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ABSTRACT

Proteins  in  their  native  states  can be represented as ensembles  of  conformers  in  dynamical
equilibrium.  Thermal  fluctuations  are  responsible  for  transitions  between  these  conformers.
Normal  modes  analysis  (NMA) using  elastic  network  models  (ENM) provides  an  efficient
procedure  to  explore  global  dynamics  of  proteins  commonly  associated  to  conformational
transitions.  In  the  present  work,  we  present  an  iterative  approach  to  explore  protein
conformational  spaces  by  introducing  structural  distortions  according  to  their  equilibrium
dynamics  at  room  temperature.  The  approach  can  be  used  either  to  perform  unbiased
explorations of conformational space or to explore guided pathways connecting two different
conformations, e.g., apo and holo forms. In order to test its performance, four proteins with
different magnitude of structural distortions upon ligand binding have been tested. In all cases,
the conformational selection model has been confirmed and the conformational space between
apo and holo forms has been encompassed. Different strategies have been tested that impact
either on the efficiency to achieve a desired conformational change or to achieve a balanced
exploration of the protein conformational multiplicity. 

Keywords: protein conformational space, normal modes. 
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I. INTRODUCTION

The  native  state  of  proteins  can  be  represented  as  an  ensemble  of  conformers  in
dynamical  equilibrium1.  That  is,  conformers  are  separated  by  energy  barriers  that  can  be
overcome  by  thermal  fluctuations.  Conformational  transitions  can  mean  a  wide  range  of
structural changes ranging from spatially localized distortions (e.g. side-chain reorientation that
can act as gates for ligand entry, small loop or helical hairpin fluctuations or changes in the
relative  orientation  of  residues  in  the  active  site2)  to  collective  global  rearrangements  (e.g.
changes in the relative orientation between domains, or fluctuations of large loop or intrinsically
disordered regions3,4. 

The existence  of  an ensemble  of  conformers  in  dynamical  equilibrium validates  the
generalized conformational selection model5–10 originally formulated by Monod, Wyman and
Changeux to explain corporativism and allosterim11–13. According to this model, the pre-existing
conformational multiplicity of a protein is required so that it can fulfil its function. Currently,
many aspects of the protein function, such as enzyme catalysis14, signal transduction15, protein-
protein  interaction16,  promiscuity17 and  allosterism1,13 are  explained  making  use  of  its
conformational diversity. Therefore, the exploration of the conformational space of a protein is
a valuable task that contributes to understand its function.

Conformational diversity of proteins is also employed to improve the performance of
different bioinformatics tools like molecular docking18, protein-protein interaction prediction19,
evaluation  of  protein  structural  models20,  prediction  of  observed  substitution  patterns  of
sequence divergence during evolution21, and coevolutionary measurements between residues22.
In order to give rise to this demand, different databases of conformational diversity in the native
state of proteins (CoDNaS23, PDBFlex24) have been developed.

Ligand binding can be characterized in terms of structural differences between apo and
holo  conformations  of  a  protein25,26.  The  pre-existence  of  both  conformers  within  the
conformational space of a protein in the absence of ligand has been extensively verified by
multiple  experimental  techniques  like  X-ray  and  cryo-electron  microscope  images,  kinetic
studies,  single  molecule  fluorescence  and  NMR27–30.  Therefore,  the  conformational  change
between apo and holo conformations  should be achieved by their  intramolecular  vibrational
dynamics.  The  energy  barriers  that  separate  these  conformers  are  commonly  overcome  by
thermal  fluctuations.  Therefore,  protein  vibrations  under  thermal  equilibrium  conditions
modulate the conformational  diversity and the relative population of each conformer on the
whole ensemble. 

Numerous computational methods have been developed to explore the conformational
space  of  a  protein31.  On  one  hand,  Molecular  Dynamics  (MD)  techniques  suffer  from the
inefficiency in reaching certain high energy barriers between conformers. The height and the
collective character of a conformational change impact on the time-scale for it to occur. In order
to  overcome  this  issue,  several  accelerated  conformational  sampling  techniques  have  been
developed,  e.g.,  metadynamics32,  replica-exchange  MD  (REMD)33,34,  self-guided  MD35,  and
targeted MD36,37 among others. 

