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Abstract

We develop a thermo-electro-mechanical continuum theory for a bone remodeling
model in order to understand and predict the features of the remodeling process un-
der the control of the strain for a normal living bone. Bone remodeling refers to the
continual processes of growth, reinforcement and resorption which arise in living bone.
Unlike other approaches to the subject, we follow the Green-Naghdi approach to ther-
modynamics that employs the concept of thermal displacement and an entropy equality
instead of an entropy inequality.

We study the bone remodeling process in the context of thermo-electro-elasticity
and introduce new balance laws of momentum, energy and entropy. Then we derive
the local balance laws, the constitutive assumptions, the constitutive restrictions and
finally focus on the case of transversely isotropic bodies. Last but not least, we prove
that the mathematical model is well-posed in the nonlinear case.

1 Introduction

Our main goal is to find a model for the normal adaptive processes that arise in bone
remodeling, such as mass deposition or resorption under the influence of the strain. The
bone matrix is modeled as a porous elastic solid whose porosity may be modified by the
processes above. The fluid perfusant from the pores is not considered in this model, but
its influence on the transfer of mass, momentum, energy or entropy to the bone matrix is
considered when writing the balance and constitutive equations for the porous elastic solid.
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Piezoelectric materials exhibit a response to electrical-mechanical coupling, which repre-
sents an important contribution to the electrical-mechanical interaction in the bone remod-
eling process. Therefore, the study of the piezoelectric effect on bone remodeling has high
interest in applied biomechanics. The effects of mechano-regulation and electrical stimula-
tion on bone healing are explained.

Also thermomechanical continuum theories involving chemical reaction and mass transfer
between two components have been developed as a model for bone remodeling [10]. Such
theories describe an elastic material that adapts its structure to applied loading. Their
objective is the formulation of a model for the understanding and prediction of the strain
controlled remodeling properties of normal living bone.

Becker and co-workers ([3], [4], [5], [6], [25]) have also explored tissue electrical prop-
erties in connection with growth, repair and regeneration. For example, [5] partial limb
regeneration in rats was stimulated by application of weak electrical signals.

There is an increasing interest in the process of bone remodeling, since several authors
propose different approaches for describing this process, see [14], [15], [21], [26]. Moreover,
there exist other models for describing bodies with porosity, see [9], [23]. A detailed ac-
count of different models for heat conduction is given in [13]. Examples of applications of
transversely isotropic bodies are given for example in [12].

Here we develop a thermo-electro-mechanical continuum theory for a bone remodeling
model that extends the aforementioned [10] by including electrical fields too. We follow the
Green-Naghdi approach to thermodynamics that uses the concept of thermal displacement
and an entropy equality instead of an entropy inequality. Following [10] and [13], we study
the bone remodeling process in the context of thermo-electro-elasticity and introduce new
balance laws of momentum, energy and entropy. Then we derive the local balance laws,
the constitutive assumptions, the constitutive restrictions and finally focus on the case of
transversely isotropic bodies. Last but not least, we prove that the mathematical model is
well-posed in the nonlinear case by means of Gronwall’s inequality. We can use Gronwall’s
inequality for proving a continuous dependence result in the linear case as well, see [8].

The paper is organized in five sections, the first being the introduction. The second
section presents the newly introduced balance equations, while the third section provides the
constitutive assumptions and restrictions. In the fourth section we focus on the transversely
isotropic case in order to study wave propagation, while in the fifth section we prove a result
of well-posedness in the nonlinear case.

2 Balance equations

In this section we introduce the balance equations for mass, momentum, energy and entropy
following the definitions from [10] and [13]. We apply these equations to the porous matrix B
without perfusant. We add transfer terms in each equation in order to model the interaction
of B with the internal perfusant. We have ∂B the surface of B and n a unit normal to the
surface ∂B.

The bone matrix B is modeled as a finitely deformable, heat conducting dielectric -
electrically polarizable interacting with the electric field -, elastic continuum that occupies
at time t the closed region (i.e. connected point set) B = Bt in the euclidean space R3. The
region B0 occupied by B at a fixed (initial) time t0 will be used as a reference configuration.
Material particles x are associated with their positions X ∈ R3 in B0.

A superimposed dot denotes the material or substantial time derivative. We denote by
‘∇x · ...’ the spatial divergence operator and by ‘∇X · ...’ the material divergence operator.
The symbol d/dt indicates the material time derivative, dv is the infinitesimal element of
volume and ds is an element of surface area.
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For the concepts below we use the definitions from [10]. The motion χ(t, X) gives the
place x of the particle X at time t

x = χ(t, X) . (1)

The velocity is given by

v = ẋ =
∂χ

∂t
(2)

and the deformation gradient F by

F =
∂χ

∂X
. (3)

Note that J = detF > 0 on B̄ × I. The velocity gradient L is given by

L =
∂v

∂x
(4)

and by the chain rule we have
Ḟ = LF . (5)

Moreover, we have

(∇x · v) detF = (trL) detF =
.

detF . (6)

The symmetric part D̃ of L is the rate of deformation tensor

D̃ =
1

2
(L+LT ) . (7)

Following [10] and [16], we will assume the bulk density ρ of the porous matrix B to be
expressed in the form

ρ = γν , (8)

where γ is the density of the material comprised in the porous matrix and ν, such that
0 ≤ ν ≤ 1, is the volume fraction of that material. As in [16], both γ and ν can be taken as
field variables.

Nomenclature for the mechanical magnitudes

B porous solid matrix structure
B = Bt spatial configuration at time t of B
B0 unstrained reference state of B
ν volume fraction of the matrix material in B
γ density of the material comprised in B
ρ bulk density ρ of B (ρ = γν)
c rate at which mass per unit volume is added to or removed from B
τ Cauchy stress tensor
b body force per unit mass
p force the perfusant applies to the porous matrix structure B

Integral forms of the balance equations

The balance of mass for the porous matrix structure B without perfusant is given by

d

dt

∫
B

γν dv =

∫
B

c dv. (9)
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By performing the derivative in (9) we are led to the field equation

.
γν +γν∇x · v = c , (10)

which by (6) is equivalent to
.

γν detF = c detF . (11)

According to [10], mass is being added to the body, so the classical transport theorem must
be written in the modified form

d

dt

∫
B

γν f dv =

∫
B

(γνḟ + cf) dv , (12)

where f denotes an arbitrary field quantity. This becomes the usual Reynolds’ transport
theorem when c is zero. We can prove (12) by using (10).

Nomenclature for electrical magnitudes [13]

φ electric potential per unit volume
ε0 vacuum electric permittivity
EM = −∇xφ quasistatic Maxwellian electric field [27, p.589]
P electric polarization vector per unit volume
π = P /ρ electric polarization vector per unit mass
D = ε0E

M + P electric displacement vector
T E Maxwell stress tensor

Following [29], we introduce Gauss’ law (the charge equation)∫
B

∇x ·Ddv = 0 (13)

and Faraday’s law in quasistatic form∫
C

EM · dl = 0. (14)

Extending the approach from [10], [13] and [27], we consider that the porous matrix
structure satisfies the following balance of momentum

d

dt

∫
B

γνv dv =

∫
∂B

τn ds+

∫
B

γνb dv

+

∫
B

(p+ cv) dv +

∫
B

P · ∇xEM dv.

