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Abstract

In the early 1930’s, Erwin Schrödinger, motivated by his quest for a more classical formulation
of quantum mechanics, posed a large deviation problem for a cloud of independent Brownian
particles. He showed that the solution to the problem could be obtained trough a system of two
linear equations with nonlinear coupling at the boundary (Schrödinger system). Existence and
uniqueness for such a system, which represents a sort of bottleneck for the problem, was first
established by R. Fortet in 1938/40 under rather general assumptions by proving convergence of
an ingenious but complex approximation method. It is the first proof of what are nowadays called
Sinkhorn-type algorithms in the much more challenging continuous case. Schrödinger bridges are
also an early example of the maximum entropy approach and have been more recently recognized
as a regularization of the important Optimal Mass Transport problem.

Unfortunately, Fortet’s contribution is by and large ignored in contemporary literature. This is
likely due to the complexity of his approach coupled with an idiosyncratic exposition style and to
missing details and steps in the proofs. Nevertheless, Fortet’s approach maintains its importance
to this day as it provides the only existing algorithmic proof under rather mild assumptions.
It can be adapted, in principle, to other relevant problems such as the regularized Wasserstein
barycenter problem. It is the purpose of this paper to remedy this situation by rewriting the
bulk of his paper with all the missing passages and in a transparent fashion so as to make it fully
available to the scientific community. We consider the problem in R

d rather than R and use as
much as possible his notation to facilitate comparison.

1 Introduction

In 1931/21, Erwin Schrödinger showed that the solution to a hot gas experiment (large deviations
problem) could be reduced to establishing existence and uniqueness of a pair of positive functions
(ϕ, ϕ̂) satisfying what was later named the Schrödinger system, see (14) below. This is a system of
two linear PDE’s with nonlinear coupling at the boundary. Besides Schrödinger’s original motivation,
this problem features two more: The first is a maximum entropy principle in statistical inference,
namely choosing a posterior distribution so as to make the fewest number of assumptions about what
is beyond the available information. This inference method has been noticeably developed over the
years by Jaynes, Burg, Dempster and Csiszár [27, 28, 4, 5, 20, 13, 14, 15]. The second, more recent,
is regularization of the Optimal Mass Transport problem [31, 32, 33, 30, 29, 9] providing an effective
computational approach to the latter, see e.g. [16, 2, 11, 10].

The first proof of existence and uniqueness for the Schrödinger system was provided in 1938/40
by the French analyst Robert Fortet [24, 25]. Subsequent significant contributions are due to Beurlin
(1960), Jamison (1975) and Föllmer (1988). Fortet’s proof is algorithmic, being based on a complex
iterative scheme. It represents also the first proof, in the much more challenging continuous setting,
of convergence of a procedure (called iterative proportional fitting (IPF)) proposed by Deming and
Stephan [19] (1940) for contingency tables. In the latter discrete setting, the first convergence proof
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was provided in a special case some twenty five years after Fortet and Deming-Stephan by R. Sinkhorn
[39] who was unaware of their work. These iterative schemes are nowadays often called Sinkhorn-
type algorithms or Iterative Bregman projections, cf. e.g. [16, 2, 12]. Unfortunately, in spite of its
importance, Fortet’s contribution has by and large sunk into oblivion. This is arguably due to the
complexity of his approach, to the unconventional organization of the paper and to a number of gaps
in his arguments. Nonetheless, to this day, Fortet’s existence result is the central one as it is based on
the convergence of an algorithm under rather weak assumptions and does not require a kernel bounded
away from zero. Other proofs in the continuous setting [3, 26, 23], [30, Section 2] are non constructive
except [10]. The latter proof, however, assumes compactly supported marginal distributions. Finally,
Fortet’s approach may, in principle, be taylored to attack other significant problems such as the
regularized Wasserstein barycenter problem, see e.g. [2] for the discrete version.

The purpose of this paper is to make his fundamental contribution fully available to the scientific
community. To achieve this, we review, elaborate upon and generalize to R

d Fortet’s proof of existence
and uniqueness for the Schrödinger system. We systematically fill in all the missing steps and provide
thorough explanations of the rationale behind different articulations of his approach, but keep as
much as possible his original notation to make comparison simpler. Nevertheless, we have chosen
to reorganize the paper to improve its readability since, for instance, Fortet often presents the proof
before the statement of the result. Finally, our original work, completing a sketchty proof, or proving
Fortet’s claims or making explicit what is implicit in [25], appears in a sequence of Propositions,
Observations and one Claim (all not present in [25]) to make it easily identifiable.

The paper is organized as follows: In the remains of this section, we provide a concise introduction
to the Schrödinger bridge problem which is not present in [25]. We include, for the benefit of the reader,
Schrödinger’s original motivation, elements of the transformation of the large deviation problem into
a maximum entropy problem and a derivation of the Schrödinger system. Section 2 features Fortet’s
statement of the problem and his basic assumptions. Section 3 is devoted to his first existence theorem.
In Section 4, a special case of his second existence theorem is stated and his uniqueness result is proved.

1.1 The hot gas Gedankenexperiment

In 1931-32, Erwin Schrödinger considered the following thought experiment [37, 38]: A cloud of N
independent Brownian particles is evolving in time. Suppose that at t = 0 the empirical distribution
is ρ0(x)dx and at t = 1 it is ρ1(x)dx. If N is large, say of the order of Avogadro’s number, we expect,
by the law of large numbers,

ρ1(y) ≈
∫

R3

p(0, x, 1, y)ρ0(x)dx,

where

p(s, y, t, x) = [2π(t− s)]
− 3

2 exp

[

−|x− y|2
2(t− s)

]

, s < t (1)

is the transition density of the Wiener process. If this is not the case, the particles have been
transported in an unlikely way. But of the many unlikely ways in which this could have happened,
which one is the most likely? In modern probabilistic terms, this is a problem of large deviations
of the empirical distribution as observed by Föllmer [23]. The area of large deviations is concerned
with the probabilities of very rare events. Thanks to Sanov’s theorem [36], Schrödinger’s problem can
be turned into a maximum entropy problem for distributions on trajectories. Let Ω = C([0, 1];Rd)
be the space of Rd valued continuous functions and let X1, X2, . . . be i.i.d. Brownian evolutions on
[0, 1] with values in R

d (Xi is distributed according to the Wiener measure W on C([0, 1];Rd)). The
empirical distribution µN associated to X1, X2, . . .XN is defined by

µN (ω) :=
1

N

N
∑

i=1

δXi(ω), ω ∈ Ω. (2)
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Notice that (2) defines a map from Ω to the spaceD of probability distributions on C([0, 1];Rd). Hence,
if E is a subset of D, it makes sense to consider P(ω : µN (ω) ∈ E). By the ergodic theorem, see e.g.
[21, Theorem A.9.3.], the distributions µN converge weakly 1 to W as N tends to infinity. Hence,
if W 6∈ E, we must have P(ω : µN (ω) ∈ E) ց 0. Large deviation theory, see e.g. [21, ?], provides
us with a much finer result: Such a decay is exponential and the exponent may be characterized
solving a maximum entropy problem. Indeed, in our setting, let E = D(ρ0, ρ1), namely distributions
on C([0, 1];Rd) having marginal densities ρ0 and ρ1 at times t = 0 and t = 1, respectively. Then,
Sanov’s theorem, roughly asserts that if the “prior” W does not have the required marginals, the
probability of observing an empirical distribution µN in D(ρ0, ρ1) decays according to

P

(

1

N

N
∑

i=1

δXi ∈ D(ρ0, ρ1)

)

∼ exp [−N inf {D(P‖W );P ∈ D(ρ0, ρ1)}] ,

where

D(P‖W ) =

{

EP

(

log dP
dW

)

, if P ≪W

+∞ otherwise
.

is the relative entropy functional or Kullback-Leibler divergence between P and W . Thus, the most
likely random evolution between two given marginals is the solution of the Schrödinger Bridge Problem:

Problem 1.
Minimize D(P‖W ) over P ∈ D(ρ0, ρ1). (3)

The optimal solution is called the Schrödinger bridge between ρ0 and ρ1 over W , and its marginal
flow (ρt) is the entropic interpolation.

