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ABSTRACT
We show in a joint experimental and theoretical study that ultrafast femto-second (fs) electronic coherences can be characterized in semi-
conducting colloidal quantum dot (QD) assemblies at room temperature. The dynamics of the electronic response of ensembles of CdSe
QDs in the solution and of QD dimers in the solid state is probed by a sequence of 3 fs laser pulses as in two-dimensional (2D) electronic
spectroscopy. The quantum dynamics is computed using an excitonic model Hamiltonian based on the effective mass approximation. The
Hamiltonian includes the Coulomb, spin–orbit, and crystal field interactions that give rise to the fine structure splittings. In the dimers
studied, the interdot distance is sufficiently small to allow for an efficient interdot coupling and delocalization of the excitons over the two
QDs of the dimer. To account for the inherent few percent size dispersion of colloidal QDs, the optical response is modeled by averaging over
an ensemble of 2000 dimers. The size dispersion is responsible for an inhomogeneous broadening that limits the lifetimes of the excitonic
coherences that can be probed to about 150 fs–200 fs. Simulations and experimental measurements in the solid state and in the solution
demonstrate that during that time scale, a very rich electronic coherent dynamics takes place that involves several types of intradot and
interdot (in the case of dimers) coherences. These electronic coherences exhibit a wide range of beating periods and provide a versatile basis
for a quantum information processing device on a fs time scale at room temperature.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031420., s

I. INTRODUCTION

Small nanometric semi-conducting colloidal quantum dots
(QD’s) can be assembled into solid state devices that operate at room
temperature. In these materials, the confinement effect arising from
the nanosize of the dots leads to discrete excitonic levels when the
Bohr radius of the exciton is larger than the QD size.1,2 Colloidal syn-
thesis methods provide a low size dispersion, with the variance of the
size distributions of the order of a few percent. The control of exci-
tonic transition energies with the QD size has been exploited since
the early days of nanotechnologies.3,4 The size control, coupled with
the control made possible by the capping ligands, has led to a wide

variety of applications, ranging from solar cells and photovoltaics
to photonics, nonlinear optics, and lasers.5–9 QD assemblies are also
attractive for information processing applications. Earlier propos-
als were based on spin coupled epitaxially grown QDs.10,11 Further
progress in quantum technologies, i.e., in sensing and information
processing, requires the manipulation of coherences between quan-
tum states, preferably at room temperature. Colloidal QD assemblies
are promising materials also in this context.12–14 Recent experimen-
tal studies of CdSe QDs in solution and films using two-dimensional
electronic (2DES) and fs pump–probe transient absorption spectro-
scopies have successfully probed fast fs inter-excitonic coherences
as well as the ps time scale coherent beating of the LO phonon
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mode.15–21 Several dephasing mechanisms, i.e., ensemble size and
capping disorder, geometry fluctuations, trap states, relaxation to the
phonon modes and to biexciton states and interaction with the envi-
ronment, contribute to making the electronic coherence short lived,
with typical lifetimes shorter than 100 fs.15,20,22–29

In CdSe QDs, the spin–orbit (SO) interactions between the
orbital angular momentum of the hole p state (localized on Se)
and the spin of the electron split the degeneracies of the exciton.
Together with the weaker crystal field and exchange interactions, the
SO interactions lead to fine structure bands.30–35 We have recently
reported on inter-excitonic fs coherences in ensembles of isolated,
small (2.5 nm–4.5 nm) colloidal size-dispersed CdSe QDs36 and of
QD dimers.37 Here, we focus on the modeling of the 2D frequency
maps that are measured in 2D electronic spectroscopy (2DES). We
show that the fine structure bands together with inhomogeneous
broadening arising from size dispersion at the level of the ensem-
ble38 play an essential role in shaping the specific unusual features of
the fast beating fs inter-excitonic coherences that are experimentally
observed in the 2D response of CdSe QDs.

In Sec. II, we provide a brief outline of the model that we use to
describe the excitonic level structure of ensembles of size dispersed
isolated QDs and QD dimers with a mean diameter in the range
2.5 nm and 4.5 nm. We use a semi-empirical model based on the
k ⋅ p-effective mass approximation39 and include the effect of spin–
orbit coupling and crystal field splittings30,31,40,41 to get a basis of
exciton states for isolated QDs and dimers of QDs (Secs. II A and
II B). More details can be found in Refs. 36–38 and 42 and in the
supplementary material. This level of description of the electronic
structure, while approximate, allows taking into account the role of
fine structure states and of size dispersion on the electronic optical
response of ensembles of thousands of QDs and QD dimers during
the first dozens of fs of the dynamics, before the onset of significant
coupling to phonon modes (Sec. II C). In Sec. II D, we summa-
rize our approach based on the nonlinear response function to weak
pulses in the impulsive limit43–46 to compute the 2D maps as probed
by a sequence of 3 fs laser pulses. Section III provides a comparison
and a characterization of the computed and experimental responses
and a discussion.

II. MODELING OF THE 2D MAPS
A. Fine structure levels in isolated QDs

We model the electronic structure of an isolated CdSe QD in
the strong confinement limit using the k ⋅ p-effective mass model
(EMA) approximation39 to get the zero order energies and wave
functions of the exciton hole–electron pairs. The diameter D of
each CdSe QD in the ensemble is drawn from a Gaussian dis-
tribution with a mean value, D̄, and standard deviation σ: P(D)
= (1/σ

√
2π) exp(−(D − D̄)2/2σ2). In all simulations reported

below, the standard deviation, σ, corresponds to 5% of the mean
diameter. We assume a spherical confinement potential for the elec-
trons and the holes, with finite depth, V0,e/h, which is size-dependent
through the empirical relations, taken from Ref. 47: V0e(D) = 3.49
+ 2.47(D)−1.32 for the electron and V0h(D) = 5.23 + 0.74(D)−0.95 for
the hole. The one particle Hamiltonian for the hole and the electron
envelope states used to build the excitons, therefore, depends on the

QD diameter D,

HD,e/hϕ
e/h
D,i (r) =

⎛
⎝
− h̵2

2m∗e/h
∇2 + VD,e/h(r)

⎞
⎠
ϕe/hD,i (r) = E

e/h
D,i ϕ

e/h
D,i (r).

(1)

In Eq. (1), i stands for the index of the hole or the electron wave
function. The values of the effective mass for the hole and the elec-
tron are m∗e = 0.13 and m∗h = 0.82.47 The mass of the electron and
the hole outside the well is set to 1. To build the exciton basis, we
use a minimal basis and retain two hole states and one electron state
on each QD. This leads to two excitons per dot whose zero order
energies are given by

Em(D) = Eh
D,i + Ee

D,j + Egap, (2)

where i = 1, 2 and j = 1. Egap is the bandgap of bulk CdSe (=1.75 eV).
The m = 1 exciton corresponds to the 1S (i = 1) state for the
hole envelope wave function and a 1S state for the electron one,
ψD,1(rh, re) = ϕhD,1S(rh)ϕeD,1S(re). We label it as the 1S exciton in
what follows. m = 2 corresponds to the 2S state (i = 2) for the hole
and the 1S state for the electron, ψD,2(rh, re) = ϕhD,2S(rh)ϕeD,1S(re).
It is labeled the 2S exciton. In both excitons, the electron is in a
1S state. The excitons correspond to singly excited electronic con-
figurations. We obtain three singlets and nine triplets excitons per
band for the basis that we use. In CdSe QDs, the 1S and 2S hole
states are localized on p (l = 1) orbitals of the Se atoms and the elec-
tron state on the s (l = 0) orbitals of Cd.30,33,40,41,48 In Se, there is
a strong spin–orbit coupling between the orbital angular momen-
tum of the p orbital of the hole and its spin, leading to a splitting of
the 1S and 2S hole states into two total angular momentum states,
L = 3/2 and L = 1/2. In the exciton, the angular momentum of
the hole state is combined with that of the 1S electron (=1/2) to
lead to a total angular momentum F, which can take the values
F = 1 and 2 for the L = 3/2 hole states and F = 0 and 1 for the
L = 1/2 ones. In CdSe QDs, the SO interaction, therefore, splits
the two excitons 1S and 2S into four bands of degenerate fine
structure exciton states that are labeled as follows: the 1S3/2 and
2S3/2 bands are each made of eight degenerate levels (five pro-
jection states with Fz = ±2, ±1, 0 for F = 2 and three projec-
tion states with Fz = ±1, 0 for F = 1). The 1S1/2 and 2S1/2 bands
are each made of four degenerate levels [three projection states,
Fz = ±1, 0, for the F = 1 states and 1 (Fz = 0) for F = 0]. These
degenerate states are further split by the crystal field and Coulomb
interactions, which lead to a band of 24 fine structure states in total
per dot. The eight states of the 1S3/2 and 2S3/2 bands split into two
sub-bands of five states for which the Fz = ±2 and 0 states are dark
and a sub-band of three states that are bright. The four states of the
1S1/2 and 2S1/2 bands are bright. We, therefore, obtain four bands of
fine structure (FS) states: 1S3/2, 1S1/2, 2S3/2, and 2S1/2.

