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Abstract Discovering and locating gamma-ray sources in the whole sky map is
a declared target of the Fermi Gamma-ray Space Telescope collaboration. In this
paper, we carry out an unsupervised analysis of the collection of high-energy pho-
tons accumulated by the Large Area Telescope, the principal instrument on board
the Fermi spacecraft, over a period of around 7.5 years using a Bayesian mixture
model. A fixed, though unknown, number of parametric components identify the
extra-galactic emitting sources we are searching for, while a further component rep-
resents parametrically the diffuse gamma-ray background due to both, extra-galactic
and galactic high-energy photon emission. We determine the number of sources,
their coordinates on the map and their intensities. The model parameters are esti-
mated using a reversible jump MCMC algorithm which implements four different
types of moves. These allow us to explore the dimension of the parameter space.
The possible transitions remove from or add a source to the model, while leaving
the background component unchanged. We furthermore present an heuristic proce-
dure, based on the posterior distribution of the mixture weights, to qualify the nature
of each detected source.
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1 Motivation and background

Resolving the γ-ray sky by detecting as yet unidentified sources and accurately mea-
suring the diffuse background emission is a declared key scientific objective of the
Fermi Gamma-ray Space Telescope collaboration, whose broader aim is to identify
and study the nature of high-energy phenomena in the Universe.1 The target of this
contribution is the collection of photon count maps for varying energy bins provided
by the Large Area Telescope (LAT), the principal scientific instrument on board the
Fermi spacecraft, during its almost ten years of operation. In particular, we aim at
formulating and fitting a model which allows us to: (i) determine the number of
extra-galactic high-energy sources, (ii) measure their intensities, and (iii) pool the
individual photon counts into the corresponding clusters.

The discovery of celestial objects is an intrinsically interdisciplinary field which
combines both, statistical and astronomical methodology. A main challenge of try-
ing and detecting high-energy phenomena from astronomical data is to separate
the signal of the putative emitting source from the diffuse γ-ray background which
spreads over the entire area observed by the telescope. Different phenomena con-
tribute to this residual radiation [3]. Broadly speaking, its origins can be brought
under two headings: galactic interstellar emission (GIE), that is, the interaction of
galactic cosmic rays with gas and radiation fields, and a residual all-sky emission.
The latter is commonly called the isotropic diffuse gamma-ray background (IGRB),
and includes the γ-ray emission from faint unresolved sources and any residual
galactic emission which is approximately isotropic.

Traditionally, the analysis is based on so-called single-source models, as de-
scribed in Section 7.4 of [7]. Generally speaking, the application of these models
requires the whole sky map to be split into small regions. The presence of a pos-
sible new source is assessed on a pixel-by-pixel basis using significance tests. An
illustrative example is given in [11], who employ Poisson regression to model the
number of photons at each pixel. Further treatments from both, the frequentist and
the Bayesian viewpoints, can be found in [6, 10, 13, 14]. Variable-source-number
models address the problem from a more global perspective, as they simultaneously
estimate the number of sources in the whole map without the need to separate the
latter into smaller cells and to work on single pixels [7, Section 7.3]. A recent pro-
posal, which analyses X-ray count maps according to this approach, is made in [8].

Here we propose a Bayesian mixture model with a finite, but unknown, num-
ber of components for the known and as yet unidentified extra-galactic high-energy
sources plus an additional parametric component to represent the diffuse γ-ray back-
ground. The directions of the high-energy photons collected by the Fermi LAT over
a period of approximately 7.5 years is then used to estimate simultaneously the
number of sources in the map, their coordinates and their intensities. As in [8], our
algorithm iteratively identifies the sources and pulls the individual photons into the
corresponding clusters. It furthermore automatically selects the number of compo-
nents of the mixture. However, [8] consider only the isotropic diffuse X-ray back-

1 https://fermi.gsfc.nasa.gov/
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Fig. 1 Whole sky map at γ-ray wavelengths and energies larger than 1 GeV based on data accumu-
lated by the LAT over a period of five years of operation (Image Credit: NASA/DOE/Fermi LAT
Collaboration). The region framed in white represents the area analyzed in this paper.

ground, which they model assuming a uniform distribution over the entire map. This
assumption is too restrictive if the targets are γ-ray sources, as we cannot neglect the
huge contamination due to galactic interstellar emission, but have to suitably model
it.

