
Noname manuscript No.
(will be inserted by the editor)

Procedural Generation of Materials for Real-Time

Rendering

Alessio Bernardi · Davide Gadia · Dario

Maggiorini · Claudio Enrico Palazzi ·

Laura Anna Ripamonti

Received: date / Accepted: date

Abstract The use of Procedural Content Generation techniques in the produc-
tion of Video Games has seen a large diffusion in these last years. Regarding the
procedural generation of Computer Graphics content, several works have been
proposed about the automatic construction of complex models and environments,
or about the instancing of several copies of a reference model, each with peculiar
differences to introduce variety. However, very few works have proposed techniques

Alessio Bernardi
Department of Computer Science
University of Milan
Via Celoria 18
20133 - Milan (Italy)
E-mail: alessio.bernardi@studenti.unimi.it

Davide Gadia
Department of Computer Science
University of Milan
Via Celoria 18
20133 - Milan (Italy)
E-mail: gadia@di.unimi.it

Dario Maggiorini
Department of Computer Science
University of Milan
Via Celoria 18
20133 - Milan (Italy)
E-mail: dario@di.unimi.it

Claudio Enrico Palazzi
Department of Mathematics
University of Padoa
Via Trieste, 63
35131 - Padoa (Italy)
E-mail: cpalazzi@math.unipd.it

Laura Anna Ripamonti
Department of Computer Science
University of Milan
Via Celoria 18
20133 - Milan (Italy)
E-mail: ripamonti@di.unimi.it

2 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

for the procedural production of complex materials to be assigned to these gen-
erated models. In this paper, we present a method for the automatic generation
of realistic layered materials based on the application of a Genetic Algorithm. We
show that, with the proposed approach, is possible to generate several instances of
a target material (e.g., a car paint, or a rusty metal), maintaining a desired level
of closeness to the overall characteristics of the simulated interaction between the
light and the surface, but introducing also a controlled amount of differences in
the final reproduction of the perceived appearance.

Keywords Procedural Content Generation · Computer Graphics · Layered
Material · Genetic Algorithm · Real-Time Rendering

1 Introduction

In the context of video games, Procedural Content Generation (PCG) refers to
the automatic creation of contents through the application of algorithms and/or
heuristics that are designed specifically for the game under development. The
main positive effects of the application of PCG are a reduction of development
time and an increase of the randomness of the game content and/or gameplay,
thus extending the game replayability and longevity [11].

In these last years, a relevant number of researches have exploited PCG in order
to automatically generate game levels [23,37,43], racing tracks [7], or dungeons [4].
More recently, the application of PCG and AI techniques has provided a relevant
contribution to several specific aspects of game optimization, such as: impact on
Non Player Characters (NPCs) [3, 24, 34, 36, 48], dynamic game balancing [20],
and adaptive or personalized content generation [15, 18, 44]. Moreover, the term
Search-Based PCG [41] has been proposed to refer to PCG techniques based on the
application of evolutionary algorithms to game contents. The proposed techniques
are mainly used to generate or evolve a game environment [9, 14, 28], the features
of a character [17, 30], or for the evolution of the game agents behaviour in order
to produce more challenging opponents to the players [1, 26, 27].

In the Computer Graphics (CG) field, PCG has a long and established history.
The proposed techniques have addressed mainly the generation of 3D meshes and
large virtual worlds to allow a much-reduced intervention by the user without the
need of a long process of manual mesh modeling. A well-known example is the
creation of plants and trees, which usually exploits the characteristics of fractals
and L-systems [35,47]. Another relevant application is the generation of buildings
of different sizes and heights [29, 32, 40], large urban environments with streets,
parks, lakes, areas with different population density [10,12,31,39], or other complex
structures [19]. These techniques usually rely on a combination of shape grammars
and optimization methods, often supported by the use of auxiliary image maps.

However, few works have been proposed on the application of PCG for the
generation of the surface appearance of models. In the Procedural Texturing field
[13], mathematical equations based also on fractals or noise functions are used to
generate 2D images. These images are often applied during the rendering process,
and they have indeed a role in the determination of the final visual appearance of a
model. However, the procedural textures are usually applied e.g., to determine the
base color of an object, or to simulate a complex surface roughness by mimicking

Procedural Generation of Materials for Real-Time Rendering 3

or perturbing the actual vertex normals of the mesh, rather than having a role in
the functions computing the actual reflective behaviour of the material.

In this paper, we show how a Genetic Algorithm (GA) can be efficiently applied
to an advanced computational model for real-time rendering of realistic layered
materials. The main idea is to generate several versions of a target material, by
evolving the parameters of the function calculating the interaction between the
light and the surface layers. Their effectivenes is then evaluated by considering the
perceptual differences with the original material. This approach can be used when
several instances of the same model are generated in a scene (e.g., a medieval
armour). The materials of each instance must share a common behaviour (e.g.,
a rusty metal effect), but we want to introduce a certain amount of perceptual
differences in each instance, in order to enhance the variety and effectiveness of
the generated virtual world.

The paper is structured as follows. In Section 2, we briefly describe the math-
ematical functions used to represent a realistic material in real-time rendering. In
Section 3, we provide an overview of PCG techniques based on the application
of evolutionary methods for the generation of materials in Computer Graphics.
Section 4 describes the proposed PCG technique. In Section 5, we present the
experimental setup used to evaluate the fitness functions considered in the pro-
posed GA. In Section 6, we present some implementation details and discuss the
computational performances of the method. Finally, Section 7 draws conclusions
from the results and presents future work.

In [6], we already presented some preliminary results of the proposed approach.
In this paper, we significantly extend the previous work, by considering:

– a third vector distance (the Manhattan distance) in the set of the possible
fitness functions

– an additional test material, characterized by the presence of a participating
media (the validation metal depth material)

– the results of a visual metric (HDR-VDP-2 [21]), which graphically presents
the possible perceived differences between a reference and a target image, in
the perceptual evaluation of the generated materials.

