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Abstract. If Q is a real, symmetric and positive definite n × n matrix, and B
a real n × n matrix whose eigenvalues have negative real parts, we consider the
Ornstein–Uhlenbeck semigroup on Rn with covariance Q and drift matrix B. Our
main result is that the associated maximal operator is of weak type (1, 1) with
respect to the invariant measure. The proof has a geometric gist and hinges on the
“forbidden zones method” previously introduced by the third author. For large
values of the time parameter, we also prove a refinement of this result, in the spirit
of a conjecture due to Talagrand.

1. Introduction

Let Q be a real, symmetric and positive definite n×n matrix, and B a real n×n
matrix whose eigenvalues have negative real parts; here n ≥ 1. We first introduce
the covariance matrices

Qt =

∫ t

0

esBQesB
∗
ds, t ∈ (0,+∞]. (1.1)

Observe that both Qt and Q∞ are well defined, symmetric and positive definite.
Then we define the family of normalized Gaussian measures in Rn

dγt(x) = (2π)−
n
2 (detQt)

− 1
2 e−

1
2
〈Q−1

t x,x〉dx , t ∈ (0,+∞].

On the space Cb(Rn) of bounded continuous functions, we consider the Ornstein–
Uhlenbeck semigroup

(
Ht

)
t>0

, explicitly given by Kolmogorov’s formula

Htf(x) =

∫
f(etBx− y)dγt(y) , x ∈ Rn . (1.2)

The Gaussian measure γ∞ is the unique invariant measure of the semigroup Ht. We
are interested in the maximal operator defined as

H∗f(x) = sup
t>0

∣∣Htf(x)
∣∣.

Under the above assumptions for B and Q, our main result will be the following.
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Theorem 1.1. The Ornstein–Uhlenbeck maximal operator H∗ is of weak type (1, 1)
with respect to the invariant measure γ∞, with an operator quasinorm that depends
only on the dimension and the matrices Q and B.

In other words, the inequality

γ∞{x ∈ Rn : H∗f(x) > α} ≤ C

α
‖f‖L1(γ∞), α > 0, (1.3)

holds for all functions f ∈ L1(γ∞), with C = C(n,Q,B).

The history of H∗ is quite long and started with the first attempts to prove that
H∗ maps the Lp space into Lp. When

(
Ht

)
t>0

is symmetric, i.e., when each operator

Ht is self-adjoint on L2(γ∞), then H∗ is bounded on Lp(γ∞) for 1 < p ≤ ∞, as a
consequence of the general Littlewood–Paley–Stein theory for symmetric semigroups
of contractions on Lp spaces [17, Ch. III].

It is easy to see that the maximal operator is unbounded on L1(γ∞). This led,
about fifty years ago, to the study of the weak type (1, 1) of H∗. The first positive
result is due to B. Muckenhoupt [14], who proved an estimate like (1.3) in the
one-dimensional case with Q = I and B = −I. The analogous question in the
higher-dimensional case was an open problem until 1983, when the third author
[16] proved the weak type (1, 1) in any finite dimension. Other proofs are due to
Menárguez, Pérez and Soria [12] (see also [11, 15]) and to Garc̀ıa-Cuerva, Mauceri,
Meda, Sjögren and Torrea [8]. Moreover, a different proof of the weak type (1, 1)
of H∗, based on a covering lemma halfway between covering results by Besicovitch
and Wiener, was given by Aimar, Forzani and Scotto [1].

In [4] the present authors recently considered a normal Ornstein–Uhlenbeck semi-
group in Rn, that is, we assumed that Ht is for each t > 0 a normal operator on
L2(γ∞). Under this extra assumption, we proved that the associated maximal op-
erator is of weak type (1, 1) with respect to the invariant measure γ∞. This extends
some earlier work in the non-symmetric framework by Mauceri and Noselli [10], who
proved some ten years ago that, if Q = I and B = λ(R − I) for some positive λ
and a real skew-symmetric matrix R generating a periodic group, then the maximal
operator H∗ is of weak type (1, 1).

In this paper we go beyond the hypothesis of normality, which underlies the
results in [4] and [10]. In Theorem 1.1 we prove the estimate (1.3) under only the
aforementioned spectral assumptions on B and Q. The proof has a geometric core
and strongly relies on the ad hoc technique developed by the third author in [16].

Since the maximal operator H∗ is trivially bounded from L∞ to L∞, we obtain
by interpolation the following corollary.

Corollary 1.2. The Ornstein–Uhlenbeck maximal operatorH∗ is bounded on Lp(γ∞)
for all p > 1.

This result improves Theorem 4.2 in [10], where the Lp boundedness of H∗ is
proved for all p > 1 in the normal framework and under the additional assumption
that the infinitesimal generator of

(
Ht

)
t>0

is a sectorial operator of angle less than

π/2.
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A question related to the Ornstein–Uhlenbeck semigroup and the weak type (1, 1)
inequality was recently addressed by Ball, Barthe, Bednorz, Oleszkiewicz and Wolff
[2]. Inspired by a conjecture formulated by Talagrand in a slightly different context
[18], they conjectured the following, in the standard case Q = I and B = −I: For
each fixed t > 0, there exists a function ψt = ψt(α), satisfying

lim
α→+∞

ψt(α) = 0

and

γ∞{x ∈ Rn : |Htf(x)| > α} ≤ C
ψt(α)

α
(1.4)

for all large α > 0 and all f ∈ L1(γ∞) such that ‖f‖L1(γ∞) = 1. In [2] this

conjecture is proved with ψt(α) = C(t)/
√

logα in dimension 1 and with ψt(α) =
C(n, t) log logα/

√
logα as n > 1; in the latter case the constant tends to ∞ with

the dimension. Then Eldan and Lee [6] improved the result in [2] for n > 1, proving
(1.4) with ψt(α) = C(t) (log logα)4/

√
logα , where the constant C(t) is independent

of the dimension. Finally Lehec [9], revisiting the argument in [6], proved the con-
jecture in any dimension with ψt(α) = C(t)/

√
logα, which turns out to be sharp.

