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Abstract—The article proposes the development of an
innovative prototype of smart orthosis with a fully inte-
grated multi-electrodes matrix for electromyography (EMG),
to improve non-invasive personalized recording during reha-
bilitation. Both electrodes and conductive tracks were effec-
tively printed onto the three-dimensional (3D) surface of the
orthosis through Aerosol Jet Printing. Results from morpho-
logical and electrical characterization of printed elements
showed an average thickness of 22.2 μm (relative stan-
dard deviation of 11%) with average resistivity of about
51 · 10 −8�·m (relative standard deviation of 10%) and an
electrode-to-skin impedance comparable to the one of com-
mercial dry electrodes. Portability and comfort were enabled
by customized light-weight conditioning electronics attached to the orthosis allowing wireless data transmission.
Muscular activity from three subjects was then evaluated while performing the same tasks involving multiple muscles.
Results confirmed the ability of the device to monitor the activity of gastrocnemius muscle during both a sit-to-stand
task and isometric contractions, both for intra- and inter-subjects’ analyses. A comparison with commercial surface EMG
electrodes and with literature confirmed similar features both in time and frequency. Overall, the results presented suggest
the possibility to exploit the potential to print customized electrodes onto 3D surfaces to fabricate smart personalized
wearable orthoses useful to capture valuable feedback to improve effectiveness, consciousness, and interactivity during
daily activities and specific exercises, for both patient and medical personnel.

22 Index Terms— Aerosol jet printing, printed EMG electrodes, 3D printing, smart wearable devices.

I. INTRODUCTION23

THE countless advantages of wearable devices in terms

AQ:1

24

of low cost, design flexibility, miniaturization and wide25

fields of applicability are pushing the research to investigate26

novel techniques to enable effective integration of sensors27

within smart and stand-alone devices that can improve the28

final users’ life experience [1]–[4]. Particular effort has been29
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addressed in the recent decade to combine wearable devices 30

user-friendliness and low-cost with robustness, accuracy and 31

repeatability required to improve the reliability of the data 32

extracted from those devices [5]. 33

Among the wide variety of parameters monitorable using 34

wearable devices, electromyographic (EMG) signal represents 35

a highly investigated and discussed one. The evaluation of 36

EMG time and frequency content represents a valuable tool to 37

provide feedback on the physio-pathological state of muscles 38

and of its neuromuscular junction [6], to open the path to 39

applications in the field of human-machine interfaces, but also 40

to enable continuous monitoring of muscular progress during 41

post-stroke recovery or rehabilitation [7], [8]. 42

Focusing on home-based monitoring, the effective integra- 43

tion of EMG electrodes, of customized signal processing and 44

transmission circuit directly onto wearable devices together 45

is highly demanded. Currently, most of the EMG record- 46

ing is still performed in laboratories using standard single- 47

use surface electrodes following complex protocols, with the 48

need of medical personnel to ensure proper positioning and 49
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signal interpretation. Thus, the integration of those electrodes50

