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Abstract Agricultural landscapes cover a significant part of the Earth. In floodplains, we can find large areas
dedicated to intensive agriculture. However, also on hills and mountains, agricultural activity can be
relevant from the socio-economic point of view. Nowadays, such areas are increasingly under threat
because of global environmental changes. Widespread growing rainfall aggressiveness due to climate
change, in addition to land abandonment, lack of structural maintenance, and in some cases unsuitable
agronomic practices are exposing steep-slope agricultural landscapes to increased hazard of landslides. A



suitable hazard assessment and zonation of these phenomena would help better management of such
agricultural landscapes. The purpose of this article is to provide an overview of this relevant problem
focusing on (i) the contribution of remote sensing technologies (e.g., LiDAR and UAV photogrammetry)
in mapping the investigated processes, and (ii) discussing advances and limitations of susceptibility
modelling.
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8 Abstract9

10 Agricultural landscapes cover a significant part of the
11 Earth. In floodplains, we can find large areas dedicated to
12 intensive agriculture. However, also on hills and moun-
13 tains, agricultural activity can be relevant from the
14 socio-economic point of view. Nowadays, such areas
15 are increasingly under threat because of global environ-
16 mental changes. Widespread growing rainfall aggressive-
17 ness due to climate change, in addition to land
18 abandonment, lack of structural maintenance, and in
19 some cases unsuitable agronomic practices are exposing
20 steep-slope agricultural landscapes to increased hazard of
21 landslides. A suitable hazard assessment and zonation of
22 these phenomena would help better management of such
23 agricultural landscapes. The purpose of this article is to
24 provide an overview of this relevant problem focusing on
25 (i) the contribution of remote sensing technologies (e.g.,
26 LiDAR and UAV photogrammetry) in mapping the
27 investigated processes, and (ii) discussing advances and
28 limitations of susceptibility modelling.
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35
36 Background

37 Agricultural land use is responsible for an unprecedented
38 transformation of natural environments worldwide, with vast
39 and long-term impacts on geomorphology and soil proper-
40 ties (Baartman et al. 2012). Cultivated areas typically

41�involve reduced soil cover and cohesion, which particularly
42�in steep-slope environments greatly affect soil erosion and
43�slope instability (Koulouri and Giourga 2007; Prosdocimi
44�et al. 2016; Tarolli and Straffelini 2020). Several researchers
45�around the world have studied the increased landslide sus-
46�ceptibility of cultivated hillslopes, and several factors related
47�to agricultural practices (i.e. not considering climate or slope
48�steepness) have been discussed. Agricultural transformation
49�affects soil stability due to the removal of permanent
50�deep-rooted vegetative cover (Perotto-Baldiviezo et al.
51�2004), while the natural soil structure is affected due to land
52�levelling (DeGraff and Canuti 1988; Ramos et al. 2007). In
53�addition, an unsuitable or degraded terracing or drainage
54�system can further aggravate landslide hazard (Tarolli et al.
55�2014). This is often related to the lack of maintenance as a
56�result of land abandonment and loss of labour, as widely
57�reported for Mediterranean (Arnáez et al. 2017; Cevasco
58�et al. 2014; Tarolli et al. 2014) and Asian steep-slope agri-
59�cultural areas (Gerrard and Gardner 2002; Raj Khanal and
60�Watanabe 2006). Other factors include the cultivation and
61�subsequent reactivation of dormant landslides (Sugawara
62�2013), and the construction of agricultural roads for
63�machinery (Tarolli et al. 2015). The latter is able to divert
64�runoff and create concentrated patterns of water flow, which
65�are often related to the initiation of landslides (as illustrated
66�in Fig. 1).
67�The high landslide hazard in agricultural areas can have
68�considerable impact on production and human safety.
69�Nonetheless, reliable inventories are missing for many
70�marginalised steep rural areas around the world. Modern
71�developments in remote sensing, computer technologies and
72�models may help contributing to this. In this work, we dis-
73�cuss the opportunities and challenges of remote sensing
74�techniques, digital terrain analysis and landslide modelling,
75�based on literature and few original examples.
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76
77 Remote Sensing

