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ABSTRACT

Grasslands cover a large portion of the terrestrial ecosystems, and are vital for biodiversity conservation, envi-
ronmental protection and livestock husbandry. However, grasslands are degraded due to unreasonable man-
agement worldwide, i.e., soil erosion indirectly due to the damage of overgrazing on vegetation coverage and soil
texture. An in-depth investigation is necessary to quantify soil erosion in alpine pastures, in order to manage
grasslands more sustainably. In this work, we collected freely available satellite images and carried out intensive
field surveys for the whole Autonomous Province of Trento (Northeastern Italian Alps) in 2016. The area (and
volume) of soil erosions were then estimated and shown in maps. The average of the depths of soil erosion
measured in field was used as a reference for estimating soil erosion of the entire study area. High-resolution
DEMs difference in soil surface conditions was also computed in two representative areas between pre- and
post-degradation to estimate the volume and the average depth of eroded soils. The degradation of soil in the
study areas has been estimated in 144063 m? and an estimated volume of 33610 + 1800 m>. Results indicate that
our procedure can serve as a low-cost approach for a rapid estimation of soil erosion in mountain areas. Mapping
soil erosion can improve the sustainability of grazing management system and reduce the risk of pastureland

degradation at large spatial scales.

1. Introduction

Grazing lands including pasturelands, rangelands, natural grasslands,
shrublands, savannas, and steppes are widespread worldwide (FAO,
2014; Suttie et al., 2005); they cover 33.4 million km? of the Earth and
accounts for 25% of the emerged lands surface (Excluding Antarctica and
Greenland) (FAO, 2014). For example, extensive rangelands and pas-
turelands are distributed from Mongolia and Himalaya-Kush highlands to
Western Europe in Euro-Asia (Suttie et al., 2005; Wu et al., 2014). In the
Americas, pasturelands are widespread from the North to the South, with
mentions of the Argentinian Pampas, Great Plains, and the Llanos and
Cerrados in Patagonia. In the Mediterranean basin, pasturelands are
distributed in both arid-semiarid ecosystems like maquis scrubland, and
in humid ecosystems like Alps (Suttie et al., 2005). Rangelands are
globally distributed and are essential for animal husbandry and biodi-
versity conservation. The economy and wellbeing of many people,
mainly in rural areas, depends on the production of goods and services
derived from animal husbandry, such as meat, milk and processed
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products (Mack et al., 2013; Papanastasis et al., 2017).

However, grazing lands are degrading to some extent due to the
ongoing climate change and intensifying human disturbance (Li et al.,
2019; Montanarella, 2007; Sivakumar and Stefanski, 2007; Wu et al.,
2017). The increase in the number of livestock combined with poor
grazing management may lead to a general degradation of pasturelands.
At a global scale, the population of the main species of domestic animals
has increased over the last decades. For example, buffaloes have risen
from 89 million in 1961 to 199 million at the end of 2016, cattle from
940 million to 1474 million, goats from 348 million to 1002 million, and
sheep from 994 million to 1117 million (FAO, 2016). Moreover, the
number of livestock animals is expected to grow in the near future,
mainly due to the increasing demand of animal-derived products, mainly
driven by human population growth, which is projected to reach 8.5
billion people by 2030 (United Nations, 2015). Thus, overgrazing be-
comes a critical driver for grazing-land degradation in both vegetation
and soils (Ibanez et al., 2007; Salvati and Carlucci, 2015; van Ouden-
hoven et al., 2015; Zucca et al., 2010).
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Fig. 1. Examples of areas affected by trampling-induced erosion detected during field surveys along the whole Province. a) Mountain Community of Primiero, b)
Mountain Community of Val di Non, ¢) Mountain Community of Alta Valsugana and Bersntol, d) Mountain Community of Val di Sole, e & f) Mountain Community

of Giudicarie.

Soil erosion is defined as the decline of soil quality and especially the
weakening of soil structure that can lead to a degenerative trend. Soil
erosion can be summarized in three steps: i) soil particles detachment, ii)
transport and iii) deposition of soil (Blanco-Canqui et al., 2016).

