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Abstract

The Conditional Value-at-Risk (CoVaR) proposed by Adrian and Brunnermeier (2016)—which

quantifies the impact of a company in distress on the Value-at-Risk (VaR) of the financial sys-

tem—has established itself as a reference measure of systemic risk. In this study, we extend the

CoVaR along two dimensions, which lead respectively to: i) the Conditional Autoregressive VaR

(CoCaViaR), in which we include autoregressive components of conditional quantiles to explic-

itly capture volatility clustering and heteroskedasticity; ii) the Conditional Quantile-Located VaR

(QL-CoVaR), which accentuates the degree of distress in the connections between the conditioning

companies and the financial system, as the parameters are estimated by directly linking the left

tails of their returns’ distributions. By combining the two new risk measures, we also build the

Conditional Autoregressive Quantile-Located VaR (QL-CoCaViaR) and introduce a new backtest-

ing method. A large empirical analysis highlights the validity of such approaches and critically

discuss their pros and cons. In particular, including quantile-located relationships leads to relevant

improvements in terms of predictive accuracy during stressed periods and, therefore, provides a

valuable tool for regulators to assess systemic events.

1 Introduction

Recent financial crises have highlighted the need to develop better tools and measures to quantify and

predict systemic risk, emphasizing the importance of the interconnectedness of firms, their exposure to

systemic events as well as the marginal effect each company has on the entire system. The collapse of

Lehman Brothers and the aftermath of the subprime crisis have prompted regulators to move beyond
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the unconditional Value-at-Risk (VaR), which does not capture the dependence structure of extreme

co-movements in stock markets and the consequent spillover effects generated during stressed phases.

Adrian and Brunnermeier (2016) moved away from unconditional VaR estimates, introducing the

Conditional Value-at-Risk (CoVaR), that has become one of most important measures for systemic

risk. In contrast to the VaR, which only quantifies the individual tail-risk of the system (or a company),

the CoVaR takes into account the impact of a company in distress on the entire system. The CoVaR

of the system is estimated using a quantile regression model (Koenker and Bassett, 1978) where one

of the covariates is the return of a conditioning company (xi,t, for i = 1, ..., N). Then, after estimating

this model and replacing xi,t with its τ -th quantile—a low quantile representing the company’s VaR

as the focus is on left-tail relations, e.g., τ = {0.01, 0.05, 0.10}—it is possible to measure the VaR of

the system conditional to the stressed state of the i-th firm. Similarly, it is possible to measure the

VaR of the system conditional to the median or normal state of the i-th company—by replacing xi,t

with its 0.5-th quantile in the estimated model—and the difference between the two estimates leads

to the ∆CoVaR, which quantifies the marginal contribution of an individual company to the systemic

risk (Adrian and Brunnermeier, 2016).

By relying on quantile regression, Adrian and Brunnermeier (2016) introduced a simple but yet

informative risk measure. As a result, the CoVaR has attracted much attention and has been applied

in many empirical studies. For instance, López-Espinosa et al. (2012) used the CoVaR to identify

the drivers of large international banks, which are significantly related to systemic risk. Bernal et al.

(2014) studied the contribution of the banking, insurance and other financial services sectors to sys-

temic risk using the ∆CoVaR. Castro and Ferrari (2014) proposed a significance test for the ∆CoVaR

to identify/rank systemically important companies. Bernardi et al. (2015) developed a Bayesian in-

ference for CoVaR estimation. López-Espinosa et al. (2015) extended the CoVaR measure to study

the asymmetric response of the banking system to positive and negative returns of individual banks.

Bernardi et al. (2017) generalized the CoVaR in a multiple quantile setting.

Here, we extend the CoVaR into two main dimensions. First, we take into account the fact that

the volatility—and then the distribution—of financial returns changes over time. Nevertheless, the

CoVaR method does not include any factor reflecting the heteroskedastic behavior of financial returns.

We bridge this gap by adding autoregressive components capturing the quantiles’ dynamics over time,

inspired by the Conditional Autoregressive Value-at-Risk (CaViaR) introduced by Engle and Man-

ganelli (2004). The heteroskedasticity in the CoVaR’s dynamics is also considered—with a different

approach based on GARCH modelling—by Girardi and Ergun (2013). In particular, it is interesting

to check whether and in what measure the inclusion of the CaViaR’s components—which capture the

persistence of quantiles over time and link the current quantile of a financial return with lagged values

of the same return—affect the relations between the financial system and the conditioning companies.

Second, the CoVaR’s parameters are estimated conditional to the return of the i-th company (xi,t)
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and not to the quantile of xi,t. Nevertheless, correlations between financial institutions increase during

stressed periods and the risk of contagion threatens the stability of the entire economy due to potential

spillover effects. Consequently, the information content of extreme risk measures becomes increasingly

relevant when accentuating the distress degree in financial connections. Here, we emphasize the impact

exerted by a conditioning company in the neighbourhood of its τ -th quantile on the VaR of yt—the

return of the system—and, thus, increase the distress degree in the relations between this company

and the entire system by directly linking the left tails of their returns’ distributions. In other words,

we use an estimation process which reflects the joint stressed state of the system and of the i-th

firm. We define the resulting measure as Conditional Quantile-Located Value-at-Risk (QL-CoVaR). In

particular, we estimate the QL-CoVaR’s parameters with a weighted quantile regression model building

on kernel-based weights, following the approach that Sim and Zhou (2015) used to study the relations

between oil prices and stock returns. To the best of our knowledge, such a method has never tested

within a CoVaR framework for systemic risk.

By combining the CoCaViaR and the QL-CoVaR, we also introduce the Conditional Autoregres-

sive Quantile-Located Value-at-Risk (QL-CoCaViaR), where the conditional VaR depends on both an

autoregressive component and a quantile of the independent variable. Building on the QL-CoCaViaR

model, which nests the two previously introduced specifications, we also introduce a further innovative

element, that is, a decomposition of the resulting ∆QL-CoCaViaR, providing an economic interpre-

tation for each component and studying their contribution to the overall risk measure. Therefore, we

can analyze how the CaViaR and the quantile-located effects interact when combined in the same

model —the QL-CoCaViaR—and whether this combination is better than considering the individual

components separately—in the CoCaViaR and in the QL-CoVaR, respectively.

The three risk measures we propose here are not the only extensions of the CoVaR in the literature.

To the best of our knowledge, the contributions that most closely relate to ours are White et al. (2015)

and Girardi and Ergun (2013). In particular, White et al. (2015) proposed the ‘VAR for VaR’—a

multivariate version of the CaViaR model introduced by Engle and Manganelli (2004). Similarly to

our approach, the ‘VAR for VaR’ captures both the persistence of the system’s quantiles and the

relations between the system’s and the i-th company’s lower quantiles. Nevertheless, our approach

differs in three important points. First, the ‘VAR for VaR’ links the past of a single company (xi,t−1)

to the present of the system (yt), whereas we focus on contemporary relationships to asses how the

system immediately reacts when an institution enters a financial distress. Second, in White et al.

(2015), the system’s and the i-th company’s quantiles are estimated in a bivariate setting in which

the covariates are their respective latent (lagged) values. In contrast, the return of the i-th company

we include in the equation of the system’s quantile is not latent, being observed. As a result, the

impact of the i-th company on the system is estimated using a different approach. Third, in White

et al. (2015), the financial distress of the conditioning company occurs when its return is exactly at
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its VaR. Similarly to Girardi and Ergun (2013), we provide more flexibility as the financial distress

of the conditioning company does not necessarily occur when xi,t is exactly at its VaR. In particular,

in Girardi and Ergun (2013), the financial institution can be at most at its VaR to be in a stressed

state. In contrast, we are aware that the distress state of the i-th company might not be confined to

the case of observing returns lower than or equal to a given quantile. In fact, we focus on the impact

exerted by xi,t in the (left and right) neighbourhood of its τ -th quantile, increasing the flexibility and

smoothing discontinuities in the identification of the company distress.

We compare the competitive risk measures both in- and out-of-sample, using a large dataset in-

cluding more than 1,000 banks and insurance companies. In particular, we checked that the relations

between the system and the individual companies become stronger when considering the quantile-

located effects, that is, when accentuating the distress degree in their connections. In fact, the

distance between the quantile-located measures—∆QL-CoVaR and ∆QL-CoCaViaR—and the other

indicators—∆CoVaR and ∆CoCaViaR—is relatively low during calm periods and becomes accentu-

ated during stressed phases—e.g., during the subprime crisis, during the ‘internet bubble’ in 2000, after

the terrorist attacks in September 2001, around the stock market crash in 2002, during the war in Iraq

(years 2001—2003) and during the European sovereign debt crisis (years 2010—2011). We then high-

light the capability of the quantile-located measures—∆QL-CoVaR and ∆QL-CoCaViaR—to react

more strongly during systemic events. The CaViaR’s components absorb part of the relations between

the system and the conditioning companies, because of the persistence of the yt’s quantiles over time.

As a result, the CaViaR is more restrictive than the CoVaR and the QL-CoCaViaR is more restrictive

than the QL-CoVaR.

We also evaluate the out-of-sample performance of the risk measures using various backtesting

methods. However, well-known backtesting approaches are, in our opinion, not appropriate for quantile-

located risk measures. Therefore, as a further contribution, we introduce novel backtesting methods

tailored to the quantile-located risk measures we use here. Our analysis shows that the quantile-located

relationships are particularly useful in improving the predictive accuracy during stressed periods, with

the QL-CoVaR outperforming the other competitive measures.

The work is structured as follows. We present the risk measures and the backtesting methods in

Section 2. Section 3 describes the dataset, whereas Section 4 reports the empirical results. Section 5

concludes.

2 Notation and methods

Let yt and xi,t be the returns of the financial system and of the i-th financial company at time t,

respectively, for i = 1, ..., N and t = 1, ..., T , whereas Mt is a k−dimensional row vector including a set

of control variables observed at time t. Let Qτ (xi,t|It−1) denotes the τ -th quantile of xi,t, for τ ∈ (0, 1),
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conditional to the information set It−1, where It−1 = (yt−1, xi,t−1,Mt−1). Similarly, Qθ(yt|It−1, xi,t)

is the θ-th quantile of yt conditional to the information set available at t − 1 as well as to the return

of the i-th company observed at time t, for θ ∈ (0, 1). For simplicity, we set Qτ (xi,t|It−1) ≡ Qτ (xi,t)

and Qθ(yt|It−1, xi,t) ≡ Q
(i)
θ (yt). As we focus on the left-tail dependence between yt and xi,t, θ and

τ take low values, typically in the interval (0, 0.05). Hence, Q(i)
θ (yt) and Qτ (xi,t) are interpreted as

the Values-at-Risk (VaR), at the levels θ and τ , of the financial system and of the i-th company,

respectively.

2.1 Conditional Value-at-Risk

Adrian and Brunnermeier (2016) introduced the Conditional Value-at-Risk (CoVaR) as a measure

of systemic risk. The CoVaR builds on the estimation of the following (linear) conditional quantile

models:

Qτ (xi,t) = α(i)
τ + βββ(i)

τ M′
t−1, (1)

Q
(i)
θ (yt) = δ

(i)
θ + λ

(i)
θ xi,t + γγγ

(i)
θ M′

t−1, (2)

where α(i)
τ , δ(i)

θ , and λ(i)
θ are scalars, while βββ(i)

τ and γγγ(i)
θ are k-dimensional row vectors of parameters.

The subscripts of the parameters in (1)—(2) point out their dependence on the quantiles levels τ and

θ, respectively; in contrast, the superscript (i) indicates that (1)—(2) are specific to the i-th company,

for i = 1, ..., N . Although the intercept δ(i)
θ and the vector γγγ(i)

θ in (2) are not directly linked to the i-th

company, they might be affected by the relations between yt and xi,t. Therefore, δ(i)
θ and γγγ(i)

θ in (2)

are also indexed by (i).

The parameters in (1)—(2) are estimated through the quantile regression method introduced by

Koenker and Bassett (1978). Their standard errors could be computed following various approaches.

Here, we use a bootstrap method (Efron, 1979), that is, the xy-pair approach of Kocherginsky (2003),

that provides accurate results without any distributional assumption. After obtaining the estimated

quantile Q̂τ (xi,τ ) = α̂
(i)
τ + β̂ββ

(i)

τ M′
t−1, the CoVaR of the financial system, conditional to the VaR of the

i-th company, is computed as follows:

CoV aR
(i)
t,θ,τ = δ̂

(i)
θ + λ̂

(i)
θ Q̂τ (xi,t) + γ̂γγ

(i)
θ M′

t−1. (3)

For the sake of brevity, we do not use t, θ and τ as subscripts, as well as (i) as superscript, when

we refer to the CoVaR as a risk measure throughout the paper. Hence, the CoVaR represents the

risk of the financial system at the θ level (as in the case of the traditional VaR) conditional to the

fact that the i-th financial company is in a stressed state, that is, its return is equal to its Value-at-

Risk: xi,t = Q̂τ (xi,τ ). Note that Qτ (xi,t) and Q(i)
θ (yt) in (1)—(2) depend on a common set of control

variables, that is, the ones included in M′
t−1.
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The CoVaR can be also computed conditional to the normal (or median) state of the i-th company,

such that:

CoV aR
(i)
t,θ,1/2 = δ̂

(i)
θ + λ̂

(i)
θ Q̂1/2(xi,t) + γ̂γγ

(i)
θ M′

t−1. (4)

We highlight that the quantile level θ does not change between (3) and (4). Indeed, the coefficients

in (3)—(4) are identical, being estimated from the same quantile regression model in (2). Then, by

subtracting CoV aR(i)
t,θ,1/2 from CoV aR

(i)
t,θ,τ , we compute the so-called ∆CoVaR (Adrian and Brunner-

meier, 2016) to quantify the marginal contribution of the i-th company to the systemic risk. In fact,

the ∆CoVaR captures the system reaction to the deterioration of the i-th financial company risk, as

quantified by the difference between the median return and the Value-at-Risk of the company (both

obtained from a quantile regression approach). Given that CoV aR(i)
t,θ,1/2 is always parameterized to the

median state of the i-th conditioning company, we can omit the level 1/2 as subscript of the ∆CoVaR

measure as follows:

∆CoV aR
(i)
t,θ,τ = CoV aR

(i)
t,θ,τ − CoV aR

(i)
t,θ,1/2 = λ̂

(i)
θ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
. (5)

For simplicity, we estimate the lower quantiles of yt and xi,t (i.e. Q̂
(i)
θ (yt) and Q̂τ (xi,t)) at the

same quantile level: θ = τ . Hence, we can further simplify the notation by setting ∆CoV aR
(i)
t,θ,τ ≡

∆CoV aR
(i)
t,τ .

