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Synopsis  

Most research in comparative cognition focuses on measuring if animals manage certain tasks; fewer 

studies explore how animals might solve them. We investigated bumblebees’ scanning strategies in 

a numerosity task, distinguishing patterns with 2 items from 4 and 1 from 3, and subsequently 

transferring numerical information to novel numbers, shapes and colours. Video analyses of flight 

paths indicate that bees do not determine the number of items by using a rapid assessment of 

number (as mammals do in “subitizing”); instead, they rely on sequential enumeration even when 

items are presented simultaneously and in small quantities. This process, equivalent to the motor 

tagging (“pointing”) found for large number tasks in some primates, results in longer scanning times 

for patterns containing larger numbers of items. Bees used a highly accurate working memory, 

remembering which items have already been scanned, resulting in fewer than 1% of re-inspections 

of items before making a decision. Our results indicate that the small brain of bees, with less parallel 

processing capacity than mammals, might constrain them to use sequential pattern evaluation even 

for low quantities.  

 

Introduction 

Numerical cognition is viewed as a hallmark of higher cognitive abilities and intelligence in animals, 

perhaps because of the perceived association between mathematical competence and intelligence 

in humans (Dehaene 2011). Numerical abilities have been found in primates (Brannon and Terrace 

2000), birds (Rugani et al. 2013), amphibians (Uller et al. 2003), fish (Agrillo et al. 2012) and some 

invertebrates (Chittka and Geiger 1995; Dacke and Srinivasan 2008; Gross et al. 2009; Carazo et al. 

2012; Yang and Chiao 2016; Howard et al. 2018), but few studies have explored the animals’ pattern 

inspection tactics by which such tasks are solved. This may be partly because the researchers’ goal 

was often to demonstrate animal intelligence, in which case it perhaps appears sufficient to measure 

performance and be satisfied that the animal is successful in a statistically supportable manner. 

However, seemingly complex cognitive tasks can sometimes be solved by elegantly simple shortcuts 

(Guiraud et al. 2018), using very basic neural circuitry (MaBouDi et al. 2017; Peng and Chittka 2017; 

Roper et al. 2017). We therefore think it is imperative to explore the behavioural strategies by which 

animals solve cognitive tasks, in addition to testing whether or not they solve them (Skorupski et al. 

2018; Vasas and Chittka 2019) .  

Studies on adult and infant humans and a variety of other species have suggested the 

existence of two number systems: a small number system, which represents the numerosity of sets 

of up to 4 items, and a large number system, which represents the approximate numerosity of larger 
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sets, but with an error that scales with set size (Trick and Pylyshyn 1993; Pylyshyn 2001; Burr et al. 

2010; Hyde 2011; Skorupski et al. 2018) Trick & Pylyshin, 1993; Burr et al., 2010; Hyde, 2011; 

Pylyshyn, 2001). The ability of humans and at least some other primates to accurately perceive small 

numerosities ‘at a glance’ has been termed subitizing (Jevons 1871; Kaufmann et al. 1949; 

Matsuzawa 2009). Comparative studies have led to the hypothesis that the small and accurate 

number system (object file system, or OFS) and large but approximate (analogue magnitude) 

number systems rest upon mechanisms shared by a variety of species (approximate number system, 

ANS) (Feigenson et al. 2004). The comparative evidence for this mainly comes from studies showing 

a discontinuity in performance, where error rates are relatively constant for set sizes of up to four, 

but increase with set size for larger numbers of items (Weber’s law), although the existence of such 

a discontinuity has been challenged in non-human and human studies (Rugani et al. 2013). However, 

the object file system is thought to depend on object perception and individuation, which depends 

on working memory and which would also explain the upper limit for this system of 3-4 items 

(Cowan 2001). Even though there is also evidence to suggest that performances seen for small 

versus large numbers might be underpinned by a single system (Gallistel 1990; Dehaene and 

Brannon 2011; Halberda and Odic 2015; Cheyette and Piantadosi 2020)(Dehaene & Brannon, 2011; 

Gallistel 1990; Halberda & Odic, 2015, Cheyette & Piantadosi, 2020), there is no controversy about 

the observation that humans and some other animals are exceptionally fast and accurate at 

assessing numbers of up to four. The ability to process visual information rapidly and in parallel 

appears to be a general feature of the primate visual system. 

Bees, on the other hand, appear poorly able to analyse entire visual scenes at a glance 

(Nityananda et al. 2014; Guiraud et al. 2018), and this might also be reflected in their counting 

performance. Honeybees can discriminate visual patterns with small numbers of items based on 

numerical cues (Gross et al. 2009; Howard et al. 2018).  We hypothesise that bees will be unable to 

rely on a single sensory snapshot to make numerical discriminations, and predict instead that 

enumeration of small sets of items will be dependent on sequential scanning  (Skorupski et al. 2018). 

This implies that the time required to make number-based visual discriminations will depend on the 

set sizes to be enumerated. Here, we explore this prediction by detailed analysis of the behaviour of 

bees during the decision-making process in a numerosity discrimination task.  

 

Methods 

Bees and apparatus 
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Eight colonies of bumblebees (Bombus terrestris audax) were used in this study, housed in individual 

nest-boxes. Each nest was separately connected to a wooden flight arena (100×70×70 cm) via a 

plastic tunnel. The arena was covered with a UV-transparent Plexiglas ceiling.  

