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Abstract

Directional testing of vector parameters, based on higher order approximations of likeli-

hood theory, can ensure extremely accurate inference, even in high-dimensional settings

where standard first order likelihood results can perform poorly. Here we explore ex-

amples of directional inference where the calculations can be simplified, and prove that

in several classical situations the directional test reproduces exact results based on F -

tests. These findings give a new interpretation of some classical results and support

the use of directional testing in general models, where exact solutions are typically not

available.
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1 Introduction

In many statistical settings we are interested in hypotheses about vector parameters. Examples

include testing sets of dummy variables indexing levels of a factor in a regression model, testing
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interactions in loglinear models for multi-way contingency tables, and tests in models for multi-

variate responses, such as testing hypotheses for the mean vector or the covariance matrix of a

multivariate normal distribution.

To fix notation, we assume a model for a response yi with parametric density function fi(yi; θ).

We write f(y; θ) for the joint density for a sample y = (y1, . . . , yn); the maximum likelihood

estimator from this sample is θ̂ = θ̂(y) = arg supθ f(y; θ).

One general approach to testing a given θ value is to construct the quadratic form q(θ) =

(θ̂ − θ)TV −1(θ̂ − θ), where V is an estimate of the covariance matrix of θ̂. Under some regularity

conditions ensuring that θ̂ is consistent and asymptotically normally distributed, and that V is a

consistent estimator of the covariance matrix of θ̂, q(θ) has a limiting χ2
p distribution under the

model f(y; θ), as n→ ∞, where p is the dimension of θ. An asymptotically equivalent test for θ is

that based on the log-likelihood ratio

w(θ) = 2{log f(y; θ̂)− log f(y; θ)}; (1)

this also has a limiting χ2
p distribution, but the distributions of q and w will differ in finite samples.

Tests about a subvector of θ are similarly constructed. Suppose θ = (ψ, λ) where ψ, of dimension

d, is the parameter of interest. The analogous expressions for inference are

q(ψ) = (ψ̂ − ψ)TV −1
1 (ψ̂ − ψ), (2)

w(ψ) = 2{log f(y; θ̂)− log f(y; θ̂ψ)}, (3)

where V1 is an estimate of the covariance matrix of ψ̂, θ̂ψ = (ψ, λ̂ψ), and λ̂ψ is the constrained

maximum likelihood estimator obtained by maximizing f(y; θ) over λ with ψ fixed; these have

limiting χ2
d distributions.

In the context of linear regression, Fraser and Massam (1985) proposed tests that measure

departure of θ̂ from θ, or ψ̂ from ψ, in a particular direction on the parameter space. Skovgaard

(1988) derived a saddlepoint-type expansion for directional tests in exponential family models.

Davison et al. (2014) and Fraser et al. (2016) showed how to calculate directional p-values via one-
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dimensional integrals, and illustrated this in a number of models. While the theory was developed

in a standard asymptotic scenario, with n increasing and p fixed, empirical results have shown

that the method is extremely accurate even in cases where the dimensions p and d are rather large

relative to n, when standard first order methods, and some higher order improvements generally

fail.

In this paper we show that in some notable examples the directional tests simplify to very

well-known omnibus tests. This sheds light on directional testing and gives a new look at some

familiar test statistics, as well as providing additional support for the adoption of this approach in

general models.

In Section 2 we briefly review the directional testing approach. In Sections 3 and 4 we show

that directional tests coincide with exact well-known solutions in some examples where inference

is focused on scale parameters and location parameters respectively. Technical details are given in

the Supplementary Material.

2 Directional testing

The theory and methods for directional tests are given in Davison et al. (2014) and Fraser et

al. (2016), and provided for completeness in the Supplementary Material. Here we introduce the

necessary notation and key concepts.