2.2 Conditional Autoregressive Value-at-Risk

Financial returns exhibit volatility clustering, especially during crisis periods (Cont, 2001).1 Volatility

changes over time, affecting the distribution and, thus, the quantiles of assets’ returns. The CoVaR

measure by Adrian and Brunnermeier (2016) neglects such a phenomenon, as (1)—(2) do not include

any factor reflecting the heteroskedastic behavior of the returns’ densities and, thus, of both Q(i)
θ (yt)

and Qτ (xi,t). Here, we bridge this gap by adding autoregressive components capturing the quantiles’

dynamics over time, inspired by the Conditional Autoregressive Value-at-Risk (CaViaR) introduced

by Engle and Manganelli (2004). The heteroskedasticity in the CoVaR’s dynamics is also considered,

under a different approach, based on GARCH modelling, by Girardi and Ergun (2013).

We then rewrite (1)—(2) as follows:

Qτ (xi,t) = α(i)
τ + φ

(i)
1,τQτ (xi,t−1) + φ

(i)
2,τf(xi,t−1) + βββ(i)

τ M′
t−1, (6)

Q
(i)
θ (yt) = δ

(i)
θ + ψ

(i)
1,θQ

(i)
θ (yt−1) + ψ

(i)
2,θf(yt−1) + λ

(i)
θ xi,t + γγγ

(i)
θ M′

t−1. (7)

The latent autoregressive components Qτ (xi,t−1) and Q
(i)
θ (yt−1) smooth the changes in the esti-

mated quantiles over time, capturing their heteroscedasticity. Moreover, φ(i)
2,τ and ψ

(i)
2,θ link Qτ (xi,t) and

1See for instance Figure 6.
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Q
(i)
θ (yt) to the past of xi,t and yt, respectively. Among all the possible functions, we set f(xi,t−1) =

|xi,t−1| and f(yt−1) = |yt−1|, as suggested by Engle and Manganelli (2004). Such a choice implies a

direct response of the quantiles to the returns processes, symmetrically treating the effect of positive

and negative returns on VaR. (6)—(7) correspond to CaViaR specifications augmented by control

variables. In addition, (7) includes also the i-th company’s return.

Engle and Manganelli (2004) discuss the estimation of the CaViaR model, a nonlinear quantile

autoregression, proving that the estimators of the CaViaR’s parameters are consistent and asymptot-

ically normal. We follow Engle and Manganelli (2004) for estimating the parameters in (6)—(7) and

their standard errors. Other works in the literature that study, under different viewpoints, quantile

autoregressions are, for instance, Koenker and Xiao (2004) and Li et al. (2015).

We then introduce the Conditional CaViaR (CoCaViaR) as the generalization of the CoVaR ac-

counting for the presence of autoregressive terms in (6)—(7). The CoCaViaR is defined as:

CoCaV iaR
(i)
t,θ,τ = δ̂

(i)
θ + ψ̂

(i)
1,θQ̂

(i)
θ (yt−1) + ψ̂

(i)
2,θ|yt−1|+ λ̂

(i)
θ Q̂τ (xi,t) + γ̂γγ

(i)
θ M′

t−1, (8)

where Q̂τ (xi,t) = α̂
(i)
τ + φ̂

(i)
1,τ Q̂τ (xi,t−1) + φ̂

(i)
2,τ |xi,t−1|+ β̂ββ

(i)

τ M′
t−1 is estimated from (6).

The CoCaViaR of the financial system can be also conditioned to the median state of the i-th

company by setting τ = 1/2 and obtaining CoCaV iaR(i)
t,θ,1/2. Again, we set θ = τ in our empirical

analysis and measure the marginal contribution of the conditioning company to the systemic risk

through the ∆CoCaViaR:

∆CoCaV iaR
(i)
t,τ = CoCaV iaR

(i)
t,θ,τ − CoCaV iaR

(i)
t,θ,1/2 = λ̂

(i)
θ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
. (9)

Despite taking the same form, that is, λ̂(i)
θ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
, ∆CoV aR

(i)
t,τ and ∆CoCaV iaR

(i)
t,τ

are computed from different models, with potential differences due to the presence of the autoregressive

components in (6)—(7). This leads to differences in the estimation of the parameter λ(i)
θ as well as

in the conditional quantiles of the financial institution. In fact, we estimate λ(i)
θ from Q

(i)
θ (yt) =

δ
(i)
θ + ψ

(i)
1,θQ

(i)
θ (yt−1) + ψ

(i)
2,θ|yt−1| + λ

(i)
θ xi,t + γγγ

(i)
θ M′

t−1 for the CoCaViaR. In contrast, we recover λ(i)
θ

from Q
(i)
θ (yt) = δ

(i)
θ +λ

(i)
θ xi,t+γγγ

(i)
θ M′

t−1 for the CoVaR. Therefore, it is interesting to assess whether and

in what measure λ(i)
θ changes after including the CaViaR components in the CoCaViaR. Besides, we

estimateQτ (xi,t) fromQτ (xi,t) = α
(i)
τ +φ

(i)
1,τQτ (xi,t−1)+φ

(i)
2,τ |xi,t−1|+βββ(i)

τ M′
t−1 in case of the CoCaViaR,

and from Qτ (xi,t) = α
(i)
τ + βββ

(i)
τ M′

t−1 in case of the CoVaR. Then, we expect that the inclusion of the

CaViaR components lead to differences between the two approaches. Similar considerations apply to

Q1/2(xi,t).
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2.3 Conditional Quantile-Located Value-at-Risk

The CoVaR proposed by Adrian and Brunnermeier (2016) measures the Value-at-Risk of the financial

system conditional to the distress state of a given company. The link between the VaR of the system

and the VaR of the company consists in plugging Q̂τ (xi,t), estimated from (1), into (2), obtaining the

CoVaR in (3). Nevertheless, the parameters in (2), and then the coefficients in (3), are functions of

θ only—they link the covariates to the θ-th quantile of yt—without considering the role of τ , that is,

the reference quantile for the conditioning financial institution. In other words, the estimation process

behind (3) depends on xi,t and not on Qτ (xi,t). As a result, the observations in the support of xi,t are

equally weighted.

However, measures of extreme risk quantify the losses occurring during tail events, such as financial

crises. In such periods the correlations among financial institutions increase and the risk of contagion

threatens the stability of the entire economy, due to potential spillover effects. Consequently, the

information content of extreme risk measures becomes increasingly relevant when we accentuate the

distress degree in the financial connections. In particular, in the context of the CoVaR proposed by

Adrian and Brunnermeier (2016), we can increase the distress degree by linking the left tails of the

distributions of yt and xi,t in the estimation process. In other words, we can estimate the parameters

in (2) assuming that the financial system and the i-th company simultaneously lie in the left tails of

their distributions. Therefore, we restrict the attention on the impact exerted by xi,t on Q̂
(i)
θ (yt) in the

neighbourhood of its τ -th quantile. This allows for a further degree of flexibility, as the parameters

monitoring the impact of xi,t on yt might depend on the location of both xi,t and yt along their marginal

support.

We clarify our viewpoint with a simple example. Let us consider two financial companies: A and

B. The first is a small company (a regional bank, or a financial service company), while the second

is a large financial agglomerate company (a large retail bank or a large investment bank). We might

easily postulate that A and B have different impact on the market. Moreover, we might even claim

that the impact of A on the market is not influenced by the fact that A lies on its median values or on

an extreme quantile. On the contrary, it would be difficult to assert that B, which most likely plays

a relevant role in the economy, has the same effects on the market’s returns (or on the distribution

of the system’s returns) regardless of the state (median or stressed) in which it is. In fact, we expect

the financial distress of B to have more serious consequences on the entire market when compared to

a similar situation for A. Therefore, we might state that the impact of B on the market also depends

on the state in which B is located. Nevertheless, the CoVaR and the CoCaViaR do not capture such

impact.

We introduce the Conditional Quantile-Located Value-at-Risk (QL-CoVaR) to overcome this limi-

tation. In building such a risk measure, we follow Sim and Zhou (2015), which used a weighted quantile

8



regression model, with kernel-based weights, to estimate the relations in quantiles between oil prices

and stock returns. Such approach corresponds to the nonparametric quantile regression, where the

knots used to obtain the local quantiles are fixed at specific quantiles of xi,t (Koenker, 2005). The

model we propose is then defined as follows:

Q
(i)
θ,τ (yt) = δ

(i)
θ,τ + λ

(i)
θ,τxi,t + γγγ

(i)
θ,τM

′
t−1. (10)

In contrast to the models described so far, the parameters in (10) have both θ and τ as subscripts,

as they depend on the quantiles levels of both yt and xi,t. In fact, the unknown parameters in (10) are

estimated from the following minimization problem:

arg min
δ
(i)
θ,τ ,λ

(i)
θ,τ ,γγγ

(i)
θ,τ

T∑
t=1

ρθ

[
yt − δ(i)

θ,τ − λ
(i)
θ,τxi,t − γγγ

(i)
θ,τM

′
t−1

]
K

(
F̂t|t−1(xi,t)− τ

h

)
, (11)

where ρθ(e) = e(θ− 1{e<0}) is the asymmetric loss function used in the quantile regression method by

Koenker and Bassett (1978); 1{·} is an indicator function, taking the value of 1 if the condition in {·}

is satisfied, the value of 0 otherwise; K(·) is the kernel function, with bandwidth h, whereas F̂t|t−1(xi,t)

is the empirical conditional quantile of xi,t.

Let us then focus on the procedure we propose to estimate F̂t|t−1(xi,t) . First of all, we estimate a

large set of xi,t’s quantiles in the support τ ∈ (0, 1) from the quantile regression model (1). Note that

the Qτ (xi,t) values estimated for τ ∈ (0, 1) are no longer interpreted as Values-at-Risk of xi,t, given that

we consider the entire distribution of xi,t, not only the left tail. When estimating multiple quantiles

in the interval (0, 1), the standard quantile regression approach by Koenker and Bassett (1978), that

estimates individual quantiles, does not guarantee their coherence, i.e. their monotonicity for τ ∈ (0, 1)

(e.g. we might obtain Q̂0.95(xi,t) < Q̂0.90(xi,t)). In order to obtain a valid conditional distribution of

xi,t, we use the method developed by Bondell et al. (2010) by which we obtain a large set of quantiles

having a monotonic behavior for τ ∈ (0, 1). Then, we linearly interpolate the set of quantiles to obtain

the conditional distribution of xi,t at time t, denoted as F̂ (xi,t|M′
t−1). Finally, we recover F̂t|t−1(xi,t),

as the probability level, extrapolated from F̂ (xi,t|M′
t−1), corresponding to the realization xi,t. On

the basis of a rolling window procedure, we estimate F̂t|t−1(xi,t) for each t = ws,ws + 1, ..., T , where

ws denotes the length of the estimation window. In general, a larger ws improves the statistical

properties of the quantiles Q̂τ (xi,t), for τ ∈ (0, 1), and provide more stable estimates. Besides, a

larger set of estimated quantiles Q̂τ (xi,t) allows to obtain a more accurate conditional distribution

F̂ (xi,t|M′
t−1), reducing the errors coming from the interpolation. Nevertheless, increasing both the

length of the estimation window and the number of quantiles leads to sensibly higher costs in terms of

computational burden.

Here, in deriving F̂t|t−1(xi,t) we differ from Sim and Zhou (2015) who, instead, rely on the uncon-
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ditional (full sample) empirical quantile:

F̂ (xi,t) = T−1
T∑
k=1

1{xi,k<xi,t} (12)

in place of F̂t|t−1(xi,t).

Therefore, the use of (12) implicitly relies on the stability of quantiles over time, neglecting the

fact that financial returns are typically affected by heteroskedasticity and other elements impacting on

the location, scale and symmetry of their distributions.2 In contrast, F̂t|t−1(xi,t) builds on a dynamic

conditional distribution of xi,t and then captures the heteroskedastic behavior and, in general, the

instability of the xi,t’s distribution over time.

The estimation process in (11) relies on the kernel bandwidth value h: the smaller h, the smaller is

the bias of the estimates, but the larger is their variance, and vice versa. In contrast to Sim and Zhou

(2015), which report results for a bandwidth value equal to 0.05, in the robustness analysis we test

the sensitivity of the estimates for different h values. Then, we check whether, and in what measure,

the results change according to the choice of the bandwidth value h. As for the computation of the

standard errors of the coefficients in (10), we suggest again to use the bootstrap approach (Efron,

1979), implementing the xy-pair method (Kocherginsky, 2003).

From the method described above, we compute the QL-CoVaR at the τ -th level as follows:

QL-CoVaR
(i)
t,θ,τ = δ̂

(i)
θ,τ + λ̂

(i)
θ,τ Q̂τ (xi,t) + γ̂γγ

(i)
θ,τM

′
t−1, (13)

where Q̂τ (xi,t) = α̂
(i)
τ + β̂ββ

(i)

τ M′
t−1.

Then, given θ = τ , and evaluating the model also for τ = 1/2, we define the ∆QL-CoVaR as:

∆QL-CoVaR
(i)
t,τ = QL-CoVaR

(i)
t,θ,τ −QL-CoVaR

(i)
t,θ,1/2 = δ̂

(i)
θ,τ − δ̂

(i)
θ,1/2 + λ̂

(i)
θ,τ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
+ (λ̂

(i)
θ,τ − λ̂

(i)
θ,1/2)Q̂1/2(xi,t) + (γ̂γγ

(i)
θ,τ − γ̂γγ

(i)
θ,1/2)M′

t−1. (14)

As expected, ∆QL-CoVaR
(i)
t,τ includes more components than ∆CoV aR

(i)
t,τ in (5) and ∆CoCaV iaR

(i)
t,τ

in (9). By exploiting the informative content of these additional components, we recover further in-

formation about the relations between the financial system and the single financial companies, in

particular when the focus is placed on the left tails of their distributions.3

2This evidence is confirmed in our dataset by using the DQ and the SQ tests developed by Qu (2008). The DQ test
checks for the presence of structural breaks in the conditional distribution of a given variable. In contrast, the SQ test
verifies the presence of structural breaks at specific quantiles levels (in our analysis, we test the 5%, the 50% and the
95% levels). As expected, both the DQ and the SQ provide evidence against the assumption of stable quantiles and
distributions over time, therefore we prefer not to use FT (xi,t) defined in (12) because it does not capture such dynamics.
The dataset is described in Section 3, whereas the output of both the DQ and the SQ tests are available on request.

3The derivation of ∆QL-CoVaR
(i)
t,τ in (14) is reported in Appendix A.
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2.4 Conditional Autoregressive Quantile-Located Value-at-Risk

The combination between the CoCaViaR in (8) and the QL-CoVaR in (13) leads to the Conditional

Autoregressive Quantile-Located Value-at-Risk (QL-CoCaViaR). Note that the Quantile-Located term

emphasizes the focus on the impact exerted by xi,t on yt when both variables are in a low quantile

of their marginal distribution (see Section 2.3). The Autoregressive term refers to the heteroskedastic

behavior of the quantiles over time (see Section 2.2).