Prior to experiments, a gravity feeder containing 30% sucrose solution was placed in the 

centre of the arena to familiarise with the experimental arena. In this stage, forager bees could 

freely return to the hive when satiated. Successful foragers were individually marked on the thorax 

with number labels for identification during the subsequent experiment. 

Marked bees were initially pre-trained to receive 50% sucrose solution from ten white disks 

(7 cm in diameter) surrounded by 2mm wide black margins presented on the back wall of the arena. 

The centre of each disk was attached to the back wall of the arena via a tube (5 mm in diameter); a 

drop of 50% sucrose solution was placed in the opening of the tube in the centre of the disk. 

Foragers that learned to take the sucrose from the centre of the pattern were selected for the 

experiment.  

 

Stimuli  

Stimulus patterns were constructed from the same 7cm white disks, but with a varying 

number of constituent elements to vary numerosity. These consisted of two yellow shapes (circles or 

stars) in two different sizes (3.1 cm2 and 7.0 cm2). The number of items in a pattern was one, two, 

three, or four, each presented in one of four alternative configurations (small or large circles or 

stars). Patterns were rotatable about their centres to vary pattern orientation between training 

bouts and between tests. Each pattern was surrounded by a 2mm wide black margin, and subtended 

a visual angle of approximately 4.5 ° from the entrance to the flight arena. Patterns were laminated 

to allow cleaning between training bouts and tests. Patterns were presented in alternative 

numerosity pairs: either one-item and three-item patterns, or two-item and four-item patterns (see 

Fig. 1A&B for some training patterns). Additional patterns were constructed for transfer tests (see 

below). These were designed in a different size such that the total yellow colour area in the pattern 

with larger number of items was less than the total yellow colour in the alternative pattern. Other 

patterns were constructed using a novel colour (purple) and novel shapes (Fig. 1A&B). We measured 

the spectral reflectance of the yellow and purple items as well as the white background against 

which they were presented, following methods by Chittka (1992) and using the spectral sensitivity 

functions of the bumblebee Bombus terrestris (Skorupski et al. 2007). The lab’s illumination 

spectrum was taken from Li et al. (2017). We calculated the receptor signals in the bees’ UV, blue 

and green receptors for the countable items. From these values we calculated the colour contrast 
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and green contrast (contrast perceived by the bees’ green receptors), since both can be used 

alternatively in stimulus detection by bumblebees (Spaethe et al. 2001; Dyer et al. 2008). Yellow 

targets produced a high colour contrast against their white background (0.32). A colour contrast of 

>0.3 has been empirically shown to result in very high levels of detectability and minimal search 

times in bumblebees (Spaethe et al., 2001). Yellow and purple targets differed by a Euclidian  

distance of 0.31 in the bee colour space, where values of 0.2 already result in close to 100% accuracy 

in colour discrimination (Dyer and Chittka 2004). Green contrast for the yellow targets was low 

(0.01), but this is more than compensated for by high values of colour contrast for these targets 

(note that unlike honeybees, bumblebees can use colour contrast for target detection even in the 

absence of green contrast (Dyer et al. 2008). Green contrast for the purple items with the white 

background was -0.13. See table S1 for further details on stimulus parameters as the edge length, 

total amount of colour, special frequency, convex hull and illusionary shape of stimuli.  

 

Protocol 

During the training phase, the rear wall of the arena served as a decision wall. Five pairs of disks 

were randomly placed, presenting two alternative patterns, and differential conditioning was used 

to improve decision accuracy. Positive reinforcement was provided by 10 μl 50% sucrose solution 

placed at the centre of the target pattern and negative reinforcement by 10 μl saturated quinine 

hydrochlorate solution in the distractor pattern. One bout was defined if a bee left the nest and 

chose different patterns before freely returning to the hive once she was satiated. During each bout, 

empty feeders were refilled with 10 μl of sucrose after the bee had left the correct pattern and 

made the next choice. After each bout of training and tests, patterns and feeding tubes were 

cleaned with 30% ethanol to exclude olfactory cues. The location and shape of all conditioned and 

unconditioned patterns were randomly changed before the bee could enter the arena for the next 

bout (Fig. 1C). Patterns and their positions were randomly varied in each bout such that bees were 

not allowed to use the location of the reward in solving the tasking. Each day of the experiment, only 

one selected bee from the pre-training phase was allowed to enter the arena until a total of 12 

bouts and three tests were completed. Only one of four types of patterns (big dots, small dots, large 

star or small star) was presented to bee at each bout. In this study, four groups of bees were trained 

separately. The first group (N=10) was trained to associate the pattern containing one item with a 

reward and avoided the pattern with three items and the second group (N=10) was trained to get a 

reward from patterns with three items against patterns with a single item. The third group of bees 

(N=10) was trained to discriminate patterns with two items over those with four items, while the last 

group (N=10) was trained to choose patterns containing four items over two items. 
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To evaluate performance with reinforcement and novel patterns after training, the bees 

were examined not only in the learning test, but also in the transfer tests containing novel patterns 

or novel quantities (Fig. 1B & C). All patterns in tests provided 10 μl of sterilized water (i.e. patterns 

without rewarding or punishing outcomes for correct or incorrect choices). Following the learning 

phase, the first unrewarded test was used to determine if bees had learnt to distinguish numbers 

without any olfactory and irrelevant visual cues. Also, bees were examined in transfer tests which 

included novel patterns (Fig.1 A & B) to see how bees transferred the learned numbers to novel size, 

shape, or colour. Finally, bees were confronted with novel quantities; patterns with two or four 

items were presented to bees that had previously been trained to one or three items. Conversely, 

bees that had learned to discriminate between two and four items were confronted with patterns 

containing one or three items. One or two refreshment bouts of training were used between tests to 

maintain the bees’ motivation to complete the task. The sequence of tests was randomised from bee 

to bee. Trained bees were removed from the nest once the training and tests phases were finished. 

