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FUNCTION OF AFFINE OPTIMAL CONTROL PROBLEMS*
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Abstract. We study the regularity properties of the value function associated with an affine
optimal control problem with quadratic cost plus a potential, for a fixed final time and initial point.
Without assuming any condition on singular minimizers, we prove that the value function is contin-
uous on an open and dense subset of the interior of the attainable set. As a byproduct we obtain
that it is actually smooth on a possibly smaller set, still open and dense.
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1. Introduction. The regularity of the value function associated with an opti-
mal control problem is a classical topic of investigation in control theory and has been
deeply studied in the last decades, extensively using tools from geometric control the-
ory and nonsmooth analysis. It is well known that the value function associated with
an optimal control problem fails to be everywhere differentiable and this is typically
the case at those points where the uniqueness of minimizers is not guaranteed. Actu-
ally, it is not even continuous, in general, as soon as singular minimizers are allowed
(see, for instance, [4, 34]).

In this paper we investigate the regularity of the value function associated with
affine optimal control problems, whose cost is written as a quadratic term plus a
potential.

The key starting point of our work is the characterization of points where the
value function is continuous. As we said, in the presence of singular minimizers for
the control problem one could not expect the value function to be continuous. Indeed,
for a fixed final time 7" > 0 and initial point xy, the continuity of the value function
S;CTO at a point x is strictly related to the openness of the end-point map on the optimal
controls steering the initial fixed point zg to = in time T' > 0. Here by end-point map,
we mean the map that to every control u associates the final point of the corresponding
trajectory (cf. section 2 for precise definitions).

Without assuming any condition on singular minimizers, we focus on the set of
points, that we call tame points, in the interior of the attainable set such that the
end-point map is open and a submersion at every optimal control. The main result of
this paper is that we can find a large set of tame points. Since tame points are points
of continuity for the value function, we deduce that Sfo is continuous on an open and
dense set of the interior of the attainable set.
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Adapting then the arguments of [1, 31], we prove that the value function is actually
smooth on a (possibly smaller) open dense subset of the interior of the attainable set.
The main novelty with respect to the known results, valid in the driftless case
and with zero potential, is that in the latter case the value function is everywhere
continuous as a consequence of the openness of the end-point map, even in the presence
of deep singular minimizers. The absence of such a property for affine control systems
makes the study of the continuity of the value function more delicate in our context.
Let us briefly introduce the notation and present the main results in more detail.

1.1. Setting and main results. Let M be a smooth, connected, m-dimensional
manifold, and let T" > 0 be a given fized final time. A smooth affine control system
is a dynamical system which can be written in the form

d
(1.1) () = Xo(x(t)) + Zuz‘(t)Xi(w(t)%

where Xg, X1,..., Xy are smooth vector fields on M, and the map ¢t — u(t) =
(u1(t),...,uq(t)) belongs to the Hilbert space L2([0,T], R%).
Given xg € M we define the following:
(i) The set of admissible controls QL as the subset of u € L*([0,T],R%), such
that the solution z,,(-) to (1.1) satisfying z,,(0) = z is defined on the interval
[0,T]. If u € QL , we say that z,(-) is an admissible trajectory. By classical
results of ODE theory, the set QF is open.
(ii) The attainable set AL (from the point zo, in time 7' > 0) as the set of points
of M that can be reached from x(y by admissible trajectories in time T, i.e.,

Afo ={z,(T) |u e Qfo}.

For a given smooth function Q : M — R, we are interested in those trajectories
minimizing the cost given by

1T (&
(1.2) Cr:QL =R, COp(u) = 5/0 <Zu¢(t)2 - Q(%(ﬂ)) dt.

More precisely, given g € M and T' > 0, we are interested in the regularity properties
of the value function S;; : M — R defined as follows:

(1.3) ST (z) = inf {Cr(u)ue Of z,(T) = z},

xo xo?

with the understanding that Sfo () = +oo if z cannot be attained by admissible
curves in time T. We call optimal control any control u which solves the optimal
control problem (1.3).

Main assumptions. For the rest of the paper we make the following assumptions:
(H1) The weak Hormander condition holds on M. Namely, we require for every
point z € M the equality
(1.4) Lie, {(adXo)j X;|j>0i=1,.. .,d} — T, M,

where (ad X)Y = [X,Y], and Lie,F C T, M denotes the evaluation at the
point = of the Lie algebra generated by a family F of vector fields.
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(H2) For every bounded family U of admissible controls, there exists a compact
subset K C M such that z,(t) € Kr for every w € U and t € [0, T].
(H3) The potential @ is a smooth function bounded from above.

The assumption (H1) is needed to guarantee that the attainable set has at least
nonempty interior, i.e., int (AL ) # 0 (cf. [33] or [26, Ch. 3, Thm. 3]). The second
assumption (H2) is a completeness/compactness assumption on the dynamical system
that, together with (H3), is needed to guarantee the existence of optimal controls. We
stress that (H2) and (H3) are automatically satisfied when M is compact. When M is
not compact, (H2) holds true under a sublinear growth condition on the vector fields
Xo,...,X4. We refer the reader to section 2 for more details on the role of these
assumptions.

As already anticipated, the key starting point of our work is the characterization
of points where the value function is continuous through the study of the set of tame
points. This is the set ¥; C int (Afo) of all points = such that the end-point map is
open and a submersion at every optimal control steering xg to z. The main result of
this paper, whose proof comprises its technical core, is that we can find a large set of
tame points.

THEOREM 1. Fix xg € M, and let Sgg be the value function associated with an
optimal control problem of the form (1.1)—(1.2) satisfying assumptions (H1)—(H3).
Then the set 3 of tame points is open and dense in int (Afo) and Sg; 18 continuous
on Y.

In the driftless case (more precisely, when Xy = 0 and @ = 0), the end-point
map is open at every point, even if it is not a submersion in the presence of singular
minimizers. This, however, suffices for the sub-Riemannian distance to be continuous
everywhere. Moreover, this remains true for any LP-topology on the space of controls
for p < +o0; see [10]. This is no longer true if we introduce a drift field and the
characterization of the set of points where the end-point is open and the choice of the
topology in the space of controls is more delicate.

The proof of Theorem 1 is inspired by the arguments, dealing with the sub-
Riemannian case, presented among others by the first author in [2, Chapter 11], and
starts by characterizing the set of points reached by a unique minimizer trajectory
that is not strictly singular (called fair points). The classical argument proves that
this set is dense in the attainable set, but, while in the driftless case each of these
points is also a continuity point for the value function, in this setting in principle it
could likely be that the set of fair points and the set of continuity points, both dense,
may have empty intersection. Completing this gap requires ad hoc new arguments
developed in section 4.

