this way, decorin participates more directly to the tis-

sue integrity and mechanical operation [60]. Elastic

cartilage is found in the middle part of the ear and the

external one as well as in the epiglottis. Its main role

is the tissue shape maintenance and flexibility, due to

the presence of elastic fibers. Collagens IX and XI are

also found in these cartilages [61]. Chondrocytes are

the responsible cells for the ECM homeostasis of these

cartilages preserving the matrix compositions. Chon-

drocytes are in fiber-free and PG-rich cavities called

lacunae and their function can be controlled by pro-

inflammatory cytokines and GFs [62]. Nutrients are

diffused to the majority of hyaline and elastic cartilage

via the perichondrium surrounding cartilage or the

synovial fluid in the case of articular hyaline cartilage.

Perichondrium is a dense irregular collagenous protec-

tive connective tissue, rich in fibroblasts, chondrogenic

cells and chondroblasts [63]. Recently, collagen III and

collagen I emerged to be a crucial mediator of collagen

II fibrillogenesis in articular cartilage and meniscus,

respectively. Especially, the cross-linking of collagen

III to collagen II seems to contribute to the mechani-

cal resistance of collagen II fibrils and the integration

of aggrecan-HA complexes within the collagen II net-

work [64]. All types of cartilages have a low intrinsic

regeneration capacity, due to the poor proliferation

rate of chondrocytes. Changes occur in cartilage dur-

ing aging. For example, old articular cartilage is less

hydrated and contain less PGs aggregates, and under-

goes a swift of GAG context to favor KS than CS and

more HA fragments [65]. Fibrocartilage is found in

menisci, intervertebral disk, tendons, ligaments and

temporomandibular joint and consists of fibrocartilage

cells in lacunae, and a dense fibrous matrix of collagen

and elastic networks. This matrix type is composed of

collagens I, II, III, V, XI, XVI, and XIX, fibril-associ-

ated collagens with interrupted triple helices (FACITs),

the characteristic cartilage PGs, as well as versican and

in addition TN-C [66]. MMPs of the family of collage-

nases, gelatinases, and stromelysins, cathepsin B and

D as well as ADAMTSs are responsible for the carti-

lage turnover [65,66]. Bone and cartilage consist of

ECM adapted to bear loads, although they differ in
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their appearance and in vascularization, cartilage being

avascular and bone mineralized and vascularized.

ECM in bone

Bone is also a type of connective tissue that is mainly

composed of ECM, characterized by organic

biomacromolecules and inorganic compounds (i.e.,

hydroxyapatite [Ca5(PO4)3OH] and trace elements;

Fig. 1C). Collagen I is the main collagen type found in

bone but collagen III and V are also present and alto-

gether act as a scaffold and contribute to the bone

biomechanical properties. PGs such as decorin, bigly-

can, keratocan, and asporin maintain bone homeosta-

sis through promotion of the collagen assembly [67].

Moreover, biglycan and CS chains retain water, which

is essential for the proper bone toughness [68]. Bone

glycoproteins include osteonectin, THBSs, and

R-spondins. The first one affects the collagen mineral-

ization, the second ones the differentiation of the cellu-

lar bone components and the regulation of bone

metabolism and the third ones are regulators of Wnt/

b-catenin pathway controlling bone development in

embryos and bone remodeling in adults. Specialized

proteins containing c-carboxyglutamic acid such as

osteocalcin, periostin and matrix Gla protein con-

tribute to bone formation via regulation of mineraliza-

tion and fibrillogenesis. SIBLINS, the small integrin

binding ligands N-glycosylated proteins, include bone

sialoprotein (BSP2) and OPN, which play a role in

bone formation and mineralization, and also dentin

matrix protein-1 (DMP1), dentin sialophosphoprotein

(DSPP), and matrix extracellular phosphoglycoprotein

(MEPE), which additionally conduce to phosphate

metabolism [67,69]. Bone ECM is continuously chang-

ing for example due to aging and disease, and it seems

like that several MMPs and cathepsin K oversee this

remodeling [70]. For example, the cooperation of

MMP-9 and MMP-14 secreted by osteoclasts is likely

to play a crucial role in bone catabolism [71]. Bone

development and homeostasis are controlled by TGF-

b, BMP, Wnt, FGF, Hh, and PTHrP signaling [72].

TGFb and BMPs are abundant in bone matrix, and

their bioavailability and activity can be modulated by

THBSs, SLRPs, and MMPs [67,69,70].

ECM organization in cornea

Cornea is another distinct tissue due to its opacity.

Cornea consists of the outer epithelium and its BM,

which is in contact with the Bowman’s layer. The mid-

dle layer is the stroma and the inner the endothelium,

separated by a BM, called Descemet’s membrane

(Fig. 1D). The epithelium is a multilayer of cells facili-

tating the flow of tears and acting as a barrier to exter-

nal bacteria [73] and viruses [74]. The corneal

epithelial BM is a very thin ECM allowing thereby

continuous refraction and consists of collagens IV and

VII, laminin-322, nidogens, and HSPGs, creating an

adhesive microenvironment for the epithelium. The

Bowman’s layer is a noncellular dense collagens I and

V, enriched with KSPGs [75]. The corneal stroma

occupies 80% of the tissue thickness and is mainly

responsible for its transparency. This connective tissue

is rich in collagen I giving the cornea biomechanical

stability and shape. Collagen fibril diameter is con-

trolled by collagen V, which is present in nucleation

sites of collagen fibrils, while FACITs regulate the

inter lamellar interactions and lastly SLRPs synchro-

nize the linear and lateral collagen assembly. Kerato-

cytes are residents cells of the stroma and are

responsible for the homeostasis of its components,

either by synthesizing them or by controlling their pro-

teolytic degradation due to MMP production [76,77].

Crystallins are also present in stroma ECM to rein-

force refraction [78]. The Descemet’s membrane con-

sists of collagens IV and VIII, laminins 332, 411, and

511, perlecan, KSPGs, DSPGs, and nidogens [79]. Its

thickness depends on the age and the composition of

ECM molecules. Some biomolecules such as TN-C,

fibrillin-1, and fibronectin-1 are reexpressed in patho-

logical conditions [80]. Corneal endothelium supports

homeostasis, hydration, and nutritional supply of the

stroma [81]. The cornea is an avascular tissue, and this

property is controlled by the expression of anti-angio-

genic and the inhibition of pro-angiogenic molecules,

including vascular endothelial GF (VEGF), throm-

bospondins 1–2, MMPs, bFGF, and PEGF [82].

The matrisome: ECM databases and
interaction networks

The matrisome has been defined as the ensemble of

genes encoding ECM and ECM-associated proteins

[83,84]. Specific features of ECM proteins (signal pep-

tide, presence of protein domains, motifs, or repeats)

have been used to determine the matrisome of various

species using automated machine learning-based algo-

rithms [84]. The human matrisome comprises 1027

genes, encoded by 4% of the human genome, and the

murine matrisome 1110 genes [84]. The matrisome of

model organisms, namely zebrafish [85], Caenorhabdi-

tis elegans [86], Drosophila melanogaster [87], quail

[88], and planarians [89] has been predicted too. The

matrisome is divided into the core matrisome, com-

prised of collagens, glycoproteins, and matrisome-
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associated proteins, which are categorized into ECM-

affiliated proteins, secreted proteins (e.g., cytokines,

TGFb) and ECM regulators such as ECM-degrading

and ECM cross-linking enzymes [84]. A machine learn-

ing model, ECMPride, has also been developed to pre-

dict ECM proteins [90].

The matrisome definition is very useful (a) to iden-

tify matrisome components in large transcriptomic,

proteomic, and multi-omic datasets collected in normal

and diseased cells and tissues, and to analyze ECM

organization, functions, and remodeling in physiologi-

cal processes (e.g., development and aging) and dis-

eases using bioinformatic tools and dedicated

databases [91], and (b) to design new therapeutic

strategies [92]. The matrisome has been experimentally

characterized by mass spectrometry in various healthy

and diseased tissues including skin [93], the cerebrovas-

cular system [94], normal and fibrotic human liver [95–
97], and normal and fibrotic human lung [98]. The

matrisome has also been investigated in numerous can-

cer types [99–103], leading to the definition of a tumor

matrisome index measuring deregulated matrisome

associated with tumor progression [104], to determine

cancer-induced changes and cancer markers [105]. Pro-

teomic data from 17 studies on the ECM of 15 normal

tissue types, six cancer types, and other diseases

including vascular defects and lung and liver fibrosis

have been curated and compiled in MatrisomeDB, the

ECM-protein knowledge database (http://www.pepche

m.org/matrisomedb) [106]. Furthermore, the glycomes

and glycoproteomes of the matrisome have been stud-

ied in order to understand how glycosylation is

involved in matrisome functions with a focus on brain

diseases [107]. The term ‘matreotype’ has been coined

to describe ‘the composition and modification of ECM

or matrisome proteins associated with or caused by a

phenotype, such as longevity, or a distinct and acute

physiological state, as observed during aging or dis-

ease’ [108].

High-throughput techniques have been developed to

collect glycosaminoglycomic [109], proteoglycanomic

[110], and ECM interactomic data [111]. The interac-

tion networks formed in vivo between matrisome com-

ponents are crucial to decipher the molecular

mechanisms connecting and regulating ECM molecular

functions and biological processes. Biomolecular inter-

actions involving at least one matrisome component

are available in the interaction database MatrixDB

(http://matrixdb.univ-lyon1.fr) [112–114] and can be

used to build interactomes of ECM proteins and their

receptor such as integrins [115]. Interaction networks

have been built for several matrisome proteins and

PGs including procollagen C-proteinase enhancer-1

[116], thrombospondin-1 [117], LOX family [118], dec-

orin [119] and syndecans [23] and also for matricryp-

tins [120,121], and GAGs [122–124]. The matrisome

definition has been used to categorize binding features

of Hep partners [125] and will be crucial to determine

how matrisome interaction networks are rewired in

different tissues in physiological and pathological con-

texts.

Proteoglycans: key players in ECM
organization and cell properties

Proteoglycans are ubiquitously expressed by all cell

types and ECMs and can sometimes be a dominant

component (i.e., in the vertebrate cartilage matrix)

[15,16]. Given that PGs are present in multicellular

animals and in all mammalian ECM phenotypes, it is

not surprising that PGs possess an array of functions.

PGs are rapidly emerging as dynamic modulators of

normal states (i.e., ECM hydration, supramolecular

assembly, homeostasis, development, wound healing,

tissue repair, and senescence) and pathobiological con-

ditions (i.e., inflammation, autophagy, fibrosis,

osteoarthritis, atherosclerosis, and cancer) [126,127].

They do not only regulate matrix structural organi-

zation and mechanics but also act as integrators of

major signaling cascades governing cell behavior

(Table 1) [128,129]. Acting as coreceptors for GFs,

facilitating chemokine signaling through G protein-

coupled receptors, interacting with matrix remodeling

enzymes and ECM effectors, PGs are attributed with

peculiar features in cell behavior and signaling

[130,131]. Integral cell properties including adhesion,

migration, proliferation, angiogenesis and survival are

closely correlated with PG expression, while altered

PG expression and post-translational modifications in

cancer cells and tumor stroma critically affects cancer

progression and response to therapeutics [132,133].

Mammalian genome decoding has disclosed four

major PG classes: extracellular, pericellular, cell sur-

face associated, and intracellular. PG classification is

based on their cellular and subcellular localization;

however, they can be further classified in subcategories

as reported by gene homology, modular arrangement,

structural properties, and biological functions

(Table 1) [16].

There is only one intracellular PG, SRGN, best

known as hematopoietic cell granule PG. This unique

PG carrying HS chains is packed in the granules of

mast cells and participates in the formation of mast

cell secretory granules and mediates storage of GFs

and cytokines in secretory vesicles [26,134]. It is

expressed in inflammatory, endothelial, smooth muscle
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Table 1. Intracellular, extracellular, pericellular/BM and cell surface PGs: GAG moieties, tissue distribution, matrix phenotype, biological role

and prognostic value in malignancies. Sources: [8,15,16,135,147]. PDZ, postsynaptic density 95/disk-large/zona occludens-1; PTN,

pleiotrophin; TRPC7, transient receptor potential cation channel subfamily C member 7.

PG

GAG

chains Localization

Matrix

phenotype Interactions Functions

P2rognostic

marker in

malignancies

Intracellular PGs

SRGN HS/CS/DS Bone marrow; lung;

blood cells;

inflammatory cells;

endothelial cells;

smooth muscle

tissue

Interstitial

connective

tissue

pro-MMP9/

MMP13; Ca2+;

chemokines;

histamines;

proteases

Secretion of

inflammatory regulator;

formation of mast cell

secretory granules;

storage of GFs &

cytokines in secretory

vesicles; tumor growth

Colorectal; breast;

lung; prostate;

liver; myeloma;

lymphoma;

thymoma; glioma

Extracellular PGs

Versican CS Hippocampal

formation of brain;

adrenal gland; lung;

gallbladder; urinary

bladder; placenta;

heart; smooth

muscle tissue;

adipose tissue;

cecum; lymph node;

bone marrow; blood

Interstitial

connective

tissue

(fibrocartilage)

Ca2+; HA; lectin;

fibrillin

Cell motility; growth;

differentiation; tissue

morphogenesis &

maintenance; heart/

cartilage/dermal

development

Stomach; renal;

melanoma;

pancreatic; breast

Aggrecan CS/KS Cerebral brain cortex;

heart; lung; seminal

vesicles; cervix; soft

tissue in

chondrocytes

Interstitial

connective

tissue (hyaline

cartilage); Soft

connective

tissue

HA; link protein Cartilage integrity;

neuron protection

against oxidative stress;

cell adhesion

Renal; breast;

laryngeal squamous

cell carcinoma

Brevican CS Cerebral brain cortex;

adrenal gland; small

intestine; male

tissues; skin; blood

cells

Interstitial

connective

tissue

HA; lectin Formation of the brain

ECM; Growth &

motility of brain tumor

cells

Glioma; melanoma

Neurocan CS Cerebral brain cortex;

cerebellum

Interstitial

connective

tissue

Ca2+; HA; NG-

CAM; N-CAM

Neuronal adhesion;

neurite growth during

development; cell

adhesion & migration

Glioma; breast

Decorin CS/DS Female & male

tissues; lung;

esophagus; adipose

tissue

Interstitial

connective

tissue (hyaline

cartilage);

bone

EGFR; Met;

VEGFR2

Growth inhibition &

angiogenesis;

endothelial cell

autophagy;

inflammation; tumor

cell mitophagy

Renal; pancreatic;

lung; breast;

ovarian

Lumican KS Cornea; placenta;

eye; lung

Interstitial

connective

tissue;

cartilage

MMP14;

integrins;

collagen type I

Endothelial cell invasion;

cell proliferation

Pancreatic;

melanoma; breast;

lung; colorectal;

renal

Fibromodulin KS Skin; gallbladder;

thyroid gland; heart;

female & male

tissues; pancreas

Interstitial

connective

tissue; cornea

Collagen type I &

II; LOX

Collagen fibrillogenesis Renal; urothelial;

prostate

Biglycan CS/DS Skeletal & heart

muscle; kidney;

Interstitial

connective

tissue; bone

Collagen type I &

II

Bone & muscle

regeneration;

osteoblast

Pancreatic; renal;

lung; breast
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Table 1. (Continued).