Such a natural process is mainly caused by the action of various
erosive agents like water, ice (or glaciers), wind, snow, plants, animals
and humans. So according to these factors, we can divide erosion
respectively into water erosion, aeolian or wind erosion, snow erosion,
phytogenic erosion, zoogenic erosion and anthropogenic erosion
(Zachar, 2011). With regards to zoogenic erosion, several animal species
can concur on soil erosion with a large variability of activity. For
example, we can have several typologies of erosion induced by grazing
animals like deer (Kumbasli et al., 2010), tunnelling activities of
mole-rats (Zuri and Terkel, 1997), exposure of soil particle by earth-
worms (Hazelhoff et al., 1981), erosion in riverbanks by Coypu (Myo-
castor coypus) (Sofia et al., 2017), and soil degradation due to wild boar
(Sus scrofa) activity (Mauri et al., 2019).

This paper focuses on the effects of integrative erosion, which is the
combined erosion caused by two factors, animals (Zoogenic erosion) and
humans (Anthropogenic erosion).

More in details, we introduce the term Anthropo-zoogenic erosion
(see also Apollo et al., 2018), which is (in this case), the adverse effect on
soil due to trampling of livestock introduced by humans on alpine areas.

The zoogenic erosion (in this case caused by trampling) is composed
of two complementary effects. The first one is the soil compaction caused
by animals weight distributed vertically through the hoof area (Kumbasli
et al., 2010). This determines a reduced water infiltration capacity and
thus an increase in potentially erosive overland flow. The second effect is
a soil shear caused by animal movements, during which tangential stress
is applied when a hoof is lifted for a subsequent step (Guretzky et al.,
2005). This causes a detachment of soil particles that can be spatially
redistributed by other erosive factors (see above). Generally, eroded
areas caused by grazing animals are linear features along the common
pathways (Fig. 1a) or following the hydrologic lines in “rill” and “gullies”
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Fig. 2. Map of the Autonomous Province of Trento with trampling-induced eroded areas identified using freely available images services (Google Maps and Bing
Maps). In yellow the administrative border of the Autonomous Province of Trento, and white, the administrative borders of the Mountain Communities.

morphologies (Fig. 1b) (Evans, 1997). The gully erosion due to the
trampling of livestock animals has been found to be one of the largest
sediment contributors in grazing areas (Wilkinson et al., 2018). In
addition, soil erosion induced by livestock overgrazing can also result in
losses of vegetation cover, productivity and biodiversity, and in soil
compaction and desertification (Ibanez et al., 2007; Oztas et al., 2003;
Thornes, 2007; Zhao et al., 2005). Consequently, overgrazing may lead to
a reduction of grassland productivity that can reflect on the number of
animals that can be feed. This, of course, will affect the availability of
animal-derived products and thereby affects human welfare and liveli-
hood (Mather, 1992). Therefore, it is necessary to improve management
practices to prevent pastureland degradation (Chen et al., 2014;

Table 1
Description of the two areas analyzed by Structure from Motion, located in the
"Rolle Pass" in the Autonomous Province of Trento (Northeastern Italian Alps).

Site Location Elevation (m)  Total surface Eroded surface
(m?) (m?)
Site 1 46.29765 N 1950.8 558.9 211.81
11.780024 E
Site2  46.298765N  1913.57 185.91 156.8

11.776042 E

Department for Environment, 2012; Papanastasis, 2009; Stanchi et al.,
2012).

Soil erosion is more frequent in grasslands with higher stocking rates
(expressed in Livestock Units per hectare land surface), along obligate
pathways and near water sources (Hendricks et al., 2005; Zhao et al.,
2007). Soil degradation, especially in arid and semi-arid regions can
increase the risk of desertification in the rangelands (Ibanez et al., 2007).
A global study indicated that overgrazing could account for 35.9% of soil
degradation (Oldeman et al., 1990). In Australia, Mongolia and China,
overgrazing affects between 49.2% and 80.2% of all degradation phe-
nomena (Evans, 1998; Oldeman et al., 1991). In Europe, overgrazing
degradation represents 22.7% of all soil degradation processes (Warren
and Khogali, 1992).