Suppose we have an exponential family model with sufficient statistic u = u(y) and canonical

parameter ϕ, with density

f(y;ϕ) = exp{ϕTu− κ(ϕ)}h(y), (4)

and we are interested in the hypothesis Hψ : ψ(ϕ) = ψ. We write ϕ̂ψ for the constrained maximum

likelihood estimate of ϕ under Hψ. The directional test of Hψ restricts attention to the line in the

sample space joining uψ with u0, where uψ is the value of the sufficient statistic for which ϕ̂ψ is

the maximum likelihood estimate, and u0 is the observed value of the sufficient statistic, for which

ϕ̂ is the maximum likelihood estimate. The directional p-value is the tail area probability for the

length ||uψ − u0||, conditional on the direction (uψ − u0)/||uψ − u0||. It is sometimes convenient to

define s = u− u0, so that s0 = 0 and sψ = uψ − u0.
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The p-value for this directional approach is defined, as in Davison et al. (2014, Section 3.2), by

a ratio of two integrals,

p(ψ) =

∫ tmax

1 td−1h(t;ψ) dt
∫ tmax

0 td−1h(t;ψ) dt
, (5)

where d is the dimension of ψ, and t indexes points along the line, with t = 0 corresponding to

the value uψ, and t = 1 corresponding to the observed value u0. The upper bound, tmax, of these

integrals is the largest value of t where the corresponding sufficient statistic on the line between uψ

and u0 still lies in the support of its distribution. The two one-dimensional integrals in (5) can be

easily and accurately computed numerically. The factor td−1 comes from the Jacobian computed in

transforming the joint density to the conditional density of the length, given the direction, which

is essentially a transformation to spherical coordinates.

The ingredients needed for the calculation of h(t;ψ) in (5) are the log-likelihood function, the

maximum likelihood estimate, the observed Fisher information, as functions of t, as well as the

observed value of the constrained maximum likelihood estimate. An expression for h(t;ψ) when

the hypothesis is linear in ϕ is given in Davison et al. (2014, Eq.(8)), and when the hypothesis

is nonlinear in Fraser et al. (2016, Eq.(4)). For completeness the general expression for h(t;ψ) is

presented here and described in detail in the Supplementary Material:

h(t;ψ) ∝ exp [ℓ{ϕ̂ψ; s(t)} − ℓ{ϕ̂; s(t)}] |Ĵϕϕ|
−1/2|J̃(λλ)|

1/2, (6)

where ℓ(ϕ; s) = ϕT(θ)s + ℓ0{θ(ϕ)}, ℓ0(θ) = ℓ(θ; y0) is the observed value of the log-likelihood

function from (4), and the score variable s is constrained to the line s(t), t > 0. When the hypothesis

is linear in the canonical parameter, the factor |J̃(λλ)| does not depend on t and therefore is not

needed in (5). It may also be indpendent of t in other cases, such as that in §4.2.

If the underlying model is not an exponential family model, an initial approximation to that

model, called the tangent exponential model, is constructed first, and the arguments apply again

within this model (Fraser et al., 2016, Ex. 4.3).

We show in this paper that the ratio of integrals in (5) can be calculated explicitly in some

simple models, which helps to explain the accuracy of the approximation as evidenced in Davison et

al. (2014) and Fraser et al. (2016). We present the calculation for simple examples first in Section 3,
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and then use similar techniques in Section 4 to provide a new view of classical tests in multivariate

normal models.

3 Inference in scale models

3.1 Scalar parameter of interest

In a one-dimensional sub-model, the directional test gives two-sided p-values as it reduces to the

probability of the right (or left) tail, conditional on being in that tail. In the two examples in this

section we demonstrate this, as the calculations can be carried out analytically, and the arguments

motivate exact calculations in the regression setting of Section 4.

3.2 Comparison of exponential rates

We consider first the example of Davison et al. (2014, §5.2) in the case of just two groups (g = 2).

Suppose that yij are independent random variables following an exponential distribution with rates

θi for i = 1, 2 and j = 1, . . . , ni, and the null hypothesis is Hψ : θ1/θ2 = ψ for some ψ ∈ (0,∞). An

exact test is available, since Wψ = ψȳ1/ȳ2 follows an F (2n1, 2n2) distribution under Hψ.

The log-likelihood of the full model is

ℓ(θ; y) =

2∑

i=1

ni∑

j=1

(log θi − θiyij). (7)

The canonical parameter is ϕ(θ) = (−θ1,−θ2), the sufficient statistic is u = (u1, u2) = (Σjy1j ,Σjy2j),

the maximum likelihood estimate of θ is θ̂ = (n1/u1, n2/u2), and the constrained maximum likeli-

hood estimate is

θ̂ψ =

(
nψ

ψu1 + u2
,

n

ψu1,+u2

)
,

giving

uψ = (u1ψ , u2ψ) =
1

n

(
u1n1 +

u2n1
ψ

,ψu1n2 + u2n2

)
.

