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Minimum lap time problems are usually solved employing quasi-steady-state models on a pre-
determined (fixed) trajectory or employing dynamic models on a free (i.e. not predetermined)
trajectory. This work describes a third approach, where the minimum-lap-time problem is
solved using quasi-steady-state models and free trajectory. The method builds upon g-g maps
that can either be derived numerically or experimentally. Such g-g-speed surfaces can either
represent the performance of a car or a motorcycle. Both a double-track car model and a
motorcycle model are employed as examples of applications. The effect of the free-trajectory
vs. fixed-trajectory assumption is also discussed.
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1. Introduction

The investigation of minimum-time manoeuvring has become a widely used approach to
improve the performance of road vehicles, especially race ones. Early attempts to solve
minimum-lap-time problems dates back to the late 1950s [1], while in the late 1980s
minimum-time simulations of sections of the Paul Ricard circuit were presented [2].

There are a variety of minimum-lap-time problems: they may have a free or prede-
termined trajectory, and may use dynamic or quasi-steady-state models. In the case of
free-trajectory problems, the race line is determined by the optimisation solver, while for
fixed-trajectory problems, the race line is determined from track data or from previous
free-trajectory solutions. As a general rule, fixed-trajectory problems are faster to solve,
since a lower number of variables is involved.

The most widespread combinations reported in the literature to solve minimum-lap-
time problems are basically two: quasi-steady-state (QSS) models with predetermined
trajectory, see e.g. [2–10], and dynamic models with free-trajectory, see e.g. [11–25]. The
former approaches usually involve the computation of the well-known g-g map of the
vehicle at different speed (g-g-speed surface), together with the determination of the
corner apexes on the trajectory (i.e. the points at which the vehicle has maximum lateral
acceleration). The latter approaches usually involve the solution of a nonlinear-optimal-
control problem (OCP), which may be solved either with direct or indirect methods
[26, 27].
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The focus of the current work is to devise a free-trajectory method employing QSS
models for minimum-lap time of cars and motorcycles. The method builds upon the
g-g diagrams, which are commonly computed to analyse the vehicle performance, and
retains the advantage of determining the optimal trajectory of the road vehicle. Numerical
models of very high complexity can be employed, since all their features (e.g. tyre limits,
power limits, aerodynamic drag and downforce, suspensions, etc.) are summarised by
the related g-g diagrams, and do not affect the complexity of the OCP that needs to
be solved. The method allows to employ even experimental g-g diagrams in place of
numerical ones, and is suitable for application to both cars and motorcycles.

The work is organised as follows. In Section 2 the parametrisation of the g-g-speed
surface is explained, for subsequent implementation in the OCP. In Section 3 the optimal
control problem is built upon the g-g diagrams, for the computation of the minimum-lap
time and optimal trajectory. Remarks on differences with fixed-trajectory approaches
(both OCP and ‘apex-finding’) are included. In Section 4 two examples of applications
are shown: the first considers a 415 kW race car and the second a 180 kW race motorcy-
cle. The related g-g-speed surfaces are computed, and the OCP is solved on the Adria
International Raceway (Italy).

2. g-g diagram

The calculation of the g-g diagrams is a well-known method for assessing the performance
of vehicles, see e.g. [5, 6, 10]. A typical car g-g diagram is shown in Fig. 1 (left). The
boundaries of such diagram are found maximising the performance of the vehicle at
different speeds V , in order to find the maximum and minimum longitudinal acceleration
ax, for a given lateral acceleration ay.

At ‘low’ speeds, the g-g envelope is limited by the tyre-friction characteristics, both in
acceleration and in braking. The boundary is reached when one or more tyres saturate. At
‘high’ speeds the effect of aerodynamics becomes dominant: the maximum acceleration is
now limited by the power limit (the higher the speed, the lower the maximum acceleration
available for traction), whereas in braking the drag force contributes to increasing the
braking performance. In the case of motorcycles, the g-g envelope is further limited when
front or rear tyre normal load reduces to zero, i.e. when the front or rear tyre lifts from
the ground (see Section 4.2).

Given its typical shape, the g-g diagram can be conveniently parametrised using polar
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Figure 1.: g-g map of a car at different speeds (left) and related adherence radius as a
function of the orientation angle and vehicle speed (right).
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coordinates; this will also make it easier to introduce the g-g constraint in the minimum-
time-optimisation problem (see Section 3):

ρ =

√(
ax
g

)2

+

(
ay
g

)2

, (1)

α = arctan

(
ax
ay

)
. (2)

where ρ is the adherence radius, and α is the related orientation. The values of the
adherence radius at different speed are then interpolated by means of splines, to give the
following surface

ρ = ρ(α, V ), (3)

which is a function of the polar orientation α and the speed V ; see Fig. 1 (right).
The method presented remains valid when using both numerically calculated and em-

pirically measured g-g diagrams. Two examples of application of the g-g-speed surfaces
are given for a race car model in Section 4.1, and a race motorcycle model in Section 4.2.