The remainder of the paper is organised as follows. Section 2 presents the Fermi
LAT data which motivated this contribution. Our proposal of a Bayesian finite mix-
ture model is presented in Section 3 and is fit to the Fermi LAT data in Section 4.
In this latter section we furthermore discuss the capability of our model to skim off
the signal of the sources from the background radiation. The paper closes with the
concluding remarks of Section 5.

2 The Fermi LAT data

The data collected by the Fermi Large Area Telescope (LAT) contribute uniquely
to the study of the most extreme phenomena in our Universe such as active galactic
nuclei, supernova remnants and pulsar wind nebula. Figure 1 represents the Moll-
weide projection in galactic coordinates of the entire γ-ray sky at energies larger than
1 GeV and is based on the data collected by NASA’s Fermi LAT over a five years
period.2 The brighter the grey tone, the larger is the intensity of the γ-ray source.
The brilliant horizontal stripe which crosses the middle part of the figure to a huge
extent conveys the high-energy photon emission of our Milky Way, at whose center
we assume a supermassive black hole. The isotropic diffuse γ-ray background is

2 http://fermi.gsfc.nasa.gov/ssc/

http://fermi.gsfc.nasa.gov/ssc/
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Fig. 2 Nonparametric kernel
estimate of the photon den-
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γ-ray count maps accumu-
lated by the Fermi LAT over
a 7.5 years period. The map
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much less evident, while we can clearly identify extra-galactic point and small-area
γ-ray emitting sources.

The dataset used in this paper is the collection of photons, generated by different
astrophysical events and collected by the LAT over a period of around 7.5 years of
observation, whose energy exceeds 10 GeV. The aim of our analysis is to discrimi-
nate the signal of extra-galactic γ-ray emitting sources from the various background
phenomena, and to reconstruct their direction in the sky map. In particular, for the
reasons we will shortly give below, we restrict our attention to a subregion of the sky
whose galactic longitude and latitude lie in the intervals [180◦,10◦] and [10◦,90◦],
respectively.3 This region is framed in white in Figure 1 and covers broadly the
fourth quadrant of the map. In all, 51,000 observations fall in this area. Figure 2
plots the smoothed nonparametric estimate of the photon density distribution. The
various spikes identify known and as yet unrevealed high-energy emitting sources.

We decided to test and fine tune our algorithm in a region of the sky map
where the diffuse γ-ray background is less prevalent, and possibly dominated by the
isotropic diffuse gamma-ray background (IGRB) component. Hence, we restricted
our analysis to latitudes above 10◦ to limit the influence of the galactic interstellar
emission (GIE). To further reduce and, at least partially remove, the background
component radiating from the Galaxy center and from the so-called Fermi Bubbles
[2], that is, from the two extended regions of excess γ-ray emission located near
the galactic center, we only consider longitudes that vary from 180◦ to 10◦. As is
evident from Figure 2, the IGRB is still present though less pronounced as com-
pared to Figure 1. In Section 3.1 we will discuss how to suitably model the diffuse
background component. The third catalogue of hard Fermi LAT sources (3FHL, for
short) reports 288 high-energy γ-ray emitting sources for the outlined region [4].

3 Here we follow the convention adopted in astronomical whole sky maps to define the longitude
on the left at 180◦ and at −180◦ on the right.
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3 Bayesian source detection

We adopted a flexible Bayesian modelling approach which allowed us to detect
catalogued and acknowledged γ-ray sources plus possible new candidates in the sky
region of Figure 2. As in [8] we assembled a finite mixture model whose components
were automatically identified using the available data and Bayesian computation.
That is, in one go we determined both, the number of sources and their directions in
space. The main difference to [8] is the presence of the rather intense background
radiation which spreads over the entire map and represents a relevant component
of our model. Section 3.1 describes the statistical model for the Fermi LAT data;
Section 3.2 outlines the fitting procedure.

3.1 Statistical model

Let xi ∈ [180,10] and yi ∈ [10,90] represent the galactic longitude and latitude, re-
spectively, of the n photons detected in the area of the extra-galactic space con-
sidered by our analysis. We start off by reconstructing the directions of the γ-ray
sources by modelling how the photons they emit scatter around their source.

