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Abstract
Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue.
An implicit time integration scheme is herein developed within the framework of the u–w (solid displacement–relative fluid
displacement) formulation for the Biot’s equations. In particular, liquid water saturated porous media is considered and the
linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for
the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions
are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic
consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The
feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through
the application to an embankment problem subjected to an earthquake.

Keywords Biot’s equations · Meshfree · Implicit schemes · u–w formulation · Hyperelastoplasticity

1 Introduction

Predicting the dynamic behavior of saturated porous media
at large deformation regime is undoubtedly interesting and
complex at the same time. This is evidenced by the very lim-
ited literature available in this field [10,22,27,45]. It ismainly
attributed to the fact that thewidely-used displacement-water
pressure u–pw formulation for the Biot’s equations, though
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effective for dynamic but low frequency loading [2,12,39,44,
45], is not capable to capture high frequency oscillations for
all the permeability values [44]. By contrast, the u–w formu-
lation (where u denotes the solid phase displacement and w

represents the relative fluid displacement with respect to the
solid phase) is particularly suited for solving dynamic and
wave propagation problems when the effect of inertia can-
not be ignored, since both solid and fluid accelerations are
included in the governing equations. In addition, it is more
stable than the complete formulation based on the total dis-
placement of the fluid phase, U , as nodal unknowns, since
the later employs one unique material point for both solid
and fluid phases, making it unstable when large deforma-
tions occur in the fluid phase [17,32].

Even though explicit solutions for the coupled problem
can be found in literature using the total displacement of the
water [41], the traditional manner to solve this kind of prob-
lems for complete and u–w formulation is through implicit
schemes.

Since the derivatives of the governing equations are
required, linearization of the terms which are not negligible
for large deformation dynamic problems becomes indispens-
able. However, such complex mathematical operations have
not been presented in the literature so far. The most recent
advances on this field are made by Sanavia et al. [33] who
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employed some neglected terms of the previous works [6,7]
and extended the application of the methodology to unsat-
urated soils [35] and thermo-mechanical analyses [8]. The
current work is the first application of the implicit u–w for-
mulation at large elastic or elasto-plastic strains and it is the
first time that the complete Biot’s equations are linearized
for an implicit Lagrangian scheme.

Thementioned implicit numerical scheme is implemented
within a meshfree framework, in particular, the shape func-
tions based on the principle of maximum entropy [3,31] are
chosen for spacial discretizations. In addition, the coupling
between the solid and fluid phases is carried out through a
single set of material points. This is computationally more
effective compared to alternative implementations such as
those of Material Point Schemes (MPM) [4,9], where two
sets ofmaterial pointswere employed. Following theOptimal
TransportationMeshfree (OTM) scheme by Li et al. [20], the
nodal and material points are reconnected on the fly, which
facilitates the simulation of large deformation problems.
Regarding the constitutive material models, the modification
of the Neo-Hookean material by Ehlers and Eipper [13] for
elastic behavior and the Drucker–Prager yield criterion for
plastic deformation [26] based on [35] are adopted.

The rest of the paper is organized as follows. The u–
w equations developed in the deformed configuration are
presented next. The employed implicitmethodology is devel-
oped in Sect. 3. The constitutivemodels for the solid behavior
are given in Sect. 4. Applications to various benchmark prob-
lems are illustrated in Sect. 5 whereas the performance of
the method in an embankment loaded by an earthquake load
is presented in Sect. 6. Relevant conclusions are drawn in
Sect. 7.

2 The u–w formulation for the coupled
problem

For the sake of completeness, we briefly explain here the
notations involved for the Biot’s equations [5] to solve the
coupled problem of a porous medium (solid–fluid mixture).
Then the equations for the balance of linear momentum and
mass conservation byLewis andSchrefler [19] are introduced
in the spatial setting, which are based on averaging proce-
dures and derived within the Hybrid Mixture Theory. For the
kinematic equations the interesting reader can see [19] or
[35].

Hereinafter, the vectors and matrices are represented with
bold symbols, whereas scalar variables are denoted with
regular letters. The symbol ‘·’ denotes the scalar product
between two vectors (a · b = aibi ), while the symbol ‘:’
denotes a double contraction of (adjacent) indices of two
tensors of rank two or/and higher (e.g. c : d = ci j di j , e :
f = ei jkl fkl ). Cartesian coordinates are used throughout.

In the following, u, U and w respectively stand for
displacement vectors of the solid skeleton, the absolute dis-
placement of the fluid phase and relative displacement of the
fluid phase with respect to the solid one. In addition, w is
related with u and U through the porosity, n, and the degree
of water saturation, Sw as follows [23],

w = nSw (U − u). (1)

It needs to be clarified that (U − u) is often coined as uws in
the literature [19]. In Eq. (1), the porosity is calculated as

n = dvh

dvh + dvs
, (2)

where dvh and dvs are the volumes of the voids and solid
grains in the deformed configuration respectively. Note that
in the current work, totally saturated porous medium is
assumed, i.e., dvh coincides with the water volume, which
results in Sw equal to 1.

The parameters n and Sw alsomap out themixture density,
ρ, with that of the fluid and solid particles, ρw and ρs , as
follows

ρ = (1 − n)ρs + nSwρw. (3)

Likewise, the volumetric compressibility of the mixture, Q,
is related with the bulk modulus of the solid grains, Ks , and
the compressive modulus of the fluid phase (water), Kw, [43]
i.e.,

Q =
[
α − n

Ks
+ n

Kw

]−1

. (4)

where α is the Biot’s coefficient:

α = 1 − K

Ks
(5)

being K the bulk modulus of the solid skeleton. For soils,
since the solid grains are much less compressible than the
porous skeleton, α can be considered equal to 1.

With respect to the sign criterion for stresses and strains,
tensile ones are assumed positive, except for the pore pres-
sure, pw, which is negative for tension.

