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Abstract

The Wind Farm Cable Routing problem plays a key role in offshore wind
farm design. Given the positions of turbines and substation in a wind farm,
and a set of electrical cables, the task is to minimize the cost of the connect-
ing cables that are needed to transfer the power produced by the turbines to
the substation, with the complicating constraint that crossing cables are not
allowed. In the present paper we introduce, implement and test five different
metaheuristic schemes for this problem: Simulated Annealing, Tabu Search,
Variable Neighborhood Search, Ant Colony Optimization, and Genetic Al-
gorithm. We also propose a new construction heuristic, called Sweep, that
typically finds an initial high-quality solution in a very short computing
time. We compare the performance of our heuristics on two datasets: one
contains instances from the literature and is used to tune our codes, while
the second is a large new set of realistic instances (that we make publicly
available) used as a test set. According to our experiments, Variable Neigh-
borhood Search obtains the best overall performance. Tabu Search is our
second best heuristic, while Genetic Algorithm and Simulated Annealing
perform worse but are often able to slightly improve the Sweep initial so-
lution. Ant Colony Optimization, instead, struggles even to reach feasible
solutions.

Keywords: (O) Wind Farm Optimization – Cable Routing Problem –
Metaheuristics – Computational Analysis.
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1 Introduction

Wind energy plays a key role among renewable technologies in reducing the impact
on the environment caused by ever increasing power consumption. In 2017, wind
provided 5% of the world electricity demand, with an increase of 52.3GW of wind
power capacity added from the previous year [50]. Therefore, solving effectively
the optimization problems arising wind farm design is more and more relevant for
companies in this sector.

Designing an efficient wind farm leads to many challenging optimization prob-
lems, whose solution is not only of academic interest but can also bring important
economical advantages to all companies involved. This is witnessed by the im-
pressive savings reported in 2019 by the energy company Vattenfall, one of the six
finalists of the prestigious Franz Edelman Award [16].

In the present work we address the Wind Farm Cable Routing Problem (WFCRP):
given an offshore wind farm with the positions of turbines and substation, and a
cable set, we want to optimally place the cables between turbines so that all the
produced energy eventually reaches the substation and then can be transported
to the onshore grid through a single export cable. It can be estimated from [41]
that, for offshore wind farms, the electrical infrastructure costs amount to 4-5% of
the total CAPEX cost, so it is important to design solutions as close as possible
to the optimum.

In our scenario the positions of the turbines and of the substation have already
been identified; optimizing the turbine position is on fact another important opti-
mization problem in this application field that has been studied, among others, in
[19, 38, 46, 4, 14, 15].

WFCRP has been proved to be NP-hard [26] in theory, and also very hard to
solve to proven optimality in practice, even using advanced Mixed-Integer Linear
Programming (MILP) models and the best solvers on the market. In practical ap-
plications involving preliminary what-if analyses, however, one is mainly interested
in finding reasonably good solutions in very short computing times, a setting that
motivated our interest for new heuristic techniques (not using MILP technology)
to solve it.

The paper is organized as follows. Section 2 gives a precise definition of
WFCRP and of the corresponding constraints, namely: guaranteeing that the
solution defines a tree; ensuring that only one cable exits each turbine; using for
each link a cable type with enough capacity to support its power flow; not ex-
ceeding a given maximum number of connections to the substation; avoiding cable
crossings that would imply large extra costs. In this section we also examine the
existing literature on the problem, which tries to solve it both with MILP models
and with ad-hoc heuristics.

Section 3 describes our experimental design, and in particular the use of two
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different sets of instances for training (i.e., code tuning) and testing (i.e., bench-
marking) the developed codes. Our training set is composed of 24 real-world
instances of real wind farms taken from the literature [26]. The test set involves
instead 220 medium-to-large size new instances which are available, on request,
from the authors.

Section 4 describes some basic tools used by the heuristics. Our six new heuris-
tics are introduced in Sections 5 to Sections 10. The first one, Sweep, is a construc-
tive heuristic which is able to compute very good solutions in just a few seconds of
computing time, hence it is used as a warm start by the other techniques. The other
five heuristics are based on metaheuristic strategies: Simulated Annealing, Tabu
Search, Variable Neighborhood Search, Ant Colony Optimization and Genetic Al-
gorithm. All heuristics benefit in efficiency by considering a clever parametric cost
evaluation when computing the solution costs. For each (meta)heuristic we report
the implementation details, the variants and the parameters considered during
their development.

In Section 11 we analyze the performance of the heuristics on our two sets of
instances. Finally Section 12 summarizes the work done and the results obtained,
and provides some suggestions for future researches.

2 The Wind Farm Cable Routing Problem

WFCRP can be outlined as follows; see [26] for fuller details. Assuming the turbine
positions have already been selected for a specific farm, the task is to choose which
cables to place between the turbines to transfer all the produced electric power
to a given collecting point (the substation), that eventually is connected to the
power grid on the coast. Different cable types are available, each characterized by
a different unit cost and electrical capacity.

We limit the problem of interest to wind farms with only one substation, as it
is in the majority of real cases, and only consider offshore wind farms that do not
need to take terrain morphology or obstacles into account.

2.1 Solution structure

On input, we are given the following information:

• the number n+1 of points in the site: point 0 corresponds to the substation,
while points 1, . . . , n correspond to the turbines;

• the fixed 2D-coordinates (xi, yi) of each point in the site, i = 0, . . . , n;

• the power production Pi of each turbine i = 1, . . . , n;
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• a set of K cable types, the k-th of which having a capacity capacity(k) and
unit cost ck, k = 1, . . . , K;

• an upper bound C on the number of cables that can be physically connected
to the substation.

Typically, all turbines are of the same type and hence produce the same power,
so power productions and cable capacities are normalized, i.e., we have Pi = 1 for
i = 1, . . . , n (while the substation has no power production).

Points in the site can be visualized as nodes of a complete and loop-free graph
G = (V,E), whose edges correspond to the potential cable connections. On output,
we have to find a tree on G whose arcs correspond to the built cable connections.
Arcs in the tree are directed from the turbines to the substation, according to
the electrical flow, so they define an anti-arborescence rooted to node 0 where the
out-degree of each non-root node is 1. Figure 1 plots an example of a feasible
solution.

Figure 1: Example of a solution for a WFCRP instance with n = 80 turbines. The
substation is node 0, all other nodes are turbines with power production Pi = 1.
Cable capacities are normalized: cable type 1 can support up to 7 turbines, while
cable type 2 is more expensive but can support up to 12 turbines. At most C = 6
arcs can enter the substation, and the built cables are pairwise noncrossing.
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2.2 Penalized cost function

Given any feasible solution GT = (V, T ), say, one can easily compute the total
amount of flow fij on each arc (i, j) ∈ T , and choose the less-expensive cable type
k(i, j) ∈ {1, . . . , K} that supports such a flow fij. The overall cost of the tree is
therefore easily computed as

cost(T ) :=
∑

(i,j)∈T

ck(i,j) · dist(i, j),

where dist(i, j) gives the Euclidean distance between points i and j in the plane.
For the heuristics, however, the cost function must be extended to include penalties
for possible sources of infeasibility such as crossings, extra-flow on some arcs, extra
cables to the substation, etc.