Assume that photon i was generated by source j whose galactic coordinates are
µ j = (µ jx,µ jy), j = 1, . . . ,K. Here K represents the number of sources present in
the map. The direction of photon i can then be modeled as

(Xi,Yi) | µ j ∼ PSF(µ j), i = 1, . . . ,n, (1)

where PSF(·) represents King’s established Point Spread Function [9]. This func-
tion suitably describes how photons cluster around their emitting source. The corre-
sponding density is

f (xi,yi | µ) =
C

[1+{d(xi,yi | µ)/d0}2]η0
, (2)

where
d(xi,yi | µ) =

√
(xi−µ jx)2 +(yi−µ jy)2/(1− ε0)2.

Here d0 = 0.6 is the core radius measured in arcsec, η0 = 1.5 is the power-law slope
and ε0 = 0.00574 represents the ellipticity; the normalizing constant C is usually
determined numerically. The resulting density essentially characterizes a bivariate
Student t distribution. The values of the parameters d0, η0 and ε0 are chosen as in [8].
Actually, the Fermi LAT collaboration uses an extended version of King’s density
[1]. In particular, they assume that photons generated from the same source are not
identically distributed, but each is characterized by its own dispersion which, in turn,
depends on the energy level of the photon. However, for the energy range considered
in this paper (>10 GeV), this variation is negligible and model (1) represents a valid
approximation.
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Fig. 3 Distribution of longitudes (left) and of latitudes (right) of the high-energy (>10 GeV) pho-
tons detected by the Fermi LAT during a 7.5 years period of observation.

A different model needs be specified in case the observed photon was not emitted
from a specific source but is part of the background radiation. The authors of [8]
assume a uniform distribution over the entire map to model the uniquely present
isotropic component. We already discussed in Section 2 that this assumption is too
restrictive for γ-ray counts. Model (1) is hence extended by considering a further
bi-dimensional component

(Xi,Yi) | σb ∼ Uni f (180,10)× tExp(σb). (3)

The longitude of a photon stemming from the background is here modelled accord-
ing to a uniform distribution, while its latitude follows a translated exponential dis-
tribution with scale parameter σb, that is, an exponential distribution whose support
was translated to the interval [10,+∞). This model well represents the marginal
distributions of longitude and latitude for the photons detected by the Fermi LAT
shown in Figure 3. Suitable values will be chosen for σb so as to guarantee that the
fitting procedure outlined in the following section generates admissible values for
Yi.

In practice, we have no information whether the photon was emitted from a
source or belongs to the background, nor do we know the number of emitting
sources and their directions in space. This situation is well represented by a finite
mixture model which assumes a fixed, though unknown, number of components
to represent the different sources plus an additional component to model the back-
ground radiation. This translates into the following marginal model

f (xi,yi | µ,σb,ω) = ω0 gb(xi,yi | σb)+
K

∑
j=1

ω j f (xi,yi | µ j), (4)

where gb(· | ·) represents the distribution of photons from the background as given in
(3), while f (· | ·) models the signal of a specific source according to (1). The vector
ω = (ω0,ω1, . . . ,ωK) contains the mixing proportions ω j which can be viewed as
the intensity ω0 of the background and of each source, that is, ωi, i = 1, . . . ,K.
Our model is hence characterised by a set θK = {µ,σb,ω} of 3K + 2 parameters.
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Recall, furthermore, that the number K of undetected sources is itself supposed to
be unknown and needs be estimated. So, inference will be made on (θK ,K).