PG

GAG

chains Localization

Matrix

phenotype Interactions Functions

P2rognostic

marker in

malignancies

lung; placenta;

spleen

differentiation;

inflammation; innate

immunity

SPOCK/testican CS Brain; lung;

endocrine tissues

Interstitial

connective

tissue

Ca2+ Neuronal function Head & neck; renal;

colorectal; ovarian;

lung; stomach

Pericellular/BM PGs

Perlecan HS/CS Endometrium;

urinary bladder;

adipose tissue;

smooth muscle

tissue

BM; cornea VEGFR2; a2b1

integrin

Cell adhesion; articular

cartilage formation;

endochondral

ossification;

inflammation;

endocytosis; peripheral

node assembly; lipid

catabolism;

cardiovascular

development;

autophagic regulation

Breast; stomach;

renal; thyroid;

colorectal

Agrin CS/HS Kidney; gallbladder;

skin

BM Ca2+; laminin Postsynaptic

differentiation;

depolarization at CNS

synapses

Liver; hepatocellular;

thyroid; colorectal;

ovarian

Collagen XV CS/HS Placenta; esophagus;

adrenal gland; heart;

adipose tissue

BM Fibronectin; a1b1

integrin; DDR1;

E-cadherin

Adhesion of the BM to

underlying connective

tissue

Colorectal; liver;

urothelial;

pancreatic

Collagen XVIII HS Liver; male tissues BM Zn Inflammation; cell

adhesion

Liver; endometrial;

ovarian; testis

Cell surface PGs

Syndecan-1 HS/CS Breast; kidney; liver;

skin

Interstitial

connective

tissue; cornea

HER2; a6b4,

amb3, amb5

integrins

Angiogenesis; sound

healing; cell invasion &

survival

Lung; hepatocellular;

breast; head &

neck; multiple

myeloma; ovarian;

colorectal

Syndecan-2 HS/CS Thyroid gland; liver;

ovary

Interstitial

connective

tissue; cornea

a-tubulin; c-Src-

cortactin; ERM

Actin cytoskeleton; cell

adhesion

Head & neck;

thyroid; liver

Syndecan-3 HS/CS Brain; colon; smooth

muscle; spleen

Interstitial

connective

tissue; cornea

heparin-binding

growth-

associated

molecule

Neurite outgrowth Glioma; melanoma

Syndecan-4 HS/CS Liver; breast; skin;

kidney

Interstitial

connective

tissue; cornea

EGFR; a6b4,

a5b1 integrins;

PKCa; a-actinin;

TRPC7; Ca2+

Wound healing; cell

invasion & survival;

focal adhesion & stress

fibers

Breast; thyroid

GPC-1 HS Brain; adrenal gland;

esophagus;

gastrointestinal

tract; pancreas;

skeletal muscle;

skin; tonsil

Interstitial

connective

tissue; cornea

FGF2; Wnt/b-

catenin; Hh; IGF;

VEGF; TGFb

Neurodegeneration; cell

growth; immune

response

Breast; ovarian;

prostate;

pancreatic;

esophageal; liver;

endometrial;

thyroid

GPC-2 HS Brain; testis; skin;

thymus

Interstitial

connective

tissue; cornea

Wnt; PTN Neuronal cell adhesion &

motility; neurite

outgrowth

Neuroblastoma;

urothelial; testis
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[135], and many tumor cells, including among others

breast, prostate, colon, hepatocellular, myeloma, and

glioma [26]. SRGN is required for the storage of pro-

teases in both connective tissue and mucosal mast cells

and for storage of granzyme B in T-lymphocytes, while

it plays a role in cytotoxic cell granule-mediated apop-

tosis [136]. It is well established that this PG promotes

the secretion of inflammatory regulators, tumor

growth, and development [25,137,138].

The extracellular PGs, hyalectans, small LRPs

(SLRPs) can be found in interstitial ECMs, and they

interact with several ECM components and stabilize

interactions between HA and other PGs through HA

binding in their C-terminal domain. Hyalectans consist

of four members: versican, aggrecan, brevican, and

neurocan. Versican is composed of different isoforms

(V0, V1, V2, V3), and it has high tissue distribution. It

is mainly expressed in brain, lung, female tissues,

heart, smooth muscle, and adipose tissue, and it is

secreted into blood [135]. This PG interacts with cal-

cium and HA, while it is involved in cell adhesion,

proliferation, migration, and angiogenesis and plays a

central role in tissue morphogenesis and maintenance

[139]. Aggrecan is an integral part of the ECM in car-

tilagenous tissue and it withstands compression in car-

tilage. It is detected in many tissues, including cerebral

Table 1. (Continued).

PG

GAG

chains Localization

Matrix

phenotype Interactions Functions

P2rognostic

marker in

malignancies

GPC-3 HS Lung; placenta;

adipose tissue

Interstitial

connective

tissue; cornea

Frizzled (Wnt

receptor); SHH

& PTC1 (Hh

protein and

receptor,

respectively);

CD81

Apoptosis; limb

patterning; skeletal

development; renal

morphogenesis;

controlling cell

movements during

gastrulation

Stomach;

hepatocellular

carcinoma; breast;

ovarian

GPC-4 HS Brain; lung;

gallbladder; kidney;

adipose tissue;

placenta

Interstitial

connective

tissue

MMP14; IGF;

FGF2

Development of kidney

tubules and of the

CNS; cell division;

growth regulation

Renal; lung

GPC-5 HS Brain; kidney; testis;

lung; endocrine

tissues

Interstitial

connective

tissue

Hh Cell division; growth

regulation

Glioma; lung

GPC-6 HS Brain; retina; liver;

gallbladder; colon;

male & female

tissues; smooth

muscle tissue;

adipose tissue

Interstitial

connective

tissue

Frizzled; PTC1 Cell growth; cell division Renal; liver;

pancreatic;

stomach

CSPG4/NG2 CS Skin; colon;

esophagus; smooth

muscle tissue;

adipose tissue

Interstitial

connective

tissue

Integrins;

collagen type V

& VI; FGF;

PDGF; PDZ-

domain proteins

Cell proliferation; cell

migration;

angiogenesis; tissue

remodeling; endothelial

cell motility during

microvascular

morphogenesis

Melanoma; renal;

urothelial; glioma

Betaglycan HS/CS Testicular cells;

breast; ovary;

urinary bladder;

adipose tissue

Interstitial

connective

tissue

TGFb; b-arrestin EMT; reproductive

functions; fetal growth

Thyroid;

endometrial; head

and neck;

renal; breast

Phosphacan CS/DS Brain cerebral cortex Interstitial

connective

tissue

N-CAM;

fibronectin

Implicated in

developmental

processes in CNS;

antiapoptotic role; cell

differentiation;

oligodendrocyte

precursor proliferation

Urothelial; glioma
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brain cortex, lung, seminal vesicles, cervix, and soft tis-

sue in chondrocytes [135]. This PG is heavily glycosy-

lated by CS and KS and may hold hundreds of GAG

attachment sites. Brevican and neurocan are CS PGs

that are specifically expressed in the CNS, in the cere-

bral cortex of the brain and interact with HA [135].

Small leucine-rich proteoglycans designate the lar-

gest class of PGs; the most abundant matrix compo-

nents (18 members) in terms of distinct gene products

with very vast biological functions. This family interact

with GFs, cytokines, receptor tyrosine kinases (RTKs)

and TLRs, thereby regulating vital processes as embry-

onic development, homeostasis, migration, prolifera-

tion, angiogenesis, innate immunity, apoptosis, and

autophagy [126]. SLRPs are ubiquitously expressed in

all interstitial matrices and may act both as structural

constituents and as signaling molecules, especially dur-

ing ECM remodeling in cancer, diabetes, inflamma-

tion, and atherosclerosis. Among the most studied

members of this family, decorin, lumican, fibromod-

ulin, and biglycan have been implicated in cell signal-

ing, mesenchymal-to-epithelial transition (MET),

inflammation, autophagy, collagen fibrillogenesis, and

matrix organization [140–143].
The third class of extracellular PGs includes

SPOCK/testican family, which encompasses three cal-

cium-binding HSPGs and can be found in interstitial

ECMs. SPOCK1 is exclusively expressed in cerebral

cortex of the brain, SPOCK2 is expressed in brain,

lung, and endocrine tissues, while SPOCK3 expression

is located exclusively in parathyroid gland [135].

SPOCKs are associated with various neuronal mecha-

nisms in the CNS [144].

The subfamily of pericellular/BM PGs include the

modular PGs perlecan and agrin, and collagens XVIII

and XV. This group of PGs is mostly HSPGs, which

are closely associated with the cell surface anchored

via integrins or other receptors, but they can also be a

part of most BMs [145]. Their structure contains large

protein cores with diverse structural motifs. Intrigu-

ingly, the C-terminal domains of perlecan and collagen

XVIII (endorepellin and endostatin, respectively) exert

autophagic and anti-angiogenic properties following

proteolytical cleavage [21,146]. These pericellular/BM

PGs interact with RTKs and other cell surface recep-

tors as well as with other matrix molecules to promote

cell signaling cascades that control migration, angio-

genesis, autophagy, matrix assembly, and vasculariza-

tion [16]. Perlecan carries up to three HS/CS chains

and is mainly located in smooth muscle tissue, but also

in endometrium, urinary bladder, and adipose tissue

[135]. Three HS chains are attached to agrin, which is

located in kidney, gallbladder, and skin [135]. Both

collagens XVIII (liver, brain) and XV (female tissues,

heart muscle, adipose tissue [135]) have a wide tissue

distribution but the highest expression is detected in

BM zones, so they may function to adhere BMs to the

underlying connective tissue stroma.

The family of cell surface PGs enclose two main

subfamilies: the HS/CS PGs syndecans and GPCs.

CSPG4, phosphacan, and betaglycan complete this

family. Syndecans are type I transmembrane (TM) gly-

coproteins that consist of four members (syndecan-1

to syndecan-4) and are ubiquitously expressed in many

human tissues (i.e., immune cells, brain, lung, breast,

testis, skin ) with the exception of syndecan-3 that is

mainly expressed in the nervous and lymphoid systems

[135]. Three distinct domains determine their architec-

ture and biological functions; the C-terminal cytoplas-

mic domain, the N-terminal polypeptide where GAGs

are attached to serine residues of the protein core and

a single TM domain. Syndecans have key roles in

many biological processes, such as development,

wound healing, stem cell differentiation, inflammation,

and cancer progression. Studies focusing on structure-

function relationships revealed that via their HS/CS

chains syndecans bind GFs (i.e., HGF, FGF, EGF,

VEGF) and cytokines, as they also interact with cell

receptors [i.e., epidermal GF receptor (EGFR), HER2,

TGFbRI, TGFbRII, insulin-like growth factor recep-

tor I] and integrins (amb3, amb5, a3b1, a6b4, a5b1) to
promote cell signaling [147–149]. Notably, the function

of cell surface PGs can be altered by ectodomain shed-

ding, which converts the membrane-bound coreceptors

into soluble paracrine effectors that in the case of

tumor has a huge impact on cancer cells and their sur-

rounding stroma [132,150].

Glypicans are modified with HS chains near the jux-

tamembrane region and are anchored to the plasma

membrane through a C-terminal glycosylphos-

phatidylinositol (GPI) linkage, which is cleavable by

the lipase Notum. Six GPCs have been identified in

mammals (i.e., GPC1–6) that are mainly expressed in

epithelial and mesenchymal cells and control cell divi-

sion and growth regulation. Moreover, GPCs have

been characterized as putative cell surface coreceptors

for GFs [such as Wnt/b-catenin, Hh, fibroblast GF

(FGF), insulin-like GF (IGF), VEGF, and transform-

ing GF-b (TGFb)] and matrix modifying enzymes

(proteases and lyases) through their HS chains in

many cancer cells, thus being involved in cell signaling

and the control of tumor growth, angiogenesis, and

metastasis [151–153]. For instance, GPC1 is mainly

expressed in the CNS, skin, and skeletal system,

whereas studies have shown increased expression in

breast [154], ovarian [155], prostate [156], pancreatic
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[157], and esophageal cancer cells [158]. GPC2 has a

key role in neuronal cell adhesion and neurite out-

growth and has been associated with poor overall sur-

vival of neuroblastoma patients [159,160]. GPC3

positively regulates the canonical Wnt signaling path-

way by binding to the Wnt receptor Frizzled [161] and

the subsequent tumor growth in hepatocellular carci-

noma [162], breast [163], and ovarian cancer [164].

Other cell surface PGs that are involved in cell

adhesion and signaling are the single-pass TM CSPG4,

betaglycan, and phosphacan. CSPG4/NG2 expression

is detected in skin, colon, esophagus, smooth muscle,

and adipose tissue [135], as regulates cell proliferation

and migration which stimulates endothelial cell motil-

ity during microvascular morphogenesis [165] and is

involved in the origin and progression of human glio-

mas [166]. Moreover, it is an integral membrane CS

PG expressed in human malignant melanoma cells

[167]. Betaglycan/TGFb type III receptor is a single-

pass TM PG with one HS/CS chain that belongs to

the TGFb superfamily of coreceptors and its extracel-

lular domain contains several potential GAG attach-

ment sites and protease-sensitive sequences near the

plasma membrane [168]. It is a ubiquitously expressed

cell surface PG and most abundant in testicular cells,

in breast and ovary [135]. Phosphacan/receptor-type

protein tyrosine phosphatase b is exclusively expressed

in the cerebral cortex of the brain [135] and it has up

to five CS/DS chains. It has been proposed that phos-

phacan is involved in the regulation of specific devel-

opmental processes in the CNS, it is required for

normal differentiation and has antiapoptotic role

[169].

GAGs: the sweet regulatory partners
of ECM

At the structural level, PGs consist of a core protein

into which from one to more than a hundred GAG

chains are covalently attached. Variations in the struc-

ture of disaccharide unit and sulfonylation degree

define six GAG members: CS, DS, Hep, HS, KS, and

HA [170,171]. GAGs themselves are unbranched, neg-

atively charged, linear heteropolysaccharides with a

repeating disaccharide structure of hexuronic acid (D-

glucuronic or L-iduronic acid) or galactose only in KS,

and N-acetylated hexosamines (N-acetyl-D-glucosamine

or N-acetyl-D-galactosamine). GAG biosynthesis, with

the exception of HA, takes place in the endoplasmic

reticulum and Golgi apparatus via discrete biosyn-

thetic cascades orchestrated by several enzymes [15].

HA is the simplest GAG in nature, the only GAG

produced on the cell membrane and immediately

extruded to the extracellular space without any cova-

lent linkage to proteins. The unique structure of each

GAG chain risen from differences in saccharide com-

position, size, and the positions in which the sulfonyla-

tion takes place in both disaccharides of the repeating

unit, together with the numerous combinations that

GAGs are attached to the core proteins, explain the

extremely structural and functional diversity of PGs

[171,172].

Glycosaminoglycan chains regulate various signaling

pathways in normal and pathological processes

through their interactions with different classes of

matrix proteins. Hep and HS demonstrate high

sequence heterogeneity and variable sulfation patterns;

therefore, the majority of GAG-binding proteins inter-

act with these GAGs [173]. Compared to Hep, HS

demonstrates a lower sulfation and C-5 epimerization

of D-glucuronic to L-iduronic acid and has key roles

in homeostasis, embryonic development, and disease

progression through its interactions with GFs (i.e.,

FGF, TGFb, IGF, VEGF, PDGF), cell surface recep-

tors [i.e., CD44, fibroblast GF receptor (FGFR)], and

matrix enzymes, thus modulating major signaling cas-

cades [172,174]. The effects of HS on GF signaling are

tightly regulated by the actions of heparanases

(HPSE), sulfotransferases, and sulfatases [175,176]. In

addition to its anticoagulant activity, there is accumu-

lating evidence highlighting various anticancer activi-

ties of Hep and nano-Hep derivatives in several cancer

types [177,178]. Importantly, Hep and nano-Hep

derivatives significantly reduce breast cancer cell prolif-

eration and metastasis in vitro and in vivo as well as

regulates the expression profile of major ECM macro-

molecules, providing strong evidence for therapeutic

targeting [179,180]. Intriguingly, it has been recently

discovered that severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) viral attachment and

infection involves HS-dependent enhancement of bind-

ing to angiotensin-converting enzyme 2 (ACE2)

through its receptor-binding domain [181]. Moreover,

exogenous Hep and nonanticoagulant derivatives inhi-

bit viral adhesion and cell infection, presenting novel

therapeutic approaches for COVID-19 [181].

Chondroitin sulfate and its C-5 epimerization coun-

terpart, DS, are the prevalent GAGs in many tissues,

as in brain and cartilage [182]. GFs including FGF,

interleukin-10, and EGF interact with CS in a CS

structure-specific manner [183]. CS/DS have key roles

in axonal growth via the TM receptor protein tyrosine

phosphatases and the receptor for advanced glycation

end products (RAGE) that have been identified as

functional CS/DS receptors [184,185]. Moreover, CS/

DS expression in the tumor niche affects tumor
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progression and metastasis in many cancer types

including breast, lung, colon, and prostate [186,187].