2 Computation of materials reflectance in Computer Graphics

The rendering process in CG is based on the simulation of the physical interaction
between light and the materials of the surfaces in a scene. For a uniform, not-
emitting material, the light reflected by a surface in the direction of the virtual
camera is given by the rendering equation [33]:

Lo(ωo) =

∫

ωi∈Ω

fr(ωi,ωo)Li(ωi)(ωi · n)∂ωi (1)

where

– n is the surface normal
– ωi and ωo are the direction of incoming light and the direction of reflected

light, respectively
– Li(ωi) and Lo(ωo) are the incoming and the reflected radiances, respectively

4 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

– fr(ωi,ωo) is the Bidirectional Reflectance Distribution Function (BRDF), which
describes the amount of radiance reflected in the direction ωo, given the radi-
ance coming from direction ωi

Due to its complexity, Eq. (1) cannot be solved directly. As a consequence, sev-
eral approaches were proposed in order to approximate its solution [33]. Among
the different proposals suitable for real-time rendering, the methods following the
microfacets approach [2] are based on the idea that rough surfaces are composed
of a large collection of microscopic facets bouncing light in different directions.
The light scattering properties of the material are given by the orientation of the
collection of microfacets, which is modeled using a statistical distribution. Follow-
ing this approach, several methods for real-time rendering of complex materials
use Eq. (2) [2] to define the BRDF:

FGD = fr(ωi,ωo) =
F (ωi · h)G(ωi,ωo)D(h)

4(ωi · n)(ωo · n)
(2)

where

– h is the half vector between ωi and ωo, used to approximate the direction of
specular reflection

– F (ωi·h) is the Fresnel reflectance term, which describes the amount of reflection
and trasmission of light on a surface

– G(ωi,ωo) is the Shadowing-Masking Function, which accounts for self-occlusion
effects among the microfacets, by providing the fraction of microfacets visible
in both ωi and ωo directions

– D(h) is the Normal Distribution Function (NDF), which describes the statis-
tical distribution of the orientation of the microfacets normals on a surface

Among the several NDFs proposed in literature, the most used is currently the
GGX distribution [46]:

D = GGX(n,h, α) =
α2

π
(

(n · h)2(α2 − 1) + 1
)

2
(3)

where α parameter controls the overall roughness of the surface.
When light reflection and transmission are both considered in the computa-

tional models, the function fr in Eq. (2) is called Bidirectional Scattering Distri-
bution Function (BSDF), rather than BRDF ; because the latter describes only the
reflectance properties of a material.

3 Related work

To the best of our knowledge, at the time of writing the applications of PCG and
evolutionary techniques for the generation of BRDFs or BSDFs have not yet been
extensively investigated.

Brady et al. [8] proposed a framework for learning new analytic BRDF models
through Genetic Programming (GP). They used, as the initial population of the
method, the set of expressions of different BRDFs proposed in literature and, as
the target, a trained set of measured materials from a database containing the

Procedural Generation of Materials for Real-Time Rendering 5

reflectance functions of 100 materials freely available for academic and research
purposes. At each iteration, tournament selection is used to determine a new pop-
ulation, and one-point crossover is used to generate offsprings. During the pairing
process, different symbolic transformations could be applied to the parameters and
to the mathematical operations of the two parent BRDF models in order to create
a new, more complex reflectance function. The same operations are used in case
of random mutation. Then, the fitness of the generated formulations is evaluated
considering an error function with respect to the training set of selected measured
materials.

A GP approach is used also by Sitthi-Amorn et al. [42], but with a different
approach. In this work, an evolutionary method is applied in order to increasingly
simplify the source code of a shader, by copying, reordering and deleting its state-
ments and expressions. The goal of the method is to find the optimal compromise
between rendering speed and accuracy of the approximation of the light-material
interaction. The authors applied an iterative GA which maintains and evaluates
a diverse population of shader variants, returning those representing the best op-
timization tradeoffs. The proposed GA is characterized by tournament selection
(with size 16), one-point crossover and random mutation. To evaluate the accuracy
of this approach, a per-pixel color difference metric is applied between the images
generated using the original shader and the images created using the simplified
offsprings.

Masia et al. [22] applied a GA to determine the reflectance properties of the
material of an object in a given image. The main goal of the paper was not the
acquisition of the parameters of the actual BSDF, but to determine an estima-
tion of the parameters using an image of the object and rendering a virtual scene.
In order to reduce the dimensionality of the problem, the authors assumed that
parameters like e.g., lighting, or the geometry of the object are known. The pa-
rameters of two well-known BRDF models for opaque and translucent materials
are used as chromosomes, and an initial population is created assigning random
values to these parameters. At each iteration, reproduction is applied using one-
point crossover and random mutation. Then, an image is rendered for each of the
chromosomes created in each generation. The fitness is then evaluated calculating
a per-pixel difference between the target image and the rendered image.

4 Methodology

In this paper, we consider a different approach to the application of evolutionary
techniques for the generation of BSDFs. In particular, we apply a GA to evolve the
parameters of a recent computational model for the rendering of layered materials.
From a CG point of view, when several instances of a particular 3D mesh are cre-
ated to populate a large virtual world, usually some PCG approach is considered
in order to introduce variety in the scene and to maintain an adequate level of
interest in the users. Procedural techniques are usually applied in order to modify
to some degree the features of the meshes (e.g., changing dimensions or applying
deformations), to add or remove some details in the setup of a character (e.g., the
set of available weapons), or to create or modify the patterns and colors of the
textures applied on the meshes. In the proposed method, we generate several ver-
sions of a target material, by evolving the parameters of its BSDF. Each generated

6 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

material instance will share the overall physical behaviour of the target one, but
with a moderate (but perceivable) amount of difference. Moreover, we have also
considered how to efficiently integrate our approach in a modern real-time render-
ing pipeline. Our proposal intrinsically separates the evolutionary stage from the
actual rendering: by evolving the parameters of a state-of-the-art computational
model, rather than completely creating a new BSDF, we can apply our GA in any
pre-rendering stage computed on the CPU (e.g., the loading of a level, or during
the procedural generation of the model instances), while we can simply apply the
generated parameters to the adopted rendering method on the GPU.