The Terzaghi’s effective stress [38], σ ′, is related with the
total Cauchy stress tensor, σ , and the pore pressure, pw, as
follows,

σ ′ = σ + α pwI, (6)

where I is the second order unit tensor.
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2.1 Systems of equations for the linear momentum
balance

On the one hand, starting from the general form of Darcy’s
law for any fluid phase, the system equations of the linear
momentum balance for saturated soil according to Lewis and
Schrefler [19] are expressed as follows,

nSwvws = k
μw

[−grad pw + ρw(g − as − aws)
]

(7)

where, as previously mentioned, the degree of saturation,
Sw, is equal to one; the relative velocity of the fluid, vws , is
defined as ẇ/n, where �̇ represents the material time deriva-
tive of �� with respect to the solid; as ≡ ü denotes the solid
phase acceleration, aws = ẅ/n is the relative acceleration
of the fluid respect to the solid phase, g represents the exter-
nal acceleration vector, μw denotes the dynamic viscosity of
the water and k is the intrinsic permeability tensor, which
becomes a unit tensor multiplied by the scalar k, intrinsic
permeability, when isotropic permeability is assumed. Con-
sequently, Eq. (7) can be re-written as

−grad pw − μw

k
ẇ + ρw

(
g − ü − ẅ

n

)
= 0. (8)

The relationship vws = ẇ/n has been derived from Eq. (1)
computing the material time derivative of w with respect to
the solid and neglecting the material time derivative of the
porosity with respect to the solid for simplicity.

On the other hand, Lewis and Schrefler [19] also give the
linearmomentumbalance equation for themultiphase system
under saturated conditions as the summation of the dynamic
equations for the individual constituents relative to the solid
as

div σ − ρas − nρwaws + ρg = 0. (9)

Taking into account Eq. (6), we obtain the system equations
for the linear momentum balance as

div
[
σ ′ − α pw I

] − ρ ü − ρwẅ + ρg = 0. (10)

Both linear momentum balance equations of the mixture
and the fluid were presented by Zienkiewicz et al. [43] with
the convective terms, which can be neglected in the present
research as the vorticity is relatively small compared to the
rest of the terms.

2.2 Mass balance equation

Themass balance equation of the liquid water in a isothermal
totally saturated media with compressible grains and water
is [19]

(
α − n

Ks
+ n

Kw

)
ṗw + αdiv(u̇) + div(ρwẇ)

ρw

= 0 (11)

Taking into consideration Eq. (4) and considering constant
water density and α equal to 1 we obtain the mass balance
equation as follows:

ṗw

Q
+ div u̇ + div ẇ = 0. (12)

The above equation can be integrated over time to obtain the
pore pressure as

pw = −Q [div(u) + div(w)] + pw0 , (13)

where pw0 is the initial pore pressure.
It needs to be pointed out that, if accelerations of the

solid and the fluid are negligible, as in a quasi static u–pw

formulation, and the solid grain and the fluid can be consid-
ered incompressible, substituting Darcy’s law into Eq. (12),
the liquid water mass balance equation can be simplified as
[34,35]

div u̇ + div

[
k

μw

(−grad pw + ρw g)

]
= 0. (14)

2.3 The weak form of system equations for the u–w
formulation

The weak form of the system equations for the u–w formu-
lation is obtained applying the principle of virtual displace-
ments to the linear momentum equation of both the solid and
fluid phases, Eqs. (8) and (10).

Let δu represent the virtual displacement vector for the
solid phase, the weak form of the linear momentum balance
equation (10) reads

∫
B

[
div (σ ) − ρ ü − ρwẅ + ρg

] · δu dv = 0 (15)

where B is the volume of the spatial domain. Applying the
Green’s Theorem to Eq. (15), we obtain

−
∫
B

σ : grad(δu) dv +
∫
B

[−ρ ü − ρwẅ + ρg
] · δu dv

+
∫

δB
t · δu ds = 0. (16)

being δB the boundarywhere the traction t is applied. Taking
into account Terzaghi’s definition of the effective stress and
mass conservation, the terms in Eq. (16) can be arranged to
yield the final expression of the weak form for the mixture
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as follows

−
∫
B

σ ′ : grad(δu) dv −
∫
B
Q div(u)I : grad(δu) dv

−
∫
B
Q div(w)I : grad(δu) dv

+
∫
B

[−ρ ü − ρwẅ + ρg
] · δu dv +

∫
δB

t · δu ds = 0.

(17)

Let δw stand for the virtual displacements for the fluid
phase, the corresponding weak form of the linear momentum
equation (8) is written as

∫
B

[
−grad(pw) − μw

k
ẇ + ρw(g − ü − ẅ

n
)

]
· δw dv = 0.

(18)

Applying the Green’s Theorem to the above equation, we
have

∫
B
pw I : grad(δw) dv −

∫
B

μw

k
ẇ · δw dv +

∫
B

ρw(g − ü − ẅ

n
) · δw dv −

∫
δB

tw · δw ds = 0 (19)

being tw the traction of the fluid phase. Taking into account
Eq. (13), the final weak form of the linear momentum equa-
tion of the liquid water is obtained as follows,

−
∫
B
Q div(u)div(δw) dv −

∫
B
Q div(w)div(δw) dv

−
∫
B

μw

k
ẇ · δw dv −

∫
B

ẅ
ρw

n
· δw dv

+
∫
B

ρw(g − ü) · δw dv −
∫

δB
tw · δw ds = 0. (20)

3 Time and spatial discretization and
consistent linearization

In this Section, we describe in detail the implicit time inte-
gration scheme, including the linearization process and the
Newton–Raphson algorithm and the meshfree spatial dis-
cretization based on LME shape functions.

3.1 Implicit solution and Newton–Raphson
algorithm

Asmentioned before, the framework of the u–w formulation,
also known as the complete formulation (since no additional

Table 1 The α-parameters of the Newmark scheme

α1 = 1
βΔt2

α2 = 1
βΔt

α3 = 1
2β − 1 α4 = γ

βΔt

α5 = 1 − γ
β

α6 =
(
1 − γ

2β

)
Δt

α7 = 1 α8 = 1

assumption is required), each node contains both solid and
fluid degrees of freedom, u andw, whereas the pore pressure,
pw, is calculated at thematerial point afterwards. By contrast,
in the more traditional u–pw formulation, pw is considered
directly as an additional nodal unknown. Consequently, the
imposition of impervious boundary conditions is a bit more
complicated.

In a two-dimensional problem, the nodal unknowns can
be written as:

u∗ = [
ux uy wx wy

]T
.

After assembling the elementary matrices, the final system
of equations can be simplified as

Rk+1 + C u̇k+1 + M ük+1 = Pk+1, (21)

where R, C and M respectively denote the internal forces
vector and damping and mass matrices, whereas P is the
external forces vector, which contains both gravity acceler-
ation and external nodal forces. k + 1 represents the current
step.