The first step consists in estimating Q(i)
θ,τ (yt) conditional to the distress state of xi,t:

Q
(i)
θ,τ (yt) = δ

(i)
θ,τ + ψ

(i)
1,θ,τQ

(i)
θ,τ (yt−1) + ψ

(i)
2,θ,τ |yt−1|+ λ

(i)
θ,τxi,t + γγγ

(i)
θ,τM

′
t−1, (15)

where the parameters are estimated from the following minimization problem:

arg min
δ
(i)
θ,τ ,ψ

(i)
1,θ,τ ,ψ

(i)
2,θ,τ ,λ

(i)
θ,τ ,γγγ

(i)
θ,τ

T∑
t=1

ρθ

[
yt − δ(i)

θ,τ − ψ
(i)
1,θ,τQ

(i)
θ,τ (yt−1)− ψ(i)

2,θ,τ |yt−1| − λ(i)
θ,τxi,t − γγγ

(i)
θ,τM

′
t−1

]

× K

(
F̂t|t−1(xi,t)− τ

h

)
. (16)

We estimate the parameters in (15) and their standard errors by modifying the algorithm proposed

by Engle and Manganelli (2004) for the CaViaR, to take into account the smoothing effect of the

kernel function K(·). Then, after estimating the parameters in (15) and setting θ = τ , we compute

the QL-CoCaViaR at the τ -th level as follows:

QL-CoCaViaR
(i)
t,θ,τ = δ̂

(i)
θ,τ + ψ̂

(i)
1,θ,τ Q̂

(i)
θ,τ (yt−1) + ψ̂

(i)
2,θ,τ |yt−1|+ λ̂

(i)
θ,τ Q̂τ (xi,t) + γ̂γγ

(i)
θ,τM

′
t−1, (17)

where Q̂τ (xi,t) = α̂
(i)
τ + φ̂

(i)
1,τ Q̂τ (xi,t−1) + φ̂

(i)
2,τ |xi,t−1|+ β̂ββ

(i)

τ M′
t−1.

The evaluation of the impact exerted by a financial company in distress on the system, as in the

original CoVaR framework, becomes now quite complex due to the joint presence of the autoregressive

and the quantile-located components. Then, Subsection 2.5 provides the directions for disentangling

and interpreting the outcomes of the ∆QL-CoCaViaR.

2.5 Interpreting the ∆CoCaViaR estimates

The complex structure of the QL-CoCaViaR might challenge the financial interpretation of the model’s

estimates. We show how the model provides a rich and financially relevant interpretation of the

link between a financial company in a stressed state and the financial system using a companion

representation. We focus here only on the QL-CoCaViaR, the most general model, that nests all

the proposed specifications and considers the CoVaR of Adrian and Brunnermeier (2016) as baseline.
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Given θ = τ , the ∆QL-CoCaViaR can be rewritten as follows:4

∆QL-CoCaViaR
(i)
t,τ = QL-CoCaViaR

(i)
t,θ,τ −QL-CoCaViaR

(i)
t,θ,1/2 (18)

=
(
δ̂

(i)
θ,τ − δ̂

(i)
θ,1/2

)
︸ ︷︷ ︸

c
(i)
1,τ

+ λ̂
(i)
θ,τ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
︸ ︷︷ ︸

c
(i)
2,t,τ

+ (λ̂
(i)
θ,τ − λ̂

(i)
θ,1/2)Q̂1/2(xi,t)︸ ︷︷ ︸
c
(i)
3,t,τ

+ (γ̂γγ
(i)
θ,τ − γ̂γγ

(i)
θ,1/2)M′

t−1︸ ︷︷ ︸
c
(i)
4,t,τ

+ (ψ̂
(i)
2,θ,τ − ψ̂

(i)
2,θ,1/2)|yt−1|︸ ︷︷ ︸

c
(i)
5,t,τ

+
[
ψ̂

(i)
1,θ,τ − ψ̂

(i)
1,θ,1/2

]
Q̂

(i)
θ,τ (yt−1)︸ ︷︷ ︸

c
(i)
6,t,τ

+ ψ̂
(i)
1,θ,1/2

[
Q̂

(i)
θ,τ (yt−1)− Q̂(i)

θ,1/2(yt−1)
]

︸ ︷︷ ︸
c
(i)
7,t,τ

.

The decomposition in (18) allows to shed some light on the financial interpretation of the different

∆QL-CoCaViaR’s components:

• c(i)
1,τ measures the shift in location of the system’s density along the distribution of the i-th

company, for i = 1, ..., N ; it quantifies the change in the system risk, when the financial com-

pany moves from the median state to the τ -th quantile. Such change is not attributable to the

covariates or to the change in the financial company risk measures;

• c(i)
2,t,τ captures the effect of the increment in the i-th company’s riskiness; this corresponds to the

standard ∆CoVaR estimated under the distress state of both the system and the i-th company;

• c(i)
3,t,τ quantifies the contribution due to the change in the impact of the i-th company on the

financial system. It provides a measure of the change of the system’s sensitivity to the financial

company. Assuming a positive conditional median for a given financial institution, positive values

of c(i)
3,t,τ suggest a larger sensitivity of the system to the i-th company’s returns when those are

in their lower quantiles;

• c(i)
4,t,τ is the contribution associated to changes in the impact of the control variables to the

system; it quantifies the effect of changes in the sensitivity of the system to the covariates when

the financial company’s returns move from the median to the lower quantiles. Non-null values

would signal changes in the system reaction to the control variables;

• c(i)
5,t,τ measures the change in the relevance of the past system’s absolute returns. Non-null values

of this component highlight a change in the impact of the past system’s returns on the θ-th

system’s quantile, when we compare the system quantile conditioning on the financial company

return being in a median or in a lower quantile;
4The derivation of the ∆QL-CoCaViaR is reported in Appendix B.
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• c(i)
6,t,τ allows to assess the change in the persistence of the system’s quantiles. Non-null values of

c
(i)
6,t,τ suggest that the system changes its dependence on its past quantiles when contrasting the

system’s quantiles conditional to a median or a stressed state of the i-th company;

• c(i)
7,t,τ measures the impact of the lagged change in the risk of the system computed conditional

to the i-th company being in a median or in a stressed state. Non-null values of c(i)
7,t,τ suggest

that the system’s past quantiles were different when conditioning on different quantiles of the

financial company’s returns.

After disentangling the seven components discussed above, it is interesting to asses how and in

what measure they contribute to the ∆QL-CoCaViaR. For instance, we might highlight relevant effects

coming from the conditioning on both the system and a financial company quantile. The conditioning

financial company impacts on the ∆QL-CoCaViaR under different components and, therefore, it will

be important to check whether, for instance, c(i)
2,t,τ or c(i)

3,t,τ prevail over the other components. Similar

considerations hold for the effects coming from the lagged quantiles of yt, then it is important to

compare c(i)
6,t,τ and c(i)

7,t,τ .

By jointly focusing on the different ∆QL-CoCaViaR
(i)
t,τ determinants, we can isolate the impact of

the elements we add to the approach proposed by Adrian and Brunnermeier (2016). In particular, if

c
(i)
5,t,τ = c

(i)
6,t,τ = 0, there is no impact coming from the changes in the autoregressive components, hence

the CaViaR parameters do not depend on the quantiles of the company. If, in addition, ψ(i)
1,θ,1/2 = 0,

the ∆QL-CoCaViaR loses its autoregressive behavior. If c(i)
4,t,τ = 0, the role of the control variables

does not depend on the state of the company (or it is not influenced by the joint occurrence of the

stress states in the company and in the system). If c(i)
1,t,τ = c

(i)
3,t,τ = 0, the impact of the company does

not depend on the location of the company return over its support, then we do not need to account for

the quantile dependence in the evaluation of the ∆QL-CoCaViaR. Finally, if all the determinants in

(18), c(i)
2,t,τ excluded, are equal to zero, we are back to the original proposal of Adrian and Brunnermeier

(2016), adjusted for the quantile-located effects, as λ(i)
θ,τ is now estimated under the joint distress state

of the system and of the i-th company.

To test for the relevance of the CaViaR-like components and of the quantile-location effects, we

can evaluate the contribution of the various ∆QL-CoCaViaR’s determinants we highlighted above,

comparing their size over time and/or in the cross-sectional dimension. Notably, this latter element is

also useful when the parameters’ estimates are statistically significant but we do want to monitor the

economic relevance of each ∆QL-CoCaViaR’s component.

2.6 Backtesting procedures

We evaluate the out-of-sample performance of the risk measures described in Sections 2.1—2.4, namely

the CoVaR, the CoCaViaR, the QL-CoVaR and the QL-CoCaViaR, by means of selected statistical
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tests and loss functions. To implement the out-of-sample analyses, we resort, as a standard practice,

to a rolling window procedure. Given a window size of ws days ending at time t, we first estimate

the parameters of the various models; see Equations (1), (2), (6), (7), (10) and (15). By using these

estimates, conditional on the information set available at day t, we compute the out-of-sample risk

measures as follows:

CoV aR
(i)
t+1,θ,τ = δ̂

(i)
θ + λ̂

(i)
θ Q̂τ (xi,t+1) + γ̂γγ

(i)
θ M′

t, (19)

CoCaV iaR
(i)
t+1,θ,τ = δ̂

(i)
θ + ψ̂

(i)
1,θQ̂

(i)
θ (yt) + ψ̂

(i)
2,θ|yt|+ λ̂

(i)
θ Q̂τ (xi,t+1) + γ̂γγ

(i)
θ M′

t, (20)

QL-CoVaR
(i)
t+1,θ,τ = δ̂

(i)
θ,τ + λ̂

(i)
θ,τ Q̂τ (xi,t+1) + γ̂γγ

(i)
θ,τM

′
t, (21)

QL-CoCaViaR
(i)
t+1,θ,τ = δ̂

(i)
θ,τ + ψ̂

(i)
1,θ,τ Q̂

(i)
θ,τ (yt) + ψ̂

(i)
2,θ,τ |yt|+ λ̂

(i)
θ,τ Q̂τ (xi,t+1) + γ̂γγ

(i)
θ,τM

′
t. (22)

We remind the reader that we estimate Q̂τ (xi,t+1) in (19) and in (21) from the quantile regression

model:

Q̂τ (xi,t+1) = α̂(i)
τ + β̂ββ

(i)

τ M′
t. (23)

In contrast, we estimate Q̂τ (xi,t+1) in (20) and in (22) as follows:

Q̂τ (xi,t+1) = α̂(i)
τ + φ̂

(i)
1,τ Q̂τ (xi,t) + φ̂

(i)
2,τ |xi,t|+ β̂ββ

(i)

τ M′
t. (24)

We repeat this estimation procedure by rolling the estimation window with step of one day ahead,

until we use all the available data. By comparing the quantile forecasts with the out-of-sample real-

izations of the market index yt, for t = ws+ 1, ..., T , we compute the following hit functions:

Hit
M|i
t,θ,τ =

 1 if yt <M(i)
t,θ,τ

0 otherwise
, (25)

where M = {CoVaR, CoCaViaR, QL-CoVaR, QL-CoCaViaR}, that is, we have four different hit

functions, one for each risk model; building on the hit functions (25), we first compare the accuracy of

the competitive risk measures by implementing the Kupiec (1995) and the Christoffersen (1998) tests.

The measures (19)—(22) are conditional to the distress state of the individual companies, but the

classical Kupiec (1995) and Christoffersen (1998) tests do not capture such a conditioning. In fact, they

focus only on the quantile violation of the market index. Therefore, we adopt the method proposed

by Girardi and Ergun (2013), that includes the distress state of the conditioning companies into the

Kupiec (1995) and Christoffersen (1998) tests evaluated at the market index level. First, we consider

the hit values of the i-th financial company, defined as:

Hitit,τ =

 1 if xi,t < Q̂τ (xi,t)

0 otherwise
. (26)
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In a second step, we compute the hit values of the system as in (25), and implement the Kupiec

(1995) and Christoffersen (1998) tests for the days in which Hitit,τ = 1, that is, when the i-th company

is in a stressed state. We refer the reader to Girardi and Ergun (2013) for further details on the tests

implementation under a double conditioning (i.e. market index quantile violation and company under

distress).

Note that we compute Q̂τ (xi,t) from (23) when we consider the CoVaR and the QL-CoVaR models

to quantify the risk associated to yt. In contrast, we use (24) when we focus on the CoCaViaR and the

QL-CoCaViaR models. As a result, we might obtain different sequences in (26) according to the risk

measure we are using to monitor the system’s risk. Therefore, in addition to the method described

above, we also implement the test proposed by Girardi and Ergun (2013) on the basis of the following

model-free hit function for the company distress:

Hitit,τ =

 1 if xi,t < q̂τ (xi)

0 otherwise
, (27)

where q̂τ (xi) is the sample τ -th quantile of the company computed from the entire time series, that

is, using the observations recorded in t = 1, ..., T . In this way, we evaluate the accuracy of the four

risk measures—CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR—on the basis of the same series

of company hits Hitit,τ .

In Girardi and Ergun (2013), the financial institution can be at most at its VaR to be in a stressed

state, and this is coherent with their definition of CoVaR. In our case, we are coherent with the

original definition of Adrian and Brunnermeier (2016), but we are also aware that the distress state of

the company might not be confined to the case of observing company returns below a given quantile.

In fact, following the previous hit functions, we completely disregard days where xi,t is greater than

Q̂τ (xi,t) (or q̂τ (xi)) although xi,t lies in the right-neighbourhood of its τ -th quantile.

To increase the flexibility of the company distress state identification, and at the same time to

remain within our modeling framework, we account for the impact exerted by xi,t in the neighbourhood

of its τ -th quantile by replacing (26)—(27) with the following hit function:

Hitit,θ =


1 if K

(
F̂t|t−1(xi,t)−τ

h

)
> ν or xi,t < Q̂τ (xi,t)

0 otherwise
, (28)

where K
(
F̂t|t−1(xi,t)−τ

h

)
is the same kernel function we use to estimate the parameters entering the

quantile-located measures (see Sections 2.3—2.4), whereas ν is a given threshold. As a result, we do

not lose the information about xi,t being close to its τ -th quantile from the right.5

5Note that the condition Hitit,θ = 1 if K
(
F̂t|t−1(xi,t)−τ

h

)
> ν or xi,t < Q̂τ (xi,t) is more pessimistic than Hitit,θ = 1
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Finally, we evaluate the out-of-sample performance of the four risk measures by using a loss function.

A typical choice in the literature (see, e.g. Caporin (2008)) builds on the square of the difference

between the realization of the system and the quantile forecast. We slightly modify this approach to

take into account the distress state of the conditioning company. In particular, we first define the

following weighting function:

W i
t,τ =

 1 if xi,t ≤ Q̂τ (xi,t)

e−u
2
t,τ otherwise

, (29)

where ut,τ = (xi,t − Q̂τ (xi,t))/h.

Note that (29) is a continuous asymmetric function at xi,t = Q̂τ (xi,t) taking the value of 1 in the

worst scenario, that is, when xi,t ≤ Q̂τ (xi,t), and smoothly decreasing for xi,t > Q̂τ (xi,t).