(15)
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Nomenclature for thermal magnitudes [13]

α thermal displacement [17]
β = ∇Xα thermal displacement material gradient [17]
T = α̇ empirical temperature (‘thermal displacement rate’ [17])
γ = ∇xT empirical-temperature spatial gradient
θ absolute temperature
g = ∇xθ absolute-temperature spatial gradient
b external body force per unit mass
r external rate of supply of heat per unit mass
s = r/θ external rate of supply of entropy per unit mass
ξ internal rate of supply of entropy per unit mass
q heat flux vector per unit area
p entropy flux vector per unit area
i extra entropy flux vector per unit area
η density of entropy per unit mass
e internal energy density per unit mass
h̄ energy transfer between matrix and perfusant
¯̄h part of h̄ contributing to entropy production

h = h̄− ¯̄h part of h̄ not contributing to entropy production

Extending the approach from [10], [13] and [27], we assume that the porous matrix
structure satisfies the following balance of energy

d

dt

∫
B

ρ(e+
1

2
v · v) dv =

∫
B

ρ(b · v + r) dv

+

∫
∂B

(v · τn− q · n) ds+

∫
B

(p · v +
1

2
cv · v + ce+ h) dv

+

∫
B

EM · ρπ̇ dv +

∫
B

(
P · ∇xEM

)
· v dv.

(16)

Following [17] and extending it to the present situation, we assume the entropy equality
to have the form

d

dt

∫
B

ρη dv =

∫
B

ρ(s+ ξ) dv −
∫
∂B

k ds+

∫
B

(
h

θ
+ cη

)
dv. (17)

Lastly,
k = p · n. (18)

Local balance laws

By considering that we have enough regularity, our integral forms of the balance laws
of mass, linear momentum, moment of momentum, entropy and energy, i.e. equations (9),
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(15), (17), (16), (13) and (14) lead to the system

ρ̇+ ρ∇x · v = c,

ρv̇ = ∇x · τ + ρb+ p+ P · ∇xEM ,

skw τ + skwT E = 0,

ρη̇ = ρ(s+ ξ)−∇x · p+ h/θ,

ρė = τ ·L−∇x · q + ρr + h+EM · ρπ̇,
∇x ×EM = 0,

∇x ·D = 0,

(19)

where the internal energy density e is given by

e = ψ + θη +EM · π. (20)

According to [13], the Maxwell stress tensor T E is

T E = D ⊗EM − 1

2
ε0
(
EM ·EM

)
I (21)

and the total stress tensor σ is
σ = τ + T E. (22)

Then we are led to the reduced energy equation by eliminating r between equations (19)4,
(19)5 and employing (20)

ρ(ψ̇ + θ̇η) + ρθξ − τ ·L+∇x · q − θ∇x · p− h+ ĖM · P = 0, (23)

where the transfer of energy between the matrix and the perfusant is characterized by the
entropy production term

h = h− h. (24)

To account that not all energy transfer h̄ contributes to entropy production, we assume
h̄ ≥ ¯̄h, that is,

h ≥ 0. (25)

As in [13], we define the thermal displacement

α = α(X, t) =

∫ t

0

T (X, τ)dτ + α0(X), t > 0. (26)

In the Green-Naghdi type II theory we have

q(X, t) = −λ∇α(X, t), λ > 0, (27)

while in the Green-Naghdi type III theory we have

q(X, t) = −λ∇α(X, t)− k∇α̇(X, t). (28)
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3 Constitutive assumptions and restrictions

The specific Gibbs free energy (also named free enthalpy [18, p.101]) density per unit mass
is given by (according to [27, p.596] and [1])

ψ = e− θη −EM · π. (29)

Our constitutive assumptions will be similar to those made for elastic solids, but we
will add an independent variable which is a measure of the volume fraction of the matrix
structure. By [10], let

ν0 ≡ νJ (30)

denote the volume fraction of the matrix material in the unstrained reference state under
the assumption γ constant. Indeed, the definition (30) is valid only for a constant density γ
of the matrix structure. If we replace the definition (30) in the statement of mass balance
(11), then we obtain a relation between ν0 and c by [10]

ν̇0 =
c

γ
J . (31)

Note that our ν0 is a new notation for ξ in [10] and it is motivated by the standard equality
ρ0 = ρJ , where J = detF .

We need constitutive equations for the specific free energy ψ, the entropy η, the tempera-
ture θ, the entropy flux vector per unit area p, the heat flux vector per unit area q, the stress
tensor per unit area τ , the internal rate of supply of entropy per unit mass ξ, the entropy
production term h, the rate c at which mass per unit volume is added or removed and the
electric polarization vector per unit volume P . We assume that each of these quantities

ψ, η, θ, p, q, τ , ξ, h, c, P (32)

is an objective function of the variables (T, β, γ, F , EM , ν0)

ψ = ψ̂(T, β, γ, F , EM , ν0),
η = η̂(T, β, γ, F , EM , ν0),

θ = θ̂(T, β, γ, F , EM , ν0),

ξ = ξ̂(T, β, γ, F , EM , ν0),
q = q̂(T, β, γ, F , EM , ν0),
τ = τ̂ (T, β, γ, F , EM , ν0),

h = ĥ(T, β, γ, F , EM , ν0),
c = ĉ(T, β, γ, F , EM , ν0),

P = P̂ (T, β, γ, F , EM , ν0)

(33)

and we consider the following general form for the constitutive relation of the entropy flux

p =
1

θ
q + i, (34)

where i is usually named extra entropy flux

i = î(T, β, γ, F , EM , ν0). (35)

Note that by (34) we have, the same as in [13]

∇x · q − θ∇x · p = g · p−∇x · (θi) (36)

7



and the reduced energy equality (23) leads to

ρ(ψ̇ + θ̇η) + ρθξ − τ ·L+ g · p−∇x · (θi)− h+ ĖM · P = 0. (37)

We assume that at constant temperature and zero body force, there exists a unique
zero-strain reference state for all values of ν0 and we write this constitutive assumption as

τ = τ̂ (T0, β0, 0, I, 0, ν0) = 0 . (38)

In the sequel we will present some constitutive restrictions. We will analyze the restric-
tions on the response functions in the case i = 0, we will find conditions in order to satisfy
the principle of material objectivity and we will employ the dissipation principle in order to
obtain restrictions on the internal rate of entropy supply.

If we assume that i = 0, then the reduced energy equality (37) leads to

ρ(ψ̇ + θ̇η) + ρθξ − τ ·L+ g · p− h+ ĖM · P = 0. (39)

At a formal level, the novelty of our approach compared to the results from [13] consists
in the introduction of the independent variable ν0 in order to measure the volume fraction
of the matrix structure.

In the sequel, we will need the following assumption from [17, (7.2)]

∂θ̂

∂T
> 0. (40)

Remark 3.1 The function θ̂ is invertible by assumption (40), so we can replace the depen-
dence on T by θ in any response function [13].