with orthoses or wearable devices could improve customiza-51

tion depending on patient characteristics and rehabilitation52

needs. Furthermore, relying on integrated electrodes can53

ensure effective long-term monitoring with higher repeatability54

and accuracy due to standardized positioning, improving reha-55

bilitation outcomes without having to rely on bulky devices in56

hospitals or laboratories.57

Of course, to enable the diffusion of home-based wearable58

devices for rehabilitation, many issues must still be addressed59

to improve user-friendliness and allow non-skilled patients60

to use the device ensuring accuracy, reliability and robust-61

ness, as required for commercialization in non-controlled62

environments (e.g. hospital, homes) [3]. Thus, finding the63

most suitable trade-off between cost, performances and user64

comfort is often non-trivial [9]. In particular, different kinds65

of interferences may affect the desired signal from the envi-66

ronment or due to possible device misplacements from non-67

expert users [10]. Exciting challenges are further related to68

data transmission towards an external application where using69

a stable connection to provide reliable information, and to70

strategies to achieve a proper signal compression and feature71

classification to limit dissipated power, enabling the use of72

miniaturized batteries and memories to limit the invasiveness73

for the patient [11]–[14]. Thus, an essential requirement to be74

effective during rehabilitative tasks is the total unobtrusive-75

ness of the equipment used to retrieve the signals, to leave76

the patient free to perform all the exercises without any77

impairment [15].78

Considering this request, one of the most pressing require-79

ments is to develop embedded customized electrodes directly80

on the surfaces of wearable devices, providing a ready-to-81

use personalized sensing device. Currently, most of the exam-82

ples of electrodes integration with wearable devices show83

the usage of commercial EMG surface electrodes combined84

with an orthosis to model knee joints [16], to design a85

smart mechatronic orthosis [17], [18], to enable automatic86

recognition of terrain characteristics through an instrumented87

leg orthosis [19], to assess the effect of an exoskeleton [20].88

Despite relevant usefulness of EMG signal is confirmed from89

all the results obtained, none of the above presents a fully90

integrated design. Thus, adhesive electrodes positioning is91

still needed additionally to orthosis wearing, with possible92

limitations in terms of unobtrusiveness, portability and connec-93

tivity. Furthermore, those few examples of stand-alone devices94

provided [21], despite wireless connection is often ensured,95

present still bulky electrodes not fully integrated with the96

orthosis, non-suitable for home-based continuous monitoring97

since they are impairing patient movements.98

In this framework, printed electronics represents a unique99

set of enabling technologies, in terms of process flexibility,100

cost reduction, miniaturization and/or improvement of the101

integrability of EMG and its conditioning circuit into wearable102

devices [5]. A wide number of different techniques, substrates103

and inks have been proposed in the literature to try to integrate104

EMG electrodes in wearable systems. Screen printing (SP),105

inkjet printing (IJP) and roll-to-roll (RR) [22] were employed106

in the production of unconventional prototypes attempting to107

improve flexibility and strain of EMG electrodes [23] [24]. 108

The most promising strategies comprehend textiles [25], [26], 109

temporary tattoo-like electrodes [4], conductive polymers like 110

poly-3,4-ethylenedioxythiophene doped with poly(styrene sul- 111

fonate) (PEDOT:PSS) or elastomers blended with silver or car- 112

bon nanoparticles inks [1], [2], [27]–[29]. Among those, 113

tattoo-like permanent electrodes represent the most recent 114

highly investigated solution to improve unobtrusiveness and 115

enhance performances both in terms of signal to noise ratio 116

(SNR) than of stability [4]. Despite they clearly represent 117

a promising conformable and non-invasive solution, several 118

challenges in terms of durability and toxicity effect due to 119

long term tattoo-skin interaction are still under investigation. 120

Thus, since allergies and unwanted reactions due to con- 121

tinuous tattoo-skin interaction could affect the possibility to 122

perform long term measurement, deep investigation of the 123

chemistry of employable inks, of their durability and of the 124

overall invasiveness of the technique is highly demanded. 125

Considering those challenges, a competitive solution could 126

be the direct integration of customized electrodes onto the 127

3D surfaces of orthosis or prosthesis. This can guarantee 128

from one side conformable skin-to-electrode interaction and 129

from the other improved stability due to a more robust ink- 130

to-substrate interaction. Aiming to this solution, however, 131

none of the above-mentioned techniques can serve, since they 132

are all printing in two dimensions, limiting the integration 133

of electrodes onto 3D surfaces of wearable devices. In this 134

perspective, emerging printing techniques, such as Micro- 135

Dispensing or Aerosol Jet Printing (AJP), are opening the way 136

to the novel attractive possibility to directly embed electrodes 137

with totally customized positions, geometries and materials 138

onto 3D surfaces of wearables (orthosis and prosthesis) to 139

realize a properly “smart” wearable device [30]–[32]. 140

Considering this framework, we propose here the develop- 141

ment of a fully embedded EMG matrix and its condition- 142

ing electronics onto the 3D surface of a rehabilitation leg 143

orthosis using AJP. The aim is to pursue thanks to printed 144

electronics a totally innovative approach for making “smart” an 145

already commercially available orthosis, with a personalized 146

approach, depending on the specific target muscles, on patient 147

anatomy and on rehabilitation requirements. After describ- 148

ing the process adopted to fabricate electrodes, conductive 149

tracks, and to integrate them with the portable conditioning 150

electronics, an impedance-based characterization of the device 151

and preliminary in vivo acquisitions are presented, comparing 152

the performances with the ones from standard pre-gelled 153

electrodes. 154

II. DEVICE FABRICATION AND CHARACTERIZATION 155

A. Fabrication and Integration of the Electrodes 156

With the Wearable Device 157

In order to set up the optimal printing and curing parameters 158

to achieve suitable conductivity of the printed elements on the 159

final orthosis, preliminary printing runs were performed on test 160

samples. In detail, polypropylene (PP) samples with the same 161

characteristics of the final orthoses in terms of material, diame- 162

ter, and curvature were selected. The position of electrodes and 163

tracks and their electrical connections were carefully designed 164
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Fig. 1. Final layout of the prototypes for inner and outer features
(quotes in mm).