We thus introduce the loss function:

L
M|i
t,θ,τ =


[
1 + (yt −M(i)

t,θ,τ )2
]
W i
t,τ if yt <M(i)

t,θ,τ

0 otherwise
(30)

where M = {CoVaR, CoCaViaR, QL-CoVaR, QL-CoCaViaR}. Using the loss functions across the

four risk models, we can easily test for the equality of expected loss by resorting to a Diebold and

Mariano (2002)-type test.

3 The data

Our dataset includes the daily returns of 1,155 U.S. financial institutions (952 banks and 203 insurance

companies) in the period between October 10, 2000 and July 31, 2015, for a total of 3,864 days.6 Not

all the companies’ time series span the entire period. In fact, some of them enter the dataset after

October 10, 2000, whereas others exit before July 31, 2015. Henceforth, we consider as present all the

companies for which we have the data at a given day between October 10, 2000 and July 31, 2015.

Panel (a) of Figure 1 displays the number of banks and insurance companies present from October

10, 2000 until July 31, 2015, showing that the number of insurances is quite constant over time (with

an average number equal to 88), whereas the number of banks increases as time passes, from 253 at

October 10, 2000 to 543 at July 31, 2015. Moreover, we computed the difference between the number

of the companies present at the end of a given month and the number of the companies present at the

end of the previous month for the entire period. As shown by the histograms in Panel (b) of Figure

1, the distribution of these differences has a larger dispersion for the banks (interquartile range equal

if K
(
F̂t|t−1(xi,t)−τ

h

)
> ν. Nevertheless, we checked that the results coming from the two hit functions are similar and

are available upon request.
6The data are recovered from Thomson Reuters Datastream.
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to 3) than for the insurances (interquartile range equal to 1) and the distribution of the banks has a

remarkable right tail (skewness index equal to 0.62). The median of the differences is equal to 1 for the

banks, equal to 0 for the insurances. Then, the banks are characterized by larger monthly increments

than the insurances.

Figure 1: Panel (a) displays the number of banks and insurance companies present in our dataset for each day between
October 10, 2000 and July 31, 2015. Panel (b) displays the histograms of the differences between the number of the
companies (distinguished between banks or insurances) present at the end of a given month and the number of the
companies present at the end of the previous month, for the entire period between October 10, 2000 and July 31, 2015.

To provide a more accurate description, we divided our dataset into 3 sub-periods, that is, October

10, 2000—September 15, 2005 (the first), September 16, 2005—August 25, 2010 (the second) and

August 26, 2010—July 31, 2015 (the third). Descriptive statistics in Table 1 are computed for banks

and insurances separately. For each company for which we have at least 50 observations, we computed

the following statistics: 5-th and 95-th percentiles, median and interquartile range. The cross-sectional

medians of these statistics are then reported in Table 1.

Table 1: Descriptive statistics of daily financial returns

BANKS INSURANCES

PERIOD 5P MED 95P IQR 5P MED 95P IQR

10/10/2000 - 15/09/2005 -2.666 0.080 2.991 1.217 -2.773 0.050 2.982 1.651
16/09/2005 - 25/08/2010 -4.285 -0.028 4.157 1.640 -3.533 0.005 3.490 1.829
26/08/2010 - 31/07/2015 -2.859 0.058 3.034 1.622 -2.309 0.064 2.401 1.443

We divided the dataset into 3 sub-periods: October 10, 2000-September 15, 2005 (first), September 16, 2005-
August 25, 2010 (second), August 26, 2010-July 31, 2015 (third). For each institution for which we have at least
50 observations, we computed the following descriptive statistics: 5-th (5P, %) and 95-th (95P, %) percentiles,
median (MED, %) and interquartile range (IQR, %). Table 1 reports the cross-sectional medians of these
statistics.

Between September 16, 2005 and August 25, 2010, the 5-th percentile and the median of the returns
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are lower than the ones in the other periods, while having the highest values of the 95-th percentile

and of the interquartile range. This is due to the subprime crisis, highlighting the worsening of the

companies’ performance in terms of profitability and risk.

The models described in Section 2 are estimated for each of the financial companies present in our

dataset for at least 200 trading days. Hence, due to the data availability, 1,030 out of 1,155 companies

are used as conditioning companies xi,t. We also build an index reproducing the behaviour of the

financial system (yt) from the returns of the 1,155 financial institutions, weighted by their market

values, from October 10, 2000 to July 31, 2015. We compare yt with the Standard & Poor’s 500 index

(S&P 500). Although yt and S&P 500 follow a similar trend, the former has larger spikes, especially

during the subprime crisis (see Figure 6 in Appendix D).

Mt includes control variables related to the bond, equity and real estate markets. They are listed as

follows: i) the CBOE Volatility Index (VIX); ii) the liquidity spread (LS), computed as the difference

between the three-month collateral repo rate and the three-month bill rate; iii) the change in the three-

month Treasury bill rate (TB); iv) the change in the slope of the yield curve (YC), computed as the

spread between the ten-year Treasury rate and the three-month bill rate; v) the change in the credit

spread between BAA-rated bonds and the Treasury rate (CS), both with the ten years maturity; vi)

the daily equity market return (EM); vii) the excess return of the real estate sector over the market

return (RE).7

The first principal component (fpct) of the control variables in Mt explains 96.50% of the variability

in the data. fpct is driven by the value of VIX, as their correlation coefficient is equal to 0.99. fpct and

V IXt have different locations, as their medians are equal to -2.38 and 18.23, respectively; nevertheless,

fpct and V IXt have the same behavior in terms of higher-order moments.8 We choose to use fpct in

place of Mt for all models as it allows to exploit the almost totality of the information contained in

Mt (fpct captures 96.50% of the variability, with still a focus on VIX). Reducing the dimensionality of

Mt through fpct achieves relevant benefits in terms of computational burden and estimates’ stability,

especially when using both the CoCaViaR and the QL-CoCaViaR, which include latent autoregressive

components.

4 Empirical findings

4.1 Empirical set-up and estimation

We estimate the four risk measures, that is, CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR,

using two quantile levels—θ = τ = 0.01 and θ = τ = 0.05. As for the estimation of the QL-
7The control variables listed in i)—v) are taken from Thomson Reuters Datastream, whereas

EM and RE are recovered from the industry portfolios built by Kenneth R. French, available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

8See Figure 7 in Appendix D.
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CoVaR’s and the QL-CoCaViaR’s parameters, we use the Gaussian kernel as F (·) by which we

weight the observations of xi,t in (11) and in (16). Moreover, we run a sensitivity analysis and

obtain the estimates at h = {0.10, 0.15, 0.20}, to assess whether, and in what measure, the re-

sults change according to the choice of h. As for F̂t|t−1(xi,t), given the values of xi,t and fpct−1

recorded in t = 2, ..., 51, we estimate the quantile regression model in (1) for 50 quantile levels equally

distributed—τ = {0.01, 0.03, 0.05, ..., 0.99}—using the method proposed by Bondell et al. (2010).

Therefore, we obtain 50 estimated quantiles Q̂τ (xi,51) = α̂
(i)
τ + β̂

(i)
τ fpc50 having a monotonic behaviour

in τ = {0.01, 0.03, ..., 0.99}, that we interpolate to build the conditional distribution of xi,51, denoted as

F̂ (xi,51|fpc50). We then obtain F̂51|50(xi,51)—the probability level corresponding to the realization xi,t

that we extrapolate from F̂ (xi,51|fpc50). We use a rolling window procedure and estimate F̂t|t−1(xi,t)

by updating for each t = 52, ..., T the estimation window with the latest 50 values of xi,t and fpct−1.

We highlight that the conditional distribution F̂ (xi,t|fpct−1) is built by interpolating 50 condi-

tional quantiles, the parameters of which are estimated from a sample of 50 observations. In general,

increasing the sample size improves the asymptotic properties of the Qτ (xi,t)’s estimator. Further-

more, using a larger set of quantile levels in τ ∈ (0, 1) improves the accuracy of the interpolation

and, as a result, leads to more accurate estimates of F̂ (xi,t|fpct−1). Nevertheless, increasing both

the sample size and the number of quantile levels is computationally expensive. After comparing

for a subset of companies the results obtained with an estimation window of 50 observations and

50 interpolated quantiles with those obtained from a window of 200 observations and a grid of 99

quantiles—τ = {0.01, 0.02, 0.03, ..., 0.99}. We choose the set-up with a smaller computational burden

as the differences between the two approaches are negligible.

On the basis of the empirical set-up described above, we estimate the risk measures’ parameters. For

the sake of brevity, we summarize here the main findings, while further details are reported in Appendix

C. As expected, in general, positive returns of the individual companies have a positive impact on the

VaR of the financial system, as λ(i)
θ (for CoVaR and CoCaViaR) and λ

(i)
θ,τ (for QL-CoVaR and QL-

CoCaViaR) take, on average, positive values. Notably, the relationships between the system and the

individual companies become stronger when linking the left tails of their returns’ distributions, that is,

when focusing on the quantile-located effects. In fact, on average, λ(i)
θ,τ is greater than λ(i)

θ , highlighting

that the system is more sensitive to the individual companies when accentuating the distress degree

in their connections. On the other hand, including the CaViaR’s components absorb, in part, the

sensitivity of the system to the individual companies. In fact, on average, λ(i)
θ,τ and λ(i)

θ decrease when

including the CaViaR’s components. Focusing on the CaViaR’s components, the lagged quantile of

the system—Q
(i)
θ (yt−1) for CoCaViaR and Q(i)

θ,τ (yt−1) for QL-CoCaViaR—has a positive impact on its

current value (Q(i)
θ (yt) or Q(i)

θ,τ (yt)). This is an expected result due to the persistence of quantiles over

time (Engle and Manganelli, 2004). In contrast, the second CaViaR’s component, that is, |yt−1| has

a negative impact on the lower quantiles of the system. Therefore, a very bad or a very good day
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symmetrically increase the probability of observing greater losses in the next day, consistent with the

hypothesis laid down by Engle and Manganelli (2004). Finally, the control variable fpct has a negative

impact on the system’s quantiles. This is again an expected result, as fpct is driven by the VIX index

(see Section 3). Therefore, the greater the VIX level the higher the market’s volatility or risk, with

negative effects on the yt’s lower quantiles.

4.2 A comparative analysis of competing systemic risk measures

We compute for each day and for each company of our dataset the ∆CoVaR and the new measures:

∆CoCaViaR, ∆QL-CoVaR and ∆QL-CoCaViaR. We first display in Figure 2 the trend of the cross-

sectional median of each risk measure, distinguishing banks from insurances.9 The ∆CoCaViaR is, on

average, more conservative than the ∆CoVaR. Likewise, the ∆QL-CoCaViaR is more conservative than

the ∆QL-CoVaR. This is an expected result as the CaViaR’s components in both the ∆CoCaViaR and

the ∆QL-CoCaViaR absorb, in part, the relations between the system and the financial companies (see

Sections 4.1 and C). The quantile-located measures—∆QL-CoVaR and ∆QL-CoCaViaR—point out a

greater extreme risk than ∆CoVaR and ∆CoCaViaR. This is again an expected result as ∆QL-CoVaR

and ∆QL-CoCaViaR are estimated under the joint stressed state of the system and of the individual

companies. Notably, the distance between the quantile-located measures—∆QL-CoVaR and ∆QL-

CoCaViaR—and the other measures—∆CoVaR and ∆CoCaViaR—is relatively low during tranquil

periods and becomes accentuated during stressed phases—see, e.g., the period of the sub-prime crisis.

Smaller but still relevant spikes are observed during the ‘internet bubble’ in 2000, after the terrorist

attacks in September 2001, around the stock market crash in 2002, during the war in Iraq (years

2001—2003) and during the European sovereign debt crisis (years 2010—2011). We then highlight

the capability of the quantile-located measures—∆QL-CoVaR and ∆QL-CoCaViaR—to react more

strongly during events of system-wide relevance.

From the systemic risk perspective, the values of the quantile-located risk measures are, in absolute

terms, greater than the standard CoVaR. Nevertheless, these differences do not correspond to simple

shifts. In Figure 3 we display the cross-sectional medians of the ratios ∆CoCaViaR/∆CoVaR, ∆QL-

CoVaR/∆CoVaR and ∆QL-CoCaViaR/∆CoVaR. We observe that the introduction of the CaViaR’s

components has a limited effect. In fact, the ratio ∆CoCaViaR/∆CoVaR is substantially stable over

time and close to one. In contrast, moving towards measures accounting for the stressed state of both

the individual companies and the financial system leads to two different effects. First, we observe

an increase in the systemic risk as we have already pointed out: the ratios ∆QL-CoVaR/∆CoVaR

and ∆QL-CoCaViaR/∆CoVaR are always above one. Second, the ratios are not stable over time and

tend to increase during period of market stress. Therefore, the introduction of quantile-location effects
9The systemic risk measures are computed at θ = τ = 0.01 and h = 0.15. The plots obtained from other values of

θ = τ and h are qualitatively very similar and are available upon request.
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Figure 2: For each day in the period December 2000—July 2015, the figure displays the trend of the cross-sectional
medians of the following risk measures: ∆CoVaR, ∆CoCaViaR, ∆QL-CoVaR and ∆QL-CoCaViaR, distinguishing banks
from insurances. The risk measures are computed at θ = τ = 0.01 and h = 0.15. The results obtained at θ = τ = 0.05
and h = {0.10, 0.20} are qualitative similar and available upon request.

does not simply provide a shift in the measured systemic impact but also accounts for the change in

the structural relation between the financial companies and the market when the overall system is in

turmoil.

For each company we computed the 5-th and the 95-th percentiles, the median and the interquartile

range of each risk measure’s time series. We then calculated the cross-sectional medians of these

statistics, as reported in Table 2. Including the CaViaR’s components brings some differences between

the ∆CoVaR and the ∆CoCaViaR. Nevertheless, the sign of these differences is not constant and

depends on the θ levels. For instance, at θ = τ = 0.01, ∆CoV aR
(i)
t,τ is greater, in absolute value, than

∆CoCaV iaR
(i)
t,τ in its 5-th and 95-th percentiles and at the median level. Hence, at θ = τ = 0.01,

∆CoV aR
(i)
t,τ points out a greater marginal contribution of the companies to the systemic risk with

respect to ∆CoCaV iaR
(i)
t,τ . The opposite phenomenon holds at θ = τ = 0.05: ∆CoCaV iaR

(i)
t,τ reflects

a greater risk with respect to ∆CoV aR
(i)
t,τ . Furthermore, ∆CoCaV iaR

(i)
t,τ is slightly more volatile than

∆CoV aR
(i)
t,τ , as we can see from the interquartile range.

All the statistics in Table 2 sensibly increase, in absolute value, when considering ∆QL-CoVaR and

∆QL-CoCaViaR, which reflect a larger systemic risk contribution coming from the financial companies.