By a standard property of exponential families uψ is the expected value of u under Hψ. With
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sψ = uψ − u0, the line s(t), t ≥ 0, to be (1 − t)sψ. At t = 1, s(t) = s0 = 0. The saddlepoint

approximation to the density of s on the ray s(t) is

td−1h(t;ψ) = (1− t/a1)
n1−1(1− t/a2)

n2−1, (8)

with ai = uiψ/(uiψ − ui) for i = 1, 2. The support of the density is s(t) > −u0, or equivalently

θ̂{s(t)} ≥ 0, so tmax = max(a1, a2). Although the hypothesis is not linear in the canonical param-

eter, the nuisance parameter adjustment term |J̃(λλ)| is independent of t because ϕ(θ) is linear in

the nuisance parameter θ2.

If tmax = a2, ψȳ1 ≥ ȳ2, and the directional p-value is

p(ψ) =

∫ a2
1 (1− t/a1)

n1−1(1− t/a2)
n2−1 dt∫ a2

0 (1− t/a1)n1−1(1− t/a2)n2−1 dt
. (9)

Let pnum and pdenom be the numerator and denominator of (9) respectively. Taking x = (1 −

t/a1)/(1 − t/a2) gives

pnum = c

∫
∞

ψȳ1/ȳ2

xn1−1

(
1 +

n1
n2
x

)
−(n1+n2)

dx, pden = c

∫
∞

1
xn1−1

(
1 +

n1
n2
x

)
−(n1+n2)

dx.

The constant c is the same in pnum and pden because the same change of variables is used in

both integrals. Recognizing these integrands as the density of a F (2n1, 2n2) random variable with

cumulative distribution function G2n1,2n2
(x), (9) becomes

p(ψ) =
1−G2n1,2n2

(Wψ)

1−G2n1,2n2
(1)

,

showing how the directional p-value is related to that based on the F -test of Wψ = ψȳ1/ȳ2. Simi-

larly, when ψȳ1 < ȳ2 the directional p-value is p(ψ) = G2n1,2n2
(Wψ)/G2n1,2n2

(1), so that

p(ψ) = I(Wψ ≥ 1)
1−G2n1,2n2

(Wψ)

1−G2n1,2n2
(1)

+ I(Wψ < 1)
G2n1,2n2

(Wψ)

G2n1,2n2
(1)

. (10)

The terms that are multiplied by the indicator functions in (10) are uniformly distributed over [0, 1]

when conditioned on Wψ being in the appropriate region. It follows directly that the directional
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p-value is also uniformly distributed on [0, 1].

A two-tailed F -test has p-value 2min{G2n1,2n2
(Wψ), 1−G2n1,2n2

(Wψ)}, which can be expressed

as

I(Wψ ≥ G1/2)
1−G2n1,2n2

(Wψ)

1−G2n1,2n2
(G1/2)

+ I(Wψ < G1/2)
G2n1,2n2

(Wψ)

G2n1,2n2
(G1/2)

, (11)

where G1/2 is the median. The tail region here is slightly different from that in (10), although for

practical purposes the difference is slight. Even in a highly asymmetric setting where n1 = 5 and

n2 = 10, 000, G10,20000(1) = 0.559.

3.3 Comparison of normal variances

Suppose that yij ∼ N(µi, σ
2
i ) are independent random variables for i = 1, 2 and j = 1 . . . , ni,

and the null hypothesis is Hψ : σ21/σ
2
2 = ψ. Under the hypothesis Hψ, Wψ = ψs22/s

2
1 follows an

F (ν2, ν1) distribution, where s
2
i = ni(νi)

−1v2i is the unbiased sample variance estimate for group i,

with v2i = n−1
i Σnij=1(yij − ȳi)

2 and νi = ni − 1.