78 Techniques

79 Landslide inventory maps are generally limited in terms of
80 spatial coverage and time period (Guzzetti et al. 2012),
81 which can partly be attributed to the intensive mapping
82 methods used in the past (Galli et al. 2008). However, there
83 is a strong potential to address this gap by the use of modern
84 remote sensing techniques, which allow more accurate
85 topographic analysis by use of faster and cheaper surveys
86 (Tarolli 2014). The most recent platform that proved highly
87 successful is the use of an Unmanned Aerial Vehicle (UAV,
88 sometimes referred to as UAS or RPAS) and the parallel
89 development of Structure from Motion (SfM) photogram-
90 metry technique (Giordan et al. 2018), which allows
91 high-accuracy surveying by low-cost applications of a sim-
92 ple drone mounted with a non-metric camera (Fig. 2). This
93 platform rapidly gained popularity for mapping topographic
94 features, as it is flexible to deploy in varying conditions
95 (including difficult-to-access sites) and is able to capture
96 complex geomorphologic features (Eltner et al. 2016; Cuc-
97 chiaro et al. 2018). The typical coverage of light-weight
98 UAVs is in the order of tens of hectares and is optimal for
99 agricultural conditions (Colomina and Molina 2014; Pijl

100 et al. 2020). Indeed, specific examples of UAV-based
101 analysis of agricultural slope failure can be found, e.g. for
102 monitoring mass-movements (Lucieer et al. 2014; Turner
103 et al. 2015), or for the detection and modelling of terrace
104 failures (Pijl et al. 2019).

Fig. 1 Landslides that occurred
after an intense rainfall event in a
typical steep-slope vineyard
terraced landscape. Landslide
crowns are highlighted with a
white dashed line (Photographs
by P. Tarolli)

Fig. 2 Schematic illustration of the creation of a high-resolution
Digital Terrain Model (DTM) by remote sensing techniques of
Unmanned Aerial Vehicles (UAVs) or Light Detection and Ranging
(LiDAR) instruments (Sample dataset from original data by the
authors)
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105 Another modern remote sensing technique that is com-
106 monly used for high-resolution topographic mapping is
107 Light Detection and Ranging (LiDAR) from a terrestrial or
108 aerial platform (Fig. 2). It is probably one of the most
109 popular technique in landslide research, by providing
110 highly-detailed topographic information for the detection,
111 monitoring or modelling of slope failure (Jaboyedoff et al.
112 2012; Scaioni et al. 2014). Although LiDAR involves con-
113 siderably higher deployment costs than UAV-based surveys
114 (Guzzetti et al. 2012), it offers a major advantage over the
115 latter due to its ability to retrieve multi-layered return signals
116 and resulting ground detection in densely vegetated areas
117 (Tarolli 2014). As such, it is probably the most established
118 platform for geomorphologic research, and countless
119 examples can be found of LiDAR-based research of agri-
120 cultural landslides, e.g. in Italian terraced landscapes (Preti
121 et al. 2018a; Tarolli et al. 2014, 2015; Giordan et al. 2017;
122 Brandolini et al. 2018).

