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Abstract 

Predictive Maintenance (PdM) is a condition-based maintenance policy that carries out 

maintenance action when needed, avoiding unnecessary preventive action or failure. Machine 

learning (ML), in the form of advanced monitoring and diagnosis technologies, has become 

increasingly attractive. Implementing PdM through ML is a difficult and expensive process, 

especially for those companies which often lack the necessary skills and the financial and labour 

resources.  

Thus, a cost-oriented analysis is required to define the most suitable maintenance policy and 

quantify the achievable saving. Implementing PdM with ML techniques involves the costs of 

investment in IT technologies, in addition to those incurred in traditional maintenance, 

however, no previous works consider ML implementing costs in economic evaluation of PdM. 

ML performance is evaluated in terms of the faults intercepted, amount of unexploited lifetime 

and frequency of unexpected breaks.  

This paper aims to provide a useful study on data availability, system reliability and costs for 

companies which are interested in implementing PdM policy through ML. This paper compares 

preventive maintenance and failure costs with the PdM costs related to the ML.  

The impact of investment costs on the ML model performance is investigated and it is integrated 

in the cost evaluation of PdM policy. Considering PdM costs and ML performance, useful graph 

about the convenient zone of applying this policy are presented, evaluating different reliability 

parameters. Finally, the cost model allows to evaluate the desired level of performance of the 

ML and consequently to evaluate PdM investment costs.  

Keywords: Predictive maintenance, Condition-based maintenance, Machine learning, 

Maintenance costs, Decision-making systems. 

1. Introduction 

Production systems are affected by degradations and failures caused by operational and 

environmental conditions. Maintenance policies aims to guarantee the availability of 

production systems and to guarantee the targeted throughput, with consequently profitability. 

However, maintenance represents a considerable cost in terms of resources, time, tools and 
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spare parts. In many cases maintenance costs can vary from 15% to 70% of the total production 

cost, or even exceed the annual net profit (Madu, 2000). Preventive Maintenance (PvM) is the 

most common policy applied to guarantee the availability and efficiency of manufacturing 

systems; this policy is based on maintenance activities that are carried out based on the 

estimation of mean time between failure and failure rate (Cocconcelli et al., 2018). PvM costs 

and failure costs need to be balanced to find the optimal replacement interval, as the one that 

minimises the combination of the two costs. This policy is defined as a time-based maintenance  

as maintenance actions are driven by the replacement interval (Waeyenbergh and Pintelon, 

2002). It is a very effective and diffused policy, but it doesn’t maximise the availability of 

production systems, as failures might happened and there could be extra costs due to 

unnecessary maintenance actions (Susto et al., 2013). Moreover, when data are not available or 

complete, there could be extra costs due to wrong parameters’ estimations (Sgarbossa et al., 

2019). On the other hand, in the ideal condition of complete and available data, maintenance 

parameters are well estimated, but there still be costs due to failures. 

Nowadays global market requires an increasing availability of production systems, that are 

limited by fixed financial budgets; in this context an optimisation of maintenance policy is 

needed (De Carlo and Arleo, 2013). Aiming to minimise maintenance costs more and more and 

to increase manufacturing systems’ availability, Predictive Maintenance policy (PdM) might 

be the suitable. It allows to maintain availability and reliability of components as long as they 

are able to work through condition monitoring, and to intervene if it is necessary, i.e. when the 

breakdown is approaching. In this way, PdM consents to obtain a saving in costs related to 

spare parts consumption, production time optimisation and maintenance activities scheduling 

(Florian et al, 2019). To implement PdM  as first it is necessary to select the machine or facility 

of interest and to define the maintenance problem; then it is necessary to define the operational 

model and to analyse the failure mode for establishing the goal of predictive model (Jardine, 

Lin and Banjevic, 2006; Accorsi et al., 2017). Afterwards there it is necessary to manipulate 

the data, i.e. data selection, analysis, processing, modelling and evaluation for testing the 

feasibility of the model. Finally, there is the implementation of a decision support maintenance 

system that derives from it (Bousdekis et al., 2018). 