To write down the likelihood function of the statistical model defined at (4), we
augment our data as originally proposed in [12] and also advocated in [8]. That is,
for each observation i = 1, . . . ,n, we introduce the latent group variable Zi which
assumes values in the discrete set {0,1, . . . ,K} with probabilities given by the com-
ponents of ω . Though actually never observed, this variable conveys useful infor-
mation as it indicates the source number for photon i. The full data likelihood is
then

L(θK ,K | x,y,z) = p(x,y | z;θK ,K)p(z | θK ,K)

=

[
∏

i:zi=0
gb(xi,yi | σb)

K

∏
j=1

{
∏

i:zi= j
f (xi,yi | µ j)

}]
K

∏
j=0

ω
n j
j ,

(5)

where x = (x1, . . . ,xn), y = (y1, . . . ,ym) and z = (z1, . . . ,zn) are the vectors of ob-
served and latent data, and n j = ∑

n
i=1 I(zi = j). As required by Bayes we complete

our model definition by eliciting the a priori distributions for the unknown model
parameters θK and K. Since there is no prior belief on the direction of the sources,
a bivariate uniform distribution is used,

µ jx ∼ Uni f (180,10) and µ jy ∼ Uni f (10,90),

while the conjugate gamma distribution

π(σb | ν ,β ) =
β ν

Γ (ν)
σ

ν−1
b e−βσb ,

with ν = 0.02 and β = 1, is chosen for the scale parameter σb. We, furthermore, as-
sume that the unknown number of components K distributes as a truncated Poisson

K ∼ tPoi(κ | κmin,κmax),

where κ = 288 equals the number of catalogued sources and [κmin,κmax] = [250,400].
Lastly, conditionally on K, we let ω follow a Dirichlet distribution of size K + 1
where the K + 1 parameters are all set to α = 1. This corresponds to assigning a
priori equal probability to the K putative sources, or differently stated, to assuming
that they have the same intensity.

Applying Bayes’ theorem, the posterior joint distribution of the unknown model
parameters (θK ,K), conditionally on the latent group variables z, results in

π(θK ,K | x,y,z) ∝ L(θK ,K | x,y,z)π(θK ,K). (6)

This is the function we will use to estimate the parameters. Note that to obtain the
posterior distribution of θK and K given only the observed data (x,y), we would have
to sum up (6) over all possible combinations of the latent variables z = (z1, . . . ,zn).
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Algorithm 1 Reversible jump MCMC – split move
1: procedure SPLIT j INTO j1 , j2 WITH PROBABILITY bk (from k to k+1 sources)
2: bk← 0.25, dk+1← 0.25
3: if k = κmin then bk← 0.5
4: u1,u2,u3 ∼ Beta(2,2), v∼Uni f (0,1)
5: ω j1 ← u1ω j and ω j2 ← (1−u1)ω j

6: µ j1x← µ jx−u2
√

ω j2/ω j1 and µ j1y← µ jy−u3
√

ω j2/ω j1
7: µ j2x← µ jx +u2

√
ω j1/ω j2 and µ j2y← µ jy +u3

√
ω j1/ω j2

8: generate a new vector of labels z∗ using k+1 sources
9: pk+1← π(θk+1,k+1 | x,y,z∗) and pk← π(θk,k | x,y,z)

10: g← b2,2(u1)b2,2(u2)b2,2(u3), where b2,2(.) is the Beta(2,2) density function
11: J← ω j/[u1(1−u1)]
12: qk← bk/k and qk+1← dk+1/(k+1)
13: if argmin j || µ j1 ,µ j ||= j2 and argmin j || µ j2 ,µ j ||= j1 then
14: qk+1← 2qk+1

15: A← (pk+1qk+1J)/(pkqkg)
16: if v≤min(1,A) then accept split

3.2 Model fitting

We by-passed numerical integration of the posterior kernel (6), as would have been
required to compute the normalising constant, using Monte Carlo simulation. How-
ever, a further aspect considerably challenges the derivation of the posterior distribu-
tion of the model parameters: the dimension of θK is itself unknown as it depends on
the number of sources K. We implemented a reversible jump Markov chain Monte
Carlo algorithm, as proposed in [5], thanks to which we were able to both, recon-
struct the posterior distributions of the unknown components of the model and to
determine how many there are.

Here we present our algorithm. It consists of a two-stage procedure which iterates
two steps: given K, we first update the latent group variables Z and generate values
from the posterior distribution of θK ; in the second step we redetermine the number
of components K. Having written z(t−1), θ

(t−1)
K and K(t−1) for the values generated

at iteration (t−1), the two steps can be summarised as follows:

1. generate (zt ,θ t
K) from the full conditional π(z,θK | K(t−1);x,y);

2. redefine the dimension of the parameter space, that is, specify a new order of
the mixture by generating Kt from π(K | θ t

K ,zt ;x,y).