All the results in [2, 6, 9] are established for Q = I and B = −I.
In analogy with these results, we prove in Proposition 6.1 that the maximal op-

erator with t large, associated to a general Ornstein–Uhlenbeck semigroup, satisfies

γ∞

{
x ∈ Rn : sup

t>1
|Htf(x)| > α

}
≤ C

ψ(α)

α
(1.5)

for α > 0 large and for all normalized functions f ∈ L1(γ∞). Here ψ(α) = 1/
√

logα
and C = C(n,Q,B), and this estimate is shown to be sharp. It cannot be extended
to H∗, since the maximal operator corresponding to small values of t only satisfies
an inequality with ψ(α) = 1.

In this paper we focus our attention on the Ornstein–Uhlenbeck maximal func-
tion in Rn. In view of possible applications to stochastic analysis and to SPDE’s, it
would be very interesting to investigate the case of the infinite-dimensional Ornstein-
Uhlenbeck maximal operator as well (see [5, 19, 3] for an introduction to the
infinite-dimensional setting). The Riesz transforms associated to a general Ornstein–
Uhlenbeck semigroup in Rn will be considered in a forthcoming paper.

The scheme of the paper is as follows. In Section 2 we introduce the Mehler kernel
Kt(x, u), that is, the integral kernel of Ht. Some estimates for the norm and the
determinant of Qt and related matrices are provided in Section 3. As a consequence,
we obtain precise bounds for the Mehler kernel. In Section 4 we consider the relevant
geometric features of the problem; in particular, we introduce in Subsection 4.1 a
system of polar-like coordinates. We also express Lebesgue measure in terms of these
coordinates. Sections 5, 6, 7 and 8 are devoted to the proof of Theorem 1.1. First,
Section 5 introduces some preliminary simplifications of the proof; in particular, we
reduce most of the problem to an ellipsoidal annulus. In Section 6 we consider the
supremum in the definition of the maximal operator taken only over t > 1 and prove
the sharpened version (1.5) of (1.3). Section 7 is devoted to the case of small t under
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an additional local condition. Finally, in Section 8 we treat the remaining case and
conclude the proof of Theorem 1.1, by proving the estimate (1.3) for small t under
a global assumption.

In the following, we use the “variable constant convention”, according to which
the symbols c > 0 and C <∞ will denote constants which are not necessarily equal
at different occurrences. They all depend only on the dimension and on Q and B.
For any two nonnegative quantities a and b we write a . b instead of a ≤ Cb and
a & b instead of a ≥ cb. The symbol a ' b means that both a . b and a & b hold.

By N we mean the set of all nonnegative integers. If A is an n × n matrix, we
write ‖A‖ for its operator norm on Rn with the Euclidean norm | · |.

2. The Mehler Kernel

For t > 0, the difference

Q∞ −Qt =

∫ ∞
t

esBQesB
∗
ds (2.1)

is a symmetric and strictly positive definite matrix. So is the matrix

Q−1
t −Q−1

∞ = Q−1
t (Q∞ −Qt)Q

−1
∞ , (2.2)

and we can define
Dt = (Q−1

t −Q−1
∞ )−1Q−1

t etB . (2.3)

Then formula (1.2), the definition of the Gaussian measure and some elementary
computations yield

Htf(x) = (2π)−
n
2 (detQt)

− 1
2

∫
f(etBx− y) exp

[
−1

2
〈Q−1

t y, y〉
]
dy

= (2π)−
n
2 (detQt)

− 1
2

∫
f(u) exp

[
−1

2
〈Q−1

t (etBx− u), etBx− u〉
]
du

=
(detQ∞

detQt

) 1
2

exp

[
−1

2
〈Q−1

t etBx, etBx〉
]

× exp

[
−1

2
〈Q−1

t etBx, (Q−1
∞ −Q−1

t )−1Q−1
t etBx〉

]
×
∫
f(u) exp

[
1

2
〈(Q−1

∞ −Q−1
t )(u−Dtx) , u−Dtx〉

]
dγ∞(u),

that is,

HQ,B
t f(x) =

(detQ∞
detQt

)1/2

exp

[
1

2
〈Q−1

t etBx,Dtx− etBx〉
]

×
∫
f(u) exp

[
1

2
〈(Q−1

∞ −Q−1
t )(u−Dtx) , u−Dtx〉

]
dγ∞(u) ,(2.4)

where we repeatedly used the fact that Q−1
∞ − Q−1

t is symmetric. We now express
the matrix Dt in various ways.
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Lemma 2.1. For all x ∈ Rn and t > 0 we have

(i) Dt = Q∞e
−tB∗Q−1

∞ ;
(ii) Dt = etB +Qte

−tB∗Q−1
∞ .

Proof. (i) Formulae (2.1) and (1.1) imply

Q∞ −Qt = etBQ∞e
tB∗ (2.5)

(see also [13, formula (2.1)]). From (2.3) and (2.2) it follows that

Dt = Q∞(Q∞ −Qt)
−1 etB,

and combining this with (2.5) we arrive at (i).
(ii) Multiplying (2.5) by e−tB

∗
Q−1
∞ from the right, we obtain

Q∞e
−tB∗Q−1

∞ −Qte
−tB∗Q−1

∞ = etB,

and (ii) now follows from (i). �

By means of (i) in this lemma, we can define Dt for all t ∈ R, and they will form
a one-parameter group of matrices.

Now (ii) in Lemma 2.1 yields

〈Q−1
t etBx,Dtx− etBx〉 = 〈Q−1

t etBx,Qte
−tB∗Q−1

∞ x〉 = 〈Q−1
∞ x, x〉.

Thus (2.4) may be rewritten as

Htf(x) =

∫
Kt(x, u) f(u) dγ∞(u) ,

where Kt denotes the Mehler kernel, given by

Kt(x, u) =
(detQ∞

detQt

)1/2

exp
(
R(x)

)
× exp

[
−1

2

〈
(Q−1

t −Q−1
∞ )(u−Dtx) , u−Dtx

〉]
(2.6)

for x, u ∈ Rn. Here we introduced the quadratic form

R(x) =
1

2

〈
Q−1
∞ x, x

〉
, x ∈ Rn.

3. Some auxiliary results

In this section we collect some preliminary bounds, which will be essential ingre-
dients in the proof of the weak type (1, 1) for the maximal operator H∗.