The heuristic techniques we developed use a successor data structure to rep-
resent a solution: it memorizes for each node v ∈ V which node the exiting arc
(which is only one for each node) is connected to. The penalized cost function is
then computed according to the following steps:

1. Compute arc flows : Calculate the flow on each arc, using a modified Depth
First Search algorithm [48] that sums all the produced power from leaf nodes
to the root node (the substation).

2. Select cable types : Based on the flows computed at the previous step, a cable
type is assigned to each arc by selecting the cheapest cable that can support
the power flowing through it; in case no such cable exists, we select the
maximum-capacity cable available and mark the arc as an overflow arc.

3. Define cable costs : We sum the unit costs of each selected cable multiplied
by its length; for overflow arcs, and add a penalty of M1 (say) to the total
cost, multiplied by the amount of extra flow.

4. Connections to the substation: We count how many arcs are connected to
the substation: if this number exceed C, we add to the total cost a penalty
of M2 (say) for each extra connection.

5. Crossings : We count how many arcs cross any other arc in the solution: for
each crossing, a penalty of M3 (say) is added to the solution cost.

6. Proper tree: Finally, to be sure that the solution has a meaningful structure,
we penalize by an exceedingly large value M4 (say) any solution containing
self-loops, cycles, disconnected components, or a number of arcs different
from n.
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In our implementation we used the following very-large penalties for infeasi-
bilities: M1 = M2 = M3 = 109, and M4 = 1010. As to the crossing penalty M3,
we observe that for a company it could be interesting to know if the extra-cost to
allow them would pay off. To this end, in our heuristic framework one can simply
allow them and set penalty M3 to the actual cost of building a crossing—while the
same would be prohibitive in a MILP model as it would require a huge number of
additional variables.

2.3 Related work

WFCRP has been studied by many authors, using both exact and heuristic tech-
niques.

The work of [40] considers a hybrid genetic and immune algorithm and tests
it on a offshore wind farm. Genetic algorithms have been studied also in [51]
and [31]: the first reference considers power losses, wind power production, initial
investment and maintenance costs in their optimization; the second one is modified
to take into account different cable cross sections in the design of a radial array.

A heuristic technique has been studied in [8], which uses a multi-level clustering
for the cable routing.WFCRP is instead modeled as a planar open vehicle routing
problem in [1]; this formulation imposes the constraint that only one cable can
enter a turbine.

In [35] a heuristic based on minimum spanning trees is developed and enhanced
with an adaptive particle swarm optimization; this heuristic is then compared, on
three offshore wind farm scenarios, to deterministic methods based on minimum
spanning trees and on a dynamic variant of it. The work [52] presents an algo-
rithm of self-tracking minimum spanning trees that works with a fuzzy C-means
clustering.

In [2] a divide-and-conquer solution approach is proposed, although it is tested
only on small wind farms (n < 11). Turbine placement and cable routing are
studied in [9], where a MILP model for each of these two problems is proposed.

The paper [26] proves the NP-hardness of the problem even in some relevant
special cases, and presents a MILP model along with exact and so-called matheuris-
tic [12] solution approaches. The proposed model can take power losses and obsta-
cles into account, and exploits so-called Steiner nodes to allow for bended cables.
A computational analysis is reported, and a set of 24 real-world instances is made
publicly available for benchmarking. Several extensions of the basic MILP model
have been proposed in [13, 20, 21, 25, 23, 24, 22, 11].

The work [3] also considers power losses in cables and develops MILP models
for the problem. In [34] the problem is studied for onshore cases. The authors
develop a Mixed Integer Quadratic Programming model, which is then simplified
to a MILP model to be solved by standard software. They also consider two cable

6



types: underground and on the ground. For the first cable type parallel structures
are preferred since they are easier to build, while existing roads are favored for
ground cables. In [37], instead, a MILP model is developed for wind farms, taking
obstacles into consideration. MILP solutions are compared in [45] with a k-means
technique for obstacle avoidance in cable routing.

3 Experimental design

Heuristic methods typically involve a number of parameters affecting (often in an
unpredictable way) the quality of the final solution found. To overcome the risk
of overtuning, we decided to use two separate sets of instances for tuning and for
testing.

3.1 Training Set

Our training set is composed of 24 instances from [26]. The data refers to five
real wind farms located in the United Kingdom, Germany and Denmark, and are
summarized in Table 1.

Name Site Turbine Type # of Turbines C
wf01 Horns Rev 1 Vestas 80-2MW 80 10
wf02 Kentish Flats Vestas 90-3MW 30 ∞
wf03 Ormonde Senvion 5MW 30 4
wf04 DanTysk Siemens 3.6MW 80 10
wf05 Thanet Vestas 90-3MW 100 10

Table 1: The five real-world wind farms used for training [26]
.

The instances that correspond to the second and third wind farms are the
easiest ones, having only 30 turbines, while the most difficult instances are the
last four ones, which correspond to a wind farm with 100 turbines. As a matter of
fact, many of the harder instances do not reach a feasible solution using an exact
solver for the MILP model, and require sophisticated matheuristic techniques [12]
to reach good (although possibly suboptimal) solutions.

3.2 Test Set

Our test set has been created on real-world data with the aim of considering
realistic case scenarios. In particular, the combinations of the following items have
been explored to create our wind farm layouts:
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• n: we considered 3 different values for n, namely, 50, 80 and 120.

• s: we considered 5 different areas, which are based on real wind farm sites.

• t: we considered 4 different turbine models (namely: t01, t02, t03 and t04)
with different rotor diameters and power productions (respectively: 8MW,
7MW, 8.4MW, and 8MW); as in most real cases, each wind farm is made of
turbines of the same type.

• w: we considered 5 different real wind statistics for each layout.

The instance names are composed by the combination of the parameters above
with their numeric value; for example, instance n50 s01 t02 w03 indicates a layout
of 50 turbines (n50) for the first site (s01), with turbines of the second type (t02)
in the third scenario of winds (w03).

The combination of these parameters leads to 300 different cases. For each case,
an optimized turbine layout has been computed with a 1-hour time limit, using the
MILP-based matheuristic in [17, 19] using the Proximity Search paradigm [18]. A
post-processing phase was required to exclude some of the obtained layouts, since
not all of them admitted a feasible position for all the turbines (especially for the
largest values of n). This was due to the fact that the layout optimization must
satisfy some constraints such as not placing the turbines too close one to each
other (and in some cases the available area was not enough to accommodate all
turbines). For this reason 80 layouts had to be eliminated from the test set, leaving
220 valid layouts with the following composition: 100 layouts with 50 turbines, 80
layouts with 80 turbines, and 40 layouts with 120 turbines.

Cost per meter 7MW turbines 8MW turbines 8.4MW turbines
430 6 5 5
480 8 7 7
610 14 12 11

Table 2: The cable set used for the test instances. We report a realistic unit cost
for the three cable types, along with the number of turbines they can support for
different turbine types. Unit costs include installation costs.