In last years, the progress in information technology (IT) has encouraged the spread of real-

time control systems in manufacturing companies, increasing the amount of available data 

about the state of monitored machines and components. Moreover, technological development 

introduced tools able to collect and analyse big data, and to supply decision support capabilities 

for large data sets of time series data (Prajapati, Bechtel and Ganesan, 2012). Pozzi and Strozzi 

2018 presents the recent revolution of manufacturing systems due to digitalisation of processes 

and machines. In this context, traditional and smart systems co-habitat in the same industrial 

reality. The issue is to establish if it is convenient to install sensors and monitoring systems on 

the first ones, considering the trade-off between costs and benefits. In fact, there are several 

factors that need to be considered for PdM implementation, first of all the need of high 

investments in IT architecture and in intelligent systems that should support operators in 

maintenance decisions (Barraza-Barraza, Limón-Robles and Beruvides, 2014).  
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Machine Learning (ML) techniques could favour the deployment of PdM. In fact recently 

the interest of research and industrial community around ML has deeply increased; it refers to 

a set of algorithms for analysing and process data for clusterisation, classification or prediction 

purpose (Hofmann, Schölkopf and Smola, 2008). Sala et al. 2018 proposed a framework to 

select the most suitable ML algorithm based on input data, first and second layers and response 

type.  

Supposing the ML algorithm is selected and developed to monitor a specific production 

system, this paper aims to investigate when PdM implementation with a data-driven strategy is 

convenient in terms of maintenance costs reduction and production systems availability 

increasing. It presents a new analysis that compares costs and benefits of PdM compared to 

PvM, considering not only maintenance direct costs but also investments costs due to strategies’ 

implementation, supposing that reliability parameters are known. Moreover, it is investigated 

where it is convenient to install sensors and sophisticated monitoring systems, i.e. it is presented 

an analysis that carries out maintenance benefits in relation to the investment costs of these 

systems and the accuracy of monitoring data. Given reliability parameters, PvM and PdM 

investment costs, preventive and failure costs, the two policies are compared to carried out a 

parametrical analysis that highlight the convenience of PvM or PdM in order to minimise total 

maintenance costs. Finally, the cost analysis allows to evaluate the desired level of performance 

of the ML and consequently to evaluate PdM costs in relation to it. The paper is divided in five 

sections: after this introduction, the second section presents a literature review of existing 

models of PvM and PdM costs and about ML algorithm implementation for PdM. Subsequently 

section 3 presents the model and costs definition, while section 4 presents the parametrical 

analysis and some graphical representation of the results. Finally, section 5, is about 

conclusions and furthers research. 

2. Literature review 

PvM approach is the most common policy in maintenance management to avoid failures, as 

it provides maintenance actions based on a schedule. Anyway, this approach is not optimal in 

terms of costs as it does not consider the dynamic state of the production equipment; often it 

leads to over or less maintenance that causes unnecessary replacements or unproductivity in the 

manufacturing process (Ding and Kamaruddin, 2014). PdM concept was introduced in 1940s 

by the Rio Grande Railway Company (Prajapati, Bechtel and Ganesan, 2012). Its goal is to 

intercept in advance the symptoms of anomaly behaviours of a physical production system for 

developing a just-in-time maintenance action, in which availability, quality and safety of the 

equipment are preserved, failure risks decrease, and costs of unnecessary time-based 

maintenance activities are reduced. (Krishnamurthy et al., 2005). Equipment monitoring 

requires tools based on historical data and statistical inference methods to define the health 

status of the system and to detect in advance pending failures with consequent timely pre-failure 

actions. (Susto, Beghi and De Luca, 2012). The PdM process develops according to 3 key steps 

(Martin, 1994; Jardine, Lin and Banjevic, 2006). The first one provides the data acquisition: 

data can be provided from different source and can have different nature as monitoring data, 
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maintenance event data, process data. They are equally important and necessary for the 

implementation of the PdM. Usually, the first one is structured, and their collection is 

completely automated, the second one is unstructured, and their collection can be partially 

entrusted to the operator, therefore they need accurate validation. Then there is the data 

processing, as it is necessary to clean the dataset, then to analyse the data and to verify its 

consistency with the physical phenomenon and, finally, it is carried out the procedure for 

extracting features and information for the PdM objective. Finally, the maintenance decision-

making phase is carried out. It is divided into two main categories, according to which different 

techniques are implemented: diagnostics (fault detection), in which the fault is identified real-

time (Stetco et al., 2019) and prognostic (fault prediction), whose goal is to estimate the 

Remaining Useful Life (RUL) of the monitored component.  