Lemma 3.1. For s > 0 the matrices Ds and D−s = D−1
s satisfy

‖Ds‖ . eCs and ‖D−s‖ . e−cs. (3.1)
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Proof. First we prove estimates for ‖esB∗‖ and ‖e−sB∗‖. They can be obtained by
means of a Jordan decomposition of sB∗, that is, writing sB∗ as the sum of a
complex diagonal matrix and a triangular, nilpotent matrix, and these two terms
will commute. Another possibility is to use standard theory of strongly continuous
semigroups, see [7, Theorem 3.14 and Theorem 5.5 in Chapter 1]. Both arguments
rely on the fact that the eigenvalues of B have negative real parts. The result will
be

‖e−sB∗‖ . eCs and ‖esB∗‖ . e−cs, s > 0. (3.2)

Finally, (3.2) implies (3.1) for Ds = Q∞e
−sB∗Q−1

∞ and D−s = Q∞e
sB∗Q−1

∞ . �

In the following lemma, we collect estimates of some basic quantities related to
the matrices Qt.

Lemma 3.2. For all t > 0 we have

(i) det Qt ' (min(1, t))n;
(ii) ‖Q−1

t ‖ ' (min(1, t))−1;
(iii) ‖Q∞ −Qt‖ . e−ct;
(iv) ‖Q−1

t −Q−1
∞ ‖ . t−1 e−ct;

(v) ‖
(
Q−1
t −Q−1

∞
)−1/2 ‖ . t1/2 eCt.

Proof. (i) and (ii) Using (3.2), we see that for each t > 0 and for all v ∈ Rn

〈Qtv, v〉 =

〈∫ t

0

esBQesB
∗
vds, v

〉
=

∫ t

0

〈Q1/2esB
∗
v,Q1/2esB

∗
v〉ds

=

∫ t

0

∣∣Q1/2esB
∗
v
∣∣2ds ' ∫ t

0

∣∣esB∗v∣∣2ds
.
∫ t

0

e−csds |v|2 ' min(1, t) |v|2.

Since ‖
(
esB

∗)−1 ‖ = ‖e−sB∗‖ . eCs, there is also a lower estimate∫ t

0

∣∣esB∗v∣∣2ds & ∫ t

0

e−Csds |v|2 ' min(1, t)|v|2.

Thus any eigenvalue of Qt has order of magnitude min(1, t), and (i) and (ii) follow.
(iii) From the definition of Qt and (3.2), we get

‖Q∞ −Qt‖ =

∥∥∥∥∫ ∞
t

esBQesB
∗
ds

∥∥∥∥ . e−ct.

(iv) Using now (ii) and (iii), we have

‖Q−1
t −Q−1

∞ ‖ = ‖Q−1
t (Q∞ −Qt)Q

−1
∞ ‖ . ‖Q−1

t ‖ ‖Q∞ −Qt‖
. (min(1, t))−1 e−ct . t−1 e−ct.

(v) Since ‖A1/2‖ = ‖A‖1/2 for any symmetric positive definite matrix A, we consider
(Q−1

t −Q−1
∞ )−1, which can be rewritten as

(Q−1
t −Q−1

∞ )−1 = (Q−1
∞ (Q∞ −Qt)Q

−1
t )−1 = Qt(Q∞ −Qt)

−1Q∞. (3.3)
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It follows from (2.5) that (Q∞ −Qt)
−1 = e−tB

∗
Q−1
∞ e
−tB, so that

‖(Q∞ −Qt)
−1‖ . eCt,

as a consequence of (3.2). Inserting this and the simple estimate ‖Qt‖ . t in (3.3),
we obtain ‖(Q−1

t −Q−1
∞ )−1‖ . teCt, and (v) follows. �

Proposition 3.3. For t ≥ 1 and w ∈ Rn, we have

〈(Q−1
t −Q−1

∞ )Dtw, Dtw〉 ' |w|2.

Proof. By (2.3) and Lemma 2.1 (i) we have

〈(Q−1
t −Q−1

∞ )Dtw, Dtw〉 =〈Q−1
t etBw , Q∞e

−tB∗Q−1
∞ w〉

=〈Q∞Q−1
t etBw , e−tB

∗
Q−1
∞ w〉.

Since Q∞Q
−1
t = I + (Q∞ −Qt)Q

−1
t , this leads to

〈(Q−1
t −Q−1

∞ )Dtw, Dtw〉
= 〈etBw , e−tB∗Q−1

∞ w〉+ 〈(Q∞ −Qt)Q
−1
t etBw , e−tB

∗
Q−1
∞ w〉

= 〈Q−1
∞ w,w〉+ 〈e−tB(Q∞ −Qt)Q

−1
t etBw , Q−1

∞ w〉.

Using (2.1) and the definition of Q∞, we observe that the last term here can be
written as 〈∫ ∞

t

e(s−t)BQe(s−t)B∗ ds etB
∗
Q−1
t etBw , Q−1

∞ w

〉
=
〈
Q∞ e

tB∗ Q−1
t etBw , Q−1

∞ w
〉

= 〈 etB∗ Q−1
t etBw , w〉

=
∣∣Q−1/2

t etBw
∣∣2.

Since
∣∣Q−1/2

t etBw
∣∣2 . e−ct|w|2 for t ≥ 1, the claim of the proposition follows if t is

large enough. In the opposite case 1 < t < C, we apply Lemma 3.2 (v) to conclude
that

〈(Q−1
t −Q−1

∞ )Dtw, Dtw〉 & e−Ct|Dtw|2 ∼ |w|2.
The converse inequality is clear, and the claim follows again. �

We can now write the estimates for the kernel Kt which we will use later. If t > 1,
we combine (2.6) with Proposition 3.3 and write u−Dt x = Dt(D−t u−x). Because
of Lemma 3.2 (i), the result will be

exp(R(x)) exp
(
− C

∣∣D−tu− x∣∣2)
. Kt(x, u) . exp(R(x)) exp

(
− c

∣∣D−t u− x∣∣2), t > 1. (3.4)

For t ≤ 1 we use Lemma 3.2 (v) to see that

〈(Q−1
t −Q−1

∞ )(u−Dtx) , u−Dtx〉 = |(Q−1
t −Q−1

∞ )1/2(u−Dtx)|2 & t−1|u−Dtx|2,
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Then (2.6) and Lemma 3.2 (i) imply