Coarse-grained  techniques  have  been  developed  not  only  to  reduce  the  MD
computational costs38–43 but also to contribute in protein design, modelling of protein energy
landscape,  and  conformational  transition  pathways44–47. Methods  based  on  Normal  modes
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analysis (NMA) using elastic network models (ENM)48,49 have shown to be largely efficient to
explore  global  dynamics  (i.e.  low  frequency  modes)  of  proteins  commonly  associated  to
conformational  transitions50–53.  Moreover,  it  has been proved that  only a few low-frequency
normal  modes  are  necessary  to  achieve  a  good  description  of  most  of  the  conformational
changes associated to the biological  function of proteins54. Since ENM is limited to second
order approximation of the potential  energy surfaces,   pathway generation requires iterative
deformations to explore the conformational space and/or pathways of conformational transitions
of proteins50,51,53,55–66. Most of the methods propose iterative structural distortions of an original
protein structure either performing unbiased explorations of conformational space or exploring
guided  pathways  connecting  two  different  conformations,  e.g.,  apo  and  holo  forms.  NMA
performed on each new structures obtained at each iteration step proves successful in exploring
the conformational  space through effective anharmonic paths.  The continuously updating of
normal modes allows to accomplish the desired conformational transitions. Methods like MAP
(MinActionPath)67,  mENM68,  iENM69,  aANM70,  Climber71,  NMSim72,  MDdMD73,  GodMD74,
ANMPathway75,  iMODS76 and  coMD56,  among  others,  represent  conformational  transition
modelling methods that allow to define transition paths connecting two protein conformations.

Herein, we present an alternative procedure to efficiently explore the conformational
space of proteins.  The method attempts  to efficiently  provide realistic  ensembles  of protein
conformations  that  can  be  subsequently  used  in  further  studies  involving  large  number  of
homologous proteins.  Therefore, it represents an efficient and faster alternative respect to other
accurate atomistic methods for sampling of conformational space60. Different biophysics and
bioinformatic  studies  require  of  initial  confident  ensemble  of  protein  conformations,  i.e.,
flexible docking and drug design approaches, studies of the dynamism of homologous proteins,
improvements  of  homology  modelling  techniques77,  effect  of  mutations  on  changes  in  the
relative  population  of  conformers  of  the  native  state78,  coarse-grained  MD  simulations  to
explore protein energy landscapes, structurally constrained evolution methods79 and validation
of NMR ensembles80 among others.  

The method is  presented  in  its  unbiased and targeted  versions.  Inspired  on previous
works61,  the  method  is  a  three-step  approach  involving:  (a)  identification  of  the  residue
interaction  network  (RIN);  (b)  NMA  based  on  this  RIN;  (c)  generation,  selection  and
optimization of new protein structures displaced in the direction of selected NMA modes. These
three steps are repeated iteratively and random structural distortions are introduced in step (c)
according to the protein equilibrium dynamics at a given temperature. That is, the exploration of
conformational  space is  performed fulfilling  the equilibrium probability  distribution of each
collective  normal  mode at  that  temperature.  Different  strategies  to  generate  the  new set  of
structural distortions at each iteration step are discussed. 

The  paper  is  organized  as  follows.  In  Section  II  we  briefly  describe  our  iterative
procedure to protein conformational spaces, either in its unbiased or targeted version. In Section
III  we present  and discuss  their  efficiency  on explore the  conformational  sampling  of  four
proteins with different magnitude of structural distortions upon ligand binding.  Conclusions are
given in Section IV.
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II. METHODS 

A. Dataset 

Four proteins have been selected to test the performance of our procedure to explore the
conformational space of proteins. They have been selected to represent conformational changes
with different magnitude of structural distortions upon ligand binding: Calmodulin (CaM) (PDB
ID 1CLL and 1CDL for apo and holo conformations respectively)  with RMSD (root-mean-
square  deviation)  = 15.2 Å between both conformations,  Adenylate  Kinase (AK) (PDB ID
4AKE and 2ECK for apo and holo conformations respectively) with RMSD = 6.9 Å, Lysine-
Arginine-Ornithine  (LAO)  binding  protein  (PDB  ID  2LAO  and  1LST  for  apo  and  holo
conformations respectively) with RMSD = 4.7 Å, Maltodextrin binding protein (MBP) (PDB ID
1OMP and 1ANF for apo and holo conformations respectively) with RMSD = 3.8 Å.

B. Normal Mode Analysis (NMA)

Normal  mode  analysis  has  been  performed  using  the  Elastic  Network  Model
(ENM)48,81 that considers the protein as an elastic network with nodes linked by springs within a
cutoff distance  rc. Herein, the atoms of protein backbone, Cβ and the center of mass of side
chains are taken as nodes. The value of  rc is varied from 7Å to 20Å in order to optimize the
correlation between theoretical and experimental B-factors.