The cable set used for the test instances is given in Table 2. For each layout we
considered three possible positions (x0, y0) for the substation, as shown in Figure
2. The default position we consider for the substation is in the middle-top of the
turbine layout, as this resembles what happens in some real cases of the training
set. The other two options are on the middle-left, and on the geometric center
(barycenter) of the turbines.
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Figure 2: An example of the three substation positions, for test instance
n80 s02 01 w04.

The last parameter to consider for the test instances is C, i.e., the maximum
number of cable connections to the substation. According to our computational
experience, the value of C together with the maximum cable capacity and the
number of turbines gives a rough indication of the difficulty to find a feasible solu-
tion for that instance. As we are interested in generating challenging instances for
the heuristics, for each instance we first computed the minimum feasible value for
C as Cmin = d

∑n
i=1 Pi/max{capacity(k) : k = 1, . . . , K} e, and then considered

instances with C = Cmin, Cmin + 1, . . . where the constraint becomes looser and
looser. In order to have difficult instances, but also not to be too close to the
extreme case C = Cmin, we choose C = Cmin + 1 as the default input value for our
tests.

4 Basic heuristic tools

We next describe the two algorithms we used to obtain an initial (possibly infea-
sible) solution, and report two of the building blocks used by the other heuristics:
the 1-opt move, which is the basic step used to improve a solution, and the Para-
metric Cost Evaluation, which greatly boosts the computationally intensive phase
of computing the penalized cost of a solution.
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4.1 Prim-Dijkstra

As a basic tool we use the Prim-Dijkstra algorithm [5] to compute an undirected
Minimum Spanning Tree, whose edges are oriented towards the substation in a
post-processing step. The solution found was often infeasible feasible because the
few arcs connected to the substation had to support a large number of turbines
each, but none of the available cables had enough capacity. Nevertheless, it is
interesting to compute the Minimum Spanning Tree as it would be the optimal
solution for our problem if we had only one type of cables and no constraints other
than connectivity. In addition, Prim-Dijkstra algorithm can be used to provide
an initial (likely infeasible) solution for other heuristic techniques. Moreover, by
considering the cheapest cable for each edge in the Minimum Spanning Tree and
ignoring if the power exceeds the cable capacity, the Prim-Dijkstra solution can
provide a rough lower bound on the cost of the optimal solution. Such an estimate
is fast to compute, having O(n2) time complexity with a proper implementation,
and turns out to be useful, e.g., in our Simulated Annealing heuristic.

4.2 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) [10] is a meta-
heuristic used for combinatorial problems and leverages on a multistart scheme.
In our implementation we modify the Prim-Dijkstra Minimum Spanning Tree al-
gorithm as follows: at each step, instead of choosing the minimum cost edge, we
create a Restricted Candidate List (RCL) with the first k best choices. From this
list we select with probability p the best choice, that is the same edge that the
Prim-Dijkstra algorithm would have chosen and that corresponds to the first can-
didate in the RCL list. With probability 1− p, instead, we pick at random one of
the other elements in the RCL list, so we add to the solution an edge that can be
the second-best option, the third-best one, etc.

The two parameters p and k must be tuned to have enough variance in the
RCL list but not too much, otherwise it would generate just random solutions.
While the GRASP solutions are in general not feasible, we exploit their variety of
solutions to generate initial solutions in the Genetic Algorithm, see Section 10.

4.3 1-opt move

To pass from a solution to a close one in the solution space, in many of our
heuristics we exploit a 1-opt move. For our specific problem this move consists in
replacing just one arcs in the solution: we select at random a turbine node in the
tree, say i. Because of the constraints on our problem, node i will only have one
leaving arc (i, j) (say). Therefore we remove arc (i, j) and connect i to another
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node of the tree, excluding the same node i and all the nodes of its connected
component (computed by moving backwards from i to its leaves) to avoid cycles.

4.4 Parametric cost evaluation

When computing the penalized solution cost, we have to compute each time the
power that flows through each arc and the minimum-cost cable-type needed for
each arc, and to count the number of arcs entering the substation and the number
of edge crossings. A better way is to maintain some auxiliary information about
the current solution and to update it incrementally by exploiting the fact that each
1-opt move only changes one of its arcs. We are thus able to reduce the complexity
of a single 1-opt move from O(n2) to O(n), which greatly boosts the performance
of our algorithms.

5 Sweep

We next propose a new constructive heuristic, called Sweep, that plays a promi-
nent role in our study. Our key observation is that, in many cases, the main
constraints are given by the maximum number of connections to the substation
and by the maximum capacity of cables. Thus, a main difficulty for the heuristics
is to partition the turbines in a balanced way, so that the turbines in each group
correspond to a subtree of the substation and thus have a total production that
can be supported by a single cable. This makes our problem similar to the Bin
Packing problem [6], since we have to decide which turbines to pack together in
which group. Although NP-hard in the general case, the Bin Packing problem is
typically not difficult to solve heuristically, and becomes trivial in case Pi = 1 for
all items—as it is often the case in the WFCRP context.

Our heuristic has three parameters:

• starting turbine from which the algorithm starts;

• direction when scanning the turbines (clockwise or anti-clockwise);

• turbines per group, abbreviated to TPG.

First we order the turbines by the angle defined with respect to the substation.
Then we pick a node as the starting turbine, and sweep the other turbines clockwise
or anti-clockwise according to the chosen direction. The actual number of turbines
that we will put in each a group, TPG, is an integer between L1 = n /C and
L2 = max cable capacity / avg power, where max cable capacity is the capacity
of the biggest available cable and avg power is the average production of a turbine
(=1 in the cases of interest).
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Figure 3: An example of the turbine partition of the Sweep heuristic: starting
from turbine 2, in anti-clockwise direction, with 7 turbines per group. It forms
five groups of turbines (with different colors in the figure): four groups have 7
turbines each, the last one is composed of just two turbines (1 and 6).

Having decided TPG, we add turbines to a group following the defined turbine
order, until we reach the required number TPG (thus, only the last group can
contain less than TPG turbines), as shown in Figure 3.

After defining the turbine groups, we set the edge costs to infinity for each
edge among turbines of different groups, except for the edges connected to the
substation, and finally compute the Minimum Spanning Tree on these modified
edge costs using the Prim-Dijkstra algorithm, thus choosing the best edges inside
each group of turbines and towards the substation. In a final post-processing step,
the selected edges are oriented such that all the energy flows eventually to the
substation, each edge is assigned the less expensive cable with enough capacity to
support its flow, and the penalized solution cost is computed.

5.1 Tuning

We implemented Sweep within a multistart scheme. As there are only O(n2)
combinations of the three parameters (the starting turbine, the direction and the
number of turbines per group) we can afford to try each of them. In practice
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this is extremely fast, as we are able to evaluate all the combinations in a very
short computing time—at most a couple of seconds, on a PC, even for the largest
instances of our testbed.