3. Optimal control problem

3.1. Free-trajectory OCP

The method combines a free-trajectory minimum-time OCP with the QSS approach
adopted for the generation of g-g diagrams. The model used in the OCP consists of a
three-degrees-of-freedom model, which is constrained to move within the road borders,
while satisfying the limits of the g-g-speed surface. All the complexity of the vehicle, e.g.
tyre nonlinearities, aerodynamics, etc., are included in the g-g map.

The model state variables x are the absolute velocity V along the trajectory, the lateral
position n with respect to the road center line, and the relative orientation χ with respect
to the tangent to the center line (see Fig. 2):

x = {V, n, χ}T . (4)

The related state equations (in the time domain) are

V̇ = ax, (5)

ṅ = sin (χ)V, (6)

χ̇ = ay/V − θ̇, (7)

where ax and ay are the longitudinal and lateral accelerations, θ̇ is the derivative of the
orientation of the road centre line with respect to the absolute reference frame. The first
term on the right-hand side of (7) arises from the equation ay = ψ̇V = ΩV , where ψ̇ = Ω
is the yaw rate. The control vector u of the OCP consists of the longitudinal and lateral
accelerations

u = {ax, ay}T . (8)
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Figure 2.: Road model: G represents the vehicle.

The model can be conveniently rewritten in the space domain

x′ =
dx

ds
=

ẋ

ṡ
, (9)

using the curvilinear coordinate s along the center line (see Fig. 2)

ṡ =
cos(χ)

1− nκ
V, (10)

where κ is the curvature of the road center line.
The target L of the OCP is the manoeuvre time, which can be computed from the

speed along the center line as follows

L =

∫
dt =

∫
1

ṡ
ds. (11)

Finally, the vehicle is constrained to move within the road borders

−rwl ≤ n ≤ rwr, (12)

where rwl and rwr represent the left and right road limits, and to satisfy the g-g envelope

ρ ≤ ρmax, (13)

where ρmax = ρmax(α, V ) is the maximum value of the adherence radius ρ (given by (1))
at the current orientation α (given by (2)) and speed V .

The OCP can be solved numerically using direct or indirect methods [26]. It is noted
that the resulting OCP is simple, although the underlying vehicle model can be complex.

3.2. Remarks on fixed-trajectory methods

The more standard minimum-time problem with fixed-trajectory can be obtained from
the OCP approach in Section 3.1, when removing (6), (7) and (12), i.e. when only (5)
and (13) are retained, using the curvilinear abscissa along the race line (instead of along
the centreline) as the independent variable.

Alternatively, the minimum-time problem with fixed-trajectory can be solved without
any OCP approach, using the widespread methods reported e.g. in [2–10]. In this case,
the corner apexes need be identified first: at each apex, where the trajectory curvature
is maximum, the vehicle is assumed to have maximum lateral acceleration. Before the
apex the vehicle is braking along the g-g envelope, while after the apex the tyres are
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engaged with traction forces in order to keep the vehicle along the g-g envelope. The
speed profiles between two apexes (acceleration out of turn i and deceleration into turn
i+1) are then connected at their intersection point. Sometimes it is assumed that at each
apex the longitudinal acceleration is zero, which is a slightly different condition (when
compared with the maximum lateral acceleration condition): in this scenario, after the
apex the vehicle is accelerating.

In the case an OCP approach is selected, the apexes are automatically identified by
the optimiser and no assumption on their locations need be made.

Further considerations are included in Sec. 4.1.4, where the optimisation of a vehicle
parameter is carried using the three methods (free-trajectory OCP, fixed-trajectory OCP
and fixed-trajectory apex-finding).

4. Examples of application

The free-trajectory quasi-steady-state method introduced in Section 3.1 is now applied
both to a car model and a motorcycle model, in order to show its main features. The
procedure for both the car and the motorcycle is the same. First, the g-g maps for each
vehicle are obtained, at different speeds. Second, all g-g diagrams (for each vehicle) are
combined to give the adherence radius surface in (3): biquintic splines have been used
in these examples (bilinear splines have shown not smooth enough to avoid numerical
problems). Third, the OCP problem is run on a given track: in this case the Adria
International Raceway (Italy). A direct solution method is employed to solve the OCP
[26, 28]. Automatic differentiation is used to speed-up the computation time [29].