In order to solve Eq. (21) in an implicit way, the Newmark
equations are written in terms of the incremental displace-
ments, i.e.

ük+1 = α1Δuk+1 − α2u̇k − α3ük, (22)

u̇k+1 = α4Δuk+1 + α5u̇k + α6ük, (23)

where the α-parameters are listed in Table 1 according to
Wriggers [40]. These coefficients can be easily extended to
any other time integration schemes.

In the current work, solutions are obtained with a tradi-
tional Newmark time integration scheme with γ = 0.6 and
β = 0.325.

Inserting Eqs. (22–23) to Eq. (21), the equations for the
unknowns can be re-written as:

Gk+1 = M
[
α1Δuk+1 − α2u̇k − α3ük

]
+C

[
α4Δuk+1 + α5u̇k + α6ük

]
+α7Rk+1 − Pk − α8ΔPk+1 = 0, (24)
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or in the compact form:

G(χ , η) = 0,

where χ = [
χu,χw]T is the deformation mapping

and η = [δu, δw]T , Δu∗ = [Δu,Δw]T . (25)

To solve the above non-linear equations, Taylor’s series are
employed in the current configuration. After the linearization
of χ , Eq. (25) becomes

G(χ , η,Δu∗)i+1
k+1

∼=
G(χ , η)ik+1 + DG(χ , η)ik+1 · Δu∗i+1

k+1
∼= 0, (26)

where χ is the linearized deformation mapping. Taking into
account the fact that operator G is composed in two parts,
the derivatives taking the following form:

DG · Δu∗ =
[
DGLMS · Δu + DGLMS · Δw

DGLMW · Δu + DGLMW · Δw

]
, (27)

where DGLMS and DGLMW represent the derivative of the
linear momentum equations Eq. (17) and Eq. (20), of the
solid phase and the fluid phase respectively.

According to Wriggers [40], any Newton method can be
applied to determine the unknown displacements. We first
calculate the tangential stiffness matrix, i.e.

K (uik+1) = K i
k+1 = ∂R

∂u

∣∣∣∣
uik+1

. (28)

that allows us to solve the system equations in an iterative
manner (iteration index i). The iteration finishes when Gi

k+1
is lower than a given tolerance:

[
α1M + α4C + α7K i

k+1

]
Δui+1

k+1 = −G(uik+1),

where ui+1
k+1 = uik+1 + Δui+1

k+1. (29)

Rewritting Eq. (24) to separate the current (k + 1) and pre-
vious (k) terms, since the later ones are not susceptible of
linearization as they are constants that come from the previ-
ous step, we have

Gk+1 = [α1M + α4C] uk+1 + α7R(uk+1) − α8Pk+1

+ [α1Muk − α2Mu̇k − α3Mük]

+ [α4Cuk + α5Cu̇k + α6Cük] − α f Pk

= [α1M + α4C] uk+1 + α7R(uk+1)

−α8Pk+1 + Fint
k . (30)

Consequently, after integration in time, Eq. (17) and Eq. (20)
are written at time k+1 and transformed as follows

−α7

∫
B

σ ′ : grad(δu) dv − α7

∫
B
Q div(u)div(δu) dv

−α7

∫
B
Q div(w)div(δu) dv − α1

∫
B
[ρu + ρww] · δu dv

+α8

∫
B

ρg · δu dv + α8

∫
δB

t · δu ds = 0 (31)

−
∫
B

α7Q div(u)div(δw) dv −
∫
B

α7Q div(w)div(δw) dv

−α4

∫
B

μw

k
w · δw dv − α1

∫
B

ρw

n
w · δw dv

−α1

∫
B

ρwu · δw dv + α8

∫
B

ρw g · δw dv

−α8

∫
δB

tw · δw ds = 0. (32)

The results of the linearization process for Eq. (31) and
Eq.(32) are given in Eq. (33) and Eq. (34) respectively,
whereas the details are described in “Appendix A”.

– Linear momentum of for the solid phase

− α7

∫
B
grad(δu) : cep : grad(Δu) dv

− α7

∫
B

σ ′ : gradT (δu) grad(Δu) dv

− α7

∫
B
grad( δu) : (Q [div(Δu) + div(Δw)] I) dv

− α7

∫
B
grad( δu) : pw gradT (Δu)dv

− α7

∫
B
grad( δu) : pw

1 − n

n
div(Δu)Idv

− α1

∫
B

δu · [ρΔu + ρwΔw + ρwdiv(Δu) (u + w)] dv

+ α8

∫
B

ρwδu · g div(Δu) dv (33)

– Linear momentum for the fluid phase:

− α7

∫
B
grad( δw) : (Q [div(Δu) + div(Δw)] I) dv

− α7

∫
B
grad( δw) : pw gradT (Δu)dv

− α7

∫
B
grad( δw) : pw

1 − n

n
div(Δu)Idv

− α4

∫
B

μw

k
δw ·

[
Δw + div(Δu)

(
1 − 1 − n

k

∂k

∂n

)
w

]
dv

− α1

∫
B

ρw

n
δw ·

[
Δw + 2n − 1

n
div(Δu)w

]
dv

− α1

∫
B

ρwδw · [Δu + div(Δu)u] dv

+ α8

∫
B

ρwδw · g div(Δu) dv (34)
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3.2 Spatial discretization

The shape function employed is based that of Arroyo and
Ortiz [3], who defined exponential functions based on the
principle of the local maximum entropy (LME). For a node
a, it reads,

Na(x) = exp
[−β |x − xa|2 + λ∗ · (x − xa)

]
Z(x,λ∗(x))

, (35)

where

Z(x,λ) =
Nb∑
a=1

exp
[
−β |x − xa|2 + λ · (x − xa)

]
. (36)

Nb representes the neighborhood size. The parameter β

defines the shape of the neighborhood and λ∗(x) comes from
the minimization of the function g(λ) = log Z(x,λ) to guar-
antee themaximum entropy. The first derivatives of the shape
function are then obtained from differentiating the shape
function itself to get the Hessian matrix J in the following
expression:

∇N∗
a = −N∗

a (J∗)−1 (x − xa). (37)

A modified Nelder–Mead algorithm developed by Navas et
al. [26] is used for the minimization process in the current
work.