The Sweep heuristic has proven to be very effective in finding good feasible
solutions in very short time, even for the most difficult instances of our training
set. For this reason it has been included as a warm start for many of the other
heuristics we implemented. This allows the other heuristic techniques to start from
an already feasible (and typically quite good) solution—this is a nontrivial advan-
tage, as for the hardest instances many heuristics could not even reach feasibility
at the time limit when starting from a Prim-Dijkstra or GRASP solution.

Figure 4: Gap obtained by Sweep (multistart) with respect to the best known
solutions [26] on the training instances (the lower the better). The heuristic, in
less than one second of computing time, reaches quite good solution costs, all
within 8% from the best known ones.

Figure 4 compares the gap between the Sweep solutions with the results of the
MILP-based matheuristic used in [26]. It is interesting to observe that, for all
instances, the Sweep cost is within 8% from the optimal or best-known solution.
Also note that the results from [26] uses one hour of computation time, while the
Sweep best solution is computed in less than one second for each training instance.
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6 Simulated Annealing

Simulated Annealing (SA) [36] is a heuristic method that takes inspiration from
physical processes, in particular from how cycles of controlled heating and cooling
lead the molecules of a material to reach a crystal or electronic configuration
of minimal energy. For example this process is used in metallurgy to gradually
remove imperfections in the metal in order to make it stronger, which can be seen
as a minimum energy problem. The phase of reheating the problem represents a
crucial point for the heuristic, allowing the technique to exit from points of local
minimum.

In parallel with the physical world, the main parameter for the Simulated
Annealing strategy is called temperature (T ) and it is updated at each step as
Tnew = α Told, where α ∈ (0, 1) is a parameter that controls cooling speed. The
other important feature of SA is the probability of accepting a move, which favors
the procedure of passing from a solution to another one. We want to always accept
an improvement in term of energy of the solution, as the cost is called in the SA
jargon, and also to allow for a worsening move with good probability only when
the temperature is high. Additionally, the acceptance probability must depend on
the magnitude of the difference between the energy of the candidate move and the
energy of the current solution, namely, ∆E = Ecandidate − Ecurrent (positive if the
candidate solution is worse that the current one) The acceptance probability p is
typically computed as follows [36]:

p =

{
e−

k∆E
T if ∆E > 0

1 if ∆E ≤ 0
(1)

where T is the current temperature, ∆E is the difference of energy, and k is a
normalization factor.

Finally, we should choose a Tmin threshold that determines the stopping condi-
tion for the heuristic but, since our techniques are all tested with a time limit, we
modified this part of the algorithm so that it runs until the available time expires.

Figure 5 reports the variation of the energy (i.e., solution cost) for the first
few thousand iterations. We can see how, in the initial high-temperature phase,
the heuristic explores very bad solutions, and how the energy tends to improve
over time. Furthermore we can see when a local minimum is reached and how the
heuristic, with a series of iterations that are initially high in cost, is able to escape
from it and to find another one that has a lower energy. With the progressive
cooling of the temperature, the accepted solutions have less energy difference and
bring us closer to global minimum.
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Figure 5: The energy of the explored solutions by the Simulated Annealing heuris-
tic for the first few thousand iterations. The overall energy (solution cost) grad-
ually diminishes; at around iteration 500 the heuristic escapes a local minimum
with a series of worsening moves that eventually lead to a lower cost. The same
happens around iteration 1500. Note that, in the first iterations, the technique
considers very bad solutions: this is due to the high initial temperature that is
then reduced over time.

6.1 Tuning

Since SA needs an initial solution, we decided to use the Sweep multistart heuristic
to generate it, allowing the algorithm to start from an already feasible solution.

In our implementation, we started with an initial temperature T0 = 1.0 and
tried different values for α = 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999 as shown
in Figure 6. The performance was similar for many of these values, meaning
that the descending function was not too fast nor too slow. We selected the value
α = 0.99999 as it produced slightly better results for the harder training instances.

As an additional improvement [39], we kept the temperature fixed for a certain
number of iterations, that we set to twice the number of turbines in our problem.

Furthermore, since in our case the ∆E can be very large (typically ranging from

15



Figure 6: Performance profile comparison of Simulated Annealing on the train-
ing instances with six values for the α parameter. Many profile curves are close
together, with value α = 0.99999 being slightly better on harder instances.

106 to 108), we set k = 1
LB

where LB is the non-penalized cost of the (possibly
infeasible) solution computed by the Prim-Dijkstra algorithm.

Another important point is how to generate a candidate move in the Simu-
lated Annealing heuristic. We chose to exploit the 1-opt move where a single arc
is changed from the current solution to the alternative one, hence ∆E can be
computed very efficiently through the parametric cost evaluation of Subsection
4.4.

7 Tabu Search

Tabu Search (TS) [28] is a metaheuristic that tries to escape from the local optima
reached by a local search algorithm. The main idea is to use a memory structure
called Tabulist [30], which registers which moves the algorithm is not allowed to
repeat. This allows the heuristic to reach new solutions while avoiding to return
to a previous local optimum. This technique has been used for many problems,
often leading to very good results [29].

The Tabulist does not forbid a particular move or condition forever, but for
example for a number of iterations since it occurred. This memory mechanism
is based on a parameter called Tenure and ensures that, while we do not want
to repeat the same moves too soon, we allow to repeat them after a while, to
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hopefully reach a new local optimum.

7.1 Tuning

We initialized the Tabu Search with a Sweep multistart solution. As in the other
heuristics we implemented, we enforced a time limit as a stopping condition.

For the candidate list of moves, we considered all O(n2) 1-opt moves and took
the best one. As the 1-opt move changes one arc (i, j) of the solution with another
arc (i, k), say, the Tabulist can be made in different ways. We decided to consider
three options:

• Node From: we add node i to the Tabulist ;

• Node To: the Tabulist registers which was the final node k;

• Arcs : the Tabulist considers the new arc (i, k) itself, i.e., the newly chosen
arc cannot be removed too soon.

Figure 7: Performance profile comparison of Tabu Search on the training instances
with three different Tabulist choices: Node To, Node From and Arcs (the last being
the most effective one).

In Figure 7 we give a performance profile comparing the three options on
the training set. Choosing to add the arcs to the Tabulist is the most effective
technique, while acting on nodes seems to be too restrictive. Arcs and Node From
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had a very similar performance in 60% of the training instances (namely, the easiest
ones), while the difference became relevant for the hardest ones.

Finally, we used two strategies to favor diversification [27]: after a certain
number of iterations from the last incumbent improvement, 50% of the times we
either change at random the Tenure parameter or reset the Tabulist. The new
Tenure value is chosen at random but we ensure that it is not lower than half the
number of turbines.

8 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [42] is a metaheuristic that searches for a
global optimum by exploring increasingly distant neighborhoods of the current
incumbent solution. It consists of three main steps [33], that are iterated until a
time limit is reached. We now analyze in details its components:

• Shaking : generate a solution y′ at random from the k-th neighborhood of
the incumbent solution y. For our problem we make k consecutive random
1-opt moves. As starting solution for the first iteration we get the solution
from Sweep multistart heuristic.