Among all interactions, the SO one is by far the largest. We fit-
ted a value of 0.22 eV from experimental data36 for the range of small
QD sizes (diameters from 2.5 nm to 4.5 nm) considered here. This
value is smaller than the one reported for the bulk value (≈0.4 eV33)
as expected on the basis of scaling of the SO coupling with the num-
ber of atoms. In the 2.5 nm–4.5 nm size range, the value of the SO
coupling is, therefore, of the order of the 1S–2S gap, ΔE1S–2S, whose
magnitude is governed by the QD size, Eq. (2). This leads to a dif-
ferent ordering of the two middle FS bands, 2S3/2 and 1S1/2, of the
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four excitonic bands as a function of the QD diameter. For mean
diameter values, D̄ < ≈3.2 nm, the SO splitting of the bands, ΔESO,
is smaller than ΔE1S–2S, which leads to the order 1S3/2, 1S1/2, 2S3/2,
2S1/2 for the FS bands, as shown in Fig. S1(A) of the supplemen-
tary material. When D̄ > 3.2 nm, we are in the opposite regime,
ΔESO >ΔE1S–2S, which leads to the order 1S3/2, 2S3/2, 1S1/2, 2S1/2 [sup-
plementary material, Fig. S1(B)]. Because of the size dispersion, the
two middle bands are overlapping and typically cannot be resolved
in a UV/VIS absorption spectrum. The two limiting cases can, nev-
ertheless, be identified by the analysis of the 2D maps obtained by
2DES,36 as we discuss in detail in Sec. III. The four excitonic FS
bands are further split by the crystal field and Coulomb interac-
tions. The value of the crystal field splitting, δxf , is taken to be size
independent and equal to 0.025 eV.33

There are two kinds of Coulomb interactions, the J (Coulomb)
and K (exchange) integrals. Singlet excitons are coupled by both
J and K, Jmm′ and Kmm′ , while triplets are only coupled by the
exchange integrals, Kmm′ , where m and m′ are exciton labels. The
J and K integrals are size-dependent through Eq. (1). In isolated
QDs, the Coulomb integrals can have an intraband (within the 1S or

2S bands) or interband (between excitons of the 1S and 2S bands)
character. In dimers, they can also have an interdot character, as
discussed in Sec. II B. The J and K integrals are computed numeri-
cally as described in Ref. 42; see also the supplementary material. In
summary, the excitonic Hamiltonian is of the form

Ĥeh(r, r′) = Ĥe(r) + Ĥh(r′) + V̂Coulomb(∣r − r′∣) + V̂SO + δxf + Egap,

(3)

where we have dropped the size dependence and δxf stands for the
crystal field splittings. The structure of the 24 × 24 excitonic Hamil-
tonian matrix for a single dot is given in Fig. 1(b). Upon diagonal-
ization of the Hamiltonian matrix for a single QD, we obtain a set of
24 FS eigenstates per QD.

The transition dipoles to the zero order singlet excitons, m,
from the ground state (GS) are computed numerically as a function
of the dot diameter, D,

μDGSm = ∫ drϕhDi(r)rϕeDj(r). (4)

FIG. 1. (a) Schematic representation of the QD dimer. The two QDs are covalently linked by a propanedithiol ligand, which leads to a surface to surface distance of 0.55 nm.
The two QDs are drawn from an ensemble of mean diameter D̄ = 2.8 nm for the S-QD dimer and 3.5 nm for the B-QD dimer. The ligand length and diameter of the QDs are
not on scale. (b) Structure of the fine structure 24 × 24 exciton Hamiltonian matrix for a single QD. Only diagonal and interband Coulomb interactions between excitons of
the same nature are retained. The diagonal intraband Coulomb matrix elements are not shown. The off diagonal 1S–2S interband intradot Coulomb coupling is marked as a
red line; see the supplementary material for more details. (c) Block structure of the 48 × 48 exciton Hamiltonian matrix for a dimer. A and B are the two dot labels. V1S–2S

intra is
the intradot interband 1S–2S Coulomb coupling, and V1S–2S

inter is the interdot one. (d) Scheme of the energetic order of the eigen-exciton bands for the S-QD dimers. The order
of the bands is 1SL

3/2, 1SH
3/2, 1SL

1/2, 2SH
1/2, 2SL

3/2, 1SH
3/2, 2SL

1/2, 2SH
1/2. (e) Scheme of the energetic order of the eigen-exciton bands for the B-QD dimers. The order of the

bands is 1SL
3/2, 1SH

3/2, 1SL
1/2, 2SL

3/2, 2SH
3/2, 1SH

1/2, 2SL
1/2, 2SH

1/2.
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Upon diagonalization of the matrix Hamiltonian [see Figs. 1(b) and
S1(D)], the GS-exciton oscillator strengths are redistributed over the
F = ±1 and F = 0 exciton manifolds that are optically allowed. In the
size range considered, the transition dipoles to 1S excitons are found
to be about two times larger than those to the 2S excitons.36,42,49

B. Fine structure levels of the QD dimers
When the distance between two QDs is short enough, they

can interact through the Coulomb potential and form stable QD
dimers. We report in Sec. III on experimental 2DES measure-
ments on ensembles of QD dimers, obtained by linking with
a short propanedithiol ligand two QDs with the same mean
size; see Fig. 1(a). Two sizes were considered, D̄ = 2.8 nm and
D̄ = 3.5 nm with 5% dispersion. The case of dimers made of two QDs
picked from ensembles of the same mean size is particularly inter-
esting because optimal interdot electronic Coulomb coupling can be
achieved.37 The reason is that each dimer is made of two similar but
not quite identical dots. Since the QDs have similar sizes, the effec-
tive interdot Coulomb coupling, Veff = VCoul

inter–mm′/δEmm′ , between
quasi degenerate eigen-excitons m and m′ localized on each of the
dots, can be larger than unity: the J and K C integrals [Eqs. (S4)
and (S5) of the supplementary material] at the numerator are large
because the small interdot distance (a surface to surface distance
of 0.55 nm) ensures a good overlap between the hole and electron
wave functions, and the energy difference between quasi degenerate
eigenstates, δEmm′ , is small.

We model the electronic structure of these QD dimers by draw-
ing 2000 pairs of QDs from a Gaussian ensemble with mean diam-
eter D̄ and a size dispersion of 5% and setting the surface to surface
distance to the nominal length of the propanedithiol ligand, 0.55 nm.
For each dimer, we build an excitonic Hamiltonian where the 24 FS
eigenstates on each QD are coupled by interdot Coulomb interac-
tions. We, therefore, only retain local excitons in the basis set used
to model the electronic structure of the dimer and neglect the charge
transfer (CT) excitons, excitons in which the hole state is localized
on one dot and the electron state on the other one. Coulomb inter-
actions between local excitons and CT excitons are at least an order
of magnitude smaller than the Coulomb interaction between local
excitons.42 In addition, in dimers built from two QDs drawn from
an ensemble of QDs of the same mean size, the energy differences
between the states of CT and local exciton bands are larger than
those between degenerate bands of local excitons. The effective local-
CT exciton coupling is, therefore, very weak. As a result, there is very
little mixing between the two groups of excitons in the dimer, and
the CT states are essentially dark to optical excitation. The Coulomb
coupling between CT excitons is even smaller, two or three orders
of magnitude smaller than between CT and local excitons.42 Hence,
CT states do not play any significant role in the ultrafast dynamics
that occurs within 100 fs–150 fs after the excitation. In heterodimers
for which the sizes of the two QDs can be engineered so that a band
of local excitons is overlapping in energy with a band of CT dimer
states, the effective coupling between the local and CT states can be
larger, but the time scale for the population transfer between the zero
order local and CT dimer states remains in the ps time range.42 Such
a coupling between the local (spatially direct) and CT (spatially indi-
rect) excitons has been experimentally observed for GaAs/AlGaAs

asymmetric double quantum well samples in which the coupling is
phonon assisted.50,51

We also neglect the biexciton manifold in the zero order basis
set. Assuming that the laser pulse is weak enough to induce only one
photon transitions, in the 2DES experimental setup, the biexciton
(doubly excited configurations) states can only be accessed by one
photon transitions from the exciton (singly excited) states during
the third pulse. As discussed in Sec. II D and in Sec. III, the exper-
imental 2D maps only show a very weak signal, barely above the
noise limit that could result from contributions due to the excitation
of biexcitons. In addition, relaxation to biexcitons typically occurs
on a ps time scale via Auger processes.24,25,52 The biexciton mani-
fold can thus be neglected in the ultrafast time window considered
here.

The excitonic Hamiltonian matrix of each dimer is, there-
fore, a 48 × 48 matrix, as shown in Fig. 1(c), where the diagonal
blocks on each dot are those shown in Fig. 1(b). Isolated QDs with
D̄ = 2.8 nm (called S-QD in what follows) have a level structure that
corresponds to Fig. S1(A) (ΔES1–S2 > ΔESO). The level structure of
the QDs with D̄ = 3.5 nm (B-QD) corresponds to the level scheme
shown in Fig. S1(B) (ΔE1S–2S < ΔESO). In the dimers, each of the four
bands of eigen-excitons on one dot (dot A in Fig. 1) is coupled to
the quasi isoenergetic band of the eigen-exciton of the other dot (dot
B) by the interdot Coulomb coupling. Upon diagonalization of the
Hamiltonian matrix for the dimers shown in Fig. 1(c), we, therefore,
obtain two dimer eigen-exciton bands for each band of local excitons
of the isolated dots, a low one and a high one, separated in energy by
about twice the strength of the Coulomb interdot coupling. In total,
therefore, there are eight dimer eigen-exciton bands that we label
1SL3/2, 1SH3/2, 2SL3/2, 2SH3/2, 1SL1/2, 1SH1/2, 2SL1/2, 2SH1/2.

The splittings between the excitonic bands due to Coulomb
interdot interactions depend on both the magnitude of the inter-
dot Coulomb matrix elements and the spacings between two quasi
degenerate eigen-excitons on each QD in the dimer. The interdot
Coulomb coupling, VCoul

inter–mm′ , where m and m′ stand for the index
of an eigen-exciton of a single QD, is the largest between excitons
with the same hole function on each dot, and it is larger between
excitons of the 1S type than for those of the 2S type. The reason
is that the 1S hole wave functions are more delocalized outside
the classical well than the 2S ones and do not have a node.38,42

The interdot Coulomb integrals have been computed numerically
as described in Ref. 42 (see also the supplementary material) for an
ensemble of 2000 dimers. The histograms of the interdot Coulomb
coupling strengths are approximately Gaussian. We observe three
ranges of mean coupling values, depending on the nature of the pair
of states m and m′ involved. The mean value of the interdot cou-
pling between states belonging to the 1S band [V1S–1S

inter in Fig. 1(c)]
is of the order of 45 meV for S-QD dimers and 35 meV for B-QD
ones, while for the 2S bands, the value of V2S–2S

inter is much smaller,
of the order of 5 meV for the S-QD dimers and 2 meV for B-QD
ones. The interdot interband coupling, V1S–2S

inter , has an intermediate
mean value of 15 meV for the S-QD dimers and 10 meV for B-QD
ones. In summary, the interdot Coulomb integrals are on the aver-
age smaller than the 1S–2S gap, ΔE1S–2S, and also smaller than the
SO coupling, ΔESO. The dimer level structures of excitonic bands
are shown schematically in Figs. 1(d) and 1(e) for the two sizes
investigated.
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The distribution of the spacings, δEmm′ , between two eigen-
excitons of isolated dots A (m) and B (m′) in the dimer, exhibits two
peaks, depending on whether m and m′ belong to the same band on
each exciton or not. The distribution of spacings has a mean value of
the order of 60 meV for the quasi degenerate states belonging to the
1S band on each dot and of 120 meV for the 2S band. In both bands,
there is a group of very small spacings due to accidental quasi degen-
eracies between eigen-excitons localized on each dots. The mean
value of δEmm′ is of the order of 480 meV for 1S–2S spacings. The
distribution of spacings of the 2S states is broader than that of the 1S
ones because 2S states are more sensitive to the size fluctuations.