Proposition 3.1 Assume that the constitutive equations (33) fulfill

q = θp (i = 0) (41)

and (40). Therefore, if the reduced energy equation (37) holds true along any smooth enough
process p, then we have the following restrictions on the response functions

ψ = ψ̂(T, β, F , EM , ν0) , θ = θ̂(T ), (42)

τ̂ = ρF
∂ψ̂

∂F
, P̂ = −ρ ∂ψ̂

∂EM
, η̂ = −∂ψ̂

∂θ
, (43)

ρ
∂ψ̂

∂β
· F Tγ + ρ

∂ψ̂

∂ν0

ν̇0 + ρ θ̂ ξ̂ + p̂ · ĝ − ĥ = 0, (44)

where
ν̇0 = γ−1ĉ(T, β, γ, F , EM , ν0)J,

ĝ =
∂θ̂

∂T

(
F T
)−1

β̇.
(45)

Proof. If we introduce the constitutive equations (33) into the reduced energy equation
(23), then we obtain

ρ

[(
∂ψ̂

∂T
+ η̂

∂θ̂

∂T

)
Ṫ +

(
∂ψ̂

∂β
+ η̂

∂θ̂

∂β

)
· β̇ +

(
∂ψ̂

∂γ
+ η̂

∂θ̂

∂γ

)
· γ̇

+

(
∂ψ̂

∂ν0

+ η̂
∂θ̂

∂ν0

)
ν̇0

]
+

[
ρ

(
∂ψ̂

∂EM
+ η̂

∂θ̂

∂EM

)
+ P̂

]
· ĖM

+

[
ρ

(
∂ψ̂

∂F
+ η̂

∂θ̂

∂F

)
− F−1τ̂

]
· Ḟ + ρθ̂ξ̂ + p̂ · ĝ − ĥ = 0, (46)
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where the spatial temperature gradient ĝ = ∇x θ̂ reads by (33)3

ĝ =
∂θ̂

∂T
γ +

∂θ̂

∂β
∇x β +

∂θ̂

∂γ
∇x γ +

∂θ̂

∂F
∇x F +

∂θ̂

∂EM
∇xEM +

∂θ̂

∂ν0

∇x ν0 (47)

Step 1 By the arbitrariness of Ṫ , γ̇, Ḟ and ĖM equation (46) yields

∂ψ̂

∂T
+ η̂

∂θ̂

∂T
= 0 ,

∂ψ̂

∂γ
+ η̂

∂θ̂

∂γ
= 0 , (48)

ρ

(
∂ψ̂

∂F
+ η̂

∂θ̂

∂F

)
− F−1τ̂ = 0, (49)

ρ

(
∂ψ̂

∂EM
+ η̂

∂θ̂

∂EM

)
+ P̂ = 0. (50)

Thus, using (47), (46) reduces to

p̂ ·

[
∂θ̂

∂T
γ +

∂θ̂

∂β
∇x β +

∂θ̂

∂γ
∇x γ +

∂θ̂

∂F
∇x F +

∂θ̂

∂EM
∇xEM +

∂θ̂

∂ν0

∇x ν0

]

+ρ

(
∂ψ̂

∂β
+ η̂

∂θ̂

∂β

)
· β̇ + ρ

(
∂ψ̂

∂ν0

+ η̂
∂θ̂

∂ν0

)
ν̇0 + ρθ̂ξ̂ − ĥ = 0

(51)

Step 2 Now

∇x γ, ∇x F , ∇xEM

simply appear in (51) explicitly as right factors, so their arbitrariness leads to the relations

∂θ̂

∂γ
= 0,

∂θ̂

∂F
= 0,

∂θ̂

∂EM
= 0, (52)

thus

θ = θ̂(T, β, ν0), ĝ =
∂θ̂

∂T
γ +

∂θ̂

∂β
∇x β +

∂θ̂

∂ν0

∇xν0. (53)

As a consequence (51), (48)2 and (49) respectively become

ρ

(
∂ψ̂

∂β
+ η̂

∂θ̂

∂β

)
· β̇ + ρ

(
∂ψ̂

∂ν0

+ η̂
∂θ̂

∂ν0

)
ν̇0 + ρθ̂ξ̂+

+ p̂ ·

(
∂θ̂

∂T
γ +

∂θ̂

∂β
∇x β +

∂θ̂

∂ν0

∇xν0

)
− ĥ = 0

(54)

∂ψ̂

∂γ
= 0 (ψ = ψ̂(T, β, F , EM , ν0)), τ̂ = ρF

∂ψ̂

∂F
. (55)

Step 3 Note that ∇x β = ∇x∇Xα appears in (54) once as coefficient of ∂θ̂/∂β and by

its arbitrariness we have ∂θ̂/∂β = 0. Similarly, ∇xν0 appears in (54) once as coefficient of

∂θ̂/∂ν0 and, by arbitrariness, we have ∂θ̂
∂ν0

= 0. Thus

θ = θ̂(T ) , ĝ =
∂θ̂

∂T
γ. (56)
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Moreover, the following relation holds

β̇ = F Tγ.

Accordingly, (54) reduces to (44), where (45) is obtained by replacing (33)8 into (31). Lastly,
from (56), using ∂θ̂/∂T > 0, equation (48)1 gives

η̂ = −∂ψ̂
∂θ

(57)

In the sequel, we study the principle of material objectivity. To this end, we consider the
following quantities

β̇ = F Tγ = F T∇xT, (58)

E =
1

2

(
F TF − I

)
, W = F TEM , (59)

where E is the Green-Lagrange strain tensor. If ψ is an arbitrary function of the referential
quantities T,β, β̇,E,W , ν0, then it is invariant under a rigid rotation. The invariance of
the constitutive functions under rigid rotations of the deformed and polarized body ensures
that the principle of material objectivity holds true. Therefore, to any objective response

function Ω̂ in (33), we associate an invariant response function Ω̃ ∈
{
ψ̃, η̃, θ̃, ξ̃, q̃, τ̃ , h̃, c̃, P̃

}
by the equality

Ω̃(T,β, β̇,E,W , ν0) := Ω̂(T,β,γ,F ,EM , ν0) (60)

where (γ,F ,EM) and (β̇,E,W ) are related by equations (58) and (59) and β̇,E,W are
independent. In the sequel, we will need the assumption

∂θ̃

∂T
> 0. (61)

Proposition 3.2 Let us assume that the constitutive functions are frame-indifferent and
invariant under rigid rotations of the deformed and polarized body, i.e. they are of the form

Ω = Ω̃(T,β, β̇,E,W , ν0). (62)

Then we consider that
q = θp (63)

and (61) hold true and define the internal energy response function ẽ as in equation (20).
If the reduced energy equation (39) holds true along any process that is smooth enough, then
the response functions satisfy the following conditions

ψ = ψ̃(T,β,E,W , ν0), θ = θ̃(T ), (64)

ρ

[
∂ψ̃

∂E
F T +

∂ψ̃

∂W
⊗EM +

∂ψ̃

∂ν0

ν det(F )
(
F−1

)T]− F−1τ̃ = 0, (65)

ρ
∂ψ̃

∂W
F T + P̃ = 0, (66)

η̃ = −∂ψ̃
∂θ
, (67)

ρ
∂ψ̃

∂β
· β̇ + ρ

∂ψ̃

∂ν0

ν̇0 + ρθ̃ξ̃ − h̃+ p̃ · ∂θ̃
∂T

(
F T
)−1

β̇ = 0. (68)
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Proof We use Ω̃ instead of Ω̂, as in the identity (60) and compute the derivatives with
respect to time that appear in the reduced energy equation (39). Hence, we are led to

∂Ω̂

∂F
=
∂Ω̃

∂β̇
⊗ γ +

∂Ω̃

∂E
F T +

∂Ω̃

∂W
⊗EM +

∂Ω̃

∂ν0

ν det(F )
(
F−1

)T
, (69)

∂Ω̂

∂EM
=

∂Ω̃

∂W
F T , (70)

∂Ω̂

∂γ
=
∂Ω̃

∂β̇
F T (71)

since
∂

∂Y
det(Y ) = det(Y )

(
Y −1

)T
. (72)