4.1. Car model

A double-track car model is employed to generate the g-g map shown in Fig. 1, with
the baseline parameters and related meaning given in Tab. 1. The wheel-steering angle δ
is assumed small, the roll, pitch and bounce degrees of freedom are neglected, together
with the suspension travels. Similar models have been used in [20, 21, 27, 30, 31]. The
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steady-state equations of the vehicle are given by

max = (Fxfl + Fxfr + Fxrl + Fxrr)− (Fyfl + Fyfr) δ − FD, (14)

may = (Fyfl + Fyfr + Fyrl + Fyrr) + (Fxfl + Fxfr) δ, (15)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (16)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (17)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (18)

0 =
T

2
(Fyfl − Fyfr) δ − a (Fxfl + Fxfr) δ +

T

2
(−Fxfl + Fxfr − Fxrl + Fxrr) +

− a (Fyfl + Fyfr) + b (Fyrl + Fyrr) , (19)

where the first three equations represent the force balance along the longitudinal, lateral
and vertical direction respectively, while the latter three equations represent the moment
balance around the roll, pitch and yaw axes through the projection of the center of mass
on the ground. In (14) and (19), the longitudinal acceleration is ax = u̇ − Ωv, where u
and v are the longitudinal and lateral velocity of the vehicle respectively (V =

√
u2 + v2

is the total velocity), while Ω is the yaw rate. In (15) and (18), the lateral acceleration is
ay = Ωu. The aerodynamics forces consist of the drag force FD, the front FLf and rear
FLr downforces. They are applied on the road plane (see Fig. 3), and are given by

FD =
1

2
ρaCDAu

2, FLf =
1

2
ρaCLfAu

2, FLr =
1

2
ρaCLrAu

2. (20)

The tyre longitudinal and lateral forces are given by Fxij and Fyij respectively, where
i = f, r (front, rear) and j = l, r (left, right). The tyre forces are computed employing
the Magic Formula with theoretical slips [32]:

Fx = N
σx
σ
Dx sin{Cx arctan [Bx σ − Ex (Bx σ − arctan(Bx σ))]}, (21)

Fy = N
σy
σ
Dy sin{Cy arctan[By σ − Ey (By σ − arctan(By σ))]}, (22)

with

σx =
κ

1 + κ
, σy =

tan(λ)

1 + κ
, σ =

√
σ2
x + σ2

y , (23)

where the theoretical slips σx, σy and σ are computed from the longitudinal and lateral
(practical) slips κ and λ [32]. The lateral slips λij of the current model are

λfl = δ − v + Ωa

u+ T
2 Ω

, λfr = δ − v + Ωa

u− T
2 Ω

, (24)

λrl = − v − Ωb

u+ T
2 Ω

, λrr = − v − Ωb

u− T
2 Ω

. (25)

The longitudinal slip will be an input to the model. Finally, B, C, D and E are the
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Pacejka’s coefficients, which are herein expressed in the simplified form introduced in
[23]. The purpose is to avoid the full Magic Formula formulation, while retaining some
of its key features, namely load dependent friction coefficients, load-dependent position
of the peak of the force vs. slip curves, and load dependent cornering stiffness per unit
load. The coefficients are

Kx = BxCxDx = N pKx1 exp(pKx3 dfz), (26)

Ex = pEx1, (27)

Dx = (pDx1 + pDx2 dfz)λµ,x, (28)

Cx = pCx1, (29)

Bx =
Kx

CxDxN
, (30)

Ky = N0 pKy1 sin

(
2 arctan

N

pKy2N0

)
, (31)

Ey = pEy1, (32)

Dy = (pDy1 + pDy2 dfz)λµ,y, (33)

Cy = pCy1, (34)

By =
Ky

CyDyN
, (35)

where dfz = N−N0

N0
and N0 is a reference load. The dataset of tyre parameters is given in

Tab. 1.
The tyre normal forces are given by Nij , where again i = f, r and j = l, r (see Fig. 3),

and are computed from the system consisting of (16), (17) and (18), with the roll stiffness
balance

may
h

T
ξ =

Nfl −Nfr

2
, (36)

where ξ = Kφf
Kφf+Kφr

is the roll stiffness ratio, Kφf is the front-axle roll stiffness, and Kφr

is the rear-axle roll stiffness.
The total driving force Fx is split between the rear and front axle according to the

distribution factor kt, under the open-differential assumption:

Fxfl =
(1− kt)Fx

2
, Fxfr =

(1− kt)Fx
2

, (37)

Fxrl =
ktFx

2
, Fxrr =

ktFx
2

. (38)

During acceleration kt = 1 for rear-wheel-drive (RWD) vehicles, kt = 0 for front-wheel-
drive (FWD) vehicles, and 0 < kt < 1 for all-wheel-drive (AWD) vehicles. During braking
the distribution factor is given by

kt =
1

1 + γ
, γ =

Fxfl + Fxfr
Fxrl + Fxrr

, (39)
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where γ is the brake ratio, which is here defined as the ratio between the front and rear
longitudinal tyre forces – the switch between the value of kt in acceleration and the value
of kt in braking is implemented through an approximation of a piecewise function, in
order to avoid numerical issues.

Summarising, given the longitudinal velocity u, the longitudinal acceleration ax, and
the lateral acceleration ay, the vehicle trim can be computed by solving the steady-
state equations (14)-(19), the roll balance (36), the brake ratio (39), the open-differential
conditions Fxfl = Fxfr and Fxrl = Fxrr, for the four normal loads Nij , the steering angle
δ, the four tyre longitudinal slips κij , and the lateral velocity v.