Indeed, worldwide, trampling-induced erosion is a common issue in
pastureland, but the information about the eroded volume is still missing
or it is available only at a small scale (fenced areas or limited grazing
areas). This requires quickly identifying and clearly mapping analyses of
soil erosion at both small and large scales. Many studies have been
conducted to assess the degradation occurring in grasslands using
different methods. Grassland degradation has been assessed using GIS
data, and the Universal Soil Loss Equation and the Revised Universal Soil
Loss Equation (Ficut et al., 2017; Ligonja and Shrestha, 2015). The
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Fig. 3. Example of a mapping operation of an eroded area through the use of freely available orthophoto service (Bing Maps). a) non mapped land, b) mapped

eroded area.

Table 2a

Results of the identification of grazing-induced areas in the Autonomous Prov-
ince of Trento. For each Mountain Community, the number of eroded areas and
the extension (m?) are reported.

Mountain community number Extension (mz)
Val di Fassa 54 12037.7
Alta Valsugana and Bersntol 17 10121.9
Alto Garda and Ledro 11 3051.8
Val di Non 16 7091.1
Val di Sole 42 24572.1
Vallagarina 17 19874.8
Valle dei Laghi 1 1498.5
Val di Cembra 0 0
Giudicarie 33 26390
Primiero 34 24435.6
Val di Fiemme 16 4144.9
Paganella 0 0
Valsugana and Tesino 24 5900.8
Altipiani Cimbri 6 2408.3
Rotaliana-Konigsberg 0 0
Territorio dell’Adige 5 2536.2
Total 276 144063.7

Table 2b

Summary of the collected depth values of trampling-induced erosion. The
average value of 23.33 + 1.25 cm has been used as a reference value for the
estimation of volume for the whole Province.

Collected depth (cm)

Mean 23.33
St. Error 0.58
St. Dev 7.55
Min 3
Max 63
95% Interval 1.25

diffusion of remote sensing technologies allows increasing the avail-
ability of high-resolution topographic data from different platforms (e.g.
satellites, manned and unmanned airborne vehicles), giving new op-
portunities of land analysis and understanding of physical processes
(Tarolli, 2014). In this study, we used freely available satellite images
and Structure from Motion (SfM) photogrammetric technique (Eltner
et al., 2016), combined with an onsite survey, to map and analyze soil
erosion caused by direct trampling and subsequent erosional processes in

pasturelands of North-eastern Italian Alps. In our discussion, we will
contribute to filling the existing gap in the literature about the methods
for the estimation and quantification of soil erosion induced by trampling
(and related processes) during the grazing season.

2. Materials and methods
2.1. Study area

This study was carried out in the Autonomous Province of Trento
(Fig. 2), which locates in the North-eastern Italian Alps and covers a
surface of 6207 kmz, mostly in mountainous areas (70% over 1000 m asl)
and mostly covered by forests (50%). The entire Province is divided into
16 administrative macro-areas called Mountain Communities (Italian:
Comunita di Valle), and are composed of a union of municipalities of the
same geographic area (valley). In the figures included in the present
paper, the border of the Mountain Communities are highlighted with the
layer called “Administrative border”.

In 2016, the human population of the Province was 537416 located in
177 municipalities, with a population density of 86.37 people per km?
(ISTAT, 2016). In 2011 the livestock production was 127.4 million Euro
(Statistic Service of Autonomous Province of Trento, 2014). Grazing
practices at high altitude are typically seasonal (May—June to September)
and are yearly supported by averagely 300 temporary alpine summer
farm (Dipartimento Agricoltura, 2013). During the summer of 2016, the
number of grazing animals in the Autonomous Province of Trento was
19048 over a pastureland surface of 594 km? (Dipartimento Agricoltura,
2013; ISTAT, 2010). In the Province, the transhumance of dairy cows
onto highland pastures during summer has a long tradition, and it is
characterized by a wide variety of milk-derived products. This practice in
the Province of Trento is also essential for tourism attraction, thanks to
both landscape peculiarity and eno-gastronomic offer. For example,
during the summer of 2015, 69% of the tourists declared at least one visit
to an alpine summer farms where animal grazing is practised (Provincia
Autonoma di Trento, 2015). Due to its importance, grasslands need to be
managed more sustainably to avoid soil erosions caused by, for example,
inappropriate grazing management that could lead to a loss of landscape
perceptions and grass productivity.