Hence, we can write the reduced energy equation (46) in the form

ρ

[(
∂ψ̃

∂T
+ η̃

∂θ̃

∂T

)
Ṫ +

(
∂ψ̃

∂β
+ η̃

∂θ̃

∂β

)
· β̇ +

(
∂ψ̃

∂β̇
F T + η̃

∂θ̃

∂β̇
F T

)
· γ̇+

+

(
∂ψ̃

∂ν0

+ η̃
∂θ̃

∂ν0

)
ν̇0

]
+

[
ρ

(
∂ψ̃

∂W
F T + η̃

∂θ̃

∂W
F T

)
+ P̃

]
· ĖM+

+

{
ρ

[
∂ψ̃

∂β̇
⊗ γ +

∂ψ̃

∂E
F T +

∂ψ̃

∂W
⊗EM +

∂ψ̃

∂ν0

ν det(F )
(
F−1

)T
+

+η̃

(
∂θ̃

∂β̇
⊗ γ +

∂θ̃

∂E
F T +

∂θ̃

∂W
⊗EM +

∂θ̃

∂ν0

ν det(F )
(
F−1

)T)]−
− F−1τ̃

}
· Ḟ + ρθ̃ξ̃ + p̃ · g̃ − h̃ = 0,

(73)

where

g̃ =
∂θ̃

∂T

(
F T
)−1

β̇ +
∂θ̃

∂β
∇xβ +

∂θ̃

∂β̇
∇xβ̇ + +

∂θ̃

∂E
∇xE +

∂θ̃

∂W
∇xW +

∂θ̃

∂ν0

∇xν0 (74)

By the arbitrariness of Ṫ , γ̇, Ḟ , ĖM and by (73) we are led to

∂ψ̃

∂T
+ η̃

∂θ̃

∂T
= 0, (75)

∂ψ̃

∂β̇
F T + η̃

∂θ̃

∂β̇
F T = 0, (76)

ρ

(
∂ψ̃

∂W
F T + η̃

∂θ̃

∂W
F T

)
+ P̃ = 0, (77)

ρ

[
∂ψ̃

∂β̇
⊗ γ +

∂ψ̃

∂E
F T +

∂ψ̃

∂W
⊗EM +

∂ψ̃

∂ν0

ν det(F )
(
F−1

)T
+

+η̃

(
∂θ̃

∂β̇
⊗ γ +

∂θ̃

∂E
F T +

∂θ̃

∂W
⊗EM +

∂θ̃

∂ν0

ν det(F )
(
F−1

)T)]− F−1τ̃ = 0

(78)
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and we are only left with

ρ

(
∂ψ̃

∂β
+ η̃

∂θ̃

∂β

)
· β̇ + ρ

(
∂ψ̃

∂ν0

+ η̃
∂θ̃

∂ν0

)
ν̇0 + ρθ̃ξ̃ + p̃ · g̃ − h̃ = 0. (79)

We know that ∇xβ̇, ∇xE and ∇xW are arbitrary. Hence (74) and (79) give

∂θ̃

∂β̇
= 0,

∂θ̃

∂E
= 0,

∂θ̃

∂W
= 0. (80)

Hence θ = θ̃(T,β, ν0) and (74) reduces to

g̃ =
∂θ̃

∂T

(
F T
)−1

β̇ +
∂θ̃

∂β
∇xβ +

∂θ̃

∂ν0

∇xν0. (81)

We have ∇xβ arbitrary, hence ∂θ̃
∂β

= 0. As in the previous proposition, we assume that ∇xν0

is arbitrary. Hence, ∂θ̃
∂ν0

= 0 and we obtain (64)2.
In the sequel, we derive restrictions on the internal rate of entropy supply ξ by means of

the statement of the dissipation principle, which follows from the second law of thermody-
namics. From (68) we obtain

ρξ̃ = −1

θ̃

[
ρ
∂ψ̃

∂β
· β̇ + ρ

∂ψ̃

∂ν0

ν̇0 − h̃+ p̃ · ∂θ̃
∂T

(
F T
)−1

β̇

]
. (82)

The dissipation inequality ξ̃ ≥ 0 and the assumption (25) lead to(
ρ
∂ψ̃

∂β
+
∂θ̃

∂T
F−1p̃

)
· β̇ + ρ

∂ψ̃

∂ν0

ν̇0 − h̃ ≤ 0. (83)

As in the Fourier case, we consider

ρ
∂ψ̃

∂β
+
∂θ̃

∂T
F−1p̃ = −kβ̇, k = k̃(T ) ≥ 0, (84)

∂ψ̃

∂ν0

= −k1ν̇0, k1 = k̃1(T ) ≥ 0, (85)

then the inequality above is satisfied. We may define T̄ = θ̃−1 because θ̃ is invertible. Hence,
we obtain

p̃ = −T̄ ′F

(
ρ
∂ψ̃

∂β
+ k̃β̇

)
. (86)

where T̄ ′ = dT̄
dθ

. Therefore, we are led to

ξ̃ =
1

θ̃

(
k̃

ρ
β̇ · β̇ + k̃1ν̇

2
0 +

h̃

ρ

)
. (87)

Moreover, we obtain

q̃ = −θT̄ ′(θ)F

(
ρ
∂ψ̃

∂β
+ k̃F Tγ

)
. (88)
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Compared to the model defined in [13], in our model for adaptive thermo-electro-elasticity
we introduce an entropy production term and the time derivative of the volume fraction of
the matrix structure in the expression of the internal entropy supply rate per unit mass.

In the sequel, we use the definition of the so-called elastic stress from [13] and [28]

T := τ + P ⊗EM , (89)

where EM =
(
F T
)−1

W . Hence, we obtain

τ̃ = ρF

[
∂ψ̃

∂E
F T +

∂ψ̃

∂W
⊗EM +

∂ψ̃

∂ν0

ν det(F )
(
F−1

)T]
, (90)

P̃ = −ρF ∂ψ̃

∂W
. (91)

Thus, we are led to

T = ρF

[
∂ψ̃

∂E
F T +

∂ψ̃

∂ν0

ν det(F )
(
F−1

)T]
. (92)

Exactly the same as in [13], we have

σ = T + ε0E
M ⊗EM − ε0

2

(
EM ·EM

)
I. (93)

4 Transversely isotropic bodies

The assumption
q = θp (94)

in the isotropic case is considered as convincing by all authors. However, some authors doubt
that it holds true in the general case. For instance, in the transversely isotropic case Liu
[20], in a Muller-Liu framework, and [2], in a standard thermodynamic setting, contend that
(94) does not hold. Hence, in the sequel, we consider that the following relation holds true

p− q
θ

= fa, f = f̃(T,X), (95)

with i = f̃(T,X)a, where a is a unit vector parallel to the preferred direction of transverse
isotropy. Therefore, from (37), we are led to

ρ(ψ̇ + θ̇η) + ρθξ − τ ·L+ (p− i) · g − θ∇x · i− h+ ĖM · P = 0, (96)

where i = fa and ∇x · a = 0. Hence, we obtain

ρ(ψ̇ + θ̇η) + ρθξ − τ ·L+ (p− fa) · g − θ(∇xf) · a− h+ ĖM · P = 0. (97)

Now, all the steps in the proofs of Proposition 3.1 and Proposition 3.2 remain in force
provided that in each occurence of the reduced energy equation we add such a term. In
particular, the latter proposition yields the following