The effective interdot coupling strengths, Veff
mm′ = V

Coul
inter–mm′/

δEmm′ , govern the value of the splitting of the excitonic bands in the
dimer. In the dimers that we investigate here, the effective coupling
is rather large, >1, because the dot mean size is small (<4.5 nm), the
propanedithiol ligand has a short length of 0.55 nm, and the size
dispersion is low, which leads to a narrow width of the spacing dis-
tribution. The distribution of the VCoul

inter–mm′ values is shown in Fig. 2
for the three pairs of excitons representative of the 1S–1S, 2S–2S,
and 1S–2S coupling for S-QD dimers. The largest effective coupling
strengths are found for the pairs of excitons that belong to the 1S
band on each dot [Fig. 2(a)], with a mean effective coupling strength
value of 6.8, while it is 0.4 for states belonging to the 2S band in each
dot [Fig. 2(b)]. These high values can be understood from the acci-
dental quasi degeneracies between eigen-excitons on each dot. The
effective coupling between states belonging to different bands on the
two dots is very small, of the order of 0.04 [Fig. 2(c)]. In the case
of the B-QD dimers, the mean values of the Coulomb couplings are
systematically smaller because the hole and electron wave functions
are more confined inside the classical well when the size is larger.
However, the two sizes considered here are very close, so the differ-
ences in coupling are less than a factor of 2 compared to the S-QD’s.
The mean values of the spacings are also smaller, which leads over-
all to the same order of magnitude and trends for effective interdot
coupling strengths for the B-QD dimers.

The high values of Veff between states of the 1S band ensure
a significant delocalization of the eigenstates of dimers on the two
dots. We quantify the interdot electronic delocalization of the eigen-
states of the dimer, label k, on the basis of the parameter Mk
defined as

Mk = 1/[(WAk)2 + (1 −WAk)2], (5)

where WAk is the weight of the dimer eigenstate k on the states of

dot A, WAk =
24
∑
m=1
∣cmk∣2, with cmk being the amplitudes of the dimer

eigenstate k on the eigen-excitons of dot A. Mk is equal to 2 for a
dimer eigen-exciton equally delocalized on dots A and B and to 1 for
an eigen-exciton fully localized either on dot A or on dot B.

We show in Fig. 3 the mean value of the coefficient ⟨Mk⟩
computed over the ensemble of 2000 dimers for the S-QD dimers
[panel (a)] and the B-QD dimers [panel (b)]. In both panels, the
dimer eigen-excitons are ordered by increasing energy. For the S-
QD dimers [panel (a)], one can see that for the first 24 eigenstates,
which are those that are mainly localized on the 1S bands [1S3/2 and
1S1/2; see Fig. 1(c) on each dot], the mean value of ⟨Mk⟩ is about
1.6. It is much smaller (about 1) for eigen-excitons of the two 2S
exciton bands, 2S3/2 and 2S1/2, which are poorly mixed by inter-
dot Coulomb interactions. For the B-QD dimers [panel (b)], we see
that the lowest dimer eigenstates, up to state 15, also have a ⟨Mk⟩
value of ≈1.6. They have weights on the 1S3/2 states of each dot and
are well delocalized over the two dots. Then, from state 17 to state
40, the dimer eigenstates have weights on the bands 2S3/2 and 1S1/2
of dots A and B. These two bands overlap and are less effectively
mixed by the Coulomb interactions, which leads to lower ⟨Mk⟩ val-
ues. States above state 40 are localized on 2S1/2 states and have a
⟨Mk⟩ value barely larger than 1. Because of the mixing induced by
the interdot coupling, the oscillator strengths of the eigen-excitons
of each dot [Eq. (4)] are redistributed over the eigen-excitons of the
dimer.

FIG. 2. Histograms of the effective interdot coupling, Veff , computed for an ensemble of 2000 S-QD dimers drawn from ensembles with D̄ = 2.8 nm. (a) Veff between two
excitons that belong to the 1S band on each dot, m = 3, m′ = 27. (b) Veff between two excitons belonging to the 2S band (m = 15, m′ = 39). (c) Veff between one exciton
belonging to a 1S state on QDA(m = 3) and a 2S state on QDB (m′ = 39). Note that for panels (a) and (b), the small group of very high values of Veff > 10 and >1, respectively,
due to the accidental quasi degeneracies between eigen-excitons on each dot is not shown.
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FIG. 3. Mean value of the interdot delocalization parameter, ⟨Mk⟩ [Eq. (5)] of the
dimer eigenstates, k, computed over an ensemble of 2000 S-QD (small QD) dimers
[panel (a)] and B-QD (big QD) dimers [panel (b)].

C. Liouvillian dynamics of the ensemble of QDs
We compute the response of an ensemble of non-interacting

dimers to the sequence of three fs pulses as used in the 2DES setup,
using the Liouvillian ensemble approach described in Ref. 38. We
show that this approach is particularly well-suited when the polar-
ization resulting from the interaction of the dimers with three laser
pulses as used in 2DES is approximated by third order perturbation
theory in the framework of the impulsive limit and the rotating wave
approximation. The sequence of the three laser pulses and the three
time intervals that they define is shown schematically in Scheme 1. τ
is the time interval between the first and second pulses, T is the time
interval between the second and third pulses, and the time t is the
time interval between the third pulse and the emission back to the
ground state.

The total electric field at position r is given by

Etot(r, t) =
3

∑
n=1

En(r, t) + Pens(r, t), (6)

where En(r, t) is the time profile of the electric field of nth pulse in
the sequence, which has a finite duration represented by a Gaussian
envelope of width σn,

SCHEME 1. Pulse sequence in a typical 2DES experiment and time delays’
definition.

En(r, t) = En exp(−(t − tn)
2

2σ2
n
) cos(ωnt − kn ⋅ r)

= En exp(−(t − tn)
2

2σ2
n
)(exp(i(ωnt − kn ⋅ r))

+ exp(−i(ωnt − kn ⋅ r))), (7)

where En = ∣En∣ên, ên is the polarization of the electric field, |En| is
its strength, ωn is its carrier frequency, and kn is its wave vector.

Pens(r, t) is the total polarization of the ensemble of M dimers at
position r. For an ensemble of non-interacting dimers, it is the sum
of the polarization of each dimer,

Pens(r, t) =
M

∑
α
Pα(r − rα, t), (8)

where α is the index of a dimer and Pα(r − rα, t) is the polarization
at r due to the dimer α at the position rα. Pα(r − rα, t) can then
be decomposed into the directional components given by the phase
matching directions.43

In the specific case of 2DES using weak laser pulses, two spe-
cific phase matching directions are typically accessed, referred to as
“rephasing” and “non-rephasing,”46,53 and therefore, only these two
spatial components will be considered in the following.

The polarization of each dimer, Pα(t), (where from now on we
do not explicitly denote the r dependence) is given by

Pα(t) = Tr[μ̂ρ̂α(τ,T, t)], (9)

where μ̂ is the dipole operator and ρ̂α(τ,T, t) is the density matrix of
the dimer α that results from its interaction with the three pulses,

ρ̂α(τ,T, t) =
N

∑
m,n

ρmn
α (τ,T, t)∣m⟩⟨n∣ =

N

∑
m,n

ρmn
α (τ,T, t)Êmn, (10)

where Êmn ≡ ∣m⟩⟨n∣. The operators, Êmn, can be represented in
the basis of the eigen-excitons of the dimer by the N × N Gelfand
matrices54 that have entries equal to 0 everywhere except at row m
and column n where the entry is equal to 1. The Gelfand matrices
and the operators, Êmn, satisfy the commutation relation of the Lie
algebra U(N),

[Êmn, Êkl] = Êmlδnk − Êknδlm. (11)
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The N diagonal elements of the density matrix, ρnnα (τ,T, t), corre-
spond to the populations in eigen-excitons, n = 1, . . ., N, and the
off diagonal elements, ρmn

α (τ,T, t), are the N(N − 1) complex ampli-
tudes of the electronic coherences, ρmn

α (τ,T, t) = (ρnmα (τ,T, t))∗. As
detailed in Sec. II B, each dimer in the ensemble is made of two dots
of a slightly different size and, therefore, has a slightly different set of
eigen-excitons. When the dimer interacts with the electric field, the
eigenstates are coupled by the dipole interaction, and the excitonic
Hamiltonian is off diagonal and has a time-dependent part,

Ĥα = ∑
m,n

Hmn
α (t) Êmn

=
N

∑
n=1

En
α Ênn −

3

∑
n=1

En(r, t) ⋅
N

∑
m,n≠m

μmn
α Êmn, (12)

where μmn
α is the transition dipole between the eigen-excitons m and

n of the dimer α and
3
∑
n=1

En(r, t) is the sequence of the three pulses

given by Eq. (7).
The total Hamiltonian, Eq. (12), the density matrix Eq. (10),

and the commutator [Eq. (11)] are linear combinations of the N2

operators, Êmn. In that case, the density matrix of the N state sys-
tem, and, in general, any observable of the system, can be written as
a linear combination of the N2, N × N, Gelfand matrices that rep-
resent the Êmn operators.55 The fact that the Hamiltonian, Ĥα, is a
linear combination of the operators, Êmn, and the closure property
[Eq. (11)] implies that the Heisenberg equation of motion of the Êmn
is also closed, and it is given by

ih̵
∂Êmn

∂t
= [Êmn, Ĥα] =

N

∑
k,l

Hkl
α [Êmn, Êkl]