The g-g maps of the car are obtained by means of an nonlinear optimisation problem,
in which the target is to maximise the adherence radius (1), subject to the steady-state
equations (14)-(19) and (36)-(38). The optimiser seeks to maximise such radius for a set of
absolute velocities and orientations. In this case the velocity V takes five values (between
20 and 90 m/s), while the orientation α takes 90 values (between −π/2 and π/2). The
g-g diagram is assumed symmetric with respect to the zero lateral acceleration (vertical)
axis.

The optimiser IPOPT [33] has been employed for the solution of the problem, together
with the automatic differentiation tool ADiGator [29], which generates the derivatives
required by the optimiser. A proper guess is important for the solution. Since the g-g
diagram is computed step-by-step, the guess of each point (except the first one) is based
on the solution at the previous step, unless the residuals of the constraints evaluated at
the new step are above a given threshold. In the latter case a new guess is generated by
exploiting a combination of possible slips, steering angles, and adherence radii around
the previously converged solution.

The first g-g points to be computed are usually those at ay = 0 or ax = 0, because
they can be easily solved, while coupled conditions (where both longitudinal and lateral
accelerations are involved) are usually more challenging. The cost function is

J = −ρ, (40)

where ρ is the adherence radius.
Additional constraints are included to account for the limited steering angle

|δ| ≤ δmax, (41)

and for the limited engine power

Fxu ≤ Pmax, (42)

where Fx is the total driving force.
Finally, multiple solutions exist when it comes to negotiating a turn [34]. The aim in

the present example is to avoid the solutions characterized by very large slip angles, e.g.
power-slide manoeuvres and skidding. Therefore, constraints are added to prevent the
tyre-slips from exceeding the values at which the longitudinal and lateral forces attain
their maxima

κ ≤ κmax, λ ≤ λmax. (43)

The maximum longitudinal slip κmax depends on the normal load and the lateral slip
angle, while the maximum lateral slip angle λmax depends on the normal load and the
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Figure 4.: Baseline car configuration. Trajectory on the Adria International Raceway
(left), with corner numbers and distance (curvilinear abscissa s) from the start/finish
line. Speed V (top-right) and lateral position n (bottom-right) along the curvilinear
coordinate.

longitudinal slip. Again, a number of normal loads is defined (from 0 to 12000 N), and
interpolated using bilinear splines.

4.1.1. Baseline simulation

The race line obtained with the free-trajectory OCP is shown in Fig. 4 (left) using the
baseline parameters of the RWD car reported in Tab. 1. The vehicle runs anticlockwise
on the Adria International Raceway (Italy), which is characterised by a total length of
2702 m, and eight turns mainly paced at speeds below 15 m/s. The minimum speed is
8.5 m/s at turn 3. The top speed is 68 m/s and is reached on the pit straight; see Fig. 4
(right). The resulting optimum lap time is 75.451 s. The lateral position n shows how
the car moves between the inner and outer border of the track, whose width is variable
between 11 m and 17 m; see Fig. 4 (right).

As expected, when solving the fixed-trajectory OCP (see Section 3.2), using the race
line obtained with the free-trajectory OCP, the lap time is nearly identical (difference
of 0.01%). When solving the lap-time problem with the fixed-trajectory apex-finding
approach (see Section 3.2), using the race line obtained with the free-trajectory OCP,
the lap time is again nearly identical (difference of 0.01%).

The three results are coherent, although the problems are discretised using differently
spaced mesh points along the track centre line. The mesh points of the OCP solutions are
unevenly spaced (in the range 0.1-10 m) and result from the solution of the optimisation
problem1, while the apex-finding approach has a 0.1 m equally spaced mesh. See Sec.
4.1.5 for further details on the computation implications of the different methods.

4.1.2. Effect of friction on the race-line

The coefficients λµ,x and λµ,y in (28) and (33) are halved, in order to simulate a low-
friction condition, e.g. very wet vs. dry condition. In the baseline friction scenario, the lap
time is 75.451 s, while in the low friction scenario the lap time increases to 102.727 s. The
low-friction-OCP results are compared to the baseline simulation (i.e. baseline friction)

1The unevenly spaced mesh is obtained through the hp mesh refinement scheme described in [28], which simulta-

neously varies the mesh size (h) and the order (p) of the approximating polynomials.
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Figure 5.: Lateral position n at different road-tyre friction (top-left) and lateral position
difference with respect to the baseline configuration (bottom-left). Magnified view of turn
3, with different race lines (right). Baseline (dot-dash), low friction (solid).

in Fig. 5. The race line differs significantly in the two scenarios, in particular in the tight
corners. When the vehicle enters turn 1 (300-500 m), the optimal lateral position n in
the low-friction scenario is 4 m closer to the outer border with respect to the baseline
friction scenario. The same behaviour is observed in turn 3 (1300-1500 m).

