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In this paper we investigate the link between the spectrum of some periodic
Schrödinger type operators and the effective Hamiltonian of the weak KAM theory.
We show that the extension of some local quasimodes is linked to the localization of
the Schrödinger spectrum. Such a result provides additional information with respect
to the well known Bohr-Sommerfeld quantization rules, here in a more general
setting than the integrable or quasi-integrable ones. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960741]

I. INTRODUCTION

For Tn B (R/2πZ)n and V ∈ C∞(Tn), we study the eigenvalue equation

− 1
2
~2
∆xψ~(x) + V (x)ψ~(x) = E~ψ~(x) (1)

in connection to weak KAM solutions of negative type for the Hamilton-Jacobi equation,

1
2
|P + ∇xS(P, x)|2 + V (x) = H̄(P), P ∈ Rn, (2)

where H̄ : Rn → R is the effective Hamiltonian of the weak KAM theory (see for example Refs. 4,
6, 7, and 14). We remind that P → H̄(P) is a convex function and that H̄(P) ≥ maxy∈Tn V (y) for all
P ∈ Rn, H̄(0) = maxy∈Tn V (y). This is given by the well known formula (see Ref. 4)

H̄(P) = inf
v∈C1(Tn)

sup
y∈Tn

1
2
|P + ∇xv(y)|2 + V (y). (3)

In this setting, all the weak KAM solutions of negative type for (2) coincide with viscosity solutions
(see Ref. 7). As we recall in Section II B, these functions are Lipschitz continuous and semiconcave
with linear modulus on Tn and this ensures the second order differentiability for Ln - a.e. x ∈ Tn.
Moreover, by denoting Σ(S) as the singular set of S (i.e., the set of x ∈ Tn where S is not differen-
tiable) it is known (see Ref. 14) that Tn \ Σ(S) is an open and dense subset of Tn and S is C1,1

loc on
such a domain.

The spectrum of − 1
2~

2∆x + V : W 2,2(Tn) → L2(Tn) is bounded from below and discrete, as we
recall in Section II A. In what follows, we will write Spec(− 1

2~
2∆x + V ) = {E~,α}α∈N.

The first result of the paper is about the determination of some WKB - type wave functions in a
low regularity setting providing local quasimodes of order O(~) and O(~∞) linked to the solutions of
the Equation (2).

Theorem 1.1. Let V ∈ C∞(Tn) and let S(P, · ) : Tn → R be a solution of (2). For 0 < ~ ≤ 1,
P ∈ Rn and Ω ⊂⊂ Tn \ Σ(S) we define

uP,~(x) B (Vol(Ω))−1 ei(P ·x+S(P,x))/~, x ∈ Ω, (4)
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and Φ(Ω) B {ϕ~ ∈ L2(Ω) | ∃∆xϕ~(x) forLn − a.e. x ∈ Ω, ∆xϕ~ ∈ L2(Ω)}. Then, uP,~ is L2(Ω) -
normalized, uP,~ ∈ Φ(Ω) and

− 1
2
~2
∆xuP,~ + V (x)uP,~ = H̄(P)uP,~ + O(~), (5)

where the remainder is estimated in L2(Ω) as 1
2 ∥∆xS(P, · )∥L∞(Ω) ~.

Let δE(~) B infα∈N (2π~)−n (E~,α+1 − E~,α) and let 0 < ~ ≤ ~0 be such that π δE(~) e−1/~ ≤ 1.
Fix x0 ∈ Tn \ Σ(S) and 0 < ρ(x0,P) ≤ 1 such that B2ρ(x0) ⊂ Tn \ Σ(S). Define r B π δE(~)e−1/~

ρ(x0,P) (1 + ∥∇2S(P, · )∥L2(Bρ(x0)))−1, S0(P, x) B S(P, x0) + ∇xS(P, x0) · (x − x0),
ϕP,~(x) B (Vol(Br))−1/2 ei(P ·x+S0(P,x))/~, x ∈ Br(x0). (6)