4 Material models for the solid phase

Since the first term of Eq. (33) contains cep, which depends
on specific material models, we illustrate in this Section the
constitutive models employed for the solid phase based on
hyperelasticity or hyperelastoplasticity.

4.1 Elastic material model: the Neo-Hookean solid

In order to predict the non-linear elastic behavior for solids
undergoing large deformations and to be able to take into con-
sideration the effect of the compaction point, the variation of
the volume and the initial porosity in soils, themodifiedNeo-
hookean material model proposed by Ehlers and Eipper [13]
is adopted. It reads as follows,

τ ′
k+1 = G(bk+1 − I) + λ n20

(
J

n0
− J

J − 1 + n0

)
I, (38)

where τ ′ is the effective Kirchhoff stress tensor (τ ′ = Jσ ′),
J represents the Jacobian determinant of the deformation
gradient at step k + 1, b is the left Cauchy–Green tensor,
n0 is the initial porosity, G and λ are the Lamé constants.

Consequently, the continuous variationof the tangentmoduli,
ce, is depicted as

ce = 2

[
G − λn0 J

J − 1

J + n0 − 1

]
1

λ

[
n0 J

J 2 + (1 − n0)(1 − 2J )

(J + n0 − 1)2

]
(I ⊗ I), (39)

where 1 and I represent the respective fourth and second
order unit tensors.

4.2 Elasto-plastic material model: the
Drucker–Prager yield criterion

The elasto-plastic behavior of the solid skeleton at finite
strains is based on the multiplicative decomposition of the
deformation gradient of the solid Fs into an elastic and plas-
tic part originally proposed by Lee [18] for crystals

Fs = Fs eFs p (40)

This decomposition states the existence of an intermediate
stress free configuration and its validity has been suggested
for cohesive-frictional soils by Nemat-Nasser [30]. The
elasto-plastic behavior is assumed isotropic. The constitutive
equations, their algorithmic formulation based on the product
formula algorithm proposed for the single phase material by
Simo [37] and the return mapping and the consistent tangent
operator can be found in [35]. Here it is recalled that the for-
mulation is written in terms of the effective Kirchhoff stress
tensor and the logarithmic principal values of the elastic left
Cauchy–Green strain tensor. The yield function restricting
the stress state is developed in the form of Drucker–Prager, to
take into account the dilatant/contractant behavior of dense
or loose sands, respectively. The singular behavior of the
Drucker–Prager yield surface in the zone of the apex is solved
using the concept of multisurface plasticity.

This approach is selected due to its computational effi-
ciency, because, by defining a limit pressure, plim , given by
Eq. (41), the location of a given stress state (on the cone or
over the apex) can be determined before the plastic strain is
known.

plim = 3αQ K

2G
‖str ialk+1 ‖

+ β

3αF

(‖str ialk+1 ‖
2G

H
√
1 + 3α2

Q
+ ck

)
, (41)

where K and G are the bulk and shear modulus, ck+1 is the
current cohesion and its derivative, H , is the hardening mod-
ulus; β and αF are Drucker–Prager parameters related to the
friction angle, φ, whereas αQ depends on the dilatancy angle,
ψ . These parameters are illustrated in Table 2. In addition,
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Table 2 Parameters for the Drucker–Prager (DP) yield criteria

DP: plane strain DP: outer cone

αF
tan φ√

(3+4 tan2 φ)

√
2
3

2 sin φ
3−sin φ

√
2
3

αQ
tanψ√

(3+4 tan2 ψ)

√
2
3

2 sinψ
3−sinψ

√
2
3

β 3√
(3+4 tan2 φ)

√
2
3

6 cosφ
3−sin φ

√
2
3

‖str ialk+1 ‖ represents the norm of the deviatoric trial stress ten-
sor in the time step k+1, str ialk+1 , calculated from pressure and
the trial logarithmic strain [11,35]. Once the stress state is
located, the yield condition of either classical (Φcl ) or apex
(Φap) region is used.

Φcl = ‖str ialk+1 ‖ − 2GΔγ + 3αF [ptrialk+1 −
−3KαQΔγ ] − βck+1, (42)

Φap = β

3αF

[
ck + H

√
Δγ 2

1 + 3α2
Q
(Δγ1 + Δγ2)2

]

−ptrialk+1 + 3KαQ (Δγ1 + Δγ2) . (43)

where Δγ1 = ‖str ialk+1 ‖
2G , Δγ and Δγ2 are the objective func-

tions to be calculated in the Newton–Raphson scheme for the
classical or apex regions accordingly.

The above implementation, recently tested for explicit
integrations within the framework of Optimal Transportation
Meshfree schemes [26], is herein extended for implicit time
integrations. According to Sanavia et al. [35], depending on
where the current stress state is located, the corresponding
tangent moduli are calculated as:

• Non-corner zone:

cep = K

[
1 − 9αQαF K

c1

]
(I ⊗ I)

+ 2G

[
1 − 2GΔγ

‖str ialk+1 ‖

]
(1 − 1

3
I ⊗ I)

− 6αQ KG

c1
(I ⊗ ntrk+1) − 6αF KG

c1
(ntrk+1 ⊗ I)

− 4G2

[
1

c1
− Δγ

‖str ialk+1 ‖

]
(ntrk+1 ⊗ ntrk+1), (44)

where

c1 = 9αFαQ K + 2G + βH
√
1 + 3α2

Q
]. (45)

• Corner zone:

cep = Kc2(I ⊗ I) + Kc2
2αQGΔγT

(I ⊗ strk+1), (46)

where

c2 = αQβHΔγT

3αQ K
√

Δγ 2
1 + 3α2

Q
Δγ 2

T
+ αQβHΔγT

, (47)

and

ΔγT = Δγ1 + Δγ2. (48)

In the above equations, ntrk+1 is the normalized unit tensor of
the trial deviatoric stress tensor, strk+1, i.e.,

ntrk+1 = strk+1

‖strk+1‖
. (49)

5 Validation

In this Section,wevalidate thedeveloped implicit Lagrangian
scheme through three benchmark problems. The first one is
the elastic dynamic consolidation of a soil column proposed
by Zienkiewicz et al. [44] to assess the performance of the
complete formulation when high frequencies are involved.
The second one is a large deformation consolidation of the
same soil column. The third one deals with the formation of
a plastic shear band.