Kt(x, u) .
exp(R(x))

tn/2
exp

(
−c |u−Dtx|2

t

)
, t ≤ 1. (3.5)

4. Geometric aspects of the problem

4.1. A system of adapted polar coordinates. We first need a technical lemma.

Lemma 4.1. For all x in Rn and s ∈ R, we have

〈B∗Q−1
∞ x, x〉 = −1

2
|Q1/2Q−1

∞ x|2; (4.1)

∂

∂s
Dsx = −Q∞B∗Q−1

∞Dsx = −Q∞e−sB
∗
B∗Q−1

∞ x; (4.2)

∂

∂s
R
(
Dsx

)
=

1

2

∣∣Q1/2Q−1
∞Dsx

∣∣2 ' ∣∣Dsx
∣∣2. (4.3)

Proof. To prove (4.1), we use the definition of Q∞ to write for any z ∈ Rn

〈B∗z,Q∞z〉 =

∫ ∞
0

〈B∗z, esB QesB∗z〉 ds

=

∫ ∞
0

〈esB∗ B∗z, Q esB∗z〉 ds

=
1

2

∫ ∞
0

d

ds
〈esB∗ z, Q esB∗z〉 ds

= −1

2
|Q1/2 z|2.

Setting z = Q−1
∞ x, we get (4.1).

Further, (4.2) easily follows if we observe that

∂

∂s
Dsx =

∂

∂s

(
Q∞e

−sB∗Q−1
∞ x
)

= −Q∞B∗Q−1
∞ Q∞e

−sB∗Q−1
∞ x = −Q∞B∗Q−1

∞Dsx.

Finally, we get by means of (4.2) and (4.1)

∂

∂s
R (Dsx) =

1

2

∂

∂s
〈Q−1/2
∞ Dsx,Q

−1/2
∞ Dsx〉

= −〈Q−1/2
∞ Q∞B

∗Q−1
∞Dsx,Q

−1/2
∞ Dsx〉

=
1

2

∣∣Q1/2Q−1
∞Dsx

∣∣2 ,
and (4.3) is verified. �

Fix now β > 0 and consider the ellipsoid

Eβ = {x ∈ Rn : R(x) = β} .
As a consequence of (4.3), the map s 7→ R(Dsz) is strictly increasing for each
0 6= z ∈ Rn. Hence any x ∈ Rn, x 6= 0, can be written uniquely as

x = Dsx̃ , (4.4)
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for some x̃ ∈ Eβ and s ∈ R. We consider s and x̃ as the polar coordinates of x. Our
estimates in what follows will be uniform in β.

Next, we write Lebesgue measure in terms of these polar coordinates. A normal
vector to the surface Eβ at the point x̃ ∈ Eβ is N(x̃) = Q−1

∞ x̃, and the tangent
hyperplane at x̃ is N(x̃)⊥. For s > 0 the tangent hyperplane of the surface DsEβ =
{Dsx̃ : x̃ ∈ Eβ} at the point Dsx̃ is Ds(N(x̃)⊥), and a normal to DsEβ at the same
point is w = (D−1

s )∗(N(x̃)) = D∗−sQ
−1
∞ x̃ = Q−1

∞ e
sBx̃.

The scalar product of w and the tangent of the curve s 7→ Dsx̃ at the point Dsx̃
is, because of (4.2) and (4.1),〈

∂

∂s
Dsx̃, w

〉
(4.5)

= −〈Q∞e−sB
∗
B∗Q−1

∞ x̃, Q
−1
∞ e

sBx̃〉 = −〈B∗Q−1
∞ x̃, x̃〉 =

1

2
|Q1/2Q−1

∞ x̃|2 > 0.

Thus the curve s 7→ Dsx̃ is transversal to each surface DsEβ. Let dSs denote
the area measure of DsEβ. Then Lebesgue measure is given in terms of our polar
coordinates by

dx = H(s, x̃) dSs(Dsx̃) ds, (4.6)

where

H(s, x̃) =

〈
∂

∂s
Dsx̃,

w

|w|

〉
=
|Q1/2Q−1

∞ x̃|2

2 |Q−1
∞ e

sBx̃|
.

To see how dSs varies with s, we take a continuous function ϕ = ϕ(x̃) on Eβ and
extend it to Rn \ {0} by writing ϕ(Dsx̃) = ϕ(x̃). For any t > 0 and small ε > 0, we
define the shell

Ωt,ε = {Dsx̃ : t < s < t+ ε, x̃ ∈ Eβ}.
Then Ωt,ε is the image under Dt of Ω0,ε, and the Jacobian of this map is detDt =
e−t trB. Thus ∫

Ωt,ε

ϕ(x) dx = e−t trB

∫
Ω0,ε

ϕ(Dtx) dx,

which we can rewrite as∫
t<s<t+ε

∫
x̃∈Eβ

ϕ(x̃)H(s, x̃) dSs(Dsx̃) ds

= e−t trB

∫
0<s<ε

∫
x̃∈Eβ

ϕ(x̃)H(s, x̃) dSs(Dsx̃) ds.

Now we divide by ε and let ε→ 0, getting∫
Eβ

ϕ(x̃)H(t, x̃) dSt(Dtx̃) = e−t trB

∫
Eβ

ϕ(x̃)H(0, x̃) dS0(x̃).

Since this holds for any ϕ, it follows that

dSt(Dtx̃) = e−t trB H(0, x̃)

H(t, x̃)
dS0(x̃).
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Together with (4.6), this implies the following result.

Proposition 4.2. The Lebesgue measure in Rn is given in terms of polar coordinates
(t, x̃) by

dx = e−t trB |Q1/2Q−1
∞ x̃|2

2 |Q−1
∞ x̃|

dS0(x̃) dt .

We also need estimates of the distance between two points in terms of the polar
coordinates.

Lemma 4.3. Fix β > 0. Let x(0), x(1) ∈ Rn \{0} and assume R(x(0)) > β/2. Write

x(0) = Ds(0)(x̃
(0)) and x(1) = Ds(1)(x̃

(1))

with s(0), s(1) ∈ R and x̃(0), x̃(1) ∈ Eβ.