Then, ϕP,~ is L2(Br(x0)) - normalized, ϕP,~ ∈ Φ(Br(x0)). The function uP,~(x) B Vol(Br(x0))−1

ei(P ·x+S(P,x))/~ fulfills ∥ϕP,~ − uP,~∥L2(Br ) ≤ 2π δE(~) ~−1e−1/~. Moreover,

− 1
2
~2
∆xϕP,~ + V (x)ϕP,~ = H̄(P)ϕP,~ + O(~∞), (7)

where the remainder is estimated in L2(Br) as ∥∇V ∥C0(Tn) π δE(~) e−1/~.

In Lemma 3.1 we prove that for any fixed 0 < ~ ≤ 1 the set of energies

E B {H̄(P) | P ∈ ℓ · ~ Zn; 0 < ℓ ≤ 1} (8)

fulfills E ∩ [maxy∈Tn V (y), λ] = [maxy∈Tn V (y), λ] for any λ > maxy∈Tn V (y). In Theorem 1.2 we
select P ∈ ℓ · ~ Zn and energies in E to get the Schrödinger spectrum up to O(~∞) terms.

We recall that the determination of the series of smooth WKB-wave functions or Lagrangian
distributions given by oscillatory integrals which are O(~N)-energy quasimodes on Tn works in the
case of KAM or integrable settings (see for example Refs. 1, 10, and 11 and the references therein).

Moreover, the well known Weyl’s law for our class of Schrödinger operators (see for example
Chaps. 1.5 and 10.4 in Ref. 9) provides the asymptotics as ~ → 0+ for the number of eigenvalues

♯ (a,b) ∩ Spec
(
− 1

2
~2
∆x + V

)
≃ (2π~)−n (Vol(a < 1

2
|p|2 + V < b) + O(1)) (9)

for any ~-independent interval (a,b) ⊂ [miny∈Tn V (y),+∞). Notice also that δE(~) B infα∈N (2π~)−n
(E~,α+1 − E~,α) is uniformly bounded with respect to 0 < ~ ≤ 1 since in the opposite case the Weyl’s
law would be not satisfied.

The second result of the paper deals with a characterization of the points of the spectrum bigger
than the energy value maxy∈Tn V (y), and this target is obtained by the use of the above quasimodes.
This is the content of the next

Theorem 1.2. Let ϕP,~ be as in Thm. 1.1. The following statements are equivalent:

(a) E~ ∈ (maxy∈Tn V (y),b) ∩ Spec(− 1
2~

2∆x + V )
(b) Let E~ ∈ R, 0 < ℓ ≤ 1 and let P ∈ ℓ · ~ Zn be running over a finite set of vectors satisfying

|E~ − H̄(P)| ≤ δE(~) e−1/~. Any nonvanishing function in

ϕ~ B


P

cP ϕP,~


⊂ Φ(Br(x0)) (10)

plus a remainder ϕ~ in Φ(Br(x0)) estimated as O(~∞) can be extended to ψ~ ∈ W 2,2(Tn) such
that

− 1
2
~2
∆xψ~ + V (x)ψ~ = E~ψ~. (11)

In particular,

∥ϕ~∥L2(Br (x0)) ≤ (2π~)−n (1 + ∥∇xV ∥C0(Tn) π
)

e−1/~ ∥ϕ~∥L2(Br (x0)). (12)
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We now provide some remarks about the above result. To begin with, we underline that the series
(10) is convergent since the involved vectors P belong to a finite set. Moreover, the point (b) can be
rewritten as

ψ~
���Br (x0)