5.1 Dynamic consolidation of a soil column

The dynamic consolidation of a soil column is studied
using the geometry given in Fig. 1a. The column is loaded
at the top boundary, Γ4, by a harmonic surface loading,
Pmax cos(ωt), see Fig. 1b, where the angular frequency ω is
defined as 2π/T . This problem was first analytically solved
by Zienkiewicz et al. [44] in 1980s, and more recently by
Navas et al. using either implicit Eulerian method [29] or
explicit Lagrangian schemes [28] employing LME shape
functions.

The soil behavior studied is dependent on the solid
skeleton properties (seeTable 3), the permeability and the fre-
quency of the harmonic load. Three zones, defined in Fig. 2
are characterized by the values of Π1 and Π2, which are
defined as follows:

Π1 = k V 2
c

g
ρ f
ρ

ω H2
T

= k ω

g
ρ f
ρ

Π2
, Π2 = ω2 H2

T

V 2
c

(50)

where HT is the column height, Vc is the p-wave velocity
calculated as:

Vc =
√(

D + Kw

n

)
1

ρ
, where D = 2G(1 − ν)

1 − 2ν
. (51)
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P=P(t)

1
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3

4

H
T =

 1
0 

m

L = 1 m

1 :  ux=0,  wx=0
2 :  uy=0,  wy=0
3 :  ux=0,  wx=0
4 :  free

(a)

(c)

Pmax

P(t)

tt0

Large deformation consolidation

Pmax

P(t)

t

T

(b) Dynamic consolidation

Fig. 1 a Geometry and boundary conditions of the column of soil;
loading of b the dynamic consolidation and c large deformation con-
solidation problems

Table 3 Material parameters of the dynamic consolidation problem

G (MPa) 312.5 Kw (MPa) 104

ν 0.2 Ks (MPa) 1034

n 0.333 ρw (kg/m3) 1000

Vc (m/s) 3205 ρs (kg/m3) 3003

2
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Fig. 2 Three zones that characterize the soil behavior in the Π1–Π2
space (See [44]), and tabulated parameter values for the different points
to be studied

Zone I is characterized as slow phenomenon where both
solid and fluid accelerations can be neglected; Zone II is typ-
ical of moderate speed behavior, where only the fluid phase
inertia is negligible; in Zone III, however, inertial contribu-
tions from both solid and fluid phases are significant and
cannot be neglected. The four different points studied herein

0.5

Semi-Analytical solution
(Zienkiewicz et al. 1980)

Explicit Lagrangian scheme 
(Navas et al. 2017)

1

0.5

0
P/Pmax0 1

P1

P2

P3

z/H

P4

Implicit Lagrangian scheme
(Current methodology)

Fig. 3 Maximum envelopes of the isochrones of the pore pressure for
points P1–P4 solved through three different numerical schemes

are shown in Fig. 2, where the loading frequency, ω, and the
soil permeability, k, are also listed.

In order to evaluate the performance of the current
implicit methodology, the maximum envelope of the dimen-
sionless pore pressure along the column is depicted in
Fig. 3. This figure shows an excellent agreement between
the solutions given by the semi-analytical solution pro-
posed by Zienkiewicz and coworkers [44], the explicit
Lagrangian [28] scheme, and the one obtained with the
present implicit Lagrangianmethodology. The solution given
by the current methodology presents more stability than
the explicit one, even for the point P4, which lies in the
Zone III.

5.2 Large deformation consolidation of a soil
column

In order to validate the developed methodology against large
deformation problems, the problem proposed by y Li, Borja
and Regueiro [21] is studied. The geometry of the soil is the
same as the previous example, see Fig. 1a, whereas the load
history is given in Fig. 1c, where t0 = 0.05 s, Pmax = 8MPa.
Parameters of the soil skeleton are provided in Table 4.
The Neo-Hookean material model described in Sect. 4.1 is
employed in this case since is more suitable to simulate the
reduction of the pores volume, i.e. the compaction, which
leads to soil hardening of the soil with less settlement. The
obtained solution is compared against those of Li et al. [21]
and Navas et al. [28] in Fig. 4. Quite similar settlement his-
tories are obtained by the implicit and explicit Lagrangian
schemes based on the u–w formulation, in particular, the
dynamic branch around 0.3 s are captured. By contrast, the
solution based on the u–pw formulation by Li, Borja and
Regueiro [21], the dynamic phenomenon has been smoothed
out, since no acceleration terms were taken into account.
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Table 4 Material parameters of the dynamic consolidation problem

λ (MPa) 29 Kw (MPa) 2.2 × 104

G (MPa) 7 Ks (MPa) 1034

n 0.42 ρw (kg/m3) 1000

k (m/s) 0.1 ρs (kg/m3) 2700
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-0.8
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-0.4
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0.0
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t (s)

Explicit Lagrangian scheme 
(Navas et al. 2017)

u y (
m

)

Small deformation
Finite deformation

Li et al. (2001):

Complete formulation:

Implicit Lagrangian scheme 
(Current methodology)

Fig. 4 Comparison between the settlement obtained by Li et al., the
explicit solution andwith the proposedmethodology for the large defor-
mation consolidation

5.3 Shear band formation in a square domain of
water saturated soil

The last validation is concerned with the formation of a shear
band within a representative square domain of water satu-
rated soil. The top right half of the domain is loaded by a
rigid footing. The same problem was previously studied by
Sanavia et al. [33,34] in quasi-static conditions and [28] in
dynamic conditions. The geometry and material properties
are those shown in Fig. 5. A displacement of one meter is
gradually imposed with a velocity of 5 mm/s over a duration
of 200 s. The spatial discretization is also seen Fig. 5. It con-
sists of 128 material points and 81 nodes. As it can be seen
in the figure, no finer discretization has been assumed in the
area where the shear band is expected to be found during the
computation.