Fig. 2. Electrodes and tracks printed on the orthosis; a tester wearing
the devices with the electronics.

to minimize skin-impedance and to limit invasiveness for165

the end-user. EMG electrodes were printed on the center of166

the inner (concave) surface, while tracks with pads on the167

outer (convex) surface of the concave samples, replicating168

the positioning of the EMG matrix and the electronics in the169

final orthosis. A proper electrical connection between each170

electrode and its corresponding track was obtained by drilling171

0.5 mm diameter openings on fiducial markers previously172

printed to evaluate the encumbrance area of the elements173

to be printed. Each hole was filled with conductive ink,174

the same material used to make the printed conductive tracks.175

Two consecutive depositions of silver ink were performed for176

tracks, pads and the first layer of each electrode, followed by177

two depositions of silver chloride ink only on the electrodes178

to ensure a better coupling with human skin.179

The printed layout is shown in Figure 1, while the posi-180

tioning of the electrode matrix on the inner face and of the181

traces on the outer face of the device can be appreciated in182

Figure 2. The position of the matrix was carefully set up to183

provide correct acquisitions of EMG signals of the gastroc-184

nemius muscle, taking as reference the standard positioning185

of commercial pre-gelled Ag/AgCl electrodes during surface186

EMG recording of those muscles [33].187

AJ 300 printer (Optomec, Albuquerque, New Mexico, USA)188

was the Aerosol Jet printer selected to realize our prototypes.189

Silver ink Metalon HPS 108-AE1 (Novacentrix, Austin, Texas,190

USA) is the selected conductive Ag ink to print tracks,191

pads and the first layer of each electrode. It is an aqueous192

suspension of silver flakes, specifically formulated for AJP,193

containing a polymeric additive to strengthen the adhesion to194

plastic substrates, thus avoiding the risk of detachment and195

improving long-term stability. Silver chloride ink (XA-3773)196

TABLE I
AEROSOL JET PRINTER PROCESS PARAMETERS FOR EMPLOYED INKS

with Ag/AgCl weight proportion ratio of 8/2 was purchased 197

by Fujikura Kasei. Co. Ltd. (Shibakouen Minato-ku, Tokyo, 198

Japan) together with its thinner to realize the top layer of 199

our electrodes. A dilution of the ink, with its specific thinner,

AQ:3

200

was mandatory to obtain a proper viscosity for the printing 201

stage (ink starting viscosity was 300±50 dPa· s), following the 202

equations reported in the literature regarding a two-component 203

blend [34]. The ink was deposited at 23 ◦C with a viscosity 204

of about 19.5 mPa·s [35]. 205

Table I resumes the process parameters employed during 206

the manufacturing phase. Ag deposition was followed by a 207

one-hour-long curing step performed in an oven at 140 ◦C, 208

while Ag/AgCl deposition was followed by a sintering step 209

in the oven for 30 minutes at 125 ◦C. After the printing 210

and sintering phase, corner connectors were glued to the 211

supports in correspondence of the pads with a conductive silver 212

epoxy (CW2400, Chemtronics) mixing the two parts in equal 213

amounts and performing a curing step in the oven at 70◦C for 214

20 minutes. 215

The board containing the conditioning electronics and the 216

battery was attached to the outer surface of the device before 217

the actual tests were performed. The specifications of this part 218

will be discussed later in section II.B. A total number of three 219

prototypes were realized. The final layout of the device can be 220

seen in Figure 2, printed on the orthosis and worn by a tester 221

with the complete electronics. 222

B. Morphological and Electrical Characterization 223

of Printed Electrodes 224

A morphological test on the printed lines was performed 225

thanks to Filmetrics Profilm 3D optical profilometer (Filmet- 226

rics Inc., 10655 Roselle St., San Diego, CA, USA), to evaluate 227

the shape of the printed lines. It is based on state-of-the- 228

art white light interferometry (WLI), a non-contact optical 229

method for surface height measurements on 3-D structures, 230

to measure surface profiles and roughness down to 0.05 μm. 231

The instrument works in the range of 50 nm–10 mm with 232

substrates and materials characterized by a reflectance between 233

0.05–100%. The system implements a 5MP camera, the Nikon 234

CF IC Epi Plan 20x model (field-of-view: 1.0 mm x 0.85 mm). 235

The samples were measured in three different areas along the 236

total length to assess the uniformity of the thickness. The 237

parameters evaluated in this phase are the total thickness, 238

calculated as the difference between the maximum height and 239

1% of this value, and line width, calculated as the difference 240

between two consecutive 1% values on the two sides of 241

the maximum height. Results show an average line width 242
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Fig. 3. Profilometer results for printed traces.