An alternative is to have the algorithm iterate Step 1 a given number of times, say 5
to 10, before proposing the trans-dimensional jump outlined at Step 2. Let us now
have a closer look at the two steps.
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Algorithm 2 Reversible Jump MCMC – birth move
1: procedure GENERATE j∗ WITH PROBABILITY bK (from k to k+1 sources)
2: bk← 0.25, dk+1← 0.25
3: if k = κmin then bk← 0.5
4: µ j∗x ∼Uni f (1−,180), µ j∗y ∼Uni f (10,90) and ω j∗ ∼ Beta(1,k+1)
5: rescale the weights using ω j ← ω j(1−ω j∗ )
6: generate a new vector of labels z∗ using k+1 sources
7: pk+1← π(θk+1,k+1 | x,y,z∗) and pk← π(θk,k | x,y,z)
8: g← π(µ j∗x)π(µ j∗y)b1,k+1(ω j∗ )

9: J← (1−ω j∗ )
k+1

10: qk← bk/k and qk+1← dk+1/(k+1)
11: A← (pk+1qk+1J)/(pkqkg)
12: if v≤min(1,A) then accept birth

Step 1

This step implements a Gibbs sampling scheme to update the model parameters θK
and the latent variables Z for a fixed number K of components. Let, as above, the
superscripts (t − 1) and t identify the values generated at iterations (t − 1) and t,
respectively, and define as k the number of sources detected at iteration (t−1), that
is, K(t−1) = k. Step 1 of the algorithm develops as follows.

1. For i= 1, . . . ,n, generate zt
i from a multinomial distribution with probabilities

p(zt
i = 0 | θ (t−1)

K ,K(t−1);x,y) ∝ ω
(t−1)
0 gb(xi,yi | σ (t−1)

b )

p(zt
i = j | θ (t−1)

K ,K(t−1);x,y) ∝ ω
(t−1)
j f (xi,yi | µ(t−1)

j ), j 6= 0.

2. Generate a new vector of mixing probabilities ω t from the Dirichlet distri-
bution Dir(nt

0 +α, . . . ,nt
k +α), where n j = ∑

n
i=1 I(zt

i = j), j = 1, . . . ,k.

3. Generate µ t
j, j = 1, . . . ,k, using a Metropolis-Hastings step applied to the full

conditional distribution

π(µ | σ (t−1)
b ,K(t−1);x,y,zt).

Use as proposal distribution the bivariate normal distribution centered at
µ
(t−1)
j and with covariance matrix the identity matrix rescaled by 0.52 so

as to guarantee a satisfactory overlapping with King’s PSF defined in (1).

4. Generate σ t
b from the gamma distribution with scale parameter β + nt

0 and
shape parameter ν +∑

n
i=1 I(zi = 0)yi.

Further examples can be found in [12] and [15].
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Fig. 4 Summary and diagnostic plots for the fitted model. Left: posterior distribution of K, the
putative number of sources present in the analysed sky region. The modal value K = 331 is vis-
ited 1,892 times out of 20,000. Right: trace plot of the corresponding 1,892 σb values. The solid
horizontal line at the center represents the posterior mode; the two dashed lines delimit the 0.95%
highest posterior density interval.

Step 2

The second step implements the trans-dimensional jump which increases the num-
ber of components of the mixture or decreases it by one. The choice is made ran-
domly with equal probabilities. New components are added to the model through
either a split or a birth move; a component is removed from the model using a
combining or death move [12]. These four steps allow the algorithm to explore the
entire map and to search for new sources without affecting the distribution of the
background radiation (3). A main difference to [12] is that we allow the algorithm
to remove a component from the model using the death move also when it is not
empty. This corresponds to delete clusters whose content of information does not
qualify them as candidate sources.

The code boxes of Algorithms 1 and 2 list the pseudo code for the split and the
birth moves. Note that they also provide the pseudo code for the combining and the
death moves we use to down size by one the number of components of the mixture.
So, for instance, to evaluate whether to reduce the number of sources from K to
K− 1 by combining two of them, we interchange K− 1 and K in the split move
outlined in Algorithm 1. The acceptance probability is then min{1,1/A} instead of
min{1,A}.