Many studies have been carried out about predictive maintenance models. Zhou et al. (2007) 

presented a reliability-oriented model based on a continuous monitoring system for PvM; the 

model assumes that the system is subject to continuous degradation that can be monitored. 

Deloux et al., (2009) proposed a PdM application combining statistical process control with 

condition-based maintenance; this work focuses on the monitoring of stress value through a 

statistical process. The work of Curcuru et al. (2010), instead, proposed to model the 

degradation mode with a stochastic model combined with a Bayesian approach; they carried 

out a model that minimised total maintenance costs based on this assumption. Yang et al., 

(2011) assumed that the degradation state is linked to the throughput amount, and so they 

proposed a joint transformation for lifetime and production volumes over maintenance levels. 

Sheu et al., (2015) proposed a long-term average cost function for major, minor and imperfect 

repairs, assuming that the degradation of the equipment follows a non-homogeneous 

continuous-time Markov process.  

The rapid development of Information Technology (IT) and the cyber manufacturing 

provide a new possibility for innovative PdM methods (Lee et al., 2015). With cyber 

manufacturing systems large amount of data are available; it is possible to use these data to 

predict current and future health states of equipment and to carry out effective PvM 

maintenance strategies (Vogl, Weiss and Helu, 2019). Moreover, industrial strategies, such as 

Industry 4.0, encouraged investments in smart machines and tools that work on online 

networks, making possible to share multiple kind of information in real time: operational, 

environmental and process data. In this context ML is a useful tool to implement PdM models 

and decrease failures’ costs. Many works have been carried out using different approaches as 

classification methods, filtering and prediction approaches and regression methods (Jardine, 

Lin and Banjevic, 2006). Berka and Macek (2011) proposed a model for fault detection and 

diagnostics of a dynamic stochastic system to carry out effective maintenance actions; the 

diagnostic is carried out using a Bayesian approach to uncertainty and maintenance strategy is 

determined by a dynamic programming algorithm. Susto et al., (2013) presented a PdM system 

based on the availability of the current values of the physical factors acting on the production 

process and on Support Vector Machines (SVMs), that is a powerful tool for dealing with 

classification problems; in particular it separate different classes of data deciding the optimal 
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separation boundary. The model used SVMs to separate faulty from non-faulty state of the 

machines and it gave back the distance from the failure, as the equipment Remaining Useful 

Life (RUL). He et al., (2018), instead, proposed a PdM decision-making method based on 

mission reliability state for cyber manufacturing systems; they assumed that the cyber 

manufacturing system allows big data collection from the process and the transformation of 

these data in useful and meaningful information through cyber-physical systems development 

is the basis for PdM model. 

PdM success depends on the quality and robustness of the condition monitoring system. In 

fact, at low level, a single subcomponent can be monitored, or, at uppermost level, it can be 

controlled the whole asset. Depending on the signal acquisition technique, the monitoring 

system is classified as intrusive (vibration analysis, oil debris) or non-intrusive (power signal) 

(Stetco et al., 2019). In general four elements need to be in place: sensor technology for data 

collection, communication technology for data transfer, computation technology for data 

processing and management tools and practise to integrate the previous three elements (Pereira 

and Carro, 2007; Muller, Crespo Marquez and Iung, 2008; Campos, 2009; Widodo and Yang, 

2011). These elements and related activities might be expensive and often compromises are 

necessary (Sirvio, 2015). Compromises are about extent, the frequency and the precision of 

data collection; data collection is measured in costs, speed and volume: the bigger is the speed 

and the volume of it the higher are costs related to ML investments. 

Many studies have been carried out about PvM costs vs PdM costs, but no one considers 

investments costs of both strategies. This study fills this research gap and it considers these 

additional cost items in order to establish the best policy in terms of value and feasibility for 

the implementation of the PdM with the ML. 

The aim of this paper is to compare the Unit-Expected Cost (UEC) of PvM and PdM 

obtained by reliability and cost data. It is assumed that this data is provided by the company, 

while the analysis of censored data will be carried out in further studies. 

In this context, this paper presents a costs analysis comparing PvM and PdM costs, 

considering the influences of investment costs and consequently the accuracy of data collection.  