• Local Search: starting from y′ apply a local search method. We do so by
finding the best 1-opt move (among the O(n2) possibilities) until the solu-
tion cost stops improving. (We also tested the first improving move policy,
interrupting the 1-opt search as soon as an improvement is found instead of
considering all possible moves, but this option led to a worse performance
on the training instances.) Let y′′ denote the solution found at the end of
this local-search phase.

• Move or Not : if the new solution y′′ has a better cost than the incumbent y,
we update y = y′′ and the k neighborhood counter is reset to 1. If the solution
is not improved, we increment the neighborhood by setting k = k + 1, until
a maximum neighborhood size of Kmax is reached (afterwards, threshold k
is reset back to 1).

8.1 Tuning

One of the advantages of the VNS heuristic over other heuristics is that it has
basically just one parameter, Kmax, to tune. In a preliminary tuning phase, how-
ever, we also explored some VNS variants. When generating the new solution y′,
we tried starting from the current solution instead of restarting from incumbent
solution, but this worsened the performance probably because we were drifting too
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much away from where the good solutions are located. Two mixed approaches,
namely restarting sometimes from the incumbent and other times from current so-
lution, or restarting from the incumbent solution only when parameter k is reset,
led to comparable or slightly worse results than the original option, so in the end
we decided to always restart from the incumbent solution.

Figure 8: Performance profile comparison on training instances varying parameter
k for the VNS heuristic. It can be seen that Kmax = 4 has better performance
than the other values.

As to parameter Kmax, in the shaking phase we tried Kmax ∈ {2, 3, 4, 5, 6, 7}.
The results on the training instances are reported in Figure 8, where it can be seen
that using a value of Kmax = 4 (a good compromise between differentiating the
neighborhood to explore and shifting too far from good solutions) led to the best
results.

9 Ant Colony Optimization

Ant Colony Optimization (ACO) [7] is a metaheuristic that mimics the behavior
of ants when finding their food. In nature each ant wanders around randomly,
looking for food and leaving a trace of pheromones along its path. When a source
of food is found, the ant goes back to the anthill, thus reinforcing the amount of
pheromones on that particular path. The other ants detect them and then are
more likely to follow paths with higher concentration of pheromones. In this way
the paths that lead from the anthill to a food source are reinforced. Also, because

19



of the initial random fluctuation, the shorter path are privileged, since ants return
sooner to the anthill and the pheromones have less time to fade compared to the
amount on longer paths. ACO takes inspiration from this mechanism and has been
used for example to solve the Traveling Salesman Problem [7]. For the WFCRP,
the work [43] compares various implementation strategies. Their metaheuristic
follows the steps reported in Algorithm 1.

Algorithm 1 Ant Colony Optimization for WFCR problem

start time← now()
pheromones← init pheromone values()
while now()− start time < time limit do
ycurrent ← find path(pheromones)
pheromones← update pheromone values(pheromones, ycurrent)
if penalized cost(ynew) < penalized cost(yincumbent) then
yincumbent ← ynew

end if
end while

First we have the find path function, that retrieves a solution for the problem
based on the pheromones. Then the update pheromone values function simulates
the pheromone concentration decay over time, while reinforcing it in the edges
chosen for a solution.

The most crucial part of this algorithm is in how the find path function works.
In [43] various techniques are considered to adapt this part to our problem. The
best option they identify is called the Kruskal approach, that prescribes to select
a new edge at a time, building a new solution from a neighborhood that contains
all edges that do not create a cycle with the already built partial solution.

The probability of choosing one edge from this neighborhood is given by a
probability computed with respect to the pheromone amounts. The probability
used in [43] reads:

Pe = η(e) τ(e)
∑

x={c,v}∈E
v /∈V (ypartial)

η(x)τ(x)

where Pe is the probability of choosing edge e, function η : E → R is η(e) =
length(e)−1, τ : E → R is the amount of pheromones on edge e, and V (ypartial) are
the nodes that have at least one edge that has already been chosen in the partial
solution.

After an edge has been chosen based on these probabilities, it is added to
the partial solution and both the probabilities and the neighborhood are updated
accordingly. We iterate this procedure until all edges have been selected.
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At the start of the heuristic all edges have the same amount of pheromones,
say 1, that gradually decays over time thanks to the update function, except for
the edges that have been selected in a solution. The new pheromone values are
computed in [43] as follows:

τ ′(e) =

{
τ(e)(1− p) +M /penalized cost(ycurrent), if e ∈ E(ycurrent)

τ(e)(1− p), otherwise

where p ∈ [0, 1] is the pheromone decay parameter and M > 0 is a fixed parameter
that gives an estimate of the optimal penalized cost.

9.1 Tuning

The authors of [43] did not penalize crossings, which is indeed an issue for our
realistic instances that have many more turbines than the artificial examples they
considered. In order to consider and avoid crossings, we modified the find path
function based on the Kruskal approach by excluding, in addition to the edges
that would create a cycle, also those edges that would produce a crossing with the
edges of the partial solution. Since this change can sometimes lead to an empty
list of valid edges, especially when the partial solution has many edges, we relax
this condition and allow for a crossing edge to be selected (with a penalty).

Another point is choosing a good parameter M for the pheromone update
formula above, that should favor solutions close to the (unknown) optimal cost
and not increase much the pheromone amount on the edges chosen by worse or
even infeasible solutions. To do so we estimate a good penalized solution cost by
using the Sweep heuristic at the beginning of the algorithm, which empirically is
not too far from the optimal one, and use this value to initialize M . If a lower cost
value is found by the algorithm during its iterations, we update M to match the
new incumbent cost. In this way we have seen that the probability values of edges,
computed on the pheromone values, have the desired behavior of favoring edges
chosen by many good solutions, while being influenced not too much by infeasible
solutions.

For the Kruskal algorithm used in [43] we actually tried three different variants,
since some details were missing in the original paper:

• Maintaining a current node c from which we can choose an edge to reach
another node. In this way, however, the solutions generated are more similar
to a walk than to a proper tree, and often do not reach feasibility.

• Choosing a random node from the ones in the partial solution, and choosing
a new edge from there based on the given probabilities (excluding edges
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that would cause cycles or crossings). This approach works better than the
previous variant, reaching feasibility in many instances, but still remains far
from the optimal solutions.

• Consider directly the edges, adding each one to the partial solution based on
the probabilities of all admissible edges. Since the original variant is named
after Kruskal, we believe this variant is closer to the one in the original
paper—as a matter of fact, this technique led to a better performance than
the other two interpretations, even tough it did not always reach a feasible
solution for the training instances.

As further enhancements we also reset the pheromone values of edges after the
empirical value of 15,000 iterations after the last incumbent improvement. This
value, however, was not crucial as it did not affect the final solution quality very
much.

Figure 9: Performance profile comparison of different pheromones decay parame-
ters p on training instances.