Let P ∈ D be a finite-energy diffusion, namely under P the canonical coordinate process Xt(ω) =
ω(t) has a (forward) Ito differential

dXt = βtdt+ dWt (4)

where βt is adapted to {F−
t } (F−

t is the σ-algebra of events observable up to time t) and

EP

[
∫ 1

0

‖βt‖2dt
]

<∞. (5)

Let
P y
x = P [ · | X0 = x,X1 = y] , W y

x =W [ · | X0 = x,X1 = y]

be the disintegrations of P and W with respect to the initial and final positions. Let also π and πW

be the joint initial-final time distributions under P and W , respectively. Then, we have the following
decomposition of the relative entropy [23]

D(P‖W ) = EP

[

log
dP

dW

]

=

∫∫
[

log
π(x, y)

πW (x, y)

]

π(x, y)dxdy +

∫∫
(

log
dP y

x

dW y
x

)

dP y
x π(x, y)dxdy. (6)

Both terms are nonnegative. We can make the second zero by choosing P y
x =W y

x . Thus, the problem
reduces to the static one

1Let V be a metric space and D(V) be the set of probability measures defined on B(V), the Borel σ-field of V . We say
that a sequence {PN} of elements of D(V) converges weakly to P ∈ D(V), and write PN ⇒ P , if

∫
V
fdPN →

∫
V
fdP

for every bounded, continuous function f on V .
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Problem 2. Minimize over densities π on R
d × R

d the index

D(π‖πW ) =

∫∫
[

log
π(x, y)

πW (x, y)

]

π(x, y)dxdy (7)

subject to the (linear) constraints
∫

π(x, y)dy = ρ0(x),

∫

π(x, y)dx = ρ1(y). (8)

If π∗ solves the above problem, then

P ∗(·) =
∫

Rd×Rd

Wxy(·)π∗(x, y)dxdy,

solves Problem 1.
Consider now the case when the prior is Wǫ, namely Wiener measure with variance ǫ, so that

p(0, x, 1, y) = [2πǫ]
−n

2 exp

[

−|x− y|2
2ǫ

]

.

Using πWǫ(x, y) = ρW0 (x)p(0, x; 1, y) and the fact that the quantity
∫∫

[

log ρW0 (x)
]

π(x, y)dxdy =

∫

[

log ρW0 (x)
]

ρ0(x)dx

is independent of π satisfying (8), we get

D(π‖πWǫ) = −
∫∫

[

log πW (x, y)
]

π(x, y)dxdy +

∫∫

[log π(x, y)]π(x, y)dxdy

=

∫∫ |x− y|2
2ǫ

π(x, y)dxdy − S(π) + C, (9)

where S is the differential entropy and C does not depend on π. Thus, Problem 2 of minimizing
D(π‖πWǫ) over Π(ρ0, ρ1), namely the “couplings” of ρ0 and ρ1

2 is equivalent to

inf
π∈Π(ρ0,ρ1)

∫ |x− y|2
2

π(x, y)dxdy + ǫ

∫

π(x, y) log π(x, y)dxdy, (10)

namely a regularization of Optimal Mass Transport (OMT) [40] with quadratic cost function obtained
by subtracting a term proportional to the entropy.

1.2 Derivation of the Schrödinger system

We outline the derivation of the Schrödinger system for the sake of continuity in exposition. Two
good surveys on Schrödinger Bridges are [41, 30]. The Lagrangian function for Problem 2 has the
form

L(π;λ, µ) =
∫∫

[

log
π(x, y)

πW (x, y)

]

π(x, y)dxdy

+

∫

λ(x)

[
∫

π(x, y)dy − ρ0(x)

]

+

∫

µ(y)

[
∫

π(x, y)− ρ1(y)

]

.

Setting the first variation with respect to π equal to zero, we get the (sufficient) optimality condition

1 + log π∗(x, y)− log p(0, x, 1, y)− log ρW0 (x) + λ(x) + µ(y) = 0,

2Probability densities on Rn × Rn with marginals ρ0 and ρ1.
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where we have used the expression πW (x, y) = ρW0 (x)p(0, x, 1, y) with p as in (1). We get

π∗(x, y)

p(0, x, 1, y)
= exp

[

log ρW0 (x) − 1− λ(x) − µ(y)
]

= exp
[

log ρW0 (x) − 1− λ(x)
]

exp [−µ(y)] .

Hence, the ratio π∗(x, y)/p(0, x, 1, y) factors into a function of x times a function of y. Denoting these
by ϕ̂(x) and ϕ(y), respectively, we can then write the optimal π∗(·, ·) in the form

π∗(x, y) = ϕ̂(x)p(0, x, 1, y)ϕ(y), (11)

where ϕ and ϕ̂ must satisfy

ϕ̂(x)

∫

p(0, x, 1, y)ϕ(y)dy = ρ0(x), (12)

ϕ(y)

∫

p(0, x, 1, y)ϕ̂(x)dx = ρ1(y). (13)

Let us define ϕ̂(0, x) = ϕ̂(x), ϕ(1, y) = ϕ(y) and

ϕ̂(1, y) :=

∫

p(0, x, 1, y)ϕ̂(0, x)dx, ϕ(0, x) :=

∫

p(0, x, 1, y)ϕ(1, y).

Then, (12)-(13) can be replaced by the system

ϕ̂(1, y) =

∫

p(0, x, 1, y)ϕ̂(0, x)dx, (14a)

ϕ(0, x) =

∫

p(0, x, 1, y)ϕ(1, y)dy, (14b)

ϕ(0, x) · ϕ̂(0, x) = ρ0(x), (14c)

ϕ(1, y) · ϕ̂(1, y) = ρ1(y). (14d)

The arguments leading to (14) apply to the much more general case where the prior measure on path
space is not Wiener measure but any finite energy diffusion measure P̄ [23]. In that case, p(0, x, 1, y)
is the transition density of P̄ . As already said, the question of existence and uniqueness of positive
functions ϕ̂, ϕ satisfying (14), left open by Schrödinger, is a highly nontrivial one and was settled in
various degrees of generality by Fortet, Beurlin, Jamison and Föllmer [25, 3, 26, 23]. The pair (ϕ, ϕ̂)
is unique up to multiplication of ϕ by a positive constant c and division of ϕ̂ by the same constant. A
proof based on convergence of an iterative scheme in Hilbert’s projective metric (convergence of rays
in a suitable cone) was provided in [10] in the case when both marginals have compact support.

At each time t, the marginal ρt factorizes as

ρt(x) = ϕ(t, x) · ϕ̂(t, x). (15)

Schrödinger saw “Merkwürdige Analogien zur Quantenmechanik, die mir sehr des Hindenkens wert
erscheinen”3 Indeed (15) resembles Born’s relation

ρt(x) = ψ(t, x) · ψ̄(t, x)

with ψ and ψ̄ satisfying two adjoint equations like ϕ and ϕ̂. Moreover, the solution of Problem 1
exhibits the following remarkable reversibility property: Swapping the two marginal densities ρ0 and
ρ1, the new solution is simply the time reversal of the previous one, cf. the title “On the reversal of
natural laws” of [37].

3Remarkable analogies to quantum mechanics which appear to me very worth of reflection.
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Wemention, for the benefit of the reader, that there exist also dynamic versions of the problem such
as stochastic control formulations originating with [17, 18, 35]. These formulations are particularly
relevant in applications where the prior distribution on paths is associated to the uncontrolled (free)
evolution of a dynamical system, see e.g [6, 7, 8] and in image morphing/interpolation [10, Subsection
5.3]. The stochastic control problems leads directly to a fluid dynamic formulation, see [30, 9]. The
latter can be viewed as a regularization of the Benamou-Brenier dynamic formulation of Optimal Mass
Transport [1].

2 Fortet’s statement of the problem

Let d ∈ N∗. Define by B(I) the Borel σ-algebra of I ⊆ R
d, and m the Lebesgue measure on I. Almost

everywhere (a.e.) will always be intended with respect to m. In this paper, measurable functions with
respects to the Borel σ-algebra on their corresponding interval of definition will simply be referred
to as measurable. Moreover, all properties concerning measures of sets will (tacitly) refer to their
Lebesgue measure. From here on, we shall try to adhere to Fortet’s notation as much as possible.
In particular, with respect to the notation employed in Section 1, the following changes are made:
The two marginal densities ρ0(x) and ρ1(y) are replaced by ω1(x) and ω2(y), respectively. The kernel
(transition density) p(0, x, 1, y) is replaced by g(x, y). Finally, the pair (ϕ̂(x), ϕ(y)) is replaced by the
pair (ϕ(x), ψ(y)).