For the photogrammetric analysis used to test the suitability of the
proposed method in the current study, two areas located on the “Rolle
Pass” were selected (Table 1). These two areas were characterized by a
diffuse situation of degradation, mainly induced by grazing; this was
particularly true in Site 2.
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Fig. 4. Flowchart of the proposed procedure to estimate erosion volume, including also SfM technique application.

a) b)

Fig. 5. Examples of the 0.03 m DEM obtained by SfM technique: a) and b) DEM and 3D model of Site 1; ¢) and d) DEM and 3D model of Site 2, respectively.

Table 3

Summary of point cloud errors on X, Y, Z axes, RMSE and SDE (Standard Devi-
ation of the Error) for both DEMs. Then SDE has been used for minLOD esti-
mation through the application of the equation of Wheaton et al. (2010).

Site 1 Site 2
X err. (+m) 0.0129 0.0135
Y err. (+m) 0.0146 0.0149
Z err. (+m) 0.0167 0.0265
RMSE (m) 0.0262 0.0333
SDE (m) 0.0268 0.0520

Different sites were visited in the whole Province and different situ-
ations of erosion were recorded (Fig. 1).

2.2. Trampling-induced erosion mapping and land survey

The first step of this research consisted of identifying and mapping the
eroded areas caused by direct trampling and the subsequent combined

action of all the eroded factors mentioned in the introduction (Chapter
1). The detection was completed with freely available satellite images
(GeoEye, WorldView, Landsat) in web portal (e.g. Google Maps and Bing
Maps), which allowed the identification and accurate mapping (in GIS
environment) of eroded areas (Fig. 3).

Subsequently, soil erosion depth was measured during an intensive
field survey campaign carried out in summer of 2016. Nearly 1500
measures were collected using a simple meter stick. The measuring
methodology is simple and is based on multiple depth measurements
along transects at a variable distance in order to represent the depth
variability of the surveyed area (see also Gudino-Elizondo et al., 2018;
Mauri et al., 2019; Salesa et al., 2019 for further details and applications).
In order to be more accurate, a metal bar helped to keep the meterstick
perpendicular and also to represent the pre-erosion level (when placed
across non-eroded spot) of the investigated surface.

These measures were used as the basis to provide a reference value of
the mean erosion depth for the entire region. With this value and areas
mapped through satellite, we estimated the potential volume (in m®) of
eroded soil for each area.
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Fig. 6. a) DoD of Site 1, b) DoD of Site 2. For both DoDs erosion is highlighted with a red gradient.

The reference interval for the Autonomous Province of Trento, esti-
mating a 95% confidence interval (CI) with “RStudio” software, was set
at 23.33 £+ 1.25 cm (mean +/- CI) (Table 2b). The eroded volume was
then computed by multiplying the total eroded surface (Table 2a) and the
reference depth of erosion (Table 2b).

Such methodology was then tested in two study areas, through SfM
photogrammetric technique (now a well-established methodology for the
analysis of surface morphology; Eltner et al., 2016; Pijl et al., 2019; Sofia
et al., 2017). According to this technique, two Digital Elevation Models

(DEMs) were created and then processed to estimate the volume of
eroded soil. The flowchart of the proposed procedure is depicted in Fig. 4.

2.3. Structure from motion and DEM of difference

In the two areas selected for the application of SfM, several photo-
graphs were taken with a standalone digital camera, a Canon G16 with
12 MP set at a focal length of 6 mm. Firstly, 18 targets at “Site 1" and 28
targets at “Site 2” were distributed to geo-reference the digital models.
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Table 4
Results of DoD and comparison of on-site data.