In this section, we stepwise go through our approach, by describing the BSDF
model we have adopted for our evolutionary approach and the main parts of the
GA: representation, algorithm and fitness function.

4.1 Considered BSDF for layered materials

Layered materials are composed of different layers, each layer offering peculiar
reflectance characteristics. Examples of layered materials are car paint, painted
wood, rusty metal, etc. Computational models for the simulation of layered mate-
rials usually consider separate BRDFs/BSDFs for each layer, and then apply some
kind of blending, or other operations, to simulate, at various degrees of approxi-
mation, the scattering of light between the different layers [2].

Recently, a work by Belcour [5] has proposed a novel framework for the anal-
ysis and computation of light transport within layered materials. The innovative
approach of the method is to analyze the BSDF (and its parameters), assigned to
each layer, and to infer a statistical description of its light scattering characteris-
tics. Using, as target NDF, the GGX distribution [46] described in Eq. (3), a set of
atomic statistical operators is proposed to describe reflection, refraction, volume
scattering and volume absorption starting from the energy, mean, and variance of
the BSDF at each layer. Moreover, the Adding-Doubling method [16] is used to
combine the atomic operators defined in each layer. The method can approximate
multiple light scatterings inside the material considering also the possible presence
of a participating media among the layers. The resulting statistical description,
after the combination of the atomic operators, is used to instantiate a single BSDF
model approximating the complex and multiple light scatterings within the orig-
inal layered structure. Table 1 summarizes the atomic operators proposed by the
Belcour’s method:

– the exponents R and T are used to indicate a reflected or transmitted param-
eter

– FGD refers to a microfacet-based BSDF as described in Eq. (2)
– α is the roughness of the layer
– s is a roughness scaling factor for the trasmission
– η12 is the ratio of the refractive indices
– h is the depth of the layer
– σt is the transmittance cross-section
– σs is the scattering cross-section
– σg accounts for the increase in variance due to the width of the phase function

A detailed analysis of the method and of its parameters is beyond the scope of
this paper. As a consequence, we refer to the original paper [5] for more details.

Procedural Generation of Materials for Real-Time Rendering 7

Table 1: The statistical atomic operators of Belcour’s method [5], used to approx-
imate the outgoing energy e, mean µ, and variance σ given the incident energy ei,
mean µi, and variance σi. As in the original paper, we have omitted the square
on the variance for better readability. We refer to the original paper [5] for more
details.

energy mean variance

Reflection eR = ei × FGD µR = −µi σR = σi + f(α)

Refraction eT = ei × (1− FGD) µT = −η12µi σT = σi
η12

+ f(s× α)

Absorption eT = ei · e
−

σt·h√
1−|µi|

2

µT = −µi σT = σi

Scattering eT = ei · σs·h√
1−|µi|

2
· e

−
σt·h√
1−|µi|

2

µT = −µi σT = σi + σg

4.2 Representation

Belcour’s method represents an excellent candidate for the application of an evolu-
tionary technique for the automatic generation of advanced materials. The method
structure is modular and compact, and it is characterized by a consistent descrip-
tion of its different components, and by a limited and intuitive set of variables.
In [5], the author considers only a top and bottom layer for the implementation of
the method for real-time rendering. In this configuration, the reflectance charac-
teristics of the bottom layer represent an approximated combination of multiple
other scattering phenomena. Moreover, an optional participating media, acting
as the third layer, can be considered between the top and bottom layer. In our
GA, we follow the same approach. As a consequence, the genotype of our GA is
composed of 12 floating point chromosomes:

– η1: refractive index of the top layer
– η2: refractive index of the bottom layer
– α1: roughness of the top layer
– α2: roughness of the bottom layer
– h: the depth of the partecipating media layer between the top and bottom

layers
– σR

s , σG
s , σB

s : scattering cross section values in the R, G and B channels
– σR

a , σG
a , σB

a : absorption values in the R, G and B channels (involved in the
computation of σt in Table 1)

– g: anisotropic factor (involved in the computation of σg in Table 1)

If a layered material has no participating media, then the final appearance is
controlled only by η1, η2, α1, and α2 chromosomes. If a texture is applied to one
of the layers, then the roughness value to apply is extracted from the texture; and

8 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

α1 or α2 are used as weights multiplied to the texel value in order to control the
overall roughness effect.

4.2.1 Empirical analysis of the parameters of Belcour’s method

In [5], the author presents clearly the limits of the method, and the particular
cases which are not adequately simulated. Moreover, the setup for real-time ren-
dering introduces an additional simplification of the scattering phenomena inside
a material. With these premises, we have considered that setting the values of the
chromosomes in our GA without constraints could lead to unpredictable results in
the evolutionary process.

Thus, we have performed an accurate empirical analysis and pre-experimentation
stage on the Belcour’s method. The pre-experimentation was aimed at determin-
ing possible constraints in the value ranges to assign to the different chromosomes
in our GA, given the characteristics of different target materials to simulate. Our
analysis led to the conclusion that there are differences in the possible value ranges,
on the basis of the family of the desired material. We call roughcoat a material
with a smooth bottom layer (a metal or a plastic), covered by a rough top layer
(rust, dirt, Venetian plaster, etc). This kind of material requires a high value of
roughness in the top layer, and a lower one in the bottom. A clearcoat material
is used to simulate materials like e.g., car paint, ceramic, lacquered wood. In this
case, the roughness value of the top layer must be lower than the value of the
bottom layer. Moreover, there are further differences, according to whether the
bottom layer is a conductor (e.g., metal) or a dielectric (e.g., plastic or wood)
material. We have summarized these rules and constraints in Table 2. It can be
noticed how the combination of material family and type of the bottom layer af-
fects the possible range of values of the chromosomes. A particular attention must
be given to the values (and their relative differences) of the refractive indices of
the layers.