This is not surprising as ∆QL-CoVaR
(i)
t,τ and ∆QL-CoCaViaR

(i)
t,τ are estimated under the distress state

of both the system and the companies. Besides, on average, ∆QL-CoVaR
(i)
t,τ is greater (in absolute

value) than ∆QL-CoCaViaR
(i)
t,τ , as the inclusion of the CaViaR’s components in ∆QL-CoCaViaR

(i)
t,τ
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Figure 3: For each day in the period December 2000—July 2015, the figure displays the cross-sectional medians of
the ratios ∆CoCaViaR/∆CoVaR, ∆QL-CoVaR/∆CoVaR and ∆QL-CoCaViaR/∆CoVaR, distinguishing banks from
insurances. The risk measures are computed at θ = τ = 0.01 and h = 0.15. The results obtained at θ = τ = 0.05 and
h = {0.10, 0.20} are qualitative similar and available upon request.

absorbs, in part, the relationships between the system and the companies, lowering the contribution

of the firms to the systemic risk, consistent with the analysis of the risk measures’ coefficients in

Section 4 and Appendix C. In contrast with the other measures, the estimates of ∆QL-CoVaR
(i)
t,τ and

∆QL-CoCaViaR
(i)
t,τ are located, day by day, within the neighbourhood of the τ -th quantile of xi,t. As

discussed in Section 2.3, the quantiles (and thus the distribution) of xi,t change over time and these

variations contribute to the volatility of both ∆QL-CoVaR
(i)
t,τ and ∆QL-CoCaViaR

(i)
t,τ . As a result, the

∆QL-CoVaR
(i)
t,τ ’s and the ∆QL-CoCaViaR

(i)
t,τ ’s interquartile ranges are greater than the ones observed

for ∆CoV aR
(i)
t,τ and ∆CoCaV iaR

(i)
t,τ .

Table 2: Statistics of ∆CoVaR, ∆CoCaViaR, ∆QL-COVaR and ∆QL-CoCaViaR

θ = τ = 0.01 θ = τ = 0.05

5P MED 95P IQR 5P MED 95P IQR

∆CoV aRt,τ -1.022 -0.645 -0.468 0.215 -0.496 -0.306 -0.228 0.095
∆CoCaV iaRt,τ -0.990 -0.488 -0.263 0.255 -0.839 -0.417 -0.229 0.218
∆QL-CoVaRt,τ -2.815 -1.442 -0.741 0.970 -1.605 -0.704 -0.348 0.538

∆QL-CoCaViaRt,τ -3.112 -1.088 0.003 1.251 -2.015 -0.613 -0.019 0.712

For each day and for each company of our dataset, we compute the four risk measures given in the first column
at θ = τ = {0.01, 0.05}, setting h = 0.15 (the results obtained for other bandwidth values are similar and are
available upon request). For each company, we then compute the 5-th percentile (5P, %), the median (MED,
%), the 95-th percentile (95P, %) and the interquartile range (IQR, %) of the four risk measures’ time series.
Finally, we report from left to right the cross-sectional medians of these statistics.
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As next step, we also compare the information content of the four systemic risk measures using the

following indicator:

Zj,k,τ =
1

TN

N∑
i=1

T∑
t=1

1{
∆Risk

(i)
j,t,τ−∆Risk

(i)
k,t,τ<−φ

}, (31)

where ∆Risk
(i)
j,t,τ and ∆Risk

(i)
k,t,τ are the j-th and the k-th measures in the set S(i)

t,τ = {100·∆CoV aR(i)
t,τ ,

100 ·∆CoCaV iaR(i)
t,τ , 100 ·∆QL-CoVaR

(i)
t,τ , 100 ·∆QL-CoCaViaR

(i)
t,τ}, for j = 1, ..., 4 and k = 1, ..., 4,

1{·} is an indicator function taking the value of 1 if the condition in {·} is true, the value of 0 otherwise,

whereas φ is a given threshold. Obviously, Zj,k,τ = 0 if k = j.

Zj,k,τ in (31) quantifies the proportion of times—over T and N—in which the j-th systemic risk

measure signals a worsening in the riskiness with respect to the k-th indicator. We neglect minimal

differences, therefore Zj,k,τ captures a given worsening if and only if its magnitude is greater, in

absolute value, than φ. Here, we set φ equal to 10 basis points and report the results—obtained at

θ = τ = {0.01, 0.05}—in Table 3. In each of the two panels of Table 3, Zj,k,τ is computed as the

difference between the risk measure in the j-th row and the risk measures in the k-th column, for

j = 1, ..., 4 and k = 1, ..., 4. We can also evaluate the trend of Zj,k,τ over time in Figures 8—9 in

Appendix D, where we average the proportions of the worsening only in the cross-sectional dimension,

such that:

Zj,k,t,τ =
1

N

N∑
i=1

1{
∆Risk

(i)
j,t,τ−∆Risk

(i)
k,t,τ<−φ

}. (32)

Table 3: Indicator Zj,k,τ

τ = 0.01

∆CoV aRτ ∆CoCaV iaRτ ∆QL-CoVaRτ ∆QL-CoCaViaRτ

∆CoV aRτ 0.000 45.726 21.335 30.195
∆CoCaV iaRτ 23.614 0.000 21.363 26.436
∆QL-CoVaRτ 71.861 72.503 0.000 54.264
∆QL-CoCaViaRτ 62.479 67.098 35.676 0.000

τ = 0.05

∆CoV aRτ ∆CoCaV iaRτ ∆QL-CoVaRτ ∆QL-CoCaViaRτ

∆CoV aRτ 0.000 9.062 9.334 19.814
∆CoCaV iaRτ 58.445 0.000 31.706 40.021
∆QL-CoVaRτ 73.947 47.930 0.000 44.645
∆QL-CoCaViaRτ 63.608 41.565 32.864 0.000

The table displays the values of Zj,k,τ defined in (31) for each of the pairs of the risk measures ordered in the
j-th row and in the k-th column, for j = 1, ..., 4 and k = 1, ..., 4.

When comparing ∆CoV aR
(i)
t,τ and ∆CoCaV iaR

(i)
t,τ , the sign of the worsening changes according

to the value of τ . In fact, on average, ∆CoV aR
(i)
t,τ provides a greater proportion of worsening with

respect to ∆CoCaV iaR
(i)
t,τ at τ = 0.01 (45.73% versus 23.61%; see Table 3). The opposite holds

at τ = 0.05—∆CoCaV iaR
(i)
t,τ signals a larger worsening than ∆CoV aR

(i)
t,τ (58.45% versus 9.06%).

However, both ∆CoV aR
(i)
t,τ and ∆CoCaV iaR

(i)
t,τ provide lower proportions of worsening in the systemic
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risk when compared with the quantile-located measures. In fact, the highest values of Zj,k,τ in Table

3 are observed at j = {3, 4}, that is, when considering either ∆QL-CoVaR or ∆QL-CoCaViaR as

∆Risk
(i)
j,t,τ in (31). This evidence is consistent with the results discussed above—the relationships

between the system and the companies become more accentuated when focusing on the left tails of

their distributions and the inclusion of the CaViaR’s components absorbs, in part, the impact of the

companies on the system. However, we stress that the empirical evidence is not pointing strictly

dominating values of ∆QL-CoVaR (or ∆QL-CoCaViaR) with respect to ∆CoV aR, as both Z1,3,τ and

Z1,4,τ are greater than zero in Table 3.

Dec00 Jul02 Jan04 Jul05 Feb07 Aug08 Mar10 Sep11 Mar13 Oct14
-0.25

-0.2

-0.15

-0.1

-0.05

0
JP MORGAN CHASE & CO.

∆CoVaR

∆QL-CoVaR

∆QL-CoCaViaR

Dec00 Jul02 Jan04 Jul05 Feb07 Aug08 Mar10 Sep11 Mar13 Oct14
-0.25

-0.2

-0.15

-0.1

-0.05

0
BANK OF AMERICA

∆CoVaR

∆QL-CoVaR

∆QL-CoCaViaR

Dec00 Jul02 Jan04 Jul05 Feb07 Aug08 Mar10 Sep11 Mar13 Oct14
-0.25

-0.2

-0.15

-0.1

-0.05

0
AFLAC

∆CoVaR

∆QL-CoVaR

∆QL-CoCaViaR

Dec00 Jul02 Jan04 Jul05 Feb07 Aug08 Mar10 Sep11 Mar13 Oct14
-0.2

-0.15

-0.1

-0.05

0
AMERICAN INTL. GP.

∆CoVaR

∆QL-CoVaR

∆QL-CoCaViaR

Figure 4: The four panels display the trend of ∆CoVaR, ∆QL-CoVaR and ∆QL-CoCaViaR for two selected banks and
two selected insurance companies. The risk measures are computed at θ = τ = 0.01 and h = 0.15.

Figure 4 provides an example for four selected companies: JP Morgan Chase & Co., Bank of

America, Aflac and American International Group. Here, the quantile-located measures—∆QL-CoVaR

and ∆QL-CoCaViaR—almost always point out a greater risk with respect to ∆CoVaR. Nevertheless,

the difference between the quantile-located measures and the ∆CoVaR is not constant over time.

As described above, the quantile-located measures do not simply provide a linear downwards shift

of risk with respect to the ∆CoVaR, but account for changes in the structural relations, especially

during crisis periods. Besides, we can find sometimes periods in which the ∆CoVaR is greater (in

absolute value) than the quantile-located measures. This opens the door for further analyses about

the opportunity cost associated with the possible precautionary immobilization of financial resources

to offset the impact of systemic events.

The interconnections among financial institutions become critical during special events, such as
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financial crises. Therefore, it is interesting to assess how the statistics of ∆CoV aR
(i)
t,τ , ∆CoCaV iaR

(i)
t,τ ,

∆QL-CoVaR
(i)
t,τ and ∆QL-CoCaViaR

(i)
t,τ react to the occurrence of such events and, for this purpose,

we consider the subprime crisis. Hence, we now compute the four risk measures from the data recorded

in September 2008, reporting the descriptive statistics in Table 4. On average, the 5-th and the 95-th

percentiles and the median of the four measures significantly change with respect to the full sample

results, highlighting a greater contribution of the financial companies to the systemic risk during the

subprime crisis. ∆QL-CoVaR
(i)
t,τ and ∆QL-CoCaViaR

(i)
t,τ are, on average, the most sensitive to the

subprime crisis, recording the highest percentage variations in their medians with respect to the full

sample results. We then have a further evidence that the quantiles-located relationships are critical

during crisis periods, being important signaling tools that can be useful for preventing or mitigating

the effects of extreme events.

Table 4: ∆CoVaR, ∆CoCaViaR, ∆QL-CoVaR and ∆QL-CoCaViaR during the subprime cri-
sis.

θ = τ = 0.01 θ = τ = 0.05

5P MED 95P IQR 5P MED 95P IQR

∆CoV aRt,τ -2.232 -1.669 -1.209 0.524 -1.355 -1.004 -0.720 0.303
∆CoCaV iaRt,τ -1.776 -1.215 -0.781 0.490 -2.105 -1.445 -1.026 0.575
∆QL-CoVaRt,τ -6.870 -4.890 -3.094 1.863 -3.820 -2.592 -1.623 1.120

∆QL-CoCaViaRt,τ -6.440 -3.443 -1.540 2.565 -4.540 -2.879 -1.468 1.787

For the days in September 2008 and for each company of our dataset, we compute the four risk measures given
in the first column at θ = τ = {0.01, 0.05}, setting h = 0.15 (the results obtained for other bandwidth values
are similar and are available on request). For each company, we then compute the 5-th percentile (5P, %), the
median (MED, %), the 95-th percentile (95P, %) and the interquartile range (IQR, %) of the four risk measures.
Finally, we report, from left to right, the cross-sectional medians of the four descriptive statistics.
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Figure 5: Scatter plots for banks and insurance companies of ∆CoVaR versus ∆QL-CoCaViaR on two specific days,
that is, 15/09/2008 and 19/05/2014. The risk measures are computed at θ = τ = 0.01 and h = 0.15.

Such a finding is also confirmed by the scatter plots in Figure 5, where we compare the ∆CoVaR
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with the ∆QL-CoCaViaR in a stressed (September 15, 2008) and in a quiet day (May 19, 2014).10

Note that, if the difference between the two measures on the two different days were due to a volatility

effect only, without any additional element coming from the covariates and the conditional quantile

model structure, we would have not noted an increase in the scatter plot dispersion. In fact, the scatter

plots would have displayed similar changes of the volatility (assuming all other elements play no role),

providing a change of only the location and not of the scale. In the two panels of Figure 5 we observe,

however, a marked increase in both the location of the scatter center and the dispersion, something

that we cannot simply attribute to a change in the market risk over the two specific days. In addition,

the relation between ∆CoVaR and ∆QL-CoCaViaR seems much stronger when the market is in a low

volatility state. We link this to the possible structural changes in the relation between the financial

market index, the financial companies and their corresponding quantiles, which might be observed

during market turmoils. Moving from ∆CoVaR to ∆QL-CoCaViaR does not simply induce a linear

shift of the systemic risk measures but account in a more proper way for the relation between the

companies and the market when focusing on extreme market conditions.

We now decompose ∆QL-CoCaViaR
(i)
t,τ defined in (18) into the components c(i)

j,t,τ , for j = 1, ..., 7, as

discussed in Section 2.5. We evaluate the relevance of the various elements we added to the standard

∆CoVaR by measuring the relative contribution of these components to ∆QL-CoCaViaR
(i)
t,τ , the most

general risk measure we developed. In particular, for each time t and for each i-th company, we

compute the weights of the seven components as: w
(i)
1,t,τ = c

(i)
1,τ/|∆QL-CoCaViaR

(i)
t,τ | and w

(i)
j,t,τ =

c
(i)
j,t,τ/|∆QL-CoCaViaR

(i)
t,τ |, for j = 2, ..., 7. By considering the ratio between each ∆QL-CoCaViaR’s

determinant and the absolute value of ∆QL-CoCaViaR
(i)
t,τ , we can compare, on the one hand, the

magnitude of the weights of the seven components. On the other hand, we can asses the sign of

their contributions—to understand whether, on average, each component moves the ∆QL-CoCaViaR

leftwards or rightwards. For each company and for each time series of the weights, we compute the 5-th

and the 95-th percentiles, the median and the interquartile range. Then, we report the cross-sectional

medians of these statistics in Table 5. In addition, Figures 10—11 in Appendix D display the time

evolution of the cross-sectional medians of the seven ratios.

We can see from Table 5 and Figures 10—11 that the second component of the ∆QL-CoCaViaR—the

traditional ∆CoVaR revised under a quantile-located perspective—provides the most relevant contri-

bution. Notably, c(i)
2,t,τ is the core of ∆QL-CoCaViaR

(i)
t,τ , as it measures the impact of the increment

in the risk of the i-th company. We stress that the contribution of this component would have been

less relevant without considering the quantile-located relations. In fact, the cross-sectional median

of λ̂(i)
θ,τ—entering both QL-CoVaR and QL-CoCaViaR—is greater, on average, than λ̂

(i)
θ —entering

both CoVaR and CoCaViaR, that is, the risk measures which do not include quantile-located ef-
10For simplicity we consider here only the comparison between ∆CoVaR and ∆QL-CoCaViaR. Similar results hold

when comparing ∆CoVaR with ∆QL-CoVaR.
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fects (see Section 4.1 and Appendix C). As a result, on average, the following inequality holds:∣∣∣λ̂(i)
θ,τ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]∣∣∣ > ∣∣∣λ̂(i)
θ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]∣∣∣. It is interesting to observe that w(i)
2,t,τ—the

weight of c(i)
2,t,τ—increases, on average, when switching from θ = τ = 0.05 to θ = τ = 0.01, that is,

when increasing the distress degree in the financial connections, emphasizing the importance of the

quantile-located effects. On average, c(i)
2,t,τ takes negative values. This is an expected result, given that

the coefficient λ(i)
θ,τ is positive on average (see Table 14), whereas Q(i)

τ (xi,t)−Q(i)
1/2(xi,t) < 0.