(i) Then ∣∣x(0) − x(1)
∣∣ & c

∣∣x̃(0) − x̃(1)
∣∣. (4.7)

(ii) If also s(1) ≥ 0, then∣∣x(0) − x(1)
∣∣ & c

√
β |s(0) − s(1)|. (4.8)

Proof. Let Γ : [0, 1] → Rn \ {0} be a differentiable curve with Γ(0) = x(0) and
Γ(1) = x(1). It suffices to bound the length of any such curve from below by the
right-hand sides of (4.7) and (4.8).

For each τ ∈ [0, 1], we write

Γ(τ) = Ds(τ) x̃(τ),

with x̃(τ) ∈ Eβ and x̃(i) = x̃(i), s(i) = s(i) for i = 0, 1. Thus

Γ′(τ) = −s′(τ) ∂
∂s
Ds
∣∣s=s(τ)

x̃(τ) +Ds(τ)x̃
′(τ).

The group property of Ds implies that

∂

∂s
Ds
∣∣s=s(τ)

= Ds(τ)
∂

∂s
Ds
∣∣s=0

,

and so

Γ′(τ) = Ds(τ)v,

with

v = −s′(τ) ∂
∂s
Ds
∣∣s=0

x̃(τ) + x̃′(τ).

The vector x̃′(τ) is tangent to Eβ and so orthogonal to N(x̃). Then (4.5) (with
s = 0) and the triangle inequality on the unit sphere imply that the angle between
∂
∂s
Ds
∣∣s=0

x̃(τ) and x̃′(τ) is larger than some positive constant. It follows that

|v|2 & |s′(τ)|2
∣∣∣ ∂
∂s

Ds
∣∣s=0

x̃(τ)
∣∣∣2 +

∣∣x̃′(τ)
∣∣2 & |s′(τ)|2 β +

∣∣x̃′(τ)
∣∣2, (4.10)
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where we also used the fact that, by (4.2),∣∣∣ ∂
∂s

Ds
∣∣s=0

x̃(τ)
∣∣∣ ' |x̃(τ)| '

√
β.

Since

|v| =
∣∣D−s(τ)Γ

′(τ)
∣∣ ≤ ∥∥D−s(τ)

∥∥ ∣∣Γ′(τ)
∣∣ . e−C min(s(τ),0)

∣∣Γ′(τ)
∣∣

because of Lemma 3.1, we obtain from (4.10)∣∣Γ′(τ)
∣∣ & eC min(s(τ),0)

(√
β |s′(τ)|+

∣∣x̃′(τ)
∣∣). (4.11)

Next, we derive a lower bound for s(0); assume first that s(0) < 0. The assumption
R(x(0)) > β/2 implies, together with Lemma 3.1,

β/2 ≤ R(Ds(0) x̃
(0)) .

∣∣Ds(0) x̃
(0)
∣∣2 . ec s(0)

∣∣x̃(0)
∣∣2 ' ec s(0)β.

It follows that

s(0) > −s̃,
for some s̃ with 0 < s̃ < C, and this obviously holds also without the assumption
s(0) < 0.

Assume now that s(τ) > −2s̃ for all τ ∈ [0, 1]. Then (4.11) implies∣∣Γ′(τ)
∣∣ &√β |s′(τ)|

and ∣∣Γ′(τ)
∣∣ & |x̃′(τ)|.

Integrating these estimates with respect to τ in [0, 1], we immediately see that the
length of Γ is bounded below by the right-hand sides of (4.7) and (4.8).

If instead s(τ) ≤ −2s̃ for some τ ∈ [0, 1], we can proceed as in the proof of
Lemma 4.2 in [4]. More precisely, since the image s([0, 1]) contains the interval
[−2s̃,max(s(0), s(1))], we can find a closed subinterval I of [0, 1] whose image s(I)
is exactly the interval [−2s̃,max(s(0), s(1))]. Thus we may control the length of Γ,
in the light of (4.11), by∫ 1

0

∣∣Γ′(τ)
∣∣ dτ ≥ ∫

I

∣∣Γ′(τ)
∣∣ dτ &√β

∫
I

|s′(τ)| dτ ≥
√
β
(

max (s(0), s(1)) + 2s̃
)
.

Here √
β
(

max (s(0), s(1)) + 2s̃
)
&
√
β & diamEβ ≥

∣∣x̃(0) − x̃(1)
∣∣,

and (4.7) follows. Under the additional hypotheses of (b), we have

max (s(0), s(1)) + 2s̃ ≥ |s(0)− s(1)|,

which implies (4.8). �
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4.2. The Gaussian measure of a tube. We fix a large β > 0. Define for x(1) ∈ Eβ
and a > 0 the set

Ω =
{
x ∈ Eβ :

∣∣x− x(1)
∣∣ < a

}
.

This is a spherical cap of the ellipsoid Eβ, centered at x(1). Observe that |x| '
√
β

for x ∈ Ω, and that the area of Ω is |Ω| ' min (an−1, β(n−1)/2). Then consider the
tube

Z = {Dsx̃ : s ≥ 0, x̃ ∈ Ω}. (4.12)

Lemma 4.4. There exists a constant C such that β > C implies that the Gaussian
measure of the tube Z fulfills

γ∞(Z) .
an−1

√
β
e−β.

Proof. Proposition 4.2 yields, since H(0, x̃) ' |x̃| '
√
β,

γ∞(Z) '
∫ ∞

0

e−s trB e−R(Dsx̃)

∫
Ω

H(0, x̃) dS(x̃) ds .
√
β an−1

∫ ∞
0

e−s trBe−R(Dsx̃) ds.

By (4.3) we have

R(Dsx̃)−R(x̃) '
∫ s

0

∣∣Ds′x̃
∣∣2ds & s|x̃|2 ' sβ,

which implies

γ∞(Z) .
√
β an−1 e−β

∫ ∞
0

e−s trB e−csβ ds.

Assuming β large enough, one has cβ > −2 trB, and then the last integral is finite
and no larger than C/β. The lemma follows. �

5. Some simplifications

In this section, we introduce some preliminary simplifications and reductions in
the proof of (1.3), i.e., of Theorem 1.1.