The other parameter to tune is the pheromone decay probability p, which is
used to calculate edges probability when building the solutions. This parameter
needs to be large enough to allow “bad” edges to be forgotten, especially if chosen
in the initial stages of the algorithm when the solutions are more or less random,
but not so strong to delete the previous “good” edges found in good solutions. We
tested p ∈ {0.01, 0.001, 0.0001, 0.00001} and we report in Figure 9 the correspond-
ing performance profile on the training instances. The profile curves are close one
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to each other; we chose p = 0.001 since it led to a slightly better performance on
the hard instances.

10 Genetic Algorithm

Inspired by the natural selection process, the Genetic Algorithm (GA) [49] is a
metaheuristic that tries to evolve a solution over time.

Its first step builds a set of initial solutions, which is called population. The
aim is to provide diversified solutions, so that the best parts of each individual
solution can be preserved over time and favored during evolution.

Another key part is the definition of the fitness function (to be maximized), that
measures how good a certain individual is. For our problem, the fitness corresponds
to the penalized cost of the solution (with sign changed). An important aspect is
that, since this fitness function must be evaluated for each new individual at each
iteration, computing its cost must be as efficient as possible.

At each iteration of the algorithm, called generation, GA creates new solutions
in the crossover phase. In this step, also called breeding phase, the algorithm
chooses two solutions from the current population to generate one or more new
individuals. The mechanism is to use pairs of existing solutions as parents to
generate a child that bears some chromosomes from both parents. In our problem
this means that the solution tree mixes together parts of the trees of its parents.
The new individuals thus generated are added to the population.

The reproduction process in nature is not always perfect, and some mutations
can randomly arise and contribute to the evolution of the species. The same
concept is applied to the new individuals of the population by allowing for a
random mutation of some of their encoding genes. This mutation phase has proven
to improve the overall performance of genetic algorithms [47].

Since both the crossover and the mutation phase can change an individual
solution, sometimes there is the need of a repair function to ensure, in our case,
that the solution is still a proper tree. This repair phase is very dependent on the
encoding chosen to represent a solution.

Furthermore, GA exploits a selection mechanism, in which the new population
is trimmed down. The goal is to preserve the individuals with lower fitness with
high probability, while maintaining some of the less fit individuals to avoid reducing
the variety of the genetic heritage too much. One important indicator of the quality
of the evolution is the average fitness of the population, which should improve
over the generations (instead of just monitoring the best “incumbent” individual
found).

Finally, the Genetic Algorithm can terminate with a variety of conditions such
as a fixed set of generations, a time limit (our choice), a number of generations
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since the last improvement or from the last average fitness improvement, etc.

10.1 Tuning

First of all, having a good and varied initial population is important for GA. In our
case we decided to include a mix of individuals generated by the GRASP method
described in Subsection 4.2. About half of these solutions are then modified by
forcing the C turbines closest to the substation to have an arc directly connected
to the substation itself. In this way GA is able to better allocate the flows of
the arcs connected to the substation—instead of having too few arcs connected
to the substation, bearing all the producing power and thus keeping the solution
infeasible.

After some preliminary tests, we also chose not to include some Sweep solutions
in the initial population, because these very good solutions hinder the evolution
of the others with worse fitness. Instead, it seems better to gradually add some
Sweep solutions when the average fitness does not improve for while, since in this
way the population has some time to evolve its individuals.

As already mentioned, the fitness function is often the bottleneck of the al-
gorithm. Since the crossover and the mutation phases mix together different so-
lutions, we cannot exploit our parametric cost evaluation and have instead to
recompute the costs from scratch. A good improvement in performance has been
obtained by pre-computing all crossing arcs: using a look-up table that tells if two
arcs cross each other, leads to a factor of about 2 of speedup.

Another crucial aspect for this heuristic is the chosen encoding. For GA a good
encoding requires two fundamental properties: locality, so that small changes to
a solution leads to another one that is close in its solution space, and heritabil-
ity, so the crossover function preserves the substructures of the parent solutions.
We compare two different methods to memorize the solution tree: the successor
representation and the Prüfer [44] number.

• Successor : since the WFCRP trees have only one arc that leaves each turbine,
we can represent each solution with an array whose i-th entry contains the
tail j of the arc (i, j) leaving turbine i. The only exception is the substation
node, which is the successor of itself.

Using this encoding does not guarantee that our structure is a proper tree:
it can have cycles and disconnected components. Therefore there is the need
to repair the solutions generated in the crossover and in the mutation phase.
This is done by checking for cycles. After removing the arcs that create
cycles, we repair the solution by applying the Kruskal’s Minimum Spanning
Tree algorithm preferring, when possible, those arcs that would not cause a
crossing. For this reason we also call this version the Kruskal repair.
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• Prüfer number : it represents an undirected tree whose nodes are labelled
from 1 to n, with a sequence of n − 2 natural numbers; see [44] for details.
Since the Prüfer number always represents a valid tree, with this encoding
we do not need a repair step.

On one hand, the Prüfer number has the advantage of being a compact and
elegant representation that always encodes a valid tree, while on the other hand it
does not have the properties of locality, since changing a single number of its se-
quence leads to a completely different tree, nor the property of heritability, because
when mixing two solutions the substructures of the parents are not preserved. Be-
cause of this, the work [32] concludes that using this representation in a GA leads
to a poor performance in the general case. The Successor representation satisfies
instead the two properties, but has the downside of needing a repair step, which
can be computationally expensive.

Figure 10: Performance profile for GA on the training instances, comparing the
Successor and the Prüfer encoding for population sizes of 200, 500 and 800 individ-
uals each. We can see that the lack of locality and heritability of Prüfer encoding
leads to an inferior performance than the Successor encoding for all population
sizes tested.

Figure 10 compares the two encoding results (with the same initial solutions
and crossover, mutation and selection functions) on the training instances. We
observe that it is much better to use the Successor encoding (with Kruskal repair)
than the Prüfer numbers, for each population size. For this reason, for our GA we
choose the Successor encoding.
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We next examine the crossover function. To maintaing a good degree of diver-
sification, we choose two variants, which we pick at random with equal probability:
the first one mixes the genetic sequence (that is, the Successor or Prüfer sequence)
of the two parents by picking at random each gene (a node number in the tree
encoding) either from the father or from the mother. In this scenario we actually
build two children solutions: the one as described and its complement, that makes
the opposite choice for each gene. The second variant, instead, splits the genetic
sequence in half, and generates two children, one with the first half from the father
and the second half from the mother, and viceversa for the other child. Each of
the newly generated children is added to the current population.

The mutation step is performed with a small probability for all the individuals
in the population. If an individual is chosen, each of its genes in the genetic
sequence have a small probability of being changed with a random number.

After these two phases, for the Successor representation, the Kruskal repair
algorithm is run to ensure they yield valid solutions.

The final step is to select which of the solutions to keep among the ones in
the population. To do so we order the solutions by decreasing fitness, scan them
and add them to the new population set with high probability, until we reach the
maximum population size. In this way we are sure to keep most of the individuals
with a good fitness while, at the same time, retaining some of the worse solutions
to ensure some genetic variety in the population.