=

P

cP ϕP,~ + ϕ~ (13)

for some eigenfunction ψ~ with eigenvalue E~ and where the sum is taken over a finite set of points
P ∈ ℓ · ~ Zn satisfying |E~ − H̄(P)| ≤ δE(~) e−1/~, for a set of linearly independent ϕP,~ and cP ∈ C
not depending on ~. Notice that such vectors P are in fact spectral invariants for the Schrödinger
operator, which generalize the points of the lattice arising thanks to the Bohr-Sommerfeld quantiza-
tion rules, see (20). About the set of all the wave functions ϕP,~, we do not have information about
the maximum number of linearly independent ones. Anyway, in view of Theorem 1.2 if H̄(P) takes
energy values in the spectrum mod. O(~∞) then the set (10) is concentrated in the finite dimensional
space of eigenfunctions plus error terms O(~∞) with the estimate shown in (12). Observe that we
cannot say whether or not the property (13) is fulfilled for all the eigenfunctions ψ~ ∈ W 2,2(Tn).
Moreover, we stress that in some cases the existence of eigenfunctions which take, locally over a
ball Br(x0), the form (13) up to an error O(~N−n) is a consequence of O(~N) - quasimodes on Tn

given by smooth WKB-type wave functions. Indeed, by assuming that V (x) = n
i=1 Vi(xi) then the

Hamilton-Jacobi equation is solved, for any fixed P such that H̄(P) is above maxy∈Tn V (y), by the

unique smooth function S(P, x) = n
i=1

 xi
0


2(H̄(P) − Vi(y))dy − Pi · xi. Moreover, under typical

conditions of the KAM theorem, the existence of smooth S(P, x) is still guaranteed. Whence, for a
suitable subset of vectors P ∈ ~ Zn (related in addition to non-resonance conditions), the series,

ψ
(N )
~

(x) B
N
j=0

~ j a j(P, x) ei(P ·x+S(P,x))/~, x ∈ Tn, (14)

obtained by smooth amplitudes a j solving suitable continuity type equations, provide O(~N+1) -
quasimodes in C∞(Tn), see for example Ref. 1, for quasienergies

N
j=0 ~

jE j and where E0 = H̄(P).
We observe that the restriction of (14) on Br(x0) can be rewritten as

ψ
(N )
~

(x) =
N
j=0

(~ j a j(P, x0) + O(~∞)) ei(P ·x+S(P,x))/~, x ∈ Br(x0) ⊂ Tn, (15)

thanks to the smoothness of a j and where the above O(~∞)-remainder is computed in W 2,2(U0)-
norm. This function is O(~∞) close to

N
j=0

~ j a j(P, x0)ei(P ·x+S(P,x))/~, x ∈ Br(x0) ⊂ Tn, (16)

which belongs, when rescaled by Vol(Br(x0))−1, to the type of wave functions in Thm. 1.1. No-
tice that (15) and (16) hold in a small neighbourhood of an arbitrary fixed point x0 ∈ Tn since
here S is smooth. We also underline that, if E~,α+1 − E~,α ≃ Cα ~

n, then some simple arguments
(see for example Ref. 1) show that for any O(~N)-quasimode ψ(N )

~
∈ W 2,2(Tn) with N > n, there

exists at least one eigenfunction ψ~ ∈ W 2,2(Tn) belonging to the eigenvalue E~ such that ∥ψ(N )
~
−

ψ~∥L2(Tn) = O(~N−n), whence also L2(Br(x0))—close to (16). We stress that the quasienergies
E(N )
~
B
N

j=0 ~
jE j are linked to this point of the spectrum by E~ ∈ (E(N )

~
− O(~N),E(N )

~
+ O(~N)).

Thus, in this construction of quasimodes,

E~ = H̄(P) + O(~), (17)

which is in fact a weaker relationship, with respect to our approach, between the effective Hamilto-
nian and the Schrödinger spectrum. We also underline that, without further assumptions which are
additional with respect to integrably or KAM settings, it cannot be proved (in our knowledge) that
the series (14) is L2(Tn)-convergent as N → +∞.
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For Schrödinger operators − 1
2~

2∆x + V (x), where V (x) = n
i=1 Vi(xi), the well known Bohr-

Sommerfeld quantization rules (see for example Ref. 12) read

1
2π


pi dxi =

(
ki −

1
4
µi + O(~)