The interaction potential between the N nodes is then defined as48,82,83 

E (ri , r j )=
1
2

k ij (|r ij|−|r ij
0|)

2
         (1)

where  rij ≡ r i −r j is the vector connecting nodes  i and  j, and the zero superscript indicates the
equilibrium position that corresponds to the coordinates of the nodes in the evaluated structure.
The value of the force constant k ij depends on the type of interaction between nodes i and j52,84,
that have been defined using the RING program (Residue Interaction Network Generator)85,86. 

Normal modes, obtained as a set of eigenvectors {Qk}k=1, 3N of the Hessian matrix H of
the interaction potential energy, are 3N vectors whose elements {Qk

j}j=1,3N represent the relative
displacements  of  Cartesian  coordinates  of  each  jth residue.  Each  normal  mode  Qk has  its
corresponding  frequency  w k=√ λk,  where  λk is  the  kth eigenvalue  of  H.  Therefore,  their
evolution in time can be expressed as

Qk=Ak cos (ωt )                                                             (2)

with Ak  being the amplitude of the normal-mode motion. Ak  can be calculated considering that
the average potential energy in the direction of Qk can be written as

⟨ V k ⟩=
1
2

λk ⟨Qk
2 ⟩=

1
4

λk Ak
2
                                                      (3)
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taking into account that, according to the equipartition theorem ⟨ V k ⟩=
1
2

k BT , we obtain

Ak=(
2 kB T

λk
)

1 /2

                                                            (4).

Any vector v can be expressed in terms of normal modes as

v= ∑
k=1

3N −6

( v ∙ Qk ) Qk= ∑
k=1

3 N −6

ck Q k                         (5)

with

 ck=∑
j=1

3 N

(v ∙Q k ) (6)

the minimum number of modes required to represent vector  v  is calculated using the mode
participation number52,87 as

P=( ∑
k=1

3N −6

( ck )
4)

−1

                 (7)

the P modes with largest values of (ck )
2 represent the minimum set of modes that describe v. 

The values of  {λk}k=1,3N are  scaled as  λk
*
=γ λk with the scaling constant  γ calculated in

order to best  fit  the experimental  temperature factors  Bi
exp with the theoretical  mean square

residue fluctuations ⟨ Δ ri
2 ⟩=⟨(r i −r i

0
)
2 ⟩ from its equilibrium position52. This is done by calculating

the theoretical temperature factors Bi
theor as 

Bi
theor

=
8π
3

⟨ Δri
2 ⟩                                     (8)

where ⟨ Δ ri
2 ⟩ can be expressed as88 

⟨ Δ r i
2 ⟩=3k BT ∑

k=1

3 N − 6

[ λk
−1Q k Qk

T ]ii                          (9)

being kB is the Boltzmann constant, T is the absolute temperature. Then, the scaling constant γ is
obtained as
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γ=8 π2 k BT
∑

i

3 N

Bi
theor

∑
i

N

Bi
exp

                                                        (10).

 
C. Distribution function for a harmonic oscillator in thermal equilibrium

Each  normal  mode  Qk  represents  a  harmonic  oscillator  whose  total  energy  can  be
calculated as

Ek (Qk , Pk )=
Pk

2

2
+

1
2

wk
2 Qk

2                                              (11)

with  Qk and  Pk being  the  normal  mode  displacement  and  momentum  respectively.  The
corresponding partition function is written as:   

Zk=
1
h
∫
− ∞

∞

d Qk∫
− ∞

∞

d Pk exp(− Pk
2

2 k BT )exp(− w k
2Q k

2

2 k B T )= kB T
ℏ wk

                             (12)

being ℏ=h/2π  with h the Plank constant and T the desired temperature.

Then,  the  distribution  function  of  displacements  for  each  normal  mode  in  thermal
equilibrium ρk (Qk )is calculated as

ρk (Qk , P k )=

exp(−
Ek ( Qk , Pk )

kB

T )
Zk

                                                        (13)

using eq. (11) and integrating on Pk we obtain

ρk (Qk )=∫
−∞

∞

ℏwk

exp(−
E k (Qk , Pk )

k BT )
kB T

d Pk=
ℏ wk

kB T √
π

2k B T
exp(−

w k
2Qk

2

2k BT )
                 (14)

for which we have used eq. (13).