Proposition 4.1 We consider a transversely isotropic body with a a unit vector of the
symmetry axis. Let the principle of material objectivity be satisfied, i.e. (60) holds true.
Let us assume that relations (20), (61) and (95) hold true. Hence, we obtain the following
conditions for the response functions

ψ = ψ̃(T,β,E,W , ν0), θ = θ̃(T ), (98)

13



ρ

[
∂ψ̃

∂E
F T +

∂ψ̃

∂W
⊗EM +

∂ψ̃

∂ν0

ν det(F )
(
F−1

)T]− F−1τ̃ = 0, (99)

ρ
∂ψ̃

∂W
F T + P̃ = 0, (100)

η̃ = −∂ψ̃
∂θ
, (101)

ρ
∂ψ̃

∂β
· β̇ + ρ

∂ψ̃

∂ν0

ν̇0 + ρθ̃ξ̃ − h̃+ (p̃− f̃a) · ∂θ̃
∂T

(
F T
)−1

β̇ − θ(∇xf̃) · a = 0, (102)

where

∇xf̃ =
∂f̃

∂T
γ + F T ∂f̃

∂X
. (103)

The same as in [13], we have

ẽ = ψ̃ − θ∂ψ̃
∂θ
−EM · F ∂ψ̃

∂W
, (104)

so that the specific heat is given by

c =
∂ẽ

∂θ
= θ

∂η̃

∂θ
+W · ∂η̃

∂W
. (105)

In the sequel, we derive an expression for the internal rate of entropy supply in the case
of transversely isotropic bodies. From (102), we obtain

ρθ̃ξ̃ = −ρ∂ψ̃
∂β
· β̇ − ρ ∂ψ̃

∂ν0

ν̇0 + h̃− q̃
θ̃
· ∂θ̃
∂T
γ + θ̃F−T

∂f̃

∂X
· a+ θ̃

∂f̃

∂T
γ · a. (106)

By considering f̄(θ̃(T ),X) = f̃(T,X), we are led to

ρξ̃ = −1

θ̃

{[
∂θ̃

∂T
F−1

(
q̃

θ̃
− θ̃ ∂f̄

∂θ
a

)
+ ρ

∂ψ̃

∂β

]
· β̇ + ρ

∂ψ̃

∂ν0

ν̇0 − h̃

}
+ F−T

∂f̄

∂X
· a (107)

and the dissipation inequality can be satisfied if we consider

∂f̄

∂X
= 0, h̃ ≥ 0,

∂θ̃

∂T
F−1

(
q̃

θ̃
− θ̃ ∂f̄

∂θ
a

)
+ ρ

∂ψ̃

∂β
= −kβ̇, k = k̃(T ) ≥ 0,

ρ
∂ψ̃

∂ν0

= −k1ν̇0, k1 = k̃1(T ) ≥ 0.

(108)

Therefore, the same as in [13], it suffices to consider f as a function of the temperature only
and to assume the following constitutive equation for the heat flux

q = −θT̄ ′F
(
ρ
∂ψ

∂β
+ kβ̇

)
+ θ2f̄ ′a. (109)

Field invariants and free energy function
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Let us consider the first- and second-order invariants of the quadruple (E,W ,β, ν0).
They prove to be the same as in [13]

I1 = a ·E · a, I2 = trE, I3 = a ·W , I4 = a · β,

II1 = a ·E2 · a, II2 = trE2, II3 = W ·W , II4 = β · β,

II5 = a ·E ·W +W ·E · a, II6 = a ·E · β + β ·E · a, II7 = W · β,

where a is the unit vector along the symmetry axis of transverse isotropy. Similarly to [13],
we define a free energy function which is quadratic with respect to the invariants of the field
variables E,W ,β, θ, ν0, that is

Σ = α1I1 + α2I2 + α3I3 + α4I4+

+ c1I
2
1 + c2I

2
2 + c3I1I2 + c4II1 + c5II2+

+ ε1I
2
3 + ε2II3 + e1I1I3 + e2I2I3 + e3II5+

+ ν1I3I4 + ν2II7 + λ1I
2
4 + λ2II4 + µ1I1I4 + µ2I2I4 + µ3II6+

+ (b1I1 + b2I2 + κ1I3 + κ2I4)θ +
1

2
h1θ

2+

+ (d1I1 + d2I2 + d3I3 + d4I4)ν0 +
1

2
dν2

0 .

(110)

The derivatives of the invariants are the same as in [13]. Considering

a = j3 (111)

as in [13], we obtain the following derivatives of the free energy

∂Σ

∂E
= 2c1E33 (j3 ⊗ j3) + 2c2(trE)I + c3 [(j3 ⊗ j3) trE+

+E33I] + c4 (j3 ⊗ Ei3ji + E3iji ⊗ j3) + 2c5E + e1W3j3 ⊗ j3+

+ e2W3I + e3 (j3 ⊗W +W ⊗ j3) + µ1β3j3 ⊗ j3 + µ2β3I+

+ µ3 (j3 ⊗ β + β ⊗ j3) + (b1j3 ⊗ j3 + b2I) θ + (d1j3 ⊗ j3 + d2I) ν0,

(112)

∂Σ

∂W
= 2 (ε1j3 ⊗ j3 + ε2I)W + ν1β3j3 + ν2β+

+ (e1E33 + e2trE + 2e3E + κ1θ + d3ν0) j3,
(113)

∂Σ

∂β
= 2 (λ1j3 ⊗ j3 + λ2I)β + ν1W3j3 + ν2W+

+ (µ1E33 + µ2trE + 2µ3E + κ2θ + d4ν0) j3,

(114)

∂Σ

∂θ
= b1E33 + b2trE + h1θ + κ1W3 + κ2β3, (115)

∂Σ

∂ν0

= d1E33 + d2trE + dν0 + d3W3 + d4β3. (116)

Linear theory
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In the linear theory, we have the following components for the elastic stress

T11 = 2(c2 + c5)E11 + 2c2E22 + (2c2 + c3)E33 + e2W3 + µ2β3 + b2θ + d2ν0,

T22 = 2c2E11 + 2(c2 + c5)E22 + (2c2 + c3)E33 + e2W3 + µ2β3 + b2θ + d2ν0,

T33 = (2c2 + c3)E11 + (2c2 + c3)E22 + 2(c1 + c2 + c3 + c4 + c5)E33+

+ (e1 + e2 + 2e3)W3 + (µ1 + µ2 + 2µ3)β3 + (b1 + b2)θ + (d1 + d2)ν0,

T23 = T32 = (c4 + 2c5)E23 + e3W2 + µ3β2,

T13 = T31 = (c4 + 2c5)E31 + e3W1 + µ3β1,

T12 = T21 = 2c5E12,

(117)

the polarization vector

P1 = −2ε2W1 − ν2β1 − 2e3E13,

P2 = −2ε2W2 − ν2β2 − 2e3E23,

P3 = −2(ε1 + ε2)W3 − (ν1 + ν2)β3 − e2(E11 + E22)−
− (e1 + e2 + 2e3)E33 − κ1θ − d3ν0

(118)

and the entropy

ρoη = − [b2(E11 + E22) + (b1 + b2)E33 + h1θ + κ1W3 + κ2β3] . (119)

In the sequel, we focus on processes that just depend on the symmetry axis coordinate X3.
Therefore, we have the following components for the elastic stress

T11 = (2c2 + c3)u3,3 − e2φ,3 + µ2α,3 + b2θ + d2ν0,

T22 = (2c2 + c3)u3,3 − e2φ,3 + µ2α,3 + b2θ + d2ν0,

T33 = 2cu3,3 − eφ,3 +mα,3 + bθ + (d1 + d2)ν0,

T23 = T32 =
1

2
(c4 + 2c5)u2,3,

T13 = T31 =
1

2
(c4 + 2c5)u1,3,

T12 = T21 = 0,

(120)

where
c = c1 + c2 + c3 + c4 + c5, b = b1 + b2, m = µ1 + µ2 + 2µ3,

e = e1 + e2 + 2e3, ε = ε1 + ε2, ν = ν1 + ν2,
(121)

the polarization vector

P1 = −e3u1,3,

P2 = −e3u2,3,

P3 = 2εφ,3 − να,3 − eu3,3 − κ1θ − d3ν0

(122)

and
D1 = −e3u1,3,

D2 = −e3u2,3,

D3 = −(ε0 − 2ε)φ,3 − να,3 − eu3,3 − κ1θ − d3ν0,

(123)

with ε = ε0 − 2ε.