Following a derivation like that in Davison et al. (2014, §5.1), the directional p-value is

p(ψ) =

∫ 1/a1
1 (1− ta1)

(n1−3)/2(1 − ta2)
(n2−3)/2 dt

∫ 1/a1
0 (1− ta1)(n1−3)/2(1 − ta2)(n2−3)/2 dt

, (12)

where ai = (σ̂2iψ − v2i )/σ̂
2
iψ , i = 1, 2, and σ̂2iψ is the constrained maximum likelihood estimator for

σ2i . The same change of variable as in (9) gives

p(ψ) = {1−Gν2,ν1(Wψ)}/[1 −Gν2,ν1{n2ν1/(n1ν2)}],

when v21 ≤ ψv22 , or equivalently, ν1n2/(ν2n1) ≤ ψs22/s
2
1. Combining this with the case v21 > ψv22

gives

p(ψ) = I

{
Wψ ≥

n2ν1
n1ν2

}
1−Gν2,ν1(Wψ)

1−Gν2,ν1{n2ν1/(n1ν2)}
+ I

{
Wψ <

n2ν1
n1ν2

}
Gν2,ν1(Wψ)

Gν2,ν1{n2ν1/(n1ν2)}
. (13)

As noted in Davison et al. (2014, Ex. 5.1), this expression simplifies to the two-sided F -test if
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n1 = n2 since v21/v
2
2 = s21/s

2
2 in this case. When n1 6= n2 (13) is the p-value for the exact F -test

based on the tail probabilities of ψ times the ratio of the biased maximum likelihood estimators v2i .

With more than two groups there is no exact test for comparison, but simulations in Davison et

al. (2014) show that the directional test is very accurate even with a very large number of groups,

and hence large numbers of nuisance parameters and a large dimension of ψ, whereas the usual

likelihood ratio test (3) breaks down, as does the modified likelihood ratio version proposed in ?.

4 Inference for location parameters

4.1 Linear regression

We now consider testing the the null hypothesis Hψ : Aβ = ψ in a linear regression model,

yi = xT

i β + ǫi, i = 1, ..., n, where both xi and β are vectors of length p, and ǫi are independently

distributed as N(0, σ2) with an unknown variance. We assume A is a given d × p matrix with

maximal rank, so the dimension of the parameter of interest is d and that of the implicit nuisance

parameter is p+ 1− d. This null hypothesis encompasses many other hypotheses of interest, such

as testing for the equality of group means when the group variances are equal. If X is taken to be

the matrix with rows xT

i , the log-likelihood function for θT = (βT, σ2) is

ℓ(θ; y) = −
n

2
log σ2 −

1

2σ2
(
yTy − 2yTXβ + βTXTXβ

)
.

This can be re-expressed in exponential family form with canonical parameter ϕ(θ)T = σ−2(βT,−1/2)

and sufficient statistic uT = (yTX, yTy) = (uT

1 , u2). The unconstrained and constrained maximum

likelihood estimates for β are

β̂ = (XTX)−1XTy, β̂ψ = β̂ − (XTX)−1AT
{
A(XTX)−1AT

}
−1

(Aβ̂ − ψ),
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and those of σ2 are σ̂2 = n−1Σ(yi− xT

i β̂)
2 and σ̂2ψ = n−1Σ(yi− xT

i β̂ψ)
2. The value of s that has θ̂ψ

as the maximum likelihood estimate of θ is

sTψ = (β̂T

ψX
TX − yTX,nσ̂2ψ + β̂T

ψX
TXβ̂ψ − yTy).

On the line s(t), t ≥ 0, the log-likelihood function for ϕ(θ) is

ℓ{ϕ(θ); s(t)} = −
n

2
log σ2 −

1

2σ2
{
u2(t)− 2u1(t)β + βTXTXβ

}
, (14)

with {u1(t), u2(t)} = u(t) = u0 + s(t). From (14) we obtain the maximum likelihood estimates as

functions of t: β̂(t) = (XTX)−1u1(t) and σ̂
2(t) = n−1

{
u2(t)− 2u1(t)β̂(t) + β̂T(t)XTXβ̂(t)

}
.

Evaluating (6) gives

h(t;ψ) = {σ̂2(t)}(n−p−2)/2 =
{
σ̂2ψ −

t2

n
(y −Xβ̂ψ)

TX(XTX)−1XT(y −XTβ̂ψ)
}(n−p−2)/2

.

The density along the line s(t), passing through sψ and s0 is then

td−1h(t;ψ) = td−1
{
σ̂2ψ −

t2

n
(y −Xβ̂ψ)

TX(XTX)−1XT(y −XTβ̂ψ)
}(n−p−2)/2

= td−1(a− bt2)(n−p−2)/2.

(15)

As the hypothesis can be expressed as a linear function of the canonical parameter, there is no need

for the nuisance parameter adjustment term |J̃(λλ)|.