= ∑
l
Hnl
α Êml −∑

k
Hkn
α Êkm. (13)

For the coherences, ρmn
α (t), taking an average of Eq. (13) over the

density matrix of the dimer, one gets a closed set of equations of
motion,

ih̵
∂ρmn

α (t)
∂t

= ih̵
∂⟨Enm⟩α

∂t
=

N

∑
l
Hml
α (t)⟨Enl⟩α −

N

∑
k
Hkn
α (t)⟨Ekm⟩α,

(14)

ih̵
∂ρmn

α (t)
∂t

=
N

∑
l
Hml
α (t)ρlnα (t) −

N

∑
k
Hkn
α (t)ρmk

α (t). (15)

There is a separate set of the N2 equations of motion for each size α.
It is possible to write Eq. (15) in terms of a Liouvillian matrix,

listing the indices of the N2 elements of the density matrix in
lexicographic order,

ih̵
∂ρmn

α (t)
∂t

=
N

∑
kl
Lmn,klρ

kl
α (t). (16)

The density matrix of the ensemble of dimers is a mixture:

ρ̂ =
M
∑
α
pαρ̂α, and the electronic coherence of the ensemble is given

by its average over the size distribution,

ρmn(t) =
M

∑
α
pαρmn

α (t). (17)

Determining the density matrix for the ensemble requires solving
the dynamics using Eq. (16) for each dimer size and then performing
the average (17).

For non-interacting dimers, the average Hamiltonian of the
ensemble, Ĥ, is diagonal in the index α,

Ĥ =
M

∑
α
∣α⟩Ĥα⟨α∣ =

M

∑
α
∣α⟩(

N

∑
m,n

Hmn
α Êmn)⟨α∣

=
N

∑
m,n
(

M

∑
α
∣α⟩Hmn

α ⟨α∣)Êmn

=
N

∑
m,n

HmnÊmn. (18)

As pointed out above, when no pulse is acting, the Hamiltonian of
each dimer, Hα, is diagonal in the eigen-exciton basis, and therefore,
the averaged Hamiltonian of the ensemble is equally diagonal. In the
absence of the laser pulses, one can, therefore, analytically determine
the density matrix for the ensemble. See Eq. (23). Not so when the
lasers are on. The matrix elements of the total Hamiltonian of the
ensemble then take the form

Hmn = ∑Hmn
α = ∑

α
En
αδmn − E(t) ⋅∑

α
μmn
α ,

Hmn = Hmn
0 − E(t) ⋅ μ̄mn = ēmδmn − E(t) ⋅ μ̄mn ,

(19)

where En
α are the energies of the stationary states of the dimer in

the absence of interaction with the pulse, μnmα are the transition
dipole matrix elements in the basis of the eigen-exciton of the dimer,
and E(t) is the time profile of the electrical field of the laser pulses
[Eq. (6)]. ēn and μ̄nm are the average values of the stationary energies
and the transition dipoles over the ensemble of dimers.

Unlike the case of a single dimer [Eq. (14)], the equations
of motion of the average coherences, ρmn(t), are not closed. This
implies that for computing the polarization of the ensemble [Eq. (8)],
one has to solve the equations of motion of the coherences for each
dimer separately and compute its polarization Pα [Eq. (9)].

We have shown in Ref. 38 that one can define an approximate
ensemble density matrix, ρ̂c(t), that is a very good approximation
to the density matrix of the ensemble, ρ̂(t), but whose equations
of motion remain closed when propagated by the Hamiltonian Ĥ
[Eq. (19)] of the ensemble of dimers,

ρ̂c(t) = ∑
kl
ρklc (t)Êkl, (20)

and

ih̵
∂ρ̂c
∂t
= [Ĥ, ρ̂c], (21)

ih̵
∂ρmn

c

∂t
=

N

∑
k
Hmkρ

kn
c −

N

∑
l
Hlnρ

ml
c . (22)

When no pulse is present, in a time interval (t − t0), the Hamiltonian,
Eq. (19), is diagonal for each dimer, and the average coherence at
time t is given by

ρmn(t) = ∑α pαρ
mn
α (t)

= ∑α pα exp(−i(Hmm
α −Hnn

α )(t − t0))ρmn
α (t0). (23)
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We showed in Ref. 38 that when no pulse is present, ρmn(t) can be
well approximated in a closed form,

ρmn(t) = ∑α pα exp(−i(Hmm
α −Hnn

α )(t − t0))ρmn
α (t0)

≈ (∑α pα exp(−i(Hmm
α −Hnn

α )(t − t0)))ρmn
c (t0), (24)

where ρmn
c (t) is defined by Eqs. (20)–(22). The time evolution in

the second line of Eq. (24) can be approximated using the cumulant
expansion38 for an average over the size distribution of the frequency
differences δΩ = (Hmm

α −Hnn
α ),

ln⟨exp(itδΩ)⟩ = μit − (σ
2

2
)t2 − iκ3

3!
t3 +

κ4

4!
t4 +⋯ , (25)

where μ is the mean, σ2 is the variance, and κ3 and κ4 are the third
and the fourth cumulants of δΩ. Using the first three cumulants in
Eq. (25), we get

ρmn(t) ≈ ρmn
ens(t) = exp(−iω̄mn(t − t0) − i

κ3

6
(t − t0)3)

× exp(−σ2
mn
(t − t0)2

2
)ρmn

c (t0). (26)

In Eq. (26), the mean coherence period and its variance are given by

ω̄mn = ∑α pα(H
mm
α −Hnn

α ) = ēm − ēn, (27)

σ2
mn = ∑

α
pα(Hmn

α −Hnn
α )

2 − ω̄2
mn. (28)

The expressions of κ3 and κ4 are given in the supplementary
material. Using Eq. (26) allows describing the coherent dynamics
of the ensemble when no pulse is present by a single time propa-
gation, using Hamiltonian H [Eq. (18)]. It only involves stationary
properties of the eigen-excitons of each dimer of the ensemble. It
requires computing the eigen-excitons of each dimer as described in
Sec. II B and the coefficients of the cumulant expansion, Eq. (25), for
an ensemble of size dispersed dimers. We have shown in Ref. 38 that
Eq. (26) provides an excellent approximation to the exact dynam-
ics [Eq. (17)], which requires to propagate the coherences of each
dimer separately and then average over the ensemble. Equation (26)
is valid for any Hermitian operator acting on the ensemble. We
are using it below to compute the 2D maps in the impulsive limit.
In this limit, Eq. (26) provides an efficient route for computing
the 2D maps for an ensemble of QDs without having to compute
the dynamics of each dimer interacting with the sequence of three
laser pulses, which becomes rapidly prohibitive because of the large
number of dimers that need to be included in the ensemble. Equa-
tion (26) includes the inhomogeneous dephasing of the electronic
coherences due to the finite size dispersion of the QDs through the
cumulant expansion, Eq. (25). The shifts of the mean induced by
the third cumulant remain very small and are neglected; see Sec. 2
of the supplementary material and discussion in Sec. II D. In the
solid state device of size dispersed QDs studied here, the widths due
to the inhomogeneous broadening induced by the 5% size disper-
sion (≈300 cm−1–1000 cm−1, see Table S1) are larger than thermal
broadening at room temperature and also larger than or commen-
surate with reported homogeneous broadening due to the coupling
between electronic states and phonon modes, surface traps, and

carrier relaxation for similar QDs.20,23,28,56–59 The observed dephas-
ing times during the first 150 fs–200 fs of the dynamics are consistent
with being dominated by the 5% size dispersion.

D. Computation of the maps in the impulsive limit
for weak pulses

In the limit of weak pulses and in the impulsive limit for which
the duration of the pulse is described by a delta function δ(t) in
Eq. (7), one assumes a one photon process occurring at the maxi-
mum of the pulse envelope of the three pulses, t1, t2, t3 in Scheme 1.
On can then write the density matrix ρ̂ to third order in time-
dependent perturbation theory and then use standard nonlinear
response function theory43–45 to calculate the response function,
S(3)ens (τ,T, t), and the associated polarization. The emitted signal by
the ensemble is given by

Eemi(τ,T, t) = iPens(t) ∝ iE3(τ + T)E2(τ)E1(0)S(3)ens (τ,T, t).