4.1.3. Effect of brake ratio on the race line

A small change in the brake ratio γ, defined in (39), can give a quite different behaviour
of the vehicle during braking. Three γ configurations are chosen for the present investi-
gation: the baseline configuration (A), a configuration with γ increased by 10% (B), and
a configuration with γ reduced by 10% (C). The lateral position n of the three config-
urations is compared in Fig. 6. In general, the A and C configurations have an opposite
behaviour during corners. The baseline brake ratio value γ0 is reported in Tab. 1. The lap
time is 75.451 s for vehicle A, 75.040 s for vehicle B and 75.844 s for vehicle C. At turn
1 (300-500 m), vehicle B approaches the corner closer to the outer border with respect
to vehicle A, adopts a tighter trajectory during cornering, and moves towards the outer
border again at the exit of the corner. The difference between the lateral position n of
vehicle B and A, in this case, is 0.5 m. Vehicle C, instead, runs tighter to the inner border
before the turn, goes larger during the turn, and exits the turn closer to the inner bor-
der. At turn 2 (900-1100 m) the behaviour is similar to turn 1. At turn 3 (1300-1500 m),
vehicle B employs a wider race line both while entering and exiting the corner, while
vehicle C employs the opposite strategy, with a trajectory closer to the inner side of the
corner. Vehicle B has a maximum lateral position difference of 1.3 m, with respect to the
baseline trajectory (A), while leaving the turn.

4.1.4. Effect of race-line on the roll stiffness optimum

The roll stiffness ratio ξ in (36) affects the lateral load transfer on each axle, while the
total lateral load transfer remains the same. The effect of such parameter on the race
line is shown in Fig. 7 for three configurations: the baseline vehicle (A), the vehicle with
ξ increased by 20% (B), and the vehicle with ξ reduced by 20% (C). The baseline roll
stiffness ratio ξ0 is reported in Tab. 1. At turn 1 (300-500 m) and 2 (900-1100 m), vehicle
B reaches the apex travelling on a race line closer to the inner kerb, and exits the corner
with a larger trajectory with respect to vehicle A (baseline). At turn 3 (1300-1500 m),
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Figure 6.: Lateral position of n at different brake ratios γ (top-left) and lateral position
difference with respect to the baseline configuration (bottom-left). Magnified view of turn
3, with different race lines (right). Baseline (dot-dash), brake ratio -10% (solid), brake
ratio +10% (dashed).

vehicle B drives closer to the outer border during the corner and then closer to the inner
border in the exit phase. At turn 8 (2100-2300 m) the maximum difference of lateral
position is observed (1.2 m): again vehicle B drives the corner closer to the inner kerb.
In each case, vehicle C adopts an opposite strategy with respect to vehicle B.

A parameter optimisation is run in order to find the roll ratio that gives the minimum
lap time. Both the baseline adherence and the low adherence cases are considered. The
optimisation is carried out by employing the free-trajectory OCP, the fixed-trajectory
OCP, and the fixed-trajectory apex-finding method. The fixed-trajectory methods are
run using the race line obtained with the corresponding free-trajectory OCP. The three
methods give the same optimum, both in the baseline-friction (ξ/ξ0 = 1.6) and low-
friction (ξ/ξ0 = 1.7) scenario (see Fig. 8). Indeed, as explained in Sec. 4.1.1, the three
methods give roughly the same lap time, once the (same) race line is given.

A deeper investigation shows that increasing the roll stiffness ratio is detrimental for
the maximum achievable lateral acceleration, since the load transfer on the front axle is
already large in the baseline configuration. However, while simultaneously braking (or
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Figure 7.: Lateral position n at different roll stiffness ratios ξ (top-left) and lateral position
difference with respect to the baseline configuration (bottom-left). Magnified view of
turn 8, with different race lines. Baseline (dot-dash), roll stiffness ratio -20% (solid), roll
stiffness ratio +20% (dashed).
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Figure 8.: Lap time versus the normalised roll-ratio parameter ξ/ξ0 for baseline fric-
tion (left) and low friction (right), using the free-trajectory OCP method (solid), the
fixed-trajectory OCP method (dash-dot), and the fixed-trajectory apex-finding method
(dashed).

accelerating) and cornering, increasing the roll stiffness ratio is beneficial, and higher
deceleration (or acceleration) can be achieved. Indeed, in such condition the rear tyres
saturates, and thus minimizing the load transfer on the rear axle is beneficial for improv-
ing the performance, i.e. the g-g area. The optimal value of the roll stiffness ratio is the
best trade-off between these two effects.

In most of the practical cases, the race line is available for a certain configuration only.
The fixed-trajectory methods allow us to investigate the effect of a given parameter,
together with the g-g diagrams calculated with different values of such parameter, while
still employing the same predetermined trajectory. As an example of application, the
race line resulting from the baseline vehicle optimal lap (with the baseline friction) is
selected (Section 4.1.1). The fixed-trajectory OCP and the apex-finding method (Fig. 9)
are employed on such trajectory, together with the g-g surfaces obtained for low friction
conditions, at different values of the roll stiffness ratio ξ. The lap time is then compared
against the lap time obtained with the free-trajectory OCP optimisation for low adher-
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Figure 9.: Lap time versus the normalised roll-ratio parameter ξ/ξ0, using the low-friction
free-trajectory OCP method (solid), the fixed-trajectory OCP method (dash-dot) com-
puted on the baseline friction race line (with low-friction g-g), and the fixed-trajectory
apex-finding method (dashed) computed on the baseline friction race line (with low-
friction g-g).
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ence conditions (Fig. 9). The lap times obtained with the fixed-trajectory methods are
higher, since the race line used (which is optimal for baseline-friction condition) is not
the optimal one for the g-g surfaces selected (which relate to the low-friction condition).
However, when it comes to the parameter optimisation, the fixed-trajectory methods give
the same optimal parameter value as the free-trajectory methods, although they are run
on a suboptimal trajectory. This need not be always the case.