Once Theorem 1 is proved, an adaptation of arguments from [1, 31] let us derive
the following result.

THEOREM 2. Under the assumptions of Theorem 1, SmTO ts smooth on a nonempty
open and dense subset of int (AL ).

In [1], the author proves the analogue of Theorem 2 for the value function associ-
ated with sub-Riemannian optimal control problems, i.e., driftless systems with zero
potential. Notice that in this case (H1) reduces to the classical Hérmander condi-
tion, and the value function (at time 7") coincides with one half of the square of the
sub-Riemannian distance (divided by T') associated with the family of vector fields
). . ¢

Let us further mention that, even in the sub-Riemannian situation, it still re-
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mains an open question to establish whether the set of smoothness points of the value
function has full measure in int (Afo) or not.

1.2. Comparison with recent literature. Regularity of the value function
for these kinds of control systems with techniques of geometric control has been also
studied in [15, 34], where the authors assume that there are no abnormal optimal
controls, a condition which yields the openness of the end-point already at the first
order, while in [4] the authors obtain the openness of the end-point map on optimal
controls with second-order techniques, assuming no optimal Goh abnormal controls
exist. In fact, as one can see following the proof of Lemma 20 in the appendix,
openness of the end-point map at every optimal control is what is needed to ensure
the continuity of the value function.

For more details on Goh abnormals we refer the reader to [5, Chapter 20] (see also
[2, 30]). Let us mention that in [17] the authors prove that the system (1.1) admits
no Goh optimal trajectories for the generic choice of the (d + 1)-tuple Xy, ..., X4 (in
the Whitney topology).

Finally, in [29] the author proves the Holder continuity of the value function under
a strong bracket generating assumption, when one considers the L! cost.

In the investigation of the regularity of the value function, techniques of non-
smooth analysis have been also extensively used. A complete overview of the vast
literature on this approach being not possible in this short discussion, we refer the
interested reader to the monographs [6, 18, 16, 23, 19, 36] for a general introduction,
and we discuss here some results that are more closely related to those investigated
in this paper.

In the paper [12] the authors consider an optimal control problem of Bolza type.
Their main results are analogous to that of our Theorem 2, stating that as soon as the
proximal subdifferential (cf. Definition 12) of the value function of the Bolza problem
is nonempty at a point, then the value function turns out to be of class C? in a
neighborhood of that point.

A similar result concerning a Hamilton—Jacobi equation related to the Bolza prob-
lem of the calculus of variations was already obtained in [13], assuming coercivity of
the Hamiltonian under consideration. Combined with the fact that points where the
proximal subdifferential is nonempty are dense in the domain of the value function
(cf. Proposition 13), these results are used to derive deep regularity properties on the
optimal synthesis.

Analogous techniques have also been employed to treat an optimal control prob-
lem of Mayer type [14], in which the dynamic is given by a differential inclusion. In
this case the Hamiltonian is no longer coercive, but still the local C? (and C*™, for
0 < m < 1) smoothness of the value function is proven at points where the proximal
subdifferential is nonempty.

For a discussion on the relation between optimal control problems, Mayer-type
problems for differential inclusions, and the Bolza problem of the calculus of variations,
we refer the reader to [19, Chapter 1].

1.3. Further comments. As we have seen in the aforementioned results, the
regularity of the value function has important consequences for the structure of opti-
mal control problems. In fact, this is also the paradigm of this paper. The main issue
is that, in general, the value function does not exhibit sufficient regularity in principle
(cf. Proposition 7) and has to be analyzed using the so-called sensitivity relations. It
should be mentioned that, since the seminal papers [20, 37|, sensitivity analysis has
proved itself to be successful for a wide range of optimal control problems [8, 9, 24, 25].
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The idea behind sensitivity relations is to give necessary optimality conditions (e.g.,
as in Proposition 8) in the form of inclusions into suitable generalized differentials of
the value function.

In this paper we exploit the nonemptiness of the proximal differential (cf. Propo-
sition 14), only to prove that the corresponding point is reached by a normal tra-
jectory, i.e., a trajectory that can be reconstructed from the exponential map (cf.
subsection 2.3 and Definition 9). Finer regularity properties of the corresponding
trajectory (such as absence of singular minimizer), and as a consequence of the value
function, are deduced through direct investigation.

Let us mention that, in the geometric language, the exact characterization of the
regularity of the value function at the so-called cut locus (the set of points where
trajectories satisfying first-order necessary conditions lose optimality) is not trivial.
This phenomenon is well understood in the Riemannian setting and is characterized by
the loss of semiconvexity of S;FO [21]. An analogous property has been recently proved
in the sub-Riemannian setting in [7], but only in the absence of singular minimizers
(cf. also the discussion in [22]).

1.4. Structure of the paper. In section 2 we recall some properties of the
end-point map and the existence of minimizers in our setting, and we recall their
characterization in terms of the Hamiltonian equation. Section 3 introduces different
sets of points that are relevant in our analysis. Section 4 is devoted to the study
of tame points and the proof of Theorem 1. In section 5 we complete the proof of
Theorem 2. Finally, in Appendix A we present for readers’ convenience the proof of
a few technical facts, adapted with minor modifications to our setting.

2. Preliminaries. For a fixed admissible control u € QZ , the family of diffeo-

morphisms
Py :Upy CM — M, te 0,17,

defined by Pg',(y) = @uy(t), is well defined on some neighborhood Uy, of o [11].
Here, by x,,,(t) we denote the solution to the equation (1.1) with initial condition
Zy,y(0) = y. It is a classical fact that this family is absolutely continuous with respect
to t. Similarly, given u € Qfo it is possible to define the family of flow diffeomorphisms
P, : Uy, — M by solving (1.1) with initial condition x, 4(s) = y. Notice then that
Py, = 1d and that the composition formulas

PYoPY =P and  (PY%)

1 U
r, = Pt,s

hold true (at those points where all terms are defined). Finally, the notation (P;ft)*
refers to the push-forward map defined from T, ()M to T, ) M. In particular, if X
is any vector field on M, then the push-forward (P;ft)* X is defined by

(P2), (X)) = (), X) (PE(v).
2.1. The end-point map. In what follows we fix zg € M and T > 0.
DEFINITION 3 (end-point map). The end-point map at time T is the map
T .7 T _
By, :Qy — M, E; (u)=2(T),
where x,,(+) is the admissible trajectory driven by the control u.

The end-point map is smooth on Q2 L?([0,T],R?). The computation of its
Fréchet differential is classical and can be found, for example, in [2, 30, 34].
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PROPOSITION 4. The differential d, EZ : L*([0,T],RY) — T, )M of the end-
point map at u € QZO is given by the formula

(2.1) duE;{O(v):/O > wils) (Pir), (Xi(zu(s))) ds.