In standard nonlinear response theory, the response function is
given by the expectation of the dipole moment computed for the
density matrix to third order,

S(3)ens (τ,T, t)

= (−i
h̵
)

3
Tr(μ̂4(t + T + τ)[μ̂3(τ + T), [μ̂2(τ), [μ̂1(0), ρ̂(0)]]]).

(29)

We compute the third order response using nested commutators as
shown in Eq. (29). The time evolution is given by the Hamiltonian Ĥ
of the ensemble [Eqs. (18) and (19)], and we approximate the den-
sity matrix of the ensemble as ρ̂c, see Eq. (20), whose propagation
in time is determined by the ensemble Hamiltonian. Between the
pulses, the ensemble evolves according to the stationary Hamilto-
nian of the ensemble, H0, and the time evolution of the elements,
ρmn
ens(t), of the approximate density matrix of the ensemble is given

by Eq. (26).
The third order response, S(3)ens (τ,T, t), Eq. (29), corresponds to

a large number of Liouvillian paths that are defined by the commu-
tators [μ̂, ρ̂c] of Eq. (29). For computing the 2D maps, we only retain
the subset that contributes to the signal emitted in specific phase
matching directions.43–46,53 Conventionally, the relevant diagrams
contributing to the third order signal can be classified as ground state
bleaching (GSB) or stimulated emission (SE), which describe contri-
butions where during the population time, T, the system is evolving
in the ground or in an excited state, respectively. A third kind of
diagrams describing Excited State Absorption (ESA) could also con-
tribute to the maps. These diagrams are due to excitations to doubly
excited configuration states (biexcitons or two exciton states), which
can be accessed by one photon transitions from mono-exciton states
during the third pulse. ESA pathways lead to negative contributions
to the signal in the 2D maps. However, the experimental 2D maps
(see discussion on Fig. 6 in Sec. III) only exhibit a small negative
signal. The fact that the ESA contributions are small is due to the
small number of population that is transferred to the doubly excited
states during the interaction with the third pulse (we estimate 1%
transfer, compared to 10% for the single excited states) and the fact
that both the mono and biexciton states have large inhomogeneous
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widths. Indeed, the most intense (weak) negative contributions in
the 2D maps shown in Fig. 6 can be accounted for by the model
that does not include the biexciton manifold. We, therefore, did not
include ESA diagrams in the modeling of the maps. These different
diagrams can be further classified into non-oscillating paths, rep-
resented by Feynman diagrams where the system reaches a pure
state after the first two interactions and oscillating contributions
described by Feynman diagrams where, after the first two interac-
tions, the system is in a coherent superposition of states.44,46,60,61

In building the maps, it is assumed that the dimers in the
ensemble that contribute in a given phase matching direction fol-
low the same set of Liouvillian paths that are given by the allowed
double-sided Feynman diagrams. Since the number M of dimers in
the ensemble has to be very large, the properties of the distribution
of levels in each subset of dimers can be described by the cumulants
given by Eqs. (27) and (28).

In the experiments reported below, the laser bandwidth is such
that one photon transitions are allowed to all or a subset of fine
structure excitonic bands shown in Figs. 1(d) and 1(e).

For a pair of excitons m, n and the ground state (GS), we
have eight Liouville paths for the rephasing “photon echo” direction
and eight Liouville paths for the non-rephasing one. Their explicit
expressions are given in the supplementary material, Eqs. (S6) and
(S7).

For the short times investigated here, only the inhomogeneous
broadening due to the size dispersion contributes to the response.
We neglect in Eqs. (S6) and (S7) the contribution of the third and
fourth cumulants in Eq. (25). As explained above, to compute the
eigen-energies of the dimers of the ensemble, we draw the QD size
from a Gaussian distribution with a given mean diameter, D̄, for each
dot and a size dispersion of 5%, compute the single particle energies
for the electron (1S), hole (1S), and hole (2S) for the size of each
dot of the dimer, build the electronic Hamiltonian for the dimer
for this given pair of sizes of the two QDs, and diagonalize it. We
characterize the eigen-energy distributions by a cumulant expansion
[Eq. (26)]. The values of the first four cumulants for the 48 excitons
are reported in Table S1 of the supplementary material for the S-QD
dimers as well as histograms of the eigen-energies distributions for
selected excitons (Fig. S2). We find that the distributions of the tran-
sition frequencies from the GS to the excitons are well described by
the first two cumulants, which leads to Gaussian distributions. The
skewness, which gives the asymmetry of the eigen-energy distribu-
tions with respect to the variance, is on the average 10%–20% with
higher values for dimer states of the S2 band than for the S1 ones.
The kurtosis, which characterizes the deviation of the tails of the
distribution with respect to a Gaussian, is of the order of 5%–10%
of the variance with the same trend that the kurtosis is larger for
dimer states of the S2 band than of the S1 one. This is due to the fact
that the distribution in energy of the single particle hole S2 states is
wider than those of the hole S1 and electron states.38,42 The slight
asymmetry in the eigen-energy distribution of the dimers can be
understood from the fact that the eigen-energies of the one particle
states in each QD scale approximately as 1/D2 (D is the diameter).2

The resulting asymmetry due to the Jacobian in E−1.5 of the distri-
butions of the energies of the single particle states is small because
of the small value of the mean diameter of the QD considered here
(D̄ = 2.8 nm and 3.5 nm) and the narrow size distributions. As

a result, the distributions of the eigen-energies of the ensemble of
dimers remain Gaussian in a very good approximation as can be
judged for the fits to Gaussian distributions shown in Fig. S2 for
selected eigenstates.

The 2D frequency maps are obtained by Fourier transforming
the responses along τ and t for specific values of T,

S(3)ens–mn(ωτ ,T,ωt) = i
tf

∫
0

dt
τf

∫
0

dτ S(3)ens–mn(τ,T, t)

× exp(iωττ) exp(−iωtt). (30)

As can be seen from Eqs. (S6) and (S7), the abscissa and ordinate
of the map correspond to the transition frequencies from the GS to
excitons, inhomogeneously broadened by a Gaussian of widths σ0m
and σ0n, respectively, that depends on the size dispersion of the QDs;
see Table S1 of the supplementary material for the computed values
of the 24 GS-exciton transition frequencies in a single QD and 48
GS-exciton ones in the dimers.

Among the eight identified relevant paths, only two exhibit
a periodic time-dependence with respect to T, which corresponds
to the transition frequency, ω̄mn, between the excitons m and n.
These two periodically oscillating contributions are the signature
of coherences between excitons. We call these coherences inter-
exciton coherences in what follows. In the rephasing direction
[supplementary material, Eq. (S6)], they appear at the addresses
(ω̄0m, ω̄0n) and (ω̄0n, ω̄0m) on the map and dephase in time as Gaus-
sians, with dephasing times given by 1/σmn, the σmn values being
obtained using Eq. (28) above. Two non-oscillating GSB paths also
contribute to these addresses. The two other GSB paths and the two
SE paths contribute to the diagonal at the addresses (ω̄0m, ω̄0m) and
(ω̄0n, ω̄0n). In the non-rephasing direction [supplementary material,
Eq. (S7)], the oscillating paths corresponding to the inter-exciton
coherences appear on the diagonal at the addresses (ω̄0m, ω̄0m) and
(ω̄0n, ω̄0n), while the other contributions are identical.

The 2D maps are computed by summing these eight paths for
each pair of the excited states [N(N − 1)/2], where N = 24 for a single
QD and 48 for a dimer. Each transition is characterized by a mean
transition frequency and a width given by Eqs. (27) and (28),

S(3)ens (ωτ ,T,ωt) =
N

∑
m=1

N

∑
n>m

S(3)ens–mn(ωτ ,T,ωt). (31)

The double Fourier transform in Eq. (30) is computed numerically
because of its causal character resulting from the time ordering of
the pulses. The Fourier transforms of the Gaussian decays for t and
τ ≥ 0 have both a real and an imaginary part that lead to small nega-
tive contributions in the computed maps that are in agreement with
the ones present in the experimental ones (see Fig. 6 below). We also
report in the supplementary material (Figs. S3 and S4) maps com-
puted by adding a homogeneous width of 0.01 eV to each exciton,
which leads to an exponential decay factor in Eq. (26). In that case,
the real part of the Fourier transform exhibits a Voigt profile.

For a given amount of size dispersion, the values of the mean
widths, σ̄mn, depend on the nature of the excitons involved in the
transition. The inhomogeneous widths of the transition from the
GS, σ̄0m, are wider for excitons that involve a hole of type 2S than
those of type 1S because, as explained in Sec. II B, the energies
of the 2S excitons are more sensitive to the variation in size. The
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FIG. 4. Dephasing widths (σ̄mn) between
mean transition energies (h̵ω̄mn) com-
puted for an ensemble of 2000 S-QD
dimers [panels (a) and (c), D̄ = 2.8
nm] and B-QD dimers [panels (b) and
(d), D̄ = 3.5 nm]. The size dispersion
is 5%. (a) Transition GS-exciton for S-
QD dimers. (b) Transition GS-exciton
for B-QD dimers. (c) Inter-exciton tran-
sitions for S-QD dimers. (d) Exciton–
exciton transitions for B-QD dimers. Note
how the dephasing widths and transition
energies span a smaller range for the
B-QD dimers.

values of the widths of distributions of eigen exciton–exciton tran-
sition frequencies, σ̄mn, vary widely depending on the amount of
correlation between the energies of the two eigen-excitons induced
by the diagonalization of the intradot and interdot couplings. Pairs
of highly mixed eigen-excitons will have smaller widths, σ̄mn, and
longer dephasing times. In an isolated QD, this situation occurs
for eigen-excitons within a given excitonic band because of the SO
coupling. In dimers, transition frequencies between low and high
excitonic bands resulting from the interdot Coulomb coupling, such
as 1SL3/2 and 1SH3/2, 1SL1/2 and 1SH1/2, 2SL3/2 and 2SH3/2, and 2SL1/2 and
2SH1/2, will have longer dephasing times than interband transitions,
for example, those involving 1SL3/2 and 2SH3/2. We show in Fig. 4
the values of ω̄0m and σ̄GS–m computed using Eqs. (27) and (28) for
ensembles of 2000 dimers with the size and dispersion of the ensem-
ble studied in the experiments (D̄ = 2.8 nm for S-QD and D̄ = 3.5 nm
for B-QD) both with 5% size dispersion. Note how the dephasing
widths increase with the transition frequencies, ω̄0m. In Fig. 4(a), one
distinguishes four bands of eigen-excitons and their splittings due to
the interdot Coulomb couplings. As discussed in Sec. II B, for the
B-QD dimers [Fig. 4(b)], the two middle bands overlap.

The values of the inhomogeneous dephasing widths of the
inter-exciton coherences, σ̄mn, (that contribute to the oscillating
behavior along T in the 2D maps) are given in Figs. 4(c) and 4(d)

for the S-QD and B-QD dimers, respectively. Inter-exciton coher-
ences that involve eigen-excitons of the dimer with a high weight on
2S bands have larger dephasing widths (≈> 0.05 eV) than the ones
involving 1S bands (≈0.02 eV–0.04 eV). As discussed above (Fig. 3),
dimer eigen-excitons belonging to the 1S bands are significantly
delocalized over the two dots so that the 1S inter-exciton coher-
ences correspond to interdot beatings. Due to the high degree of
correlation induced by the diagonalization of the interdot Coulomb
coupling, some pairs of eigen-excitons, between fine structure states
belonging to the same band, have smaller widths (<0.01 eV), with
lifetimes in the hundreds of fs. On this time scale, these electronic
coherences will be coupled to phonons and subject to dephasing
processes due to interactions with the environment.