)
~, ki ∈ Z, (18)

where the integration is taken over the closed trajectory which lies on the one dimensional hyper-
surface { 1

2 |pi |2 + Vi(xi) = Ei}, which in fact coincides with a Lagrangian torus Λi ⊂ T × R and µi is
the related Maslov cocycle. This provides the exact conditions to recover the points of the spectrum.
Indeed,

Pi =
1

2π


pi dxi (19)

and thus the points of the spectrum of − 1
2~

2∆x + V (x) above max V (hence in the region of regular
values of the momentum map (H1, . . . , Hn) where Hi =

1
2 |pi |2 + Vi(xi)) take the form

E~ = H̄
(
k~ − 1

4
µ~ + O(~2)) + O(~∞), (20)

where H̄(P) = i H̄i(Pi) and H̄i(Pi) = infv supy
1
2 |Pi + ∇xv(y)|2 + Vi(y), k = (k1, . . . , kn) ∈ Zn,

µ = (µ1, . . . , µn) ∈ Zn.
On the one hand, we underline that our approach is based on the selection of P ∈ ℓ · ~ Zn

such that |E~ − H̄(P)| ≤ δE(~) e−1/~, whence it is the converse viewpoint with respect to (20). On
the other hand, the equalities (18) are linked (see Prop. 5.1 in Ref. 12) to the possibility to glue
microlocal solutions of the eigenvalue equations

−1
2
~2 d2

dz2ψ
i
~(z) + Vi(z)ψi

~(z) = Ei
~ψ

i
~(z) + O(~∞), z ∈ T,

on small open domainsΩ in Λi ⊂ T × R at energy Ei
~
. In our paper, this is replaced by the possibility

to extend the local quasimodes ϕP,~ defined on Br(x0) ⊂ Tn to global eigenfunctions on Tn. In
fact, the sets Graph(P + ∇xS) generalize Λ1 × · · · × Λn but they are not smooth enough in order
to provide (in our knowledge) a direct generalization of the Bohr-Sommerfeld approach. Thus, we
underline the open problem to find a more general “quantization rule” for P in place of (18), which
could be related to the extension of ϕP,~ shown in point (b) of Theorem 1.2.

To conclude the Introduction, in the following we remind some of the several results in the liter-
ature that exhibit the construction and semiclassical study of energy eigenfunctions or quasimodes
linked to weak KAM tori, KAM tori, and Lagrangian tori within the phase space.

In Ref. 5 the author suggests a quantum analogue for weak KAM theory and for Mather’s mini-
mization principle for Lagrangian dynamics. It is rigorously constructed from the eigenfunctions of
a certain non-selfadjoint operator a candidate for wave function which is a minimizer, and recovered
aspects of weak KAM theory in the asymptotics of the classical limit. Regarding such wave func-
tions as a quasimode, an O(~) - error estimate is provided. In Ref. 3 some attempts are still shown to
devise quantum analogues of certain aspects of Mather’s theory of minimizing measures. This target
allows the construction of WKB energy quasimodes with O(~) - error estimate.

In the paper10 the aim is to study the relationship between the effective Nekhoroshev stability
for near-integrable Hamiltonian systems and the semiclassical asymptotics for Schrödinger opera-
tors. In particular, for a given real analytic Hamiltonian close to a completely integrable one and
a Cantor set defined through a Diophantine condition, a family of invariant tori is shown with
frequencies which is Gevrey smooth. A symplectic normal form of the Hamiltonian is also obtained
in a neighborhood of the union of invariant tori which can be viewed as a Birkhoff normal form
around all invariant tori. This result leads to effective stability of a quasiperiodic motion. As an
application, some energy quasimodes which are associated with a family of KAM tori are shown
with exponentially small error terms. The well-known approach of WKB construction of energy
quasimodes in the hypotheses of KAM theorem is also used in the paper1 where the authors show
that the quantum tunneling between phase space KAM tori is suppressed in the semiclassical limit,
and that the distribution of quantum group velocities converges to the distribution of the (classical)
asymptotic velocities up to an error term.
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In Ref. 11 the author studies the possible concentration in phase space of a sequence of eigen-
functions or quasimodes of an operator whose principal symbol has completely integrable Hamilton
flow. Since the semiclassical wave front set of such a sequence is invariant under such flow, this may
allow concentration of the semiclassical wave front set along a single closed orbit if all frequencies
of the flow are rationally related. It is shown that, subject to some non-degeneracy hypotheses, this
concentration may not occur. In the two-dimensional case, it is shown that semiclassical wave front
set must fill out an entire Lagrangian torus.