The distributions of the equivalent plastic strain and the
pore pressure at 200 s for four different dilatancy angles are
depicted in Figs. 6 and 7 respectively. No significant varia-
tions of the equivalent plastic strain are perceived for positive
dilantancy angles (dilatant material), whereas large plastic
strain is obtained for the negative one (contractive mate-
rial). In addition, decreased shear band slopes are observed
for smaller dilatancy angles. From Fig. 7, the effect of the
plastic dilatancy (contractancy) is evidenced by the negative
(positive) pore pressure within the shear band zone, mean-

uy = t / 200 [m]

Γ1

Γ2

Γ3

Γ4

10
 m

10 m

Γ5

5 m

K = 8333 kN/m2

G = 3486 kN/m2

c0 = 100 kN/m2

H = -10 kN/m2

Φ = 20º
Ψ = -10º, 0º, 10º, 20º

Kw = 50000 kN/m2

k = 0.0001 m/s
n = 0.33
ρs = 2700 kg/m3

ρw = 1000 kg/m3

Γ1 :   ux=0,  wx=0
Γ2 :   uy=0,  wy=0
Γ3 :   wx=0
Γ4 :   uy=uy(t),  wy=0
Γ5 :   free

P

Material Points Nodes

Fig. 5 Geometry, spatial discretization,material parameters and bound-
ary conditions of a square domain of water saturated porous material

0.075 0.15 0.220.0 0.3

εp

Ψ = 20º Ψ = 10º

0.075 0.15 0.220.0 0.3

εp

0.1 0.2 0.30.0 0.4

εp

Ψ = 0º

0.15 0.3 0.450.0 0.6

Ψ = -10º

εp

Fig. 6 Equivalent plastic strain spatial distribution at the final of the
simulation for the four dilatancy angles

while in the case of zero dilatancy angle no marked pore
pressure variation is observed within the shear band zone.
Despite the coarse spatial discretization excellent results can
be observed, mainly in the shear band zone.
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Fig. 7 Pore pressure distribution (in Pa) at the final of the simulation
for the four dilatancy angles

Moreover, in the case of ψ = 20◦, it can be noted in
Fig. 8 that the negative water pressure within the shear band
is smaller than the cavitation pressure at ambient tempera-
ture (− 98986 Pa), indicating the occurrence of cavitation, as
experimentally observed in [25]. This phenomenon should be
modeled by extending the formulation of this paper to unsat-
urated conditions and adding the water vapor phase, e.g. as
in [14].

In order to study the evolution of the principal results of
the problem, the histories of the pore pressure and equiva-
lent plastic strain in a material point close to the shear band
(P, see Fig. 5) have been extracted and depicted in Figs.
9 and 10 respectively. The evolution of the pore pressure
shows an increase of when contractive material is employed
meanwhile a reduction occurs for positive dilatancy angles,
as expected. The higher plastic strain values for contractive
materials is seen in Fig. 10. The evolution of the reaction
forces against the footing (Fig. 11) also provides interest-
ing information. Once the material plastifies, the 0 dilatancy
angle material keeps the reaction constant, dilatant materials
obtain a post-peak hardening while the contractive material
feels the loss of the resistance which explains the occurrence
of larger plastic strains and can be interpreted as the fracture
of the soil.

The aspects of the regularization properties of the u–w
multiphase model at localization are not analyzed in this

40+e998.9-50+e5.1-
Pore Pressure [Pa]

Fig. 8 Pore pressure distribution (in Pa) below the cavitation value
(98.99 kPa) for dilatancy equal to 20◦ at the final of the simulation
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Fig. 9 Evolution of the pore pressure along the time in the point P

paper and will deserve further studies. For the u− pw model,
the interested reader can see [36] and [8], while its internal
length scale lw is presented in [42].

6 Application to an embankment loaded by
a horizontal, harmonic, gravitational
acceleration

As mentioned before, the main advantages of the u–w for-
mulation in comparison to a u − pw one lie in its better
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Fig. 11 Reaction forces of the soil for the different dilatancy angles

suitability to accurately reproduce the soil behavior when
high frequency dynamic loadings are involved. In this Sec-
tion, we apply the developed implicit Lagrangian scheme
to a realistic embankment loaded by a horizontal sinusoidal
acceleration, representing the action of an earthquake with
an amplitude of g/2, and a frequency of 1 Hz, i.e.

a = g

2
sin(2π f t)

The geometry and material properties of the Drucker–Prager
soil are given in Fig. 12. The boundary conditions of the
solid and fluid phases are also depicted in the figure, where
the foundation borders (Γ1, Γ2, and Γ3) are impermeable.
Two dilatancy angles, 5◦ and−3◦, are adopted for this study.
Unlike the previous examples, the gravity is necessarily con-
sidered here as initial stresses throughout the whose domain

20
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c0 = 50 kN/m2
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Γ1 :   ux=0,  wx=0
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B

Fig. 12 Geometry (inm), material parameters and boundary conditions
of the embankment problem

5e+4 1e+5 1.5e+50    2.0e+5

Pore Pressure

Fig. 13 Initial pore pressure conditions

before the earthquake occurs are required to start the time
integration. Consequently, an initial state was computed until
an steady state of the pore pressure was achieved, and after
that, the dynamic acceleration was applied. The seismic load
is applied for a duration of 20 s (or until soil failure) as hor-
izontal acceleration to all the nodes of the domain. Initial
pore pressure conditions are hydrostatic, as shown in Fig.13.
The distributions of the equivalent plastic strain at different
times are illustrated in Figs. 14 and 15 for dilatancy angles of
5◦ and −3◦ respectively. Note that for the former (dilantant
soil), the maximum plastic strains are concentrated around
the area where the embankment intercepts the foundation,
whereas global failure which involves particularly the foun-
dation is observed for the latter (contractive soil). In addition,
for the dilatancy angle of −3◦, since soil breakage occurred
around 12 s, no further calculations were carried out.

In order to gainmore insights into the failure process, three
points located around the expected failure zone are chosen
(A,BandC), seeFig. 12.Besides the equivalent plastic strain,
the liquefaction ratio, ru , is also employed. It is defined as
the overpressure increment of water with respect to the initial
pore pressure, normalized by the the initial average effective
stress, p′

0, i.e.

ru = pw − pw0

p′
0

. (52)
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Fig. 14 Distribution of the equivalent plastic strain in the soil at 6, 12
and 20 s, ψ = 5◦. (The displacements have been amplified by a factor
of two)
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Fig. 15 Distribution of the equivalent plastic strain in the soil at 6, 12 s,
ψ = − 3◦. (The displacements have been amplified by a factor of two)
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Fig. 16 Evolution of ru and ε p at point A (see Fig. 12)

This ratio measures the state of pressures in the saturated soil
under an earthquake load, having in mind that a value of 1.0
points to the liquefaction of the points where this is reached.