To compute the directional p-value (5) we need tmax, which here is the largest value of t for

which σ̂2(t) ≥ 0,

tmax =
[
nσ̂2ψ/{(y −Xβ̂ψ)

TX(XTX)−1XT(y −Xβ̂ψ)}
]1/2

= (a/b)−1/2.

With the the change of variable x = n−p
d

(
a
bt2

− 1
)
, a computation detailed in the Supplementary

Material verifies that (5) simplifies to

p(ψ) = 1−Gd,n−p

[
(Aβ̂ − ψ)T{A(XTX)−1AT}−1(Aβ̂ − ψ)/d

(y −Xβ̂)T(y −Xβ̂)/(n − p)

]
, (16)
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which is the p-value based on the usual Fd,n−p distribution (Rencher and Schaalje, 2008, Ch. 8).

This result gives a new interpretation of the F -statistic: it measures the magnitude of the

sufficient statistic for Aβ = ψ, conditional on the direction indicated by the observed data. As

the normal distribution is spherically symmetric, the magnitude is distributed independently of the

direction.

4.2 Hotelling’s T
2

The result in §4.1 suggests comparing the directional test for a multivariate normal mean with

Hotelling’s T 2 statistic. Suppose yi, i = 1, ..., n are independent observations from the multivariate

normal distribution, Nd(µ,Λ
−1), with unknown covariance matrix Λ−1. The full parameter is

θ = {µ, vec(Λ)}, where vec gives a vectorization of the columns of a matrix. Strictly speaking

we need only d(d + 1)/2 entries of Λ; the correction for dimension is made when determining

the Hessian. We consider the hypothesis Hψ : µ = ψ. The distribution for y = (y1, . . . , yn) is

an exponential family model, with canonical parameter ϕT(θ) = {µTΛ, vecT(Λ)}, and sufficient

statistic uT = {nȳT, vecT(Σiyiy
T

i )}. The unconstrained maximum likelihood estimates are µ̂ = ȳ

and Λ̂ = n{Σi(yi − ȳ)(yi − ȳ)T}−1 while the constrained maximum likelihood estimate for Λ is

Λ̂ψ = n{Σi(yi − ψ)(yi − ψ)T}−1. Under Hψ, the expected value of the centered sufficient statistic

s is

sTψ =

[
nψ − nȳ, vecT

{n
2
(ψȳT + ȳψT − 2ψψT)

}]
.

The maximum likelihood estimators on the ray s(t) are

ϕ̂T(t) =
[
{ψ + t(ȳ − ψ)}TΛ̂(t), vecT{Λ̂(t)}

]
,

Λ̂−1(t) =

{
1

n

n∑

i=1

(yi − ψ)(yi − ψ)T

}
− t2(ȳ − ψ)(ȳ − ψ)T = Λ̂−1

ψ − t2vvT, (17)

where v = ȳ−ψ. These maximum likelihood estimators are valid if Λ̂−1(t) is positive definite, and

the largest t such that this is the case, tmax, is found by solving for t in the equation |Λ̂−1(t)| = 0,

where |Λ̂−1(t)| = det(Λ̂−1
ψ )(1−t2vTΛ̂ψv). The components of (6) needed to compute the directional
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p-value are

exp
[
ℓ{ϕ̂(0); s(t)} − ℓ{ϕ̂(t); s(t)}

]
= |Λ̂−1(t)|n/2,

|Jϕϕ{ϕ̂(t); s(t)}|
−1/2 = |Λ̂−1(t)|−(q+1)/2.

As the canonical parameter is linear in Λ, the nuisance parameter information term does not depend

on t and can be ignored. The directional p-value is

∫ (vTΛ̂ψv)
−1/2

1 tp−1(1− t2vTΛ̂ψv)
(n−p−2)/2 dt

∫ (vTΛ̂ψv)−1/2

0 tp−1(1− t2vTΛ̂ψv)(n−p−2)/2 dt
. (18)

There is a striking similarity between this and the directional p-value (9), and the same change

of variables can be applied here. By the Sherman–Morrison formula

1− vTΛ̂ψv

vTΛ̂ψv
= (ȳ − ψ)T

{
1

n

n∑

i=1

(yi − ȳ)(yi − ȳ)T

}
−1

(ȳ − ψ) = vTΛ̂v. (19)

After the appropriate change of variables, (25) appears in the bound of the integrals in the direc-

tional p-value. After further simplification we have

p(ψ) = 1−G

(
n− p

p
vTΛ̂v

)
, (20)

where G is the cumulative distribution function of an F (p, n − p) random variable. As Hotelling’s

T 2 statistic is equal to (n − 1)vTΛ̂v and (n − p)/{p(n − 1)}T 2 ∼ F (p, n − p), this shows that the

directional test is identical to Hotelling’s T 2 test.