Wave propagation
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The components of the linear momentum balance are

ρ0ü1 =
1

2
(c4 + 2c5)u1,33,

ρ0ü2 =
1

2
(c4 + 2c5)u2,33,

ρ0ü3 = 2cu3,33 − eφ,33 +mα,33 + bθ,3 + (d1 + d2)ν0,3 .

(124)

The electrostatic equation is

εφ,33 + να,33 + eu3,33 + κ1θ,3 + d3ν0,3 = 0 (125)

and the equations for the entropy and the heat capacity are the same as in [13], that is

ρ0η = −bu3,3 − h1θ + κ1φ,3 − κ2α,3, (126)

ρ0c̃ = −h1θ + κ1φ,3. (127)

The expressions for the entropy and heat flux vectors are the following

q1 = q2 = 0, (128)

q3 = −θ0ζ0 (νφ,3 −mu3,3 − κ2θ − λα,3 − d4ν0 − k0T,3) θ0f
′
0T + θ2

0ζ0f
′
0, (129)

p1 = p2 = 0, (130)

p3 = ζ0 (νφ,3 −mu3,3 − κ2θ − λα,3 − d4ν0 − k0T,3) + 2f ′0T + θ0ζ0f
′
0 + f0. (131)

By replacing the equations above and

p3,3 = ζ0

(
νφ,33 −mu3,33 −

κ2

ζ0

T,3 − λα,33 − d4ν0,3 − k0T,33

)
+ 2f ′0T,3 (132)

in the entropy balance equation, we are led to

bu̇3,3 + h1θ̇ − κ1φ̇,3 + 2(κ2 − f ′0)α̇,3 =

= ζ0

(
νφ,33 −mu3,33 − λα,33 − k0T,33 − d4ν0,3

)
−

¯̄h

θ
.

(133)

Finally, we obtain the following reduced evolution system
hαα̈ = mαu3,33 + λαα,33 + bαu̇3,3 + καα̇,3 + k0α̇,33 + (d4 + d3)ν0,3 + 1

ζ0
· ¯̄h
θ
,

ρ0ü3 = cuu3,33 +m∗α,33 + b∗α̇,3 +
(
ed3
ε

+ d1 + d2

)
ν0,3 ,

ν̇0 = c
γ
,

(134)

where

cu = 2c+
e2

ε
, m∗ =

eν

ε
+m, b∗ =

b

ζ0

. (135)

We introduce the notations

M0 =

(
ρ0 0
0 hα

)
, M1 =

(
cu m∗
mα λα

)
, M2 =

(
0 b∗
bα κα

)
, (136)

M3 =

(
0 0
0 k0

)
, V4 =

( (
ed3
ε

+ d1 + d2

)
ν0,3

(d4 + d3)ν0,3 + 1
ζ0
· ¯̄h
θ

)
. (137)
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We take

z =

(
u3

α

)
. (138)

Then
z̈ = N1z,33 +N2ż,3 +N3ż,33 +N4, (139)

where N1 = M−1
0 M1, N2 = M−1

0 M2, N3 = M−1
0 M3, N4 = M−1

0 V4.
In the sequel, we form a first-order system. We let x = X3 and

w(x, t) = u3,3(X3, t), ω(x, t) = α,3(X3, t),

z(x, t) = u̇3(X3, t), v(x, t) = α̇(X3, t).
(140)

We assume that the density ρ is constant on small time intervals [0, t1]. Since γ is constant,
we assume that ν is also constant on the interval [0, t1]. Hence, we obtain

ẇ = zx,

ρ0ż = cuwx +m∗ωx + b∗vx +

(
ed3

ε
+ d1 + d2

)
ν0x ,

ω̇ = vx,

hαv̇ = mαwx + λαωx + bαzx + καvx + (d4 + d3)ν0x ,

ν̇0 =
c

γ
= νzx.

(141)

In a more compact form, this can be written as

U̇ = AUx, (142)

where

U =


w
z
ω
v
ν0

 , A =


0 1 0 0 0
cu
ρ0

0 m∗
ρ0

b∗
ρ0

1
ρ0

(
ed3
ε

+ d1 + d2

)
0 0 0 1 0
mα
hα

bα
hα

λα
hα

κα
hα

1
hα

(d4 + d3)

0 ν 0 0 0

 . (143)

Remark 4.1 Let us consider ec = ν0 − ν0
0 . We define

c̄
(
T,β,γ,E,EM , ec

)
= c̃

(
T,β,γ,F ,EM , ν0

)
. (144)

Therefore, we have

ėc =
1

γ
c̄
(
T,β,γ,E,EM , ec

)
[det(1 + 2E)]

1
2 . (145)

In the transversely isotropic case, we obtain

ėc =
1

γ
c̄ (T,β,γ,E,W , ec) [−u2,3 (u2,3 − u1,3)]

1
2 . (146)

Remark 4.2 We have

ν̇0 =
c

γ
detF , ν0 = ν detF ⇒ detF =

ν0

ν
. (147)

Therefore, we obtain

ν̇0 =
c

γ
· ν0

ν
=
c

ρ
ν0 (148)

and by differentiating once more we obtain

ν̈0 =
˙(

1

ρ
cν0

)
=

˙(
1

ρ

)
cν0 +

1

ρ
ċν0 +

1

ρ
cν̇0 =

(
− ρ̇

ρ2
c+

ċ

ρ

)
ν0 +

c

ρ
ν̇0. (149)
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Remark 4.3 The following relation holds true

ν̈0 =
˙(

c

γ
detF

)
=

1

γ

(
ċ detF + c ˙detF

)
=

=
1

γ
ċ detF +

1

γ
c(trL) detF =

(
ċ

c
+ u̇3,3

)
ν̇0.

(150)

5 Well-posedness

In the sequel, we follow the strategy from [19] in order to prove the continuous data depen-
dence in the nonlinear case. Therefore, we define the function D on [0, t1] by

D =

∫
B

{
1

2
ρ0(v − v̄)2 + ρ0(ψ − ψ̄) + ρ0η(θ − θ̄)−

− τ̄ (F − F̄ ) + P̄ (EM − ĒM)
}

dv.

(151)

Moreover, we assume that the functions we use are smooth enough.

Theorem 5.1 The function D satisfies an evolutionary relation.