(1) We may assume that f is nonnegative and normalized in the sense that

‖f‖L1(γ∞) = 1,

since this involves no loss of generality.
(2) We may assume that our fixed α is large, α > C, since otherwise (1.3) is

trivial.
(3) In many cases, we may restrict x in (1.3) to the ellipsoidal annulus

E =

{
x ∈ Rn :

1

2
logα ≤ R(x) ≤ 2 logα

}
.

To begin with, we can always forget the unbounded component of the com-
plement of E , since

γ∞{x ∈ Rn : R(x) > 2 logα} (5.1)
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.
∫
R(x)>2 logα

exp(−R(x))dx . (2 logα)(n−2)/2 exp(−2 logα) .
1

α
.

(4) When t > 1, we may forget also the inner region where R(x) < 1
2

logα.

Indeed, from (3.4) we get, if (x, u) ∈ Rn × Rn with R(x) < 1
2

logα,

Kt(x, u) . eR(x) <
√
α ≤ α,

since α is large. In other words, for any (x, u) ∈ Rn × Rn

R(x) <
1

2
logα ⇒ Kt(x, u) . α, (5.2)

for all t > 1.
Replacing α by Cα for some C, we see from (5.1) and (5.2) that we can
assume x ∈ E in the proof of (1.3), when the supremum of the maximal
operator is taken only over t > 1.

Before introducing the last simplification, we need to define a global region

G =

{
(x, u) ∈ Rn × Rn : |x− u| > 1

1 + |x|

}
and a local region

L =

{
(x, u) ∈ Rn × Rn : |x− u| ≤ 1

1 + |x|

}
.

(5) When t ≤ 1 and (x, u) ∈ G, we shall see that (5.2) is still valid, and it is
again enough to consider x ∈ E .

To prove this, we need a lemma which will also be useful later.

Lemma 5.1. If (x, u) ∈ G and 0 < t ≤ 1, then

1

(1 + |x|)2
. t2|x|2 + |u−Dtx|2.

Proof. From the definition of G we have

1

1 + |x|
≤ |x− u|

. |x−Dtx|+ |Dtx− u|
= |Q∞

(
Q−1
∞ x− e−tB

∗
Q−1
∞ x
)
|+ |u−Dtx|

. |(I − e−tB∗)Q−1
∞ x|+ |u−Dtx|

. t|x|+ |u−Dtx|.

The lemma follows. �

To verify now (5.2) in the global region with t ≤ 1, we recall from (3.5) that

Kt(x, u) .
eR(x)

tn/2
exp

(
− c |u−Dtx|2

t

)
.
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It follows from Lemma 5.1 that

t2 &
1

(1 + |x|)4
or

|u−Dtx|2

t
&

1

(1 + |x|)2t
.

The first inequality here implies that

Kt(x, u) . eR(x) (1 + |x|)n . e2R(x),

and (5.2) follows. If the second inequality holds, we have

Kt(x, u) .
eR(x)

tn/2
exp

(
− c

(1 + |x|)2t

)
. eR(x) (1 + |x|)n,

and we get the same estimate. Thus (5.2) is verified.

Finally, let

HG
∗ f(x) = sup

0<t≤1

∣∣∣∣∫ Kt(x, u)χG(x, u) f(u) dγ∞(u)

∣∣∣∣ ,
and

HL
∗ f(x) = sup

0<t≤1

∣∣∣∣∫ Kt(x, u)χL(x, u) f(u) dγ∞(u)

∣∣∣∣ .
6. The case of large t

In this section, we consider the supremum in the definition of the maximal oper-
ator taken only over t > 1, and we prove (1.5).

Proposition 6.1. For all functions f ∈ L1(γ∞) such that ‖f‖L1(γ∞) = 1,

γ∞

{
x : sup

t>1
|Htf(x)| > α

}
.

1

α
√

logα
, α > 2. (6.1)

In particular, the maximal operator

sup
t>1
|Htf(x)|

is of weak type (1, 1) with respect to the invariant measure γ∞.

Proof. We can assume that f ≥ 0. Looking at the arguments in Section 5, items (3)
and (4), we see that is suffices to consider points x ∈ E . For both x and u we use
the coordinates introduced in (4.4) with β = logα, that is,

x = Dsx̃, u = Ds′ũ,

where x̃, ũ ∈ Elogα and s, s′ ∈ R.
From (3.4) we have

Kt(x, u) . exp(R(x)) exp
(
− c

∣∣D−tu− x∣∣2)
for t > 1 and x, u ∈ Rn. Since x ∈ E and D−tu = D−tDs′ũ = Ds′−tũ, we can apply
Lemma 4.3 (i), getting ∣∣D−tu− x∣∣ & ∣∣x̃− ũ∣∣,
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so that∫
Kt(x, u)f(u) dγ∞(u) . exp

(
R(Dsx̃)

) ∫
exp

(
− c

∣∣x̃− ũ∣∣2) f(u) dγ∞(u).

In view of (4.3), the right-hand side here is strictly increasing in s, and therefore
the inequality

exp
(
R(Dsx̃)

) ∫
exp

(
− c

∣∣x̃− ũ∣∣2) f(u) dγ∞(u) > α (6.2)

holds if and only if s > sα(x̃) for some function x̃ 7→ sα(x̃), with equality for
s = sα(x̃). Since α > 2 and ‖f‖L1(γ∞) = 1, it follows that sα(x̃) > 0.

For some C, the set of points x ∈ E where the supremum in (6.1) is larger than Cα
is contained in the set A(α) of points Dsx̃ ∈ E fulfilling (6.2). We use Proposition
4.2 to estimate the γ∞ measure of this set. Observe that H(0, x̃) ' |x̃| '

√
logα

and that Dsx̃ ∈ E implies s . 1, so that also e−s trB . 1. We get

γ∞(A(α) ∩ E) =

∫
A(α)∩E

e−R(x)dx

.
√

logα

∫
Elogα

∫ C

sα(x̃)

e−R(Dsx̃) dS(x̃) ds

.
√

logα

∫
Elogα

∫ +∞

sα(x̃)

exp
(
−R(Dsα(x̃)x̃)− c logα (s− sα(x̃))

)
ds dS(x̃),

where the last inequality follows from (4.3), since |Dsx̃|2 & |x̃|2 ' logα. Integrating
in s, we obtain

γ∞(A(α) ∩ E) .
1√

logα

∫
Elogα

exp
(
−R(Dsα(x̃)x̃)

)
dS(x̃).