Figure 11: Performance profile comparing population sizes of 300, 400, 500, 600,
800, 1000 of the Genetic Algorithm with Successor encoding; choosing a population
size of 500 is slightly better for the hardest instances.
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The population size is the last parameter we have to choose, which must be
large enough to ensure some diversification of the population but not too much, to
avoid including too many bad solutions and make the algorithm slow. In Figure
11 we report the performance profile for the following population sizes: 300, 400,
500, 600, 800, 1000. We can see that 500 individuals is the best choice, probably
because it better balances between number of explored generations and solution
diversification. Having too many individuals in a population leads instead to a
worse performance, as we can see with a population of 1000.

11 Computational experiments

This section analyzes the results of our heuristics on the instances of both the
training set and the test set.

Figure 12: Cost improvement over time, on a training instance with 100 turbine.

All heuristic techniques seldom improve their solutions after a few minutes of
computing time, with the only exception of VNS that continues improving, slightly,
after the first 10 minutes. Figure 12 plots the evolution of the costs obtained by
the heuristics in 1 hour of computing time on training instance n. 28 with 100
turbines. VNS is the only technique which is able to lower the costs after 10
minutes. Simulated Annealing and Tabu Search do not improve their solution
after the first few seconds as it does, by design, Sweep. The Genetic Algorithm
improves the cost until 563 seconds. As to Ant Colony Optimization, it stops
improving after 183 seconds but it does not even reach a feasible solution (hence
it is not visible in the graph).

For this reason, in what follows a time limit of 10 minutes has been considered,
on a Intel R© Xeon R© CPU E5-2623 v3 at 3.00GHz (quadcore) with 16GB of RAM.
The only exception is the Sweep heuristic that, in its multistart implementation,
is able to try all of its parameter combinations in only a few seconds of computing
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time, even for instances with 120 turbines: Sweep would not be able to find better
solutions in the remaining time, therefore it stops early.

Even though our CPU architecture is multi-core, our heuristics have been im-
plemented as single thread and do not take advantage of the parallelism. This
option could be worthwhile to explore, especially for the Genetic Algorithm which
could have a gain in performances by exploiting parallel computations when eval-
uating the cost of the individual solutions in the population.

11.1 Performance on training instances

Figure 13: Performance profile on the training instances which compares the
MILP-based matheuristic technique results in [26] with the six implemented heuris-
tics. After 10 minutes all heuristics are close to the (near) optimal solutions com-
puted in 1 hour by the matheuristic, except for the Ant Colony Optimization
algorithm whose curve lies much further on the horizontal axis and therefore does
not even appear in the graph.

Figure 13 compares our heuristics and the MILP-based matheuristic method by
[26] on the training set of instances. The matheuristic computes the solutions with
a 1-hour limit and uses a commercial MILP solver (IBM ILOG Cplex), reaching
provably optimal or near optimal costs in all cases. As expected, the red curve of
the MILP-based matheuristic is not beaten by any heuristic technique, since its
solutions are mostly optimal. Sweep (multistart) solutions are all within 8% of the
matheuristic solutions, and requires 1-2 seconds of computing time. Taking into
account their short time limit (10 minutes instead of 1 hour), the results of the
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heuristics appear quite satisfactory, except for Ant Colony Optimization (which
does not start from the Sweep solution).

VNS qualifies as the best heuristic technique, reaching the optimal solution in
half of the instances (the ones with fewer turbines) and achieving a gap smaller
than 3% from the matheuristic solution costs in the other half. Tabu Search is our
second-best heuristic, achieving in 5 instances the optimal solution and staying
within a 5% gap from the matheuristic for the other training instances. Also the
Genetic Algorithm reaches the optimal solution costs in 5 of the training instances,
and maintains the gap below 6% from the optimal/best-known costs. Simulated
Annealing, instead, is optimal only in 3 cases, and is within the 7.5% from the
solution cost of the MILP-based matheuristic; as a matter of fact, it is not able to
significantly improve the Sweep solutions. Finally, Ant Colony Optimization, as
noted before, does not match the Sweep solutions in any instance and remains at
infeasible solutions in 4 instances, while its feasible solutions have a 30% gap.

11.2 Performance on test instances

We next consider our new test set of 220 instances: Figure 14 shows the results
for the heuristic techniques with the substation on top of the layout area and
C = Cmin + 1.

Figure 14: Performance profile on the test instances for the heuristic techniques,
with the substation placed in the middle top of the layout and C = Cmin + 1.

The performance profile curves of the heuristics follows the same hierarchy seen
on the training instances. In this case the separation between the heuristics is even
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more evident.
Sweep (multistart) is able to find feasible solutions for all test instances, there-

fore providing good starting solutions to the other heuristics, whose costs are then
improved by about 4-5%.

Variable Neighborhood Search confirms to be the most effective among the
heuristics we developed, reaching the best solution among all the six heuristics in
203 out of 220 cases (92.3%) of the. In the remaining 17 cases, it is outperformed
by Tabu Search, but only by a small margin: the gap between the VNS solution
costs and Tabu Search is less than 0.5% for 16 instances, and 1.77% in just one
case.

The second best-performing heuristic is Tabu Search, which has a gap of less
than 2% with respect to VNS. It is interesting to note that these two techniques
share a local search phase in their design, which is probably the reason why VNS
and Tabu Search performs better than the other heuristics: local search allows the
heuristic to reach good local minima, while Simulated Annealing and the Genetic
Algorithm seem to arrive close to good solutions but have more difficulty to descend
to the local minimum point.

The Genetic Algorithm is able to improve the Sweep solution only in about
20% of the instances, usually obtaining a cost 1-2% lower. This can be due to
two factors: the first is that the internal mechanism of the Genetic Algorithm is
more complex and requires heavy computation per generation. Additionally, it can
not exploit the parametric cost evaluation technique, so the number of iterations
within the time limit is reduced. A second issue is that the Genetic Algorithm, as
already mentioned, does not have a proper local search phase.

Simulated Annealing improves the Sweep solution in only 8% of the test in-
stances, with an improvement of about 1%. A possible explanation of this behavior
is that the test instances have a large number of turbines: Simulated Annealing
does not have a systematic local search phase, so for large problems the proba-
bility of finding good random moves is low. Furthermore, when the substation is
positioned on a wind farm side, the cables connected to the substation are longer
and thus it is more likely for a changed arc to create a crossing.

Ant Colony Optimization instead does not even reach feasibility in basically
any instance: having the substation on a side of the wind farm leads the algorithm
to connect just one or two long cables to it, which are not able to support all the
power produced by the wind farm. This issue was not so evident on the training
set where the substation is much closer to the turbines, and highlights a critical
weakness of the method.