Fig. 4. Comparison of the impedances of different electrodes normalized
on electrode area on subject 1. Wet commercial electrodes in blue, com-
mercial dry electrodes with/without sweat simulation in green/black and
AJ printed dry electrodes with/without sweat simulation in red/magenta.

of 320.85 μm (relative standard deviation of 10%), a total243

thickness of 22.2 μm (relative standard deviation of 11%)244

and a resistivity of 51 10−8 � m (relative standard deviation245

of 28%), which is in agreement with what declared by the246

manufacturer on the datasheet in the order of 10−8� m, with247

values varying depending on deposition and curing parameters.248

Figure 3 shows an example of the profile obtained for the249

printed features.250

C. Device Impedance Characterization251

In order to evaluate the performances of the electrodes252

directly embedded on the devices by means of AJP, we com-253

pared their electrode-to-skin impedance with the one of254

two types of commercially available surface electrodes: wet255

Ag/AgCl electrodes (Kendall), and dry electrodes (DRV175).256

For each electrode/subject combination, three measurements257

were acquired at rest, placing a couple of electrodes on the258

gastrocnemius muscle of two healthy volunteers. Only for the259

dry electrodes, a set of measurements with water-humid skin260

were acquired to simulate sweating. All the measurements261

were acquired with a portable impedance analyzer (Palmsens3262

3EIS), configured to record impedance sweep in a range of263

frequencies from 10 to 1000 Hz, comprising the range of264

interest of EMG signal. All the measures were normalized with265

respect to the active area of the electrodes to provide better266

means of comparison. Both an intra- and an inter- subject267

analysis were performed.268

Fig. 5. Comparison of the impedances of same electrodes between
the two subjects (1 in red, 2 in blue). Wet commercial electrodes (A),
commercial dry electrodes without sweat simulation (B) and AJ printed
dry electrodes without/with sweat simulation (C)/(D).

Fig. 6. Architecture of the developed wearable device.

As highlighted from Fig.4, the comparison among elec- 269

trodes on the same subject showed a great similarity between 270

our AJ printed electrodes and the commercial dry ones, with 271

a difference around 20% for magnitude spectrum with sweat 272

simulation and a difference of around 46% without sweat sim- 273

ulation. Regarding inter-subject variability, as highlighted from 274

the average impedances for two subjects in each configuration 275

shown in Fig. 5, comparable results could be obtained. The 276

differences in terms of magnitude can be explained taking into 277

consideration the variability in inter-subject device positioning, 278

subject training and muscular anatomy. 279

D. Signal Acquisition Section 280

In the present section, we briefly discuss development 281

choices and system architecture. During electronic device 282

development, user comfort and technical aspects were consid- 283

ered as key requirements. According to these considerations, 284

the architecture depicted in Fig. 6, was developed to provide 285

an 8-channel front-end with integrated Bluetooth Low Energy 286

(BLE) real-time communication using as few components 287

as possible to reduce both the power absorption and the 288

invasiveness of the wearable device. 289

We employed an ADS1298 integrated frontend for biopoten- 290

tial signals produced by Texas Instruments which includes an 291

8-channel 24-bit ADC with built-in programmable gain ampli- 292

fiers and serial chip-to-chip communication. The control and 293

communication tasks are performed by a CYBLE-222014-01 294
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Cypress Semiconductor microcontroller whose firmware295