D. Iterative procedure for conformational sampling 

A flowchart of our iterative procedure is displayed in Figure 1. We start by performing
a NMA analysis  on the structure  of  the  initial  conformation,  commonly  chosen as  the  apo



8

conformation as it  has been described in section II.  B. Then,  a set  of one hundred of new
structures are generated randomly in the direction of each of the  X lowest frequency normal
modes within the range [− Ak : Ak ] (see eq. 4) and the distribution function of displacements in
thermal equilibrium ρk (Qk ) (eq.14). In the present paper, we used X=10 except in cases that are
explicitly indicated. Thereafter, two different strategies are followed to select one structure from
the set as the new reference structure. We call them the unbiased and targeted versions of the
procedure. In the unbiased version, the structure with the largest RMSD respect to the initial
one is selected as the new reference structure to generate a new set of structures in the next
iteration.  In the targeted version, the structure with the smaller RMSD respect to the target
structure, that is, the structure corresponding to the holo conformation is selected. As it has been
pointed out previously (section II-B), NMA is performed considering as nodes only the atoms
of protein backbone, Cβ and the center of mass of side chains. Therefore, once the new structure
has been chosen as the new reference structure,  its all-atom representations is reconstructed
using the SCWRL program89 to take into account changes in side-chain conformations. After
that, a new iteration is started by performing NMA on it.   

III. RESULTS AND DISCUSSION 

We have applied our procedure, either in its unbiased and targeted versions, on four
proteins with different magnitudes of structural distortions upon ligand binding: Calmodulin
(CaM),  Adenylate  Kinase  (AK),  Lysine-Arginine-Ornithine  (LAO)  binding  protein  and
Maltodextrin binding protein (MBP). The Cα root-mean-square-fluctuations (RMSFs) obtained
from the  unbiased  ensembles  were  compared  with  conformational  variations  obtained from
experimental  apo and holo conformations  (Figure 2).  The Pearson correlation  coefficient  ρ
between them was 0.70, 0.86, 0.62, and 0.92 for CaM, AK, LAO and MBP respectively. These
results  validate  our  exploration  of  the  conformational  space  between  the  apo  and  holo
structures.  The  low  values  of  ρ  obtained  for  CaM  and  LAO  indicate  that  the  ten  lowest
frequency normal modes are not adequate to explore the fraction of the conformational space
that connects both conformations. In order to improve the performance of the method on these
two proteins, we have modified the criteria to select the modes to distort the reference structure.
Instead of using the 10 lowest normal modes, we use the P modes with largest values (ck )

2 of
corresponding to the vector difference, obtained by superposing the reference structure and the
holo structure and expressed in terms of normal modes of the reference structure (see eq. 5-7).
The distribution of values of P, calculated at each iteration during the unbiased simulations of
CaM and LAO, are shown in Figure 3(a-b). We can observe that P ranges between  5 to 30
modes. That is, the apo-holo conformational change of CaM and LAO involves other modes
than the 10 lowest frequency ones. The Pearson correlation coefficient ρ between the calculated
and experimental RMSFs obtained from unbiased simulations using the P modes was 0.87,  and
0.93 for  CaM, and  LAO respectively  (Figure  3c-d).  That  is,  a  significant  improve  of  the
method is achieved by selecting the set of normal modes in a more specific way. Actually,
normal modes change from one iteration to the other. This can be seen in Figure 4 where the
overlaps between normal modes of the initial apo structure and the corresponding ones obtained
at each iteration step are displayed. We can see that most of normal modes lose their original
identity in  15-20 iterations. The lowest normal modes seem to be more robust with respect to
structural distortions introduced at each iteration step. This is consistent with the previously
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reported  robustness  of  the  lowest  and  most  collective  motions  with  respect  to  mutational
perturbations90,91. Particularly, the identity of the lowest-frequency MBP modes seems to persist
during the whole unbiased simulations. MBP is the example with the least structural change
between  apo and  holo  structures  (RMSD = 3.77  Å).  Therefore,  MBP does  not  experience
significant structural distortions during our simulations and, therefore, the similarity of normal
modes is expected to be more preserved than in the other examples. 