3. Maintenance cost estimation 

The implementation of the PdM with ML involves additional costs and development times 

compared to other maintenance strategies. As shown in the previous section, having online 

models involves the installation and development of an IT infrastructure, with which to run the 

model, and the use of resources (data scientists, process engineers and maintenance engineers) 

with various competences. 

The proposed approach is based on the estimate of the main reliability functions. Weibull 

distribution has been chosen to determine the reliability of the components. It is completely 

defined by two parameters: 𝜃 (scale parameter) and 𝛽 (shape parameter), which can be estimated 

from the time-to-failure (TTF) of the components (Manzini et al., 2009). Hence, this 

distribution is very flexible and, for this reason, suitable for this study (Faccio et al., 2014).  

The reliability function is defined as follows: 
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3.1. Preventive maintenance Unit-Expected Cost (
PvMUEC ) 

In order to evaluate the costs linked to the PvM policy, we have used the UEC model 

proposed in Faccio et al., 2014, an adaptation of the best-known cost formulation proposed by 

Barlow and Hunter, 1960 for use-based maintenance in the event of age-based replacement. 

The following proposed model assumes that the application of PvM requires additional 

management costs dictated by the need to define maintenance plans and plan operations. 

In accordance with Faccio et al., 2014, the UEC for the age-replacement policy is as follows: 
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0

( ) 1 ( )
( ) ,

( )
PvM

p PvM f PvM PvM
PvM PvM t

C R t C R t C
UEC t t

T
R t dt

+ −
= = +


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where, β and θ  are, respectively, shape and scale parameter of Weibull distribution, MTTR is 

Mean-Time-To-Repair, calculated as the average of the TTR when data is available, 𝑅(𝑡) is 

reliability function of the analysed component, 𝑅(𝑡𝑃𝑣𝑀) is the reliability of the component at 

replacement interval time, which minimises UEC and 𝐶𝑃𝑣𝑀 is fixed cost paid by maintenance 

management every time a replacement period is defined. 𝐶𝑓 is average repair cost at failure 

defined as sum of 𝐶𝑠𝑝, spare parts cost (direct cost), and 𝐶𝑚𝑎−𝐹𝐵𝑀, maintenance-action cost in 

case of failure-based maintenance, while 𝐶𝑝, average cost of preventive action, is the sum of 

𝐶𝑠𝑝 and 𝐶𝑚𝑎−𝑈𝐵𝑀, maintenance-action cost in the event of use-based maintenance with age 

replacement policy. 

3.2. Predictive maintenance UEC (
PdMUEC ) 

The costs for implementing PdM with ML include the investment costs for the technology 

and the operating costs closely-linked to the performance of the ML model. These costs have a 

different importance according to the reliability parameters of the component. It is assumed that 

the system is non-inspectable; hence, when the model signals an anomaly, the component is 

replaced. 

The replacement time is dictated by anomaly detection carried out by the ML model 

deployed before the failure occurs. This involves 𝑅(𝑡) as equal to 0 and replacement time, 𝑡, as 

equal to +∞. The 𝑈𝐸𝐶𝑃𝑑𝑀 can be estimated as follows: 

 
( )

0

1
( ) .

( )

f

d

P

P s g
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oP M c rin t

C H C H C
UEC t C F f

TR t dt
=+

 − + 
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
 (3) 

A ML model for PdM can be treated as a binary classification model (classifier) in normal 

and anomalous behaviour. It classifies a temporal instant as anomalous in the event of incipient 

failure, thus it is possible to replace the component only if required by its condition and to avoid 

opportunity costs due to the unexploited useful life or maintenance action costs caused by 

sudden breakdowns (Susto et al., 2015). It is assumed that the output of the ML model is the 
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prediction of the anomaly in advance of a time range sufficient to allow intervention planning 

and the chance to apply opportunistic maintenance actions. Therefore, the cost of intervention 

is 𝐶𝑝, as defined in the previous sub-section. 