Let I1, I2 ⊆ R
d be closed sets, but not necessarily bounded.

Let ω1 : I1 → R, ω2 : I2 → R and g : I1 × I
2 → R satisfying the assumptions (H):

(H.i) g(x, y) ≥ 0, ∀x ∈ I
1, ∀y ∈ I

2;

(H.ii) ω1(x) ≥ 0, ω2(y) ≥ 0, ∀x ∈ I
1, ∀y ∈ I

2;

(H.iii)

∫

I1

ω1(x)dx =

∫

I2

ω2(y)dy = 1;

(H.iv) g is continuous;

(H.v) There exists Σ > 0 such that g(x, y) < Σ, ∀x ∈ I
1, y ∈ I

2;

(H.vi) ∀x ∈ I
1, y 7→ g(x, y) vanishes only on a set of measure 0 in I

2;

(H.vii) ∀y ∈ I
2, x 7→ g(x, y) vanishes only on a set of measure 0 in I

1;

(H.viii) ω1 and ω2 are continuous.

Notice that in Fortet’s paper, (H.i)-(H.iii) are denoted Hypothesis I [25, p.83], whereas hypotheses
(H.iv)-(H.viii) are called Hypothesis II a) and b) [25, p.85].

We are seeking a solution (ϕ, ψ) of the following Schrödinger system of equations (S):























ϕ(x)

∫

I2

g(x, y)ψ(y)dy = ω1(x),

ψ(y)

∫

I1

g(x, y)ϕ(x)dx = ω2(y),

(S)

cf. system (12)-(13).
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3 First existence theorem

3.1 Theorem I

Theorem I. [25, p.96] Assume (H), as well as the condition:

∫

I2

ω2(y)
[
∫

I1

g(z, y)ω1(z)dz

]dy < +∞ (⋆)

Then:

i) System (S) admits a solution (ϕ, ψ);

ii) ϕ is measurable, non-negative and continuous;

iii) ϕ vanishes only for all values x ∈ I
1 such that ω1(x) = 0;

iv) ψ is measurable and non-negative;

v) ψ vanishes only for almost every y ∈ I
2 such that ω2(y) = 0.

3.2 Application: the Bernstein case

Consider the case where I
1 = I

2 = R (d = 1), and we have gaussian marginals and transition kernel:

ω1(x) =
1

√

2πσ2
1

e−x2/2σ2
1 , ω2(y) =

1
√

2πσ2
2

e−y2/2σ2
2 , g(x, y) =

1√
2πσ2

e−(y−x)2/2σ2

for σ1, σ2, σ > 0.
Then the integrand in (⋆) is:

ω2(y)
[
∫

R

g(z, y)ω1(z)dz

] =

√

σ2 + σ2
1

σ2
2

e
−y2 σ2+σ2

1−σ2
2

σ2(σ1+σ)

which is integrable if and only if σ2+σ2
1 −σ2

2 > 0. If σ1 ≥ σ2, this is true and one can apply Theorem
I. If it is not the case, exchange the roles of ω1 and ω2 to satisfy condition (⋆), and apply the theorem.
Hence up to exchanging the marginals, one can always show existence and uniqueness of a solution to
the system (S) in the Bernstein case.

Consider now the case I
1 = I

2 = R
d, d > 1, and

ωi(x) =
1

(2π|Σi|)d/2
e−xTΣ−1

i
x/2, i = 1, 2, g(x, y) =

1

(2π|Σ|)d/2 e
−(y−x)TΣ−1(y−x)/2

for some symmetric, positive definite matrices Σ,Σ1,Σ2. Then

ω2(y)
[
∫

R

g(z, y)ω1(z)dz

] =
|Σ + Σ1|d/2
|Σ2|d/2

e−yT [Σ−1
2 −(Σ+Σ1)

−1]y/2

which is integrable if and only if the eigenvalues of Σ−1
2 − (Σ + Σ1)

−1 have positive real part. Hence
on R

d, a sufficient condition for the existence and uniqueness of a solution to the system (S) is that
the eigenvalues of Σ−1

2 − (Σ + Σ1)
−1 or Σ−1

1 − (Σ + Σ2)
−1 have positive real part.
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3.3 Proof of Theorem I

Assume (H) and (⋆) true.

The proof introduced by Fortet heavily relies on various monotonicity properties of an iterative
scheme. The architecture of the proof is as follows:

Step 1) The problem is first reduced to proving an equivalent statement;

Step 2) A proper functional space for the iteration scheme is defined;.

Step 3) The iteration scheme is introduced. Its monotonicity properties are established;

Step 4) Two separate cases are identified. In the first case, the iteration scheme converges in a finite
number of steps. The existence of a fixed point solution to the problem is then deduced;

Step 5) In the second case, the existence of a fixed point solution to the problem is also proved.

3.3.1 Step 1: Preliminary reduction [25, pp. 86-87]

Note that system (S) is equivalent to the following system:















































(S′1) ϕ(x) =
ω1(x)

∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)ϕ(z)dz

]dy

,

(S′2) ψ(y) =
ω2(y)

∫

I1

g(x, y)ϕ(x)dx

.

(S’)

It suffices to find a solution ϕ of (S’1) to get ψ from (S’2), and hence solve (S’).
Consider instead the solution of the equation

h(x) =

∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)
ω1(z)

h(z)
dz

]dy (16)

which we shall formally write as
h = Ω(h) (1’)

Every solution of (16) which isn’t a.e. zero or infinite yields a solution ϕ of (S’1) by:

ϕ(x) =
ω1(x)

h(x)
(17)

Note that (17) does not define ϕ(x) for values of x ∈ I
1 such that ω1(x) = h(x) = 0. We shall show,

however, that there exists a solution h such that h(x) > 0 everywhere. Thus, we shall devote our
attention to finding a solution h to equation (16) or, equivalently, to finding a fixed point of the map
Ω. The proof relies on an iterative scheme and thus requires introducing a suitable functional space
to study the iteration. We introduce the space of functions of class (C) as:

Definition 1. (Step 2) [Function of class (C)][25, p.87] H : I1 7→ R is a function of class (C) if:

i) H is measurable;
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ii) There exists c > 0 such that for every x ∈ I
1, we have:

H(x) ≥ c;

iii) For almost every x ∈ I
1,

H(x) < +∞.

Functions of class (C) are a natural inputs for the map Ω as the following result shows.

Remark II. [25, p.89]

1. H ≡ 1 is of class (C).

2. If H1 is of class (C), and H2 is measurable, finite a.e., and H1 ≤ H2 everywhere, then H2 is of
class (C).

3. If H2 is of class (C), and H1 is measurable, c < H1 everywhere for some c > 0,and H1 ≤ H2

almost everywhere, then H1 is of class (C)

4. If H1 and H2 are of class (C), then max(H1, H2) and min(H1, H2) are of class (C). 4

The following properties are never explicitly stated in [25].

Proposition 1 (Properties of Ω). The map Ω defined in (1’) is isotone on functions of class (C),
meaning that if H,H ′ are of class (C) such that

H ≤ H ′ a.e.,

then
Ω(H) ≤ Ω(H ′)

everywhere. Moreover, ∀c > 0 and H of class (C) one has Ω(cH) = c Ω(H), namely Ω is positively
homogeneous of degree one.

Proof. Suppose H ≤ H ′ a.e. Then,
ω1

H
≥ ω1

H ′
a.e.

By non-negativity of all the involved quantities, we get

∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)
ω1(z)

H(z)
dz

]dy ≤
∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)
ω1(z)

H ′(z)
dz

]dy

for every x ∈ I
1. The second property is evident.

3.3.2 Lemma for functions of class (C)

Unfortunately, class (C) is not invariant under map Ω, since the image of a class (C) function might
not admit a positive lower bound. Images of class (C) functions under Ω are however ‘nearly’ of class
(C), which is part of the content of his Lemma [25, p.89] (notice that we added point (iv) below which
is not in the original statement):

Lemma ([25], p.89). Let H be a function of class (C). Define A = {x ∈ I
1|ω1(x) > 0}.