123 Digital Terrain Analysis

124 The improving spatial accuracy of topographic data (e.g.
125 from UAV or LiDAR source) also allows higher accuracy in
126 the detection of landslides and their geomorphology. Basic
127 2-D digital terrain analysis can be used to support visual
128 detection, while facilitating more advanced purposes such as
129 volume estimation, multi-temporal monitoring and suscep-
130 tibility modelling (as discussed in the following chapter).
131 Several authors have tested the use of terrain derivatives
132 such as slope, surface roughness or curvature for the auto-
133 matic delineation of geomorphologic features using a sta-
134 tistical threshold (McKean and Roering 2004; Booth et al.
135 2009; Tarolli et al. 2012). In this work, we illustrate this
136 concept using an original topographic data sample, consist-
137 ing of a road-induced landslide (Fig. 3). The shaded 0.05-m
138 DTM clearly shows how the landslide crown is captured,
139 appearing as a dark edge at the road side. This crown pre-
140 sents a disruption with respect to the surrounding geomor-
141 phology, as can be identified using the surface roughness
142 index (Fig. 3), here calculated according to Cavalli et al.
143 (2008) using a 31-cell kernel. Similarly, high values of
144 maximum landform curvature indicate convex terrain ele-
145 ments (according to Evans 1979 using a 31-cell kernel); and
146 the statistic threshold approach by Sofia et al. (2014) has
147 been be used to automatically extract the landslide crown
148 (Fig. 3). This approach could rapidly be applied over large
149 extents, hence becoming a powerful tool for automatic
150 geomorphologic feature extraction.

151
152�Modelling

153�For estimating the susceptibility, or spatial probability of
154�slope failures occurrence, numerous models are available
155�(Guzzetti et al. 2005), but the number of publications on
156�landslide hazard assessment in steep agricultural slopes is
157�still rather modest. In this anthropic context, further variables
158�must be considered than the classic ones used to better
159�describe the landslide triggering processes. Here, slope
160�failure hazard is not only dependent on meteorological
161�events and geotechnical land attributes, but also agricultural
162�practices and human activities can strongly affect the
163�occurrence of instability phenomena (Shrestha et al. 2004).
164�For example, Perotto-Baldiviezo et al. (2004) developed and
165�tested a spatial model for predicting the spatial distribution
166�of landslide hazard in steep areas of Honduras considering
167�four model variables as slope, aspect, stream proximity and
168�land cover type. Their results highlighted how. As the slope
169�increased, the percentage of land affected by landslides,
170�increased sharply on cropland when the soils were saturated.
171�This indicated that agricultural activity and the associated
172�removal of deep-rooted permanent vegetation increased the
173�landslide hazard on steep sites. Jaiswal et al. (2010) also
174�proposed a probabilistic landslide model to quantify hazard
175�of first-time slope failure on natural slopes and tea planta-
176�tions, underlining how agricultural and constructional
177�activities make an area more susceptible to landslides. At the
178�local scale, numerical simulations must consider the pres-
179�ence of widespread agricultural practices such as terraces
180�that heavily influence the hydrological processes (Gallart
181�et al. 1994; Preti et al. 2018a) and can trigger superficial
182�mass-movements when they collapse. Camera et al. (2014)
183�analyzed the processes that can lead to failure. They used a
184�numerical modelling of groundwater movement and related
185�stability analysis, to provide pore water pressure distribu-
186�tions, which are generated by different rainfall amounts, as
187�parameters for a stress-strain analysis that can directly
188�determine the influence of various rainfall parameters on
189�dry-stone wall stability. Penna et al. (2014) evaluated the
190�predictive power of the quasi-dynamic shallow landslide
191�model QD-SLaM (Tarolli et al. 2008) to simulate shallow
192�landslide locations in a small-scale steep-slope watershed.
193�The study area represented a typical anthropogenic
194�Mediterranean landscape, with terraces (partly abandoned),
195�roads and a village. The applied landslide model did not
196�incorporate the description of road-related or terrace-related
197�failures, thus highlighting its limits in the correct interpre-
198�tation of hydrological processes in an anthropogenic context.
199�The model predictive power was shown to be
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200 DTM-resolution dependent. The use of a coarser resolution
201 had a smoothing effect on terrain attributes, and therefore on
202 predictive model performance. The authors concluded that to
203 realize the full potential of high-resolution topography thus
204 including anthropogenic geomorphic features, more exten-
205 sive work is needed to specifically identify the extent of the
206 artificial structures and their impact on shallow landsliding
207 processes. Tarolli et al. (2015) used LiDAR elevation data
208 for a detailed hydro-geomorphological analysis of terraced
209 vineyards. The geomorphic Relative Path Impact Index
210 (RPII) was tested in two vineyards to identify
211 terrace-induced and road-induced erosion. Using such an
212 index, the authors then simulated different scenarios of soil
213 conservation measures, establishing the optimal solution to
214 reduce erosion. The results highlighted the effectiveness of
215 high-resolution topography in the analysis of erosion at the
216 local scale of terraced vineyards when surface water flow is
217 the main factor triggering the instabilities. An example of the
218 predictive power of RPII in the recognition of potential slope
219 failure in a steep-slope terraced site is shown in Fig. 4,
220 where we considered the case study of Fig. 1.
221 Preti et al. (2018b) proposed a more specific model able
222 to describe hydrological processes in terraced landscapes. In
223 detail, they analyzed the destabilizing pressures acting on the
224 retaining dry-stone walls in the most critical portion of each
225 terrace. The results showed good capability of the model to