Figure 15 shows the performance profile curves obtained by the heuristics when
the Sweep heuristic is not applied as a warm start. VNS is the most effective tech-
nique even in this case, performing better than the other heuristics which, instead,
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Figure 15: Performance profile on the test instances for the heuristic techniques
without starting from the Sweep solutions. VNS is the only heuristic that outper-
forms Sweep.

never outperform Sweep, confirming the benefits of using the latter to provide good
starting solutions. The effectiveness of the other heuristics changes in a more ev-
ident way: Tabu Search, in particular, is beaten by both the Genetic Algorithm
and Simulated Annealing. This worsening of the Tabu Search performance can
be attributed to the many parameters of the algorithm: starting from infeasible
solutions may require a different tuning for this heuristic. The Genetic Algorithm
performs better than Simulated Annealing in 155 out of 220 cases (70.5%) but
in the remaining ones, contrary to Simulated Annealing, it often does not even
reach feasible solutions. Ant Colony Optimization, which cannot include Sweep

solutions by design, remains the worst of our heuristics and is not even visible in
the figure.

Figure 16 compares the two versions of VNS: with and without the Sweep

solution. VNS without Sweep is able to reach better costs than VNS with Sweep

in 20.9% (46 out of 220) of the test instances; however, the improvement is typically
less than 1%. Instead, VNS without Sweep performs better than Sweep itself 72.7%
of the times (160 out of 220), but it never reaches better costs on the instances
with 120 turbines. These results confirm the effectiveness of Sweep and highlight
its contribution to the other heuristics: these algorithms, alone, are often unable
to reach the solutions that Sweep computes in a few seconds.

The performance profile plots remain basically the same when changing the
substation position to the left side. This seems to confirm our intuition that the
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Figure 16: Performance profile on the test instances, comparing two variants of
VNS: with and without the starting solution from Sweep. VNS performs reason-
ably well even without a good starting solution, but it is outperformed by Sweep

alone for the large instances with 120 turbines.

local search phase is crucial for obtaining a good performance for this kind of
instances.

When the substation is placed at the geometric center of the layout, instead,
the performance profile curves change a bit, as shown in Figure 17. VNS and Tabu
Search remain the first and second best heuristics, but the performance of the two
algorithms are closer: in 16.8% (37 out of 220) of the instances the two heuristics
reach the same solution cost, and 29.5% (65 out of 220) of the times Tabu Search
has lower costs than VNS. In the barycentric case, indeed, more turbines are closer
to the substation itself, which can also be reached by more arcs without forming
any crossing. Furthermore, it is easier for the heuristics to find a good solution,
because a central topology favors a good division of the turbines and makes the 1-
opt adjustments of these groups easier, having more degrees of freedom in moving
turbines between groups to balance the flows. As a matter of fact, the Genetic
Algorithm and Simulated Annealing are more often able to improve the Sweep

solution, and Ant Colony Optimization finds feasible solutions in about half of the
test instances.

We also examined how the C parameter, which limits the number of cables that
can be connected to the substation, affects the solutions we obtain. We considered
cases C = {Cmin, Cmin + 1, Cmin + 2, ∞ }, with the substation positioned at the
top of the turbine layouts. The performance profile curves (not reported for the
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Figure 17: Performance profile on the test set instances with the substation placed
in the geometric center of the turbine layout and C = Cmin + 1.

sake of space) are almost identical in the four cases.
The outcome of our computational experience is that some of the developed

heuristics have a very good performance, in particular VNS and Tabu Search: both
of them reach near optimal solutions for the training instances, and are always the
best methods in the test instances. This suggests that exploiting a systematic
local-search phase is important to achieve a good performance for WFCRP. VNS
is our method of choice, as it very often performs better than Tabu Search and is
also easier to implement and tune. Moreover, all the heuristics benefit greatly by
starting with (or including) the Sweep solutions, which are very fast to compute
and turn out to be close to the optimal ones.

As expected, using a central position for the substation makes the optimization
easier and can also reduce the overall cable costs. Note however that the substation
needs an export cable connected to the shore, so putting it in a central wind farm
position likely produces unwanted crossings with the turbine cables and hence
obstacles to be avoided; see [20, 21] for a discussion of this topic.

12 Conclusions and future work

The Wind Farm Cable Routing is a relevant problem for energy companies, which
can greatly reduce the costs of building a wind farm.

For this problem we have developed six metaheuristic techniques: Sweep, Sim-

33



ulated Annealing, Tabu Search, Variable Neighborhood Search, Ant Colony Op-
timization and Genetic Algorithm. Each technique has been tuned on a training
set, and then validated on a large new set of 220 test instances that are made
publicly available.

Our computational experience has shown that some of the developed heuristics
have a quite good performance, in particular VNS and Tabu Search: both of them
have reached near optimal solutions for the training instances, and have been
always the best methods in the test cases. VNS is our method of choice, as it very
often performs better than Tabu Search and is also easier to implement and tune.
Moreover, all the heuristics benefit greatly by starting with (or including) our new
constructive heuristic, Sweep.

A possible direction for future works is to allow for some crossings in the
solutions, accounting for their additional cost by modifying the penalty values
in the objective function. Another interesting aspect can be testing the Genetic
Algorithm with a multi-thread implementation, and to modify its repair phase to
include a sort of local search. Also, an important new feature to implement is the
capability of handling obstacles and so-called Steiner nodes.

Finally, it could be worth extending our work to design a heuristic that includes
both turbine placement and cable routing optimization, thus allowing for a holistic
optimization of a wind farm.
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[33] Hansen, P., Mladenović, N.: Variable neighborhood search. In: F.W. Glover,
G.A. Kochenberger (eds.) Handbook of Metaheuristics, pp. 145–184. Springer
(2003)

[34] Hertz, A., Marcotte, O., Mdimagh, A., Carreau, M., Welt, F.: Design of a
wind farm collection network when several cable types are available. Journal
of the Operational Research Society 68(1), 62–73 (2017)

[35] Hou, P., Hu, W., Chen, Z.: Optimisation for offshore wind farm cable con-
nection layout using adaptive particle swarm optimisation minimum spanning
tree method. IET Renewable Power Generation 10(5), 694–702 (2016)

[36] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated an-
nealing. Science 220(4598), 671–680 (1983)

[37] Klein, A., Haugland, D.: Obstacle-aware optimization of offshore wind farm
cable layouts. Annals of Operations Research pp. 1–16 (2017)

[38] Kusiak, A., Song, Z.: Design of wind farm layout for maximum wind energy
capture. Renewable Energy 35(3), 685–694 (2010)

[39] Ledesma, S., Aviña, G., Sanchez, R.: Practical considerations for simulated
annealing implementation. In: C.M. Tan (ed.) Simulated Annealing, chap. 20.
IntechOpen, Rijeka (2008)

37



[40] Li, D.D., He, C., Fu, Y.: Optimization of internal electric connection system
of large offshore wind farm with hybrid genetic and immune algorithm. In:
Proceedings of the Third International Conference on Electric Utility Deregu-
lation and Restructuring and Power Technologies, pp. 2476–2481. DRPT 2008
(2008)

[41] Maples, B., Saur, G., Hand, M., van de Pieterman, R., Obdam, T.: Instal-
lation, operation, and maintenance strategies to reduce the cost of offshore
wind energy. Tech. rep., National Renewable Energy Lab. (NREL), Golden,
CO (United States) (2013)
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