The disaccharide units of KS can be nonsulfated,

mono-sulfated or di-sulfated, like HS. KS is expressed

in cartilage and a number of epithelial and neural tis-

sues, playing a role in wound healing, embryogenesis,

collagen fiber assembly, and corneal organization

[188,189]. KS is also present in neurosecretory vesicles,

suggesting its roles in vesicle formation and neuronal

activity [190].

Hyaluronan: biosynthesis, degradation, and

functions

When Carl Meyer in 1934 described for the first time

the hyaluronan (hyaluronic acid, HA) chain in sub-

stantia ialoidea in the eye, he might never have imag-

ined the incredible future that polymer would have

[191]. HA is a high molecular size unbranched GAG

found intracellularly, on the cell surface, but predomi-

nately in the ECM. In fact, in ECM, a milieu of sev-

eral macromolecules interacting specifically each other

exerting extraordinary properties, HA plays a unique

role for different reasons [15]. The repeating unit of

the HA possesses one carboxyl group and is therefore

a negatively charged polyelectrolyte at neutral pH. The

unit can be repeated up to 25 000 times, generating a

molecular mass of millions of Daltons (5 9 105 to

5 9 106 Da; Fig. 2) [192,193]. HA exhibits superior

hydrophilic properties that underlie most of its biome-

chanical properties since every HA disaccharide unit

interacts with 25 water molecules [194].

Due to its biological properties, HA emerged among

the most biologically active relevant molecules in the

body. HA plays a key role in several physiological pro-

cesses including development [195], wound healing

[196], cell migration [197] and proliferation [198]. This

GAG is found in high amounts during embryogenesis,

as well as when rapid tissue turnover and repair are tak-

ing place. HA is involved in several pathologies, such as

inflammation [28,199–202], cancer [203–207], vascular

diseases [208–210], diabetes [210], and virus infections

such as dengue virus and SARS-CoV-2 [211–214]. Vital
cellular functions, such as division and motility, of

either normal or transformed cells are highly dependent

on HA. A boost in HA synthesis occurs just prior to

mitosis, enabling cells to lose adhesion from their sur-

rounding ECMs as well as to dissociate from neighbor-

ing cells in preparation for division, a feature also

important for tumor cell metastatic capacity [203].

The enzymes involved in HA biosynthesis are struc-

turally organized to extrude the polymer outside of the

cell in the ECM picking in the cytoplasm the necessary

UDP sugars. It has been suggested that the cytoplas-

mic domain of the enzymes could be involved in the

regulation of the polymers size, influencing the chain

stability during the synthesis [215].

HASes use the UDP sugars precursors (UDP-GlcA

and UDP-GlcNAc) due to the presence of a double

catalytic domain, which interacts with these two differ-

ent substrates. This generates the disaccharide units

necessary to create the polymer. The kinetics of the

HASes have been extensively studied, even though,

without crystallography information, all kinetic expla-

nations are still hypothetical [216]. The presence in

mammals of three different enzymes to produce HA

underlines the possibility that each specific enzyme has

unique kinetic properties. In fact, it has been proposed

that the different enzymes can produce polymers of

different length and at different rates. In particular,

HAS1 and HAS2 produce longer HA polymers

(~ 2 9 106 Da) than HAS3 (~ 2 9 105 Da), while

HAS1 synthesizes lower amounts of HA compared to

HAS2 and HAS3 [193,217–220].
Beside the different size of the polymer produced,

HASes differ also in the regulation of their catalytic

activity. It has been demonstrated that HAS2 has sev-

eral covalent regulations, such as the activating phos-

phorylation by PKC or the inhibitory phosphorylation

by AMP-activated protein kinase [221,222], as well as

O-GlcNAcylation [223] and mono-ubiquitination [224]

that both increase the stability and activity of the

enzyme. On the other hand, HAS3 is regulated by its

sorting to the cell membrane by interaction with Rab10

[225]. These regulations are mainly related to the energy

content of the cells [226]. In addition, several studies

have demonstrated the presence of HA intracellularly

under cellular stress conditions, such as hyperglycemia,

virus infection, inflammation, and cancer, revealing also

a paradoxical topology of HASes inside the cells [202].

HA has a rapid turnover in the tissues, and one-third

of the total body HA is turned over every day. In mam-

mals, HA synthesis and degradation rates regulate HA

concentration. A large body of literature showed that

the HA fragments can be recognized by specific recep-

tors triggering specific inflammatory pathways. As men-

tioned above, HA digestion in mammalian tissues is

carried out by six different HYALs (HYAL-1, HYAL-

2, HYAL-3, HYAL-4, P1, and PH20). The HYALs are

classified as endo-beta-N-acetylglucosaminidases

according to their hydrolytic mechanisms [227,228].

HYAL-1 and HYAL-2 are the major HYALs found in

tissues. HYAL-1 is found in lysosomes, and its defi-

ciency leads to a genetic disease called mucopolysaccha-

ridosis type IX [229]. HYAL-2 is a GPI-anchored

protein with extracellular activity that co-localizes with
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CD44 within specialized microdomains (i.e., lipid rafts)

and together exert the coordinated functions of binding

and degrading HA [227]. In mammals, HYAL-1 and

HYAL-2 activities are synergic: HYAL-2 degrades HA

to fragments of 20 kDa corresponding to about 50 dis-

accharide units, and HYAL-1 degrades these fragments

into smaller fragments of about 800 Da (~ 2 disaccha-

ride units; Fig. 3). The role and activities of HYAL-3

are still elusive [230]. HA polymer degradation could

also be due to ROS produced by inflammation, while

UV radiation breaks HA polymer in fragments without

specific size [231].

The human HYAL4 expression is restricted to pla-

centa and skeletal muscle [232]. There is evidence

indicating that HYAL-4 is a chondroitinase with no

activity against HA making this enzyme peculiar in

vertebrate tissues. HYALP1 is a pseudogene tran-

scribed, but not translated, in the human, and PH-20

is the enzyme that digests oocyte-surrounding HA,

facilitating ovum fertilization [233]. The HYALs (�1

to �4) can work in acidic environment (about pH 3

and 4), whereas PH-20 and other HYALs from

insects and snakes’ venoms are active at neutral pH

[234]. A new HYALs has been described in

Fig. 2. Structure and interactions of HA. HA

is a polymer constituted by a repeating

disaccharide units composed of D-glucuronic

acid (GlcA) linked to N-acetyl-D-glucosamine

(GlcNAc) with a glucuronic beta 1–3 linkage

between GlcA and GlcNAc and a

hexosaminidic bond beta 1–4 between

GlcNAc and GlcA. HA interacts with

hyaladherins that include receptors

(depicted in blue) as well as PGs and other

ECM molecules via the LINK module or the

BX7B motif.
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mammals: TMEM2, which is a TM protein with

strong HYAL activity [235] that specifically degrades

high molecular weight HA (HMWHA) into

� 5 kDa fragments. TMEM is a potent modulator

of ER-stress resistance and innate immunity [236].

Another HYAL called CEMIP/KIAA1199 (also

known as HYBID) has been recently identified with

HA-degrading activity [237,238]. Interestingly, this

enzyme has a key role in cancer development, in skin

biology and cell senescence [238] (Fig. 3). In addition,

bacteria produce several HYALs which act as lyases

[239].

The degradation of HA produce fragments that

have important biological functions. HA minimal size

able to trigger cell response has been extensively

addressed. It has been reported that 4–6 disaccharide

units (4–6 mers) are responsible for NF-jB signaling

and MMP synthesis, while HA oligomers ranging from

4 to 16 disaccharides are able to activate dendritic cells

via TLR receptors [240,241].

HMWHAshowsanti-angiogenic, immunesuppressive,

andanti-inflammatoryactivities, and induces tissue repar-

ative processes as described in wound healing [242]. In an

opposite fashion, thefragmentsofHA,calledoligosaccha-

rides when < 200 kDa, show the capacity to modify the

expressionof a variety of genes (suchasMMPs, syndecan-

4, HPSE) to induce inflammatory processes as well as

angiogenesis throughout their interactions with specific

receptors[29,243–245](Fig. 3).

Hyaluronan receptors: the
multifaceted cell-matrix interaction
partners

HA requires specific receptors that regulate cell-ECM

interactions triggering also intracellular signaling. In

Fig. 3. Synthesis, degradation and functions of HA. HASes (HAS1, 2 and 3) use UDP sugar precursors to produce the HA polymer that is

extruded to the extracellular space. HMW-HA induces the formation of CD44 clusters on cell membrane. In contrast, LMW-HA derived from

the action of HYALs (i.e., Hyal-1, Hyal-2, HYBID, TMEM2) and/or ROS cannot induce receptor clustering thereby driving distinct signaling

pathways and cellular functions.

16 The FEBS Journal (2021) ª 2021 Federation of European Biochemical Societies

Composition and functions of the extracellular matrix N. K. Karamanos et al.



general, all proteins that interact with HA are defined

‘hyaladherins’ including not only receptors but also

PGs and other ECM molecules. PGs as aggrecan, neu-

rocan, brevican, and versican can be included among

hyaladherins interacting with HA creating networks

that form an architectural scaffold [194]. Hyaladherins

include receptors (i.e., CD44, RHAMM, LYVE-1,

Layilin, Stabilin1 and HARE) that can trigger specific

intracellular signaling [246] or mediate endocytosis and

degradation of HA. Proteins can interact with HA by

using the LINK module or BX7B motif (where B is

either lysine or arginine and X can be any amino acid

other than acidic residues; Fig. 2) [215,246]. HA and

PG Link protein family (hyaluronan and PG link pro-

tein 1–4) have been described to interact with HA and

PG, stabilizing such multicomponent complexes [246].

Some HA-binding proteins do not contain a link mod-

ule (RHAMM, ITI, SPACR, SPACRCAN, CD38,

CDC37, HABP1/P-32, Siglec-9, and IHABP4), and

most of these are unrelated to one another by amino

acid sequence. Even though some of these proteins

contain clusters of basic amino acids (BX7B motifs),

the actual HA docking site of the chain with this motif

has not been established yet.

The most common HA receptor is CD44, a TM gly-

coprotein widely distributed in different cells and par-

ticularly concentrated on the membranes of

inflammatory and cancer cells [203,247]. The human

CD44 gene comprises 19 exons, 10 of which (designated

v1–v10) can be subjected to alternative splicing.

Although alternative splicing of the CD44 gene could

in theory generate more than 700 different isoforms,

only around 20 isoforms have been identified so far.

Splicing together exons 1–5 and 16–19 of the tran-

scribed mRNA led to the translation of the standard

CD44 (CD44s) that is the conserved form and has a

molecular mass of about 85–90 kDa as mature protein

[204,247]. Besides alternative splicing, other post-trans-

lational modifications add to the heterogeneity of

CD44 proteins, such as N- and O-linked glycosylations

or the addition of CS and other GAGS [248,249]. The

exon of CD44 variant 3 (CD44v3) product can also be

modified by HS. A splicing switch, resulting in either

the expression of CD44v isoforms or the expression of

CD44s, is controlled by extracellular cues, cues that still

need better characterization [250]. However, the splic-

ing of CD44 clearly takes place in pathological condi-

tions and is determinant for tumor progression. In

breast cancer for example, the switch from CD44 vari-

ant isoforms to CD44s was shown to be involved in the

determination of cancer stem cell fate [251]. In colorec-

tal cancer, a switch from CD44s to CD44v4-v10 occurs

in Lgr5+ cancer stem cells [252].

CD44 is a TM glycoprotein that bind with its extra-

cellular domain (ectodomain) components of the

ECM, including HA, fibronectin, and laminin, but also

to various GFs and cytokines, and senses stimuli from

the external cell microenvironment [204,253]. The TM

domain provides a docking site for cofactors and

adaptor proteins and seems to be involved in lympho-

cyte homing [253,254]. The intracellular domain can be

cleaved and translocated to the nucleus where it seems

to mediate transcription [254]. Although the cytoplas-

mic tail of CD44 is relatively short (contains only 72

amino acid residues) and devoid of any enzymatic

activity, it contains structural motifs implicated in

interactions with multiple cytoskeletal and signaling

proteins [255].

Notably, the CD44 interactions with HA are

molecular size-dependent and lead to receptor cluster-

ing when the HA chains are long enough (HMWHA

~ 2 MDa). This clustering does not occur in the case

of low molecular weight (LMW) HA molecules. The

binding induces different signaling pathways and cell

functions (Fig. 3). One of the effects of CD44

engagement by HA is the activation of Rho GTPase

signaling, which controls cytoskeletal organization,

chemoresistance, cell growth and proliferation. Rho

activation induces PI3K which triggers the serine/

threonine kinases (Akt) and, in turn, the phosphory-

lation of substrates involved in cell proliferation, sur-

vival, and motility [256]. The relationship between

size and biological functions is confirmed by litera-

ture describing a very HMWHA (vHMWHA

> 6 MDa) in naked mole rat, an animal with an

incredible longevity and cancer resistance [257,258].

Unexpectedly, vHMWHA masks and suppresses

CD44 clustering, interactions and signaling of CD44

proteins, in contrast to HMWHA, and thereby exhi-

bits distinct cytoprotection through modulating the

p53 pathway [258]. The involvement of CD44 in

tumor progression and metastasis is further discussed

in the next section.

Another important HA receptor related to cell

motility is RHAMM (also known as CD168). Several

structural variants of RHAMM arise from either alter-

native splicing of RHAMM pre-mRNA or post-trans-

lational mechanisms or alternative start codon usage

[259,260]. RHAMM is a hydrophilic helical protein

that binds both fragmented and HMWHA via posi-

tively charged amino acid clusters within its C termi-

nus that are structurally distinct from the LINK

module responsible for the binding of HA to CD44

[261,262]. RHAMM also binds to microtubules via its

N and C termini [259]. In addition, it can self-associate

as dimers or trimers as predicted by the presence of
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leucine zippers within the protein together with its

potential to form a coiled coil [260].

The multifaceted functions of RHAMM are related

to its complex subcellular localization. Typically, it is

an intracellular protein that is exported to the cell sur-

face in response to specific stimuli. Cell surface

RHAMM functions as a coreceptor by affecting sig-

naling through HA and GF receptors, while intracellu-

lar RHAMM binds to a number of protein partners

that mediate its functions as a regulator of micro-

tubule dynamics, structure/function of centrosomes

and gene expression affecting cell polarity, directed cell

movement, and mitotic spindle integrity [259,263].

RHAMM is present in several cell types, including

cancer and endothelial cells [264,265]. Interaction

between HA and RHAMM triggers a signaling path-

way not completely described yet which includes RAS-

oncogene activity [263,266,267]. Several studies sup-

port a correlation of RHAMM expression to malig-

nancy, while it cooperates with CD44 in HA

endocytosis and signaling [268]. Indeed, CD44 is

responsible for HA uptake in adherent cells, while in

nonadherent cells RHAMM is the main HA endocytic

receptor [269]. It is also known that RHAMM and

CD44 share ERK1/2 phosphorylation cascade activa-

tion [263].

CD44: a promiscuous family of molecules

affecting tumor growth and metastasis through

signaling control

CD44 proteins are involved in several cellular

responses including proliferation, differentiation, sur-

vival, and migration (reviewed in [247]). Ample evi-

dence points to a role of CD44 in signaling [270].

However, as mentioned above, CD44 cannot signal on

its own. To control signaling it associates to other cell

surface receptors such as RTKs, hepatocyte GF recep-

tor (MET), VEGFR-2, EGFR, and GPCRs. These

multiple collaborations, showing that CD44 proteins

are promiscuous molecules, enables them to have an

impact on many diseases, the most prominent one

being cancer. The pleiotropic effect of CD44 and the

fact that expression of CD44 variant isoforms is lim-

ited to a restricted number of tissues are potentially

advantageous for therapeutic targeting.