 

Statistical analysis  

To evaluate the bees’ performance over trials, colony, groups and patterns, data of the learning 

procedure were analysed with the Generalized linear model (GLM) for a binary probability of the 

performance. The percentages of the correct choices were calculated for every block of 10 

consecutive visits of all bees (Fig. S1). To study the effect of different factors on bees’ performance, 

we defined the trial block as a continuous predictor, colony and the group of bees trained with 

patterns with different number of items as categorical predictors and the interaction between trial 

block and the group of bees in the GLM. The bees’ index was included in the model to check for 

random effects. Finally, the GLM’s parameters were estimated by Maximum likelihood estimation 

method in MATLAB 2018b (MathWorks, Mass., USA) . In addition, the homogeneity of bees’ 

responses in each group was tested using Chi-square goodness of fit tests. To determine whether 

bees were able to extract the learnt numerical information from the training patterns without any 

further cues, the decision of bees during the first 120 sec of their flight was analysed in terms of 

choices (landing on a pattern) and rejections (hovering over a pattern and flying away without 

landing). This gave four possible response categories: landing on the correct pattern (correct choice, 

CC); landing on the incorrect pattern (incorrect choices, IC); visiting (hovering over) an incorrect 

pattern without landing (correct rejection, CR); visiting a correct pattern without landing (incorrect 

rejection, IR). The percentage of each response was estimated from the video recorded in the 

unrewarded test. Finally, the Wilcoxon signed rank test or Wilcoxon rank sum test was used to 

interpret the null hypothesis that a pair of responses was not different.  
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To summarise the bees’ performance in the learning and quantity tests, we used the 

modified formula for the Matthews correlation coefficient (MCC)(Matthews 1975) as follows: 

    
           

                             
 (1) 

where   and    represent the number of choices and rejections of the pattern with large number of 

items while    and    represented the number of choices and rejections of the pattern with small 

number of items, correspondingly. This allows a more comprehensive evaluation of choice behaviour 

in comparison to the popular evaluation in which choice accuracy is measured by only evaluating 

correct and incorrect choices. This coefficient takes into account both true and false positive 

responses, as well as correct and incorrect rejections. Matthews correlation coefficient measures the 

correlation between the observed pattern of responses and the pattern of responses that would 

reflect perfect performance. High positive values of MCC (maximum at +1) corresponds to the 

tendency of the bee in responding to the patterns with large number while negative values of MCC 

(minimum at -1) exhibits the responses of the bee to the pattern containing small number of items. 

Zero indicates bees were not better than chance level to select one of the presented options. Where 

the previous analysis of correct vs incorrect choices indicated numerosity had been learned, we 

tested the directional hypothesis that MCC values were significantly greater than zero for groups 

trained on the higher numerosity, and significantly less than zero for groups trained on the lower 

numerosity (Wilcoxon signed rank test, one-tailed).  

 

 

Video analysis 

The arena was equipped with a camera at the top of the arena entrance (opposite the decision wall) 

to record the bee’s flights while they were scanning presented patterns. The field of view of the 

camera was 215 cm wide and 120 cm high at a resolution of 1280×720 pixels (Fig. S3). For  initial trial 

runs with four individuals, the frame rate was 30 fps using a webcam (HD Pro Webcam C920, 

Logitech, Lausanne, Switzerland). We subsequently switched to 240 fps using an iPhone 5 (Apple, 

Cupertino, USA). The first 120 s of the tests were recorded and analysed; this allowed visualising of 

the bee’s scanning behaviour.  Examples of recorded tracks are shown in Figs. 2A & S3 and 

supplementary videos S1 and S2. 

The first 120s of the recorded videos from the learning and quantity tests were analysed 

using the free software Solomon coder beta (Andras Peter, BUDAPEST). Bees were observed to 

reduce the speed of flight or hover in a stable position when approaching a pattern. Hovering 
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behaviour was characterised by a bee flying very closely (approximately 1-2 cm) in front of the 

stimulus while facing it. We wished to quantify this behaviour in a manner independent of any 

observer bias. Therefore, a MATLAB algorithm was developed to measure the hovering time (i.e. the 

time spent hovering in front a pattern), and the number of items scanned in each pattern, prior to a 

bee’s choice (landing) or rejection (flying away after inspection). The MATLAB algorithm was based 

on the extraction of x/y coordinates of the bees’ bodies in front of the target wall during flight, 

frame by frame. The algorithm was fully automated, allowing us to track a bee between consecutive 

frames, independently of target deformation, shadows, or external moving objects. Extracted flight 

data that represent the bees’ location at each frame of the videos was used for further analysis. The 

flight path of each bee was considered to start when the bee entered the arena.  

We evaluated the bees’ scanning behaviour depending on the final choice made (land, or 

reject after inspection). Total hovering time in front of a pattern was as the total time the bee’s body 

was seen inside (in front of) the circular boundary of the pattern, from the vantage point of the 

camera. In a similar manner, we evaluated the number of items that bees scanned within each 

pattern. If the bee's body was located entirely within the borders of an item (as viewed from the 

camera) for >0.2 seconds, we considered the bee to be scanning the item and therefore this was 

considered a count.  Ambiguous flight movements in front of a stimulus (≤ 0.2 seconds) where bees 

may have been changing direction or flying across a stimulus to reach another were not considered. 