Typically, the measure of a classifier's performance follows the theory summarised by the 

ROC curve (Marzban, 2004), which depends on the Hit Rate, H (Sensitivity or Recall), and on 

the False Alarm Rate (F) definition, which is also defined as the complement to 1 of the 

Specificity or Precision. If the model classifies samples correctly, the true negatives are the 

normal samples, while the true positives are the anomalous ones. If the model does not classify 

correctly, it can make a type II error and provide false negatives (predicting a normality 

erroneously) or a type I error and provide false positives (predicting an anomaly erroneously). 

The scenarios described are summarised in the confusion matrix shown in Table 1. 

 

 
PREDICTED 

NORMAL 

PREDICTED 

ANOMALY 

ACTUAL NORMAL 
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

(𝑡𝑛) 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(𝑓𝑝) 

ACTUAL ANOMALY 
𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

(𝑓𝑛) 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(𝑡𝑝) 

Table 1: Confusion matrix for anomaly detection. 

 

F and H measure the incidence of type I and type II errors in the predictions provided by the 

ML model, respectively. A type I error implies unnecessary intervention while a type II error 

leads to an intercepted fault; therefore, the former leads to an intervention cost equal to 𝐶𝑝while 

the latter to intervention with a cost equal to 𝐶𝑓. Mathematically, F and H are defined as below: 

 ;
tp

H
tp fn

=
+

 (4) 

 .
fp

F
tn fp

=
+

 (5) 

Real data, often, provides two classes that are not completely separable; there is an area 

where the two classes overlap (fig.2). The task of the data scientist is to define the anomaly 

threshold from which the F and H values derive. Establishing the F and H values for which the 

PdM model leads to savings, compared to other maintenance policies, can be preparatory to the 

definition of the anomaly threshold and to the establishment of the feasibility of expected 

performance. 

The ROC curve defines the relationship between F and H: an increase in F involves an 

increase in H, according to a slope that depends on the degree of the two sets’ separability. 

Separability is measured with AUC, which is equal to 1 if the sets are completely separable and 

equal to 0 if they are completely overlapping. 

The 𝑈𝐸𝐶𝑃𝑑𝑀, for the above reasons, is evaluated only for H F  

H depends on the number of faults, while F depends on the number of the runs of the ML in 
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the period. H is closely-linked to component reliability, while in order to evaluate the impact 

of F, 𝑓𝑠𝑐𝑜𝑟𝑖𝑛𝑔 has been introduced: 

 scoring

run
f

T
=  (6) 

A component with a slow dynamic failure process involves a low number of runs in the 

period; the opposite is true for a system with a fast-dynamic failure process. For this study, we 

will assume 𝑓𝑠𝑐𝑜𝑟𝑖𝑛𝑔  is constant; its impact on final costs will be analysed in further studies. 

The fixed cost for PdM with ML includes both the maintenance management costs 

introduced previously and the investment costs for the ML. The latter include installation costs, 

costs for model development and system maintenance costs for the reference period. Therefore, 

these costs are much greater than the maintenance management costs and 
PvMC  becomes 

negligible, as shown in Eq.7: 

 

;PdM PdM ml

ml PdM PdM ml

C C C

T T T

C C C C

T T T T

= +

 =

 (7) 

The proposed cost model is representative of extreme cases in which ML does not work or 

is not present and those in which ML works perfectly. 

With a ML model with faulty performance, 𝐻 =  𝐹 =  0, so the 𝑈𝐸𝐶𝑃𝑑𝑀 becomes: 

 

0

( ) .

( )

f PdM
PdM

C C
UEC t

T
R t dt


= + = +



 (8) 

The 𝑈𝐸𝐶 is equal to failure-based maintenance 𝑈𝐸𝐶 with the addition of the unit investment 

costs due to the ML investment. 

If a ML model has optimal performance, 𝐻 =  1, 𝐹 =  0,  the 𝑈𝐸𝐶𝑃𝑑𝑀 becomes: 

 

0

( ) .
( )

P PdM
PdM

CC
UEC t

TR t dt


= + = +


 (9) 

In this case, all replacement interventions are planned and there are no unnecessary 

preventive interventions. 

4. Analysis 

The main aim of this paper is to evaluate the impact of the PdM parameters on the 𝑈𝐸𝐶𝑃𝑑𝑀. 

This work compares two maintenance policies, PdM and ARP-I, and calculates the savings for 

the component/system obtained with the application of PdM. 