4.3 Algorithm

Our proposed GA follows a standard approach. First of all, given a target mate-
rial, an initial population of N individuals of the same material family is created.
The values of the chromosomes of each individual are generated randomly, but
respecting the constraints listed in Table 2. As shown in the experimental evalua-
tion, described in Section 5, an adequate value for N is between 50 and 100. Each
individual is then ranked using a fitness function (described in Section 4.4).

We apply tournament selection with tournament size 4 and p = 1. The choice
of a deterministic tournament leads to the selection of only the best individuals.
However, considering only a limited set of participants in the tournament allows
to maintain a high level of variety in the selected individuals, which is the desired
behaviour of the proposed approach.

Each couple of parents has a 0.9 probability to generate offsprings. We set a
very high probability in order to further enhance the variety of the population. If
the crossover is applied, we apply a uniform crossover. Each chromosome has a
0.25 probability of being swapped among the two parents. With this probability
value, at least one chromosome is almost always swapped, but it is highly unlikely

Procedural Generation of Materials for Real-Time Rendering 9

Table 2: Rules and constraints for the values of the material chromosomes.

Bottom Layer:
conductor

Bottom Layer:
dielectric

Layer with
textured
roughness

roughcoat

α1 ≥ 0.1

α2 < 0.1

1.0 < η1 ≤ 2.0

|η1 − η2| ∈ (0.0, 1.5]a

α1 ≥ 0.1

α2 < 0.01

1.0 < η1 ≤ 2.0

|η1 − η2| ∈ (0.0, 0.5]b

η2 ≥ 1.0

top layer

clearcoat

α1 < 0.1

α2 ≥ 0.1

1.0 < η1 ≤ 2.0

|η1 − η2| ∈ (0.0, 1.5]a

α1 < 0.01

α2 ≥ 0.01

1.0 < η1 ≤ 3.0

|η1 − η2| ∈ (0.0, 3.0]b

η2 ≥ 1.0

bottom layer

roughcoat/
clearcoat

with participating
media

h ∈ [0.05, 40.0]c

σR
s , σG

s , σB
s ∈ [0.0, 1.0]

σR
s , σG

s , σB
s ∈ [0.0, 1.0]

η2 < 1.0d

h ∈ [0.05, 40.0]c

σR
s , σG

s , σB
s ∈ [0.0, 1.0]

σR
s , σG

s , σB
s ∈ [0.0, 1.0]

—

a we set η2 slightly less than η1 to favor the internal reflection, without the dependance
from the attenuation factor of the refractive index.
b we set η2 greater than η1 to favor light transmission for subsurface scattering.
c h ∈ [0.0, 1.0] favors the color given by scattering cross section (with less absorption).
h ∈ [2.0, 40.0] favors the color given by transmission cross section. With h = 40.0: full
light absorption, only the top layer is visible.
d with η2 < 1.0 the effect of the partecipating media on the color is more visible. But
increasing the value of η1, and lowering the value of η2 such as η2 ≪ 1.0, the original
color of the metal progressively disappears.

to have crossover applied to all the chromosomes at the same time. We apply two
steps in the selection of individuals for the crossover operation in order to avoid
issues with offsprings not following the constraints of Table 2. In the first step,
for each individual, we search in the population the first material with refractive
indices suitable to be swapped (i.e., with indices respecting the constraint on
|η1 − η2|). If this individual is found, then a uniform crossover is applied. In the
second step, a matching process is applied sequentially to create couples among
the individuals excluded from the first step. For these couples, we apply uniform
crossover excluding from the process the chromosomes related to the refractive
indices.

The mutation on the generated offsprings can occur with a 0.4 probability. If
activated, each chromosome has a 0.1 probability to mutate. If a chromosome is

10 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

subject to mutation, a new value is created randomly. The new value must follow
the rules and constraints of Table 2.

Considering the goal of the proposed GA, we have set a fixed number of gen-
erations as the termination condition of the evolutionary process.

4.4 Fitness functions

The goal of the proposed evolutionary approach is to generate the parameters for
a new material that shares the physical behaviour of the target one, but with a
perceivable difference. Thus, the fitness function must be chosen in order to mea-
sure in a simple but effective way the distance between the target and generated
genotypes. However, the function must be flexible enough to allow further refine-
ments of the process, allowing adaptation to different situations and applications
(e.g., applying different weights to specific subsets of chromosomes). Thus, we have
decided to consider some well-known vector distances between the target material
and the generated individual:

– the Chebyshev distance

dch(g, tm) = max
i

{|g[i]− tm[i]|} (4)

– the Euclidean distance

deu(g, tm) =

√

∑

i

(g[i]− tm[i])2 (5)

– the Manhattan distance

dma(g, tm) =
∑

i

|g[i]− tm[i]| (6)

where in Eq. (4), (5) and (6) g is an individual, tm is the target material, and
i represents each of the chromosomes.

In Section 5, we present an experimental setup aimed at investigating the effect
of the distances on the final perceptual differences of the generated materials.

5 Experimental evaluation

In order to evaluate the effect of the considered fitness functions in the selection of
the best individuals in the population, we have set up a test scene consisting of a
sphere, illuminated by a single light. We have then selected three target materials:

– validation metal, a clearcoat metal with no texturing. The values for the
chromosomes are η1 = 1.2, η2 = 0.8, α1 = 0.03, α2 = 0.1

– validation painted metal, a roughcoat metal with a roughness texture ap-
plied in the top layer. The values for the chromosomes are η1 = 1.2, η2 =
0.8, α1 = 2.5, α2 = 0.099

Procedural Generation of Materials for Real-Time Rendering 11

– validation metal depth, a clearcoat metal with a participating media be-
tween the top and bottom layers. No roughness texture is considered, but a
texture is used as base color of the sphere. The values for the chromosomes are
η1 = 1.460, η2 = 0.8, α1 = 0.05, α2 = 0.45, h = 1.5, σR

s = 0.1, σG
s = 1.0, σB

s =
0.0, σR

a = 0.0, σG
a = 1.0, σB

a = 1.0, g = 0.8

We have considered two different target materials without the presence of the
participating media, because this feature has a relevant effect on the final color of
the generated material. As a consequence, the variety in the generated individuals
is evidently higher for this class of materials. Without the participating media,
any perceptual difference between the original and generated materials is given
only by the core chromosomes of the top and bottom layers, which represents
a more tricky situation to manage. In any case, due to their characteristics, the
considered target materials represent optimal candidates to test the efficacy of
the evolutionary approach. Figures 1 and 2 show the test scene with the target
materials applied to the sphere.