A simple threshold rule was used to decide if bees chose (or rejected) a target. A bee is generally 

considered as choosing a target when it makes contact (with antennae, feet or proboscis) with the 

target, and this typically involves a temporary slowing down of flight, or actual landing. Since these 

behaviours could not be monitored using the video material at hand in an automated manner, we 

chose a threshold flight speed classification to assess if bees had made contact with (chosen) a 

target. Since, however, flight speeds were variable between bees, we used a dynamic threshold 

determination. The speed of a bee in front of all microtubes was clustered into two groups using a K-

means algorithm. The boundary between two groups (from K-means) was considered a threshold to 

identify the bee’s decisions. We assumed that the bee chose a pattern if her speed was below the 

threshold. Otherwise, her behaviour was classified as rejection behaviour. 

It is possible that the criterion of counting an item as inspected only when the bee was seen 

right in front of it underestimates the numbers of items really viewed. For instance, the bee's body 

could have been located slightly outside the volume in front of an item during the video, while the 

body axis was tilted in such a way that the bee may have been facing an item. In such cases, the bee 

may have scanned the item, but this would not have been considered a count because it did not 

qualify by our criteria. For this reason, we repeated the analysis for an extended volume around 
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each countable item, so that we also counted when a bee was seen up to 5mm outside the 

boundaries of the item.  Measurement of hovering time and number of items scanned were done by 

independent analysis of all flight path data by three experimenters (HM, HSGD and EG) and then 

cross-checked. The average hovering time and number of pattern items scanned were then 

separately calculated for each response category (i.e., CC, CR, IC and IR; see above).  

 

Results  

Bumblebees discriminate numerosities in the range 1-4 

We first confirmed that bumblebees could perform simple numerosity discrimination. Differential 

conditioning was used to train bees on artificial flower patterns containing one to four countable 

items (Fig. 1; see Methods). Bees were trained to discriminate one-item from three-item patterns, or 

two-item from four-item patterns. In each case, one group of bees was reinforced positively (+) on 

the higher number (3+ or 4+) and negatively (-) on the lower number (1- or 2-), while another group 

was subjected to the reverse conditioning. This resulted in four groups of bees (4+2-, 2+4-, 3+1-, 

1+3-). Each group was presented with five pairs of the patterns, randomly arranged on the back wall 

of the flight arena during training and subsequent learning and transfer tests (Fig. 1C). Before 

analysing the data further, we first ensured that each group of 10 bees showed statistically 

homogenous behaviour by means of 2 contingency tests on the 15 sequential blocks of ten choices 

per bee. Indeed all four groups were statistically homogenous (df=126; p>0.99 in all cases):  4+2- 2 = 

29.4; 2+4-: 2 = 17.7; 3+1-  2 = 27.8;  1+3- 2 = 20.1) 

Following training, learning was assessed in unrewarded trials (learning tests) of patterns 

containing the same numbers of countable items. We analysed the bees’ choice behaviour using 

video recording of the first 120 s of activity from entering the flight arena (Fig. 2A). During this 

interval, bees sequentially scanned, on average, 32 patterns (Fig S1B); each scan led to a landing (a 

choice) or the bee flew on to another pattern without landing (a rejection). This yields four possible 

response classes: a correct choice (CC), incorrect choice (IC), correct rejection (CR), incorrect 

rejection (IR). We counted the number of responses in each category to compute the Matthews 

correlation coefficient (MCC) for each bee in each learning test (see Methods). In Fig. 2B the mean 

MCC values are plotted for each group of trained bees (see also Fig. S2). Since we computed the 

MCC as the correlation with responses to the larger numerosity in each pair of patterns, perfect 

performance would be reflected in a MCC of 1.0 for the 4+2- and 3+1- groups, and a MCC of -1.0 for 

the groups trained on the smaller numerosity (2+4- and 1+3-). In all cases a MCC of 0 reflects chance 

performance. The distribution of MCC values was significantly different from a distribution centred 
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on zero for all groups (Wilcoxon one-sample signed rank test; W>36, p < 0.004, two tailed, for all 

groups) indicating that each group successfully learned the numerosity discrimination.  

Performance in the learning tests was not significantly different for bees trained on the 

higher or lower of the target numerosities in the patterns (i.e., 1 v 3 or 2 v 4). However, the absolute 

performance level was higher for groups trained to discriminate one- from three-item patterns 

compared to the groups trained to discriminate two- from four-item patterns, regardless of whether 

the target numerosity was the lower or higher value (Wilcoxon two-sample signed rank test, W=249, 

p=0.046). This was also reflected in the training phase, where analysis of learning curves 

demonstrated faster learning in the groups trained to discriminate one from three compared to the 

groups trained to discriminate two from four (Fig. S1A; GLM – see methods, p=0.001).  