The impact of the individual firms on the ∆QL-CoCaViaR depends also on c
(i)
3,t,τ , that is, the

median quantile of xi,t—Q1/2(xi,t)—times the residual impact of the i-th company when moving from

the left tail to the center of the xi,t’s distribution—(λ(i)
θ,τ − λ

(i)
θ,1/2). Nevertheless, the contribution of

c
(i)
3,t,τ to the magnitude of ∆QL-CoCaViaR

(i)
t,τ is close to zero (see Table 5 and Figures 10—11). This is

not surprising, as the median of the i-th company’s returns—Q1/2(xi,t)—is close, if not equal, to zero.

Therefore, the impact of the individual companies to the systemic risk is entirely captured by c(i)
2,t,τ .

We checked that the persistence of the yt’s quantiles over time is affected by the co-movements

between the system and the companies. Furthermore, the relevance of these co-movements changes

according to the state in which the system and the individual companies are located (see Appendix

C). In particular, on average, ψ(i)
1,0.01,0.01 is less than half ψ(i)

1,0.01,1/2, whereas the difference between

ψ
(i)
1,0.05,0.05 and ψ(i)

1,0.05,1/2 is almost imperceptible (see Table 14 in Appendix C). This result is reflected

in c
(i)
6,t,τ =

[
ψ

(i)
1,θ,τ − ψ

(i)
1,θ,1/2

]
Q

(i)
θ,τ (yt−1), whose contribution to ∆QL-CoCaViaR

(i)
t,τ is greater at θ =

τ = 0.01—the worst scenario—than at θ = τ = 0.05.

Despite the relevant average value of ψ(i)
1,θ,1/2, mainly at θ = τ = 0.01 (see Table 14), the weight

of c(i)
7,t,τ = ψ

(i)
1,θ,1/2

[
Q

(i)
θ,τ (yt−1)−Q(i)

θ,1/2(yt−1)
]
is relatively low. Therefore, the lagged increase in the

risk of the system (due to the worsening of the companies’ performance) is less relevant than either

the increase in the risk of the companies—w
(i)
2,t,τ—or the persistence of the lagged quantiles of the

system—w
(i)
6,t,τ—when moving along the marginal distributions of the companies’ returns.

We also highlight the weights of c(i)
1,τ , which is always negative and more relevant at θ = τ = 0.01,

c
(i)
4,t,τ and c

(i)
5,t,τ , which take, on average, positive values and do not significantly change between θ = τ =

0.01 and θ = τ = 0.05. We remind the reader that the last three components measure, respectively,

the changes in location of the system’s density (c(i)
1,τ ), the changes in the impact of the control variables

(c(i)
4,t,τ ) and the changes in the relevance of the past returns of the system (c(i)

5,t,τ ) when moving along

the marginal distributions of the companies. Interestingly, the sign of the c(i)
4,t,τ ’s contribution is not

constant over time (see Figures 10—11). In particular, c(i)
4,t,τ increases the systemic risk during market

turmoils (the end of the technology market bubble, the 11th of September 2001, during the subprime

crisis and the European sovereign crisis), while it reduces systemic risk when markets are upward

trending (in particular during the years 2003—2006). This evidence suggests that the QL-CoCaViaR

provides relevant insights on the role of control variables during turmoils. This is consistent with the

interpretation of these events as systemic, given that the deterioration of the overall market conditions
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Table 5: Statistics of the weights of the ∆QL-CoCaViaR’s components

WEIGHTS 5P MED 95P IQR 5P MED 95P IQR

θ = τ = 0.01, h = 0.10 θ = τ = 0.05, h = 0.10

w1,τ -101.856 -35.819 -11.609 95.065 -48.587 -16.754 -5.388 89.402
w2,τ -131.081 -57.298 -26.414 41.808 -144.169 -54.247 -20.422 35.963
w3,τ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
w4,τ -82.256 2.045 98.687 73.300 -72.392 3.351 95.588 73.746
w5,τ 0.084 4.283 21.818 23.833 0.032 1.513 7.336 20.949
w6,τ 1.116 22.366 56.510 75.889 -5.157 6.671 19.418 65.378
w7,τ -61.971 -2.708 64.181 44.555 -70.861 -1.603 76.039 40.945

θ = τ = 0.01, h = 0.15 θ = τ = 0.05, h = 0.15

w1,τ -82.921 -29.271 -10.113 78.493 -25.660 -10.464 -3.313 72.051
w2,τ -134.561 -67.777 -33.145 40.591 -143.669 -62.208 -24.930 34.405
w3,τ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
w4,τ -72.173 2.344 86.350 67.441 -54.310 2.847 74.098 56.549
w5,τ 0.076 3.487 16.212 19.922 0.035 1.443 6.146 18.625
w6,τ 1.970 22.110 54.088 64.325 -4.347 3.583 11.440 53.354
w7,τ -53.781 -1.309 63.991 42.919 -61.939 -1.295 60.295 33.211

θ = τ = 0.01, h = 0.20 θ = τ = 0.05, h = 0.20

w1,τ -33.028 -15.017 -5.663 61.374 -14.577 -6.544 -2.239 48.040
w2,τ -134.641 -81.957 -41.311 38.337 -146.176 -75.290 -33.567 32.389
w3,τ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
w4,τ -56.540 1.211 70.667 55.939 -39.682 2.687 61.254 44.534
w5,τ 0.064 3.125 14.809 15.729 0.032 1.473 5.815 16.004
w6,τ 0.630 13.963 30.293 54.516 -2.641 3.148 8.471 39.197
w7,τ -48.770 -0.677 54.998 38.114 -52.468 -0.598 42.306 25.688

For each day and for each company, we compute the weights of the ∆QL-CoCaViaR’s components. For each
company and for each time series of the weights, we then compute the following statistics: the 5-th (5P, %) and
the 95-th percentiles (95P, %), the median (MED, %) and the interquartile range (IQR, %). The table reports
the cross-sectional medians of these statistics.

might further contribute to the system risk through a set of control or state variables.

Summing up, the findings discussed above highlight the importance of the additional elements added

to the standard ∆CoVaR. The new components take into account the persistence of the conditional

quantiles over time (CoCaViaR), the quantile-located effects (QL-CoVaR) and their combination (QL-

CoCaViaR).

4.3 Backtesting results

The out-of-sample accuracy of CoV aR(i)
t,θ,τ , CoCaV iaR

(i)
t,θ,τ , QL-CoVaR

(i)
t,θ,τ and QL-CoCaViaR

(i)
t,θ,τ is

evaluated using the backtesting methods described in Section 2.6. In particular, we implement the

rolling window procedure with ws = 300. As for the estimates, we set θ = τ = 0.05 and h = 0.15.11

First, we compare the predictive accuracy of the four risk measures using the unconditional and the

conditional coverage tests, without conditioning the hit of the system to the distress state of the

individual financial companies. Table 6 reports the percentages of times (over time and over the cross-
11The results obtained with other values of θ, τ and h are available upon request.

28



Table 6: Unconditional and conditional coverage tests

UNCONDITIONAL COVERAGE TEST CONDITIONAL COVERAGE TEST

NOBS CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

100 38.422 43.511 32.353 39.386 38.931 43.003 31.714 34.015
200 36.063 41.876 30.000 37.467 36.988 41.347 29.200 31.600
300 32.587 38.741 26.346 34.703 33.427 38.322 25.354 28.329
400 30.891 37.213 25.109 33.527 31.753 36.782 24.093 27.141

For each of the four risk measures, that is, CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR, the table reports
the percentages of times over the cross-section and over time in which the null hypothesis of the unconditional
coverage test by Kupiec (1995) and the null hypothesis of the conditional coverage test by Christoffersen (1998)
are not rejected at the 1% significance level, when we have at least NOBS number of observations for each
series in (25). CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR are computed by setting θ = τ = 0.05 and
h = 0.15.

section) in which we do not reject the null hypothesis of the tests at the 1% significance level. Given

the features of our dataset, we implement the tests on the series for which we have at lest 100, 200,

300 and 400 observations for the hit functions. We note that CoCaV iaR(i)
t,0.05,0.05 records the highest

percentages of non-rejection in all cases.

Table 7: Unconditional and conditional coverage tests during the subprime crisis

UNCONDITIONAL COVERAGE TEST CONDITIONAL COVERAGE TEST

PERIOD CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

Jul 08-Sep 08 47.395 65.509 60.150 69.424 47.643 66.501 60.652 72.431
Jul 08-Oct 08 62.879 81.061 75.255 76.786 62.879 82.323 76.276 80.612
Jul 08-Nov 08 70.229 75.064 84.062 73.779 70.738 78.626 85.090 75.578
Jul 08-Dec 08 84.103 84.872 89.637 78.497 84.872 90.769 91.710 83.161

For each of the four risk measures, that is, CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR, the table reports
the percentages of times over the cross-section and over time in which the null hypothesis of the unconditional
coverage test by Kupiec (1995) and the null hypothesis of the conditional coverage test by Christoffersen
(1998) are not rejected at the 1% significance level. The tests are implemented using four different periods:
01/07/2008—30/09/2008, 01/07/2008—31/10/2008, 01/07/2008—30/11/2008 and 01/07/2008—31/12/2008.
CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR are computed by setting θ = τ = 0.05 and h = 0.15.

We now repeat the same exercise by implementing the Kupiec (1995) and the Christoffersen (1998)

tests during the subprime crisis, to check whether the performance of the four risk measures changes

at the distress state of the financial system. Table 7 report the results in four different time intervals,

differing in their endpoint: 01/07/2008-30/09/2008, 01/07/2008-31/10/2008, 01/07/2008-30/11/2008

and 01/07/2008-31/12/2008. We observe that QL-CoCaViaR
(i)
t,0.05,0.05 records the best performance

for both the unconditional and the conditional coverage tests when we use the shortest interval, that

is, 01/07/2008—30/09/2008. Differently, CoCaV iaR(i)
t,0.05,0.05 records the highest percentage of non-

rejections in the interval 01/07/2008—31/10/2008 whereas QL-CoVaR
(i)
t,0.05,0.05 over-performs the other

competitive measures in the remaining periods.

So far we did not take into account the distress state of the conditioning company. In contrast,

Table 8 reports the results we obtain by conditioning the system’s hit function to the distress state
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Table 8: Unconditional and conditional coverage tests at the distress state of the conditioning
companies

UNCONDITIONAL COVERAGE TEST CONDITIONAL COVERAGE TEST

PERIOD CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

GE-1 28.172 30.125 27.736 29.910 28.731 28.877 34.528 25.946
GE-2 54.225 47.042 66.857 35.286 57.324 48.732 70.429 37.571

GE-3 (0.10) 76.852 62.943 94.947 51.323 81.217 67.674 95.213 55.556
GE-3 (0.20) 61.477 51.406 83.062 39.865 64.966 54.083 85.366 42.432
GE-3 (0.30) 52.162 45.202 65.439 35.684 55.649 46.453 68.130 38.223

For each of the four risk measures, that is, CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR, the table reports
the percentages of times over the cross-section and over time in which the null hypothesis of the unconditional
coverage test by Kupiec (1995) and the null hypothesis of the conditional coverage test by Christoffersen (1998)
are not rejected at the 1% significance level. The tests are implemented during the periods of distress state
of the conditioning financial companies. We detect the distress state of the financial companies using the hit
functions (26) for GE-1 and (27) for GE-2, whereas we compute the hit function (28) at 3 different threshold
values ths—0.10 (GE-3 (0.10)), 0.20 (GE-3 (0.20)) and 0.30 (GE-3 (0.30)). We implement the tests conditional
to the fact that we have at least 50 days in which a given financial company is in a distress state, that is, 50
ones for each hit series of the company. CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR are computed by
setting θ = τ = 0.05 and h = 0.15.

of each financial company. We detect the distress state of the individual financial companies using

different hit functions for xi,t. The percentages of non-rejections we have when using (26) and (27)

are given in GE-1 and in GE-2, respectively. In contrast, we compute (28) at three different threshold

values ν for a sensitivity analysis—ν = 0.10 in GE-3 (0.10), ν = 0.20 in GE-3 (0.20) and ν = 0.30

in GE-3 (0.30). For each of the hit functions in (26)—(28), we implement the unconditional and

the conditional coverage tests for yt conditional to the fact that we have at least 50 days in which

Hitit,0.5,0.5 = 1, that is, at least 50 days in which the i-th financial company is in a distress state.

Conditional to the distress state of the financial companies, in general, QL-CoVaR
(i)
t,0.05,0.05 over-

performs the other risk measures. Notably, the percentages of non-rejections for the quantile-located

measures are greater in GE-3, as the hit function of the conditioning companies in (28) is more

consistent to the method we use to estimate both QL-CoVaR
(i)
t,0.05,0.05 and QL-CoCaViaR

(i)
t,0.05,0.05.

Table 9: Average loss in different periods

PERIOD CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

01/01/2004 - 02/07/2004 4.972 7.075 4.977 7.339
01/07/2008 - 31/12/2008 10.063 9.653 9.344 9.762
01/01/2015 - 03/07/2015 4.297 4.213 3.740 4.611

The table reports the means over the cross-section of the losses coming from the CoVaR, the CoCaViaR, the
QL-CoVaR and the QL-CoCaViaR in three different periods: 01/01/2004-02/07/2004, 01/07/2008-31/12/2008
and 01/01/2015-03/07/2015. CoVaR, CoCaViaR, QL-CoVaR and QL-CoCaViaR are computed by setting
θ = τ = 0.05 and h = 0.15.

We report in Table 9 the means over i of the losses LOSSCoV aR|i0.05,0.05 , LOSS
CoCaV iaR|i
0.05,0.05 , LOSSQL-CoVaR|i

0.05,0.05

and LOSS
QL-CoCaViaR|i
0.05,0.05 (see Section 2.6) for 3 different periods having the same size of 132 ob-

servations, that is, the pre–subprime crisis period (01/01/2004—02/07/2004), the subprime crisis
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period (01/07/2008—31/12/2008) and the post–subprime crisis period (01/01/2015—03/07/2015).