Consequences of CD44-dependent signaling on tumor

progression and metastasis

The diversity of signals that can be generated from

RTKs and other cell surface receptors is in part due to

the association with other molecules such as cell

adhesion molecules at the cell surface [270]. The core-

ceptor function of CD44 for RTKs and thereby its

function in signaling seems to be ligand-dependent

(Fig. 4). In the case of HGF/MET and VEGF/

VEGFR-2, isoforms containing the exon v6 are

involved [270]. CD44v6-containing isoforms control

the activation of MET and VEGFR-2, as indicated by

the inhibition of RTK phosphorylation upon treat-

ment with CD44v6 inhibitors, such as the CD44v6

peptides or CD44v6 antibodies [271,272]. Signaling

from both of these receptors requires the recruitment

of Ezrin-radixin-moesin (ERM) to the CD44 cytoplas-

mic tail. The collaboration between CD44v6 and these

RTKs is involved in the progression of pancreatic can-

cer (Fig. 4) [272]. Indeed, in several mouse models of

pancreatic cancer, inhibition of CD44v6 by a CD44v6

peptide led to decreased tumor growth and decreased

metastasis. In the KPC (LSL-KRasG12D, LSL-

Tpr53R172H and Pdx1-Cre) model of pancreatic cancer,

treatment with the CD44v6 peptide led to an increase

in life span of 40 days compared to mice treated with

a control peptide. A modified version of the CD44v6

peptide used in the above-mentioned studies, is cur-

rently being used in a clinical trial. An interesting

study in pancreatic cancer, showing that expression of

CD44v6 and Tetraspanin on exosomes plays a role in

metastasis [273,274], added to the function of CD44v6

in pancreatic cancer. In colorectal cancer, the CD44v6/

MET pair has also been shown to be involved

[275,276]. Other isoforms of CD44 collaborate with

other RTKs. The ligand dependency of the coreceptor

function of CD44 was demonstrated using the EGFR

family of RTK as a model (Fig. 4) [277]. In several

breast cancer cell lines, the authors showed that

CD44v6 was recruited by EGF-induced and Epireg-

ulin-induced ErbB1, and that the same isoform was

also recruited by neuregulin-induced ErbB3 and

ErbB4. In contrast, Hep-binding GFs such as HB-

EGF needed the CD44v3 heparan-sulfated isoform of

CD44 instead of CD44v6. Transforming GF (TGFa)
was independent of all CD44 isoforms. These in vitro

studies were supported by in vivo data showing that

the CD44v6 peptide led to smaller metastases in a 4T1

model of breast cancer. FGF is another GF that

recruits the heparan-sulfated form of CD44v3,

whereby CD44v3 is required for the presentation of

FGF to its authentic receptor FGFR during limb

development [278]. In contrast to the activating role of

CD44 described above, HA inhibited PDFGR activa-

tion upon recruitment of a tyrosine phosphatase by

CD44 [279].

The involvement of CD44 isoforms in these signal-

ing pathways suggest that CD44 molecules are able to
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organize platforms of signaling, which lead to patho-

logical outcomes after they are deregulated. The exam-

ples above also suggest that the function of CD44 in

RTK activation is in part due to its ability to recruit

GFs among which HGF or VEGF [280], but also HB-

EGF and bFGF [281].

As previously described, HA is involved in angio-

genesis, tumor progression and metastasis [282]

through its binding to various receptors of which

CD44 is the major one. Once HA binds CXCL12

(SDF1alpha) [283], the additional binding to CD44s

boosts CXCL12-induced activation of CXCR4. How-

ever, Fuchs et al. [284], showed that small HA frag-

ments block this activation. The authors also showed

that this CD44/CXCR4/CXCL12/HA complex is

involved in angiogenesis. The interplay between CD44

and CXCR4 could also be instrumental for the devel-

opment of acute myeloid leukemia (AML) [285] and

for sustaining leukemic stemness [285] and our own

unpublished results]. A possible explanation of the

function of HA/CD44 in CXCL12/CXCR4 signaling is

that HA acts as an adhesive, collecting CXCL12 in the

vicinity of CXCR4 and CD44 and thereby unleashing

the signaling cascade (Fig. 4).

Besides GFs and HA, CD44 isoforms also bind

cytokines like OPN [248]. The binding of OPN to

CD44 is involved in the expression of CD44v6 in col-

orectal cancer stem cells (CR-CSCs) [275]. This

Fig. 4. CD44 isoforms associate with various cell surface receptors including RTKs, G protein-coupled receptors and Wnt receptors during

tumor development and metastasis. The MET/CD44v6 pair has been shown to promote tumor growth and metastasis in pancreatic cancer,

EGFR/EGF/CD44v6 are involved in initiation of metastasis in breast cancer, and CXCR4/CD44/HA/CXCL12 take part in angiogenesis [270].
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interaction also takes place in gastrointestinal cancer

cells, thus enhancing their survival [286].

To the multiple pathways recruiting CD44, we can

add the Wnt signaling pathway as an additional sig-

naling route for CD44 (Fig. 4). In a positive feedback

loop, CD44 influences the Wnt pathway upon associa-

tion to one of the main components of the Wnt sig-

nalosome, LRP6 [287]. To date, however, there is no

indication that CD44 binds to Wnt.

CD44 contribution to tumor progression is not restricted

to the tumor cells

CD44 plays a role at several steps in tumor progres-

sion and metastasis. However, most studies on the

function of CD44 in cancer have focused their atten-

tion on cancer cells. Although CD44 is present on sev-

eral cells of the tumor stroma, few reports have shown

an involvement of CD44 on stromal cells in tumor

progression. Expression of CD44 on cancer-associated

fibroblasts (CAFs) was shown to increase in hypoxic

conditions and in the avascular region. This expression

of CD44 on CAFs contributed to sustaining the stem-

ness of colorectal cancer cells [288]. SRGN, another

partner of CD44, is a PG secreted by human CAFs.

In non-small-cell lung cancer, the SRGN-CD44 inter-

action was shown to promote aggressiveness by induc-

ing epithelial-to-mesenchymal transition (EMT) [289].

The MET/CD44v6 and VEGFR-2/CD44v6 pairs

were targeted on endothelial cells in pancreatic tumors

by means of the C44v6 peptide [271]. A decreased

angiogenesis and decreased tumor growth and metas-

tasis were observed.

In breast cancer, the expression of CD44 on fibrob-

lasts promoted survival of tumor cells and resistance

to paclitaxel [290]. Other studies in breast cancer have

shown that the absence of CD44 in bone marrow cells

decreased the contribution of these cells to tumor

stroma and led to decreased migration of mesenchymal

stem cells and weak angiogenic support [291].

Using the Cd44-floxed mice [292], a role for CD44

in pancreatic stellate cells was revealed [Heneka, Tref-

fert and Orian-Rousseau, unpublished data]. Crossing

of these Cd44-floxed mice with other stromal-specific

promoter-driven Cre mice should help to further eluci-

date the role of CD44 in cancer. Moreover, targeting

CD44 on tumor cells and on the tumor stroma will

probably have a bigger impact.

CD44 as a promising target in human disease

Altogether, targeting CD44 is necessary and urgent

[293]. Given the pleiotropic effects of CD44 not only

in cancer but also in other inflammatory diseases—
including nonalcoholic liver diseases [294], multiple

sclerosis [295], or arthritis [reviewed in [296]]—it

appears to be a potentially important therapeutic tar-

get. The ubiquitous expression of CD44s makes this

targeting difficult, but isoforms have been targeted

successfully as in the case of CD44v6. Indeed, the

use of shRNA against CD44v6 led to a decreased

growth of adenoma in ApcMin/+ mice [297]. More-

over, the aforementioned CD44v6 peptide [272] is

currently being used in a clinical trial. T cells tar-

geted to CD44v6 showed a potent antitumor effect

against AML and multiple myeloma without target-

ing hematopoietic stem cells and CD44v6-expressing

keratinocytes [298]. In chronic lymphocytic leukemia

this time, a humanized mAb against CD44 (RG7356)

was shown to have potential therapeutic effects in

patients expressing both CD44 and ZAP-70 [299]. In

any case, it is clear that targeting CD44s might

induce side effects that could prevent the use of these

inhibitors in patients. Therefore, the more we learn

about the interactions between CD44 isoforms and

their partners, the more precise and successful the

targeting will be.

The collagen family: from tissue
design to the regulation of biological
processes

Collagens form a family of ECM proteins, which share

a structural motif, the triple helix. Twenty-eight colla-

gen types numbered by Roman numerals (I–XXVIII)

have been identified [300 IX, X, XII, XIV, XVI, and

XIX, 301–303]. They act as scaffolds providing ECMs

and tissues with their structural organization and

mechanical properties. In addition to their role as tis-

sue designers, collagens interact with cell surface recep-

tors, and regulate numerous biological processes either

as full-length proteins or via their bioactive fragments,

called matricryptins or matrikines, released by limited

proteolysis (Table 2). Changes in collagen expression,

deposition, cross-linking, and/or degradation occur in

many diseases where stromal collagen organization is

altered including cancer [304–307] and fibrosis [308–
313]. Furthermore, mutations in the genes encoding

collagens are associated with a variety of genetic disor-

ders [314,315].

Collagens are trimeric proteins comprised of three

identical or different polypeptide chains called a
chains, which form a triple helix. The triple helix of

collagens—an ancient protein structure that enabled

animal multicellularity and tissue evolution. The char-

acteristic structural feature common to all collagen
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types is the presence of at least one triple-helical

domain of variable length, which is interrupted by

noncollagenous domains in several collagen types.

Recent studies on the mechanics and structural stabil-

ity of the triple helix pointed out the influence of the

local sequence and raised the question of its sequence-

specific mechanical stability and function [33]. Other

proteins including the so-called soluble defense colla-

gens and membrane proteins such as ectodysplasin and

the macrophage receptor MARCO also contain a tri-

ple helix and belong to the collagen superfamily. Sev-

eral collagen types contain noncollagenous domains

such as fibronectin III, von Willebrand factor A

(vWF), thrombospondin, and Kunitz inhibitor

domains (Table 2) [303].

Most collagen types form supramolecular assem-

blies, which define collagen subfamilies, in association

with other ECM components. Collagens form fibrils

[316], anchoring fibrils (collagen VII), beaded filaments

(collagen VI), networks (collagens IV, VIII and X). In

contrast, some collagens did not form supramolecular

assemblies on their own but associate with existing

ones such as the FACITs, which are located at the sur-

face of collagen I and II fibrils. No supramolecular

assemblies have been identified so far for the multi-

plexins (multiple triple-helical domains and interrup-

tions, collagens XV and XVIII), and for the four

membrane collagens (XIII, XVII, XXIII, and XXV)

but the shed ectodomain of collagen XIII associates

with the fibrillar fibronectin matrix and may interfere

with its assembly in vitro [317]. Supramolecular assem-

blies may also depend on the context as shown for col-

lagen XVI, which associates with collagen fibrils in

cartilage and with beaded filaments in skin [318]. Few

data are available for collagen XXVI, which is specifi-

cally expressed in testis and ovary and has been identi-

fied by its ability to bind to heat shock protein 47

[319].

Fibrillar collagens

Collagens I, II, III, V, and XI are the most extensively

characterized fibrillar collagens both structurally and

functionally, whereas few studies focus on collagens

Table 2. The collagen subfamilies. The collagen alpha chains listed in the table are those containing identified protein domain signatures in

addition to the triple helix. The major matricryptins released from these collagen chains are indicated. For further information on collagen

domains and matricryptins see [402,637]. C1q, complement C1q, EMI, emilin, FNIII, fibronectin III, NC, noncollagenous, TSP,

thrombospondin.

Collagen subfamilies Collagen chains Domains

Matricryptins and their

parent collagen chains

Fibril-forming collagens

I, II, III, V, XI, XXIV, XXVII

a1(I) Proline-glycine-proline

Ia1 C-1158/59 fragmenta1(V), a3(V), a1(XI), a2(XI),

a1(XXIV), a1(XXVII)

TSP

FACITs

IX, XII, XIV

XVI, XIX, XX, XXI, XXII

a1(IX), a1(XVI), a1(XIX)

a1(XII), a1(XIV), a1(XX)

a1(XXI), a1(XXII)

TSP

FN, TSP, vWFA

TSP, vWFA

NC1(XIX)

Beaded filaments

VI

a1-a2-a5-a6(VI)

a3(VI)

a4(VI)

vWFA

vWFA, Kunitz

Kunitz

Endotrophin

Anchoring fibrils

VII

a1(VII) vWFA, FN, Kunitz

Network-forming collagens

IV

a1-a6(IV) 7S & NC1 domains

a1(IV)

a2(IV)

a3(IV)

a4(IV)

a5(IV)

a6(IV)

Arresten

Canstatin

Tumstatin

Tetrastatin

Pentastatin-1

Hexastatin

Hexagonal networks

VIII, X

a1(VIII)

a1(X)

C1q domain

C1q domain

Vastatin

Multiplexins

XV, XVIII

a1(XV)

a1(XVIII)

TSP

TSP

Restin

Endostatin

Membrane collagens

MACITs (XIII, XXIII, XXV) & XVII

a1(XIII), a1(XVII),

a1(XXIII), a1(XXV)

TM

Collagen XXVI a1(XXVI) EMI

Collagen XXVIII a1(XXVIII) vWFA, Kunitz
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XXIV and XXVII. Collagens I, III, and V are found

in many tissues, whereas collagen II is mainly

restricted to cartilage in association with collagen XI

[320]. Collagen XI also regulates collagen fibril assem-

bly, organization and functional properties in tendon

[321]. Collagen XXIV is a specific marker of osteoblast

differentiation and bone formation [322], and pro-

motes osteoblastic differentiation and mineralization

through TGFb/Smads signaling pathway [323]. Over-

expression of COL24A1 in hepatocellular carcinoma is

a predictor of poor prognosis [324]. Collagen XXVII

organizes the pericellular matrix in the growth plate

[325], and mutations of COL27A1 cause Steel syn-

drome [326].

Collagens I, II, III [327], V [308], XI, XXIV, and

XXVII self-assemble into fibrils of various diameters

forming different three-dimensional structures (i.e.,

orthogonal lattices in cornea, basket weaves in skin

and blood vessels, and parallel bundles in tendon, liga-

ment, and nerves), depending on tissues and on colla-

gen types [328]. Collagen fibrillogenesis is orchestrated

at the cellular level in relation to the tissue and stage

of development [329], and is regulated by the FACITs,

the ECM protein fibronectin and SLRPs [316]. Dis-

abling the circadian clock causes abnormal collagen

fibrils and collagen accumulation [330]. Indeed, a cir-

cadian clock mechanism of protein homeostasis has

been identified, with nocturnal procollagen synthesis

and daytime collagen fibril assembly [330]. Collagen

fibrils are stabilized by covalent cross-links, which pro-

vide ECM and tissues with their mechanical properties

(i.e., resistance to traction). Covalent cross-linking of

fibrillar collagens is initiated by the enzymes of the

LOX family [40]. These copper-dependent amino acid

oxidases catalyze the oxidative deamination of specific

lysine and hydroxylysine residues into aldehydes,

which spontaneously react with other lysine and

lydroxylysine residues to form first reducible cross-

links, and then mature cross-links [331]. A nonenzy-

matic process, glycation, leads to the formation of sev-

eral glycation end products, which form cross-links in

collagens [332].

Collagens are post-translationally hydroxylated on

proline and lysine residues [333] by prolyl and lysyl

hydroxylases [334,335]. Hydroxylated lysine residues

can be O-glycosylated. Collagens are glycosylated to

various extent, collagen type IV being more glycosy-

lated than fibrillar collagens [336]. Post-translational

modifications of collagens can be identified by mass

spectrometry [337]. The heat shock protein Hsp47 acts

a molecular chaperone to prevent local unfolding or

aggregate formation of procollagen in mammalian cells

[338], and belongs to the network, which regulates

collagen I proteostasis (folding, quality control, and

secretion) [339]. Mutations in genes encoding collagens

I, III and V are associated with Ehlers-Danlos syn-

drome, an heterogeneous group of hereditary disorders

‘with common features including joint hypermobility,

soft, and hyperextensible skin, abnormal wound heal-

ing and easy bruising’ [340], and mutations in

COL2A1 are associated with skeletal disorders [341].