Fig. 3 Example of a landslide induced by a runoff pathway on a curving agricultural road (top-left, yellow lines). Additionally, illustrated are the
shaded high-resolution DTM derived by UAV-SfM workflow (top-right), and two terrain derivatives: the roughness index (bottom-left) and the
maximum landform curvature (bottom-right). The latter shows the automatically extracted landslide crown using a threshold approach (red
outline). (Sample topographic dataset with 0.05-m spatial resolution by the authors)

Fig. 4 Relative Path Impact Index (RPII) calculated for the case study
shown in Fig. 1 using a 1-m LiDAR-derived DTM. Surface flow
modifications induced by an agricultural road and consequent landslide
(warm colours) match well with the location of the observed landslide
(plus symbol), thus confirming the predictive power of the index for the
detection of slope failure in this context
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226 predict the distribution and intensity of stress on the
227 dry-stone wall over time and space. This stress was related to
228 the combined earth pressure and hydrostatic pressure (water
229 accumulation), without the occurrence of soil saturation.
230 A better understanding of the main hydrological processes
231 that govern surface and subsurface water flow pathways and
232 that are responsible for terrace failure is essential for
233 appropriate water resource management and rural landscape
234 maintenance in terraced areas (Preti et al. 2018a). Such
235 insights could support landowners and land planners in
236 managing these complex and fragile environments.

237
238 Final Remarks

239 Climate change (e.g., the increase of rainfall intensity) and
240 changing societal trends (e.g., land abandonment) are
241 aggravating land degradation in agricultural landscapes,
242 resulting in increased mass movements that should not be
243 neglected. Not only does this affect agricultural production,
244 it also poses a risk to local communities of people. Several
245 approaches for the spatial analysis of such processes are
246 available, however high-resolution topography derived by
247 modern remote sensing techniques (e.g., SfM photogram-
248 metry using UAV images, or airborne or terrestrial LiDAR
249 data) is highly recommended for the detection of the char-
250 acteristic local-scale geomorphic features usually visible
251 with sub-meter DTM grid cell size. In addition, it is also
252 recommended to improve the understanding of the main
253 hydrological processes that govern surface and subsurface
254 water flow pathways. Existing modelling approaches seem
255 to be not optimal for a satisfactory understanding of such
256 processes. Indeed, to meet the full potential of
257 high-resolution topography, they should be designed to
258 include the anthropogenic geomorphic features and model
259 their impact on the physical processes or vice versa. More
260 recently, few authors developed some advances along this
261 line. This will absolutely be a future challenge for scientific
262 studies in this field. Novel insights from research could
263 support land owners and land planners in managing these
264 complex and fragile landscapes, in order to preserve cultural
265 heritage, ecosystem services, and food safety while main-
266 taining the economic and environmental sustainability.
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