Proof The evolutionary relation follows from the computations below. By (151), we
obtain

Ḋ =

∫
B

{
∂

∂t

(
1

2
ρ0v

2 + ρ0e

)
− ∂

∂t

(
1

2
ρ0v̄

2 + ρ0ē

)
−

− ρ0v̇v̄ − ρ0v ˙̄v + 2ρ0v̄ ˙̄v + ρ0θ̄( ˙̄η − η̇) + ρ0
˙̄θ(η̄ − η)−

− ˙̄τ (F − F̄ )− τ̄ (Ḟ − ˙̄F ) +EM( ˙̄P − Ṗ ) + ĖM(P̄ − P )
}

dv.

(152)

Then we use formula (16) in order to obtain

Ḋ =

∫
B

ρ0(b · v + r)dv +

∫
∂B

(v · τn− q · n) ds+

+

∫
B

(
p · v +

1

2
cv · v + ce+ h̄

)
dv +

∫
B

EM · ρ0π̇dv+

+

∫
B

(
P · ∇xEM

)
· vdv −

{∫
B

ρ0

(
b̄ · v̄ + r̄

)
dv+

+

∫
∂B

(v̄ · τ̄n− q̄ · n) ds+

∫
B

(
p̄ · v̄ +

1

2
c̄v̄ · v̄ + c̄ē+ h̄

)
dv+

+

∫
B

ĒM · ρ0 ˙̄πdv +

∫
B

(
P̄ · ∇xĒM

)
· v̄dv

}
+

+

∫
B

{
−ρ0v̇v̄ − ρ0v ˙̄v + 2ρ0v̄ ˙̄v + ρ0θ̄ ( ˙̄η − η̇) + ρ0

˙̄θ(η̄ − η)−

− ˙̄τ (F − F̄ )− τ̄ (Ḟ − ˙̄F ) +EM( ˙̄P − Ṗ ) + ĖM(P̄ − P )
}

dv.

(153)
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The relation above becomes

Ḋ =

∫
B

[
ρ0(b− b̄) · (v − v̄) + ρ0(r − r̄)

]
dv+

+

∫
B

(v · τ )k,k − qk,kdv −
∫
B

(v̄ · τ̄ )k,k − q̄k,kdv+

+

∫
B

(p− p̄) · (v − v̄)dv +

∫
B

(
1

2
cv · v + ce+ h̄

)
dv−

−
∫
B

(
1

2
c̄v̄ · v̄ + c̄ē+ h̄

)
dv +

∫
B

EM · ρ0π̇dv −
∫
B

ĒM · ρ0 ˙̄πdv+

+

∫
B

(
P · ∇xEM − P̄ · ∇xĒM

)
· (v − v̄)dv −

∫
B

(∇x · τ ) · v̄dv−

(154)

−
∫
B

(∇x · τ̄ ) · vdv + 2

∫
B

(∇x · τ̄ ) · v̄dv +

∫
B

{
ρ0θ̄( ˙̄η − η̇)+

+ ρ0
˙̄θ(η̄ − η)− ˙̄τ · (F − F̄ )− τ̄ · (Ḟ − ˙̄F ) +EM · ( ˙̄P − Ṗ )+

+ ĖM · (P̄ − P )
}

dv.

We use the divergence theorem and integration by parts in order to obtain

Ḋ =

∫
B

[
ρ0(b− b̄) · (v − v̄) + ρ0(r − r̄) + q̄k,k − qk,k

]
dv+

+

∫
B

(p− p̄) · (v − v̄)dv +

∫
B

(
1

2
cv · v + ce+ h̄

)
dv−

−
∫
B

(
1

2
c̄v̄ · v̄ + c̄ē+ h̄

)
dv +

∫
B

(
P · ∇xEM − P̄ · ∇xĒM

)
· (v − v̄)dv+

+

∫
∂B

(τki − τ̄ki)(vi − v̄i)nkda+

∫
B

[
ρ0θ̄(η̄ − η̇) + ρ0

˙̄θ(η̄ − η)−

− ˙̄τ (F − F̄ ) + ˙̄F (τ − τ̄ ) + ˙̄P (EM − ĒM) + ĖM(P̄ − P )
]

dv.

(155)

The expression above is one form of the evolutionary relation. In the sequel, we will consider
separately terms from this expression. We have

τ̇ = ρ̇F
∂ψ

∂F
+
∂τ

∂F
Ḟ − ρF ∂η

∂F
θ̇ − ρF θ ∂ξ

∂F
− F

θ

∂q

∂F
g + F

∂h

∂F
− F ∂P

∂F
ĖM , (156)

Ṗ = −ρ̇ ∂ψ

∂EM
+
∂P

∂F
Ḟ + ρ

∂η

∂EM
θ̇ + ρθ

∂ξ

∂EM
+

1

θ

∂q

∂EM
g − ∂h

∂EM
+

∂P

∂EM
ĖM , (157)

η̇ =
∂η

∂θ
θ̇ + ξ + θ

∂ξ

∂θ
− 1

ρ

1

θ2
qg +

1

ρ

1

θ

∂q

∂θ
g − 1

ρ

∂h

∂θ
− ∂2ψ

∂θ∂F
Ḟ +

1

ρ

∂P

∂θ
ĖM , (158)
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which leads to the following form of the last integrand from (155)

˙̄F (τ − τ̄ )− ˙̄τ (F − F̄ ) + ˙̄P (EM − ĒM)− ĖM(P − P̄ ) + ρ0 ˙̄η(θ − θ̄)−

− ρ0 ˙̄η(θ − θ̄) = ˙̄F

[
τ − τ̄ − ∂τ̄

∂F̄
(F − F̄ ) +

∂P̄

∂F̄
(EM − ĒM) + ρ0

∂η̄

∂F̄
(θ − θ̄)

]
+

+ ˙̄θ

[
ρ̄F̄

∂η̄

∂F̄
(F − F̄ ) + ρ̄

∂η̄

∂ĒM
(EM − ĒM) + ρ0

∂η̄

∂θ̄
(θ − θ̄)

]
+

+ ˙̄EM

[
F̄
∂P̄

∂F̄
(F − F̄ ) +

∂P̄

∂ĒM
(EM − ĒM) +

∂P̄

∂θ̄
(θ − θ̄)

]
+

+

[
−F̄ ∂h̄

∂F̄
(F − F̄ )− ∂h̄

∂ĒM
(EM − ĒM)− ∂h̄

∂θ̄
(θ − θ̄)

]
+

+

[
− ˙̄ρF̄

∂ψ̄

∂F̄
(F − F̄ ) + ρ̄F̄ θ̄

∂ξ̄

∂F̄
(F − F̄ ) +

F̄

θ̄

∂q̄

∂F̄
ḡ(F − F̄ )−

− ˙̄ρ
∂ψ̄

∂ĒM
(EM − ĒM) + ρ̄θ̄

∂ξ̄

∂ĒM
(EM − ĒM)+

+
1

θ̄

∂q̄

∂ĒM
ḡ(EM − ĒM)− ĖM(P − P̄ ) + ρ0ξ̄(θ − θ̄)+

+ρ0θ̄
∂ξ̄

∂θ̄
(θ − θ̄)− 1

θ̄2
q̄ḡ(θ − θ̄) +

1

θ̄

∂q̄

∂θ̄
ḡ(θ − θ̄)

]
− ρ0 ˙̄η(θ − θ̄).