Average 95% Confidence ~ Volume 95% Confidence
depth Interval m>) Interval
(cm) (cm) (m%)
On-Site data
Site 22.59 + 116 46.16 +  4.63
1
Site 24.58 + 1.64 46.46 + 3.03
2
SfM (DoD)
Site 20.00 +  4.00 4213 + 837
1
Site 28.00 + 7.00 46.83 + 1151
2
Table 5

Summary of volume estimation for each Mountain Community in the Autono-
mous Province of Trento. Volume data expressed as: value +/- CIL.

Eroded areas

Mountain community Extension (m?) Volume (m®)

Val di Fassa 12037.7 2808.4 + 150.4
Alta Valsugana and Bersntol 10121.9 2361.4 + 126.5
Alto Garda and Ledro 3051.8 712.0 + 38.1
Val di Non 7091.1 1654.4 + 88.6
Val di Sole 24572.1 5732.7 + 307.1
Vallagarina 19874.8 4636.8 + 248.4
Valle dei Laghi 1498.5 349.6 + 18.7
Val di Cembra - -

Giudicarie 26390 6156.8 & 329.9
Primiero 24435.6 5700.8 + 305.4
Val di Fiemme 4144.9 967.0 + 51.8
Paganella - -

Valsugana and Tesino 5900.8 1376.7 £ 73.7
Altipiani Cimbri 2408.3 561.9 + 30.1
Rotaliana-Konigsberg - -

Territorio dell’Adige 2536.2 591.7 + 31.7
Total 144063.7 33610.1 + 1800

Secondly, each target position was measured with a Topcon Hiper V dual-
constellation (GLONASS & GPS) used in differential mode. Once every
position of each target for both areas was collected, SfM technique was
applied to obtain a 3D referenced point cloud of the two eroded areas.
The photographic dataset acquired was processed with the commercial
software Agisoft Photoscan®. The workflow is mostly automatic and
consisted of the following steps: image import, image alignment, geore-
ferencing, optimization of image alignment, building geometry and
export of the 3D georeferenced point cloud. Finally, such point cloud,
cleaned from vegetation using Cloud Compare® software, was interpo-
lated by “natural neighbours™ algorithm (Sibson, 1981) for the genera-
tion of a 0.03 m resolution DEM, a resolution already proven to be
suitable for the analysis of micro-morphology of agricultural surfaces
(Tarolli et al., 2019). Overall, two DEMs were created, which described
the current situation (post-event DEM) of the eroded areas in Site 1 and
Site 2 (Fig. 5).

The estimation of erosion volume relies on a comparison between
multitemporal DEMs. Performing a difference of the two DEMs allows to
produce a DEM of difference (DoD) and to estimate the erosion/deposi-
tion volume to describe changes over a certain period (Cavalli et al.,
2017; Wheaton et al., 2010; Williams, 2012). Accordingly, a DEM
showing the pre-erosion situation would have been of great assistance. In
the absence of such information, we reconstructed a plausible DEM
following the geometry of a non-grazed surface. By comparing the pre-
and post-erosion DEMs, we estimated the volume of eroded soils (m3) by
means of the Geomorphic Change Detection 7 (GCD 7), an add-in for
ArcGIS that is freely available. The GCD 7 estimates the erosion/depo-
sition multiplying the surface of each cell by the difference in height

Heliyon 5 (2019) e01825

between the two DEMs (Wheaton et al., 2010).

A further step before the elaboration of the DoDs was the estimation
of DEMs uncertainty, in order to set a minimum level of detection
(minLOD), which was estimated assuming spatially uniform un-
certainties, as reported by Brasington et al. (2003) and Wheaton et al.
(2010). Those authors provided evidence that it is possible to set the
values of the minLOD threshold for the used dataset, using the following
equation:

+ SDE?

pre?

minLOD = /SDE.,,
where SDE is the standard deviation of the error, calculated using the
standard deviation of the differences between Ground Control Point GCP
altitude measured with DGPS and the GCP altitude extracted from the
DEM. Of course, using a synthetic DTM (for reconstructing the pre-
degradation status), derived from the post-degradation DTM, the SDE
has the same value. The minLOD helps to distinguish real surface changes
from noise. Elevation changes below this threshold were discarded, while
changes above this threshold were treated as real (Brasington et al.,
2003; Lane et al., 2003).