A. Calmodulin

CaM belongs to the family of calcium binding proteins containing EF-hands or helix-
loop-helix  motifs.  It  participates  in  a  large  number  of  biological  functions  modulating  the
activities of other proteins, like protein kinases, NAD kinase, phospho-diesterase, and calcium
pumps  among  others.  The  conformational  change  between  apo  (extended)92 and  holo
(collapsed)93 structures involves a large structural distortion (RMSD = 15.2 Å). Figure 5 shows
the results of our targeted simulations. The apo 1CLL crystallographic structure is chosen as the
initial reference structure. After  50 iterations, it was possible to achieve a random structure
with RMSD = 1.6 Å respect to the holo (1CLD) structure (see  Table I). The main structural
change concern a hinge bending motion connecting the N- and C- lobes (Figures 5 b and c and
Figure S1),  leading to a change of the end-to-end linker distance (defined between Cαs of
residues 69 and 91)94 of 23.2 Å. This value is close to the one calculated at the holo structure
(21.7 Å) and smaller than the one corresponding to the apo conformation (33.7 Å). In order to
further validate our conformational exploration, the distance between the N- and C- lobes center
of masses and the dihedral angle  connecting them were also measured94. The values of N- and
C- lobes center of mass distances, calculated on apo- and holo- structures, are 41.9 Å and 23.8
Å respectively. The corresponding value, calculated on the structure that best match with the
holo-structure was 24.5 Å. Besides, the dihedral angle  was -81°, 121°, and 116° calculated on
apo, holo, and the structure that best match with the holo-structure respectively. This value were
in  excellent  agreement  with  previous  experimental  and  theoretical  (molecular  dynamics)
results94.  

 As it has been shown in  Figure 3(a), the conformational change is not limited to the
participation of the ten lowest frequency normal modes. Actually few middle-frequency modes
associated to local rearrangements seem also to be involved61. Therefore, an unbiased sampling
based on a conformational space exploration using a few lowest normal modes is not expected
to be able to efficiently reproduce it61. Our unbiased simulations were only able to achieve a
structure with of 5.1 Å respect to the holo (1CLD) structure (see Table I). In order to improve
this  performance,  we perform fifteen  unbiased  simulations  using  the  P modes  with  largest
values of  (ck )

2 associated to the vector difference between apo and holo structures (see eq. 5-7).
These  simulations  were  performed  staring  from the  same apo  structure  but  using  different
random-seed.  The  results  are  shown  in  Figure  6.  While  some  simulations  explore  a
conformational space far away from the region of the holo structure, others manage to reach it.
The best match between a random generated structure and holo structure was 2.8 Å, confirming
that an adequate selection of the set of modes to be used to explore the conformational space
can significantly improve the performance of the method. The end-to-end linker distance results
23.8  Å,  very  close  to  the  value  of  23.2  Å  obtained  in  the  targeted  simulations.  The
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corresponding values of distance between the N- and C- lobes center of masses and the dihedral
angle  were 27.3 Å and 131° respectively.

In  order  to  further  validate  our  findings,  we have  compared  the  structures  obtained
during unbiased simulations with the 160 models determined by NMR for apo CaM95. Values of
RMSD respect to apo and holo structures for these NMR models are pointed out in Figure 6(a).
Most of NMR models are within the subspace of structures generated during our set of unbiased
simulations, confirming the reliability of our method to generate conformational ensembles.   

At this point it is interesting to stress that our results represent a relative improvement
respect  to  previous  reported  results  obtained  by  unbiased  CaM  conformational  space
explorations61.  CaM  conformational  changes  are  subjected  to  local  rearrangements  with
significant  impacts  on the N- and C- lobes exposure surfaces96.  These local  rearrangements
cannot  be  taken into  account  by low-frequency  normal  modes61,97.  Besides,  the  apo-to-holo
conformational change of CaM involves a substantial change in its residue interaction network.
Nevertheless, several features of our unbiased procedure for conformational space exploration
contribute to overcome these issue. Firstly, structural distortions introduced at each iteration
step are within the limits  provided by the calculated thermal fluctuation amplitudes of each
normal  mode  (see  Section  II.C).  This  significantly  reduces  the  extent  of  deformations
increasing the reliability of the resulted structures and allowing the incorporation of structural
changes  in  a  smoother  manner  than  other  methods.  This  can  be  seen  in  Figure  S2 where
statistical parameters concerning the set of new structures generated randomly at each iteration
step, are displayed. Maximum values of RMSD are typically lower than 0.7 Å and standard
deviations below 0.1 Å. Structural distortions seems to depend on the extent of apo-to-holo
conformational change and tend to decrease with the # of iteration steps. Secondly, middle-high
frequency normal modes present smaller amplitudes than low-frequency ones, as it is indicated
in equation 4. Therefore the reliability of the new structures is not restricted to the use of a
reduced number of low-frequency modes and the method is flexible to consider any previously
selected combination of low-middle-high frequency normal modes.  Besides, required changes
in side-chain orientations, that should involve middle-high frequency modes, are optimized at
each iteration step (see Section II.D). Finally, our NMA is performed according to interaction
contacts  defined  at  each  iteration  step  using  re-evaluated  residue  interaction  networks  (see
Section II.B).