II. PRELIMINARIES AND SETTINGS

A. Schrödinger eigenvalues and eigenfunctions

We consider V ∈ C∞(Tn) and the class of Schrödinger operators H~ B − 1
2~

2∆x + V with H~ :

W 2,2(Tn) → L2(Tn). By the resolvent set ρ(H~) we mean the set of λ ∈ C such that Ran(H~ − λ id)
= L2(Tn), H~ − λ id : W 2,2(Tn) → L2(Tn) is injective and the related resolvent operator Rλ B (H~ −
λ id)−1 acting on Rλ : Ran(H~ − λ id) → W 2,2(Tn) is L2 - bounded. Thus, the spectrum reads
Spec(− 1

2~
2∆x + V ) B C \ ρ(H~). The pointwise part of the spectrum is given by the subset of

λ ∈ Spec(− 1
2~

2∆x + V ) such that H~ − λ id is not injective, and the discrete part is the subset of
the pointwise part such that the related eigenspaces are finite dimensional. In fact, for this class
of operators the set Spec(− 1

2~
2∆x + V ) coincides with its discrete part.

The so-called Weyl’s law (see for example Chaps. 1.5 and 10.4.1 in Ref. 9) provides the
asymptotics as ~ → 0+ for the number of the eigenvalues

♯ (a,b) ∩ Spec
(
− 1

2
~2
∆x + V

)
≃ (2π~)−n (Vol(a < 1

2
|p|2 + V < b) + O(1)) .

The operator H~ is selfadjoint on the Hilbert space W 2,2(Tn) with respect to L2(Tn)-scalar prod-
uct and there exists a complete orthonormal set of eigenfunctions in W 2,2(Tn), see Chap. XIII-16
in Ref. 13.

B. Weak solutions of Hamilton-Jacobi equation

Here we deal with viscosity solutions of the Hamilton-Jacobi equation on Tn B (R/2πZ)n (see
for example Refs. 2, 4, 6, 7, and 14)

1
2
|P + ∇xS(P, x)|2 + V (x) = H̄(P), P ∈ Rn. (21)

The function H̄(P) is called the effective Hamiltonian and can be expressed by

H̄(P) = inf
v∈C1(Tn;R)

sup
x∈Tn

1
2
|P + ∇xv(x)|2 + V (x) (22)

which is a convex and superlinear function of P ∈ Rn, see for example Refs. 4 and 6. For the targets
of our paper, which are related to Schrödinger eigenfunctions, we will consider the case P ∈ ℓ · ~ Zn
with 0 < ℓ,~ ≤ 1.

As showed in Thm. 7.6.2 of Ref. 7, all the Lipschitz continuous weak KAM solutions of
negative type coincide with the viscosity solutions. Thanks to Thm 5.3.6 in Ref. 2, any viscosity
solution S(P, · ) is locally semiconcave with linear modulus in Tn. For an open set A ⊂ Rn, we recall
that u : A → R is called semiconcave with linear modulus if

u(x + h) + u(x − h) − 2u(x) ≤ C |x |2 (23)