For all the three target materials, we have generated a set of new materials
using the proposed GA, applying all the considered fitness functions. For each
combination of a target material and applied distance, we have performed 36 runs
of the GA, with a population of 50 individuals, and termination after 5 generations.
Every 9 runs, to introduce a higher variability, we have changed the seed of the
pseudo-random number generator, used in the initialization of the population and
in the mutation step. For each run, we have then selected the material with the
best fitness (i.e., with minimum distance to the target material). Figures 9-17 show
some examples of these generated materials.

We have then applied the CIEDE2000 ∆E∗
00 difference [25] to evaluate the dif-

ferences between the generated and target materials. ∆E∗
00 is a measure proposed

in colorimetry for the perceptual difference among two colors. Its value ranges
from 0 and 100:

– ∆E∗
00 ≤ 1.0: color difference is not perceptible by human eyes

– ∆E∗
00 ∈ [1.0,2.0]: color difference is perceptible through close observation

– ∆E∗
00 ∈ [2.0,10.0]: color difference is perceptible at a glance

– ∆E∗
00 ∈ [10.0,49.0]: colors are more similar than opposite

– ∆E∗
00 ∈ [49.0,100.0]: colors are exact opposite

We have applied ∆E∗
00 between each pixel of the image rendered using the

target material, and the corresponding pixels in each of the images created using
the generated materials parameters. Then, we have calculated the mean ∆E∗

00
value for each image couple, by averaging the ∆E∗

00 values on the single pixels. In
the rendered images, we have set the background of the scene as fully transparent,
in order to calculate the mean ∆E∗

00 only on the colors generated on the sphere.
This is an acceptable choice for a numeric measure, where no perceptual tests with
real observers are considered. When human subjects are involved, the choice of the
background color and/or pattern has been proven to be a delicate choice, because
of the contextual nature of human color perception [38].

In Fig. 3, 4, and 5, we have plotted the mean ∆E∗
00 values. For validation

metal and validation painted metal materials (Fig. 3 and 4), it can be noticed
how the applied parameters (population of 50 individuals, termination after 5 gen-
erations) are able to produce at least half of the materials with evident perceptual

12 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

(a) validation metal (b) validation painted metal

Fig. 1: (a): Test scene with validation metal material applied to the sphere. The
chromosomes of the material are η1 = 1.2, η2 = 0.8, α1 = 0.03, α2 = 0.1.
(b): Test scene with validation painted metal material applied to the sphere.
The chromosomes of the material are η1 = 1.2, η2 = 0.8, α1 = 2.5, α2 = 0.099.
In this case, α1 is used as a weight to be multiplied to the texel value from the
roughness texture.

(a) (b)

Fig. 2: (a): Test scene with validation metal depth material applied to the
sphere . The values for the chromosomes are η1 = 1.460, η2 = 0.8, α1 = 0.05, α2 =
0.45, h = 1.5, σR

s = 0.1, σG
s = 1.0, σB

s = 0.0, σR
a = 0.0, σG

a = 1.0, σB
a = 1.0, g = 0.8.

(b): The texture used as base color of the sphere in (a). In the validation metal

depth material, no roughness texture is considered.

differences with the target one, and an adequate number of materials with more
subtle differences. This is in line with the intended behaviour: the generation of
new materials with an adequate resemblance with the reference, but presenting
perceptual differences ranging from low to moderate. With the same parameters,
the results obtained for the validation metal depth material (Fig. 5) are differ-
ent. We still have approximately half of the generated materials with an average
level of perceptual differences, but, in this case, the remaining individuals are more
evidently different than the target material. This is due to the absorption and scat-
tering of the participating media, which have a relevant role in the determination
of the final color of the object. Comparing the considered fitness functions, we can

Procedural Generation of Materials for Real-Time Rendering 13

Fig. 3: Comparison of the mean ∆E∗
00 values using the three distance functions,

between the test scene rendered with validation metal and the images with the
generated materials, increasing the population size and the number of generations.

conclude that, with the initial parameters, the Chebyshev distance tends to gener-
ate more individuals centered in the middle range of the ∆E∗

00 values. Using the
Euclidean and Manhattan distances, we obtain more individuals close to the target
one, in case of validation metal and validation painted metal. Interestingly,
we observe the opposite behaviour for the validation metal depth material.

In Fig. 3, 4, and 5, we also show the resulting mean ∆E∗
00 values repeating the

whole experimental setup with increasing values of population size and number
of generations. For the validation metal and validation painted metal mate-
rials, the plots confirm that the generations using the Euclidean and Manhattan
distances as fitness functions converge faster to materials perceptually undistin-
guishable from the original, while the Chebyshev distance generates more individ-
uals with an average level of difference. In any case, with a population larger than
100 individuals and with a number of generations higher than 10, the evolutionary
approach generates mainly materials identical to these two references, which is not
the desired result. Again, we notice a different trend in the case of the validation

metal depth target material. With a population of 300 individuals, and termina-
tion after 20 generations (Fig. 5), we notice how most of the generated individuals
have an average value of ∆E∗

00. However, in this case the Chebyshev distance
seems to perform slightly worse than the other ones. In Fig. 6, we show the result-
ing mean ∆E∗

00 values for validation metal depth, setting an initial population

14 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

Fig. 4: Comparison of the mean ∆E∗
00 values using the three distance functions,

between the test scene rendered with validation painted metal and the images
with the generated materials, increasing the population size and the number of
generations.

of 500 individuals and termination after 50 generations. The plot is very similar to
the results obtained with the other two target materials, but with parameters 10
times smaller: in this case the Chebyshev distance is more equilibrate, while, with
the Euclidean and Manhattan distances, the generated materials are too similar
to the target ones.