3. Results
3.1. Identification of eroded areas and depth measurements

At the end of the erosion identification phase, a map with eroded
areas was created (Fig. 5). Grazing-induced eroded areas are widespread
in the whole Autonomous Province of Trento (Fig. 1), in particular in
areas where seasonal grazing is a common practice. In total 276 eroded
areas with trampling-induced erosion have been found, for an extension
of 144063 m* (Table 2a).

The average erosion value, at the regional scale, has been estimated
analyzing the main statistics of the entire dataset of field-collected depth
values.

3.2. DEM analysis and DoD results

In Fig. 5b and d, it is possible to see the 3D reconstruction of erosion
of the two areas surveyed with SfM technique, while DTMs of both areas
are reported in Fig. 5a and c. For both sites, a table of model errors was
created to compare and validate the outcome of DEM generation process
(Table 3). All SfM point clouds showed an error comprised between
0.013 m and 0.019 m along X, Y and Z axis at Site 1. The only exception is
along the Z axis at Site 2, which was 0.026 m. This is explained by the
high morphological complexity of Site 2, where the erosive situation was
more dramatic than Site 1. Regarding the errors of the photographic
dataset, Table 3 explains the accuracy of the elaboration for both study
areas. Generally, the elaboration for Site 1 showed a low Z error (0.0167
m) and a low Root Mean Square Error (RMSE, 0.0262 m). An RMSE of
0.0333 m and a Z error of 0.0268 m was found in Site 2.

DEMs differencing was carried out using the standalone application
GCD 7. The outcomes generated by the software are shown in Fig. 6 and
consist of two raster files with a chromatic gradient from blue (deposi-
tion) to red (erosion). In addition to this map, a table reporting erosion
volume (mg) and depth (cm) have been produced (Table 4), in order to
quantify the erosion over the two areas analyzed with SfM. To distinguish
real elevation changes from noise, a minLOD of 0.04 m for Site 1 and 0.07
m for Site 2, were introduced. Regarding the amount of sediment eroded,
results are reported in Table 4.

At Site 1, the elaboration of DoD gave a volume of 42.13 =+ 8.37 m® of
eroded soil and an average erosion depth of 20 =+ 4 cm. Field data of Site
1 resulted in an amount of eroded sediment of 46.16 + 4.63 m> which
correspond to an average depth of 22.59 + 1.16 cm. Comparing field
values with those obtained from DoD, the difference in terms of volume
was 4.03 m®. Regarding Site 2, the elaboration of the DoD resulted in an
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Fig. 7. Trampling-induced eroded areas highlighted with a dimensional and a chromatic gradient.

amount of eroded sediment of 46.83 + 11.51 m® and an average depth of
28 + 7 cm. Field measured volume was 46.46 + 3.03 m® with an average
depth of 24.58 + 1.64 cm. It is possible to notice that there are some
differences between eroded values. In the case of Site 1, we have ob-
tained slightly overestimation of on-site volume and depth values if
compared with DoD results. On the other hand, on Site 2, we have ob-
tained a slight underestimation of the two values if compared with DoD
results. Moreover, results of DoDs show an error of 8.37 m® and 11.51 m®
in terms of volume estimation of Site 1 and Site 2, respectively.
Regarding on-site data, we estimated an error of 4.63 m® for Site 1 and
3.03 m® for Site 2.