III. CHARACTERIZATION OF ELECTRONIC
COHERENCES BY 2DES

We compare the results obtained using the modeling approach
described in Sec. II with 2DES experimental data obtained on sam-
ples of interacting and non-interacting CdSe QDs. We considered
two solid state samples prepared by a layer-by-layer deposition pro-
cedure as described in Refs. 37 and 62, starting from colloidal solu-
tions of CdSe QDs with mean diameters of 2.8 nm (S-QD) and
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3.5 nm (B-QD), respectively, with a zinc-blende crystal structure.
The size dispersion for both samples has been estimated about 5% by
TEM measurements.37 Covalent links between dots have been pro-
moted using 1,3-propanedithiol (PDT), having a nominal length of
0.55 nm; see Fig. 1(a). In these samples, it can be reasonably assumed
that electronic coupling is established predominantly between pairs
of QDs linked by dithiol ligands,37,62–64 which supports modeling the
response in terms of large ensembles of size-dispersed QD dimers.
For comparison, a hexane solution of non-interacting B-QD dots
has also been investigated to test the results of computations in the
absence of interdot coupling, which in the modeling amounts to
turning off the interdot Coulomb coupling, V1S–1S

inter , V2S–2S
inter , V1S–2S

inter in
Fig. 1(c). More details on the experimental sample properties can be
found in the supplementary material.

For the comparison with experimental 2DES maps, we begin by
discussing the assignment of excitonic bands in the absorption spec-
tra computed for ensembles of S-QD and B-QD dimers since they
determine the excitation (x axis, abscissa) and emission (y axis, ordi-
nate) coordinates of the inter-exciton coherences in the 2D maps
shown below. In first order perturbation theory, and in the weak
pulse limit, using the results of Sec. II B [Eqs. (19), (27), and (28)],
the absorption spectrum is given by

Sabs(ω) =
N

∑
m
μ̄2

0m exp(−(ω − ω̄0m)2

2σ̄2
0m

). (32)

We show in Fig. 5 the computed spectra together with the
impulse spectrum of the Hamiltonian [Eq. (19)], Simp(ω)

=
M
∑
m
μ̄2

0mδ(ω − ω̄0m), for the S-QD dimers [Fig. 5(a)] and B-QD

ones [Fig. 5(b)]. For both dimers, the low 1SL3/2 band appears as a
shoulder in the absorption spectrum because the oscillator strength

of these dimer states, which would be dark in a dimer of identi-
cal dots, is much smaller than that of the 1SH3/2 states. As shown
in Fig. 3, these two excitonic bands are highly delocalized over the
two dots. While the 1SL1/2–1SH1/2 and 2SL3/2 and 2SH3/2 bands over-
lap but can be resolved in the S-QD dimers [Fig. 5(a)], they can-
not for the B-QD dimers [Fig. 5(b)]. 2SL1/2 and 2SH1/2 are clearly
resolved, but they fall outside of the laser bandwidth, shown as
a brown line. In the B-QD dimer, the laser pulse energy pro-
file excites the entire 1S band and the low energy tail of the
2S one (essentially 2SL3/2), while for the S-QD dimer, only the
two lower 1S bands (1SL3/2 and 1SH3/2) are excited, which makes
the analysis of the 2D maps of this dimer more straightforward.
The experimental spectral profiles37 are shown in red. Overall, the
1S–2S gap is slightly underestimated in the model, more for the
B-QD dimers than for the S-QD ones.36,37 Since the laser bandwidth
essentially does not allow to excite the 2S band in the S-QD sam-
ple and barely excites it in the B-QD one, the comparison between
the experimental and the computed spectra is not affected by this
discrepancy.

2DES measurements were performed using a passively phase-
stabilized setup in the BOXCARS geometry as described in Refs. 36,
37, and 65. The laser spectral profile was tuned to cover as much
as possible the main transitions of the samples, compatibly with the
technical limitations of the laser source. The laser profile was cen-
tered at about 2.2 eV with a spectral width of about 0.5 eV (FWHM);
see Fig. 5 above. The pulse duration, energy, and beam waist at the
sample position were 9 fs, 7 nJ, and 100 μm, respectively. Additional
details on the 2DES setup and experimental parameters can be found
in Refs. 36 and 37 and in the supplementary material.

We show in Fig. 6 a comparison between the experimen-
tal and computed [Eq. (31)] 2D maps for the real part of the
rephasing (photon echo) signal for S-QD [panel (a): computed;
panel (b): experimental] and B-QD dimers [(c): computed; (d):

FIG. 5. Absorption spectra of the S-QD dimer [panel (a)] and of the B-QD dimer [(panel (b)]. The experimental laser pulse energy profile is shown in brown, the computed
absorption profile is shown in blue [Eq. (32)], the stick spectrum is shown in violet, and the experimental spectrum is shown in red. The bands are labeled according to the two
cases defined in Figs. 1(b) and 1(c), respectively. The transition frequencies from the GS to the excitons are slightly overestimated in the model. To allow a better comparison
with the excitation and emission frequencies of the experimental 2D maps and a correct assignment of the states excited by the experimental laser profile, a red shift of
GS-exciton frequencies of 0.09 eV has been applied to the S-QD dimer and one of 0.1 eV to the B-QD. Note that this overall shift does not affect the beating periods of the
inter-exciton coherences.
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FIG. 6. Computed [(a) and (c)] and experimental [(b) and (d)] 2D maps (real part of the rephasing signal) for the S-QD dimers [(a) and (b)] and the B-QD dimers [(c) and (d)].
The four columns correspond to increasing values of the population time, T, as indicated. Maps are normalized to 1 on their maximum.

experimental] at increasing population times, T. Computed and
experimental non-rephasing and purely absorptive maps are
reported in the supplementary material (Figs. S3 and S4). The shape
of the main signals in the experimental 2D maps [Figs. 6(b) and 6(d)]
is strongly affected by the exciting laser profile because the final sig-
nal is the result of the convolution between the response function
of the sample and the exciting electric fields.43 Previous studies have
shown that in the specific case of semiconducting QD, when both
1S and 2S fall in the laser bandwidth, the 2D experimental maps
exhibit a square pattern, with two diagonal peaks and two cross
peaks.16,17,25,37,66,67 In Fig. 6, the diagonal signals are consistent with
the addresses (ω̄0m, ω̄0m) and (ω̄0n, ω̄0n) and the cross peaks with
addresses (ω̄0m, ω̄0n) and (ω̄0n, ω̄0m) identified for the eight GSB
and SE paths contributing to the response function[Eq. (S5) of the

supplementary material]. In our case, the laser profile covers only
partially the 2S band (Fig. 5), especially in the case of S-QD sam-
ple, and therefore, the features associated with the high energy band
are very weak. The cross-peak amplitudes directly depend on the
oscillator strength of the two transitions, μ0m and μ0n, see Sec. II C,
and on their spectral overlap with the laser pulse. The latter can also
cause unequal cross-peak amplitude, especially in the case of a non-
flat laser spectrum,16 and this explains the slight asymmetry in the
shape of the upper and lower cross peaks in the experimental maps
[Figs. 6(b) and 6(d)]. 2DES measurements on solid state samples
(colloidal QDs, quantum wells, transition metal chalcogenides, sin-
gle crystals) are particularly challenging, as proven by the scarcity of
works in the literature.37,50,51,68–71 In the specific case of S-QD and
B-QD samples, the presence of strong scattering effects and the low
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values of absorbance significantly complicate the recording of the
signal and its interpretation. One can notice small negative contri-
butions in the experimental and computed 2D maps [Figs. 6(b) and
6(d)]. As discussed in Sec. II D, this negative signal is accounted
for in the computed maps due to the causal character of the dou-
ble Fourier transform in Eq. (30). Although ESA pathways might
also contribute to these negative features, their contributions are
negligible and are not included in the modeling.

Nonetheless, all considered, the agreement between the com-
puted and experimental 2D maps is very good. In the case of the
S-QD dimer [Figs. 6(a) and 6(b)], only the excitonic dimer bands
1SL3/2 at ≈2.2 eV and the 1SH3/2 at ≈2.3 eV are fully included in the laser
bandwidth. The variations of the intensity of the cross-peak regions
between these coordinates [pinpointed with circles in Figs. 6(a) and
6(b)] as a function of the population time are clearly seen in both the
computed and experimental maps, with an increase from T = 7.5 fs
to 30 fs and a decrease at 45 fs. Positions on the maps correspond-
ing to the cross-peak regions oscillate with a period of 35 fs–40 fs, as
shown in the traces plotted in Fig. 7(a). This period corresponds to
electronic coherences between eigen-excitons belonging to the 1SL3/2
and 1SH3/2 bands, which are highly delocalized over the two dots [see
Fig. 3(a) above]. The spacings between eigenstates belonging to each
band are approximately twice the strength of the interdot Coulomb
couplings (≈0.045 eV), as shown in Sec. II B.

There is also a correspondence between the low intensity cross
peaks located in the computed maps at coordinates ≈(2.5–2.3) eV
and (2.3–2.5) eV and experimental signals at the same positions
[squares in Figs. 6(a) and 6(b)]. These signals correspond to coher-
ences between dimer eigenstates of the 1SH3/2 band and of the higher
1SL1/2 band that falls on the blue edge of the laser bandwidth.

In the 2D maps of the B-QD dimer, in addition to a cross-
peak region due to coherences between eigen-excitons of the 1SL3/2
and 1SH3/2 bands at ≈(2.2, 2.1) eV that is similar to the one seen
in S-QD maps, one also observes clear cross-peak signals at (2.4–
2.3) eV, which correspond to coherences between eigen-excitons of
the 1SH3/2 and the red part of the higher bands 2SL3/2 and 1SL1/2 [see
Fig. 5(b)] that fall within the laser bandwidth. The 1SL3/2–1SH3/2 coher-
ences of B-QD in the (2.2, 2.1) eV region oscillate with a longer
period (≈50 fs–60 fs), see Fig. 7(b), than the corresponding ones for
S-QD [Fig. 7(a)] (≈35 fs–40 fs) as expected from the fact that the

interdot Coulomb coupling strength is smaller (≈0.035 eV) for the B-
QD dimers than for the S-QD ones. In the case of the B-QD dimers,
in the same region of addresses, there is also a weaker contribution
of intradot coherent beatings, as can be seen from Fig. 8.