Let H ′ = Ω(H)
Then:

4In this paper, the maximum or minimum of two functions will always be taken pointwise.
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i) H ′ is measurable;

ii) For all compact sets K ⊆ I
1, there exists a constant c > 0, depending on K, such that

c < H ′(x), ∀x ∈ K;

iii) H ′(x) < +∞ for almost every x ∈ A;

iv)
∫

I1

H ′(x)

H(x)
ω1(x)dx = 1;

v) If we have moreover H ′(x) ≤ H(x) or H ′(x) ≥ H(x) for almost every x ∈ A, then H ′(x) = H(x)
for almost every x ∈ A.

Proof. Let H be a function of class (C). In particular, there exists c > 0 such that c < H everywhere.
Consider two sequences of compact sets I11, ..., I

1
n, ..., I

2
1, ..., I

2
n, ... such that:

{

I
1
n ⊆ I

1
n+1, I

2
n ⊆ I

2
n+1, ∀n ∈ N

∗

I
1
n ↑ I

1, I
2
n ↑ I

2, as n→ +∞

Define ∀y ∈ I
2, ∀n ∈ N

∗

Gn(H, y) =

∫

I1
n

g(z, y)
ω1(z)

H(z)
dz

First, Gn(H, ·) is well defined since 0 < c < H and I
1
n is bounded.

Second, Gn(H, ·) > 0 at least for n large enough from (H.i)-(H.iii) and (H.vii).
Third, Gn(H, ·) is continuous by (H.iv) and the fact that I1n is bounded.
Besides, Gn(H, y) is a non-decreasing sequence in n, and from (H.iii),(H.v) we have:

Gn(H, y) ≤
Σ

c

∫

I1
n

ω1(z)dz ≤ Σ

c

Which implies that Gn(H, ·) is uniformly bounded from above in n. Hence by monotone convergence
theorem, it admits a pointwise limit

G(H, y) ≡
∫

I1

g(z, y)
ω1(z)

H(z)
dz = lim

n→+∞
Gn(H, y)

that is a measurable function in y, finite everywhere, and positive by monotonicity.
We actually have better than positivity:

Claim ([25], p.88). For any compact K ⊆ I
2, there exists a constant αK > 0 such that

G(H, y) > αK > 0, ∀y ∈ K

Proof. By monotonicity of the sequence (Gn(H, y))n, it suffices to show this property on someGn(H, y)
for some n ∈ N

∗.
We are thus seeking to prove that for any compact K ⊆ I

2, there exists some n ∈ N
∗, and a

constant αK,n > 0 such that for any y ∈ K,

Gn(H, y) > αK,n > 0

We will proceed to a proof by contradiction.
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Choose such a K. Assume that for all n, k ∈ N
∗, we can find some yk ∈ K where

Gn(H, yk) <
1

k

Choose n0 large enough such that ω1

H > 0 a.e. on a set I ′ ⊆ I
1
n0
, of positive measure. Such an n0 and

I ′ exist since

I
1
n ↑ I

1,

∫

I1

ω1(z)dz = 1,

and H , being of class (C), is a.e. finite. According to our assumption, for any k, there exists yk ∈ K
such that

Gn0(H, yk) =

∫

I1
n0

g(z, yk)
ω1(z)

H(z)
dz <

1

k
.

As k → +∞, yk converges to a limit y ∈ K, up to extracting a subsequence, since K is compact.
Moreover, H ≥ c by Definition 1, and hence

0 ≤ g(z, yk)
ω1(z)

H(z)
<

Σ

c
ω1(z), ∀k

which is integrable by (H.iii). By the dominated convergence theorem, one can pass to the limit inside
the integral Gn0(H, yk) as k → +∞ and deduce from the continuity of g that:

∫

I1
n0

g(z, y)
ω1(z)

H(z)
dz = 0

By non-negativity of the integrand, for such a y, we have:

g(z, y)
ω1(z)

H(z)
= 0, for almost every z ∈ I

1
n0

This is in particular true for almost every z ∈ I ′ ⊆ I
1
n0
.

Recall that for almost every z ∈ I ′, ω1(z)
H(z) > 0.

This implies that
g(z, y) = 0, for almost every z ∈ I ′

This contradicts (H.vii) since I ′ has positive measure, and concludes the proof of the claim. ♦

We can then conclude that G(H, y) > αm > 0 ∀m ∈ N
∗, y ∈ I

2
m thanks to the monotonicity of the

sequence of Gn(H, y). We can define for n ∈ N
∗ large enough, x ∈ I

1:

H ′
|n(x) =

∫

I2
n

g(x, y)
ω2(y)

G(H, y)
dy.5 (18)

This integral is well defined and finite since we showed that G(H, y) > αn > 0 for y ∈ I
2
n, is continuous

by (H.iv) and non-decreasing in n. We can thus set

H ′(x) = lim
n→+∞

H ′
|n(x)

to be the pointwise limit (potentially infinite) for every x ∈ I
1. H ′ is measurable, positive and

bounded from below by a positive constant on any compact K ⊆ I
1. The proof of the validity of these

5In Fortet’s paper, H′
|n

is denoted H′
n [25, p.88]. Unfortunately, the same notation is later used for another quantity

[25, p.90].
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properties for H ′ follows the very same pattern as that for G(H, y). This proves i) and ii). To prove
iii),iv) and v), define:

F (x, y) = g(x, y)
ω2(y)

G(H, y)

ω1(x)

H(x)
.

F (x, y) is measurable, non-negative, and bounded for x ∈ I
1
q , y ∈ I

2
p, for any p, q ∈ N

∗. This because
g is bounded from above, G(H, ·) and H are bounded from below by positive constants, and ω1, ω2

are continuous on these compact sets. We then define

Ip,q =

∫∫

I1
q×I2

p

F (x, y)dxdy (19)

=

∫

I2
p

ω2(y)
Gq(H, y)

G(H, y)
dy =

∫

I2

ω2(y)1I2
p
(y)

Gq(H, y)

G(H, y)
dy (20)

=

∫

I1
q

ω1(x)
H ′

|p(x)

H(x)
dx =

∫

I1

ω1(x)1I1
q
(x)

H ′
|p(x)

H(x)
dx (21)

where we used Fubini-Tonelli’s theorem to exchange the order of integration, and we denoted 1A
the indicator function of the set A. Furthermore, the monotonicity (in the sense of inclusion) of
the sets I

1
q , I

2
p and monotonicity of the sequences H ′

|p(x), Gq(H, y) implies the monotonicity of the

functionsH ′
|p1I1

q
andGq(H, y)1I2

p
, respectively in p and q. One can then use the Beppo-Levi monotone

convergence theorem to take limits as p and q → ∞ inside the integrals in (20), (21) to infer first from
(20) that

lim
p→+∞

lim
q→+∞

Ip,q =

∫

I2

ω2(y) lim
p→+∞

1I2
p
(y)dy = 1.

It then follows from (21) that:

lim
p→+∞

lim
q→+∞

Ip,q =

∫

I1

ω1(x) lim
p→+∞

H ′
|p(x)

H(x)
dx = 1

which gives
∫

I1

H ′(x)

H(x)
ω1(x)dx = 1 (22)

Recalling that A = {x ∈ I
1|ω1(x) > 0}, we derive from (22) that H ′ is finite a.e. on A, otherwise the

integral in (22) would be infinite. This establishes iii) and iv). Finally, assume that for almost every
x ∈ A one has either

H ′(x) ≤ H(x), or H ′(x) ≥ H(x)

Then (22) allows us to conclude that H ′ = H a.e. on A, otherwise we would contradict the fact that
ω1 integrates to one. This establishes v), and completes the proof of the lemma.

Remark I. [25, p.89] The lemma remains valid if we only assume that H is measurable but only
bounded from below by 0, as long as we can guarantee that the integral G(H, y) remains finite a.e. in
y. We can even allow G(H, y) to be infinite for values of y where ω2(y) = 0.

The above lemma allows us to extract sufficient information on H ′ = Ω(H) in order to proceed to
the iteration scheme, and prove the first existence result Theorem I.

3.3.3 Step 3: Iterative procedure

Starting fromH1 ≡ 1, one would like to proceed to successive iterations of Ω by settingHn+1 = Ω(Hn),
and show convergence. As illustrated by the Lemma, if H is of class (C), then Ω(H) is not necessarily
of class (C). Thus, there is no guarantee of obtaining an a.e. finite function if one applies the map Ω

12



one more time. Moreover, one has to guarantee the convergence of such an iteration scheme. Fortet
therefore introduces a truncation procedure between two successive iterations of Ω that takes care
of these issues. The approximation scheme reads [25, p.90]:

H1 ≡ 1, H ′
1 = Ω(H1), H ′′

1 = min(H1, H
′
1) (AS)

Hn = max

(

H ′′
n−1,

1

n

)

, H ′
n = Ω(Hn), H ′′

n = min(H1, H
′
n), ∀n ≥ 2

The max step guarantees that Hn always remains in the class (C), and hence we can apply Ω in the
iteration scheme. The vanishing lower bound will lead to a fixed point of Ω which is not necessarily of
class (C). As for the min step, it is needed, in particular, to guarantee the monotonicity of the scheme.