  
B. Adenylate Kinase

AK is a phosphotransferase that contributes to maintain the ATP/ADP balance in cells
by catalyzing their interconversion. It represents example of a large functional conformational
transition98 involving  a  hinge  motion  connecting  the  open  (apo)  and  closed  (holo)
conformations.  The  conformational  change  implies  a  RMSD  =  6.9  Å  between  both
conformations.  The  hinge  motion  induces  displacements  of  the  so-called  LID  and  NMP
domains relative to a third domain (CORE) to exclude water from the active site during the
catalysis99.  The conformational  selection  model  has  been previously confirm for  AK, either
experimentally14,100 and theorietically101. This has been also confirm by our targeted (Figure 7)
and unbiased (Figure 8) simulations, from which we managed to reach structures with RMSD
equal to 1.1 Å and 2.4 Å respectively (see Table I). The structural changes observed in the apo-
to-holo path are shown in Figure S3. The main conformational change involves the loop of the
LID  domain,  particularly  the  fragments  R124-V132  and  P140-R156.  Our  final  structures
present a relative displacement of the α-helix composed by residues K47-A55 respect to the
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holo structure. Therefore, this final rearrangement seems to involve other modes than the ten
lowest-frequency ones.

The relative positions of LID, CORE, and NMP domains can be described by the LID-
CORE and NMP-CORE angles102. While the initial  apo structure presents values of 71° and
148° for LID-CORE and NMP-CORE angles respectively, the values at holo structure are 16°
and 25° respectively. These values are well reproduced in our two types of simulations: 16° and
25°, calculated on the structure that best fit with the holo structure for targeted simulations, and
20° and 27° for the unbiased simulations respectively. 

Targeted simulations on AK (Figure 7) reach the holo structure in less iterations than
CaM  (Figure  5).  This  is  expected  due  to  the  smaller  apo-to-holo  conformational  change
involved. In the case of the unbiased simulations (Figure 8), we observe that some of them
explore regions of the conformational space situated far from those corresponding to the apo
and holo structures. These structures reach LID-CORE and NMP-CORE angles of  80° and
210° respectively. On the contrary, a few simulations seem to experience iterative structural
distortions  that  drive  the  protein,  in  a  sequential  way,  to  the  holo  conformation.  Since  all
unbiased simulations started from the same initial apo structure, it seems that directions selected
during the first iterations have a significant influence on the structural distortions introduced in
the subsequent iterations. That is, explorations of the conformational space perform on each
simulation are not exhaustive and they seem not to be reversible in all cases. In this way several
simulations starting with different random seeds are recommended.  

C. Lysine-Arginine-Ornithine (LAO) binding protein

LAO is a periplasmic substrate-binding protein (permease) that is part of the bacterial
periplasmic transport system in charge of the transport of different kind of substrates like amino
acids,  peptides,  sugars,  vitamins,  and  inorganic  ions103,104.   It  has  a  bi-lobal  structure  with
domains 1 and 2 that are connected by two connecting segments. The structure presents a deep
cleft between both domains. Each domain is composed of five β-strands and four α-helices. It
undergoes a conformational change which is presumably an integral aspect of its mechanism.
Our targeted simulations were able to reproduce this conformational change (see  Figure S4),
reaching a random structure with RMSD = 0.6 Å respect to the holo conformation (see Table
I). 

As it was the case with CaM, our unbiased simulations were not able to explore the
complete apo-to-holo conformational change and the best match of a random structure with the
holo conformation  was RMDS=2.4Å. This  was also seen in  previous  conformational  space
explorations performed by Gohlke et al.61. Therefore, we have extended the vibrational space to
consider the P modes involved in the vector difference between apo and holo structures (eq. 5-
7). In this way, we were able to achieve a RMSD = 0.7 respect to the holo structure. Figure 9
shows  the  result  of  these  simulations.  As  in  the  case  of  AK,  we  can  observe  that  a  few
simulations follow conformational pathways that move the structure away from the apo and
holo forms. As it was the case for AK, this behaviour can be related to the fact that the apo-to-
holo conformational change involves global and hinge-bending motions of domains 1 and 2105. 