Let us consider a sequence of admissible controls {u,, } nen, which weakly converges
to some element v € L2([0, 7], R%). Then the sequence {u,, },en is bounded in L2, and,
thanks to our assumption (H2), there exists a compact set K such that z,, (t) € Kr
for all n € N and ¢ € [0,T].

This yields that the family of trajectories {z,, (-)}nen is uniformly bounded, and
from here it is a classical fact to deduce that the weak limit u is an admissible control
and that ,(-) = lim,_, e @4, (+) (in the uniform topology) is its associated trajectory
(see, for example, [35]).

This proves that the end-point map EZO is weakly continuous. Indeed, one can
prove that the same holds true for its differential duEzTO. More precisely, if {uy, }nen is
a sequence of admissible controls which weakly converges in L%([0, T, R?) to u (which
is admissible by the previous discussion), we have both that

nhﬁngo Efo (up) = E:ET0 (u) and nhﬂrréo dunEg0 = duExTO,

and the last convergence is in the (strong) operator norm (see [34]).

Remark 1. There are other possible assumptions to ensure that the weak limit
of a sequence of admissible controls is again an admissible control. For example, as
suggested in [15], one could ask for a sublinear growth condition on the vector fields
Xo,...,X4. In this case the uniform bound on the trajectories (equivalent to (H2))
follows as a consequence of the Gronwall inequality and the observation that a weakly
convergent sequence in L? is necessarily bounded.

DEFINITION 5 (attainable set). For a fized final time T > 0, we denote by A;LT.0
the image of the end-point map at time T, and we call it the attainable set (from the
point xg ).

In general, the inclusion Afo C M can be proper; that is, the end-point map EIT0
may not be surjective on M. Nevertheless, the set int (Afo) is densely contained in
AL 5, 26, 33], and the weak Hormander condition (1.4) implies that for every initial
point xg one has int (A% ) # 0 [33] (see also [26, Ch. 3, Thm. 3]).

2.2. Value function and optimal trajectories. Let @) : M — R be a smooth
function, which plays in what follows the role of a potential. If we introduce the
Tonelli Lagrangian

d
1
. d S 2 _
L: M xR =R, L(x,u)—2<;ui Q(x)),
then the cost Cp : QL — R is written as

T
0

T d
Cr(u) = /0 Lz, (t),u(t))dt = %/ (Z u(t)? — Q(ggu(t))> dt.
i=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/04/18 to 147.122.21.39. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

REGULARITY FOR AFFINE OPTIMAL CONTROL PROBLEMS 655

The differential d,,Cr of the cost can be recovered similarly as for the differential
of the end-point map, and is given, for every v € L?([0,T],R%), by the formula

T T t d
4.Cr0) = [ (un.o)at—3 [ Q) ( | ez, <Xi<xu<s>>>ds) dt,

which is obtained by writing z,(t) = E._ (u) and applying (2.1).

Fix two points zg and x in M. The problem of describing optimal trajectories
steering zg to z in time T can be naturally reformulated in the following way: intro-
ducing the value function SwTO : M — R via the position

(2.2) ST (2) = inf {CT(u) lueQl n(EL)™ (x)} :

with the agreement that S;;'; (z) = +o0 if the preimage (E;;’jo)f1 (z) is empty; then the
optimal control problem consists in looking for elements u € L2([0,T],R?) realizing
the infimum in (2.2). Accordingly, from now on we will call optimal control any
admissible control v which solves the optimal control problem.

Existence of minimizers under our main assumptions (H1)—(H3) follows from clas-
sical arguments.

PROPOSITION 6 (existence of minimizers). Let z € A_f{o, Then there exists an
optimal control u € Qfo satisfying

El (u)y=z and Cp(u) =S (z).

Remark 2. The assumptions (H2)-(H3) play a crucial role for the existence of
optimal controls. An equivalent approach could be to work directly inside a given
compact set (see [3]) or with M itself a compact manifold. For some specific cases,
as in the classical case of the harmonic oscillator, one is able to integrate directly
Hamilton’s equations (cf. subsection 2.4), and the existence of optimal trajectories
could be proved with ad hoc arguments.

As already pointed out in the introduction, one could not expect global continuity
for the value function. Nevertheless, it is well known that under our assumptions, we
have the following.

PROPOSITION 7. The map SL, : AL — R is lower semicontinuous.

Proofs of Proposition 6 and Proposition 7 are classical and follow from standard
arguments in the literature (see, e.g., [27, 34]); hence their proofs are omitted and left
to the reader.

2.3. Lagrange multipliers’ rule. In this section we briefly recall the classical
necessary condition satisfied by optimal controls u realizing the infimum in (2.2). It
is indeed a restatement of the classical Lagrange multipliers’ rule (see [5, 2, 28]).

PROPOSITION 8. Let u € L*([0,T],R?) be an optimal control with x = EX (u).
Then at least one of the following statements holds:

(a) IAr € T) M such that )\TduEfO =d,Cr,

(b) IXp € Ty M, with Ap # 0, such that Apd,EL, = 0.

Here Ard,EL : L?([0,T]) — R denotes the composition of the linear maps
duEg:) : L2([0,T)) — T, M and A\ : T,M — R.

A control u, satisfying the necessary conditions for optimality stated in Propo-
sition 8, is said to be normal in case (a) and abnormal in case (b). Notice that (b)
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implies that dung0 is not surjective in the abnormal case. Moreover, any covector
A, either normal or abnormal, is defined only modulo the subspace ker(duEfo)*.
We stress again that the two possibilities are not mutually exclusive, and we define
accordingly a control u to be strictly normal (resp., strictly abnormal) if it is normal
but not abnormal (resp., abnormal but not normal). Slightly abusing the notation,
we extend this language even to the associated optimal trajectories ¢ — x,,(t).