As expected, the losses are smaller during tranquil periods and considerably increase during the

subprime crisis. On average, the CoVaR overperforms the competitive measures in the interval

01/01/2004—02/07/2004, whereas the QL-CoVaR provides the lowest loss in the other periods. Inter-

estingly, the distance between CoV aR(i)
t,0.05,0.05 and QL-CoVaR

(i)
t,0.05,0.05 increases in periods of financial

distress, such as the days in the interval 01/07/2008—31/12/2008.

Table 10: Difference in the performance statistically validated

01/01/2004-02/07/2004

CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

CoVaR 0.000 21.622 11.824 31.757
CoCaViaR 1.014 0.000 3.378 18.243
QL-CoVaR 9.797 29.054 0.000 29.392

QL-CoCaViaR 1.689 15.541 1.014 0.000

01/07/2008-31/12/2008

CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

CoVaR 0.000 6.826 3.754 5.802
CoCaViaR 7.850 0.000 4.778 9.215
QL-CoVaR 22.867 14.334 0.000 8.532

QL-CoCaViaR 9.215 11.263 2.389 0.000

01/01/2015-03/07/2015

CoVaR CoCaViaR QL-CoVaR QL-CoCaViaR

CoVaR 0.000 7.071 3.030 9.091
CoCaViaR 2.694 0.000 4.040 8.418
QL-CoVaR 4.377 8.754 0.000 9.764

QL-CoCaViaR 2.020 6.061 0.000 0.000

For each of the three periods: 01/01/2004—02/07/2004, 01/07/2008—31/12/2008 and
01/01/2015—03/07/2015, the table reports the percentages of times over the cross-section in which the
risk measure in the i-th row over-performs the risk measure in the j-th column for each of 3 panels, for
i, j = 1, ..., 4. The different performances of the four risk measures, that is, CoVaR, CoCaViaR, QL-CoVaR and
QL-CoCaViaR, are validated by the Diebold and Mariano (2002) test at the 0.05 significance level. CoVaR,
CoCaViaR, QL-CoVaR and QL-CoCaViaR are computed by setting θ = τ = 0.05 and h = 0.15.

We also test whether the losses defined in (30) generated by the four risk measures—CoVaR,

CoCaViaR, QL-CoVaR and QL-CoCaViaR—are statistically different. For this purpose, we im-

plement the test proposed by Diebold and Mariano (2002) at the 5% significance level. For each

of the three panels in Table 10, which respectively refer to the periods: 01/01/2004—02/07/2004,

01/07/2008—31/12/2008 and 01/01/2015—03/07/2015, we report the percentages of times over the

cross-section in which the risk measure in the row outperforms, is a statistically significant way, the

risk measure in the column. For instance, the CoVaR outperforms the CoCaViaR in 21.62% of the

cases during the period 01/01/2004—02/07/2004, whereas the CoCaViaR outperforms the CoVaR in

1.01% of the cases in the same period. It is interesting to see that when considering the net values,

that is, the percentage of times in which a given measure outperforms another measure minus the

percentage of times in which it is outperformed by the same competitor, the quantile-located measures
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(QL-CoVaR and QL-CoCaViaR) record the best results during the crisis period. Indeed, in the period

01/07/2008—31/12/2008 the gap between the quantile-located measures and the other competitors is

positive and tends to be greater with respect to the other periods.

To summarize, we assess the predictive accuracy of the risk measures by means of different backtest-

ing methods, based on different hit and loss functions, and compare the results obtained in calm and

crisis periods, or conditioning the system to the distress state of the individual financial companies. We

verify that one of the quantile-located risk measures, that is, the QL-CoVaR, outperforms the standard

CoVaR and the other extensions we propose when we increase the distress degree in the connections

between the financial system and the individual companies. Consistent with the in-sample results (see

the comparison between QL-CoVaR
(i)
t,θ,τ and QL-CoCaViaR

(i)
t,θ,τ in Section 4.2), the inclusion of the

CaViaR autoregressive components lowers the sensitivity of yt to xi,t and compromises the predictive

accuracy of the quantile-located method when we link the lower quantiles of both the system and the

conditioning companies.

5 Concluding remarks

We extend the CoVaR introduced by Adrian and Brunnermeier (2016), taking into account the per-

sistence of the conditional quantiles over time (CoCaViaR), the quantile-located relationships (QL-

CoVaR) and their combination (QL-CoCaViaR). An extensive empirical analysis based on a large

dataset including U.S. banks and insurance companies highlights the relevance of the new elements we

introduce. First, we checked that the CoCaViaR is more conservative than the other risk measures as

the CaViaR’s components (Engle and Manganelli, 2004) absorb, in part, the relations between the fi-

nancial system and the individual companies, lowering the contribution of the firms to the systemic risk.

Second, the relationships between the financial system and the individual companies become stronger

when linking the left tails of their returns’ distributions, that is, when accentuating the distress degree

in their connections (quantile-located effects). As a result, our approach is more sensitive to crisis

periods. The in-sample results are confirmed out-of-sample. In particular, we use various backtesting

methods for evaluating the predictive accuracy of the competitive risk measures. Some of them are

well-known in the literature, while others are new being developed to deal with the quantile-located

method we propose here. In particular, the empirical evidence shows that the quantile-located rela-

tionships are particularly useful in improving the predictive accuracy during stressed periods, making

it a relevant tool for financial regulators for managing or preventing the effects of extreme events.
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APPENDIX

A Derivation of the ∆QL-CoVaR in Equation (14)

∆QL-CoVaR
(i)
t,τ = QL-CoVaR

(i)
t,θ,τ −QL-CoVaR

(i)
t,θ,1/2

= δ̂
(i)
θ,τ + λ̂

(i)
θ,τ Q̂τ (xi,t) + γ̂γγ

(i)
θ,τM

′
t−1 −

[
δ̂

(i)
θ,1/2 + λ̂

(i)
θ,1/2Q̂1/2(xi,t) + γ̂γγ

(i)
θ,1/2M

′
t−1

]
= δ̂

(i)
θ,τ + λ̂

(i)
θ,τ Q̂τ (xi,t) + γ̂γγ

(i)
θ,τM

′
t−1 −

[
δ̂

(i)
θ,1/2 + λ̂

(i)
θ,1/2Q̂1/2(xi,t) + γ̂γγ

(i)
θ,1/2M

′
t−1

]
+ λ̂

(i)
θ,τ Q̂1/2(xi,t)− λ̂(i)

θ,τ Q̂1/2(xi,t)

=
(
δ̂

(i)
θ,τ − δ̂

(i)
θ,1/2

)
+ λ̂

(i)
θ,τ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
+ (λ̂

(i)
θ,τ − λ̂

(i)
θ,1/2)Q̂1/2(xi,t)

+ (γ̂γγ
(i)
θ,τ − γ̂γγ

(i)
θ,1/2)M′

t−1

34



B Derivation of the ∆QL-CoCaViaR in Equation (18)

∆QL-CoCaViaR
(i)
t,τ = QL-CoCaViaR

(i)
t,θ,τ −QL-CoCaViaR

(i)
t,θ,1/2

= δ̂
(i)
θ,τ + ψ̂

(i)
1,θ,τ Q̂

(i)
θ,τ (yt−1) + ψ̂

(i)
2,θ,τ |yt−1|+ λ̂

(i)
θ,τ Q̂τ (xi,t) + γ̂γγ

(i)
θ,τM

′
t−1

− δ̂
(i)
θ,1/2 − ψ̂

(i)
1,θ,1/2Q̂

(i)
θ,1/2(yt−1)− ψ̂(i)

2,θ,1/2|yt−1| − λ̂(i)
θ,1/2Q̂1/2(xi,t)

− γ̂γγ
(i)
θ,1/2M

′
t−1

= δ̂
(i)
θ,τ + ψ̂

(i)
1,θ,τ Q̂

(i)
θ,τ (yt−1) + ψ̂

(i)
2,θ,τ |yt−1|+ λ̂

(i)
θ,τ Q̂τ (xi,t) + γ̂γγ

(i)
θ,τM

′
t−1

− δ̂
(i)
θ,1/2 − ψ̂

(i)
1,θ,1/2Q̂

(i)
θ,1/2(yt−1)− ψ̂(i)

2,θ,1/2|yt−1| − λ̂(i)
θ,1/2Q̂1/2(xi,t)

− γ̂γγ
(i)
θ,1/2M

′
t−1 + λ̂

(i)
θ,τ Q̂1/2(xi,t)− λ̂(i)

θ,τ Q̂1/2(xi,t)

+ ψ̂
(i)
1,θ,1/2Q̂

(i)
θ,τ (yt−1)− ψ̂(i)

1,θ,1/2Q̂
(i)
θ,τ (yt−1)

=
(
δ̂

(i)
θ,τ − δ̂

(i)
θ,1/2

)
+ λ̂

(i)
θ,τ

[
Q̂τ (xi,t)− Q̂1/2(xi,t)

]
+ (λ̂

(i)
θ,τ − λ̂

(i)
θ,1/2)Q̂1/2(xi,t)

+ (γ̂γγ
(i)
θ,τ − γ̂γγ

(i)
θ,1/2)M′

t−1 + (ψ̂
(i)
2,θ,τ − ψ̂

(i)
2,θ,1/2)|yt−1|

+
[
ψ̂

(i)
1,θ,τ − ψ̂

(i)
1,θ,1/2

]
Q̂

(i)
θ,τ (yt−1)

+ ψ̂
(i)
1,θ,1/2

[
Q̂

(i)
θ,τ (yt−1)− Q̂(i)

θ,1/2(yt−1)
]

C Analysis of the risk measures’ coefficients

Table 11: Estimation of Q(i)
θ (yt) = δ

(i)
θ + λ

(i)
θ xi,t + γ

(i)
θ fpct−1

θ = 0.01 θ = 0.05

COEF 5P MED 95P IQR PS 5P MED 95P IQR PS

δθ -0.042 -0.031 -0.021 0.012 99.903 -0.027 -0.019 -0.014 0.007 99.612
λθ -0.033 0.117 0.536 0.236 45.146 -0.006 0.112 0.561 0.276 57.087

100× γθ -0.295 -0.197 -0.074 0.107 88.447 -0.202 -0.128 -0.079 0.064 95.243

The table reports the summary statistics of the CoVaR’s parameters estimated for the N financial companies
included in our dataset. The estimates are obtained using two quantile levels—θ. In each panel, from left
to right, we report the following descriptive statistics of the coefficients: the 5-th percentile (5P), the median
(MED), the 95-th percentile (3Q), the interquartile range (IQR) and the percentage of times, out of N , in which
they are statistically significant at the 5% confidence level (PS).

Table 11 reports the statistics of the CoVaR’s coefficients, obtained by estimating Q(i)
θ (yt) = δ

(i)
θ +

λ
(i)
θ xi,t + γ

(i)
θ fpct−1, for i = 1, ..., N . On average, the financial companies have a positive impact on

Q
(i)
θ (yt). Indeed, the medians of λ̂(i)

0.01 and λ̂(i)
0.05—the coefficients monitoring the impact of a financial

company on the market risk at the 1% and 5% confidence levels—are similar, being equal to 0.117 and

0.112, respectively. λ̂(i)
0.05 is slightly more volatile than λ̂(i)

0.01, with an interquartile range of 0.276 (versus

0.236). Both the 5-th and the 95-th percentiles are larger for λ̂(i)
0.05 (-0.006 and 0.561, respectively)

than for λ̂(i)
0.01 (-0.033 and 0.536, respectively). λ̂(i)

0.05 records a larger number of times in which it is

statistically significant at the 5% confidence level with respect to λ̂(i)
0.01 (57% versus 45%). Overall, we
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do not observe relevant differences in the impact of financial companies on the system when comparing

θ = 0.05 and θ = 0.01. When focusing on the impact of the control variables, as expressed by their first

principal component (fpct−1), we again observe similarities when comparing θ = 0.01 and θ = 0.05.

We first note that the low values of γ̂(i)
θ are due to the scale in which fpct−1 is expressed (see Section

3). Notably, γ̂(i)
θ is statistically significant for almost all the N companies, highlighting a relevant role

of the control variables in the evaluation of the market risk.

Table 12: Estimation of Q(i)
θ (yt) = δ

(i)
θ + ψ

(i)
1,θQ

(i)
θ (yt−1) + ψ

(i)
2,θ|yt−1|+ λ

(i)
θ xi,t + γ

(i)
θ fpct−1

θ = 0.01 θ = 0.05

COEF 5P MED 95P IQR PS 5P MED 95P IQR PS

δθ -0.042 -0.022 -0.001 0.020 78.155 -0.027 -0.014 -0.001 0.015 83.689
ψ1,θ -0.491 0.197 0.917 0.916 55.728 -0.616 0.142 0.895 0.815 52.816
ψ2,θ -0.321 -0.132 0.147 0.203 38.932 -0.211 -0.100 0.067 0.134 42.427
λθ -3.711 0.101 0.510 0.248 78.447 -0.005 0.097 0.557 0.280 76.505

100× γθ -0.251 -0.119 -0.003 0.161 70.194 -0.159 -0.083 -0.005 0.096 82.524

The table reports the summary statistics of the CoCaViaR’s parameters for the N financial companies included
in our dataset. The estimates are obtained using two quantile levels—θ. In each panel, from left to right, we
report the following descriptive statistics of the coefficients: the 5-th percentile (5P), the median (MED), the
95-th percentile (95P), the interquartile range (IQR) and the percentage of times, out of N , in which they are
statistically significant at the 5% confidence level (PS).

Table 12 includes the descriptive statistics of the CoCaViaR’s coefficients estimated from Q
(i)
θ (yt) =

δ
(i)
θ +ψ

(i)
1,θQ

(i)
θ (yt−1)+ψ

(i)
2,θ|yt−1|+λ

(i)
θ xi,t+γ

(i)
θ fpct−1. On average, the lagged financial system quantile

Q
(i)
θ (yt−1) has a positive impact on the current financial system quantile, Q(i)

θ (yt), and the relationships

are stronger at θ = 0.01 (the median of ψ̂(i)
1,0.01 is equal to 0.197) than θ = 0.05 (the median of ψ̂(i)

1,0.05

is equal to 0.142). This signals that the persistence in the quantiles is more relevant in more extreme

market states. We also point out that ψ̂(i)
1,0.01 and ψ̂(i)

1,0.05 take moderate values, lower than the levels

typically observed in the CaViaR model by Engle and Manganelli (2004). Therefore, the inclusion of

the dependence of the system on a financial company absorb, in part, the effects typically exerted by

the CaViaR components. ψ̂(i)
1,0.01 is slightly more volatile than ψ̂(i)

1,0.05, as the interquartile range of the

former is equal to 0.916 (versus 0.816). Further, ψ̂(i)
1,0.01 and ψ̂(i)

1,0.05 are statistically significant at the

0.05 level for more than half of the N companies.