allows a configuration to perform 1 kHz signal sampling and296

its transmission through BLE notifications to a remote unit.297

The system communication was tested, and it was possible to298

achieve an average throughput of 27763 B/s with a percentage299

of correctly received packets higher than 99%. The wearable300

device was completed with a 1000 mAh LP603450 LiPo301

battery that can nominally power the system for up to 30 hours.302

III. IN VIVO ACQUISITIONS303

A. Protocol for EMG in Vivo Acquisition304

In order to assess proper functioning, the novel device was305

tested on three different normal abled subjects, measuring306

the activity of gastrocnemius while executing specific tasks,307

compatible with the orthosis and that are reported in the308

literature as useful during rehabilitation session or routine309

activities [36], [37]: The protocol was then composed by the310

following tasks:311

1) Sitting still312

2) Standing and sitting tasks313

3) Standing still314

4) Isometric contraction of the gastrocnemius muscle315

5) Standing still316

The acquisition of each task was repeated three times for317

each subject. For each subject, a complete set of measurements318

performing the same tasks was also executed using standard319

pre-gelled commercial surface EMG electrodes, to have a320

reference. The analysis of the signals from both commercial321

and AJ printed electrodes was performed exploiting well322

known and established features in time, frequency and spatial,323

to be able to compare results from our device with other324

studies performed in the literature.325

B. Signal Processing326

Relying on widely accepted strategies reported in the litera-327

ture, acquired data were processed and analyzed using MatLab328

to filter the interferences, recognize the contraction events and329

extract relevant frequency, time and spatial features.330

1) Signal Denoising and Filtering: Interferences due to poor331

skin-electrodes contact and electromagnetic interferences are332

common in applications dealing with wearable electron-333

ics [10]. Raw data were then processed using a notch filter at334

50Hz to remove power interferences and then using a bandpass335

filter between 10 and 450 Hz, to remove lower frequencies336

possibly due to motion artifacts or neuronal spiking, and337

higher frequencies due to environmental interfering signals338

(e.g. electromagnetic interferences). The choice of low-pass339

and high-pass frequencies was based on what is reported by340

literature, confirming that the frequency spectrum of EMG341

ranges from 20 to 400 Hz, with the maximum energy between342

50 and 200 Hz [38], [39]. Once the raw signal was filtered,343

each task was isolated depending on manual timing acquired344

during each session. Information about both time and power345

of raw and filtered signals were saved as fields of a struct for346

each repetition.347

2) Contraction Detection: The detection of each single con-348

traction events taking place during the specific tasks was349

TABLE II
TIME FEATURES SELECTED FROM LITERATURE [1], [45]