The analysis has been carried out by comparing 𝑈𝐸𝐶𝑃𝑑𝑀 × 𝜃/𝐶𝑓 and 𝑈𝐸𝐶𝑃𝑑𝑀 × 𝜃/𝐶𝑓 for 

the values set in Table 2: 

In accordance with Faccio et al., 2014, the 𝑈𝐸𝐶𝑃𝑣𝑀 is evaluated for the intervention interval 

(𝑡𝑃𝑣𝑀) which minimises it and depends on β and  𝐶𝑓 𝐶𝑝⁄ , while the 𝑈𝐸𝐶𝑃𝑑𝑀 depends on the 
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combination of F and H and of the 𝐶𝑓 𝐶𝑃𝑑𝑀⁄ × 𝑇 ratio.   

 

β 1, 2, 3 

θ 2000h 

𝐶𝑓 𝐶𝑝⁄  2, 5, 10 

𝐶𝑓 𝐶𝑃𝑑𝑀⁄  2, 4 

𝑇 1760h, 3520h 

𝐻 ≥  𝐹 

Table 2: 𝑈𝐸𝐶𝑃𝑑𝑀 parameters for the savings analysis. 

4.1 Saving analysis 

In the heat-maps shown in figure 3, the iso-cost lines are drawn for the different values of β 

and 𝐶𝑓 𝐶𝑝⁄ . Each row represents the estimated percentage savings due to the application of ML. 

The graphs show how the application of ML is more justified for the low 𝐶𝑝 costs. In 

Sgarbossa et al., 2019, it has been shown that if 𝐶𝑓 is much greater than 𝐶𝑝, the application of 

a preventive policy rather than a corrective one leads to savings of over 50%; with component 

monitoring, these savings increase. Where 𝐶𝑝 is comparable to 𝐶𝑓, there is an advantage in the 

application of preventive policies only if the probability of identifying the anomaly is very high, 

otherwise the impact of costs for unnecessary interventions dominates and the investment costs 

in ML are not justified. Indeed, with lower ML costs (where T = 3520h), ML leads to savings 

even with low 𝐶𝑓 𝐶𝑝⁄ . 

With the same 𝐶𝑓 𝐶𝑃𝑑𝑀⁄ × 𝑇 , the results do not vary. For example, if the work is carried out 

in 2 shifts, the 𝐶𝑓 𝐶𝑃𝑑𝑀⁄  ratio can be halved, since, with the same θ, the avoided failures double. 

As 𝐶𝑓 𝐶𝑝⁄  increases with fixed 𝐶𝑓, the slope of the iso-cost lines decreases and becomes 

almost constant with the variation of F. If the cost of preventive interventions is low, the 

incidence of false positives decreases; considering the trend of the ROC curve, this factor allows 

H to be maximise during the anomaly threshold selection. Vice versa, when the 𝐶𝑝 is high, the 

costs are sensitive even to the slight variations of F; the anomaly threshold selection thus 

minimises F. 

As β increases, the slopes of the iso-cost lines are almost constant; however, they move 

significantly when 𝐶𝑓 𝐶𝑝⁄  is medium-high, while when it is low the lines do not change. 

In Figure 3, in the event of 𝐶𝑓 𝐶𝑝⁄ = 2, the intercept 𝑞 with H axes decreases with 𝛽 = 2 

and increases with 𝛽 = 3, while with other 𝐶𝑓 𝐶𝑝⁄  values 𝑞 increases with increment of 𝛽. In 

accordance with Faccio et al., 2014, with 1 ≤ 𝐶𝑓 𝐶𝑝 ≤ 4⁄ , 𝑈𝐸𝐶𝑃𝑣𝑀, in the event where 𝛽 = 1 

has a lower value than in the event where 𝛽 = 2. Whether 𝐶𝑓 𝐶𝑃𝑑𝑀⁄ × 𝑇 increases this effect is 

dampened. 