2.4. Normal extremals and exponential map. Let us denote by 7 : T*"M —
M the canonical projection of the cotangent bundle, and by (\,v) the duality pairing
between a covector A € T M and a vector v € T, M. In canonical coordinates (p, )
on the cotangent space, we can express the Liouville form as s = >/ | p;dz;, and the

%
standard symplectic form becomes o = ds = Z:’;l dp; A\ dx;. We denote by h the
Hamiltonian vector field associated with a smooth function h : T*M — R, defined by

the identity
Z oh 0 oh 0
dp; Ox;  Ox; Op;

The Pontryagin Maximum Principle [28, 5] tells us that candidate optimal tra-
jectories are projections of extremals, which are integral curves of the constrained
Hamiltonian system,

(0 = S0, vp(0).2(0), PO = = SO0, 2(0), 0= T u(t) v, ple),2(0),

where the (control-dependent) Hamiltonian 3 : R% x (—o0,0] x T*M — R, associated
with the system (1.1), is defined by

g{u(uvl/apv ) anO +Zuz pv Zu _7Q

In particular, the nonpositive real constant v remains constant along extremals. Re-
calling the result of Proposition 8, there holds either the identity (p(T"),v) = (Ar,0)
in the case of abnormal extremals, or (p(T),v) = (Ar, —1) for the normal ones. More-
over, we see that under the previous normalizations, the optimal control u(t) along
normal extremals can be recovered using the equality

(2.3) ui(t) = (p(t), X;(x(t))) fori=1,...,d.
Normal extremals are therefore solutions to the differential system

0H 0H

(2.4) (t) = 8p( p(t),z(t)),  B(t) = — 5~ (p(t), 2(2)),

where the Hamiltonian H has the expression

d

Hp, ) = (p, Xo(w) + 5 D 0p, Xi(a))? + 3Q(a).

i=1
In particular, being the solution to a smooth autonomous system of differential equa-
tions, the pair (x(t), p(t)) is smooth as well, which eventually implies that the control
u;(t) = (p(t), X;(z(t))) associated to normal trajectories is itself smooth by (2.3). It
is well known that, under our assumptions, small pieces of normal trajectories are op-
timal among all the admissible curves that connect their end-points (see, for instance,
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[5]); that is, if 21 = 2z, (t1) and x93 = x,(t2) are sufficiently close points on the normal
trajectory x,(-), then the cost-minimizing admissible trajectory between z; and xs
that solves (2.2) is precisely x, ().

DEFINITION 9 (exponential map). The exponential map Exp with base point
is defined as

H
Exp, (-,1) : [0,T] x DI — M, Exp,, (s,A) = m(e*"(N)),
where @fa is the open subset of covectors in T; M such that the solution to (2.4)
is defined up to time T. When the first argument is fixed, we employ the notation
Exp;, : ’Dfo — M to denote the exponential map with base point o at time s, that is
to say, we set Exp}, (A) := Exp, (s, )).

Then we see that the exponential map parametrizes normal extremals. Mimicking
the classical notion in the Riemannian setting, it permits us to define conjugate points
along these trajectories.

DEFINITION 10. We say that a point x = Exp, (s, ), s € [0,T], is conjugate to
xg along the normal extremal t — Exp, (t,A), t € [0,T], if (s, \) is a critical point of
Exp,,, i-e., if the differential d(s x)Exp,, is not surjective.

3. On the continuity. In this section we study fine properties of the value
function on AZ . Eventually, we investigate differentiability properties of ST . It is
thus natural to restrict the analysis on the nonempty open subset int (Afo) (cf. also
the discussion at the end of subsection 2.1).

3.1. Fair points. We start by introducing the set of fair points.

DEFINITION 11. A point z € int (Afo) is said to be a fair point if there exists a
unique optimal trajectory steering xo to x, and this trajectory admits a normal lift.
We call ¥ the set of all fair points contained in the attainable set.

Equivalently, a fair point is reached by a unique optimal trajectory, and this
trajectory is not strictly abnormal.

The lower semicontinuity of Sgo permits us to find a great abundance of fair
points. Their existence is related to the notion of the proximal subdifferential (see,
for instance, [18, 31] for more details).

DEFINITION 12. Let F': int (Agﬂ) — R be a lower semicontinuous function. For
every x € int (Ago) we call the proximal subdifferential at x the subset of T M defined
by

opF(z) = {)\ =d, 0 €T, M |peC™ (int (Afo)) and F — ¢ attains a local minimum at x} .

The proximal subdifferential is a convex subset of Ty M which is often nonempty
in the case of a lower semicontinuous function [18, Theorem 3.1].

PROPOSITION 13. Let F : int (AL ) — R be a lower semicontinuous function.
Then the prozimal subdifferential OpF (x) is not empty for a dense set of points x €
int (AT ).

We showed in Proposition 7 that the value function SZ, :int (AZ ) — R is lower

semicontinuous. By classical arguments, the proximal subdifferential machinery yields
the following result (cf. also [31, 1]).
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PROPOSITION 14. Let x € int (AL ) be such that 0pSZ, (x) # 0. Then there exists
a unique optimal trajectory x,(-) : [0,T] — M steering x¢ to x, and this trajectory
admits a normal lift. In particular x is a fair point.

Proof. Fix any A € ('9135'1:50 (z). Let us prove that every optimal trajectory steering
o to x admits a normal lift having A as final covector.

Indeed, if ¢ is a smooth function such that A = d,¢ € pSZ, (), by definition the
map

doint (AD) = R, W(y) = 55, (y) — ()
has a local minimum at x; i.e., there exists an open neighborhood O C int (Azo) of
x such that ¢ (y) > ¢(x) for every y € O. Then, let t — z,(t), t € [0,T], be an
optimal trajectory from zy to x, let u be the associated optimal control, and define
the smooth map

.0oT _ T

®: 0, =R, () = Cr(v) — ¢(Ey, (v).
There exists a neighborhood V C QI of u such that EZ, (V) C O, and since Cr(v) >
ST (EL (v)), we have the following chain of inequalities:

®(v) = Op(v) — (B, (v) > S5, (B}, (v) — $(Ef, (v))
> S5 (Eqy () = 6(Eg, (u) = Cr(u) — ¢(E3 () = ®(u)
Yo eV,

where in the second inequality we used the fact that 1) has a minimum at x = EQET0 (u).
Then
0=d,®=d,Cr — (d;¢) d, ES,,

and therefore we see that the curve A(t) = et-TH () is the desired normal lift of the
trajectory ,(+).

Observe that the extremal normal lift A(¢) is uniquely reconstructed from A, and
in fact its projection onto the manifold M does not depend on u. Then there is only
one optimal trajectory between zy and x, admitting a normal lift, which precisely
means that x € ¥ is a fair point.

As a final remark, we stress that nothing prevents the optimal trajectory from
admitting also an abnormal lift. In particular, when dpS? (x) # 0, the unique normal
trajectory steering z( to x is strictly normal if and only if GPS;FO (z) is a singleton. O

COROLLARY 15 (density of fair points). The set Xy of fair points is dense in
int (Ago).

Along the same lines of Proposition 14, we show that all differentiability points
of ST are fair points.

PROPOSITION 16. Suppose that S{O is differentiable at some point x € int (Afo).
Then x is a fair point, and its normal covector is A = szZO eTrxM.

Proof. Indeed, let u be any optimal control steering o to x. Then it is sufficient
to consider the nonnegative map

v Cp(v) — SZO(EZD(U)),
which has by definition a local minimum at u (equal to zero). Then
0=d,Cr — (d; Sk ) duEL,,

and the uniqueness of u (hence the claim) follows as in the previous proof. 0
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3.2. Continuity points. We are also interested in the subset 3. of the points
of continuity for the value function. It is a fact from general topology that a lower
semicontinuity function has plenty of continuity points.