implemented relying on the use of the cumulative sum 350

(CUSUM) of the rectified EMG signal. As reported in previous 351

EMG analysis in the literature [41], [42], [43], this method was 352

chosen here as an optimal trade-off in terms of low complexity 353

and of robustness required in this application to discriminate 354

between relax and contraction events [40]. In order to improve 355

robustness against background noise, the traditional CUSUM 356

method was improved, taking as a reference [44], using 357

CUSUM-slope as a measure to estimate the signal content 358

within a noisy background statistically. 359

Briefly, defined xi the EMG signal the CUSUM Ci was 360

calculated according to the (1) reported in [44]. 361

Ct =
∑t

i=1
xi − μCt =

∑t

i=1
xi − μ (1) 362

The first derivative of Ci was then calculated, and a moving 363

average applied to avoid the identification of background ran- 364

dom fluctuation as contraction onsets or offsets. Contraction 365

onset and end could be then identified by comparing the first 366

derivative with a threshold to discriminate significant changes 367

with respect to the standard deviation of the background noise. 368

The indexes corresponding to the contractions’ onset were 369

saved depending on the moment in which the first derivative 370

becomes higher than the threshold, and the indexes of the 371

end of the contraction as those moments in which the first 372

derivative becomes lower than the threshold. 373

3) Time, Frequencyand Spatial Features: In order to perform 374

intra- and inter-subject comparison, a widely accepted method 375

in the literature is the one relying on specific time features. 376

Among the various available, we selected here four-time 377

features (Mean Absolute Value (MAV), Root Mean Square 378

(RMS), Wavelength (WL) and Willison Amplitude (WAMP) 379

since they are referenced as the most relevant in the literature 380

using EMG for rehabilitation applications were indicated as 381

the most useful [1], [45]. 382

Although time-features are the most frequently adopted 383

method to characterize EMG signals and to compare different 384

sessions, often frequency content analysis represents a useful 385

complementary tool. During rehabilitation sessions or when 386

evaluating the comfort of prosthesis or orthosis, one of the key 387

aspects is to assess muscle fatigue during long or repetitive 388

tasks. This is useful to provide feedback to the patient and 389

to inform medical personnel about the improvement during 390



IEE
E P

ro
of

6 IEEE SENSORS JOURNAL

long-term monitoring. Mean (MNF) and median (MDF) fre-391

quency (defined as detailed in equations 2 and 3) were selected392

as frequency features since they are indicated in the literature393

as most related to fatigue [46].394 ∫ M DF

0
P(t, f )d f =

∫ ∞

M DF
P(t, f )d f = 1

2

∫ ∞

0
P(t, f )d f395

(2)396

M N F =
∫ ∞

0 f P(t, f )d f∫ ∞
0 P(t, f )d f

(3)397

After computing the frequency spectrum of the segmented398

EMG during the contraction using the Short-Time Fourier399

transform (windows length = 128 ms, overlap = 50 ms),400

MNF and MDF were calculated starting from the definitions401

(2) and (3) as referenced in [46].402

In addition to time and frequency features, since the printed403

matrix represents a multichannel system, spatial features were404

also extracted to assess the ability of the device to evaluate405

signal distribution during different tasks.406

The content of each of the 8 channels was evaluated at dis-407

crete time points corresponding to maximum RMS amplitude,408

showing how the signal was traveling along with the muscle409

during different tasks.410

4) Correlation Analysis: Correlation analyses have been per-411

formed to characterize the device both intra- and inter-subjects,412

adapting protocols often adopted in the literature to eval-413

uate EMG monitoring on single or multi-users [47]–[49].414

Considering each analysis performed on a single subject,415

cross-correlations of each channel with the others were cal-416

culated to provide a table with the maximum correlation417

coefficients obtained among the different channels and the418

lag at which they were obtained. Considering channels acti-419

vation during the same task performed by different subjects,420

a cross-correlation between each corresponding channel was421

performed, to assess how the device can collect signals from422

different subjects with different anatomical features.423

C. Results From in Vivo Acquisitions424

EMG signals acquired and analyzed (as described in425

sections III A and B) confirmed the functionality of the dry426

EMG matrix embedded in the orthosis. In particular, the pos-427

sibility to detect muscle activation, muscle fatigue, contraction428

spatial location and to monitor muscle activity from different429

areas of the muscle during complex tasks were demonstrated.430

To extensively and organically show and discuss experimental431

results, they will be summarized here in three specific sections,432

each to highlight different investigated aspects. The first one is433

exclusively dedicated to the comparison between data acquired434

from AJ printed dry electrodes with the ones from standard435

pre-gelled Ag AgCl electrodes that represent the commercially436

available gold standard for EMG analysis. The second one will437

evaluate on a single subject how the different channels are438

correlated among them during a stand up and sit down task439

and how it is possible with a color map to show contraction440

time and spatial evolution. The third one will show how the441

system work considering different subjects, in terms of time442

features, frequency features and correlation among the same443

channels.444

Fig. 7. a. Comparison of the full protocol acquired with reference
commercial electrodes (blue) and with AJ printed electrodes (red);
b. Analysis of the time and frequency features of the EMG signal acquired
from a single contraction respectively with commercial (blue) and
AJ printed electrodes (red).

1) Comparison Between AJ Printed Electrode Matrix and 445

Commercial Electrodes: Results obtained from the comparison 446

between the parameters of EMG signals measured with AJP 447

and with commercial pre-gelled surface electrodes showed a 448

comparable ability to follow qualitatively the different time 449

evolution of the tasks performed. Comparable qualitative 450

trends could be obtained both in terms of RMS amplitude than 451

of frequency features. However, quantitative differences could 452

be observed both in terms of RMS amplitudes, of SNR and 453

of frequency content. In detail the SNR was computed both 454

linearly than in dB, using the average RMS values measured 455

during a contraction event (RMS signal) and during rest (RMS 456

rest). RMS amplitude values of the EMG recorded using 457

printed electrodes appeared reduced with respect to the ones 458

obtained with commercial electrodes (Figure 7), both during 459

rest (average reduction 40%) and during contraction (60%). 460

The higher reduction of the RMS observed during contraction 461

than during rest caused a reduction of the SNR associated 462

with the printed electrodes respect to the commercial ones of 463

nearly 5 dB (AJP electrodes showed SNR in a range between 464

24 to 27 dB compared to the 30 dB of the commercial surface 465

electrodes). 466

Regarding frequency features, the range of mean and 467

median frequency quantified from the spectrum of the AJP 468
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appear lower (10 Hz) than the range quantified from the469