(159)

The first integrand from (155) can be rewritten as

ρ0(r − r̄) + q̄k,k − qk,k − ρ0 ˙̄η(θ − θ̄)− ρ0θ̄(η̇ − ˙̄η) =

=
1

θ
ρ0(r − r̄)(θ − θ̄) +

[
1

θ
(q̄k − qk)(θ − θ̄)

]
,k

+

+ (qk − q̄k)
(

1− θ̄

θ

)
,k

+
1

θθ̄
(ρr̄ − q̄k,k)(θ − θ̄)2+

+ ρξ̄(θ̄ − θ)− ρθ̄(ξ − ξ̄) + (θ̄ − θ) 1

θ̄2
∇xθ̄ · q̄+

+ θ̄

[
− 1

θ̄2
∇xθ̄ · (q − q̄) + (θ − θ̄)θ + θ̄

θ̄2θ2
∇xθ̄ · q−

− 1

θ2
∇x(θ − θ̄) · q

]
+

1

θ̄

˜̄̄
h(θ̄ − θ) +

1

θ
(θ − θ̄)˜̄̄h+

θ̄

θ

(˜̄̄
h− ¯̄h

)
.

(160)

The third and fourth integrals from (155) can be rewritten as∫
B

(
1

2
cv · v + ce+ h̄

)
dv −

∫
B

(
1

2
c̄v̄ · v̄ + c̄ē+ ˜̄h

)
dv =

=

∫
B

[
1

2
c(v − v̄) · (v − v̄) + cv̄ · (v − v̄) +

1

2
v̄ · v̄(c− c̄)+

+ c(ψ − ψ̄) + cη(θ − θ̄) + cθ̄(η − η̄) + c
(
EM − ĒM

)
· π+

+cĒM · (π − π̄) + (c− c̄)ē+ (h̄− ˜̄h)
]

dv.

(161)
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We rewrite the following term from relation (160)∫
B

(qk − q̄k)
(

1− θ̄

θ

)
,k

dv =

=

∫
B

(qk − q̄k)
[

(θ − θ̄),k
θ

− (θ − θ̄)θ,k
θ2

]
dv =

=

∫
B

{
∂q̄

∂θ̄
(θ − θ̄)(θ − θ̄),k

θ
− ∂q̄

∂θ̄
(θ − θ̄)2 θ,k

θ2
+

+
∂q̄

∂β̄
(β − β̄)

(θ − θ̄),k
θ

− ∂q̄

∂β̄
(β − β̄)(θ − θ̄)θ,k

θ2
+

+
∂q̄

∂γ̄
(γ − γ̄)

(θ − θ̄),k
θ

− ∂q̄

∂γ̄
(γ − γ̄)(θ − θ̄)θ,k

θ2
+

+
∂q̄

∂F̄
(F − F̄ )

(θ − θ̄),k
θ

− ∂q̄

∂F̄
(F − F̄ )(θ − θ̄)θ,k

θ2
+

+
∂q̄

∂ĒM

(
EM − ĒM

) (θ − θ̄),k
θ

− ∂q̄

∂ĒM

(
EM − ĒM

)
(θ − θ̄)θ,k

θ2
+

+
∂q̄

∂ν̄0

(ν0 − ν̄0)
(θ − θ̄),k

θ
− ∂q̄

∂ν̄0

(ν0 − ν̄0) (θ − θ̄)θ,k
θ2

+

+ o
(
|θ − θ̄|+ |β − β̄|+ |γ − γ̄|+ |F − F̄ |+ |EM − ĒM |+

+ |ν0 − ν̄0|) ·
[

(θ − θ̄),k
θ

− (θ − θ̄)θ,k
θ2

]}
dv.

(162)

By replacing all these expressions in the relation (155), we obtain an evolutionary relation
for D. This finishes the proof.

We introduce the following definition

Γ(X, t) = |θ(X, t)− θ̄(X, t)|+ |β(X, t)− β̄(X, t)|+ |γ(X, t)− γ̄(X, t)|+
+ |F (X, t)− F̄ (X, t)|+ |EM(X, t)− ĒM(X, t)|+ |ν0(X, t)− ν̄0(X, t)|

(163)

for (X, t) ∈ B × [0, t1].

Theorem 5.2 We assume that there exists a constant δ > 0 such that

Γ(X, t) < δ, (X, t) ∈ B × [0, t1],

(τki − τ̄ki)(vi − v̄i)nk +
1

θ
(q̄k − qk)(θ − θ̄)nk = 0 on ∂B × (0, t1)

(164)

Then there exist the constants M > 0, N > 0 and α > 0 such that

||
(
v − v̄,F − F̄ ,EM − ĒM , θ − θ̄, ν0 − ν̄0,β − β̄,γ − γ̄

)
(·, t)||L2(B) ≤

≤
[
M ||

(
v − v̄,F − F̄ ,EM − ĒM , θ − θ̄, ν0 − ν̄0,β − β̄,γ − γ̄

)
(·, 0)||L2(B)+

+ N

∫ t

0

||(b− b̄,p− p̄, r − r̄)(·, s)||L2(B)ds

]
eαt

(165)

for t ∈ [0, t1].

Proof Let us consider

z(t) = ||
(
v − v̄,F − F̄ ,EM − ĒM , θ − θ̄, ν0 − ν̄0,β − β̄,γ − γ̄

)
(·, t)||L2(B) (166)
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for t ∈ [0, t1]. By a Taylor expansion for (42) we can show that

ρ0(ψ − ψ̄) + ρ0η̄(θ − θ̄)− τ̄ (F − F̄ ) + P̄
(
EM − ĒM

)
=

=
(
F̄−1 − I

)
τ̄ (F − F̄ ) + ρ0

∂ψ̄

∂β̄
(β − β̄) + ρ0

∂ψ̄

∂ν̄0

(ν0 − ν̄0) +

+ ρ0o
(
|θ − θ̄|+ |β − β̄|+ |F − F̄ |+ |EM − ĒM |+ |ν0 − ν̄0|

) (167)

By the form (151) of D and the expression above, we are led to the existence of a constant
c1 > 0 such that

D(t) ≥ c1z
2(t) (168)

for t ∈ [0, t1]. Furthermore, the evolutionary relation for D leads to the existence of some
constants d1 > 0 and d2 > 0 for which the following estimate holds true

Ḋ ≤ d1

(
||F − F̄ ||2L2 + ||EM − ĒM ||2L2 + ||θ − θ̄||2L2 + ||ν0 − ν̄0||2L2 + ||γ − γ̄||2L2

)
+

+ d2

(
||b− b̄||L2||v − v̄||L2 + ||p− p̄||L2||v − v̄||L2 + ||r − r̄||L2||θ − θ̄||L2

) (169)

for all t ∈ [0, t1]. We integrate the inequality above over [0, τ ], τ ∈ [0, t1] and obtain

D(τ) ≤ D(0) + d1

∫ τ

0

z2(t)dt+ d2

∫ τ

0

||(b− b̄,p− p̄, r − r̄)(·, t)||L2(B)z(t)dt. (170)

By (168) and (170) we obtain

c1z
2(t) ≤ c2z

2(0) +

∫ τ

0

[
d1z

2(t) + d2||(b− b̄,p− p̄, r − r̄)(·, t)||L2(B)z(t)
]

dt (171)

This leads to the result of well-posedness by Gronwall’s lemma from [19].

6 Conclusion

In order to describe accurately the phenomenon of bone remodeling, we extended the math-
ematical model in [10] in order to include piezoelectrical effects and have a finite speed
of propagation for the thermal waves. The motivation for considering that the bone is
electrically polarized when mechanically deformed is detailed in [7]. We proved that our
mathematical model is well-posed in the nonlinear case and studied wave propagation in the
transversely isotropic case.
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[18] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics,
Springer, 1995.
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