Now combine this estimate with the case of equality in (6.2) and change the order
of integration, to get

γ∞(A(α) ∩ E) .
1

α
√

logα

∫ ∫
Elogα

exp
(
− c

∣∣x̃− ũ∣∣2)dS(x̃) f(u) dγ∞(u)

.
1

α
√

logα

∫
f(u) dγ∞(u) ,

which proves Proposition 6.1. �

Finally, in analogy with [9], we show that the factor 1/
√

logα in (6.1) is sharp.

Proposition 6.2. For any t > 1 and any large α, there exists a function f , nor-
malized in L1(γ∞) and such that

γ∞ {x : |Htf(x)| > α} ' 1

α
√

logα
.

Proof. Take a point z with R(z) = log α, and let f be (an approximation of) a
Dirac measure at the point u = Dtz. Then, as a consequence of (3.4), Kt(x, u) '
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exp(R(x)) in the ball B(D−tu, 1) = B(z, 1). We then have Htf(x) = Kt(x, u) & α
in the set B = {x ∈ B(z, 1) : R(x) > R(z)}, whose measure is

γ∞ (B) ' e−R(z) 1√
R(z)

=
1

α
√

log α
.

�

7. The local case for small t

Proposition 7.1. If (x, u) ∈ L and 0 < t ≤ 1, then∣∣Kt(x, u)
∣∣ . exp

(
R(x)

)
tn/2

exp
(
− c |u− x|

2

t

)
.

Proof. In view of (3.5), it is enough to show that

|u−Dtx|2

t
≥ |u− x|

2

t
− C. (7.1)

We write

|u−Dt x|2 = |u− x+ x−Dt x|2 = |u− x|2 + 2〈u− x, x−Dt x〉+ |x−Dt x|2

≥ |u− x|2 − 2|u− x| |x−Dt x|.

But

|u− x| |x−Dt x| = |u− x| |Q∞(I − e−tB∗)Q−1
∞ x| . |u− x| t |x| ≤ t

since (x, u) ∈ L, and (7.1) follows. �

Proposition 7.2. The maximal operator HL
∗ is of weak type (1, 1) with respect to

the invariant measure γ∞.

Proof. The proof is standard, since Proposition 7.1 implies

HL
∗ f(x) . sup

0<t≤1

exp
(
R(x)

)
tn/2

∫
exp

(
− c |x− u|

2

t

)
χL(x, u) f(u) dγ∞(u).

The supremum here defines an operator of weak type (1, 1) with respect to the
Lebesgue measure in Rn. From this the proposition follows, cf. [8, Section 3]. �

8. The global case for small t

In this section, we conclude the proof of Theorem 1.1.

Proposition 8.1. The maximal operator HG
∗ is of weak type (1, 1) with respect to

the invariant measure γ∞.
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Proof. For m ∈ N and 0 < t ≤ 1, we introduce regions Smt . If m > 0, we let

Smt =
{

(x, u) ∈ G : 2m−1
√
t < |u−Dtx| ≤ 2m

√
t
}
.

If m = 0, we replace the condition 2m−1
√
t < |u−Dtx| ≤ 2m

√
t by |u−Dtx| ≤

√
t.

Note that for any fixed t ∈ (0, 1] these sets form a partition of G.
In the set Smt we have, because of (3.5),

Kt(x, u) .
exp(R(x))

tn/2
exp

(
−c22m

)
.

Then setting

Kmt (x, u) =
exp(R(x))

tn/2
χSmt (x, u), (8.1)

one has, for all (x, u) ∈ G and 0 < t < 1,

Kt(x, u) .
∞∑
m=0

exp
(
−c22m

)
Kmt (x, u) .

Hence, it suffices to prove that for m = 0, 1, . . . and f ≥ 0 normalized in L1(γ∞)

γ∞

{
x ∈ E : sup

0<t≤1

∫
Kmt (x, u) f(u) dγ∞(u)> α

}
.

2Cm

α
, (8.2)

for large α, since this will allow summing in m in the space L1,∞.
Fix m ∈ N. Then (x, u) ∈ Smt , t ∈ (0, 1] implies |u − Dtx| ≤ 2m

√
t. Now

Lemma 5.1 leads to

1 . (1 + |x|)4t2 + (1 + |x|)2 22m t ≤ ((1 + |x|)2 22m t)2 + (1 + |x|)2 22m t.

Consequently,

(1 + |x|)2 22m t & 1 (8.3)

as soon as there exists a point u with Kmt (x, u) 6= 0, and then t ≥ ε > 0 for some
ε = ε(α,m) > 0. Hence the supremum in (8.2) can as well be taken over ε ≤ t ≤ 1,
and this supremum is a continuous function of x ∈ E .

To prove (8.2), the idea, which goes back to [16], is to construct a finite sequence

of pairwise disjoint balls
(
B(`)
)`0
`=1

in Rn and a finite sequence of sets
(
Z(`)

)`0
`=1

in
Rn, called forbidden zones. These zones will together cover the level set in (8.2).
We will show that{

x ∈ E : sup
ε≤t≤1

∫
Kmt (x, u) f(u) dγ∞(u) ≥ α

}
⊂

`0⋃
`=1

Z(`), (8.4)

and that for each `

γ∞(Z(`)) .
2Cm

α

∫
B(`)

f(u) dγ∞(u). (8.5)
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Since the B(`) will be pairwise disjoint, we could then conclude

γ∞

( `0⋃
`=1

Z(`)
)
.

2Cm

α

`0∑
`=1

∫
B(`)

f(u) dγ∞(u) .
2Cm

α
.

This would imply (8.2) and so complete the proof of Proposition 8.1.

The sets B(`) and Z(`) will be introduced by means of a sequence of points x(`),
` = 1, . . . , `0, which we define by recursion. To find the first point x(1), consider the
minimum of the quadratic form R(x) in the compact set

A1(α) =

{
x ∈ E : sup

ε≤t≤1

∫
Kmt (x, u) f(u) dγ∞ ≥ α

}
.

Should this set be empty, (8.2) is immediate. By continuity, this minimum is at-
tained at some point x(1) of the set.