spectrum of commercial electrodes during all the contraction.470

All those differences can be potentially explained considering471

the different dimensions of the electrodes and the different472

electrodes-to-skin impedance module (in agreement with what473

highlighted during the impedance characterization detailed474

in paragraph II.C). However, the amplitude of all the time475

features recorded allowed extracting the index of start and476

stop of contraction needed to perform the analysis both in477

time and in frequency. It can be observed, from the analysis478

of the mean and median frequency during the contraction, that479

a comparable trend could be recorded during 30 seconds of480

contraction. A range of frequency between 80 and 140 Hz481

could be observed in both systems, in agreement with the482

maximum frequency content of the EMG signal highlighted483

in the literature (20 and 150 Hz [38]).484

2) Intra-Subject Task Analysis: The intra-subject function-485

ality of the dry EMG matrix embedded in the orthosis was486

exploited to investigate the amplitude of the EMG signal487

recorded in each subject by each channel during the sit-to-488

stand-to-sit task, which involves different muscles at different489

timings. We used [36], [37], [50] as references about standard490

sit-to-stand and stand-to-sit biomechanical phases and mus-491

cle activity to perform a reliable comparison of the results492

obtained using embedded EMG dry AJ printed electrodes.493

The time features extracted allowed to confirm that the494

device can discriminate the different events of stand up and495

sit down as discrete peaks (Figure 8), in agreement what496

obtained with commercial electrodes and to what reported in497

the literature [36], [37], [51]. Further, as highlighted by the498

comparison between the single graph referring to the com-499

mercial electrodes and the multiple graphs from 8 channels500

of the printed array, from this last it is possible to drive501

multiple information about the signal direction and spatial502

muscle activation with minimal invasiveness. Thus, a similar503

set of information could be obtained only by relying on504

16 commercial electrodes, with a complex positioning protocol505

and with issues in terms of obtrusiveness for the patient.506

It was then possible to extract color maps that are visually507

showing the activation of the different muscles during the task508

(Figure 9). Thinking to a future interactive tool, this visual509

feedback could represent an interesting opportunity for the510

patient to have prompt information about the correctness of511

the task performed.512

The correlation among the different channels confirmed513

that the highest value was obtained with an average delay of514

0.03±0.01 s among channels 1, 8 and 6 referring to the highest515

part of the muscle and among channels 5, 4 and 7 referring516

to the lowest part in each of the three subjects, suggesting the517

activation of the lowest part during rising and of the upper518

during descending (Figure 10).519

Interestingly, the highest correlation values (>0.95) could be520

observed at delays in agreement with the distances between521

the peaks of RMS recorded on the different channels. In pres-522

ence of a delay 0 and 0.2, maximum values of correlation523

would be observed respectively between nearby channels524

(e.g. among upper 1, 6, 8 and lower 2, 4, 5, 7). At higher525

delays 0.8 and 1 s, maximum levels of correlation could be526

Fig. 8. From above to below channels 1 to 8 and the EMG signals
recorded during a single task of sit-to-stand and stand-to-sit.

observed even between upper and lower channels. This can be 527

comparable with the interval between rising and descending 528

tasks, suggesting that the matrix is successfully able to detect 529

the different timings of activation of muscle with a higher 530

resolution than classical single-channel EMG. 531

Recurring peaks obtained from multiple repetitions per- 532

formed using the same device (Figure 11) and from repeti- 533

tions using different devices (Figure 12) suggest the proper 534

functioning of the device even during a long-time acquisition. 535

This gives promising results concerning the repeatability of 536

the results obtained. 537

In both cases clearly, the peak of RMS EMG value due to 538

rising and descending events could be visible. The difference 539

in the specific shape can be explained for intra-device rep- 540

etition due to imperfect contact maintained during repetition 541

between electrodes and skin (Figure 11), while for inter-device 542

evaluation due to a tolerance in the correct placement of the 543

device on the muscle (Figure 12). 544

3) Inter-Subjects Task Analysis: Results obtained from the 545

acquisition performed on three different subjects showed recur- 546

ring time and frequency features when analyzing a single 547
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Fig. 9. Spatial features extracted during task showing the activation of
each channel during the different phases.

Fig. 10. Maximum correlation values among the 8 channels during
sit-to-stand and stand-to-sit tasks.

contraction and a recurring pattern with two most evident548

local peaks when analyzing the sit-to-stand-to-sit task, in549

agreement with the phases of rising and descending confirmed550

by literature [36], [50], [51]. Despite clearly, these represent551

limited numbers that cannot allow stating strong assumption552

regarding the reproducibility, the agreement of those widely553

adopted features with the literature represents interesting pre-554

liminary data, is suggesting that the device is working prop-555

erly on subjects with different calf dimensions (sb1:12.0 cm,556

sb2: 11.0 cm sb3:13.7), level of training and different sex.557

Fig. 11. RMS features obtained with multiple acquisitions of the same
task on a single device.