To better understand the perceptual differences of the materials created by
the proposed evolutionary approach, we show in Fig. 9-17 some representatives
of the generated materials with different levels of ∆E∗

00 values, for each target
material and for each considered fitness function. We show also a probability map
generated by the HDR-VDP-2 visual metric [21]. HDR-VDP-2 compares a refer-
ence and a test image, and predicts what is the probability that the differences
between the images are visible for an average observer. Thus, each image in the
bottom row of Fig. 9-17 represents a per-pixel measure of the perceptual difference
between the target materials and the materials generated by the proposed GA.
The colors used in the probability maps range from red (high probability) to green
(low probability). Even if we have set a transparent background in our rendered
images, HDR-VDP-2 performs its evaluation on all the pixels given in input. As
a consequence, the probability maps present a color code also in each pixel of the
backgrounds. These values are not significative due to the absence of an actual

Procedural Generation of Materials for Real-Time Rendering 15

Fig. 5: Comparison of the mean ∆E∗
00 values using the three distance functions,

between the test scene rendered with validation metal depth and the images
with the generated materials, increasing the population size and the number of
generations.

color in the input images and, as a consequence, they must not be considered in
the visual evaluation of the differences.

6 Implementation details and performance

The presented approach is well suited to be integrated into a real-time rendering
pipeline: in fact, the GA is executed separately from the rendering stage, and
it provides the final parameters to be applied to the Belcour’s method [5] for
the rendering of the final layered material. As a consequence, the evolutionary
method can be executed in any stage computed on the CPU prior to the final
rendering on GPU. For example, it can be executed during the loading of the
meshes of a scene, or it can be integrated into the PCG stage for the generation
of several instances of a model. To test our approach, we have developed a simple
C++ application based on the recent Vulkan API [45] for real-time rendering.
The application exploits a deferred rendering approach [2] for a computationally
efficient rendering of complex scenes. The application reads from an external text
file:

– the name of the models’ files to load

16 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

Fig. 6: Comparison of the mean ∆E∗
00 values for the test scene rendered with

validation metal depth and the images with the generated materials, with pop-
ulation size 500 and the 50 generations. In this case, the number of materials with
less perceivable differences is in line with the results of the other two test materials,
but with higher values of the GA parameters.

– the values of population size for the GA
– the number of generations to use as termination
– the chosen fitness function

For testing purposes, a limited number of predefined scene configurations (i.e.,
a fixed number of instances, with predefined positions in the scene) have been
considered. The application, after loading the initial parameters and the meshes
from disk, performs the GA on the CPU. Then, the generated parameters are
passed as uniform variables to a shader computing the Belcour’s method on the
GPU. The shader for the Vulkan API has been implemented using the information
from the Belcour’s paper [5] and the provided supplemental material. Figures 7
and 8 show two configurations of the considered test scene for the performance
analysis.

On an Intel Quad-Core i7-6700HQ machine with 8 GB DDR4 RAM, equipped
with an NVIDIA GeForce GTX 970M with 3GB GDDR5 VRAM, the GA took
around 30 ms to generate a material using a population of 100 individuals and 10
generations. The required computational time is dependent on the number of in-
dividuals and generations. Since the rendering stage uses parameters generated by
the GA without any further computation, the detected performances of the shader
implementing the Belcour’s method, during real-time rendering and navigation in
the test scenes, are in line with the one stated in the original paper.

7 Conclusion and future work

In this paper, we have shown how a Genetic Algorithm (GA) can be applied effi-
ciently to evolve the parameters of a BSDF in order to generate different versions
of a target material presenting a moderate amount of perceptual differences. Some
results of the proposed approach can be seen in Fig. 7 and 8.

Procedural Generation of Materials for Real-Time Rendering 17

Fig. 7: Different versions of roughcoat and clearcoat materials generated with the
proposed approach and applied to instances of the same model.

The proposed approach is based on a very limited and intuitive set of pa-
rameters, whose effect and contribution to the final generation is consistent. By
changing the number of individuals and the number of generations of the GA,
we can change the amount of perceptual differences in the generated materials.
The computational time needed to generate a new material is adequate for a real-
time rendering application, even if some trade-off must be considered for complex
materials characterized by the presence of participating media. These cases may
require higher values (and, as a consequence, longer computational times) of the
GA parameters to set the desired level of perceptual difference in the generated
results. In the evaluation of the proposed GA, we have seen how the choice of
the fitness function leads to different behaviours in the overall GA computation.
However, this can be seen as an additional control parameter for the final user,

18 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

Fig. 8: Different versions of roughcoat and clearcoat materials generated with the
proposed approach and applied to instances of the same model.

who can decide about the generation of materials more or less close to the target
one, by selecting a different distance function.

Other methods may be considered for a random generation of instances of a
target material, like e.g., using a simple random perturbation of the BSDF pa-
rameters. However, this kind of approaches may generate a higher number of un-
wanted/inadequate samples during the generation process, requiring thus longer
time to converge to the desired result. Moreover, it could be difficult, if not im-
possible, to have control of the final desired amount of perceptual differences to
introduce in the generated materials.

In future research, we will consider the effect of other distance functions and we
will test the effects of different weights applied to the chromosomes in the fitness
functions. This will allow a final user to select the more relevant features to be
considered in the selection of the best individuals.

Procedural Generation of Materials for Real-Time Rendering 19

Fig. 9: A subset of the generated materials (population: 50, generations: 5), with
target material validation metal and Chebyshev distance, and the probability
maps generated by HDR-VDP-2 visual metric.