4 Modelling the Fermi LAT data

We applied model (4) to the Fermi LAT data described in Section 2 and shown in
Figure 2. The corresponding sky region is framed in white in Figure 1 and cov-
ers broadly one fourth of the area observed by the LAT. Recall, furthermore, that
the third catalogue of hard Fermi LAT sources lists 288 high-energy γ-ray emitting
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sources for this sector [4]. The 3FHL catalogue will furthermore be used to bench-
mark the detection capability of our model. We run our reversible jump MCMC
algorithm, as described in the previous section, for a total of 20,000 iterations each.
The number and directions of the sources present in the 3FHL catalogue were used
as starting points for K and µ , respectively. This way, we acknowledge all the a pri-
ori available information. The starting points for the mixture weights ω and of the
scale parameter σb, which characterises the distribution of the background radiation,
were randomly drawn from their a priori distributions.

The left panel of Figure 4 shows the posterior distribution of K, the supposed
number of high-energy γ-ray sources present in the analysed region. The posterior
mode is K = 331, a value which was visited 1,892 times, that is, by around 9.5%
iterations. We compared the posterior modes of (µ jx,µ jy), j = 1, . . . ,K, for these
331 putative sources with those present in the 3FHL catalogue: appreciably, our
algorithm confirmed 255 of the acknowledged ones. The nature of the 76 remain-
ing detections needed be investigated. We will come back to this point shortly. The
right panel of Figure 4 traces the 1,892 values generated for σb, and shows a good
mixing property of the chain. The posterior mode is 0.0287, slightly higher than
what expected on average a priori, with 95% highest posterior density (HPD) inter-
val [0.0284,0.0289]. These values are also shown in Figure 4 as solid and dashed
horizontal lines, respectively. Most interestingly, however, is the Bayesian estimate
of ω0 = 0.9387 with 95% HPD interval [0.9364,0.9407]. Remember that this value
quantifies the intensity of the diffuse background radiation: it results that around
94% of the detected photons originated from it. Differently stated, only 6% of the
photons were emitted from around 300 sources whose median intensity is 0.000137.

To further discriminate whether the 76 newly identified clusters correspond to
real γ-ray emitting sources, we heuristically used the a posteriori available informa-
tion on their intensities. Figure 5 shows the asymmetric boxplots of the posterior
distributions of the 331 mixing proportions ωi, i = 1, . . . ,331. The white boxes cor-
respond to the 255 already known sources, while the new candidates are drawn in
black. Our ad hoc procedure defines the median of the posterior modes for the 255
catalogued sources as the threshold intensity above which we may expect a γ-ray
emitting source. We hence qualified the 33 clusters whose posterior modes for ωi
satisfy this criterion as possible undetected sources. Their coordinates are currently
being tested as prescribed by the Fermi LAT collaboration [4].

5 Conclusions

The results obtained for our model when applied to the Fermi LAT data of the lim-
ited sky region described in Section 2 are rather encouraging. We were able to detect
255 already known sources and to pinpoint possible new candidates. Of the 288 cat-
alogued sources 33 were missed because their signal most likely isn’t strong enough
to be captured by our model but gets confounded with the prominent and irregularly
shaped background radiation which pervades the considered area even after the ini-
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tial skimming. The opposite holds for the 43 initially identified and successively de-
classified sources which probably correspond to small areas of excess background
intensity. This aspect represents one of the improvements of our model we are cur-
rently working on. The proposed parametric formulation for the diffuse background
radiation is, in fact, only partially efficient. Using further data provided by the Fermi
LAT collaboration we are currently developing a more precise background model.

Further future developments focus on both, theoretical and computational as-
pects. A first aspect regards the distribution used to describe how photons scatter
around their emitting source. King’s PSF used as approximation in (2) is currently
being replaced by the point spread function proposed in [1]. On the computational
side, we are replacing the Metropolis-Hastings step used to generate the values of
µ with a more efficient Gibbs sampler. Last but not least, the heuristic approach
adopted at the end of the previous section to qualify the newly detected sources
needs be replaced by a formal procedure which accounts also for the available, here
not used, information on the energy level of each detected photon.
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