5 Discussion

Directional tests for a vector parameter create a one-dimensional sub-model by restricting attention

to the line on the parameter space that is dictated by the observed data. The computation of these

tests has recently been simplified by relying on saddlepoint approximations to the distributions,

rather than computing them exactly.
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This work concentrates on models for which saddlepoint approximations are exact or nearly

exact, and shows that conventional F -tests emerge from the directional approach. This helps to

explain the accuracy of the tests demonstrated in Davison et al. (2014) and Fraser et al. (2016).

All the directional p-value integrands appearing in this work share a common structure. Each

integrand of the directional p-values has the form td−1σ̂2(t)α/2, where σ̂2(t) is a measure of vari-

ability under Hψ, and α depends on n, d and p. Small directional p-values correspond to observed

data that have a relatively high weighted variability estimate under Hψ.

The hypotheses considered in Section 4 constrain the mean vector to a linear subspace of the

parameter space, and are also invariant under affine transformations of the parameter. The F -tests

in Section 4 are derived as most powerful invariant tests in Lehmann and Romano (2005, Ch.7),

and shown there to effectively test a scalar parameter, the noncentrality parameter of the related

F distribution.

We are preparing an R package (R Core Team, 2018) to construct directional tests in gener-

alized linear models, including gamma, Poisson, and logistic regression. With discrete probability

functions, such as the binomial and Poisson, saddlepoint methods are not exact because they are

implicitly continuous, but simulation results in Davison et al. (2014, §4.2) and in work in progress

indicates that the directional p-values continue to be very accurate.

It is also straightforward to develop a directional test for normal theory non-linear regression

models of the form yi ∼ N{ηi(β), σ
2}, i = 1, . . . , n, but we have been unable to verify that these

are the same as the conventional F -test based on the tangent model approximation to the mean

surface.

By their nature, we might expect directional tests to have low power in regions of the parameter

space that are not suggested by the data. This point was raised in work as yet unpublished by Jens

Ledet Jensen. However for at least some settings the work here shows that the tests are the same

as conventional F -tests for multivariate hypotheses, so share their power properties.

12



Acknowledgements

This research was supported in part by the Natural Sciences and Engineering Research Council of

Canada and by the Italian Ministry of Education under the PRIN 2015 grant 2015EASZF 003 and

the University of Padova (PRAT 2015 CPDA153257). We would like to thank D.A.S. Fraser and

I. Kosmidis for helpful discussion, A. Ruffato for help in the derivation of the result in Section 4.1,

and A.C. Davison for helpful comments on an earlier version.

Supplementary Material

Additional information about the saddlepoint approximation and directional tests of §2, as well as

detailed calculations to support the analytical results in §3 and §4, are provided in the Supplemen-

tary Material available online.

References

Davison, A. C., Fraser, D. A. S., Reid, N. & Sartori, N. (2014), “Accurate directional inference for

vector parameters in linear exponential families,” Journal of the American Statistical Association,

109, 302–314.

Fraser, D. A. S. & Massam, H. (1985), “Conical tests: observed levels of significance and confidence

regions,” Statistiche Hefte, 26, 1–17.

Fraser, D. A. S., Reid N., & Sartori, N. (2016), “Accurate directional inference for vector parame-

ters,” Biometrika, 103, 625–639.

Lehmann, E. L. & Romano, J. P. (2005), Testing Statistical Hypotheses, New York: Springer.

R Core Team (2018), “R: A language and environment for statistical computing,” R Foundation

for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rencher, A. C. & Schaalje, G. B. (2008), Linear Models in Statistics, 2nd ed. New Jersey: Wiley.

13



Skovgaard, I. M. (1988), “Saddlepoint expansions for directional test probabilities,” J. R. Statist.

Soc. B, 50, 269–280.

Skovgaard, I. M. (2001), “Likelihood asymptotics,” Scand. J. Statist., 28, 3–32.

14