LEMMA 17. The set ¥, is a residual subset of int (AZ ).

Recall that a residual subset of a topological space X is the complement of a
union of countably many nowhere dense subsets of X. This fact is well known, but
the proof is often presented for functions defined on complete metric spaces. For the
sake of completeness, we give a proof in the appendix.

The existence of points of continuity is tightly related to the compactness of
optimal controls, as is shown in the next lemma.

LEMMA 18. Let = € int (AL ) be a continuity point of ST . Let {x,}nen C
int (Afo) be a sequence converging to x and let u, be an optimal control steering
xo to x,. Then there exists a subsequence {Tn, }ren C {Tn}tnen, whose associated
sequence of optimal controls {un, }ren strongly converges in L%([0,T],R%) to some
optimal control u which steers xqg to x.

Proof. Let {2y }nen C int (AL)) be a sequence converging to x and let {un}nen
be the corresponding sequence of optimal controls. Since z is a continuity point
for the value function, it is not restrictive to assume that the sequence of norms
{||#n]| 2 }nen remains uniformly bounded, and thus we can suppose to extract a sub-
sequence {un, }ken C {Un }nen such that u,, — u weakly in L2([0,T],R%), which in
turn implies

i [ Qe )= [ Qe

k—o0

Then we have

St~ 2 [ Qo) < it S 3 2 [ Qe
gtz =g | Sldu = e gtz =g f - BT,
= lim Sf(,(Efo(um)) = lim Sgo(xnk)
k—oo ’ k— o0
= 81, () = 1,52, )

T
< gl =5 [ Qaoar

which readily means both that limy_, « ||tn, |2 = |Ju||r2 (from which the convergence
in L? follows), and that Cp(u) = SL (E7 (u)) = ST (). ad

3.3. Tame points. We have introduced so far two subsets of int (Afo), namely
the sets X, of the continuity points of S;FO? and the set Xy of fair points, which are
essentially points that are well parametrized by the exponential map. While both
these sets are dense in int (Afo), their intersection can still be empty. Here we have
the main differences with respect to the arguments of [1]: indeed in that context every
fair point is a point of continuity. In our setting, to relate 3. and Xy, we introduce

the following set.

DEFINITION 19 (tame points). Let x € int (AL ). We say that  is a tame point
if for every optimal control u steering xo to x there holds

rank duEg; =dim M = m.

We call 34 the set of tame points.
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Tame points locate open sets on which the value function Sgo is continuous. The
precise statement is contained in the following lemma, whose first part of the proof is
an adaptation of the arguments of [34, Theorem 4.6]. A complete proof is contained
in Appendix A.

LEMMA 20. Let z € int (Afg) be a tame point. Then the following hold:
(i) « is a point of continuity of S’ITO.
(ii) There exists a neighborhood O, of x such that every y € O, is a tame point.

In particular, the restriction SZ.; | 0. s a continuous map.

The previous lemma can be restated as follows.
COROLLARY 21. The set ¥y of tame points is open. Moreover, ¥y C X..

4. Density of tame points. This section is devoted to the proof that the set
of tame point is open and dense in the interior of the attainable set. We start with
the observation that the set of optimal controls reaching a fixed point x is compact
in the L?-topology.

LEMMA 22. For every x € AL | the set

o’
U, ={ue Qfo | u is an optimal control steering xq to x}

is strongly compact in L2([0,T],R%).

Proof. Let {uy}nen C Uy. Then we have ST (x) = Cr(uy) for every n € N, and
consequently there exists C' > 0 such that ||u,||rz < C for every n € N. Thus we may
assume that there exists a subsequence {un,, }ren C {un }nen, and a control u steering
7o to z, such that u,, — u weakly in L2([0,7],R?). This, on the other hand, implies
that
1 (T

1 1 [T o1
§IIUII%Z - 5/0 Q(zu(t))dt < hkrggfgllunklliz -5 | Qzy, (1))dt

2

= liminf C7(uy,, ) = ST (x)
k— o0

1, .. 1 (7
= Cr(w) = 5llullfs — 5 [ Q@)
therefore, ||ul|r2 = limp_ oo ||tn, || 22, and the claim is proved. |

We introduce now the notion of the class of a point. Heuristically, the class of
a point = € int (AL ) measures how much that point “fails” to be tame (see Defini-
tion 19).

DEFINITION 23. Let x € AL . We define

class (x) = min rankd,EZ, .
u€Uy 0

Any point x € int (Az;o) satisfying class (z) = m is necessarily a tame point.

DEFINITION 24. We also define the subset U™ C U, as follows:
U™ = {u € U, | rank duEg0 = class (z)} .

By the lower semicontinuity of the rank function, the set UMM 4s closed in U, and
hence (strongly) compact in L2([0,T],R%).
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It turns out that the function class is locally constant around points of continuity
in the interior of the attainable set.

LEMMA 25. Let O C int (AwTO) be an open set, and let

ko = 1 .
o= max class (z)

Then there exists a neighborhood O’ C O, such that class (y) = ko, for everyy € O'.

Proof. Let x € ¥, N O be a point of continuity for the value function S};O , having
the property that class (z) = ko. Assume by contradiction that we can find a sequence
{z, }nen converging to x and satisfying class (z,) < ko — 1 for every n € N. Accord-
ingly, let u, € U™ be an associated sequence of optimal controls. In particular, for
every n € N, we have by definition that class (z,,) = rank d,,, E .

By Lemma 18, we can extract a subsequence {up, }ren C {Un nen which con-
verges to some optimal control u steering zg to x, strongly in the L2-topology, and
write

class (z) < rankd, BT <liminfrankd,, ET =liminfclass(z,,) < ko — 1,

0 k—o0 ko0 k—o0
which is absurd by construction, and the claim follows. 0
We can now state the main result of this section.
THEOREM 26. The set ¥y of tame points is dense in int (Afo).

We postpone the proof of Theorem 26 until the end of the section, since we need
first a series of preliminary results. We begin attaching to each v € U™ the set of
all normal covectors A satisfying condition (a) in Proposition 8.

DEFINITION 27. Pick x in int (AL ) and let uw € U™, If u is not strictly abnor-

mal, then we choose any normal covector At € Ty M associated to u and satisfying
item (a) in Proposition 8, and we define

Bt = {NeTiM | My EL = \podo BT} = Arp + ker (A EL)" € T2 M.

If instead u is strictly abnormal, we simply set @; = ker (duEgOyk C TyM. Notice
Y is a linear subspace, while if u ad-

is affine. The dimension of these subspaces equals

(11>

that whenever u s strictly abnormal, then
—=u

mits at least one normal lift, =Y
m — class (x) > 0.