In order to obtain a more global picture of the frequencies and
dephasing times of the electronic coherences that can be excited
in the laser bandwidth, we computed an inter-exciton coherence
spectrum, which is defined as

Scoh(ω,T) =
M

∑
m,n>m

μ̄2
0mμ̄

2
0n exp(−(ω − ω̄mn)2

2σ̄2
mn

) exp(− σ̄
2
mnT2

2
),

(33)

where the range of excitons that contribute to the spectrum is lim-
ited to those experimentally accessed by the laser pulse. Experi-
mentally, it is not possible to obtain the corresponding coherence
spectrum retaining simultaneously both time and frequency resolu-
tion. Typically, the analysis of the coherent dynamics is performed
Fourier transforming the beating traces along the population time:
in this way, Scoh(ω) (the “Fourier spectrum”) can be retrieved, but
the dependence on T is lost. To keep both time and frequency
resolution, we recently proposed a methodology based on bilin-
ear time-frequency transforms.72,73 This method is able to spread
the signal information along both the time and frequency domains
simultaneously, and it revealed to be extremely powerful in extract-
ing higher-level information about the energetics and the dynamics
of the coherent superposition of states.37,74–76 However, this treat-
ment is naturally limited by the time-frequency uncertainty, and
therefore, its results must be evaluated with caution, especially when
comparing with the ideal Scoh(ω, T) spectrum of Eq. (33).

To compare with the computed spectrum, the time traces along
T at each (x, y) coordinate of the 2D maps have been analyzed
with an optimized time-frequency bilinear transform (smoothed
pseudo Wigner Ville transform, SPWV72,73). All time-frequency
plots obtained at each (x, y) coordinate have then been averaged
to provide a direct comparison with the theoretical spectrum of
Eq. (33).

A comparison between the computed and experimental time-
frequency plots of the coherence spectra is shown in Fig. 8, where
the x axis is the coherence frequency [expressed in energy units (eV)

FIG. 7. Eigen-exciton coherences beat-
ing along T at a given address on the
2D maps shown in Fig. 6. Computed
traces are shown in full line (red); exper-
imental are shown in dashes (blue); the
addresses on the 2D maps are given in
parentheses. (a) S-QD dimer, computed:
(2.30, 2.22) eV in Fig. 6(a), experimen-
tal: blue (2.37, 2.11) eV in Fig. 6(b). (b)
B-QD dimer, computed: red (2.17, 2.10)
in Fig. 6(c); experimental: blue (2.17,
2.04) eV in Fig. 6(d). Two more traces
are shown in Fig. S5 of the supplemen-
tary material.
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FIG. 8. Simulated (upper row) and experimental (lower row) coherence spectra for S-QD dimers [(a) and (d)], B-QD dimers [(b) and (e)], and B-QD non-interacting monomers
[(c) and (f)]. The plots are normalized to 1 on their maximum. Dashed lines are traced at relevant values of beating frequency as a guide for the eye.

to directly compare with inter-exciton energy gaps] and the y axis
is the population time T. The computed Scoh(ω, T) are shown in
the first row, while the experimental ones are shown in the second
one, respectively. Overall, the comparison is good, confirming the
electronic character of the short time coherent dynamics in these
samples. One can note that the experimental dephasing times appear
systematically longer than the computed ones. This is due to the
well-known numerical issues inherent in the application of time-
frequency transforms and basically connected with the limitations
due to time-frequency uncertainty.72,77,78

All plots exhibit a sharp peak at low frequencies (0.025 eV
= 200 cm−1). In the computed maps, these transition frequencies
correspond to energy differences between FS states belonging to the
same excitonic band. The FS electronic coherences between eigen-
excitons delocalized over the two dots have rather long dephasing
times (100 fs–200 fs) for S-QD and slightly longer for B-QD (150 fs–
250 fs), as can be seen from Figs. 4(c) and 4(d), respectively. In the
experimental maps, the signal at this frequency is a superposition of
both FS states coherent superpositions and the contribution of the
longitudinal (LO) phonon mode, falling at the same frequency and
already well characterized in CdSe QDs.17–21,23,25,79

The LO phonon contribution and its possible mixing with elec-
tronic degrees of freedom21,80–84 are not included in the purely elec-
tronic model that we use here since it is expected to contribute on
a longer timescale.37,42 This leads to a relatively more intense con-
tribution of the signal at 0.025 eV in the experimental than in the
computed maps and explains the growing trend as a function of the
population time.

The signal arising from the interdot coherences between eigen-
exciton states of the 1SL3/2–1SH3/2 bands, highlighted in Fig. 7 at spe-
cific coordinates in the 2D maps, is clearly distinguishable in all
panels. For S-QD dimers, the interdot coherence peak falls at tran-
sition frequencies of about 0.12 eV for both computed [Fig. 8(a)]
and experimental [Fig. 8(d)] spectra, while it appears at slightly
lower frequencies, in the range 0.08 eV–0.1 eV for B-QD dimers
[Figs. 8(b) and 8(d)]. Remarkably, both theoretical and computed
maps for B-QD dimers could capture the presence of more than one
peak within this broadband, confirming the good correspondence
between the simulation and experimental data. Different maxima in
this spectral region correspond to different combinations of super-
positions between states belonging to the 1SL3/2–1SH3/2 bands. These
peaks appear as shoulders in the experimental S-QD [Fig. 8(d)] and
are not resolved in the computed one [Fig. 8(a)]. One can see by
comparing Figs. 4(c) and 4(d) that, indeed, the computed dephasing
widths for the inter-exciton coherences in the range ≈0.1 eV–0.12 eV
for the S-QD dimer are larger than those in the ≈0.08 eV–0.1 eV
range for the B-QD dimers.

For the B-QD dimers, one also distinguishes a band of coher-
ences at a higher energy, starting from 0.20 eV. This band corre-
sponds to coherences between 1S and 2S excitons, which in the
dimer correspond to the 1SH3/2 and 2SL3/2–1SL1/2 eigen-exciton states
[see Fig. 5(b)]. For isolated B-QDs, the peak corresponding to inter-
band 1S–2S electronic coherences above 0.2 eV is also clearly visi-
ble, as shown in Figs. 8(c) and 8(f). This interband intradot beating
was already reported in Ref. 36. In Fig. 8(c), the computed coher-
ence spectrum was obtained by turning off the interdot Coulomb
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coupling in the Hamiltonian matrix shown in Fig. 1(b), which cor-
responds to an ensemble of 4000 non-interacting B-QDs. Figure 8(f)
shows the experimental coherence spectra for isolated QDs of a size
equivalent to that of the B-QDs within the 5% size dispersion (D̄ =
3.7 nm) in water. In addition, by comparing Figs. 8(b) and 8(c) and
Figs. 8(e) and 8(f), one clearly sees the difference between the elec-
tronically coupled and non-interacting B-QDs in the 0.08 eV–0.1 eV
region. The interdot coherence signature appears as a clear broad
peak with the substructure discussed above in Fig. 8(b), while there is
only a low intensity background contribution in the region of inter-
dot coherence frequencies for the isolated B-QDs in Fig. 8(c). Note
that as discussed in Ref. 37, the overlap between the intradot and
interdot coherences is less pronounced for S-QD dimers because the
frequencies of the interdot coherences in the case of the S-QD dimer
is higher in energy.

IV. CONCLUDING REMARKS
Our joint experimental–theoretical study shows that it is pos-

sible to characterize the fast beating electronic coherences in col-
loidal QD solids at room temperature by 2D electronic spectroscopy.
These electronic coherences exhibit periodic beatings for a time of
≈100 fs, long enough to be identified at specific absorption–emission
addresses on 2D frequency maps.

We have recently suggested exploiting these electronic coher-
ences in a solid state quantum dot device to emulate the nuclear
quantum dynamics of two coupled oscillators.14 Beyond this and
other potential applications to quantum information processing,
electronically coupled colloidal QD solids and their coherent non-
linear optical response at room temperature could be exploited in a
broad range of applications from photonic and quantum devices to
energy and charge transport operations and, in general, for all appli-
cations where a strict control of the time evolution of the electronic
properties after photoexcitation is required.

Characterizing the time evolution of coherent superpositions
of states in the ultrafast time domain is crucial not only to under-
stand the mechanisms of dephasing but also to harness the quantum
nature of the coherent phenomena. The characterization of coherent
dynamics in QD materials, the identification of their physical origin
and the factors contributing to their dephasing dynamics, will allow
for a more reliable design of QD based devices.

In this work, we have proved, on the experimental side, that
it is possible to identify and follow the time evolution of coherent
superpositions of electronic states optically generated in samples of
interacting QDs (QD dimers in the solid state). Theoretical simula-
tion tools have been set, which are able to provide a rigorous inter-
pretation of the experimental results and clearly distinguish between
the contributions of different coherent electronic beatings. These
tools allow distinguishing intradot and interdot coherent electronic
dynamics, opening up the possibility of designing and engineering
strongly interacting QD systems, and exploiting more systemati-
cally their quantum properties. The role of size, interdot distance,
and inhomogeneous size distributions on the electronic properties
and (coherent) dynamics has been systematically investigated, pro-
viding important guidelines for the choice of future materials to be
employed in QD based devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the model
used in this work, additional figures, and the description of the
experimental setup.