3.3. Trampling-induced erosion estimation at large scale

The estimation of trampling-induced erosion volume in the whole
Autonomous Province of Trento was carried out by multiplying the
erosion surface (144063 m?) and the average depth (23.33 + 1.25 cm)
estimated for the whole province in section 3.1. The estimated eroded
volume at large scale was 33610.1 + 1800 m®, which means a sediment
production of 0.23 + 0.0125 m®/m? or 2300 + 125 m>/ha. The summary
of soil erosion is reported in Table 5, where volume information is re-
ported at both Regional and Mountain Community scale. Moreover, three
maps of erosion found over the entire surface of the Autonomous Prov-
ince of Trento were created (Figs. 7 and 8a, b). From Table 5, Figs. 7 and
9, it is possible to understand where the high value of soil removed was
located: Val di Sole, Primiero, Vallagarina and Comunita della Val di

Fassa. On the other hand, Mountain Communities with a low value of
grazing-induced erosion volume were: Paganella, Val di Cembra,
Rotaliana-Konigsberg, Valle dei Laghi and Territorio dell’Adige. The
same results are displayed at the municipalities scale in Fig. 8a and b.

4. Discussion

Effects of animals on landscape evolution have been frequently
underestimated and rarely quantified. Moreover, it is not just the effect of
one species but the synergy with a number of species and their interac-
tion with climatic and other geomorphic processes to be responsible for
landscape degradation. In the present study, we analyzed grazing-
induced erosion in an alpine context; it is well known that alpine envi-
ronment is particularly sensitive to disturbances like erosion once
vegetation cover is removed (Hall et al., 1999).

The information on soil erosion induced by grazing at large scale is
still missing or available only at a small scale (catchment or limited
fenced areas) (Blanco-Canqui et al., 2016; Evans, 1997; Zhao et al.,
2005). The phase of erosion mapping using freely available satellite
images resulted in the production of Fig. 5 and Table 2a and b. Drawing
operations accuracy and image resolution are the two most influencing
factors for the estimation of erosion surface and thus eroded volume.
However, the use of satellite image services like Google Maps and Bing
maps have been proved as effective tools for the recognition and mapping
of eroded areas (Boardman, 2016; Desprats et al., 2013; Shruthi et al.,
2011).
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Fig. 8. Map of trampling-induced erosion in the Autonomous Province of Trento: a) erosion surface for each municipality; b) values in terms of m® for each mu-
nicipality highlighted with a chromatic gradient.

Regarding the amount of eroded surface/volume (Table 2a, b and 5), 2) Mountain Communities with few degradation (Territorio dell’Adige,

three situations were found: Valle dei Laghi, Altipiani Cimbri, Val di Non and Alto Garda e Ledro).

3) Mountain Communities with widespread degradadtion (Val di Sole,

1) Mountain Communities without grazing-induced erosion (Rotaliana- Vallagarina, Comunita della Val di Fassa, Alta Valsugana and Bersn-
Konigsberg, Val di Cembra and Paganella). tol, Valsugana and Tesino, Giudicarie and Primiero).
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Fig. 9. Maps of trampling-induced areas in the Autonomous Province of Trento: a) erosion surface for each Mountain Community; b) total erosion volume for each

Mountain Community, highlighted with a chromatic gradient.

The explanation of these differences between Mountain Communities of urbanization, like industrialized and residential areas (e.g. Territorio
relies mainly on the economic relevance of animal husbandry. Higher dell’Adige), or where fruit cultivation is common (e.g. Rotaliana-
volumes of erosion are more common in rural areas, where animal hus- Konigsberg). Usually, Mountain Communities with widespread erosions
bandry is a common practice and relevant for the economy of the local are characterized by a high livestock density or poor management, and
population. Low level of erosion was observed in areas with a high level thus it is necessary to plan and improve sustainable management of the
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rangelands. Using the approach proposed in the present study to estimate
eroded volume at large scale, it is possible to plan effective measures for
the protection and recovery of the eroded areas.

The estimated erosion depth (23.33 + 1.25 cm) used for volume
estimation is similar to erosion depth found in the literature. In partic-
ular, a value of 0.25 m has been estimated by Zhao et al. (2005), and a
value of 0.23 m in Evans (2005). Also, the use of SfM methodology has
shown its potential to be used as a fast technique for 3D modelling of
livestock-induced erosion. In literature, it is possible to find many ap-
plications of this technique for 3D modelling and DTM production of a
wide variety of degradation phenomena like landslides, banks erosion,
glacier melting and debris flows (Fonstad et al., 2013; Prosdocimi et al.,
2015; Sofia et al., 2017).