Fig. 10: A subset of the generated materials (population: 50, generations: 5), with
target material validation metal and Euclidean distance, and the probability
maps generated by HDR-VDP-2 visual metric.

Fig. 11: A subset of the generated materials (population: 50, generations: 5), with
target material validation metal and Manhattan distance, and the probability
maps generated by HDR-VDP-2 visual metric.

20 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

Fig. 12: A subset of the generated materials (population: 50, generations: 5), with
target material validation painted metal and Chebyshev distance, and the prob-
ability maps generated by HDR-VDP-2 visual metric.

Fig. 13: A subset of the generated materials (population: 50, generations: 5), with
target material validation painted metal and Euclidean distance, and the prob-
ability maps generated by HDR-VDP-2 visual metric.

Fig. 14: A subset of the generated materials (population: 50, generations: 5), with
target material validation painted metal and Manhattan distance, and the
probability maps generated by HDR-VDP-2 visual metric.

Procedural Generation of Materials for Real-Time Rendering 21

Fig. 15: A subset of the generated materials (population: 50, generations: 5), with
target material validation metal depth and Chebyshev distance, and the prob-
ability maps generated by HDR-VDP-2 visual metric.

Fig. 16: A subset of the generated materials (population: 50, generations: 5), with
target material validation metal depth and Euclidean distance, and the prob-
ability maps generated by HDR-VDP-2 visual metric.

Fig. 17: A subset of the generated materials (population: 50, generations: 5), with
target material validation metal depth and Manhattan distance, and the prob-
ability maps generated by HDR-VDP-2 visual metric.

22 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

References

1. Agliata, F., Bertoli, M., Ripamonti, L.A., Maggiorini, D., Gadia, D.: Adding variety in
NPCS behaviour using emotional states and genetic algorithms: The Genie project. In:
Proceedings of GAME-ON Conference on Games 2019, pp. 45–50 (2019)

2. Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., Hillaire, S.: Real-
Time Rendering 4th Edition. A K Peters/CRC Press (2018)

3. Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Automatic computer game balanc-
ing: A reinforcement learning approach. In: Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05, pp. 1111–1112.
ACM, New York, NY, USA (2005)

4. Baldwin, A., Dahlskog, S., Font, J.M., Holmberg, J.: Mixed-initiative procedural genera-
tion of dungeons using game design patterns. In: 2017 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 25–32 (2017)

5. Belcour, L.: Efficient rendering of layered materials using an atomic decomposition with
statistical operators. ACM Trans on Graph 37(4), 1 (2018)

6. Bernardi, A., Gadia, D., Maggiorini, D., Ripamonti, L.A.: Using a genetic algorithm for
the procedural generation of layered materials for real-time rendering. In: Proceedings of
GAME-ON Conference on Games 2019, pp. 29–36 (2019)

7. Botta, M., Gautieri, V., Loiacono, D., Lanzi, P.L.: Evolving the optimal racing line in
a high-end racing game. In: 2012 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 108–115 (2012)

8. Brady, A., Lawrence, J., Peers, P., Weimer, W.: genBRDF: Discovering new analytic
BRDFs with Genetic Programming. ACM Trans. Graph. 33(4), 114:1–114:11 (2014)

9. de Carvalho, L.F.B.S., Neto, H.C.S., Lopes, R.V.V., Paraguaçu, F.: An application of
genetic algorithm based on abstract data type for the problem of generation of scenarios
for electronic games. In: 2010 IEEE International Conference on Intelligent Computing
and Intelligent Systems, vol. 2, pp. 526–530 (2010)

10. Chen, G., Esch, G., Wonka, P., Müller, P., Zhang, E.: Interactive procedural street mod-
eling. ACM Trans. Graph. 27(3), 103:1–103:10 (2008)

11. Compton, K., Mateas, M.: Procedural level design for platform games. In: Proceedings of
the Second AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, AIIDE’06, pp. 109–111. AAAI Press (2006)

12. De Francesco, A., Ripamonti, L.A., Gadia, D., Maggiorini, D.: A.T.L.A.S.: Automatic
Terrain and Labels Assembling Software. In: Proceedings of the 3rd Workshop on Games-
Human Interaction (GHItaly19), no. 2480 in CEUR Workshop Proceedings (2019)

13. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texturing & Modeling:
a procedural approach. Morgan Kaufmann (2003)

14. Frade, M., de Vega, F.F., Cotta, C.: Automatic evolution of programs for procedural
generation of terrains for video games. Soft Computing 16(11), 1893–1914 (2012)

15. Galactic Arms Race homepage: (2019). http://galacticarmsrace.blogspot.it
16. Grant, I.P., Hunt, G.E., Flowers, B.H.: Discrete space theory of radiative transfer I. Fun-

damentals. Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences 313(1513), 183–197 (1969). DOI 10.1098/rspa.1969.0187

17. Guarneri, A., Maggiorini, D., Ripamonti, L.A., Trubian, M.: GOLEM: Generator of life
embedded into MMOs. In: Proceedings of the Twelfth European Conference on the Syn-
thesis and Simulation of Living Systems: Advances in Artificial Life, ECAL, pp. 585–592
(2013)

18. Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the Galactic
Arms Race video game. IEEE Transactions on Computational Intelligence and AI in
Games 1(4), 245–263 (2009)

19. Krecklau, L., Kobbelt, L.: Procedural modeling of interconnected structures. Computer
Graphics Forum 30(2), 335–344 (2011). DOI 10.1111/j.1467-8659.2011.01864.x

20. Lee, S., Jung, K.: Dynamic game level design using gaussian mixture model. In: PRICAI
2006: Trends in Artificial Intelligence, pp. 955–959. Springer (2006)

21. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual
metric for visibility and quality predictions in all luminance conditions. In: ACM Trans-
actions on graphics (TOG), vol. 30, p. 40. ACM (2011)