The evolutions of both the liquefaction ratio (continuous
lines) and the equivalent plastic strain (discontinuous lines)
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Fig. 17 Evolution of ru and ε p at point B (see Fig. 12)
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Fig. 18 Evolution of ru and ε p at point C (see Fig. 12)

are plotted in Figs. 16, 17 and 18 for the points A, B and C
respectively. The results for dilatancy angles of 5◦ are shown
in blue color, whereas those for − 3◦ are represented in red.
Note that for dilatant soil, the evolution of the liquefaction
ratio reaches a harmonic steady state of the same frequency
(1 Hz), at the same time, a near-constant equivalent plastic
strain is attained at all three points and shows that lique-
faction cannot occur as expected for dilatant materials. By
contrast, an abrupt increase of both the liquefaction ratio and
the equivalent plastic strain at 12 s causing soil failure is
observed for the dilatancy angle of − 3◦.
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7 Conclusions

The main goal of this paper is the design of a methodology
capable to model the full dynamic behavior of a saturated
soil under large deformation conditions. The application of
an implicit time integration scheme in the resolution of the
motion equations implies a strong mathematical formula-
tion, since it is necessary to linearize the derivatives of the
linear momentum equations of both solid and fluid phases
(see “Appendix A”).

This research supposes the first development of the lin-
earization of the u–w formulation, useful to solve large
deformation problems with several computational methods.
Despite the higher mathematical effort required by this for-
mulation, as well as the more laborious implementation
compared to the explicit one, the range of applicability of this
implicit scheme is wider than the explicit one, the formula-
tion of which is much simpler than the one proposed in this
paper. However explicit formulations are only suitable for
high loading rates problems, as the time intervals required for
convergence in such methodologies are prohibitive in terms
of computational efforts. On the other hand, in the same range
of problems, with similar spatial discretizations, the implicit
approach presents higher stability, which is crucial when the
deformations become higher.

The derivation of the motion equations is successfully
reached and subsequently validated against reference exam-
ples through a meshfree framework, LME, which is more
suitable for large deformation problems. The performance
of three different aspects were assessed in this research: the
behavior under high frequency loads; the results of large
settlement in a consolidation problem; and the applicability
of the methodology for different constitutive materials. The
main conclusion derived from the obtained results is the bet-
ter stability achieved in comparison with the explicit solution
previously reported by [28]. This fact may be evidenced by
observing the evolution of the pore pressures along time for
the different tests carried out in this paper: the convergence
is smoother and more stable. In addition, the results are in
good agreement with the results of the referenced research,
suggesting a good accuracy of the methodology as well. The
spatial distribution of the pore pressure also indicates the
strength of the methodology.

Although the validation tests offer excellent results, they
only lie on the academic field. Thus, the employment of the
proposed method in the study of the behavior of a realistic
embankment loaded by an earthquake helps us to complete
this study with a more realistic dynamic problem. In this
case, the liquefaction is the main subject of research since
it may be a measurement of the failure of the material. This
behavior has been studied in both dilatant and contractive
material, the last being more in our interest since the typi-
cal increase of the pore pressure, which occurs in this type

of soils, may lead to the rise of the liquefaction ratio, as it
is shown in this paper. Therefore, we can conclude that the
proposed methodology is also capable to capture liquefac-
tion failures in saturated, granular soils when dynamically
loaded.

Finally, once the method is tested, future research may
employ it with different constitutive models in order to
simulate different soils, depending on the different mate-
rial properties. Also, it is required the assessment of the
usage of different time integration schemes (see [29] and
[1]) in order to improve the performance of the proposed
methodology.
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A Appendix: Consistent linearization

As the linearization is referred to the undeformed domain,
B0, since it is time independent, it is necessary to move
Eqs. (31–32) to the reference configuration. From the trans-
port theorems we know that dv = J dV and ds = J F−T dS
and the Piola transformation states that Div(u) = J div(u)

(See [24,35] for more information). Starting from these
points, the equations to be linearized yield

−α7

∫
B0

τ ′ : grad(δu) dV − α7

∫
B0

Q Div(u)div(δu) dV

−α7

∫
B0

Q Div(w)div(δu) dV−α1

∫
B0

[ρ0u+ Jρww] · δu dV

+α8

∫
B0

ρ0g · δu dV + α8

∫
δB0

T · δu dS = 0 (A.1)

−α7

∫
B0

Q Div(u)div(δw) dV − α7

∫
B0

Q Div(w)div(δw) dV

−α4

∫
B0

Jμw

k
w · δw dV − α1

∫
B0

Jρw

n
w · δw dV

−α1

∫
B0

Jρwu · δw dV + α8

∫
B0

Jρw g · δw dV

−α8

∫
δB0

Tw · δw dS = 0, (A.2)

where τ ′ is the effective Kirchhoff stress tensor and T and
Tw are respectively the traction vectors of solid and fluid
phases computed respect the undeformed configuration.

Before linearizing the different terms of the target equa-
tion, the linearization of some useful terms is carried out
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against Δu:

Du [J ] = J div(Δu) (A.3)

(From [16]) Also the linearization of n will be useful for the
derivation of other quantities:

Du [n] = Du

[
1 − 1 − n0

J

]
= −(1 − n0)

−1

J 2
Du [J ]

= 1 − n0
J

div(Δu) = (1 − n)div(Δu) (A.4)

From tensor analysis [15] we determine that:

Du
[
grad(u)

] = Du

[
Grad(u) F−1

]

= Grad(Du [u])F−1 + Grad(δu)Du

[
F−1

]

= Grad(Δu)F−1 − Grad(u)F−1grad(Δu)

= grad(Δu) − grad(u)grad(Δu) (A.5)

Du [div(δu)] = I : Du
[
grad(δu)

]
= I :

[
��������
Grad(Du [δu])F−1 − grad(δu)grad(Δu)

]

= −grad(δu) : gradT (Δu) (A.6)

Du [Div(u)] = Du [I : Grad(u)] = I : Du [Grad(u)]

= I : Grad(Du [u]) = I : Grad(Δu) = Div(Δu)

(A.7)

So, the term we can see in the linear momentum balance
equations is linearized as follows:

Du [Div(u)div(δu)] = Du [Div(u)] div(δu)

+Div(u)Du [div(δu)]

= grad(δu) : [Div(Δu)I

−Div(u)gradT (Δu)] (A.8)

Other important linearizations can be derived from
Eq. A.4:

Du [k] = (1 − n)
∂k

∂n
div(Δu) (A.9)

(See also [35])

Du

[
J

μ

k

]
= μ

k
J div(Δu) − J

μ

k2
Du [k]

= J
μ

k

[
1 − 1 − n

k

∂k

∂n

]
div(Δu) (A.10)

Du [Q] = Du

[
Kw

n

]
= Kw

∂

∂n

[
1

n

]
∂n

∂u
=−Kw

n2
Du[n]

= −Kw

n2
(1 − n)div(Δu) (A.11)

Du

[
J

ρw

n

]
= ρw

n
J div(Δu) − J

ρw

n2
(1 − n)div(Δu)

= J
ρw

n

2n − 1

n
div(Δu) (A.12)

As the reference density is defined as

ρ0 = Jρ = J nρw + J (1 − n)ρs

= Jρw − (1 − n0)ρw + (1 − n0)ρs, (A.13)

the linearization of the density yields:

Du [ρ0] = Du [Jρw] = Jρwdiv(Δu). (A.14)

The linearization will be stated for the weak form with
respect to the reference configuration. Hereinafter the lin-
earization of the terms that upon the deformation field are
presented. All other terms will take part of the Newton
scheme in the sense that it presented in Sect. 3. In the fol-
lowing equations superscripts represent the different terms
of both Linear Momentum Balance equation of mixture and
fluid phases respectively.

– DGLMS · Δu:

DG 1
LMS · Δu = Du

[
τ ′ : grad(δu)

]
= grad(Δu)τ ′ : grad(δu)

+ J grad(Δu) : Cep : grad(δu)

(A.15)

where Cep is the material elasto-plastic constitutive tan-
gent operator. This linearization is widely developed in
literature [40].

DG 2
LMS · Δu = Du [Q Div(u)div(δu)]

= Du [Q] Div(u)div(δu)

+ Q Du [Div(u)div(δu)]

= Q

(
−1 − n

n
div(Δu)Div(u)div(δu)

+ grad(δu) :
[
Div(Δu)I−Div(u)gradT (Δu)

])

= J Q grad

(
δu) : (div(Δu)I

− div(u)

[
gradT (Δu) + 1 − n

n
div(Δu)I

])

(A.16)
DG 3

LMS · Δu = Du [Q Div(w)div(δu)]

= Du [Q ] Div(w)div(δu)
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+ Q Du [Div(w)] div(δu)

+ Q Div(w)Du [div(δu)]

= −J Q grad(δu) : (div(w)[gradT (Δu)

+1 − n

n
div(Δu)I]) (A.17)

DG 4
LMS · Δu = Du [ρ0u + Jρww] · δu (A.18)

= Du [Jρw] (u + w) · δu + Jρ Du[u] · δu

= J [ρΔu + ρwdiv(Δu) (u + w)] · δu

– DGLMS · Δw:

DG 2
LMS · Δw = Dw [Q Div(u)div(δu)] = 0 (A.19)

DG 3
LMS · Δw = Dw [Q Div(w)div(δu)]

= J Q grad(δu) : div(Δw)I (A.20)

– DGLMW · Δu:

DG 1
LMW · Δu = Du [Q div(u)div(δw)]

= J Q grad(δw) :
(
div(Δu)I

− div(u)

[
gradT (Δu) + 1 − n

n
div(Δu)I

])

(A.21)
DG 2

LMW · Δu = Du [Q div(w)divδw]

= −J Q grad(δw) : (div(w)[gradT (Δu)

+ 1 − n

n
div(Δu)I]) (A.22)

DG 3
LMW · Δu = Du

[
J

μw

k
w · δw

]

= Du[J ]μw

k
w · δw + J Du

[μw

k

]
w · δw

+ Jμw

k
���Du[w] · δw

= J
μw

k

[
div(Δu)

(
1 − 1 − n

k

∂k

∂n

)
w

]
· δw

(A.23)

DG 4
LMW · Δu = Du

[
J

ρw

n
w · δw

]

= Du[J ]ρw

n
w · δw + Du

[ρw

n

]
Jw · δw

+ Jρw

n
���Du[w] · δw

= Jρw

n

[
2n − 1

n
div(Δu)w

]
· δw

(A.24)

DG 5
LMW · Δu = Du [Jρwu · δw]

= [Du[J ]ρwu + JρwDu[u]] · δw

= Jρw [Δu − div(Δu)u] · δw (A.25)

– DGLMW · Δw:

DG 1
LMW · Δw = Dw [Qdiv(u)div(δw)] = 0 (A.26)

DG 2
LMW · Δw = Dw [Qdiv(w)div(δw)]

= J Q grad(δw) : div(Δw)I (A.27)

Finally, using the different terms carried out in the Eqs.
(A.15–A.27), the linearization of Eqs. (A.1–A.2) gives the
following result:

−α7

∫
B
grad(δu) : cep : grad(Δu) dv

−α7

∫
B

σ ′ : gradT (δu) grad(Δu) dv

−α7

∫
B
grad( δu) : (Q [div(Δu) + div(Δw)] I) dv

−α7

∫
B
grad( δu) :

(
pw

[
gradT (Δu) + 1 − n

n
div(Δu)I

])
dv

−α1

∫
B

δu · [ρΔu + ρwΔw + ρwdiv(Δu) (u + w)] dv

+α8

∫
B

ρwδu · g div(Δu) dv (A.28)

−α7

∫
B
grad( δw) : (Q [div(Δu) + div(Δw)] I) dv

−α7

∫
B
grad( δw) :

(
pw

[
gradT (Δu) + 1 − n

n
div(Δu)I

])
dv

−α4

∫
B

μw

k
δw ·

[
Δw + div(Δu)

(
1 − 1 − n

k

∂k

∂n

)
w

]
dv

−α1

∫
B

ρw

n
δw ·

[
Δw + 2n − 1

n
div(Δu)w

]
dv

−α1

∫
B

ρwδw · [Δu + div(Δu)u] dv

+α8

∫
B

ρwδw · g div(Δu) dv (A.29)
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