D. Maltodextrin binding protein (MBP) 

MBP is a periplasmic-binding protein that belongs to the maltose transport system, an
ATP-binding  cassette  (ABC)  transporter  that  accumulates  linear  maltooligosaccharides  and
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results essential for the survival of Gram-negative bacterial cells. Its structure consists of two
globular  domains  with  Rossman  fold  or  α/β  motif.  These  two domains  are  separated  by  a
ligand-binding site groove and the ligand-binding conformational change consists on a hinge-
bending between these domains106–108. 

MBP has been chosen as an prototype example for which previous pioneers studies have
shown that  the  collective  lowest-frequency modes closely  map the apo form onto the  holo
form48.  Actually,  an  overlap  >0.8  between  one  collective  mode  and  the  vector  difference
between apo and holo forms have been reported109. Therefore, it is a suitable example to test our
procedure in all its versions. As it was expected, either targeted and unbiased simulations have
allowed to achieve the apo to holo conformational change obtaining random structures with
RMSD equal to 0.9 Å and 1.2 Å respectively (see  Table I). Results concerning the unbiased
simulations are shown in Figure S5. 

E. Other selections of the reference structure 

At this point it is important to mention that other options to select the reference structure
at each iteration step for the unbiased simulations have been tested. Particularly, we have tested
two other options instead of the structure with the largest RMSD respect to the initial one. On
one hand, we have performed simulations considering selecting the structure with the largest
RMSD respect to the structure used to introduce the structural distortions at each iteration step
(see Section II. D) at room temperature. On the other hand, we have selected the structure with
the  smaller  RMSD  respect  to  it.  In  none  of  these  variants  we  manage  to  explore  the
conformational space that connects apo and holo structures. Besides, tests considering the holo
structure  as  the initial  one have  also been performed.  As it  has  been observed in  previous
works109,  the  compactness  of  holo  conformations  makes  its  vibrations  less  suitable  to  be
reproduced  by  low-frequency  normal  modes  using  ENM.  Our  simulations  using  the  holo
structure as the initial one were not able to explore the conformational space involving the apo
structure.

IV. CONCLUSIONS

We  have  presented  a  new  iterative  procedure  to  explore  conformational  spaces  of
proteins based on their equilibrium dynamics at room temperature. It makes use of vibrations
obtained by normal mode analysis according to protein elastic network models. In that sense,
the method does not use further ad hoc prescriptions and structural distortions are introduced
randomly within the range of protein thermal fluctuations.   

The method has been tested on four proteins  with different  magnitudes  of structural
distortions upon ligand binding have been tested. Two different strategies have been tested. On
one hand, the targeted strategy allows to find a conformational path that connects an initial
chosen structure (e.g. the apo state) and a final target one (e.g. the holo state).On the other hand,
the unbiased strategy explores the conformational space available for the initial chosen structure
according to its thermal fluctuations, without any further guided direction. We found that the
method  results  sufficiently  efficient  using  both  strategies.  Furthermore,  the  two  reported
strategies can be interpreted as limited cases of a large variety of situations in which only partial
targeted structural information is provided to guide the conformational sampling exploration,
e.g., certain specific final contacts or relative orientations between residues. 
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The performance of the method is subjected to the efficiency with which the selected set
of  normal  modes  introduces  structural  distortions  that  allow  a  broad  exploration  of  the
conformational space. We think that the simplicity of the method, together with its flexibility in
terms of either the number and type of normal modes selected, and the information provided as
a  guide  for  conformational  space  exploration,  makes  it  a  suitable  way  to  explore  the
conformational  multiplicity  of  proteins.  Furthermore,  the  method  introduces  structural
distortions according to protein thermal fluctuations while it optimizes side-chain orientations.
Because of that, it can result useful in providing the starting points for more detailed atomistic
or coarse grained MD simulations without subjecting the molecular system to sudden, relatively
localized structural stresses that can lead to subsequent unstable MD simulations. Besides, the
method results efficient enough to be applied in biophysics and bioinformatics approaches that
require fast generation of ensembles of protein conformations, i.e., flexible docking and drug
design  approaches,  and  different  kind  of  comparative  studies  of  the  dynamism  among
homologous proteins. 

SUPPORTING INFORMATION AVAILABLE

Figure  S1. Superimposed  putty-style  cartoon  representation  of  the  holo  structure  with  the
random structure that best match with at different steps during the targeted simulation of CaM.
The variable-width and colour (from blue red in increasing  order of RMSD) correspond to
values of RMSD per site.