We now describe the recursion to construct x(`) for ` ≥ 2. Like x(1), these points
will satisfy

sup
ε≤t≤1

∫
Kmt (x(`), u) f(u) dγ∞ ≥ α.

Once an x(`), ` ≥ 1, is defined, we can thus by continuity choose t` ∈ [ε, 1] such that∫
Kmt` (x

(`), u) f(u) dγ∞ ≥ α. (8.6)

Using this t`, we associate with x(`) the tube

Z(`) =
{
Dsη ∈ Rn : s ≥ 0, R(η) = R(x(`)), |η − x(`)| < A 23m

√
t`
}
,

Here the constant A > 0 is to be determined, depending only on n, Q and B.
All the x(`) will be minimizing points. To avoid having them too close to one

another, we will not allow x(`) to be in any Z(`′) with `′ < `. More precisely,
assuming x(1), . . . , x(`) already defined, we will choose x(`+1) as a minimizing point
of R(x) in the set

A`+1(α) =

{
x ∈ E \

⋃̀
`′=1

Z(`′) : sup
ε≤t≤1

∫
Kmt (x, u) f(u) dγ∞(u) ≥ α

}
, (8.7)

provided this set is nonempty. But if A`+1(α) is empty, the process stops with `0 = `
and (8.4) follows. We will soon see that this actually occurs for some `.

Now assume that A`+1(α) 6= ∅. In order to assure that a minimizing point exists,
we must verify that A`+1(α) is closed and thus compact, although the Z(`′) are not
open. To do so, observe that for 1 ≤ `′ ≤ `, the minimizing property of x(`′) means
that there is no point in A`′(α) with R(x) < R(x(`′)). Thus we have the inclusions

A`+1(α) ⊂ A`′(α) ⊂
{
x : R(x) ≥ R(x(`′))

}
, 1 ≤ `′ ≤ `.

It follows that

A`+1(α) = A`+1(α) ∩
⋂

1≤`′≤`

{x : R(x) ≥ R(x(`′))} =
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⋂̀
`′=1

{
x ∈ E \ Z(`′) : R(x) ≥ R(x(`′)), sup

ε≤t≤1

∫
Kmt (x, u) f(u) dγ∞(u) ≥ α

}
.

The sets {x ∈ E \ Z(`′) : R(x) ≥ R(x(`′))} are closed in view of the choice of Z(`′).
This makes A`+1(α) compact, and a minimizing point x(`+1) can be chosen. Thus
the recursion is well defined.

We observe that (8.3) applies to t` and x(`), so that

|x(`)|2 22m t` & 1. (8.8)

Further, we define balls

B(`) ={u ∈ Rn : |u−Dt`x
(`)| ≤ 2m

√
t` } .

Because of (8.1) and the definitions of Kmt and Smt , the inequality (8.6) implies

α ≤
exp

(
R(x(`))

)
t
n/2
`

∫
B(`)

f(u) dγ∞(u). (8.9)

We now verify that the sets B(`) and Z(`) have the required properties. The proof
follows the lines of the proof of Lemma 6.2 in [4], with only slight modifications.

Lemma 8.2. The collection of balls B(`) is pairwise disjoint.

Proof. Two balls B(`) and B(`′) with ` < `′ will be disjoint if∣∣Dt`x
(`) −Dt`′

x(`′)
∣∣ > 2m(

√
t` +
√
t`′). (8.10)

By means of the coordinates from Subsection 4.1 with β = R(x(`)), we write

x(`′) = Dsx̃
(`′)

for some x̃(`′) with R(x̃(`′)) = R(x(`)) and some s ∈ R. Note that s ≥ 0, because
R(x(`′)) ≥ R(x(`)). Since x(`′) does not belong to the forbidden zone Z(`), we must
have

|x̃(`′) − x(`)| ≥ A23m
√
t`. (8.11)

We first assume that t`′ ≥M 24m t`, for some M ≥ 2 to be chosen. Lemma 4.3 (ii)
implies∣∣Dt`x

(`) −Dt`′
x(`′)

∣∣ =
∣∣Dt`x

(`) −Dt`′+s
x̃(`′)

∣∣ & |x(`)| (t`′ + s− t`) & |x(`)| t`′ .

Using our assumption and then (8.8), we get

|x(`)| t`′ & |x(`)|
√
M 22m

√
t`
√
t`′ &

√
M 2m

√
t`′ '

√
M 2m (

√
t`′ +

√
t`).

Fixing M suitably large, we obtain (8.10) from the last two formulae.
It remains to consider the case when t`′ < M 24m t`. Then

√
t` >

2−2m−1

√
M

(
√
t`′ +

√
t`).

Applying this to (8.11), we obtain (8.10) by choosing A so that A/
√
M is large

enough. �
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We next verify that the sequence (x(`)) is finite. For ` < `′, we have (8.11), as in
the preceding proof . Then Lemma 4.3 (i) implies∣∣x(`′) − x(`)

∣∣ & A 23m
√
t`.

Since t` ≥ ε, we see that the distance
∣∣x(`′) − x(`)

∣∣ is bounded below by a positive

constant. But all the x(`) are contained in the bounded set E , so they are finite
in number. Thus the set considered in (8.7) must be empty for some `, and the
recursion stops. This implies (8.4).

We finally prove (8.5) . Observe that the forbidden zone Z(`) is a tube as defined
in (4.12), with a = A 23m

√
t` and β = R(x(`)). This value of β is large since x(`) ∈ E ,

and thus we can apply Lemma 4.4 to obtain

γ∞(Z(`)) .

(
A23m

√
t`
)n−1√

R(x(`))
exp

(
−R(x(`))

)
.

We bound the exponential here by means of (8.9) and observe that R(x(`)) ∼ |x(`)|2,
getting

γ∞(Z(`)).
1

α|x(`)|
√
t`

(A23m)n−1

∫
B(`)

f(u)dγ∞(u).

As a consequence of (8.8), we obtain

γ∞(Z(`)) .
2m

α

(
A23m

)n−1
∫
B(`)

f(u) dγ∞(u) .
2Cm

α

∫
B(`)

f(u) dγ∞(u),

proving (8.5). This concludes the proof of Proposition 8.1. �
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