4.1.5. Remarks on problem size

With the current implementation, the computation time of the free-trajectory OCP is
about three times the computation time of the fixed-trajectory OCP, while the com-
putation time of the fixed-trajectory apex-finding method is about one-and-a-half the
computation time of the fixed trajectory OCP. However, the fixed-trajectory methods
require some pre-processing work in order to obtain a suitable race line (either experi-
mentally or numerically, e.g. using a free-trajectory optimisation).

The computational effort of the three methods employed can be compared through the
inspection of the number of equations that have to be solved in the baseline configuration,
and the number of related solver iterations. The free-trajectory OCP needs to solve 328
equations (state equations plus constraints) with the initial mesh grid, which consists
of 41 mesh points (in the range 25-100 m). In the final mesh grid, the number of mesh
points is 1478 and the number of equations raises to 11824. The total number of equations
solved after the 10 mesh-refinement steps is 83952, while the total number of iterations
performed by IPOPT is 2884. The fixed-trajectory OCP needs to solve 123 equations
with the initial mesh grid, which consists of 41 mesh points. In the final mesh grid the
number of mesh points is 446 and the number of equations to solve is 1338. The total
number of equations solved after the 7 mesh-refinement steps is 6270, while the total
number of iterations performed by IPOPT is 7558. Finally, the apex-finding method has
a constant number of 26596 mesh points (since there is no mesh refinement) and as many
equations. The total number of iterations performed by its root-finding solver is 102373.

4.2. Motorcycle model

The g-g diagram of the motorcycle is computed employing the essential model reported
in [35], which is extended to include the drag force and the engine power limit. Both the
suspensions and the steer angle are neglected. As in the car model, the yaw rate Ω is
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Figure 10.: Motorcycle model (left) and related g-g diagrams at different speeds (right).
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related to the lateral acceleration ay and the velocity V by Ω = ay/V . In order to obtain
a compact formulation, it is further assumed that the vehicle sideslip angle is small, that
the motorcycle is symmetric with respect to the x-z plane (i.e. Ixy = Iyz = 0), that the
cross moment of inertia Ixz is negligible, and that Iy ≈ Iz. The benefit of such model is
that a compact formulation is obtained, while retaining motorcycle peculiarities such as
roll-dependent stoppie and wheelie limits.

The steady-state equations of motion are:

max = Fxr + Fxf − FD (44)

may = Fyr + Fyf (45)

mg = Nr +Nf (46)

mayh cosφ = mgh sinφ (47)

maxh cosφ = bNr − (w − b)Nf − FDha cosφ (48)

maxh sinφ = bFyr − (w − b)Fyf − FDha sinφ, (49)

where the first three equations represent the balance of forces along the longitudinal,
lateral and vertical axes, while the latter three equations represent the moment balance
around the roll, pitch and yaw axes. The meaning of the model parameters and values
used in the simulations are reported in Tab. 2, while the force and the axes convention
are depicted in Fig. 10 (left). The lateral forces are represented by Fyr and Fyf for the
rear and front tyre respectively, while the roll angle φ is measured from the vertical plane
x-z. During braking, the longitudinal forces Fxr and Fxf are related by

γ =
Fxf
Fxr

, (50)

where the brake ratio γ (compare with (39) where γ was defined for cars) is zero during
acceleration and is determined by the rider in braking. The seven steady-state equations
(44)-(50) can be solved analytically for φ,Nr, Nf , Fxr, Fxf ,Fyr, Fyf . Such solution will be
used to derive the g-g boundaries.

The aerodynamics force is applied on the center of pressure, and is given by

FD =
1

2
ρaCDAV

2. (51)

The coupling between longitudinal and lateral forces is included through friction el-
lipses, which (at the limit of friction) are given by

(
Fxr/Nr

µx

)2

+

(
Fyr/Nr

µy

)2

= 1, (52)(
Fxf/Nf

µx

)2

+

(
Fyf/Nf

µy

)2

= 1, (53)

where µx and µy are the longitudinal and lateral friction coefficients respectively.
The maximum acceleration, i.e. the upper boundary of the g-g map, is obtained when

introducing the analytical solution of the steady-state equations (44)-(50) into the rear
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friction ellipse (52), to give

 w(max + FD)
√
a2
y + g2

g((w − b)m
√
a2
y + g2 +maxh+ FDha)

2

1

µ2
x

+

(
ay
g

)2 1

µ2
y

= 1, (54)

which can be solved for the longitudinal acceleration ax at different lateral accelerations
ay, using a standard root-finding solver.