Fix any Riemannian metric g, on T, M. If u is an admissible control associated
to a trajectory steering zg to x in time 7T, i.e., z = P&T(aco), unless otherwise stated
we will always consider on 7y M the Riemannian metric g% defined as the pull-back
of gz, by Fy'r; Le., we set

(4.1) g:(&,m) = 8o (Po'7)"&, (Po'r)™n) V& me Ty M.

Observe that this metric depends continuously on the control.
We call Z,, C T} M the orthogonal (with respect to g) subspace to ker (duE;,FO)
of dimension equal to class (z), so that

*
Y

(4.2) TiM = ker (d EL)" @ Z,.

Moreover, we let w5 Ty M — Zu be the orthogonal projection subordinated to this
splitting, that is satisfying

ker(mz ) = ker (duEmTO)* .
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Finally, by means of the adjoint map (ngT)*7 we can pull the spaces Z% “back” to
T,,M and set

FiG. 1. We set y = EL (U) The subspace é; is linear if v is strictly abnormal and affine

otherwise. ZU and ker (dUEZO) are orthogonal. The point fAv belongs to Ty M and is then pulled
back on T; M.

The following estimate will be crucial in what follows.

PROPOSITION 28. Let O C int (Afo) be an open set, and assume that
class (z2) = ko <m for every z € O.

Let x € O and u € WM™, Then there exists a neighborhood V,, C QL of w such that,
for every A\, € Zy C T; M, there erists a constant K = K(\,) > 1 such that, for
every v € V,, N ug;n (v)7 there is & € Efr w) C Ty M satisfying*

z0

|)‘u _£1J| < K.

Proof. Let us choose a neighborhood V,, C Qfo of u, such that all the endpoints
of admissible trajectories driven by controls in V,, belong to O.

Then, if y = Efo (v) for some v € V,, it follows that y € O. Moreover, if
also v € ugﬂn, we can define the (m — ko)-dimensional subspace = C T, M as in
Definition 27. Therefore, we can assume from the beginning that all such subspaces
£y have dimension constantly equal to m — ko > 0.

Fix A, € %, and set

A= (PRo) A € TEM, veV,NUM, y=ET (v).

The intersection (X” + 7, ) :” (cf. with (4.2) and Figure 1) consists of the single

point Ev Since both )\“ and fv belong to the affine subspace )\” + Zv, in order to
estimate the norm |)\ — §U| it is sufficient to evaluate the norm |75 (/\ ) — T3z, ({U)|

of the projections onto the linear space Zy = (ker(dvEZ;) )L. The key point is the

1We omit the explicit dependence on the base point when it is clear from the context on which
fiber of T* M we are evaluating the norm.
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computation of the norm of |75 (£&,)]- In fact, since ker(dyEL )* = (Imd, EL )™, this
amounts to evaluating

(43) |7-(-2U (gv)| — sup |<£’Ua f>| )

reimd,Br, ISl

We deduce immediately from (4.3) that, whenever v is strictly abnormal, then 7 (SAU) =
0, while from the expression for the normal control (2.3)

vilt) = (€0 (8), Xi(24(8))) = (€0, (PP )Xi(zo (1)),

we see that (v,w)r2 = @,,dvEfo (w)), and we can continue from (4.3) as follows
(W,, denotes the ko-dimensional subspace of L2([0,T],R%) on which the restriction

dyE3, |WU is invertible):
- |<§v»dvE£ (w)>|
(4.4) 75, (&) = sup ——

weW, |dvE$0 (w)|

(v, du EL (w))]

< sup d,ET -1
S0 e NBeolw, )
[{v, w) 2| _

— qup Wl pr

wew, [[wl|z2
< [lollz2 | (do E5y )7

It is not restrictive to assume that the L?-norm of any element v € V, N uf;in

remains bounded. Moreover, since all the subspaces have the same dimension, the

map v — W, is continuous, which implies that so is the map v (dvE;FU|W )L

This, on the other hand, guarantees that the operator norm [|(d, E ~1|| remains

lw,)
bounded for all v € V,, mugﬂn, and then from (4.4) we conclude that for some constant

C > 0, the estimate |75 (Ev)| < C holds true, which implies as well, by the triangular
inequality, that R R R
A — &l < AL+ C.

Thus, setting &, = (Pé’,T)*fAv € Ty M (cf. Figure 1) we compute thanks to (4.1)
|>‘u _£v| = P‘Z _€v|
<[xg|+cC
=[] +C
< 2max{|A,|,C}.

Setting K (\,) := 2max{|\,|,C} the claim is proved. |

Remark 3. Let us fix A, € E} C T; M and consider the ko-dimensional affine
subspace R R R
(Por)" (N + Zo) = Au + (For) " Zo,

with Z, defined as in (4.2). Then if we call Z, := (P&T)*ZJ C T, M, the map

min _ T
v X+ Zy, v €V, NUMT, Yy = By (v),
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is continuous.? Moreover, Z, is by construction transversal to =y, and §, € (A +
Zy) NEy.
Having in mind Remark 3, we deduce the following.

COROLLARY 29. Let O C int (Ago) be an open set, and assume that
class (z) = ko <m  for every z € O.

Let z € O, u € W™ and consider V,, C Qfﬂ as in Proposition 28. Then, for
every A\, € Z¥, there exists a ko-dimensional compact ball A, centered at A\, and
transversal to Z¥, such that

€T

—v min _ T
AuNEy #D for every v € V, NUG™,  where y = E; (v).

FIG. 2. On the fiber T; M, the point n denotes the intersection between Ty, and the affine space
A+ Zy.

Proof. Let A\, € ZY be chosen, and assume without loss of generality that V,, is
relatively compact. For every v € V,,, we can construct an m-dimensional ball B, of
radius CJ strictly greater than K = K(\,) (given by Proposition 28), and centered
at Ay

Then, the existence of an element £, € (A, + Z,) £, satisfying A — &| < K,
proved in Proposition 28, implies that the intersection of B, with =} is a compact
submanifold T, (with boundary). Moreover, since the radius of BY is strictly greater
than [A, —&,/[, it is also true that the intersection of A, + Z, with int (7},) is not empty.

Let us consider as before (cf. Remark 3) the ko-dimensional affine subspace A, +
Z,,, which is transversal to Z%. Possibly increasing the radius Cj, the continuity of the
map w — A\, + Z,, ensures that A\, + Z, remains transversal to T, and in particular
that the intersection T, N (A, + Z,,) is not empty (see Figure 2). Moreover, it is clear
that this conclusion is local; that is, with the same choice of C§j it can be drawn on
some full neighborhood W,, of v. Then, to find a ball B, and a radius Cy uniformly
for the whole set V,,, it is sufficient to extract a finite subcover W,,,,..., W,, of V,,
and choose Cj as the maximum between Cj*, ..., Cy.