Fibril-associated collagen with interrupted triple

helices

The FACITs include collagens IX [342], XII [343],

XIV, XVI [318], XIX [344], XX [345], XXI [346], and

XXII, a marker of tissue junction [347]. Collagens IX

and XII carry GAG chains and can be thus also con-

sidered as PGs. Collagen IX is found in cornea and in

cartilage where it is associated with the surface of col-

lagen II fibrils, the interaction between both collagens

being stabilized by covalent cross-links [320,342]. Col-

lagen IX mutations caused skeletal dysplasias

[314,315]. Collagen XII is associated with the surface

of collagen I fibrils, and protects bone and muscle

integrity by organizing collagen fibrils [343]. Recessive

and dominant mutations in COL12A1 cause an over-

lap syndrome involving muscle and connective tissue

in humans and mice [348]. Collagen XIV plays a role

in growth and structural integrity of the myocardium

[349]. Collagens XII and XIV collagens interact with

COMP (also called thrombospondin-5) in skin and are

colocalized in the superficial papillary dermis of nor-

mal skin, and in anchoring plaques [350]. Collagen

XVI is expressed in various tissues including skin and

cartilage, where it connects and organizes fibrillar net-

works [318]. It also promotes tumor cell adhesion and

glioma cell invasiveness. Collagen XIX, which is pre-

sent in the BM zone, is involved in the differentiation

of muscle cells and in the CNS development [344]. It is

also a prognostic biomarker of amyotrophic lateral

sclerosis progression [351].

Collagen XX is a minor component of sternal carti-

lage, cornea, and tendon in chick embryo [345].

COL20A1 is, with COL14A1, a potential candidate

gene for striate palmoplantar keratoderma [352,353].

Collagen XXI is expressed in numerous tissues (e.g.,

heart, stomach, kidney, skeletal muscle, and placenta)

[354]. There is a significant decreased COL21A1 copy

number in large extended Malay families with nonsyn-

dromic cleft lip and/or palate [355]. Collagen XXII is

expressed in the myotendinous junction [347], where

its expression level influences muscle injury risk in ath-

letes [356], and at the articular surface of joint carti-

lage. COL22A1 maintains vascular stability in
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zebrafish and mutations in COL22A1 could be associ-

ated with intracranial aneurysms in humans [357].

Collagen forming beaded filaments

Collagen VI forms 100-nm periodic end-to-end beaded

filaments [358] and contains vWF A and Kunitz family

of serine protease inhibitors domains. It plays a key

role in skeletal muscle and mutations in the COL6A1,

COL6A2, and COL6A3 genes encoding collagen VI

chains lead to congenital muscular dystrophies [359].

Collagen VI is required for the structural and func-

tional integrity of the neuromuscular junction [360]

and is a component of the peripheral and CNS [358].

Like collagen VI, collagen XXVIII contains vWF A

and Kunitz family of serine protease inhibitors

domains [361]. It is located in the BMs around Sch-

wann cells and is associated with nonmyelinated

regions of the peripheral nervous system such as the

nodes of Ranvier [362] but it has not been reported to

form specific supramolecular assemblies so far. The C-

terminal Kunitz domain is collagen XXVIII is often

proteolytically processed in zebrafish [363]. The lack of

collagen XXVIII in mice causes age-related insuffi-

ciency in retinal pigment epithelium proteostasis in

mice [364]. COL28A1 gene is one of the prognostic

feature genes identified in glioblastoma multiforme,

the most common type of brain cancer [324].

Collagen forming anchoring fibrils

Collagen VII forms anchoring fibrils located at the

dermal-epidermal junction. Loss of collagen VII

induces inflammation that promotes keratinocyte-

driven, progressive fibrosis [365]. Collagen VII plays a

dual role in skin wound healing by promoting wound

closure, supporting fibroblast migration and regulating

their production of cytokine in the granulation tissue

[366]. It is also expressed in podocytes of normal

human kidney and in endothelial cells of the glomeru-

lar filtration barrier [367]. Mutations in COL7A1 result

in epidermolysis bullosa [368], and autoantibodies

directed against collagen VII triggers epidermolysis

bullosa acquisita [369].

Network-forming collagens

Collagens IV, VIII, and X form networks (Table 2).

The three molecular isoforms of collagen IV occur in

BMs. They associate via their N and C termini to

form networks, which are stabilized by covalent cross-

linking mediated by LOX-2 at the N terminus [370]

and peroxidasin at the C terminus [371]. The

sulfilimine cross-link, formed by peroxidasin, con-

tributes to kidney tubular BM stiffness [372], and halo-

gens play a role in building collagen IV scaffold [373].

Mutations in COL4A3, COL4A4 and COL4A5 induces

the Alport syndrome, a hereditary kidney disease asso-

ciated with alterations in the glomerular BM [374].

Mutations in COL4A1 causes hereditary angiopathy,

nephropathy, aneurysms, and muscle cramps syndrome

[375].

Collagen VIII is found in a specialized BM, the Des-

cemet’s membrane, where it forms hexagonal lattices.

Collagen VIII is synthesized by endothelial cells and

vascular smooth muscle cells, and COL8A2 regulates

the fate of corneal endothelial cells [376]. Collagen

VIII expression is upregulated in atherosclerosis [377],

and lack of collagen VIII reduces myofibroblast differ-

entiation and fibrosis in mice with heart failure [378].

Collagen X is mainly restricted to the hypertrophic

zone of the growth plate, where it regulates endochon-

dral ossification of articular cartilage [379], and is

required for proper hematopoietic development [380].

COL10A1 expression is increased in a number of

tumors and is associated with tumor vasculature [381].

Mutations in the COL10A1 gene are associated with

Schmid-type metaphyseal chondrodysplasia [382], a

very rare inherited disorder characterized by short sta-

ture with abnormally short arms and legs (short-

limbed dwarfism) and bowed legs.

Membrane-associated collagens

Four collagens (XIII, XVII, XXIII, and XXV) are

membrane proteins. With their triple-helical domains

are located in the ECM. The membrane-associated col-

lagens with interrupted triple helices (MACITs)

include collagens XIII, XXIII, and XXV [383,384].

Collagen XIII is involved in the development, differen-

tiation and maturation of musculoskeletal tissues and

vessels and in maintaining tissue integrity [385]. It also

plays a role in the formation and function of the neu-

romuscular system at the neuromuscular synapses. Its

correct expression and localization are crucial for

motor synapse formation and function [386,387]. Fur-

thermore, collagen XIII promotes cancer metastasis

and enhances anoikis resistance [388]. Collagen XXIII

is localized at the surface of basal keratinocytes, and

plays a role in cancer cell adhesion, anchorage-inde-

pendence and metastasis [389]. Collagen XXV is syn-

thesized by neurons and is found in Alzheimer

amyloid plaques where it binds to the amyloid b-pep-
tide [390]. Furthermore, COL25A1 triggers Alzhei-

mer’s disease-like pathology in vivo. Collagen XXV

promotes myoblast fusion into myofibers during
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myogenic differentiation and muscle formation [391].

The other membrane collagens are also expressed in

the brain [392].

Collagen XVII is mainly expressed by basal ker-

atinocytes, and is located in hemidesmosomes. It plays

a key role in epidermal-dermal junction and serves a

niche for hair follicle stem cells [393]. Changes in colla-

gen XVII expression have been reported in many

epithelial cancers, and the shedding of its ectodomain

is strongly associated with tumor invasiveness in squa-

mous cell carcinoma [394].

Multiplexins

This collagen subfamily includes collagens XV [301]

and XVIII [395,396], which both comprise several tri-

ple-helical domains interspersed with noncollagenous

domains, and bear GAGs chains. Collagen XV con-

nects striated collagen fibers subjacent to the BM

[397], and regulates cell adhesion and migration [398].

The deficiency in collagen XV predisposes to car-

diomyopathy [399], but the lack of collagen XV is pro-

tective after ischemic stroke in mice [400]. Collagen

XVIII is required for the maintenance of BM integrity

and regulates cell survival, stem or progenitor cell

maintenance and differentiation and inflammation

[396]. It also plays a role in the development of the

eye, and mutations in the COL18A1 gene cause the

Knobloch syndrome associated with encephalocele and

vitreoretinal degeneration [382]. Both collagens XV

and XVIII release a bioactive C-terminal fragment,

called restin and endostatin, respectively, upon limited

proteolysis [401,402].

Collagen bioactive fragments

Collagens are degraded by secreted and membrane-

bound MMPs, secreted gelatinases, and lysosomal cys-

teine proteases [403]. Numerous collagen types (e.g.,

collagens I, IV, VI, XV, XVIII, and XIX) release

bioactive fragments called matrikines or matricryptins

[401,402] (Table 2) upon limited proteolysis by zinc

metalloproteinases (matrixins, adamalysins and asta-

cins), cysteine proteinases and serine proteases

[404,405]. The biological activities of matricryptins are

mediated by the interaction network they form with

integrins and GF receptors [121]. Their release can be

modulated in diseases, for example, in those affecting

BM turnover [406]. They regulate numerous biological

processes such as autophagy, angiogenesis, adipogene-

sis, fibrosis, tumor growth, metastasis, and wound

healing. A number of collagen fragments (e.g.,

arresten, canstatin, endostatin, restin, tumstatin) have

anti-angiogenic and/or antitumoral properties

[402,407]. In contrast, endotrophin promotes tumorige-

nesis and is a target for anticancer therapy [408]. It is

also involved in the development of liver diseases (i.e.,

nonalcoholic steatohepatitis and hepatocellular carci-

noma) [409], whereas endostatin is antifibrotic [410].

Canstatin is anti-lymphangiogenic and modulates volt-

age-dependent calcium channel activity in rat car-

diomyocytes [411], and endostatin-derived peptides are

antifibrotic [410]. ECM bioactive (matricryptins and

matrikines) have potential applications in therapeutics,

tissue engineering [402,412], and cosmetics [413].

Recombinant endostatin has been approved by the

State Food and Drug Administration of China as a

treatment for late stage non-small-cell lung carcinoma

[414].

Collagen receptors

Collagens interact with several receptor families with-

out (e.g., integrins) or with (DDRs) tyrosine kinase

activities [415,416]. Collagens bind to a1-integrins (i.e.,

a1b1, a2b1, a10b1, and a11b1 integrins) [415]. a11b1
integrin is a major collagen receptor on fibroblastic

cells [417], and a10b1 integrin is a critical collagen

receptor critical in skeletal development [418]. DDR1

and DDR2 can be activated by collagens I, II, III and

V, whereas collagen IV is also able to activate DDR1

[419,420]. Other collagen receptors include Tumor

Endothelial Marker 8, which regulates cell-collagen

interactions [421], G protein-coupled receptor 56

(GPR56), which binds to collagen III, its major ligand

in the developing brain [422,423]. Furthermore, three

members of the immunoglobulin superfamily of recep-

tors bind to collagens. They are glycoprotein VI,

which is the major collagen binding-site on native pla-

telets [424], the leukocyte-associated immunoglobulin-

like receptor-1 [425,426], and the osteoclast-associated

receptor [427], which interacts with collagens I and II

and promotes osteoclastogenesis.

Full-length DDRs are multidomain type I TM gly-

coproteins, comprising an extracellular discoidin

domain, a TM region, and an intracellular segment of

variable length that included a kinase domain

[428,429]. The DDR1 gene comprises seventeen exons

that are alternatively spliced to form five different iso-

forms, DDR1a to DDR1e, while only one isoform for

DDR2 has been identified so far [430].

The reason of DDR1 isoform diversity is still

unknown, although it seems that structural differences

may be necessary to activate distinct signaling path-

ways. It should be noted that the extracellular and

TM regions of DDR1 isoforms are identical, and that
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alternative splicing affects the intracellular catalytic

domain leading to length modification (DDR1a to

DDR1c) and, in some isoforms (DDR1d and DDR1e)

to kinase inactivation. Accumulated evidence suggests

that the most frequently expressed isoforms are

DDR1a and DDR1b. DDRs can bind native fibrillar

collagens I and III with similar affinities but differ in

their binding to nonfibrillar collagens. It has been

observed that DDR1 can bind collagens type IV, VIII

and XV, whereas DDR2 binds collagens II and X, the

binding occurring through their globular discoidin

domain.

Collagen binding to DDRs induces their autophos-

phorylation like other RTKs [431,432]. As shown for

other RTKs, DDRs regulate key cellular processes like

cell migration, proliferation, differentiation, and sur-

vival. Moreover, DDRs control remodeling of ECMs

through the control of MMPs’ expression and activity,

which is a key functional consequence of DDR bind-

ing to collagen and results mainly in the induction of

MMPs expression and/or activation and have overlap-

ping functions with collagen binding integrins by both

DDR1 and DDR2.

The ECM-based tissue elasticity:
elastic fibers and elastin

The extracellular assemblies that account for the neces-

sary elasticity and extensibility are the elastic fibers.

They are essential for the physiological function of

many organs such as arteries, skin, tendons, or lungs,

which undergo reversible and repetitive deformation.

Elastic fibers consist of two morphologically distin-

guishable components: a mantle of longitudinally

aligned fibrillin-based microfibrils and a dense core of

cross-linked elastin, which accounts for over 90% of

the fiber content. The microfibrils are 10- to 12-nm-

wide filaments, which have a beads-on-a-string appear-

ance [433]. They provide the tissues with long-range

elasticity, especially with participation of elastin when

it is deposited on a microfibrillar scaffold. Microfibrils

are formed mainly from fibrillins [434], but several

other proteins are known to be associated with

microfibrils [433]. Among them are the microfibril-as-

sociated glycoproteins (MAGPs) [435], elastin

microfibril interfaces [436], a disintegrin and metallo-

proteinase with thrombospondin motifs (ADAMTS)

and ADAMTS-like proteins [437] as well as latent

TGFb binding proteins (LTBPs, such as LTBP-4)

[438].

The other major component, elastin, is an insoluble

biopolymer made up of units of its soluble precursor

TE. TE’s primary structure is characterized by

alternating hydrophobic and hydrophilic domains,

which are encoded by distinct exons, and thus, TE’s

domain structure maps the exon organization of the

gene. The hydrophilic domains contain either Lysyl-

Alanine (KA) or Lysyl-Proline (KP) motifs [439] and

are involved in covalent cross-linking induced by LOX

or and LOXL enzymes, leading to mature elastin. The

hydrophobic domains, however, are responsible for

elasticity and are involved in cell interactions [440].

Elastin’s primary transcript undergoes extensive alter-

native splicing resulting in numerous isoforms without

affecting the reading frame. The expression of several

of these isoforms in human tissues has been proven in

some studies [441].

Under healthy conditions, mature elastin is metabol-

ically stable over the species’ lifespan. Its half-life in

humans has been determined to be > 70 years [442].

One of the reasons for this exceptional durability is

elastin’s high resistance to proteolysis, which is mainly

caused by its vastly cross-linked nature and the extre-

mely dense packing of the molecules. In its mature

form, elastin is hydrophobic and completely insoluble,

but its hydrophobic hydration is required for its elastic

properties [443].

Elastogenesis (Fig. 5) is initiated with the expression

of fibrillins and their assembly into microfibrils, which

serve as a scaffold for the subsequent TE deposition

[444]. The fibrillin network can undergo cross-linking,

which further stabilizes the three-dimensional bundle

structure. The cross-links reported to date are inter-

molecular disulfide bonds [445] and e(c-glutamyl)lysine

cross-links that are catalyzed by members of the trans-

glutaminase family [446].

The expression of the TE monomer takes place in

elastogenic cells. TE undergoes rapid self-association

in an endothermic, entropically-driven process referred

to as coacervation [447] leading to the formation of

distinct globular aggregates on the cell membrane

[448]. PGs may interact with this domain facilitating

the correct alignment of the TE monomers [449]. The

alignment of TE and the subsequent cross-linking is

further promoted by fibulin-4 and fibulin-5, which

mediates the association between TE and the extracel-

lular Cu2+-dependent amine oxidase, LOX [450]. LOX

and LOXL enzymes catalyze the oxidative deamina-

tion of the e-amino group of Lys residues to the highly

reactive a-aminoadipic acid-d-semialdehyde, termed

allysine [440] leading to the formation of a variety of

cross-links including desmosine and its isomer isodes-

mosine [441].

Due to its long half-life, elastin is subjected to vari-

ous chemical reactions, which induce a molecular

aging responsible for progressive alterations of its
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structural and functional properties including oxida-

tion, aspartic acid racemization, glycation or car-

bamylation [451–453]. This molecular aging of elastin

is concomitant to organism chronological aging but

can also be intensified during chronic diseases such as

diabetes mellitus, end-stage renal disease, or

atherosclerosis [454,455]. The consequences of elastin’s

molecular aging are multiple, ranging from direct

impacts on structural and mechanical properties of

this matrix protein to inappropriate effects on cells

[456–458].
Beside these chemical modifications, elastin suffers

processes of mechanical fatigue [459,460]. The impair-

ments or even ruptures of elastin lead to a decrease of

elastic fiber function, and to a transfer of mechanical

stress to other extracellular components such as colla-

gen fibers, drastically altering tissue mechanics [461].