To control for the possibility that low level visual cues may have influenced bees’ decisions, 

we carried out transfer tests (see Methods), in which the trained numerosities were represented by 

novel patterns (Figs. 1 and S3, Video S2, Table S1), where the size, shape and colour of the 

constituent items were varied. Most trained groups made significantly more correct choices than 

incorrect choices when the trained numerosity was presented via the novel patterns (Fig. S4; p< 0.04 

for all novel patterns and groups except the 3+1- group, which failed to transfer the trained 

numerosity to novel colour patterns (p= 0.19), despite successfully transferring to novel size and 

shape; see Table S1 for full details of stimuli). We therefore conclude that bumblebees can make 

visual discriminations based on numerosity, at least in the range of 1-4 and when the difference 

between numbers was two. They did so without relying on visual pattern matching, overall area, 

illusory contours, spatial frequency, convex hull or perimeter length of stimulus items. This is 

consistent with previous studies in honeybees (Chittka and Geiger 1995; Dacke and Srinivasan 2008; 

Gross et al. 2009); we first needed to ascertain that bumblebees, too, could solve such tasks before 

exploring how they solve them (see subsequent sections).     

 

Bumblebees scanned items sequentially 

To explore how bees made the choice of accepting or rejecting a given pattern, we analysed the 

videos of the bees’ flight paths (see Video analysis in Methods) using an automatic extraction of the 

flight path (from the bee’s location at each frame of the video) and hovering time (flight duration 

when the location of the bee was within the circumference of the pattern followed by a ‘landing’ or 

‘rejecting’ choice) for every pattern type. Hovering time for correct choices depended strongly on 

training group, being significantly longer for bees trained on the larger number of items within a 

pattern (3+1- > 1+3-, Fig. 3A and 4+2- > 2+4-, Fig. 3B; Wilcoxon rank sum test: p < 0.008 for both 
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group comparisons). In other words, bees took longer to correctly identify target patterns containing 

more items, presumably because such items require more scanning (Figs. 3A&B). Interestingly, a 

similar, if less marked effect was found for correct rejections (when bees found themselves scanning 

the incorrect number). Bees trained to patterns with the smaller number of items (1+3-, Fig. 3A and 

2+4-, Fig. 3B) spent longer hovering over patterns containing the higher numerosity before correctly 

rejecting it, than they did over patterns containing the smaller numerosity before correctly choosing 

it. The opposite relationship between pattern numerosity and hovering time was found in the two 

groups trained on the larger numerosity: these bees were quicker to reject patterns with the smaller 

numerosity than they were to correctly choose patterns with the larger (Wilcoxon rank sum test: p < 

0.02 for all four comparisons of CC with CR). Thus, response time increased with pattern numerosity 

for both correct choices and correct rejections.  

In keeping with this, differences in hovering time were smaller when comparing correct 

responses (CC or CR) to patterns with the same numerosities in different training groups. Hovering 

time of bees correctly choosing three-item patterns (i.e., 3+1- group) did not differ significantly from 

those correctly rejecting three-item patterns (i.e., 1+3- group; Fig. 3A; Wilcoxon rank sum test: W = 

40, p = 0.72). The same was true when comparing correct choices and correct rejections of four-item 

patterns (Fig. 3B; Wilcoxon rank sum test: W = 26, p = 0.21). However, when bees had been trained 

to a larger number (3+ or 4+) and encountered a pattern with a smaller number (in which case the 

correct response is a rejection), there was a trend for longer scanning times, as if the bees continued 

searching for further items. This difference was significant when comparing correct choices of one-

item patterns by the 1+3- group with correct rejections of the same patterns by the 3+1- group (W = 

70, p = 0.045; Fig. 3A), but not for the same comparison of correct responses to the two-item 

pattern; i.e., CC by the 2+4- group and CR by the 4+2- group (W = 52, p = 0.138; Fig. 3B).  

The dependence of hovering time (Figs. 3A&B) on pattern numerosity suggests that bees 

make their choices at least in part by sequential enumeration of items within a pattern. To confirm 

this, we extracted the number of items within a pattern that were scanned prior to each decision 

from video recordings of the learning tests. A direct comparison for correct choices, of the numbers 

of items scanned depending on the number of items that needed to be counted within patterns, 

reveals a clear correlation (Figs. 4A, S6), confirming that numerosities were not assessed by 

subitizing (“at a glance”), but instead by bees viewing the items at least in part sequentially. 

However, it is also apparent that the number of items counted within a pattern before making a 

decision is lower than the number that actually needs to be counted. There are multiple possible 

reasons for this (see Discussion). 

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article-abstract/doi/10.1093/icb/icaa025/5830514 by guest on 27 M

ay 2020



Sequential counting in bees 

 12 

Fig. 4A shows that the number of items scanned increased with the target numerosity for 

both correct choices and correct rejections (Kruskal-Wallis test, Chi2=9.25, p<0.001). This indicates 

that more scans were needed to enumerate higher numerosity patterns to correctly choose them, 

suggesting that bees may need to retain items scanned in working memory for enumeration, 

keeping track of items already scanned. Our analysis of the sequence of individual pattern elements 

scanned within the response time (i.e., prior to landing or flying away) supported this notion. Bees in 

all four training groups clearly avoid re-scanning a previously scanned item in the vast majority of 

cases (Figs. 4B&C).  