In the case where 𝛽 = 1, 𝑡𝑃𝑣𝑀 = +∞ and the UEC is corrective maintenance UEC. 
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Figure 3: Iso-cost lines for 𝐶𝑓 𝐶𝑃𝑑𝑀 = 2⁄  and 𝑇 = 1760ℎ 

 

 
Figure 4: Iso-cost lines for 𝐶𝑓 𝐶𝑃𝑑𝑀 = 2⁄  and 𝑇 = 3520ℎ 
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Figure 5: Iso-cost lines for 𝐶𝑓 𝐶𝑃𝑑𝑀 = 4⁄  and 𝑇 = 1760ℎ 

 

 
Figure 6: Iso-cost lines for 𝐶𝑓 𝐶𝑃𝑑𝑀 = 4⁄  and 𝑇 = 3520ℎ 
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4.2 𝐶𝑓 𝐶𝑃𝑑𝑀⁄  threshold analysis 

In a business context, in order to choose whether to apply the PdM or the PvM policies, it is 

important to know the size of the investment to be faced and the ML model performance 

necessary to obtain an economic advantage. 

For this reason, the 𝐶𝑃𝑑𝑀 𝐶𝑓⁄  ratio has been analysed for the different values of F and H. The 

area for which 𝑈𝐸𝐶𝑃𝑑𝑀 ≥ 𝑈𝐸𝐶𝑃𝑣𝑀  is represented. Figures 7 and 8 show the trend of 𝐶𝑃𝑑𝑀 𝐶𝑓⁄  

for which 𝑈𝐸𝐶𝑃𝑑𝑀 = 𝑈𝐸𝐶𝑃𝑣𝑀. Having selected F and H, the application of ML is better value 

for 𝐶𝑃𝑑𝑀 𝐶𝑓⁄   values lower than those identified on the iso-threshold upper-bound line. 

For the evaluation of F and H, the considerations made in the previous subsection are valid. 

The iso-threshold lines are equidistant, while as T increases, their distance decreases. The costs 

are more sensitive to F and H changes: slight deviations lead to the passage between different 

iso-thresholds. It is, therefore, advisable to be more cautious when evaluating the feasibility of 

ML performance. 

 

 
Figure 7: Iso-threshold 𝐶𝑃𝑑𝑀 𝐶𝑓⁄  with 𝑇 = 1760ℎ for different F and H. 

5. Conclusions and further research  

Nowadays, the global market requires the increasing availability of production systems. 

Aiming to minimise maintenance costs and to increase the availability of manufacturing 

systems, PdM might be the most suitable policy. In the last few years, the amount of available 

data for the state of machines and components and the interest of researchers and industry 
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around ML have greatly increased: the development of PdM could be favoured by this. The 

issue is to establish whether, once the trade-off between costs and benefits has been considered, 

the installation of sensors and monitoring systems has an economic value. 

 

 
Figure 8: Iso-threshold 𝐶𝑃𝑑𝑀 𝐶𝑓⁄  with 𝑇 = 3520ℎ for different F and H 

 

This paper introduces a cost-oriented model and investigates the impact of ML performance 

parameters and ML investment costs on total 𝑈𝐸𝐶𝑃𝑑𝑀.  

It aims, as first, to estimate the costs and benefits of PdM policy studying the impact of 

intervention cost and reliability parameters, supposing the latter are known, on the positive 

saving area. From the savings analysis, it is clear that: 

- As 𝐶𝑓 𝐶𝑃𝑑𝑀⁄ × 𝑇 increment increases the area of the positive savings, and the 𝑈𝐸𝐶𝑃𝑑𝑀 is 

most suitable maintenance policy also with lower ML performance. These evaluations are valid 

both in the degradation period (𝛽 > 1) and in the random failure period (𝛽 = 1). 

- The 𝐶𝑓 𝐶𝑝⁄  and β increment requires higher H values. 

- The 𝐶𝑓 𝐶𝑝⁄  increase reduces the impact of F on the final 𝑈𝐸𝐶𝑃𝑑𝑀, providing the opportunity 

to maximise H. 

As second, it aims to define the 𝐶𝑃𝑑𝑀 𝐶𝑓⁄  upper-bound below which PdM leads to savings. 

An easy-to-use tool has been introduced in order to evaluate, fixed 𝐶𝑃𝑑𝑀 𝐶𝑓⁄ , the ML 

performance requires and, fixed F e H, the maximum value that 𝐶𝑃𝑑𝑀 can have compared to 

𝐶𝑓in order to obtain a return on investment. 
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Further researches will analyse the model in case of no data and the relationship between 

ROC-AUC curve and 𝑈𝐸𝐶𝑃𝑑𝑀. 
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