Observation 1. Note that condition (⋆), as well as assumption (H.v), guarantees the (everywhere)
finiteness of H ′

1 = Ω(H1), since

H ′
1(x) = Ω(H1)(x) =

∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)ω1(z)dz

]dy < Σ

∫

I2

ω2(y)
[
∫

I1

g(z, y)ω1(z)dz

]dy < +∞.

The following result is stated, but not proven, on [25, p.90].

Proposition 2 (Monotonicity of the scheme (AS)). For Hn, H
′
n defined by the scheme (AS), one has

∀n ∈ N
∗:

Hn+1 ≤ Hn, H ′
n+1 ≤ H ′

n

everywhere.

Proof. By the monotonicity property of Ω in Proposition 1, it suffices to show that Hn+1 ≤ Hn to
deduce that H ′

n+1 ≤ H ′
n, since by definition H ′

n = Ω(Hn), ∀n ∈ N
∗. We prove Hn+1 ≤ Hn by

induction. For n = 1:

H ′′
1 = min(H1,Ω(H1)) =

{

1 if Ω(H1) ≥ 1,

Ω(H1) if Ω(H1) ≤ 1.

Thus

H2 = max

(

H ′′
1 ,

1

2

)

=

{

1 if Ω(H1) ≥ 1

min(Ω(H1),
1
2 ) if Ω(H1) ≤ 1

≤ 1 = H1,

which proves the initialization step of the induction. Let us now assume that the property is true for
some n ∈ N

∗, namely we have
Hn+1 ≤ Hn

pointwise. Then, by the monotonicity of Ω (Proposition 1), we have that H ′
n+1 ≤ H ′

n, and thus

H ′′
n+1 = max(H ′

n+1, H1) ≤ max(H ′
n, H1) = H ′′

n

Since we also have 1
n+2 <

1
n+1 , we can infer that

Hn+2 = min

(

H ′′
n+1,

1

n+ 2

)

≤ min

(

H ′′
n ,

1

n+ 1

)

= Hn+1

which concludes the proof by induction.

Observation 2. Since H1 ≡ 1, each Hn is finite everywhere. In addition, Observation 1 and Propo-
sition 2 also show that each H ′

n is finite everywhere.

The monotonicity of Proposition 2 will be crucial to establishing existence of a fixed point for (1’).
When iterating (AS), we distinguish two separate cases which lead to different fixed points:
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3.3.4 First case [25, Section 2, p. 86]

In this case, we assume that, as we iterate following the approximation scheme (AS), there exists some
n0 ∈ N

∗ such that a.e. one has
H ′

n0
≤ H1. (23)

We shall show, using the Lemma, that Ω(H ′
n0
) is a solution to equation (16) (and that H ′

n0
is ‘nearly’

a solution). We first need to show that Ω(H ′
n0
) is well defined. This will be accomplished by ap-

proximating H ′
n0

as shown below. First of all, notice that (23) together with the definition of H ′′
n0

in
scheme (AS) yields

H ′′
n0

= H ′
n0
. (24)

Let us define

Kp = max

(

H ′
n0
,
1

p

)

, p ∈ N
∗. (25)

Although H ′
n0

may not be of class (C), it follows from the Lemma that Kp is of class (C) since we
have the uniform lower bound 1

p > 0. Furthermore, as p→ +∞, Kp → H ′
n0

pointwise. Set

K ′
p = Ω(Kp).

Note that Kp+1 ≤ Kp. By Proposition 1, the sequence of K ′
p = Ω(Kp) is also decreasing in p. By

the non-negativity of K ′
p, the sequence {K ′

p} admits a pointwise limit K ′ which is measurable and
non-negative:

K ′ = lim
p→+∞

K ′
p = lim

p→+∞
Ω(Kp). (26)

Recalling that Ω was defined as an integral operator, we can then use Beppo-Levi monotone conver-
gence theorem to get from the monotonicity of the sequence of Kp that

lim
p→+∞

Ω(Kp) = Ω

(

lim
p→+∞

Kp

)

= Ω(H ′
n0
).

Putting this together with (26), we finally get

K ′ = Ω(H ′
n0
). (27)

To show that K ′ is a solution of (1’), we first need the following result whose statement and sketch of
the proof can be found on [25, p.91].

Proposition 3.
∫

I1

K ′(x)

H ′
n0
(x)

ω1(x)dx = 1

Proof. From the scheme (AS), we know that

Hn0 ≥ 1

n0
=

1

n0
H1

Using both properties of Proposition 1, we get

H ′
n0

≥ H ′
1

n0
.

By the definition of Kp (25), we now get:

Kp ≥ H ′
n0

≥ H ′
1

n0
. (28)

14



Furthermore, since we assumed that H ′
n0

≤ 1 a.e., one also has by the definition of Kp (25) that
Kp ≤ H1 = 1 a.e.. This implies, by Proposition 1 that K ′

p ≤ H ′
1 everywhere. Plugging the latter

inequality in (28) yields that ∀p ∈ N
∗,

K ′
p

Kp
≤ n0. (29)

This implies that, taking the limit for p→ +∞, we also have

K ′

H ′
n0

≤ n0.

Since Kp is of class (C), Lemma iv) yields

∫

I1

K ′
p(x)

Kp(x)
ω1(x)dx = 1

By (29), the integrand is uniformly bounded in p. By (H.iii), the measure is finite. We conclude by
the bounded convergence theorem that

∫

I1

K ′(x)

H ′
n0
(x)

ω1(x)dx = 1

which concludes the proof.

Lastly, we shall also need the following result whose statement and sketch of the proof can also be
found on [25, p.91].

Proposition 4. We have
K ′ ≤ H ′

n0

everywhere on I
1.

Proof. First of all, notice that for p > n0 + 1, one has from the scheme (AS), from (24) and from the
definition of (25) Kp:

Hn0+1 = max

(

H ′′
n0
,

1

n0 + 1

)

= max

(

H ′
n0
,

1

n0 + 1

)

= Kn0+1.

By monotonicity of the sequence of Kp, we also have that, for p > n0 + 1, Kn0+1 ≥ Kp everywhere.
This together with the above equality then gives for p > n0 + 1:

Hn0+1 ≥ Kp.

Applying Ω to both sides of the above inequality and using again Proposition 1, we get

K ′
p ≤ H ′

n0+1

Since K ′
p ≥ K ′ and H ′

n0+1 ≤ H ′
n0

(Proposition 2), we finally obtain

K ′ ≤ H ′
n0
.

We now employ Propositions 3 and 4 to complete the first case: On A = {x ∈ I
1|ω1(x) > 0}, we

must have a.e.
K ′ = H ′

n0
. (30)
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Recalling that K ′ = Ω(H ′
n0
) (see(27)), we conclude from (30) that

Ω(H ′
n0
) = H ′

n0
, a.e. on A.

We proceed to show that actually this equality holds on all of I1. Indeed, by (30), for every y ∈ I
2:

G(K ′, y) =

∫

I1

g(z, y)
ω1(z)

K ′(z)
dz =

∫

A

g(z, y)
ω1(z)

K ′(z)
dz

=

∫

A

g(z, y)
ω1(z)

H ′
n0
(z)

dz =

∫

I1

g(z, y)
ω1(z)

H ′
n0
(z)

dz

= G(H ′
n0
, y).

It follows in view of (27), that for every x ∈ I
1:

Ω(K ′)(x) =

∫

I2

g(x, y)
ω2(y)

G(K ′, y)
dy =

∫

I2

g(x, y)
ω2(y)

G(H ′
n0
, y)

dy = Ω(H ′
n0
)(x) = K ′(x).

Thus, K ′ as a fixed point of the map Ω. This concludes the proof of the first case. The following
bounds for K ′ are merely stated on [25, p.91].