ACKNOWLEDGMENTS
This work was financially supported by the H2020 FET Project

COPAC (Grant No. 766563). E.C. also acknowledges partial sup-
port from the MIUR PRIN 2015 (Grant No. 2015XBZ5YA). F.R.
and H.G. acknowledge the support from the Consortium des
Equipements de Calcul Intensif (CECI), funded by the FRS-FNRS
(Fonds National de la recherche Scientifique, Belgium) under Grant
No. 2.5020.11 for the computations. F.R. also acknowledges par-
tial support from the FRS-FNRS through Grant Nos. J.0012.18 and
T.0205.20. We thank Marinella Striccoli (CNR IPCF, Bari) and Yossi
Paltiel (The Hebrew University of Jerusalem) for providing the QD
materials and for useful discussions.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1Nanocrystal Quantum Dots, edited by V. I. Klimov (CRC Press, Boca Raton,
2010).
2L. E. Brus, “Electron–electron and electron-hole interactions in small semicon-
ductor crystallites: The size dependence of the lowest excited electronic state,”
J. Chem. Phys. 80(9), 4403–4409 (1984).
3A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,”
Science 271(5251), 933 (1996).
4D. J. Norris and M. G. Bawendi, “Measurement and assignment of the size-
dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53(24), 16338–
16346 (1996).
5K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron trans-
fer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl.
Acad. Sci. U. S. A. 108, 29 (2011).
6Colloidal Quantum Dot Optoelectronics and Photovoltaics, edited by G. Konstan-
tatos and E. Sargent (Cambridge University Press, Cambridge, 2013).
7C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from
colloidal quantum dots,” Science 353(6302), aac5523 (2016).
8O. V. Kozlov, Y.-S. Park, J. Roh, I. Fedin, T. Nakotte, and V. I. Klimov,
“Sub–single-exciton lasing using charged quantum dots coupled to a distributed
feedback cavity,” Science 365(6454), 672 (2019).
9Y. E. Panfil, M. Oded, and U. Banin, “Colloidal quantum nanostructures: Emerg-
ing materials for display applications,” Angew. Chem. 57(16), 4274–4295 (2018).
10A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,
M. Sherwin, and A. Small, “Quantum information processing using quantum dot
spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
11D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,”
Phys. Rev. A 57(1), 120–126 (1998).
12B. Fresch, M. Cipolloni, T.-M. Yan, E. Collini, R. D. Levine, and F. Remacle,
“Parallel and multivalued logic by the two-dimensional photon-echo response of
a rhodamine–DNA complex,” J. Phys. Chem. Lett. 6, 1714–1718 (2015).
13B. Fresch, D. Hiluf, E. Collini, R. D. Levine, and F. Remacle, “Molecular decision
trees realized by ultrafast electronic spectroscopy,” Proc. Natl. Acad. Sci. U. S. A.
110(43), 17183–17188 (2013).

J. Chem. Phys. 154, 014301 (2021); doi: 10.1063/5.0031420 154, 014301-15

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0031420
https://doi.org/10.1063/1.447218
https://doi.org/10.1126/science.271.5251.933
https://doi.org/10.1103/physrevb.53.16338
https://doi.org/10.1073/pnas.1011972107
https://doi.org/10.1073/pnas.1011972107
https://doi.org/10.1126/science.aac5523
https://doi.org/10.1126/science.aax3489
https://doi.org/10.1002/anie.201708510
https://doi.org/10.1103/physrevlett.83.4204
https://doi.org/10.1103/physreva.57.120
https://doi.org/10.1021/acs.jpclett.5b00514
https://doi.org/10.1073/pnas.1314978110


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

14K. Komarova, H. Gattuso, R. D. Levine, and F. Remacle, “Quantum device emu-
lates the dynamics of two coupled oscillators,” J. Phys. Chem. Lett. 11, 6990–6995
(2020).
15E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature
exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Com-
mun. 6, 6086 (2015).
16E. Cassette, J. C. Dean, and G. D. Scholes, “Two-dimensional visible spec-
troscopy for studying colloidal semiconductor nanocrystals,” Small 12(16), 2234–
2244 (2016).
17D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states
in CdSe nanocrystals measured using broadband two-dimensional electronic
spectroscopy,” Nano Lett. 12(2), 880–886 (2012).
18J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S.
Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics
in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem.
Phys. 140(8), 084701 (2014).
19J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F.
Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Persistent interexcitonic
quantum coherence in CdSe quantum dots,” J. Phys. Chem. Lett. 5(1), 196–204
(2014).
20S. Palato, H. Seiler, P. Nijjar, O. Prezhdo, and P. Kambhampati, “Atomic fluctu-
ations in electronic materials revealed by dephasing,” Proc. Natl. Acad. Sci. U. S. A.
117, 11940 (2020).
21S. Dong, D. Trivedi, S. Chakrabortty, T. Kobayashi, Y. Chan, O. V. Prezhdo, and
Z.-H. Loh, “Observation of an excitonic quantum coherence in CdSe nanocrys-
tals,” Nano Lett. 15(10), 6875–6882 (2015).
22P. Kambhampati, “Unraveling the structure and dynamics of excitons in semi-
conductor quantum dots,” Acc. Chem. Res. 44(1), 1–13 (2011).
23T. A. Gellen, J. Lem, and D. B. Turner, “Probing homogeneous line broadening
in CdSe nanocrystals using multidimensional electronic spectroscopy,” Nano Lett.
17(5), 2809–2815 (2017).
24D. J. Trivedi, L. Wang, and O. V. Prezhdo, “Auger-mediated electron relaxation
is robust to deep hole traps: Time-domain ab initio study of CdSe quantum dots,”
Nano Lett. 15, 2086–2091 (2015).
25M. Righetto, L. Bolzonello, A. Volpato, G. Amoruso, A. Panniello, E. Fanizza,
M. Striccoli, and E. Collini, “Deciphering hot- and multi-exciton dynamics in
core–shell QDs by 2D electronic spectroscopies,” Phys. Chem. Chem. Phys.
20(27), 18176–18183 (2018).
26H. Seiler, S. Palato, C. Sonnichsen, H. Baker, and P. Kambhampati, “Seeing
multiexcitons through sample inhomogeneity: Band-edge biexciton structure in
CdSe nanocrystals revealed by two-dimensional electronic spectroscopy,” Nano
Lett. 18(5), 2999–3006 (2018).
27C. Lin, K. Gong, D. F. Kelley, and A. M. Kelley, “Size-dependent exciton–
phonon coupling in CdSe nanocrystals through resonance Raman excitation
profile analysis,” J. Phys. Chem. C 119(13), 7491–7498 (2015).
28O. V. Prezhdo, “Photoinduced dynamics in semiconductor quantum dots:
Insights from time-domain ab initio studies,” Acc. Chem. Res. 42(12), 2005–2016
(2009).
29N. Lenngren, M. A. Abdellah, K. Zheng, M. J. Al-Marri, D. Zigmantas, K. Žídek,
and T. Pullerits, “Hot electron and hole dynamics in thiol-capped CdSe quantum
dots revealed by 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 18(37),
26199–26204 (2016).
30A. L. Efros and M. Rosen, “The electronic structure of semi-conducting
nanocrystal,” Annu. Rev. Mater. Sci. 30, 475–521 (2000).
31P. C. Sercel and A. L. Efros, “Band-edge exciton in CdSe and other II–VI and III–
V compound semiconductor nanocrystals—Revisited,” Nano Lett. 18(7), 4061–
4068 (2018).
32J. Kim, C. Y. Wong, and G. D. Scholes, “Exciton fine structure and spin
relaxation in semiconductor colloidal quantum dots,” Acc. Chem. Res. 42(8),
1037–1046 (2009).
33C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spec-
troscopy to probe the fine structure of the ground state biexciton of CdSe
nanocrystals,” J. Lumin. 131(3), 366–374 (2011).
34H. Ma, Z. Jin, Z. Zhang, G. Li, and G. Ma, “Exciton spin relaxation in colloidal
CdSe quantum dots at room temperature,” J. Phys. Chem. A 116(9), 2018–2023
(2012).

35V. M. Huxter, V. Kovalevskij, and G. D. Scholes, “Dynamics within the exciton
fine structure of colloidal CdSe quantum dots,” J. Phys. Chem. B 109(43), 20060–
20063 (2005).
36E. Collini, H. Gattuso, L. Bolzonello, A. Casotto, A. Volpato, C. N. Dibenedetto,
E. Fanizza, M. Striccoli, and F. Remacle, “Quantum phenomena in nanomateri-
als: Coherent superpositions of fine structure states in CdSe nanocrystals at room
temperature,” J. Phys. Chem. C 123, 31286–31293 (2019).
37E. Collini, H. Gattuso, Y. Kolodny, L. Bolzonello, A. Volpato, H. T. Fridman,
S. Yochelis, M. Mor, J. Dehnel, E. Lifshitz, Y. Paltiel, R. D. Levine, and F. Remacle,
“Room-temperature inter-dot coherent dynamics in multilayer quantum dot
materials,” J. Phys. Chem. C 124(29), 16222–16231 (2020).
38H. Gattuso, R. D. Levine, and F. Remacle, “Massively parallel classical logic via
coherent dynamics of an ensemble of quantum systems with dispersion in size,”
Proc. Natl. Acad. Sci. U. S. A. 117(35), 21022 (2020).
39J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed
periodic fields,” Phys. Rev. 97(4), 869–883 (1955).
40A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi,
“Band-edge exciton in quantum dots of semiconductors with a degenerate valence
band: Dark and bright exciton states,” Phys. Rev. B 54(7), 4843–4856 (1996).
41C. Y. Wong and G. D. Scholes, “Biexcitonic fine structure of CdSe nanocrystals
probed by polarization-dependent two-dimensional photon echo spectroscopy,”
J. Phys. Chem. A 115(16), 3797–3806 (2011).
42H. Gattuso, B. Fresch, R. D. Levine, and F. Remacle, “Coherent exciton dynam-
ics in ensembles of size-dispersed CdSe quantum dot dimers probed via ultrafast
spectroscopy: A quantum computational study,” Appl. Sci. 10(4), 1328 (2020).
43S. Mukamel, Principle of Non-Linear Optical Spectroscopy (Oxford University
Press, Oxford, 1995).
44P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy
(Cambridge University Press, Cambridge, 2011).
45M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, Boca Raton, 2009).
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