Considering Mountain Communities with low (2) or no erosions (1)
with a maximum eroded volume of 1600 m> over the whole area
(Fig. 8a), some possible management measures in these specific cases
could be:

e continuous monitoring of early stage erosions or sensitive areas;

e grazing rotation, in order to decrease the grazing pressure over these
areas;

e adjust grazing intensity and change grazing species over eroded areas.

In the case of Mountain Communities with widespread erosions and
high eroded volume (>1600 m® globally), more drastic interventions
have to be planned in addition to those mentioned above:

e grazing exclusion until recovery dynamics take place;
e earth moving works and grassing over heavily degraded erosions.

All these recovery practices are widely mentioned in the literature
(Evans, 2005; Papanastasis, 2009; Quaas et al., 2007), and prove their
efficacy in recovering degraded lands in a period of 10-20 years. Once
recovery takes place, it is important to introduce sustainable manage-
ment of grassland, in order to limit the erosion. However, the application
of those measures will imply an increase in management costs of pastures
and on herding operations. It is thus necessary that the local adminis-
tration of each Mountain Community or directly the central adminis-
tration of the Autonomous Province of Trento encourage and subsidize
the implementation of such remediation, in order to preserve the land-
scape quality of the whole Province.

In this study, we illustrated an easy and fast methodology to assess
pastureland degradation in an alpine context. With this methodology, the
results obtained and the proposed remediations are a starting point to
take action and act to achieve the “Land Degradation Neutrality” (LDN)
by 2030 in alpine pasturelands (Weigelt et al., 2015).

LDN is the goal n. 15.3 of the 17 goals of the Sustainable Development
Goals adopted by the United Nations to address our challenges to achieve
a better and more sustainable future, for all. Achieving LDN means a
“zero” net erosion rate, which is challenging due to the complexity of
land and soil systems and the actual exploitation oriented economy. A
holistic approach to achieve LDN, as reported in Keesstra et al., (2018),
explain how actions can be inserted in four concepts: i) system thinking,
ii) connectivity, iii) nature-based solutions, iv) regenerative economics.

5. Conclusion

This work presents a low-cost methodology for the estimation of the
volume of soil eroded directly or indirectly by livestock trampling at a
regional scale. The entire surface of the Autonomous Province of Trento
(Italy) has been analyzed through the use of freely available satellite
images. The proposed methodology has been then tested in two field test
sites using SfM photogrammetric technique. Difference of DEM between
pre- and post-erosion situation has been used to estimate the volume of
eroded soil in the two above-mentioned sites. The estimation of the
eroded volume with both SfM and on-site technique is affected by some
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errors, but both methods are suitable for a fast (and acceptable) esti-
mation of the soil affected by erosion. This study allowed the creation of
an up-to-date database of grazing-induced erosions, containing values in
terms of Area (mz) and Volume (m3) of each feature found along the
whole Autonomous Province of Trento. Given such results, we can argue
that the on-site volume estimation, even if affected by some uncertainties
(but the differences with SfM-DoD methodology are minimal), is a suit-
able methodology for a quick estimation of the erosion.

The proposed methodology could be a strategic instrument for
improving grazing management systems in particular if integrated with
information regarding livestock density. Furthermore, providing a value
of eroded surface and volume can be considered a first step to attract
interests on this kind of land degradation by population, central ad-
ministrations and rangeland managers.

As a future improvement, the survey needed for SfM application could
be performed with the use of Unmanned Aerial Vehicle (UAV). Another
idea for future improvements of this methodology and to increase in-
terests on grazing-induced erosions, could be the use of a platform like
Open Street Maps to create a collaborative task for grazing-induced
erosion mapping.

Improving pastureland management will be a fundamental objective
to ensure grass productivity and landscape quality. Putting attention on
the integrity of rangeland is becoming an important issue: climate
change, extremization of weather conditions, and human activities will
increase the risk of degradation and desertification of grazing land.
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