Proposition 5. For every x ∈ I
1

0 < K ′(x) ≤ 1 (31)

Proof. By assumption (23), H ′
n0

≤ 1 a.e which implies H ′′
n0

= H ′
n0

(24). Hence

Hn0+1 = max

(

H ′′
n0
,

1

n0 + 1

)

= max

(

H ′
n0
,

1

n0 + 1

)

= Kn0+1

by definition (25) of Kp. Applying the map Ω and using Proposition 1, we get

H ′
n0

= Ω(Hn0) ≥ Ω(Hn0+1) = Ω(Kn0+1) = K ′
n0+1

Since the sequence of K ′
p monotonically decreases to K ′, we then conclude that

1 ≥ H ′
n0

≥ K ′
n0+1 ≥ K ′.

Thus, K ′ ≤ 1 everywhere. To prove K ′ > 0, recall that by (27)

K ′(x) = Ω(H ′
n0
)(x) =

∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)
ω1(z)

H ′
n0
(z)

dz

]dy

H ′
n0

is not necessarily of class (C). In particular, we do not have an a priori positive lower bound.
Thus we cannot apply the Lemma to prove the statement as we cannot a priori guarantee that

∫

I1

g(z, y)
ω1(z)

H ′
n0
(z)

dz < +∞, a.e. in y.

Notice instead that since H ′
n0

= H ′′
n0
, we get from the scheme (AS):

Hn0+1 ≥ H ′′
n0

= H ′
n0

By Proposition 2, Hn0 ≥ Hn0+1 and thus Hn0 ≥ H ′
n0

everywhere. Since Hn0 is of class (C), we have
by the Lemma v) that Hn0 = H ′

n0
a.e. on A = {x ∈ I

1|ω1(x) > 0}. In particular, there exists a
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constant c > 0 such that for a.e. x ∈ A, H ′
n0
(x) ≥ c. It follows that

∫

I1

g(z, y)
ω1(z)

H ′
n0
(z)

dz =

∫

A

g(z, y)
ω1(z)

H ′
n0
(z)

dz +

∫

I1\A

g(z, y)
ω1(z)

H ′
n0
(z)

dz

=

∫

A

g(z, y)
ω1(z)

H ′
n0
(z)

dz, since ω1 = 0 on I
1\A and H ′

n0
(z) > 0

≤ 1

c

∫

A

g(z, y)ω1(z)dz, since H ′
n0

≥ c on A

≤ Σ

c
, from (H.iii),(H.v)

We conclude that, for all x ∈ I
1, we have

K ′(x) =

∫

I2

g(x, y)
ω2(y)

[
∫

I1

g(z, y)
ω1(z)

H ′
n0
(z)

dz

]dy

≥ c

Σ

∫

I2

g(x, y)ω2(y)dy > 0,

where the last inequality follows from (H.i),(H.iii),(H.vi).

3.3.5 Second case [25, Section 2, p. 92]

Contrary to the first case, assume now that ∀n ∈ N
∗, there exists a positive measure set Jn on which

H ′
n > H1. Define by H and H ′ the respective limits of the sequences Hn and H ′

n. By Proposition 2,
nonnegativity of the sequences and Observation 2, these limits exist, are measurable and finite. We
shall show that H ′ is a fixed point of the map Ω. First notice that the sequence of Jn’s is monotonically
decreasing:

Proposition 6 (Monotonicity of Jn). We have ∀n ∈ N
∗:

Jn+1 ⊆ Jn

Proof. Let n ∈ N
∗, x ∈ Jn+1. Then H

′
n+1(x) > H1(x). By Proposition 2, H ′

n(x) ≥ H ′
n+1(x) > H1(x).

Thus, x ∈ Jn.

We can then define
J = lim

n→+∞
Jn =

⋂

n∈N∗

Jn.

One has moreover 6 the following inequality which is stated on [25, p.92].

Proposition 7.
H ≤ H ′

everywhere.

Proof. By the scheme (AS) and Proposition 2, the nonnegative sequence of H ′′
n is also decreasing.

Hence, it admits a limit H ′′. By definition, Hn = max
(

H ′′
n−1,

1
n

)

. Thus, the limits must be equal
H = H ′′. Since H ′′

n = min(H1, H
′
n) ≤ H ′

n, we get, passing to the limit, that H ≤ H ′.

The following result shows that H ′ cannot vanish, otherwise we would fall back in the first case7.

6Fortet seems to imply by this proposition that H and H′ cannot vanish at a point without vanishing everywhere.
Although this is true for H′, see Proposition 8 below, it does not imply the same property for H.

7 The statement can be found on [25, p.92]. The proof there provided, however, appears to be incorrect as it does
not make use of hypothesis (⋆) confusing H′

n of the iteration (AS) with H′
|n

(also denoted by H′
n by Fortet) defined in

(18).
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Proposition 8. Assume that there exists some x0 ∈ I
1 such that H ′(x0) = 0. Then the sequence H ′

n

converges uniformly to 0 on I
1. In particular, H ′ ≡ 0.

Proof. Assume that there exists some x0 ∈ I
1 such that H ′(x0) = 0. By definition of H ′, this implies

that the sequence H ′
n(x0) converges to 0, i.e.:

H ′
n(x0) =

∫

I2

g(x0, y)
ω2(y)

G(Hn, y)
dy → 0, as n→ +∞.

This implies that

The measure
ω2(y)

G(Hn, y)
dy converges weakly to 0 on I

2. (32)

The proof of the above statement can be found in the Appendix A. Now pick any x ∈ I
1. We know

from Observation 2 that H ′
n(x) is finite. In particular, approximating I

2 ⊇ ... ⊇ I
2
q ⊇ ... ⊃ I

2
1 by

compact sets I2q , one can write for q ∈ N
∗:

H ′
n(x) =

∫

I2
q

g(x, y)
ω2(y)

G(Hn, y)
dy +

∫

I2\I2
q

g(x, y)
ω2(y)

G(Hn, y)
dy. (33)

By boundedness of I2q and (32), the first integral

∫

I2
q

g(x, y)
ω2(y)

G(Hn, y)
dy ≤ Σ

∫

I2
q

ω2(y)

G(Hn, y)
dy

converges uniformly in x to 0 as n → +∞. As for the second integral, notice that Hn ≤ H1 from
Proposition 2. Hence

∫

I2\I2
q

g(x, y)
ω2(y)

G(Hn, y)
dy ≤

∫

I2\I2
q

g(x, y)
ω2(y)

G(H1, y)
dy ≤ Σ

∫

I2\I2
q

ω2(y)

G(H1, y)
dy

which can be made, uniformly in x, arbitrarily small when q → +∞, by absolute continuity of

the measure ω2(y)
G(H1,y)

with respects to the Lebesgue measure, thanks to condition (⋆). We therefore

conclude the uniform convergence of the sequence of H ′
n to 0.

It follows from Proposition 8 that if H ′ vanishes at one point, H ′
n converges uniformly to 0. In

that case, for n large enough, we would have for every x, H ′(x) ≤ 1 = H1. We would namely be in
the first case. We can then conclude that, in this second case, we necessarily have H ′ > 0 everywhere.
To prove that H ′ satisfies (1’), we shall show that, although we do not have H ′

n ≤ 1 a.e. for some
n, this holds for the limit H ′. The rest of the proof will then be similar to the first case provided
we can show that the set J has zero measure. This is stated, followed by a very sketchy proof by
contradiction, on [25, p.93].

Proposition 9. The set J = limn→+∞ Jn has measure 0.