Moreover, the failure of elastic fibers is further

induced by the action of members of several classes of

extracellular proteases, elastases. They belong to three

classes of families: serine proteinases with cathepsin G,

proteinase 3 and neutrophil elastase [462–464], MMPs

including MMP-2, -7, -9, -12 and -14 [465–467] and

the cysteine proteinases cathepsins K, L, S and V

[468,469]. Besides the functional impairment, elastin

degradation leads to the release of bioactive peptides

named elastokines and belonging to the matrikine fam-

ily [470,471].

Fig. 5. The elastic fiber assembly. (1) Fibrillin and microfibril-associated proteins are secreted into the extracellular space, multimerize and

form the microfibrillar array. (2) TE is synthesized on the rough endoplasmic reticulum where it binds to the chaperone EBP. (3) The EBP-TE

complex is transported through the Golgi apparatus and secreted to the cell membrane. (4) TE is released from the chaperone and forms

globules at the cell surface, while EBP dissociates as result of the interaction with GAGs. Fibulin-4 is important for the chain alignment of

TE mediating the interplay with LOXs. The oxidation of Lys residues is followed by various condensation reactions leading to the formation

of covalent intra- and intermolecular cross-links. (5) After the cluster of TE molecules reaches a critical size, it is moved from the plasma

membrane through the extracellular space. Fibulin-5 is thought to direct the premature elastin to fibrillin microfibrils. (6) The elastin

aggregates fuse into larger assemblies with support by LTBP-4 and are subsequently further cross-linked. (7) Throughout life, elastin

undergoes various alterations caused by nonenzymatically processes and (8) proteolytic cleavage. The latter leads to the release of bioactive

peptides, so-called elastokines. EBP, Elastin Binding Protein; ER, Endoplasmic Reticulum; LTBP, Latent TGFb Binding Protein; PTMs, Post-

Translational Modifications.
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The released bioactive EDPs [470,472] are known to

induce a variety of biological effects. These include cell

adhesion, chemotaxis, migration, proliferation, pro-

teinase activation, angiogenesis, and apoptosis [473].

They have been clearly shown to be involved in several

pathophysiological processes such as cancer progres-

sion [474,475], emphysema and vascular diseases pro-

gression and are now considered as central modulators

of the cardiovascular continuum [476].

The human elastin receptor was originally identified

as a 67 kDa peripheral membrane protein called elas-

tin-binding protein (EBP) that binds to elastin and

laminin fragments [477]. EBP interacts with the

55 kDa cathepsin A/protective protein and the 61 kDa

membrane-bound neuraminidase-1 (Neu-1) to form a

ternary complex called elastin receptor complex (ERC)

[478]. The EBP subunit [479] displays two functional-

binding sites comprising (a) the elastin site on which

EDPs binding is directly involved in the generation of

intracellular signal transmission, and (b) the galac-

tolectin site whose occupation by galactosugars leads

to EDPs release and ERC dissociation [480]. EDPs

binding to EBP leads to Neu-1 activation, which

locally catalyzes the conversion of the GM3 gan-

glioside into lactosylceramide (LacCer), an essential

second messenger of ERC signaling pathways

[481,482]. EDPs have been shown to induce in fibrob-

lasts the activation of multiple tyrosine kinases includ-

ing MEK1/2 and ERK1/2 through PKA and PI3K-

dependent mechanisms [483]. In endothelial cells, this

MAPK signaling has been shown to be triggered

through PI3K/Akt/endothelial nitric oxide synthase/ni-

tric oxide/protein kinase G pathway module [484].

Finally, it has been shown in smooth muscle cells that

EDP binding on ERC triggers the activation of Gi

proteins, the opening of L-type calcium channels, and

then cell proliferation [485]. Neu-1 plays a key role in

these signaling pathways and several studies have been

conducted to further elucidate its involvement in ERC

signaling in different pathophysiological processes

[481,486–488]. In addition to its role in the production

of the second messenger LacCer, it has been demon-

strated that a distinctive dimerization process is

required for its catalytic activity. Indeed, two potential

dimerization sequences, corresponding to two TM

domains (148–168 and 316–333 residues), have been

found within human Neu-1. Point mutations in the

316–333 TM domain inhibit significantly dimerization

and sialidase activity of Neu-1 [489]. Moreover, an

increasing number of studies also indicate that Neu-1

plays an important role in modulating the activation

of numerous membrane receptors such as the insulin

receptor, c-Met, IGFR, PDGFR, or CD36 by

desialylation [488,490–492]. As a whole, these data

imply that Neu-1 may be one of the crucial factors of

the membrane signalosome from the lipids but also the

protein points of view (Fig. 5). All these signaling

mechanisms are responsible for the deleterious influ-

ence of elastokines on the precited pathologies and

research efforts are oriented toward the definition of a

specific way to inhibit the processes in which they are

involved.

Laminins: the three-armed ECM
adhesion proteins

Laminins are HMW (400–900 kDa) heterotrimeric

adhesion proteins found in BMs, which are thin sheets

of highly specialized extracellular protein structures

that surround muscle, fat and Schwann cells. In

essence, laminins self-polymerize into a cell-associated

network and are crucial for the formation and func-

tion of BMs. Laminins are found in worms, flies, and

mammals and are composed of an a, a b and a c
chain, each encoded from a distinct gene. Five a, three
b, and three c chains have been identified in verte-

brates, and they can assemble into more than 16 dif-

ferent isoforms (Fig. 6). The laminins are named

according to their chain composition and the proto-

type laminin-111 (composed of an a1, b1, and c1
chain) was the first laminin isoform to be discovered

more than 40 years ago. Hence, laminin-111 is the

most extensively studied laminin isoform but at the

same time it has a relatively restricted expression pat-

tern in adult humans. Overall, laminins are expressed

in a tissue-specific manner and BMs contain at least

one laminin isoform (and some several; Fig. 6)

[145,493–498].
The laminin structures have been elucidated by

rotary shadowing electron microscopy, cDNA

sequencing, and protein crystallographic studies. All

laminin chains share a common domain structure with

globular and rod-like domains. The a1, a2, and a5
chains assemble into the characteristic cross-shaped

structure with three short arms and a long arm, but

laminins also form T-, Y-, or I-shaped structures

(Fig. 6). The three short arms contain disulfide-rich

domains and the N-terminal globular domains (LN

domain). These globular domains are found in a

majority of the laminin polypeptides and are required

for laminin polymerization. Hence, laminin isoforms

devoid of the N-terminal globular domains (a4, a3A,

and c2 chains) are not able to polymerize but are nev-

ertheless incorporated into BMs, possibly by interac-

tions with other BM components. The long arm of the

laminin molecule is an a-helical coiled coil of all three
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chains, ending with the C-terminal globular domain

(LG domains) of the a chain. The laminins are

attached to the cell surface via binding of the LG

domains to various cell surface receptors, such as inte-

grins and a-dystroglycan to mention a few, and the

structures of the integrin- and dystroglycan-binding

fragments of laminins have been elucidated at the

atomic level. Laminins interact with a wide variety of

other BM proteins (e.g., perlecan, nidogen, and agrin).

Hence, laminins form supramolecular networks that

are vital for embryogenesis and multiple adult organs

and systems [55,145,493–496,498].
The generation and characterization of loss-of-func-

tion mouse models have greatly increased our under-

standing of laminin functions. All genes encoding

laminin chains have been constitutively knocked out in

mice and several also in specific tissues. In addition,

some double knock-outs have been produced as well

Fig. 6. Schematic representation of laminin trimers and their main sites of expression. Laminins are composed of three polypeptide chains;

a, b and c. Five a (a1–a5), three b (b1–b3) and three c (c1–c3) can assemble to form different trimeric molecules named according to their

chain composition. Laminin-111, for example, is composed of a1 (red), b1 (light green) and c1 (blue) chains. A majority of the depicted

laminins have been biochemically isolated but the existence of some is based on co-immunoprecipitation and immunohistochemical

analyses. Laminins form cross-shaped, T- (or Y-) shaped or rod-shaped structures with N-terminal globular domains, a coiled-coil region

through which the three chains are assembled and C-terminal globular domains. Laminins self-polymerize through interactions with their N-

terminal globular domains and bind to cell surface receptors via their C-terminal globular domains. NMJ, neuromuscular junction; GBM,

glomerular basement membrane. This figure has been reproduced from Ref. 495.

28 The FEBS Journal (2021) ª 2021 Federation of European Biochemical Societies

Composition and functions of the extracellular matrix N. K. Karamanos et al.



as various knock-ins [55]. Mice devoid of laminin a1
chain die very early due to defects in the Reichert’s

membrane, an extraembryonic BM that is only present

in rodents. Absence of laminin a1 in the embryo does

not affect embryonic development but leads to retinal

defects, behavioral abnormalities and aberrant cerebel-

lum formation. Deprivation of laminin a2 chain causes

a very severe form of muscular dystrophy and postna-

tal death and deficiency of laminin a3 chain (as well as

b3 and c2) leads to progressive blistering in the skin

after birth and mice die within a few days. Mice

devoid of laminin a4 chain display defects in various

postnatal organs whereas laminin a5 chain is required

for organogenesis. Tissue-specific deletion of laminin

a5 chain has also revealed crucial roles in for example

lung, kidney, neuromuscular junction and micro- and

macro-vessel endothelial function. Mice lacking lami-

nin b1 and c1, respectively, die very early during

embryogenesis due to defects in extraembryonic and

embryonic BMs. Inactivation of laminin c1 chain

expression in certain cells have furthermore revealed a

large variety of important functions of this laminin

polypeptide. Laminin b2-null mice develop postnatal

kidney defects and a neuromuscular junction pheno-

type. In contrast to all these laminin mutant mice,

which either die during embryogenesis or display post-

natal severe phenotypes, mice devoid of laminin c3
chain only show minor abnormalities [55,494,495].

Finally, all laminin subunits have now been associ-

ated with human diseases. Mutations in LAMA2,

LAMA3, LAMB3, LAMC2, and LAMB2 cause rare

but severe congenital disorders; congenital muscular

dystrophy (a skeletal muscle disease), junctional epi-

dermolysis bullosa (a skin blistering disease) and Pier-

son syndrome (a kidney disease with ocular

abnormalities) [499–502]. Notably, the corresponding

mouse models mirror the human conditions very well

and are thus excellent animal models for studying dis-

ease mechanisms and treatment strategies. Strikingly,

an overlying spectrum of brain phenotypes are features

of mutations in LAMA1, LAMA2, LAMB1, LAMC1

and LAMC3 [503–507]. Mutations in LAMA4 lead to

dilated cardiomyopathy [508] and LAMA5 mutations

have recently been implicated in a wide range of disor-

ders [509–511] (Table 3). In summary, laminins are of

uttermost importance for BM integrity, early embry-

onic development, organogenesis and for the mainte-

nance and survival of many tissues. During the last

decade it has also become evident that recombinantly

expressed laminins are significant tools in the genera-

tion of xenogeneic-free and defined cell differentiation

protocols [512].

Integrins: The adhesion and signaling
mediators between ECM and cells

Integrins structure and the ECM ligands

Integrins are a superfamily of TM cell adhesion pro-

teins and their role is to link the ECM with cell

Table 3. Human laminin genes, chromosome locations, corresponding polypeptides, genetic disorders and OMIM phenotype entries. EMI,

emilin, FNIII, fibronectin III, NC, noncollagenous, TSP, thrombospondin.

Gene

Cytogenetic

location Protein Disease OMIM

LAMA1 18p11.31 a1 Poretti-Boltshauser syndrome 615960

LAMA2 6q22.33 a2 Congenital muscular dystrophy (partial or complete absence) 607855, 618138

LAMA3 18q11.2 a3 Epidermolysis bullosa, junctional, Herlitz type 226700

Epidermolysis bullosa, junctional, non-Herlitz type 226650

Laryngoonychocutaneous syndrome 245660

LAMA4 6q21 a4 Cardiomyopathy, dilated, 1JJ 615235

LAMA5 20q13.33 a5 Connective tissue abnormalities na

Presynaptic myasthenic syndrome na

Bone dysplasia na

LAMB1 7q31.1 b1 Lissencephaly 5 615191

LAMB2 3p21.31 b2 Pierson syndrome 609049

Nephrotic syndrome, type 5, with or without ocular abnormalities 614199

LAMB3 1q32.2 b3 Epidermolysis bullosa, junctional, Herlitz type 226700

Epidermolysis bullosa, junctional, non-Herlitz type 226650

Amelogenesis imperfecta, type IA 104530

LAMC1 1q25.3 c1 Dandy-Walker malformation na

LAMC2 1q25.3 c2 Epidermolysis bullosa, junctional, Herlitz type 226700

Epidermolysis bullosa, junctional, non-Herlitz type 226650

LAMC3 9q34.12 c3 Cortical malformations, occipital 614115
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cytoskeleton. Integrins have important role in trans-

duction of intracellular signaling pathways, as well as

for the interactions with ECM molecules. Integrins

form heterodimers between the a-subunits and b-sub-
units, with at least twenty-four unique combinations.

Integrins a-subunits are consisted of eighteen different

types and b-subunits of eight different types [513].

Integrin a- and b-subunits are type I TMEMs com-

posed of a large extracellular domain, a single TM

domain and a short cytoplasmic domain [513]. Among

the different subunits some of them are abundant in

more heterodimers, such as b1 in twelve different het-

erodimers and av in five different heterodimers [514].

The extracellular domain, especially the aI domain,

provides ligand specificity with several different ECM

macromolecules or counter receptors on adjacent cell

surfaces. There are four broadly grouped categories:

(a) The arginine-glycine-aspartic acid, or RGD motif,

(b) Laminin receptors, (c) Leukocyte-specific receptors,

(d) Collagen receptors (Table 4). The binding of ECM

ligands either in both subunits or on a specific domain

of the a-subunit as well as the different combinations

between various a-subunits and b2 integrins in the case

of hematopoietic cells, provide ligand specificity to

integrins heterodimers. Regarding RGD-binding inte-

grins, the RGD ligand binds to an interface between

the a and b subunits, the R residue fitting into a cleft

in a b-propeller module in the a subunit, and the D

coordinating a cation bound in a vWF A-domain in

the b subunit [515]. Another acidic motif, called LDV,

is functionally related to RGD, and even though there

is no structural information, it is highly possible that

binds in a similar way as RGD at the junction

between the a and b subunits [516]. Fibronectin,

VCAM-1, and MAdCAM-1 are molecules that contain

LDV motif and bind to a4b1, a4b7, and a9b1, as well

as to b2 subfamily and aEb7 integrins [516].

Osteopontin is also a binder to a4b1, a4b7, and

a9b1 via the SVVYGLR peptide motif [517,518]. An

inserted A-domain in the a subunit provides ligand

binding specificity to many b-subunit families, such as

b1, b2, and b7 subunits. In the case of b2 family speci-

fic ligand sites, they possess structural similarities to

the LDV motif and the major difference between b1/
b7 ligands is that b2 utilizes glutamate instead of

aspartate residue for cation coordination (Table 5)

[519]. A-domain from a1, a2, a10 and a11 subunits

forms heterodimers with b1 and create laminin- and

collagen-binding families [516]. Specifically, a2 A

domain interacts via GFOGER motif with triple helix

of collagen [520]. On the other hand, non-aA domain

containing integrins, such as a3b1, a6b1, a7b1, and

a6b4, have highly selectivity for laminin ligands.

Integrin activation and roles in physiology and

disease

The regulation of integrin activity was first discovered

in blood cells [521]. Platelet and leukocyte integrins

are the most well-studied systems, but integrins are

widespread in many different cell types with significant

role in angiogenesis, cell migration and ECM remodel-

ing. Integrin activation involves talin binding to cyto-

plasmic tail of b1 subunit [522]. Binding of talin leads

to conformational change of both subunits by separa-

tion of cytoplasmic region and extension of

Table 4. Main categories of integrins based on ligand substrate.