 

Transfer to novel numbers 

We next explored the behaviour of the bees when confronted with novel numerosities after the 

training sessions. In these transfer tests, we presented each training group with pattern pairs of the 

non-trained pattern, i.e., two- and four-item patterns for the 1+3- and 3+1- groups, and one- and 

three-item patterns for the 2+4- and 4+2- groups. If the bees learned the numerical relations 

‘greater than’ and ‘less than’ between the trained numerosities, then we would expect them to 

preferentially select the novel patterns containing higher or lower numerosity according to training 

group. When the training sessions were followed by transfer tests with novel numerosities, the 

overall rejection rates increased in all groups (Fig. 5A; compared to the rejections in the learning test 

p<0.05), suggesting that the bees were reluctant to select patterns other than those containing the 

trained numerosity. However, analysis of choice behaviour (according to the criterion that correct 

choices mean selection of either the greater or lesser of the novel numerosities, according to 

training group) showed significantly more correct choices among the 1+3-, 3+1- and 4+2- groups. 

Thus, bees trained to discriminate one-item over three-item patterns were significantly more likely 

to select a smaller numerosity when confronted with the novel two-and four-item pattern pairs (Fig. 

S5A). Conversely, bees trained to select three-item patterns over one-item patterns were 

significantly more likely to select the larger (four-item) pattern from the novel numerosity pair. 

Similarly, bees trained to discriminate four- over two-item patterns were significantly more likely to 

select the greater novel numerosity (three-item patterns). However, this trend was not found among 

bees trained to discriminate two- from four-item patterns; these bees selected the larger or smaller 

of the novel numerosity pairs with approximately equal frequency (Fig. S5B).  

The above evaluation took into account only landing on patterns. A similar picture emerges 

when Matthews Correlation Coefficients (where all four types of decisions are evaluated, including 

pattern inspections followed by a rejection without landing) are calculated for the transfer tests (Fig. 
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5B). Bees of the group rewarded on 3 items (3+1-) chose 4 over 2 in the transfer test (positive 

correlation; p=0.001), whereas bees rewarded on 1-item patterns (1+3-) preferred two-item 

patterns in the transfer test (negative correlation; p=0.042). Bees trained to choose two- and reject 

four-item patterns were indiscriminate when forced to choose between one- and three-item 

patterns, selecting the higher or lower of the novel numerosity approximately equally, as reflected in 

an MCC value not significantly different from zero (p=0.56). Bees trained to four-item patterns (4+2-) 

showed only a weak trend to select three- over one-item patterns in the novel numerosity test 

(p=0.055; Fig. 5B).  

 

 

Discussion 

The aim of our study was to investigate the behavioural strategies and mechanisms underpinning 

counting in bumblebees. Our results suggest that bees require sequential scanning of pattern items 

to enumerate the countable elements within a pattern. This is supported by the observation that the 

time required to make number-based visual discriminations depends on quantity of items and the 

capacity of storing such information during inspection. We show that bumblebees can discriminate 

numerical quantities in the range 1-4 in a manner that rules out other low-level features that might 

correlate with number, at least when the difference between the countable items is two. Thus 

bumblebees join honeybees and other insects in terms of their ability to respond appropriately in 

small-number counting tasks (Chittka and Geiger 1995; Dacke and Srinivasan 2008; Gross et al. 2009; 

Howard et al. 2018, 2019).  

Our detailed flight-path analysis of the behaviour of bees, also indicates that their 

assessment of pattern numerosity depends on serial enumeration of pattern elements. The close-up 

inspection and scanning of countable items by bees was not a result of their poor detectability (see 

methods). For correct choices, bees trained to select the larger number of a pair would spend more 

time inspecting the patterns, and scan more items within a pattern, than bees trained to the smaller 

number. This was also true for correct rejections by bees trained to the smaller number of a pair, 

where longer hovering times and larger numbers of scanned items indicate serial enumeration of 

the incorrect patterns prior to rejection.  Furthermore, during inspection of the patterns, the 

frequency of re-scanning an individual pattern item was very low (<1%), suggesting that bees 

maintained a tally of items scanned in working memory. This suggests that bees in our study do not 

make global judgments of numerical quantity, in the way that humans and other primates can 
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(Jevons 1871; Kaufmann et al. 1949; Feigenson et al. 2004), but instead need to itemize the number 

of elements within a pattern, at least in part, by serial visual scanning.    

 Our video analysis of bees’ flight behaviour was relatively simple, and has obvious 

shortcomings. Nonetheless it is better to have some exploration of the bees’ scanning strategies in 

pattern discrimination tasks rather than none at all, as a first step to understanding the mechanisms 

behind their visual cognition. The limitations stem from the fact that only a single camera was used, 

and therefore we have no information about the bees’ position in 3D, and the proximity to the wall 

on which the targets were presented had to be estimated. In addition, the volumes in which the 

bees’ scanning was counted were not simple cylindrical shapes, but would instead have been slightly 

oblique depending on how far in the periphery of the wall the targets were. Irrespective of these 

shortcomings, the overall result that bees take longer to inspect patterns with larger numbers of 

items, and inspect (hover in front of) larger numbers of such items is unaffected by this. Therefore, 

the observation that bees do not fully assess small numerosities by subitizing is robust.  

 Nonetheless, the number of items inspected per pattern before bees make a decision is on 

average smaller than the number of items that need to be enumerated (Figs. 4A and S6). Even when 

the larger volume around each item is taken into account, bees decided to accept a four-item 

pattern, on average, after scanning on average, 2.5 items. For one-item patterns, the number of 

items scanned is, on average, 0.5 – in other words, according to our quantification, bees often 

landed on such patterns very swiftly and without closely scanning any items.  There are the following 

possible explanations. One is that our method of diagnosing that an item was enumerated 

(“scanned”) are highly conservative – the bee had to spend a time of 0.2 seconds in front of it (or a 

slightly enlarged area around it). We were not able to assess if a bee might have counted an item 

during a shorted fly-by, or from an oblique angle. Therefore, the analyses in Figs. 4A and S6 might 

present underestimations of the numbers of items scanned.  It is also possible that bees viewed 

items by subtle head movements (Riabinina et al. 2014; Boeddeker et al. 2015) that could not be 

captured by our video analysis.  