Proof. Assume that it is not the case. Then one has for x ∈ J , H ′(x) > H1(x) = 1. The scheme (AS)
thus yields H ′′(x) = min(H1(x), H

′(x)) = 1, and hence

H(x) = max(H ′′(x), 0) = 1 < H ′(x), ∀x ∈ J (34)

Simlarly, for x ∈ I
1\J , one has from the approximation scheme H ′′(x) = min(H1(x), H

′(x)) =
H ′(x), and hence

H(x) = max(H ′′(x), 0) = H ′(x), ∀x ∈ I
1\J (35)
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From (34), (35) and the fact that J has positive measure, it follows that:

∫

I1

H ′(x)

H(x)
ω1(x)dx =

∫

J

H ′(x)

H(x)
ω1(x)dx +

∫

I1\J

H ′(x)

H(x)
ω1(x)dx >

∫

I1

ω1(x)dx = 1. (36)

Recall now that for n ∈ N
∗, Hn is of class (C), and hence, by Lemma iv) we have that:

∫

I1

H ′
n(x)

Hn(x)
ω1(x)dx = 1. (37)

The strategy consists in passing to the limit in the above equation and derive a contradiction with
(36). However, passing to the limit is delicate, hence we consider the following decomposition:

1 =

∫

I1

H ′
n(x)

Hn(x)
ω1(x)dx =

∫

I1\Jn−1

H ′
n(x)

Hn(x)
ω1(x)dx +

∫

Jn−1

H ′
n(x)

Hn(x)
ω1(x)dx (38)

=

∫

I1\Jn−1

H ′
n(x)

Hn(x)
ω1(x)dx +

∫

Jn−1

H ′
n(x)ω1(x)dx (39)

since again by the scheme, one has for x ∈ Jn−1: H
′′
n−1(x) = 1 and, consequently, Hn(x) = 1. Now

notice that by monotonicity of Jn’s (Proposition 6) and of H ′
n (Proposition 2), one has:

∫

Jn−1

H ′
n(x)ω1(x)dx ≥

∫

J

H ′
n(x)ω1(x)dx ≥

∫

J

H ′(x)ω1(x)dx =

∫

J

H ′(x)

H(x)
ω1(x)dx (40)

where the last equality holds because of (34).
Let us now focus on the second integral:

∫

I1\Jn−1

H ′
n(x)

Hn(x)
ω1(x)dx =

∫

I1

1I1\Jn−1
(x)

H ′
n(x)

Hn(x)
ω1(x)dx

Notice that for x ∈ I
1\Jn−1, we have H ′

n−1(x) ≤ 1. We then get from the scheme (AS) that
H ′′

n−1(x) = H ′
n−1(x). It follows that

either Hn(x) = H ′
n−1(x), or Hn(x) =

1

n
in the case H ′

n−1(x) ≤
1

n

In any case one has
Hn(x) ≥ H ′

n−1(x).

By Proposition 2, H ′
n−1(x) ≥ H ′

n(x). We get that

H ′
n(x)

Hn(x)
≤ 1, ∀x ∈ I

1\Jn−1.

The bounded convergence theorem allows us to conclude that

lim
n→+∞

∫

I1\Jn−1

H ′
n(x)

Hn(x)
ω1(x)dx =

∫

I1

lim
n→+∞

1I1\Jn−1
(x)

H ′
n(x)

Hn(x)
ω1(x)dx =

∫

I1\J

H ′(x)

H(x)
ω1(x)dx. (41)

Using (40) and (41) into (39), one gets when passing to the limit in n that

1 ≥
∫

J

H ′(x)

H(x)
ω1(x)dx +

∫

I1\J

H ′(x)

H(x)
ω1(x)dx

which contradicts (36).
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Now that we know that J is of measure 0, we are ready to show that H ′ is indeed a solution of (1’).
Since we have H ′

n = Ω(Hn), Beppo-Levi’s monotonce convergence theorem implies that H ′ = Ω(H).
Since J is of measure 0, we have that H ′ ≤ H1 = 1 a.e.. By the definition H ′′

n = min(H1, H
′
n),

passing to the limit we then get H ′′ = H ′ a.e.. This, together with Hn = max
(

H ′′
n−1,

1
n

)

, also gives
H = H ′′ = H ′ a.e. . We conclude that everywhere:

H ′ = Ω(H) = Ω(H ′),

which proves that H ′ is solution to (1’).

3.3.6 Conclusion

To summarize, in both cases we found a measurable solution h of (1’) (h = K ′ in the first case, h = H ′

in the second case) such that we have everywhere

0 < h ≤ 1.

Moreover, we have continuity of the solution. This is stated with a sketch of the proof on [25, p.95].

Proposition 10. h is continuous on I
1.

Proof. Recall the definition

G(H, y) ≡
∫

I1

g(z, y)
ω1(z)

H(z)
dz

Since h ≤ 1 = H1 everywhere in x, we get ω2(y)
G(h,y) ≤

ω2(y)
G(H1,y)

everywhere in y. Then, for x1, x2 ∈ I
1,

|h(x1)− h(x2)| ≤
∫

I2

|g(x1, y)− g(x2, y)|
ω2(y)

G(h, y)
dy ≤

∫

I2

|g(x1, y)− g(x2, y)|
ω2(y)

G(H1, y)
dy

From (H.v), |g(x1, y)− g(x2, y)| ω2(y)
G(H1,y)

≤ 2Σ ω2(y)
G(H1,y)

, which is integrable by (⋆). Thus one can use the

dominated convergence theorem to deduce that

lim
x2→x1

|h(x1)− h(x2)| ≤
∫

I2

lim
x2→x1

|g(x1, y)− g(x2, y)|
ω2(y)

G(H1, y)
dy = 0

from the continuity of g.

We now reformulate the existence results and the properties of h in terms of the original variables
(ϕ, ψ). Since 0 < h ≤ 1 everywhere, equation (17) defines a proper measurable function ϕ on I

1, non-
negative and only vanishing for values x where ω1(x) = 0, which is moreover continuous from (H.viii),
Proposition 10 and the fact that h > 0. This proves Theorem I.ii),iii) and the existence of ϕ solution
of (S’1). Given such a ϕ, one can define a measurable solution ψ from (S’2). By property ϕ ≥ 0,
(H.i),(H.ii), we have that ψ ≥ 0, which proves Theorem I.i),iv). It remains to establish Theorem I.v).
Let A′ = {y ∈ I

2|ω2(y) > 0}, and A′′ = {y ∈ A′|ψ(y) = 0} ⊆ A′. The goal is to show that A′′ has
measure 0. To this end, we compute:

∫

I2

g(x, y)ψ(y)dy =

∫

A′\A′′

g(x, y)ψ(y)dy

since by (S’2), ψ = 0 outside of A′, and by definition of A′′, ψ = 0 on A′′. We can then multiply
the above equation by ϕ(x) and integrate over I1. Since all functions involved are non-negative and
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measurable, one can decide the order of integration by Fubini-Tonnelli. On the one hand, we have

∫

I1

ϕ(x)

[

∫

A′\A′′

g(x, y)ψ(y)dy

]

dx =

∫

I1

ϕ(x)

[
∫

I2

g(x, y)ψ(y)dy

]

dx

=

∫

I2

ψ(y)

[
∫

I1

ϕ(x)g(x, y)dx

]

dy

=

∫

I2

ω2(y)dy, from (S’2)

= 1

On the other hand, we get:

∫

I1

ϕ(x)

[

∫

A′\A′′

g(x, y)ψ(y)dy

]

dx =

∫

A′\A′′

ψ(y)

[
∫

I1

ϕ(x)g(x, y)dy

]

dx

=

∫

A′\A′′

ω2(y)dy, from (S’2)

We deduce that
∫

A′\A′′

ω2(y)dy =

∫

A′

ω2(y)dy

which is only possible if A′′ has measure 0, since ω2 > 0 on A′′ ⊂ A′. This concludes the proof of
Theorem I. .

4 Second existence theorem and uniqueness theorem

In [25, Section 3, pp. 97-102], Fortet proceeds to derive an existence theorem for System (S) still under
hypotheses (H.i)-(H.viii) but without assuming the integrability condition (⋆). The latter condition
is replaced by the assumption that the kernel function g(x, y) be of class (B) [25, p. 97]. The latter
property appears in general hard to check. We have therefore decided to present only a special case
of the second existence theorem where this property can be readily verified.

Theorem II. [25, p. 101] Suppose I
1 = I

2 = R and that g(x, y) = U(x − y) only depends on the
difference t = x − y. Assume, moreover, that for t sufficiently large U(t) is non increasing and for t
sufficiently small it is non decreasing or viceversa. Assume, finally, (H.i)-(H.viii). Then system (S)
admits a solution (ϕ(x), ψ(y)). The function ϕ(x) is zero for the values x for which ω1(x) is zero. On
the complement, ϕ is strictly positive and continuous. The non negative function ϕ(y) is measurable
and equal to zero, up to a zero measure set, only for the values y where ω2(y) = 0.

Observation 2. Notice that this theorem applies to the important case where g(x, y) = p(0, x, 1, y)
the heat kernel (1) and arbitrary continuous densities ω1(x) and ω2(y) with support equal to the real
line.