22. Masia, B., Munoz, A., Tolosa, A., Anson, O., Lopez-Moreno, J., Jimenez, J., Gutierrez,
D.: Genetic algorithms for estimation of reflectance parameters. In: Proceedings of the
2009 Spring Conference on Computer Graphics (SCCG09) (2009)

Procedural Generation of Materials for Real-Time Rendering 23

23. Mazza, C., Ripamonti, L.A., Maggiorini, D., Gadia, D.: FUN PLEdGE 2.0: A FUNny
Platformers LEvels GEnerator (rhythm based). In: Proceedings of the 12th Biannual
Conference on Italian SIGCHI Chapter (CHItaly ’17), pp. 22:1–22:9. ACM (2017)

24. Missura, O., Gärtner, T.: Player modeling for intelligent difficulty adjustment. In: Dis-
covery Science: 12th International Conference, pp. 197–211. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

25. Mokrzycki, W., Tatol, M.: Colour difference Delta E - a survey. Machine Graphics and
Vision 20(4), 383–411 (2011)

26. Mora, A.M., Montoya, R., Merelo, J.J., Sánchez, P.G., Castillo, P.Á., Laredo, J.L.J.,
Mart́ınez, A.I., Espacia, A.: Evolving bot AI in Unreal™. In: Applications of Evolution-
ary Computation: EvoApplicatons 2010, pp. 171–180. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

27. Mora, A.M., Moreno, M.A., Merelo, J.J., Castillo, P.A., Arenas, M.G., Laredo, J.L.J.:
Evolving the cooperative behaviour in Unreal™ bots. In: Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, pp. 241–248 (2010)

28. Mourato, F., dos Santos, M.P., Birra, F.: Automatic level generation for platform
videogames using genetic algorithms. In: Proceedings of the 8th International Confer-
ence on Advances in Computer Entertainment Technology, ACE ’11, pp. 8:1–8:8. ACM
(2011)

29. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of
buildings. ACM Trans. Graph. 25(3), 614–623 (2006)

30. Norton, D., Ripamonti, L.A., Ornaghi, M., Gadia, D., Maggiorini, D.: Monsters of Darwin:
A strategic game based on artificial intelligence and genetic algorithms. In: Proceedings
of the 1st Workshop on Games-Human Interaction (GHItaly 2017), no. 1956 in CEUR
Workshop Proceedings (2017)

31. Parish, Y.I.H., Müller, P.: Procedural modeling of cities. In: Proceedings of SIG-
GRAPH’01, pp. 301–308. ACM (2001)

32. Pea, J.M., Viedma, J., Muelas, S., LaTorre, A., Pea, L.: Designer-driven 3d buildings gen-
erated using variable neighborhood search. In: 2014 IEEE Conference on Computational
Intelligence and Games, pp. 1–8 (2014)

33. Pharr, M., Wenzel, J., Humphreys, G.: Physically Based Rendering: From Theory to Im-
plementation 3th Edition. Morgan Kaufmann (2016)

34. Piergigli, D., Ripamonti, L.A., Maggiorini, D., Gadia, D.: Deep reinforcement learning to
train agents in a multiplayer first person shooter: some preliminary results. In: Proceedings
of IEEE Conference on Games (CoG) 2019, pp. 1–8 (2019)

35. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. electronic version
(2004)

36. Ripamonti, L.A., Gratani, S., Maggiorini, D., Gadia, D., Bujari, A.: Believable group
behaviours for NPCs in FPS games. In: Proceedings of IEEE Digital Entertainment,
Networked Virtual Environments, and Creative Technology Workshop (DENVECT 2017)
(2017)

37. Ripamonti, L.A., Mannalà, M., Gadia, D., Maggiorini, D.: Procedural content generation
for platformers: designing and testing FUN PLEdGE. Multimedia Tools and Applications
76(4), 5001–5050 (2017)

38. Rizzi, A., Bonanomi, C., Gadia, D., Riopi, G.: YACCD2: yet another color constancy
database updated. In: Color Imaging XVIII: Displaying, Processing, Hardcopy, and Appli-
cations, Proc. of IS&T/SPIE’s Symposium on Electronic Imaging, pp. 86520A–86520A–10.
SPIE (2013)

39. Scalabrin, M., Ripamonti, L.A., Maggiorini, D., Gadia, D.: Stereoscopy-based procedural
generation of virtual environments. In: Proceedings of IS&T’s Stereoscopic Displays and
Applications XXVII (28th Symposium on Electronic Imaging : Science and Technology),
5, pp. 1–7 (2016)

40. Schwarz, M., Müller, P.: Advanced procedural modeling of architecture. ACM Trans.
Graph. 34(4), 107:1–107:12 (2015)

41. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games: A Text-
book and an Overview of Current Research. Springer (2016)

42. Sitthi-Amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for shader
simplification. ACM Trans. Graph. 30(6), 152:1–152:12 (2011)

43. Snodgrass, S., Ontan, S.: Procedural level generation using multi-layer level representations
with mdmcs. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG),
pp. 280–287 (2017)

24 A. Bernardi, D. Gadia, D. Maggiorini, C. E. Palazzi, L. A. Ripamonti

44. Togelius, J., Nardi, R.D., Lucas, S.M.: Towards automatic personalised content creation
in racing games. In: Proceedings of the IEEE Symposium on Computational Intelligence
and Games (2007)

45. Vulkan API homepage: (2019). https://www.khronos.org/vulkan/
46. Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction

through rough surfaces. In: Proceedings of the 18th Eurographics Conference on Ren-
dering Techniques, EGSR’07, pp. 195–206 (2007)

47. Weber, J., Penn, J.: Creation and rendering of realistic trees. In: Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,
pp. 119–128. ACM (1995)

48. Yannakakis, G.N., Hallam, J.: Real-time game adaptation for optimizing player satisfac-
tion. IEEE Trans. Comput. Intellig. and AI in Games 1(2), 121–133 (2009)