for all x,h ∈ Rn such that [x − h, x + h] ∈ A. The value C > 0 is called the semiconcavity constant.
The function u is called locally semiconcave in A if it is semiconcave for every compact subset of
A. Now, recalling Theorem 2.3.1 in Ref. 2 it follows that S(P, · ) is twice differentiable Ln - a.e.
x ∈ Tn and that ∇xS(P, · ) ∈ BVloc(Tn;Rn). Alternatively, one can apply Proposition 1.1.3 in Ref. 2,
i.e., any S semiconcave can be written as S = S1 + S2 where S1 is C2 and S2 is concave, and Theorem
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7.1 in Ref. 8 about the well posedness of the second order differentiability of convex functions
here applied for −S2. We also recall that, thanks to Thm. 4.9.2 in Ref. 7, the map x → ∇xS(P, x) is
continuous on dom(∇xS) B {x ∈ Tn | ∃ ∇xS(P, x)}, and

Graph(P + ∇S(P, · )) ⊂ {(x,p) ∈ Tn × Rn | H(x,p) = H̄(P)}. (24)

In addition to the above regularity results, by denoting Σ(S) as the singular set of S (namely, the set
of x ∈ Tn where S is not differentiable) it has been proved (see Ref. 14) that Tn \ Σ(S) is an open
and dense subset of Tn and furthermore that S is C1,1

loc on Tn \ Σ(S).
About the notion of the Aubry set in cotangent bundle of Tn we remind that

A∗P =

S∈S∓

{(x,P + ∇xS(P, x)) | x ∈ Tn s.t. ∃ ∇xS(P, x)} (25)

with intersection taken over all Lipschitz continuous weak KAM solutions S∓ of negative (or posi-
tive) type of the Hamilton-Jacobi equation (21), see Ref. 7. We recall that A∗P is a compact set
which is invariant under the Hamiltonian flow of H .

In our paper we do not exhibit the study of the semiclassical localization (in the sense of
Wigner measures and the semiclassical wave front set) of the eigenfunctions arising in Theorem 1.2;
an open problem is to prove this type of result with respect to the Aubry set.

In the following we provide an useful result by using the second order regularity of the map
x → S(P, x) and its linear approximation.

Lemma 2.1. Let S(P, · ) : Tn → R be a viscosity solution of (21) where P ∈ Rn. Let Ω ⊂⊂
Tn \ Σ(S). Then,

∥∆xS(P, · )∥L∞(Ω) < +∞. (26)

Let x0 ∈ Tn \ Σ(S) and 0 < ρ(x0,P) ≤ 1 be such that B2ρ(x0) ⊂ Tn \ Σ(S). Define r B π δE(~)e−1/~

ρ(x0,P) (1 + ∥∇2S(P, · )∥L2(Bρ(x0)))−1, S0(P, x) B S(P, x0) + ∇xS(P, x0) · (x − x0). Let 0 < ~0 ≤ 1 be
such that πδE(~)e−1/~ ≤ 1 for any 0 < ~ ≤ ~0. Then, we have ∆xS0(P, x) = 0 ∀ x ∈ Br(x0) and

∥S(P, · ) − S0(P, · )∥L∞(Br (x0)) ≤ π δE(~)e−1/~. (27)

Moreover,


1
2
|P + ∇xS0(P, · )|2 + V (·) − H̄(P)L∞(Br (x0))

≤ ∥∇xV ∥C0(Tn)π δE(~)e−1/~. (28)

Proof. We remind that Tn \ Σ(S) is an open and dense subset of Tn. We can fix x0 ∈ Tn \ Σ(S),
and find 0 < ρ(x0,P) ≤ 1 be such that B2ρ(x0) ⊂ Tn \ Σ(S). Thus, Bρ(x0) ⊂ Tn \ Σ(S). Now we
underline that since δE(~) is uniformly bounded then there exists an interval 0 < ~ ≤ ~0 such that
πδE(~)e−1/~ ≤ 1. This gives r ≤ ρ(x0,P) and hence Br(x0) ⊂ Tn \ Σ(S).