Sketch of the Proof of Theorem II, pp.98-101. 1. A continuous, positive function ρ is introduced
which satisfies, in particular, the following property:

∫

I1

ω1(x)ρ(x)
[
∫

I2

g(x, z)ω2(z)dz

]dx < +∞.
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2. By Theorem I and by construction of ρ, the system























ϕ̄(x)

∫

I2

g(x, y)ψ̄(y)dy = ω1(x)ρ(x),

ψ̄(y)

∫

I1

g(x, y)ϕ̄(x)dx = ω2(y),

admits a solution (ϕ̄, ψ̄).

3. The same techniques as in the Lemma and the proof of Theorem I permit to show that there
exists a fixed point for the operator Ω̄ defined on functions of class (C) by:

Ω̄(H)(x) =
ϕ̄(x)

ω1(x)

∫

I2

g(x, y)
ω2(y)

[
∫

A

g(z, y)
ϕ̄(z)

H(z)
dz

]dy.

The fixed point h, which is not necessarily of class (C), enjoys properties similar to the fixed
point of Ω defined in (1’).

4. Set






ϕ(x) =
ϕ̄(x)

h(x)
, x ∈ A,

ϕ(x) = 0, x ∈ I
1\A.

Then ϕ is a solution of (S’1). The other function ψ can then be recoverd from (S’2).
The assumptions of Theorem II are used to show that the various integrals in this proof are well

defined.

Fortet defines as a nonnegative (positive in French) solution of (S) to be a pair of nonnegative
functions (ϕ(x), ψ(y)) satisfying (S) and the following properties: They are a.e. finite, and different
from zero (up to a zero measure set) for the values where ω1 6= 0 and ω2 6= 0, respectively. Moreover,
under hypotheses (H.i)-(H.viii), ϕ(x) is zero at the same time as ω1 and ψ is zero at the same time
as ω2. The proof of the following uniqueness theorem [25, pp.102-104] has been slightly reformulated
and completed.

Theorem III. [25, p. 104] Assume (H.i)-(H.viii). Let (ϕ1, ψ1) and (ϕ2, ψ2) be two nonnegative and
measurable solutions of system (S). Then, there exists a positive constant c such that

ϕ1(x)

ϕ2(x)
≡ c ≡ ψ1(y)

ψ2(y)
. (42)

Proof. Let (ϕ1, ψ1), (ϕ2, ψ2) be two solutions of System (S). According to Theorem I or II, ϕ1 and
ϕ2 are positive and finite on the support A1 of ω1. Hence, there exists a value of x0 ∈ A1 such that

0 < ϕ1(x0) < +∞, 0 < ϕ2(x0) < +∞.

Recall that if (ϕ2, ψ2) is a solution of System (S), then so is (ϕ̃2, ψ̃2) = (kϕ2,
1
kψ2) for k 6= 0. Setting

k = ϕ1(x0)
ϕ2(x0)

, one has that

ϕ̃2(x0) =
ϕ1(x0)

ϕ2(x0)
ϕ2(x0) = ϕ1(x0).

Thus, without loss of generality, one can always pick two solutions (ϕ1, ψ1), (ϕ2, ψ2) where the ϕ agree
at one point x0 ∈ I

1, so that:
0 < ϕ1(x0) = ϕ2(x0) < +∞.
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Let A1 = {x ∈ I
1|ω1(x) > 0}. On A1, we define

h1(x) =
ω1(x)

ϕ1(x)
, h2(x) =

ω2(x)

ϕ2(x)
.

Then, h1 and h2 are two distinct solutions of equation (16). Let, as before,

G(H, y) =

∫

A1

g(z, y)
ω1(z)

H(z)
dz.

Then, on A2 = {y ∈ I
2|ω2(y) > 0}, we have

ψ1(y) =
ω2(y)

G(h1, y)
, ψ2(y) =

ω2(y)

G(h2, y)
.

From this we deduce that G(h1, y) and G(h2, y) are a.e. finite on A2. Let h(x) = max(h1, h2). Then
G(h, y) is a.e. finite on A2 and

0 < h(x0) = h1(x0) = h2(x0) < +∞.

Let us set

h′(x) =

∫

I2

g(x, y)
ω2dy

G(h, y)
.

By the same argument used to prove Lemma iv), it follows that

∫

A1

h′

h
ω1dx = 1. (43)

Since h ≥ h1, it follows from Proposition 1 that also h′ ≥ h1. Similarly, h ≥ h2 implies h′ ≥ h2. We
infer that h′ ≥ h. It then follows from (43) that, a.e. on A1,

h′(x) = h(x).

From h ≥ h1, it follows that G(h, y) ≤ G(h1, y). Moreover,

∫

I2

g(x0, y)
ω2(y)dy

G(h, y)
= h(x0) = h1(x0) =

∫

I2

g(x0, y)
ω2(y)dy

G(h1, y)
.

Thus, a.e. on A2, we have
G(h, y) = G(h1, y).

We conclude that everywhere on I
1 we have h = h1, Similarly, we get h = h2 and, finally, h1 = h2

everywhere.

The following remark is on [25, p.104]:

Remark I. All the results of this paper hold with minor modifications of the statements if one merely
assumes that ω1 and ω2 are measurable integrable functions.
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A Proof of (32) from Theorem I

Let Z ⊂ I
2 be the set of {y ∈ I

2|g(x0, y) = 0}.
Define Zk = {y ∈ I

2| g(x0, y) < 1
k} for k ∈ N

∗. We have Zk+1 ⊂ Zk, and Zk ↓ Z as k → +∞.
By assumption (H.vi) we know that Z has Lebesgue measure 0. From the continuity of g (H.iv),

we also know that Z is closed.
Hence m(Zk) → 0 as k → +∞.
Denote by I

2
k = I

2\Zk. Then we have I
2
k ⊂ I

2
k+1 and I

2
k ↑ I

2\Z as k → +∞.

Since

H ′
n(x0) =

∫

I2

g(x0, y)
ω2(y)

G(Hn, y)
dy → 0, as n→ +∞

∀ǫ > 0, we have for n large enough:
∫

I2

g(x0, y)
ω2(y)

G(Hn, y)
dy < ǫ

Fix ǫ > 0, k ∈ N
∗. We then have for n large enough:

0 ≤
∫

I2
k

g(x0, y)
ω2(y)

G(Hn, y)
dy +

∫

I2\I2
k

g(x0, y)
ω2(y)

G(Hn, y)
dy < ǫ

and in particular, by non-negativity, the first integral yields:

0 ≤
∫

I2
k

ω2(y)

G(Hn, y)
dy < kǫ

This implies that the measure ω2(y)
G(Hn,y)

dy converges weakly to 0 on I
2
k. Indeed, it is the case when

evaluated on any step function with support included in I
2
k, and step functions are dense in the family

of bounded continuous functions.

We would like the measure ω2(y)
G(Hn,y)

dy to converge to 0 for any step function which support I is

included in I
2, and not merely on I

2
k.

Pick a subset I ⊂ I
2, and consider:

∫

I2

1I(y)
ω2(y)

G(Hn, y)
dy =

∫

I2
k
∩I

ω2(y)

G(Hn, y)
dy +

∫

(I2
k
∩I)C

ω2(y)

G(Hn, y)
dy

The first integral converges to 0 as n → +∞, since the measure ω2(y)
G(Hn,y)

dy converges weakly to 0 on

I
2
k.

As for the second integral, we have that Hn ≤ H1, so
ω2(y)

G(Hn,y)
≤ ω2(y)

G(H1,y)
which implies:

∫

(I2
k
∩I)C

ω2(y)

G(Hn, y)
dy ≤

∫

(I2
k
∩I)C

ω2(y)

G(H1, y)
dy ≤

∫

Zk

ω2(y)

G(H1, y)
dy

where the last inequality comes from (I2k ∩ I)C ⊂ Zk.

Condition (⋆) states that
∫

I2

ω2(y)
G(H1,y)

dy < +∞, thus we know that the measure ω2(y)
G(H1,y)

dy is

absolutely continuous with respects to the Lebesgue measure m on I
2. This implies that the second

integral converges to 0, as k → +∞ since m(Zk) → 0.

Hence, for any I ⊂ I
2,
∫

I2 1I(y)
ω2(y)

G(Hn,y)
dy → 0 as n→ +∞. Since step functions are dense in the

family of bounded continuous functions, we conclude that the measure ω2(y)
G(Hn,y)

dy converges weakly

to 0 on I
2 as n→ +∞.
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