 In addition, we cannot rule out that there was some combination of parallel or serial 

processing, to the extent that, for example, bees might be able to process two, but not more, items 

simultaneously. The observation that decisions were made after bees scanned, on average, only half 

as many items as were contained in a pattern, is consistent with this (Figs. 4A, S6). This applies only, 

however, under the assumption that our simple video analysis really captured all instances of bees 

scanning an item. Furthermore, in our study, the difference between two patterns to be 

discriminated was always 2. This meant that bees could decide for the correct pattern earlier than 

enumerating the full number of countable items. For example, when 2 needs to be discriminated 
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from 4, a bee can make a decision after counting 3 items because it is clear at this stage that the 

pattern inspected is not a 2. 

 Our findings do not exclude the possibility that, after extensive training, bees might be able 

to switch to rapid simultaneous assessment of quantities, as suggested (though not directly 

demonstrated) by Gross et al. (2009). Allowing bees to view countable items simultaneously (as 

opposed to Chittka & Geiger (1995) and Dacke & Srinivasan (2008) in whose studies sequential 

enumeration was enforced) does not mean that they necessarily count them by subitizing. 

Conversely, allowing bees to enumerate items sequentially (as we did here) does not decisively 

demonstrate that it is impossible for bees to count by parallel processing at a glance.  Further 

experiments in which bees are precluded from scanning patterns sequentially would be desirable, 

for example by flashing them briefly on a screen (Nityananda et al. 2014). Alternatively, allowing 

bees to view targets from a distance through baffles before making a decision could also constrain 

the possibility to scan targets (Srinivasan and Lehrer 1988; Horridge 2000).  

 Our results also suggest that bees can generalize differences in trained numerosities by 

applying a “greater-than” or “less-than” rule, as has recently been suggested for honeybees (Bortot 

et al. 2019). Of the four groups of bees, three correctly chose the patterns with the larger or smaller 

number of items in keeping with whether they had been rewarded with the higher or lower 

numerosity of the original training patterns. However, when we computed Matthews Correlation 

Coefficient, this difference was only significant for two of these groups (1+3-, 3+1-). An alternative to 

applying greater/less than rules when faced with novel numerosities would be to base decisions on 

numerical proximity. Applying such a rule would explain the seemingly random choice behaviour 

displayed by four of the bees trained to choose two- and reject four-item patterns (the trained 

numerosity two is equally proximate to the novel numerosities of one and three). However, the 

same is true of the 3+1- group, yet these bees chose the higher of the novel numerosities (four 

rather than two) at a highly significant level. Overall, our results contribute to the growing body of 

work showing that bees respond to continuous (Avarguès-Weber et al. 2014) and discrete quantity 

(Howard et al. 2018; Bortot et al. 2019) relations. Here, we additionally shed light on the 

mechanisms underlying these decision-making abilities.  

In other animals, the upper limit of the small number system (accessible by subitizing) is 

around four items (Trick and Pylyshyn 1994; Hauser and Carey 2003; Feigenson et al. 2004; Agrillo et 

al. 2012). This system, also referred to as object file system (Feigenson et al. 2002), is accurate and 

capacity-limited because it essentially enumerates the number of objects that can be individuated 

and tracked in working memory (Trick and Pylyshyn 1994; Cowan 2001). By contrast, larger 

numerical quantities are thought to be processed by a separate approximate number system, or 
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analogue-magnitude system, where the error of the estimate scales with the quantity to be 

estimated according to Weber’s law. However, the existence of a discontinuity in numerical 

representation has been questioned; it has also been argued that representation of both countable 

and non-countable magnitude is characterized by scalar variability, and the apparent ease of small 

number recognition is simply a ceiling effect (any two numbers from the set 1-4 will have a minimum 

difference in Weber fraction of 25%) (Gallistel and Gelman 2000; Ross 2003). The range 1-4 of the 

putative small number system is within the subitizing range, within which humans can accurately 

count the number of items in a display ‘at a glance’ (Jevons 1871; Kaufmann et al. 1949). However, 

the ability to take in a visual scene from a single sensory snapshot is a feature of the primate visual 

system and does not directly pertain to the question of whether there really are two separate 

number systems. For example, numerical displays containing many more than four items can still be 

estimated by humans (albeit with less accuracy) when presented very briefly, to preclude sequential 

counting (Burr et al. 2017).   

Are the numerical abilities of bees based on an object-file system limited by working 

memory capacity? The scanning behaviour documented here is  compatible with this notion, as is 

also the bees’  ability to avoid rescanning the same item within a pattern (Bar-Shai et al. 2011). 