Integrin ligand Integrin heterodimer

RGD receptors a5b1, aVb3, aVb1, aVb5, aVb6, aVb8,

and aIIbb3

Laminin receptors a1b1, a2b1, a3b1, a6b1, a7b1, and a6b4

Leukocyte-specific

receptors

aLb2, aMb2, aXb2, and aDb2

Collagen receptors a1b1, a2b1, a3b1, a10b1, and a11b1

Table 5. Proteins binding to different integrin heterodimers.

Binding protein Integrin heterodimer

Collagen a1b1, a5b1, a10b1, a11b1, aXb2

Laminin a3b1, a6b1, a6b4, a7b1, a1b1,

a2b1, a10b1

Thrombospondin a3b1, a2b1, a4b1, avb3, a3b1,

aIIbb3

Fibronectin avb3, avb6, aIIbb3, avb1, a5b1,

a8b1, a4b1, a4b7

OPN a4b7, a4b1, a9b1, a8b1, a5b1,

avb1, avb6, avb3, avb75

Bone sialoprotein avb3, avb5

Developmental endothelial

locus-1

avb3, avb5

Vitronectin avb3, avb5, a8b1, aIIbb3

vWF avb3, aIIbb3

TN avb3, a8b1, a9b1

Platelet endothelial cell

adhesion molecule 1

avb3

Mucosal addressin cell

adhesion molecule 1

a4b7, a4b1

Intercellular cell adhesion

molecule

aXb2, aMb2, aLb2, aDb2

Latency associated peptide

transforming GF

avb1, avb8, avb6, avb3

Fibrillin avb3

Fibrinogen avb3, aIIbb3, aXb2, aMb2

Factor X aMb2

Inactivated complement

component C3b

aXb2, aMb2

E-cadherin aEb7
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extracellular region providing higher affinity with the

ligands. After initial binding of talin to cytoplasmic

domain, other effectors are binding to the cytoplasmic

domain and support the activation, as well as the clus-

tering with the different adhesive complexes (Fig. 7)

[523]. Kindlin, is one of the major effectors of inside-

out integrin signaling and is involved in ECM interac-

tions and cell spreading via either activation of b- sub-
unit cytoplasmic tail or recruiting of focal adhesion

molecules as paxillin, which activates RHO GTPase

RAC1 and directly polymerize actin by Arp2/3 com-

plex leading cell spreading [524]. During adhesion mat-

uration talin-induced integrin activation is maintained

by binding of tensin-1 and tensin-3 to b1- subunit.

Even though the exact integrin-tensin mechanism is

not elucidated, there is a switch from talin binding to

tensin binding during adhesion maturation, because of

the overlapping of their binding sites on b1 subunit

[525]. Integrins-mediated cell-ECM interactions trigger

the formation of complexes and regulate downstream

signaling pathways, such as activation of FAK, SRC,

AKT, and ERK pathways and small GTPases of the

RHO family [526,527]. These pathways are crucial for

integrin-mediated cell behavior, such as cell death or

survival, regulation of cytoskeleton dynamics, cell

migration via controlling cell polarity, and tissue integ-

rity [528].

Extracellular matrix molecules regulate the structure

and the biochemical signals, which affect a wide range

of processes during embryonic development and cancer

Fig. 7. Schematic representation of

integrins activation process. (A) Integrins as

inactive molecules characterized by bent

extracellular domain. After binding of talin

and kindlin integrins are activated and the

extended extracellular domain binds to

ligands, which trigger the activation of

downstream signaling pathways and

regulate actin cytoskeleton assembly. (B)

Integrins activation can lead to either

outside-in signaling, after binding of ECM

molecules on their extracellular domain

leading to cell polarity differences, cell

survival and proliferation and cytoskeleton

rearrangement, or to inside-out signaling,

after binding of talin and kindlin to

cytoplasmic domain, which affect the cell

adhesion and migration. Adapted from

‘Outside-in and Inside-out Integrin Signaling

Pathways & Integrin Structure and

Activation’, by BioRender.com (2020).

Retrieved from https://app.biorender.com/

biorender-templates.
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progression [529]. In this ECM network, integrins have

outstanding role on regulation of cell migration by

controlling the substrate-bound ligands in the ECM,

diffusible ligands, or ECM rigidity. Integrin-mediated

mechanisms of cell migration control the speed of

migratory cells in response to ECM rigidity [530]. As

the most abundant ECM proteins are fibronectin and

collagen, during normal development, the presence of

both proteins is crucial for the formation of ECM

assembly, since deposition of fibrillar collagen presup-

poses the fibronectin network [531]. Fibronectin-bind-

ing integrins are required for the formation of

fibronectin network, since the integrin heterodimers

such as a5b1 transmit forces to fibronectin and expose

cryptic binding sites necessary for polymerization

[532]. During malignant condition the CAFs deposit

excessive amounts of ECM components, especially col-

lagen [533]. The increased deposition of collagen is

caused by the activation of integrin signaling path-

ways, such as FAK and YAP/TAZ, which drive the

disease progression [534]. In addition to collagen-re-

lated cancer progression, recent evidence highlights

that deposition of fibronectin leads to cancer invasion

in prostate cancer, in which the remodeled fibronectin,

via actomyosin-contractility-driven traction forces and

a5b1 integrin, generate aligned fibers that promote cell

migration [535]. In breast cancer, b1 subunit is

increased by TWIST1 and contributes to cancer inva-

sion. TWIST1 is an EMT transcription factor which is

related to metastatic tumors with poor prognosis [536].

Integrins are also involved in complexes with GF

receptors and syndecans [537]. In MCF-7 breast cancer

cell line inhibition of IGFR signaling lead to signifi-

cant reduction of the adhesive capacity in fibronectin

and laminin caused by lower cell surface expression

levels of a5b1, amb3, amb5 and amb6 integrins and

endocytosis of syndecan-4 [538,539].

The dynamic character of ECM—
critical enzymes involved in
remodeling

Tissue development, repair, regeneration, and home-

ostasis require a dynamic character for ECM, called

remodeling [5,14]. Any alterations to this well-balanced

procedure can lead to pathogenesis [8,129,133]. HPSE

is an endoglycosidase that cleaves the side chains of

Hep and HS of PGs, a process named shedding.

Regardless of its presence in late endosomes and perin-

uclear lysosomes, under proper stimuli HPSE can be

found in the ECM [540]. HPSE together with HYALs,

which degrade HA, can modify GAGs in ECM alter-

ing their structure and functions. The activity of HPSE

defines the fate of Hep and HS binding partners such

as GFs, cytokines and enzymes, participating in the

remodeling of ECM. Moreover, HPSE via its interac-

tion with TMEMs can activate signaling cascades such

as Akt, ERK, p38 and Src. By this way, HPSE can

manipulate cell motility, angiogenesis, inflammation,

exosome production, and autophagy [541].

Proteinases are a large family of enzymes responsi-

ble for the rearrangement of ECM ingredients and the

manipulation of cellular function. The metzincin

superfamily includes the MMPs and the adamalysin

group, with a disintegrin and metalloproteinases

(ADAMs) and ADAMTSs to be the main members

[3,542]. MT-MMPs and most ADAMs are TMEMs,

thus they manipulate the local microenvironment of

BMs. ADAMs are mainly sheddases interacting with

cytokines, GFs and their receptors and regulate cell

migration, adhesion and fate determination [543].

MMP, ADAMTS, and ADAM metalloproteinases

Matrix metalloproteinases (matrixins) and the related

ADAMs and ADAMTSs are subfamilies of prote-

olytic enzymes belonging to the metzincin clan. They

have important roles in ECM homeostasis and regu-

lation of autocrine and paracrine signaling. MMPs

and ADAMTSs are secreted enzymes, although some

MMPs and several ADAMTSs are localized on the

cell surface or in the pericellular environment [544].

ADAMs, on the other hand, are TM metallopro-

teinases that act primarily on membrane-localized

substrates.

Matrix metalloproteinases, ADAMTSs, and

ADAMs are modular enzymes, containing a conserved

catalytic domain and various ancillary domains that

regulate substrate selectivity and enzyme localization.

As the name suggests, the proteolytic activity of metz-

incins is dependent on an active site Zn2+ ion, which is

coordinated by 3 histidine residues in the conserved

HEXXHXXGXX(H/D) consensus motif [545]. The

glutamic acid residue in this motif activates a Zn2+-

bound H2O molecule to generate the nucleophile that

cleaves substrate peptide bonds. Metzincins also have

a conserved methionine residue downstream of the cat-

alytic motif, forming the Met-turn that dictates the

architecture of the active site.

Matrix metalloproteinases

Physiological and pathological functions

Matrix metalloproteinases were named for the sub-

strates and functions first ascribed to them when they
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were discovered, namely degradation of ECM mole-

cules such as collagens in the context of tissue turn-

over and remodeling. MMPs can act to a wide range

of ECM substrates and based on that and their homol-

ogy, they can be categorized to six groups; collage-

nases, stromelysins, matrilysis, gelatinases, furin-

activated, and other MMPs. Their action is monitored

in transcriptional level, in proteolytic activation of the

synthesized inactive zymogens and the interaction with

endogenous tissue inhibitors such as tissue inhibitors

of MMPs (TIMPs). MMPs are crucial during develop-

ment, tissue remodeling, cellular migration, and apop-

tosis [14,546]. For example, MMP-1 seems to

contribute to bone tissue regeneration through the

activation of JNK and ERK signaling molecules,

inducing the osteogenic differentiation of bone mes-

enchymal stem cells [547].

The prototypic MMP, MMP-1, was discovered as

the enzyme responsible for degrading type I collagen

during resorption of the tadpole tail during metamor-

phosis. Along with the cysteine protease cathepsin K,

the MMP ‘collagenases’ (i.e., MMP-1, MMP-2,

MMP-8, MMP-13, MMP-14) are the only mam-

malian enzymes capable of cleaving native triple-heli-

cal collagen [548]. Subsequently, other members of

the MMP family were found to have similarly impor-

tant roles in matrix turnover, cleaving substrates such

as fibronectin, laminin, and elastin during physiologi-

cal processes such as wound healing and angiogenesis

[549].

Subsequently, it has been appreciated that these

enzymes also play more subtle roles in protein process-

ing, with their proteolytic activity leading to activation

or deactivation of bioactive substrates such as GFs,

cytokines, cell surface receptors, and adhesion

molecules. As such, MMPs are important regulators of

biological processes including inflammation, immunity,

tissue repair, and differentiation.

Pathological roles have also been ascribed to MMPs

in diseases including cancer, cardiovascular disease,

osteoarthritis, and emphysema [550]. MMPs are

thought to be particularly important for cancer inva-

sion and metastasis, as a result of their ability to

degrade BMs and other ECM barriers. They can addi-

tionally promote tumor angiogenesis, growth and sur-

vival [551]. Clinical trials of MMP inhibitors in cancer

were unsuccessful, largely due to low inhibitor speci-

ficity, which led to off-target inhibition of physiologi-

cally important metalloproteinases and hence

undesirable side effects [552]. Advances in understand-

ing of MMP biology are allowing design of more selec-

tive and targeted inhibitors [553] that may be more

clinically effective.

Domain architecture

The 23 MMPs in the human genome are synthesized

as pre-pro-enzymes, with a signal peptide followed by

a pro-domain that maintains latency, the catalytic

domain, a linker or hinge region, and, in all but

MMP-7 and MMP-26, a C-terminal hemopexin

domain that participates in substrate recognition

(Fig. 8). For example, the hemopexin domain of col-

lagenolytic MMPs contains an exosite that is essential

for collagen cleavage [554]. The membrane-type MMPs

contain either a TM domain and short cytoplasmic

region or a GPI anchor that tethers them to the cell

surface. The ‘gelatinases’ MMP-2 and MMP-9 contain

three fibronectin type II repeats in their catalytic

domains that promote interaction with gelatin.

Fig. 8. Domain architecture of metalloproteinases. All metalloproteinases contain a signal peptide, a latency-maintaining pro-peptide that is

removed during maturation, and a conserved metalloproteinase catalytic domain containing the HEXXHXXGXX(H/D) consensus motif. These

regions are followed by C-terminal ancillary domains that control substrate selectivity and enzyme localization. Most MMPs have C-terminal

hemopexin domains, and some (the membrane-type MMPs, MT-MMPs) have additional TM and cytoplasmic domains (not shown). ADAM

metalloproteinases contain disintegrin domains adjacent to the catalytic domain, followed by cysteine-rich and EGF-like domains, a TM

region and cytoplasmic domains of varying size. ADAMTS metalloproteinases also have disintegrin domains adjacent to their catalytic

domains, followed by a thrombospondin repeat (TSR), cysteine-rich and spacer domains, and varying numbers of C-terminal TSR and other

domains.
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Regulation of activity

In addition to transcriptional and post-transcriptional

control of expression, MMPs are synthesized as latent

zymogens that are activated either in the extracellular

environment by removal of the pro-domain (e.g., by

serine proteases such as plasmin) or intracellularly by

proprotein convertases such as furin. Activation of

proMMP-2 occurs at the cell surface, through interac-

tion with a trimolecular complex of TIMP-2 bound to

a dimer of MT1-MMP [555].

Matrix metalloproteinase activity is further controlled

by mechanisms such as localization (on the cell surface,

pericellularly, or in the ECM) [544] and endocytic clear-

ance (e.g., by low-density lipoprotein receptor-related

protein 1, LRP1) [556]. Their activity is additionally

inhibited by interaction with their endogenous inhibitors,

the tissue inhibitors of metalloproteinases. Post-transla-

tional modifications such as glycosylation can also mod-

ulate MMP activity, localization, and interaction with

substrates and other proteins [557].

ADAMTSs

Physiological and pathological functions

The 19 mammalian ADAMTSs are important for

ECM assembly and turnover in adult and embryonic

tissues [558]. Prototypic substrates have been identified

for many of the ADAMTSs, but there is still much to

learn about the in vivo functions and substrate reper-

toires of this structurally complex group of enzymes.

These enzymes have narrow substrate specificity and

roles the collagen maturation, the cleavage of PGs

such as aggrecan, versican and brevican, the homeosta-

sis of blood coagulation and the inhibition of angio-

genesis [559,560].

The procollagen N-proteinases ADAMTS-2,

ADAMTS-3, and ADAMTS-14 cleave the amino-

propeptide of fibrillar procollagens, promoting collagen

maturation and ECM assembly [561]. Mutations in

ADAMTS2 cause the rare dermatosparaxis type of

Ehlers-Danlos syndrome, characterized by weakening

of connective tissue and skin fragility. Additional roles

in processes such as TGFb signaling are emerging [562].

The proteoglycanases ADAMTS-1, ADAMTS-4,

ADAMTS-5, ADAMTS-8, ADAMTS-9, ADAMTS-

15, and ADAMTS-20 cleave CS-rich PGs such as ver-

sican, brevican, and aggrecan [563]. Versican cleavage

by ADAMTSs is crucial for morphogenetic events

such as cardiac development and interdigital web

regression [564]. ADAMTS-4 and ADAMTS-5 are

thought to drive aggrecan loss in osteoarthritis, mak-

ing them potential drug targets [565]. Versican,

brevican and aggrecan also have roles in perineuronal

net formation, so these ADAMTSs are of interest in

synaptic plasticity and neuronal disorders.

ADAMTS-7 and -12 were first characterized for

their ability to cleave COMP, contributing to matrix

degradation in arthritis [566]. Additional cardiovascu-

lar substrates of ADAMTS-7 were recently identified,

along with preferential inhibition by TIMP-4, which is

selectively expressed in cardiovascular tissues [567].

ADAMTS-13 cleaves vWF multimers into smaller

fragments, controlling its interaction with platelets and

hence modulating hemostasis. Reduced activity of

ADAMTS-13, through genetic mutation or more com-

monly due to formation of inhibitory autoantibodies,

gives rise to the clotting disorder thrombotic thrombo-

cytopenic purpura [568]. Cleavage is regulated by shear

stress-induced conformational changes in both vWF

and ADAMTS-13 [569].

Domain architecture

As with the MMPs, ADAMTSs are secreted metallo-

proteinases consisting of a catalytic domain and various

combinations of C-terminal ancillary domains. The dis-

integrin domain forms an extension of the catalytic

domain, and is more similar to a cysteine-rich fold than

to prototypic disintegrin domains [570]. The C-terminal

domains modulate substrate recognition and enzyme

localization, with the disintegrin, cysteine-rich, and

spacer domains of ADAMTS-1, ADAMTS-4, and

ADAMTS-5, for example, greatly enhancing cleavage

of aggrecan and versican [571,572]. ADAMTSs also

contain variable numbers of thrombospondin motifs

and other ancillary domains in some cases.