We conclude the proof setting A, = B, N (A, + Z,). Indeed, A, is a compact
ko-dimensional ball by construction, and moreover if we call 7, any element in the
intersection T;, N (A + Zy,), for v € V,,, then it follows that

Mo € YN By N (A, + Z,) = ELN A,

2The continuity of the map v — Z, is to be intended in the Grassmannian Gr(ko,T;OM), of

ko-dimensional subspaces in T7 M. Also, continuity is not affected by the common translation
Zy v Zy + M-
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that is, the intersection 2 N A, is not empty for every v € V,, N U™, O
Collecting all the results, we can now prove Theorem 26.
Proof of Theorem 26. Let O be an open set in int (Afu)7 and define

ko = e class (z).
Notice that this definition makes sense, since points of continuity are dense in int (Azo)
by Lemma 17. Then we may suppose that ko is strictly less than m, for otherwise
there would be nothing to prove. Moreover, by Lemma 25 it is not restrictive to
assume that class (y) = ko for every y € O.

Fix then a point € X, NO. Since the hypotheses of Proposition 28 are satisfied,
for every u € U™ we can find a neighborhood V,, C Qf of u, fix A, € Y, and con-
struct accordingly a compact ko-dimensional ball A,,, centered at A, and transversal
to 2%, such that (Corollary 29)

= i = fgT
A, NEy #D for every v € V,, and with y = E, (v).

Since UMM is compact (Definition 24), we can choose finitely many elements

U1, . ..,y in WM guch that
l

wr | Va,
i=1

The union A,, U---U A, is again of positive codimension. Now we claim that there
exists an open neighborhood O, C O of x such that, for every y € O, and for every
v E ugﬁn, there exists i € {1,...,l} such that A,, NZy # 0. Indeed, assume by
contradiction that this is not true. Then there exists a sequence of points {x, }nen
converging to x, and a sequence of optimal controls v,, € ug“n such that v, ¢ Ué:1 Vu, -
This, however, is in contradiction with Lemma 18 and we get the absurd.

On the other hand, for any fair point z € £ N O,, its (unique) optimal control v
admits a normal lift, and we have the equality

Exp,, (2) = 2,

where Expz;0 is the exponential map with base point zy at time T of Definition 9.
Eventually, we deduce the inclusion

(4.5) £rNO0; CExpl (A, U-+ UAy,).

The set on the right-hand side is closed, being the continuous image of a compact set.
Moreover, it is of measure zero by the classical Sard lemma [32], as it is the image of
a set of positive codimension by construction. Since the set ¥ N0, is dense in O, by
Corollary 15, passing to the closures in (4.5) we conclude that meas(O,) = 0, which
is impossible. 0

Combining now Lemma 20 and Theorem 26, we obtain the following (cf. Theo-
rem 1).

COROLLARY 30. The set ¥y of tame points is open and dense in int (Afo).

5. On the smoothness. In this section we deduce smoothness of the value
function S;:) in the presence of tame points. Since tame points are in particular
points of continuity for Sgo , the arguments of Lemma 18, with minor changes, prove
the following result.
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LEMMA 31. Let K C ¥; be a compact subset of tame points. Then the set of
optimal controls reaching points of K

Mg ={ue QZO | Efo(u) € K and Cr(u) = S;(E;(u))}

is strongly compact in the L?-topology.

The first result of this section, which is an adaptation of an argument of [31, 1],
is as follows.

PROPOSITION 32. Let K C X; be a compact subset of tame points. Then Sfo is
Lipschitz continuous on K.

Proof. By compactness, it is sufficient to show that S;FO is locally Lipschitz con-
tinuous on K.

Fix a point x € K, and let u be associated with an optimal trajectory joining xg
and z. By assumption, duEZU is surjective, so that there are neighborhoods V,, C Qfo
of u and O, C int (AL ) of = such that

E:cTo}vu Vo — Oy

is surjective, and there exists a smooth right inverse ® : O, — V,, such that EZ (®(y)) =
y for every y € O,.

Fix local coordinates around z, and let B, (r) C M and B, (r) C QL denote some
balls of radius r > 0 centered at x and u, respectively. As & is smooth, there exists
R > 0 and Cy > 0 such that

(5.1) By(Cor) C EL (Bu(r)) for every 0 <r < R.
Observe that there also exists Cq7 > 0 such that, for every v,w € B,(R), we have
(5.2) |Cr(v) — Cr(w)] < Cy]|jv — w|ge2.

Indeed our main assumption implies that the subset {x,(t) | t € [0,T],v €
B.(R)} is contained in a compact set K of M, on which the smooth function @,
together with its differential @', attains both a maximum and a minimum. Then,
using the mean value theorem and [34, Proposition 3.5], we deduce that

T T
/ Qo (8) — Qrw()dt < sup |Q' ()] / 20 (t) — 2o (B)dt < Cllo — w12,

0 yeK

and by means of the triangular inequality, (5.2) is proved.

Pick any point y € K such that |y — x| = Cyr, with 0 < r < R. Then by (5.1)
there exists v € B,(r) satisfying ||u — v||;2 < r and such that EL (v) = y. Since
Cr(u) = SL (z) and S%, (y) < Cr(v), we have

C
S20 () = S5, (2) < Cr(v) = Cr(u) < Cllo — ullz2 < oy — al.

Using the compactness of both K and Mg (cf. Lemma 31), all the constants can be
made uniform, and the role of x and y can be exchanged, so that we have indeed

c
ST (x) — ST (y)] < al)lx—yl

for every pair of points  and y such that |z — y| < CoR. d
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DEFINITION 33. We define the set ¥ C int (AL ) of the smooth points as the set
of points x such that
(a) there exists a unique optimal trajectory t — x,,(t) steering x¢ to x in time T,
which is strictly normal, and
(b) z is not conjugate to xo along x,(-) (cf. Definition 10).

Item (a) in Definition 33 is equivalent to requiring that z is in fact a point that
is at the same time fair and tame. Notice that as a consequence of the results of
section 3, and in particular of Corollary 30, the set ¥y N3, is dense in int (A;fg).

The following result finally proves Theorem 2.

THEOREM 34 (density of smooth points). X is open and dense in int (AL ).
Moreover, Sgo is smooth on .