Fig. 12. RMS features obtained from the acquisition of the same task
performed using three different devices on the same subject.

Fig. 13. Comparison of three subjects performing a single long
contraction. Above filtered rectified EMG signal and its spectrum;
Below: Time features and frequency features (Mean frequency solid line
and median frequency dotted line).

Figure 13 and 14 report examples of comparisons among 558

the EMG signals from the three subjects respectively during 559

a long contraction and during a stand-up and sit-down task. 560

Regarding the long contraction, the differences in RMS ampli- 561

tude can be explained considering the variability, detailed dur- 562

ing impedance-based characterization, due to different subject 563
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Fig. 14. Comparison among the time features calculated from the EMG
of the three subjects on channels 1 and 8 while performing a sit-to-stand
and a stand-to-sit task.

anatomy and variability in electrodes positioning and skin-564

electrodes contacts. The analysis of frequency spectrum shows565

comparable frequency content, with a peak located at an566

average frequency of 67±10 Hz, and most of the energy567

(70±5%) within 20 and 250 Hz, in agreement with what568

was reported from the literature [38], [39]. Regarding mean569

and median frequency, different trends can be appreciated570

for the three subjects, possibly due to the different levels of571

training bringing to different amounts and timings of muscular572

fibers activated during the task. Comparable ranges of mean573

frequencies could be observed (100−150 Hz), in agreement574

with the range in which the maximum EMG energy is located575

(70−160 Hz according to [45]) (Figure 13).576

Similarly, median frequency (60−120 Hz) appears in com-577

plete agreement with results obtained with standard surface578

EMG electrodes [52] Interestingly, a similar decreasing trend579

could be observed on all the three subjects in the last580

5 seconds, suggesting possibly the correlation with an ending581

condition of fatigue.582

The comparison among the EMG recorded on the three583

subjects during the stand-up and sit-down task interestingly584

allowed to recognize comparable features in all the subjects.585

An example can be observed in Fig. 14 where for all the three586

different patients tested it was possible to detect on the same587

channels 1 and 8 the two peaks referring to the stand-up and588

sit-down task. Some differences could be observed in other589

channels, due to the possible tolerance in the positioning of590

the device and in the contact impedance in the three subjects.591

IV. CONCLUSION592

The article proposes AJP as an enabling technology for593

embedding a multi-EMG electrodes matrix into the 3D surface594

of orthosis for physiotherapy. Thanks to the advanced physics595

of ink deposition and curing, electrodes and tracks were596

directly integrated into the orthosis obtaining a resistivity in597

agreement with what was declared by the manufacturer and598

an overall geometrical variation of about 10% (line width599

of 320.85 μm, thickness of 22.2 μm). The device was then600

tested acquiring muscular activity from three subjects perform-601

ing the same customized circuit, evaluating both long and short602

contraction and complex tasks involving multiple muscles.603

Results obtained in terms of recurring features with both604

intra- and inter-subject repetitions, in agreement with the 605

literature, are a promising starting point for deepening in future 606

works long term acquisitions and wider statistical analyses on 607

multiple subjects. A comparison with the gold standard com- 608

mercial electrodes for surface EMG was performed. Similar 609

features both in frequency and time were analyzed. Due to a 610

higher contact impedance of the electrodes, the amplitude of 611

the time features was smaller than gelled electrodes of about 612

5-10 dB. Future works will try to improve this limitation by 613

evaluating novel materials to improve the adhesion, to reduce 614

contact impedance and to improve electrode performances. 615

Despite this limitation, this work highlights that AJP tech- 616

nology could bring wearable devices to a new era, obtaining 617

embedded sensors and conductive tracks printed directly on 618

prostheses or orthoses. As depicted by our results, the possibil- 619

ity to detect contraction events, to analyze time and frequency 620

features and to extract useful visual feedbacks for the patient 621

with dry multiple electrodes represent a promising result to 622

better investigate non-invasively muscular activity on larger 623

areas, and not in a single location as in single-channel standard 624

acquisitions. Furthermore, the extreme customizability offered 625

by AJP opens different opportunities in terms of integration of 626

EMG matrix with other sensors (e.g. lactate, potassium) that 627

could provide complementary information about the fatigue 628

and the oxygenation during physical activity. In such a way, 629

future rehabilitation devices would be smart, not invasive for 630

the patient and able to bring to physiotherapists or to patient 631

valuable feedback to improve effectiveness, consciousness and 632

interaction during daily activities and specific exercises. 633
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