Regulation of activity

ADAMTSs activity is regulated at multiple levels,

ranging from transcriptional control, to intracellular

activation by proprotein convertases, and inhibition by

TIMPs [563]. The ADAMTSs are preferentially inhib-

ited by TIMP-3, with generally lower affinity for

TIMP-1, TIMP-2, and TIMP-4. Endocytic clearance

via LRP1 is also an important mechanism regulating

activity of ADAMTS-4, ADAMTS-5, and ADAMTS-

9 [556,573] and potentially other family members.

ADAMs

Physiological and pathological functions

ADAMs are TM metalloproteinases with critical roles

in development, cell fate determination, cell migration,
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adhesions, inflammation, and immunity [574]. There

are 20 ADAMs in the human genome, and 12 of these

(ADAM-8, ADAM-9, ADAM-10, ADAM-12,

ADAM-15, ADAM-17, ADAM-19, ADAM-20,

ADAM-21, ADAM-28, ADAM-30, and ADAM-33)

are predicted to be catalytically active metallopro-

teinases, with the remaining 8 (ADAM-2, ADAM-7,

ADAM-11, ADAM-18, ADAM-22, ADAM-23,

ADAM-29, and ADAM-32) lacking the

HEXXHXXGXX(H/D) consensus motif. The catalyti-

cally active ADAMs ‘shed’ or release the ectodomain

of bioactive TM substrates such as cytokines, GFs,

adhesion molecules, and receptors.

The best studied of the ADAMs is ADAM17, which

has a broad range of substrates and critical roles in

development and in regulation of the immune system

[575]. ADAM17 is also known as TNFa-converting

enzyme due to its ability to cleave the TM form of

TNF and so release a soluble form of this cytokine

that has systemic effects on the immune system [576].

ADAM17 further regulates the inflammatory response

through its shedding of the IL-6 receptor (IL-6R),

allowing IL-6 trans-signaling via gp130 [577].

ADAM17 also has a central role in EGFR signaling

through its shedding of proteins such as EGF, HB-

EGF, TGFa, epiregulin, amphiregulin, and betacel-

lulin [578]. Dysregulation of ADAM17 activity is asso-

ciated with pathologies such as chronic inflammation

and cancer [577,579].

ADAM10 has critical roles in development (e.g., in

Notch signaling) and regulation of cell-cell contacts

(e.g., Eph/ephrin signaling) [579,580]. ADAM10 is

indispensable for early embryonic development in its

role as an alpha-secretase for regulated intramembrane

proteolysis (RIP) of Notch [580]. ADAM10 also par-

ticipates in RIP of amyloid-precursor-protein and thus

has roles in Alzheimer’s Disease [579,581].

Domain architecture

ADAMs have the same N-terminal architecture as

MMPs and ADAMTSs, consisting of a signal peptide,

a pro-domain and a conserved metalloproteinase cat-

alytic domain. C-terminal to this are the disintegrin,

cysteine-rich and EGF ancillary domains, followed by

TM and cytoplasmic domains [570]. Crystallographic

information on ADAMs is limited, but available data

indicate that the metalloproteinase, disintegrin, and

cysteine-rich domains form a dynamic C-shaped

arrangement, with potential conformational flexibility

upon binding of substrates [570]. Phylogenetic analysis

shows that the ADAM10 and ADAM17 are more sim-

ilar to each other than to other ADAMs.

Regulation of activity

Following on from transcriptional and post-transcrip-

tional regulation, the maturation of ADAMs is con-

trolled by proprotein convertases that remove the

pro-domain in the Golgi apparatus. Intracellular traf-

ficking and maturation of ADAM17 is further depen-

dent on iRhom chaperone proteins, which remain

associated with the enzyme on the cell surface and

influence substrate selection and enzyme stability

[582].

The activity of ADAM10 and ADAM17 can be

rapidly activated on the cell surface, pointing to con-

formational regulation. Additional factors such as

enzyme and substrate localization and phosphoryla-

tion, dimerization and disulfide bond isomerization

have also been shown to regulate ADAM17 activity

[575,583]. Tetraspanins are implicated in regulation of

ADAM10 [583].

The catalytic activity of ADAMs can be inhibited

by TIMPs, most commonly TIMP-3, although some

ADAMs are also inhibited by TIMP-1 (e.g.,

ADAM10) or show reduced sensitivity to TIMPs (e.g.,

ADAM8, 9). In some cases, sensitivity to TIMPs is

reduced by association of the ADAM with the sub-

strate prior to hydrolysis.

Tissue inhibitors of MMPs

In plasma and fluid environments (e.g., synovial fluid),

the activity of MMPs, ADAMs, and ADAMTSs can

be inhibited by a2-macroglobulin, a broad-spectrum

inhibitor of multiple proteinase classes. In tissues,

these enzymes can be inhibited by the four mammalian

TIMPs [584,585]. Through their ability to post-transla-

tionally inhibit metalloproteinase activity, TIMPs can

have powerful effects on tissue homeostasis and cell

behavior. TIMP-1, 2 and TIMP-4 inhibit the activity

of most MMPs and a few ADAMs, while TIMP-3 is

distinctive in having the broadest inhibitory profile,

and inhibiting MMPs, most ADAMs and ADAMTSs

[585]. TIMP-3 is also distinctive in its ability to bind

to ECM sulfated GAGs, which protects it from endo-

cytic uptake via LRP1 and increases affinity for some

target enzymes [586].

Tissue inhibitor of metalloproteinases interact rever-

sibly with target metalloproteinases in 1 : 1 stoichio-

metric complexes of low nanomolar affinity, blocking

substrate access to the catalytic site [587]. TIMPs are

composed of 2 domains, with the N-terminal domain

containing the necessary elements for metallopro-

teinase inhibition, and the smaller C-terminal domain

contributing to molecular interactions, such as
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interaction of TIMP-2 with proMMP-2 and interaction

of TIMP-3 with ECM PGs.

Tissue inhibitor of metalloproteinases are widely

expressed, with the exception of TIMP-4, which has

found primarily in the brain, heart and adipocytes.

TIMP expression is dysregulated in pathologies such

as cancer, osteoarthritis and fibrosis [585].

Heparanases

Heparanase is an endoglycosidase that catalyzes the

cleaving of the side chains of HSPGs. In 2000, the

homologous HPSE-2 was identified and it shares

~ 40% similarity with HPSE-1 and has no glycosidase

activity but appears to act as an inhibitor for HPSE-1

by interacting with HS chains [588]. The cleavage site

of HPSE-1 is the b (1,4) glycosidic link between glu-

curonic acid and N-sulfonylated glucosamine present

in HS chains. Only a limited number of these bonds

are affected by the activity of HPSE-1 and the speci-

ficity is due to the recognition of a trisaccharide sub-

strate with a defined HS sulfation pattern (GlcNX-

GlcA-GlcNS, where X = S or Ac) thus generating 5–
10 kD HS fragments [589].

Heparanase-1 structure and activity

The transcription and translation of the HPSE-1 gene

generates a protein of 65 kDa in the form of a proen-

zyme (pro-HPSE-1) which, after a post-translational

cut, gives rise to two subunits of 50 and 8 kDa not

covalently linked and which constitute the active form

of the enzyme [590]. This maturation process begins in

the endoplasmic reticulum where the precursor is syn-

thesized, to continue, after the removal of the signal

peptide, in the Golgi apparatus from where it is finally

secreted into the extracellular environment. The con-

version of the inactive form of the enzyme into the

active one requires its re-absorption by endocytosis

and transport to the lysosomes where cathepsin L cat-

alyzes the cut that will give rise to the two subunits

that form the mature enzyme.

Several membrane-bound molecules have been

shown to mediate the binding and internalization of

pro-HPSE-1. In particular, the receptors for mannose

6-phosphate and for low-density lipoproteins are to be

considered as high-affinity receptors for HPSE-1. It

has been reported that plasma membrane-bound syn-

decan-1 mediates HPSE-1 internalization [591].

In 2015, the crystal structure of human HPSE-1 was

revealed, highlighting that this enzyme comprises a

TIM-barrel domain containing the catalytic site and a

C-terminal domain necessary for secretion and for

regulation of its enzymatic and nonenzymatic activity.

Regarding the catalytic site, it includes a putative pro-

ton donor at Glu 225 and a nucleophile at Glu 343, as

well as having two binding domains for Hep / HSe

(HBD1 and HBD2), which are located near the micro-

pocket of the active site [592].

Heparanase-1 as a multitasking protein

HPSE-1 has been posited and defined by some authors

as a multitasking protein with enzymatic and nonenzy-

matic activities. Thanks to its activity as endoglycosi-

dase, it catalyzes the cutting of the side chains of the

HSPGs, contributing decisively to the remodeling of

the ECM and the BMs. Furthermore, since HSPGs

through the sulfated disaccharide domains act as a

‘sponge’ providing numerous docking sites for bioac-

tive molecules such as cytokines, GFs, enzymes and/or

inhibitors, the enzymatic activity of HPSE-1 also

favors the release of these various biomolecules linked

to HS. In this way, HPSE-1 facilitates cell motility and

proliferation, angiogenesis and inflammation [541].

The functions performed by HPSE-1 are not limited

only to enzymatic activity toward HS chains but also

include nonenzymatic and/or ‘signaling’ activities. By

interacting with a possible not-yet-identified membrane

receptor, both pro-HPSE-1 and mature HPSE-1 have

been shown to be able to activate certain signaling

pathways and to regulate gene expression. Clustering

of syndecans by means of HPSE facilitates cell adhe-

sion and spreading by PKC, Rac and Src activation.

HPSE-1 can enhance the phosphorylation of protein

kinases such as Akt, p38-MAPK, STAT, Src, Erk

which in turn increase the transcription of several

genes involved in tumorigenesis. In turn, Src activation

phosphorylates EGFR, thus increasing cell prolifera-

tion and tumorigenesis [593].

Cellular localization studies have also shown that

HPSE-1 can be found at the nuclear level where, con-

tributing to the loss of nuclear syndecan-1, it can regu-

late the transcription of various genes involved in neo-

angiogenesis (VEGF-A and VEGF-C) and in ECM

turnover (MMP-9) in tumor cells. The regulation of

gene expression by HPSE-1 has been ascribed to the

promotion of histone acetyltransferase activity in this

further expanding of the repertoire of functions and

modes of action of HPSE [594].

HPSE in physiology and disease

In healthy tissues, the cellular expression of HPSE-1 is

strictly regulated in order to prevent the uncontrolled

degradation of HSPG both at the membrane and
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ECM level. In most tissues its expression is constitu-

tively inhibited by epigenetic regulation of the pro-

moter of the HPSE-1 gene [595] and by the activity of

the wild-type transcription factor p53 [596]. Conse-

quently, the expression of HPSE is limited only to ker-

atinocytes, to the placental trophoblast, to platelets

and to some immune-defense cells such as mast cells

and leukocytes [597].

In mice, during the early stages of gestation, HPSE-

1 increases in the tissues of the uterus and contributes

to tissue remodeling and the release of GFs necessary

for implantation of the blastocyst and the development

of the embryo [598]. The growth of the hair follicle in

humans is regulated by HPSE-1 whose expression is

localized in the inner root sheath thus controlling its

differentiation [599]. In wound healing, HPSE-1 is

required for tissue repair as it stimulates angiogenesis

and keratinocyte migration [600]. In addition, HPSE-1

released by de-granulated platelets and immune cells

facilitates the interaction of leukocytes with suben-

dothelial BM and their extravasation as well as blood

clotting [597].

Thanks to its degradative function toward HSPG

and the signaling mechanisms, HPSE-1 has been

shown to be strongly involved in various pathological

conditions. The overexpression of HPSE-1 has in fact

been shown to have a role in tumors, inflammatory

and degenerative diseases (Table 6). In these patholog-

ical conditions, various factors are responsible for the

overexpression of HPSE-1 including mutated variants

of p53, estrogen, ROS, hypoxia, inflammatory cytoki-

nes, hyperglycemia and albuminuria.

HPSE-1 is upregulated in almost all human cancer

[601] and many studies have shown that it participates

in tumor initiation, angiogenesis, growth, metastasis

and chemoresistance [602,603]. Basal HPSE-1 expres-

sion is regulated by Sp1 transcription factor [604],

whereas inducible HPSE expression seems to be under

Egr1 control [605]. HPSE-1 expression is also con-

trolled at epigenetic level: hypermethylation of pro-

moter region reduces HPSE expression [595]. It has

been identified that HPSE-1 is regulated at post-tran-

scriptional levels by the presence of AU-rich elements

in the 30 untranslated region which favor mRNA

degradation, and the loss of this region contributes to

HPSE production [606]. HPSE-1 is also regulated by

hormones, tumor suppressors, oncogenes, and miR-

NAs [607].

It has been recently established that estrogen recep-

tor-beta, ERb, suppression in the aggressive MDA-

MB-231 breast cancer cells strongly inhibits their inva-

sive phenotype by affecting their morphological char-

acteristics and functional properties, leading to a

partial MET and critically affecting matrix reorganiza-

tion. Among other major ECM components HPSE is

strongly downregulated following ERb suppression

[608] and seems to be correlated with several func-

tional miRNAs, including miR-10b, miR-200b and

miR-145 that modulate breast cancer cell properties in

ER-dependent manner [609,610].

Moreover, HPSE-1 is deeply involved in inflamma-

tion since it regulates the migration of dendritic cells,

monocytes, eosinophils and neutrophils [611], but also

participates in the activation and polarization of

macrophages toward a pro-inflammatory/pro-tumori-

genic phenotype mainly by regulating TLRs signaling

[612–614].
Over time, published scientific evidence has proved

the involvement of HPSE in multiple other pathologi-

cal conditions such as diabetes [615,616], dysfunction

of the coagulation system [617,618], amyloid disease

[619–622], renal disease [615–628], fibrosis [629–632],
pancreatitis and viral infections [633–636] (Table 6).

Concluding remarks and future
perspectives

In this article, we present a detailed description of the

composition and functions of the ECMs. The last dec-

ade shed plenty of light with the significant advances

in research related to ECM macromolecules as well as

the ECM interactions networks. ECMs are responsible

Table 6. Heparanase expression and function in diseases.

Pathological condition Reference

Cancer

Sustaining proliferative

signaling such as FGF2,

TGFb, HGF, VEGF and EGF

[638–642]

HPSE inhibits apoptosis via

HS-mediated signaling

[643]

Autophagy regulation [644,645]

Inducing angiogenesis [540,646,647]

Activating invasion,

metastasis, EMT and ECM

degradation

[608,609,623,648]

Involving in exosome

formation

[615,617]

Inflammation [611,613,614,618,619,624]

Diabetes [620,621]

Coagulation dysfunctions [622,625,626]

Amyloid disease [627–630]

Kidney disease [631–634]

Organ fibrosis [600,635,636,649,650]

Pancreatitis [651]

Viral Infection [652–654]
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for tissue integrity and play regulatory roles in cell sig-

naling, gene expression, and cell functional properties

in physiological and pathological conditions. Despite

the accumulated and in depth gained knowledge, we

believe is essential a guide to describe and summarize

the entire field of ECM in terms of its main macro-

molecular components and their biological roles.

Although it is not possible to cover all different types

of ECM effectors, we presented the most important

and abundant macromolecules of the ECM networks.

Among them are the family of collagens and its recep-

tors, elastin, laminins, the various PGs and hyaluronan

with its well-studied receptor CD44. The matrix-de-

grading proteolytic and glycolytic enzymes were also

described as their affect tissue remodeling in health

and disease.

Despite the strong correlation between several

matrix macromolecules with disease development and

progression, the area of ECM, although an emerging

field for intense research to understand the mecha-

nisms underlie the basis of several diseases, has been

underestimated in terms of designing novel strategies

for disease treatment. We believe that the ECM com-

munity should aim toward the understanding of cellu-

lar mechanisms governing the matrix-based disease

development and progression as well as to develop

comprehensive strategies that will drive future pharma-

cological targeting, disease diagnosis, prognosis and

treatment.
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