Proof. (i.a) Let us show that ¥ is dense. First we prove that, for any open set O,
we have XNO # (. Since the set ¥; of tame points is open and dense in int (Afo), we
can choose a subset O' C O N X; relatively compact, and assume by Proposition 32
that S is Lipschitz on O’. Thanks to the classical Rademacher theorem we know
that S is differentiable almost everywhere on O', and therefore, since any point
of differentiability is a fair point by Proposition 16, meas(3X; N O') = meas(0’).
Moreover, any point in £ N O’ is also contained in the image of the exponential map
Expfo, and the Sard lemma implies that the set of regular points is of full measure
in ¥y N O’. By definition any such point is in X, that is, we have meas(¥ N O’) =
meas(Xy N O') = meas(O’), which implies that ¥ N O" # ), and this concludes the
proof.

(i.b) Let us prove that 3 is open. Fix as before an open set O having compact
closure in int (AIO). Assume by contradiction that there exists a sequence of points
Zn € O converging to x € ¥ and such that there are (at least) two optimal trajectories
connecting them with zg. Call {u, }nen and {v, }nen the corresponding sequences of
optimal controls associated with such trajectories. Lemma 18 then guarantees that,
up to considering subsequences, it is not restrictive to assume the existence of both
u = lim,, 00 U, and v = lim,, o v, in L2([0,T], R%). However, the uniqueness of the
minimizer steering zg to x implies that u = v.

Then both d,,, Efo and d,, ET , have maximal rank for n large enough (u is strictly
normal because z is a smooth point), and we can define the families of covectors A,
and &,, as elements of T, M, satisfying the identities

)\ndunE;-‘U = dunOT7 gndvnEz; = d'UnCT'

Taking the limit on these two equations we see that lim, . Ay, = lim, 00 & = A,
where A is the covector associated with the unique optimal control u steering xg to
x. If, for any s € [0,7], we let A} = (P})* A\, and &, = (P]7)*&,, then we see that
even the “initial covectors” \? and ¢ converge to the same element \°.

On the other hand, since by the point (b) of Definition 33 x is not conjugate
to zo along the unique optimal trajectory w,(-), we have that \° is a regular point
for the exponential map Expfo. Then there exist full neighborhoods V' C T; M of
A% and O, C int (A;FO) of = such that the exponential map ExpgO |V :V—>0,isa
diffeomorphism. In particular, if we pick some point y € O, there is a unique optimal
trajectory x,(-) steering xo to y. Moreover, the covector A, associated with z,(-) is
a regular point for Expfo, and from the equality EZ (u) = Expfo(ky), we see that u
has to be strictly normal. This shows that O, C %, which in the end is an open set.
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(ii) Next we prove the smoothness of 57, on ¥. Let us consider a covector A €
T, M associated with the unique optimal trajectory connecting zo and z. By the
arguments of the previous point, there are neighborhoods Vi C T, M of A and O, C
int (AL ) of x such that Expz;o ‘VA

It is then possible to define a smooth inverse ® : O, — V) sending y to the
corresponding “initial” covector \,. Along (strictly normal) trajectories associated
with covectors A\, in V) we have therefore (compare with (2.3))

ug (£) = (@(y), Xi(= (1)),

which means that the control u¥ € qu and, in turn, the cost Cp(u) itself are smooth
on O,. 0

: V= O, is a diffeomorphism.

Appendix A. A few technical results. We give here the proof of Lemma 17
and Lemma 20.

LEMMA. The set 3. is a residual subset of int (AL ).

Proof. We will show that the complement of Y. is a meager set; i.e., it can be
included into a countable union of closed, nowhere dense subsets of int (AZ ). Then
the claim will follow from the classical Baire category theorem, which holds on smooth
manifolds.

Let then x be a discontinuity point of S;;. This implies that SZO is not upper
semicontinuous at x; i.e., there exist € > 0 and a sequence z,, — = such that for all n

ST (z)+e < SI (zn).
For any ¢ € Q define the set
Ky ={xeint (AL) | Sk (x) < q}.

The lower semicontinuity of 53;0 implies that K, is closed. Moreover, let us choose
r € Q such that ST (z) < r < SZ (x) +e. By construction z € K, \ int (K,), which
means that
int (AZ) \ B € | (K \int (K,)).
reQ 0

LEMMA. Let x € int (Afo) be a tame point. Then the following hold:

(i) z is a point of continuity of S’ITO.

(ii) There exists a neighborhood O, of x such that every y € O, is a tame point.
In particular, the restriction Sg;o ’OI 18 a continuous map.

Proof. To prove (i) we will show that, for every sequence {z, },en converging to
x, there holds lim,—, o0 S7, (2n) = SI (). In particular, we will prove the latter
equality by showing that Sfo () is the unique cluster point for all such sequences
{Sgo (Tn) }nen-

Let u be any optimal control steering zg to . By hypothesis duE;; is surjective,
and therefore ET , 1s locally open at u, which means that there exists a neighborhood
Vo C QL of u such that the image El (V,) covers a full neighborhood of z in
int (AZ ). This implies that, for n large enough, the L?-norms {||u, |12 }nen of optimal
controls steering zy to x, remain uniformly bounded by some positive constant C.

Let now a be a cluster point for the sequence {SZ (2,,)}nen. Then, it is not re-
strictive to assume that lim, Sgo (z,) = a. Moreover, our previous point implies
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that we can find a subsequence {z,, }ren, whose associated sequence of optimal con-
trols {un, }ren weakly converges in L2([0, 7], R?) to some admissible control 4 steering
o to x, which in turn yields the inequality

ST (z) < Cp(0) < liminf Cr(u,,) = liminf ST (2,,,) = a.
k—oo ) k—oo

Let us assume by contradiction that SZ (z) = b < a, and let ¢ > 0 be such
that b+ ¢ < a. Moreover, let v be an optimal control attaining that cost. By the
tameness assumption, the end-point map E;FO is open in a (strong) neighborhood
Vv, C ng of v, which means that all points y sufficiently close to = can be reached
by admissible (but not necessarily optimal) trajectories, driven by controls w € V,
satisfying Cr(w) < b+ e < a. But this gives a contradiction since SI (z,,) must
become arbitrarily close to a, as k goes to infinity.

To prove (ii), assume by contradiction that such a neighborhood O, does not
exist. Then we can find a sequence {z, }nen convergent to z, and such that for every
n € N there exists a choice of an abnormal optimal control w,, steering xg to x,; that
is, for every n € N there exists a norm-one covector A, such that

(A1) Andu, EL, = 0.

By Lemma 18, there exists a subsequence u,,, which converges strongly in L?([0, 7], R%)
to some optimal control u reaching x. Moreover, since we assumed |\,| = 1 for all

n € N, it is not restrictive to suppose that A = limy_,o A, exists. Thus, passing
to the limit as k tends to infinity in (A.1), we see that u is forced to be abnormal,
and thus we have a contradiction, as x is tame. It follows then from point (i) that
SzTo { o, is indeed a continuous map. 0
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