On average, |yt−1|, the symmetric innovation term of the CoCaViaR, has a negative impact on

Q
(i)
θ (yt): the greater the absolute value of the lagged returns of the system the higher is the extreme

risk of the system. Therefore, a very bad or a very good day symmetrically increase the probability

of observing greater losses in the next day, consistent with the hypotheses laid down by Engle and

Manganelli (2004). Analyzing the coefficients associated with the symmetric innovation, we first note

that ψ̂(i)
2,0.01 is slightly more volatile than ψ̂

(i)
2,0.05, as its interquartile range is equal to 0.203 (versus

0.133). In addition, ψ̂(i)
2,θ records a lower percentage of times in which it is statistically significant

with respect to the other CaViaR’s parameter, that is ψ̂(i)
1,θ. Moving now to the loadings of both the
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financial company’s returns and the conditioning variables’ first principal component, we observe that

the statistics of λ̂(i)
θ and of γ̂(i)

θ slightly change when switching from the CoVaR to the CoCaViaR.

For the CoCaViaR financial companies returns positively impact (in median) on the system, with a

somewhat larger effect at the 1% quantile. fpct−1 is statistically relevant in a large fraction of cases.

However, for both λ̂(i)
θ and of γ̂(i)

θ we observe a contraction in the estimated values, when moving from

CoVaR to CoCaViaR. This is most likely an effect due to the presence of a quantile autoregressive

component.

Table 13: Estimation of Q(i)
θ,τ (yt) = δ

(i)
θ,τ + λ

(i)
θ,τxi,t + γ

(i)
θ,τfpct−1 and Q

(i)
θ,1/2(yt) = δ

(i)
θ,1/2 +

λ
(i)
θ,1/2xi,t + γ

(i)
θ,1/2fpct−1

COEF 5P MED 95P IQR PS 5P MED 95P IQR PS

θ = τ = 0.01, h = 0.10 θ = τ = 0.05, h = 0.10

δθ,τ -0.050 -0.029 -0.015 0.015 91.262 -0.031 -0.019 -0.010 0.008 94.175
δθ,1/2 -0.041 -0.028 -0.017 0.012 97.864 -0.025 -0.017 -0.011 0.006 98.447
λθ,τ -0.213 0.218 0.980 0.518 24.660 -0.089 0.205 0.884 0.471 35.728
λθ,1/2 -0.470 0.349 1.135 0.588 32.427 -0.199 0.354 0.910 0.453 46.019

100× γθ,τ -0.392 -0.193 0.002 0.155 72.816 -0.258 -0.146 -0.042 0.080 84.563
100× γθ,1/2 -0.302 -0.176 -0.037 0.102 84.660 -0.182 -0.113 -0.058 0.058 89.709

θ = τ = 0.01, h = 0.15 θ = τ = 0.05, h = 0.15

δθ,τ -0.049 -0.029 -0.016 0.014 95.049 -0.030 -0.018 -0.010 0.007 95.437
δθ,1/2 -0.041 -0.028 -0.019 0.011 99.223 -0.026 -0.018 -0.012 0.007 99.612
λθ,τ -0.199 0.248 1.025 0.559 30.874 -0.081 0.212 0.902 0.471 40.485
λθ,1/2 -0.163 0.214 0.788 0.387 41.650 -0.047 0.231 0.731 0.366 55.340

100× γθ,τ -0.375 -0.194 -0.013 0.143 77.573 -0.242 -0.143 -0.061 0.076 88.932
100× γθ,1/2 -0.300 -0.180 -0.045 0.099 86.214 -0.186 -0.115 -0.066 0.059 92.136

θ = τ = 0.01, h = 0.20 θ = τ = 0.05, h = 0.20

δθ,τ -0.048 -0.029 -0.017 0.013 97.087 -0.029 -0.018 -0.011 0.007 96.505
δθ,1/2 -0.041 -0.029 -0.020 0.011 99.515 -0.026 -0.018 -0.012 0.007 99.612
λθ,τ -0.168 0.260 0.951 0.538 34.078 -0.056 0.227 0.890 0.475 44.078
λθ,1/2 -0.093 0.154 0.624 0.308 47.184 -0.015 0.160 0.650 0.331 60.388

100× γθ,τ -0.357 -0.197 -0.039 0.132 83.786 -0.231 -0.142 -0.068 0.071 90.583
100× γθ,1/2 -0.299 -0.186 -0.059 0.092 88.252 -0.190 -0.118 -0.071 0.060 94.660

The table reports the summary statistics of the QL-CoVaR’s parameters estimated for the N financial companies
included in our dataset. We estimated the conditional quantiles for two quantile levels of θ and three bandwidth
h levels. In each panel, from left to right, we report the following descriptive statistics of the coefficients: the
5-th percentile (5P), the median (MED), the 95-th percentile (95P), the interquartile range (IQR) and the
percentage of times, out of N , in which they are statistically significant at the 5% confidence level (PS).

In contrast to the models analyzed above, the estimation process behind the QL-CoVaR (and thus

the QL-CoCaViaR) depends on two additional parameters: a second quantile τ (we now restrict the

attention on the neighbourhood of the τ -th quantile of xi,t) and a bandwidth h (that calibrates the

weight of the kernel function). Table 13 reports the statistics of the QL-CoVaR’s coefficients, where we

condition the estimates to the distress and to the median state of a single financial company. As before,

the average impact exerted by the companies to both QL-CoVaR
(i)
τ and QL-CoVaR

(i)
1/2 is positive, but

greater with respect to the standard CoVaR (the medians of both λ̂(i)
θ,τ and λ̂(i)

θ,0.5 are greater than the
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median of λ̂(i)
θ ). Therefore, the relationships between the system and the companies become stronger

by focusing on particular regions of the xi,t support, i.e. when xi,t is in a neighbourhood of a distress

state.

Table 14: Estimation of Q(i)
θ,τ (yt) = δ

(i)
θ,τ +ψ

(i)
1,θ,τQ

(i)
θ,τ (yt−1) +ψ

(i)
2,θ,τ |yt−1|+ λ

(i)
θ,τxi,t + γ

(i)
θ,τfpct−1

and Q(i)
θ,1/2(yt) = δ

(i)
θ,1/2+ψ

(i)
1,θ,1/2Q

(i)
θ,1/2(yt−1)+ψ

(i)
2,θ,1/2|yt−1|+λ(i)

θ,1/2xi,t+γ
(i)
θ,1/2fpct−1.

COEF 5P MED 95P IQR PS 5P MED 95P IQR PS

θ = τ = 0.01, h = 0.10 θ = τ = 0.05, h = 0.10

δθ,τ -0.059 -0.020 -0.001 0.024 61.456 -0.033 -0.013 0.000 0.014 57.476
δθ,1/2 -0.041 -0.011 0.000 0.020 67.184 -0.026 -0.010 0.000 0.014 56.602
ψ1,θ,τ -0.698 0.181 0.919 0.829 45.534 -0.739 0.265 0.932 0.782 48.350
ψ1,θ,1/2 -0.582 0.491 0.957 0.842 65.049 -0.67 0.254 0.949 0.849 55.340
ψ2,θ,τ -0.602 -0.062 0.568 0.449 26.505 -0.355 -0.073 0.393 0.282 25.437
ψ2,θ,1/2 -0.570 -0.171 0.278 0.247 50.388 -0.318 -0.112 0.216 0.146 38.155
λθ,τ -0.287 0.147 0.843 0.458 54.466 -0.125 0.121 0.855 0.437 53.01
λθ,1/2 -0.250 0.086 0.906 0.379 51.942 -0.112 0.091 0.853 0.454 46.796

100× γθ,τ -0.410 -0.113 0.004 0.173 52.913 -0.232 -0.089 0.001 0.117 52.718
100× γθ,1/2 -0.233 -0.049 0.004 0.120 57.670 -0.177 -0.057 0.001 0.091 51.456

θ = τ = 0.01, h = 0.15 θ = τ = 0.05, h = 0.15

δθ,τ -0.054 -0.021 -0.001 0.023 67.184 -0.031 -0.013 0.000 0.013 61.068
δθ,1/2 -0.040 -0.012 0.00 0.021 73.592 -0.027 -0.011 0.000 0.014 65.146
ψ1,θ,τ -0.619 0.136 0.918 0.761 45.049 -0.746 0.221 0.927 0.754 47.670
ψ1,θ,1/2 -0.630 0.467 0.949 0.840 66.019 -0.662 0.220 0.937 0.830 55.437
ψ2,θ,τ -0.533 -0.060 0.479 0.386 27.184 -0.317 -0.085 0.323 0.237 29.029
ψ2,θ,1/2 -0.519 -0.172 0.234 0.219 54.660 -0.281 -0.116 0.156 0.129 41.748
λθ,τ -0.218 0.174 0.902 0.496 57.573 -0.096 0.131 0.855 0.448 54.66
λθ,1/2 -0.125 0.091 0.711 0.284 64.660 -0.047 0.109 0.722 0.396 57.573

100× γθ,τ -0.402 -0.126 0.002 0.173 60.485 -0.220 -0.091 0.001 0.113 57.573
100× γθ,1/2 -0.227 -0.053 0.003 0.128 63.592 -0.163 -0.068 0.000 0.089 60.777

θ = τ = 0.01, h = 0.20 θ = τ = 0.05, h = 0.20

δθ,τ -0.049 -0.022 -0.001 0.022 75.049 -0.03 -0.013 0.000 0.013 66.602
δθ,1/2 -0.042 -0.014 -0.001 0.022 80.971 -0.027 -0.012 0.000 0.014 72.913
ψ1,θ,τ -0.601 0.133 0.923 0.721 46.117 -0.687 0.176 0.921 0.745 46.699
ψ1,θ,1/2 -0.605 0.401 0.939 0.870 66.019 -0.660 0.186 0.927 0.823 55.437
ψ2,θ,τ -0.510 -0.074 0.384 0.333 32.816 -0.278 -0.087 0.283 0.204 32.330
ψ2,θ,1/2 -0.463 -0.175 0.198 0.205 55.437 -0.254 -0.122 0.117 0.121 42.816
λθ,τ -0.194 0.185 0.886 0.525 64.757 -0.072 0.139 0.85 0.467 59.806
λθ,1/2 -0.068 0.096 0.600 0.263 73.883 -0.022 0.103 0.652 0.351 65.243

100× γθ,τ -0.343 -0.135 0.002 0.162 68.252 -0.207 -0.089 0.000 0.105 62.233
100× γθ,1/2 -0.230 -0.067 0.001 0.138 70.874 -0.161 -0.071 -0.001 0.090 69.029

The table reports the summary statistics of the QL-CoCaViaR’s parameters estimated for the N financial
companies included in our dataset. We estimated the conditional quantiles for two quantile levels of θ and
three bandwidth h levels. In each panel, from left to right, we report the following descriptive statistics of the
coefficients: the 5-th percentile (5P), the median (MED), the 95-th percentile (95P), the interquartile range
(IQR) and the percentage of times, out of N , in which they are statistically significant at the 5% confidence
level (PS).

On average, we observe larger values for λ̂(i)
θ,τ at θ = 0.01 than at θ = 0.05, whereas the opposite

holds for λ̂(i)
θ,0.5. λ̂

(i)
θ,τ measures the relation between xi,t and yt, when the companies and the system

simultaneously lie in the left tail of their distributions. The fact that λ̂(i)
θ,τ increases as θ and τ si-

multaneously decrease means that the co-movements between the financial system and the companies
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become stronger when moving leftwards along the left tails of their distributions. Consequently, the

risk of contagion increases by accentuating the distress degree in the connections between the financial

system and the companies. The relevance of the co-movements between the financial system and the

single companies emerges also in their median state. In fact, λ̂(i)
θ,0.5 increases as the system moves

rightwards from θ = 0.01 to θ = 0.05, reducing the gap between the median state of the conditioning

company and the distress state of the system.

Finally, the statistics of the QL-CoCaViaR’s coefficients are given in Table 14. Similarly to the

QL-CoVaR, on average, λ̂(i)
θ,τ takes higher values at θ = 0.01 than θ = 0.05 and the opposite holds for

λ̂
(i)
θ,0.5, highlighting the stronger co-movements between the system and the companies when they simul-

taneously lie in a state of accentuated distress. Switching from the QL-CoVaR to the QL-CoCaViaR,

the inclusion of the CaViaR components absorbs, in part, the impact of the companies on the system:

the medians of λ̂(i)
θ,τ and λ̂

(i)
θ,0.5 are lower than the ones observed in the case of the QL-CoVaR. The

effects of changing the h values are moderate in terms of the medians, the interquartile ranges, the

5-th and the 95-th percentiles of the coefficients; likewise, the changes in the h values do not imply

relevant consequences in terms of times in which the coefficients are statistically significant over the N

companies.

As in the case of the CoCaViaR, the values of ψ(i)
1,θ,τ and ψ(i)

1,θ,1/2 are positive on average, but lower

than the ones typically observed in the standard CaViaR model. It is interesting to observe that the

median of ψ(i)
1,θ,τ is lower at θ = τ = 0.01 than θ = τ = 0.05, in contrast to what occurs in the case

of the CoCaViaR, where, as we said above, the average impact of Q(i)
θ,τ (yt−1) on Q(i)

θ,τ (yt) is larger at

θ = τ = 0.01. Differently, the median of ψ(i)
1,θ,0.5 is greater at θ = 0.01 than θ = 0.05. This phenomenon

might be due to the fact that the persistence of the yt quantiles over time is affected by the relations

between the company and the system. In fact, as previously described, the co-movements between the

system and the companies are stronger as θ and τ simultaneously take lower values and this absorbs, in

part, the persistence of Q(i)
θ,τ (yt). In contrast, when the system is in its distress state, whereas the i-th

company is in its median state, the lower impact of their co-movements allows for a deeper persistence

in the yt quantiles over time. As a result, on average, ψ(i)
1,0.01,0.01 is less than half ψ(i)

1,0.01,0.5, whereas

the differences between ψ(i)
1,0.05,0.05 and ψ(i)

1,0.05,0.5 are almost imperceptible. Similarly to the CoCaViaR,

|yt−1| has a negative impact on Q
(i)
θ,τ (yt). ψ

(i)
2,θ,τ is greater, in absolute value, at θ = τ = 0.05 than

θ = τ = 0.01, whereas the opposite holds for ψ(i)
2,θ,0.5. Then, also the impact of the lagged system’s

returns on the current quantile of yt is affected by the relationships between the system and the

companies, according to the tranquil/distress period in which they stay. Furthermore, the changes in

the h values have slight effects on the statistics of ψ(i)
1,θ,τ , ψ

(i)
1,θ,0.5, ψ

(i)
2,θ,τ and ψ

(i)
2,θ,0.5. Finally, contrasting

results with respect to the case of the QL-CoVaR, we note that the number of companies for which the

QL-CoCaViaR’s coefficients are statistically significant at the 5% confidence level tends to be greater

at the quantiles levels (θ, 0.5) than (θ, τ) and is almost always a positive function of h.
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D Additional results
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Figure 6: The figure displays the daily returns of the financial system (yt) and of the Standard & Poor’s 500 index
(S&P 500) in the period October 10, 2000-July 31, 2015.
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Figure 7: The figure compares the first principal component of the control variables included in Mt (fpct) and the
VIX index (V IXt) in the period October 10, 2000-July 31, 2015.
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