However, we also note that bees trained to discriminate one- from three-item displays achieved 

higher accuracy than the groups trained on two- vs four-items, which could also be consistent with 

scalar variability, given the higher ratio difference in the stimuli presented to the former groups. On 

the whole, however, it is clear that the bees’ counting strategy is in part sequential in nature even 

for small numbers, in line with other findings on limitations on parallel processing in their visual 

system, and the need to acquire information about visual patterns by actively scanning them 

(Spaethe et al. 2006; Nityananda et al. 2014; Guiraud et al. 2018). Our results appear broadly in line 

with the idea that numerical judgments are related to the capacity limits of storing information in 

working memory when performing a visual task. As recently reported by Cheyette and Piantadosi 

(2020), infants and primates have a lower visual memory capacity that limits their accuracy even 

throughout the small number range, and this might similarly apply to bumblebees.   
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Fig. 1. Training and testing protocol. (A, B) Training and test patterns (artificial flowers) were 

constructed from 7 cm diameter disks with a variable number (1-4) of constituent elements differing 

in size and shape (small or large circles or stars). Test patterns included the same stimuli used during 

training, and additionally, during transfer tests, stimuli whose constituent elements contained novel 

shapes, size and colour. Each pattern was attached via its centre to the rear wall of the flight arena 

by a plastic tube (5 mm diameter) with 10 μL sucrose or quinine (training) or distilled water (test 

stimuli) placed at the opening. Patterns were rotated around the centre during the experiment, to 

vary orientation of the pattern elements in a pseudo-random manner. Bees were trained on 

patterns containing either one or three elements (A), or two or four elements (B); in each case 

differential conditioning was used, in separate groups of bees, such that either the higher or lower 

numerosity was positively reinforced (sucrose) and the complementary numerosity was negatively 

reinforced (quinine). (C) Each bee was subjected to 12 training bouts, in which she entered the flight 

arena and was confronted with five pairs of patterns (e.g., two-item v four-item patterns). The bee 

was free to sample the rewarding and unrewarding patterns and return to the nest box when 

satiated, which marked the end of a bout. Following training bees were subjected to three further 

tests where the positive or negative reinforcement was replaced with sterile distilled water. 

Responses were analysed from video recording of the first 120 s in the flight arena. In learning tests, 

bees were presented with pattern pairs randomly selected from the training set. In transfer tests 

bees were presented with patterns of the same numerosity but with constituent elements of novel 

size, shape and colour. Finally, bees were confronted with novel numerosity tests, such that bees 

trained to discriminate one- from three-item patterns were presented with two- v four-item 

patterns, and vice versa.  

 

Fig. 2. Numerosity discrimination by bees. (A) Flight path showing the first 14 s of activity during a 

learning test, from a bee trained to select two- and avoid four-item patterns. Each point on the flight 

path corresponds to a single video frame, with an interval of 33 ms between points. The bee 

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article-abstract/doi/10.1093/icb/icaa025/5830514 by guest on 27 M

ay 2020



Sequential counting in bees 

 21 

sequentially scans two patterns, correctly avoiding them, before landing on a two-item pattern. The 

colour map changes from blue to red with increasing time (see Video S1). (B) Matthews correlation 

coefficients (mean ± SEM) for all four training groups in the learning tests. Values are indicated for 

each individual bee by small empty circles. The correlation is computed with respect to choosing the 

larger numerosity for each training group; hence, positive correlation indicates correct performance 

for bees trained to three- or four-item patterns (3+1-, 4+2-) while negative correlation indicates 

correct performance for the complementary training groups (1+3-, 2+4-). Correlation coefficients are 

significantly different from zero (**, p<0.001).  

 

Fig. 3. Hovering times of bees in the learning tests. (A) Response times (i.e. the time spent hovering 

in front a pattern) for each response category (CC: correct choice; CR: correct rejection; IC: incorrect 

choice; IR: incorrect rejection) for bees trained to select one-item (light green symbols) and three-

item (dark green) patterns (mean ± SEM). Numerals in square brackets indicate the numerosity for 

correctly chosen and correctly rejected patterns. Response time increases with pattern numerosity 

for both CCs and CRs. (B) Same analysis for bees trained to discriminate two-item from four-item 

patterns. ** indicates p<0.001 and * for p<0.05 for difference in hovering time between CC and CR 

within groups (horizontal square brackets) and difference in hovering time for CCs between groups.  

 

Fig. 4. Sequential scanning of stimulus elements by bees. (A) Mean (± SEM) number of stimulus 

elements scanned prior to correct responses for four groups of bees trained to discriminate one- 

from three-item patterns and two- from four-item patterns. Number of items scanned increases 

with pattern numerosity. ** indicates p<0.001 (B, C) Frequency of scans for each item within a 

pattern for bees trained to discriminate 1- from 3-item patterns (C) and 2- from 4-item patterns (D). 

For both groups, scanning an individual item more than once is very rare (>1% across all bees), 

suggesting the sequence of items scanned is retained in working memory.  
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Fig. 5. Novel numerosity test.  (A) Comparison of rejection rate in learning test and novel 

numerosity tests for all four training groups. ** p<0.005, * p<0.05. (B) Matthews correlation 

coefficients (mean ± SEM; individual values indicated by small circles) for all four training groups in 

the novel numerosity test, where bees trained to discriminate one- from three-item patterns were 

presented with two- and four-item patterns, and vice versa. The correlation is computed with 

respect to choosing the larger numerosity for each training group; hence, if bees generalize the 

larger of smaller numerosity according to training group, positive correlation indicates bees trained 

to three- or four-item patterns (3+1-, 4+2-) are now choosing four- and three-item patterns, 

respectively, while negative correlation indicates the complementary training groups (1+3-, 2+4-) are 

now choosing two- and one-item patterns, respectively. Correlation coefficients significantly 

different from zero indicated by **: p<0.005 and *: p< 0.05).  
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