Since the maximum engine power Pmax is given, the longitudinal force balance (44)
can be used to compute the related acceleration limit

ax =
Pmax

mV
− FD

m
. (55)

Differently from cars, the front tyre of a motorcycle can lift the road during acceleration
(wheelie condition). The related acceleration limit is obtained from the condition Nf = 0,
which can be solved analytically to give

ax =
b
√
a2
y + g2

h
− FDha

mh
. (56)

In order to compute the minimum deceleration, it is assumed that the rider applies
an optimal brake ratio: this condition occurs when the front and rear tyres are engaged
equally, i.e. Fxr/Nr = Fxf/Nf . The condition (52)=(53) gives the following (longitudinal-
and lateral-acceleration dependent) optimal brake ratio

γopt =
mb
√
a2
y + g2 −maxh− FDha

m(w − b)
√
a2
y + g2 +maxh+ FDha

. (57)

When introducing the analytical solution of the steady-state equations (44)-(50), together
with (57) into either the front or rear friction ellipse (53), one obtains

−ax = gµx

√
1−

(
ay
g

)2 1

µ2
y

+
FD
m
. (58)

Again, differently from cars, the rear tyre of a motorcycle can lift the road while braking
(stoppie condition). The related deceleration limit is obtained from the condition Nr = 0,
which can be solved analytically to give

−ax =
(w − b)

√
a2
y + g2

h
− FDha

mh
. (59)

In sum, the g-g diagram is obtained by the envelope of (54), (55), (56), (58), and
(59). The g-g diagram of the motorcycle, obtained with the dataset in Tab. 2, is shown
in Fig. 10 (right) at different speeds. The main differences with respect to the car g-g
diagram (Fig. 1) are the ‘dips’ related to wheelie and stoppie, which limit the motorcycle
performance in straight motion and small lateral acceleration.
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Figure 11.: Baseline motorcycle configuration. Trajectory on the Adria International
Raceway (left), with corner numbers and distance (curvilinear abscissa s) from the
start/finish line. Speed V (top-right) and lateral position n (bottom-right) along the
curvilinear coordinate.
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Figure 12.: Lateral position n for car and motorcycle (top-left) and lateral position dif-
ference with respect to the car baseline (bottom-left). Magnified view of turn 2, together
with the race lines (right). Baseline car (dot-dash), baseline motorcycle (solid).

4.2.1. Baseline simulation

The free-trajectory OCP of the race motorcycle gives a minimum lap time of 72.519 s.
The parameters used are reported in Tab. 2. The race line along the Adria International
Raceway is shown in Fig. 11 (left).The speed profile and the lateral displacement with
respect to the centre line are shown in Fig. 11 (right). The vehicle reaches a top speed of
78 m/s in the home straight, while the minimum speed of 9.5 m/s is reached in turn 3.

Similarly to the race car scenario, even in the case of the motorcycle the lap time
obtained with the fixed-trajectory methods (either OCP or apex-finding) almost coincides
with the lap time of the free-trajectory OCP (difference around 0.02%), as long as the
predefined trajectory is the optimal race line obtained from the free-trajectory OCP.

As for the race car, the problems are discretised using differently spaced mesh points
along the track centre line. The mesh points of the OCP solutions are unevenly spaced
(in the range 0.1-10 m), and result from the solution of the optimisation problem, while
the apex-finding approach has a 0.1 m equally spaced mesh. See Sec. 4.2.2 for further
details on the computation implications of the different methods.
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4.2.2. Remarks on problem size

With the current implementation, the computation time of the free-trajectory OCP is
similar to the computation time of the fixed-trajectory OCP, while the computation time
of the fixed-trajectory apex-finding method is about three-and-a-half the computation
time of the fixed-trajectory OCP. However, the fixed-trajectory methods require some
pre-processing work in order to obtain a suitable race line.

As in the case of the car model, the computational effort of the three methods employed
can be compared through the inspection of the number of equations that have to be
solved in the baseline configuration, and the number of related solver iterations. The
free-trajectory OCP needs to solve 328 equations (state equations plus constraints) with
the initial mesh grid, which consists of 41 mesh points – this is identical to the car
problem. In the final mesh grid, the number of mesh points is 1478 and the number
of equations raises to 11704. The total number of equations solved after the 10 mesh-
refinement steps is 82696, while the total number of iterations performed by IPOPT
is 512 – the number of equations is close to that of the car problem, the number of
mesh steps is the same, while the number of iterations is smaller. The fixed-trajectory
OCP needs to solve 123 equations with the initial mesh grid, which consists of 41 mesh
points – again this is identical to the car problem. In the final mesh grid, the number
of mesh points is 446 and the number of equations to solve is 1386. The total number
of equations solved after the 8 mesh-refinement steps is 7731, while the total number
of iterations performed by IPOPT is 7434 – the numbers are close to those of the car
problem. Finally, the size of the apex-finding method is identical to the case of the race
car, i.e. 26596 mesh points, and the number solver iterations is close (100943).