Figure S2.  Maximum values of RMSD (a, b) and standard deviations (c, d) for the random
structures respect to the corresponding reference structure obtained at each iteration step during
(a, c) targeted and (b, d) unbiased simulations.

Figure  S3. Superimposed  putty-style  cartoon  representation  of  the  holo  structure  with  the
random structure that best match with at different steps during the targeted simulation of AK.
The variable-width and colour (from blue red in increasing  order of RMSD) correspond to
values of RMSD per site.

Figure S4.  (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  targeted  simulation  of  LAO.  Iterations  are  identified  with  different  colours;  (b)
superposition  of  apo  (green)  and  holo  (blue)  structures  of  CaM  (RMSD  =  4.7 Å);  (c)
superposition of holo (blue) structure with the random structure that best match with it (i.e.
lower RMSD = 0.6 Å) (cyan). 

Figure S5.  (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  unbiased  simulation  of  MBP.  Different  simulations  are  identified  with  different
colours; superimposed putty-style cartoon representation of the (b) apo and (c) holo structures
with the random structure that best match with the holo structure. The variable-width and colour
(from blue red in increasing order of RMSD) correspond to values of RMSD per site.
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FIGURE CAPTIONS

Figure 1. Workflow for exploration of protein conformational space.
 
Figure  2.  Comparison  of Cα  root-mean-square-fluctuations  (RMSFs)  obtained  from  the
unbiased ensembles (red) and obtained from experimental apo and holo conformations (blue)
for (a) CaM, (b) AK, (c) LAO and (d) MBP.

Figure 3. Distribution of values of P throughout the unbiased simulations for (a) CaM, and (b)
LAO. Comparison of Cα root-mean-square-fluctuations (RMSFs) obtained from the unbiased
ensembles  (red) and obtained from experimental  apo and holo conformations  (blue)  for  (c)
CaM, and (d) LAO using the  P modes that overlap the most with the vector difference that
connect apo and holo structures. 

Figure 4.  Overlaps between normal modes of the initial apo structure and the corresponding
ones obtained at each iteration step during targeted simulations for (a) CaM, (b) AK, (c) LAO
and (d) MBP.

Figure 5.   (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  targeted  simulation  of  CaM.  Iterations  are  identified  with  different  colours;  (b)
superposition  of  apo  (green)  and  holo  (blue)  structures  of  CaM  (RMSD  =  15.2 Å);  (c)
superposition of holo (blue) structure with the random structure that best match with it (i.e.
lower RMSD = 1.6 Å) (cyan). 

Figure 6.   (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  unbiased  simulation  of  CaM.  Different  simulations  are  identified  with  different
colours; values of RMSD respect to apo and holo structures for NMR models (obtained from
the  PDB  file  2K0E)  are  indicated  as  black  dots.  Superimposed  putty-style  cartoon
representation of the (b) apo and (c) holo structures with the random structure that best match
with the holo structure. The variable-width and colour (from blue red in increasing order of
RMSD) correspond to values of RMSD per site.

Figure 7.   (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  targeted  simulation  of  AK.  Iterations  are  identified  with  different  colours;  (b)
superposition  of  apo  (green)  and  holo  (blue)  structures  of  AKM  (RMSD  =  6.9 Å);  (c)
superposition of holo (blue) structure with the random structure that best match with it (i.e.
lower RMSD = 2.4 Å) (orange). 

Figure 8.   (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  unbiased  simulation  of  AK.  Different  simulations  are  identified  with  different
colours; superimposed putty-style cartoon representation of the (b) apo and (c) holo structures
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with the random structure that best match with the holo structure. The variable-width and colour
(from blue red in increasing order of RMSD) correspond to values of RMSD per site.

Figure 9.   (a) Values of RMSD for the random structures respect to apo and holo structures
during  the  unbiased  simulation  of  LAO.  Different  simulations  are  identified  with  different
colours; superimposed putty-style cartoon representation of the (b) apo and (c) holo structures
with the random structure that best match with the holo structure. The variable-width and colour
(from blue red in increasing order of RMSD) correspond to values of RMSD per site.
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Table 1. Results of iterative procedures for conformational sampling

Protein apoa targetedb unbiasedb 
unbiased with

selected modesb

CaM 15.2 1.6 5.1 2.8 

AK 6.9 1.1 2.4 -

LAO 4.7 0.6 2.4 0.7

MBP 3,8 0.9 1.2 -

aBackbone RMSD with respect to the experimental holo structure. bRMSD of the conformation
most similar to the holo form.
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