4.2.3. Car vs. motorcycle simulations

The friction coefficients of the motorcycle µx and µy have been chosen in order to have
the maximum lateral acceleration and g-g diagram area similar to those of the race
car at low speeds (indeed at high speeds the aerodynamics of the race car becomes
a dominant factor); see Fig. 13 where the g-g diagrams are compared at 20 m/s and
80 m/s. The motorcycle g-g map includes the distinctive effects of wheelie and stoppie
during acceleration and braking. This behaviour is typical for motorcycles and limits
the maximum and minimum acceleration available (see Sec. 4.2). In spite of that, the
motorcycle is capable of reaching higher accelerations, because of the larger height-to-
wheelbase ratio (see Fig. 13 left), lower drag area and higher power-to-mass ratio (see
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Figure 13.: Motorcycle (solid) and car (dash-dot) g-g diagram at V = 20 m/s (left) and
at V = 80 m/s (right).
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Fig. 13 right). On the other hand, the downforces allow the car to potentially reach higher
lateral accelerations (see Fig. 13 right). However, the selected track does not include high
speed corners to exploit such advantage. For this reason the motorcycle reaches a top
speed 10 m/s higher than the car, while, at turn 3, the minimum speed reached by the
motorcycle is 1.4 m/s higher. Therefore the lap time is 4% lower for the motorcycle.

The two vehicles also employ different race lines, in particular during tight corners
(Fig. 12). At turn 1 (300-500 m), the motorcycle starts the cornering manoeuvre with a
larger race line, goes tighter to the inner kerb at the corner apex, and exits with a larger
trajectory. At turn 2 (900-1100 m), turn 3 (1300-1500 m) and turn 8 (2100-2300 m) the
behaviour is similar.

5. Conclusion

A method for computing the minimum lap time of road vehicles, together with the related
optimal race line, has been presented. The method builds upon the g-g-speed surfaces that
can either be derived experimentally (from track data) or numerically (from QSS models).
The key features of the proposed approach can be summarised as follows: the computation
of the optimal race line is allowed without involving a full-dynamic vehicle model (QSS
models suffice); the method is suitable for application both to cars and motorcycles
(as shown by the two examples included); all the model complexity is confined to the
g-g-surfaces (i.e. the model complexity does not affect the complexity of the resulting
OCP problem). Moreover, with the current implementation, the computation time of the
free-trajectory approach lies between one and three times the computation time of the
fixed-trajectory approaches. In this work, the effect of the tyre-road friction, brake ratio,
and roll-stiffness ratio on the optimal trajectory of a race car has been discussed. The
effect of the fixed-trajectory assumption has been also investigated in the case of the
optimisation of the roll-stiffness ratio. The comparison between the key features of the
g-g diagrams of cars and motorcycles has been also included, as well as the comparison
between the related optimal trajectories.
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Table 1.: Baseline car parameters.

Symbol Description Value

g gravity 9.81 m/s2

ρa air density 1.20 kg/m3

m mass 1300 kg
h height of center of mass 0.330 m
w wheelbase 2.900 m
b longitudinal distance of the center of mass 1.535 m
a w − b 1.365 m
Iz yaw inertia 1700 kgm2

T vehicle track 2.016 m
γ0 brake ratio Fxf/Fxr 1.13
ξ0 roll stiffness ratio 0.53
CDA drag area coefficient 0.65 m2

CLfA front lift area coefficient 0.15 m2

CLrA rear lift area coefficient 0.35 m2

Pmax maximum power 415 kW
δmax maximum wheel steer angle 20 deg
pCx1 longitudinal shape factor 1.6935
pDx1 max longitudinal friction coefficient 1.8757
pDx2 longitudinal friction load dependency factor -0.127
pEx1 longitudinal curvature factor 0.07708
pKx1 max longitudinal stiffness coefficient 30.5
pKx3 max longitudinal stiffness coefficient 0.2766
λµx longitudinal scaling factor 0.93
pCy1 lateral shape factor 1.733
pDy1 max lateral friction coefficient 1.8217
pDy2 lateral friction load dependency factor -0.4388
pEy1 lateral curvature factor 0.29446
pKy1 max cornering stiffness coefficient 44.2
pKy2 max cornering stiffness coefficient 2.5977
λµy lateral scaling factor 0.84
N0 nominal load (where dfz = 0) 3500 N

Table 2.: Motorcycle (plus rider) parameters.

Symbol Description Value

g gravity 9.81 m/s2

ρa air density 1.20 kg/m3

m mass 250 kg
h height of center of mass 0.69 m
ha height of center of pressure 0.69 m
w wheelbase 1.50 m
b longitudinal distance of the center of mass 0.73 m
CDA drag area coefficient 0.20 m2

Pmax maximum power 180 kW
µx longitudinal friction coefficient 1.2
µy lateral friction coefficient 1.44
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