Since any S is C1,1
loc on Tn \ Σ(S) then it is twice differentiable Ln - a.e. and thus for any Ω ⊂⊂

Tn \ Σ(S)we have ∥∇2
xS(P, · )∥L∞(Ω) < +∞ and ∥∆xS(P, · )∥L∞(Ω) < +∞, and also ∥∇2

xS(P, · )∥L∞(Br (x0))
< +∞. By the equality

S(P, x) − S0(P, x) =
 1

0

 λ

0
∇2

xS(P, x · µ + x0(1 − µ))dµdλ (x − x0) · (x − x0), (29)

written for x ∈ Br(x0), we have

|S(P, x) − S0(P, x)| ≤ sup
0≤µ≤1

|∇2
xS(P, x · µ + x0(1 − µ))| r2 ≤ ∥∇2

xS(P, · )∥L∞(Br (x0)) r2

≤ ∥∇2
xS(P, · )∥L∞(Br (x0)) r. (30)

The setting of r gives

|S(P, x) − S0(P, x)| ≤ ∥∇2
xS(P, · )∥L∞(Br (x0)) π δE(~)e−1/~ ρ(x0,P) (1 + ∥∇2S(P, · )∥L2(Bρ(x0)))−1. (31)
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Since ∥∇2
xS(P, · )∥L∞(Bρ(x0)) ≥ ∥∇2

xS(P, · )∥L∞(Br (x0)) and 0 < ρ(x0,P) ≤ 1 then

|S(P, x) − S0(P, x)| ≤ π δE(~)e−1/~. (32)

The expression

1
2
|P + ∇xS0(P, x)|2 + V (x) − H̄(P) = 1

2
|P + ∇xS(P, x0)|2 + V (x) − H̄(P) (33)

reads
1
2
|P + ∇xS(P, x0)|2 + V (x0) − H̄(P) + V (x) − V (x0) = V (x) − V (x0). (34)

To conclude, for x ∈ Br(x0)
|V (x) − V (x0)| ≤ ∥∇xV ∥C0(Tn) r ≤ ∥∇xV ∥C0(Tn) π δE(~)e−1/~. (35)

�

III. MAIN RESULTS
Lemma 3.1. Let P → H̄(P) given by (22). Then, for any fixed 0 < ~ ≤ 1, the set of energies

E B {H̄(P) | P ∈ ℓ · ~ Zn; 0 < ℓ ≤ 1} (36)

fulfills

E ∩ [max
y∈Tn

V (y), λ] = [max
y∈Tn

V (y), λ] (37)

for any λ > maxy∈Tn V (y).
Proof. We recall that P −→ H̄(P) is a convex and superlinear function on Rn (see Prop. 2.2

in Ref. 6). Thus, the convexity implies the continuity of H̄ and the superlinearity (i.e., lim|P |→+∞
H̄(P)/|P| = +∞) implies that H̄ is unbounded. Moreover,

H̄(P)B inf
v∈C1(Tn;R)

sup
x∈Tn

1
2
|P + ∇xv(x)|2 + V (x) (38)

≥ inf
v∈C1(Tn;R)

sup
x∈Tn

V (x) = max
x∈Tn

V (x). (39)

To conclude, we observe that {P ∈ ℓ · ~ Zn | 0 < ℓ ≤ 1} is dense in Rn. The statement directly
follows. �

Lemma 3.2. Let P → H̄(P) given by (22), and E~ ∈ [maxy∈Tn V (y) + ϵ,b) ∩ Spec(− 1
2~

2∆x +

V ). Then, any set

{P ∈ ℓ · ~ Zn | 0 < ℓ ≤ 1; |H̄(P) − E~| ≤ δE(~) e−1/~} (40)

is not empty and bounded.

Proof. In view of (37), and since we assume E~ > maxy∈Tn V (y) it follows that

{P ∈ ℓ · ~ Zn | 0 < ℓ ≤ 1; E~ − δE(~) e−1/~ ≤ H̄(P) ≤ E~ + δE(~) e−1/~} (41)

is not empty. Moreover, since H̄ is superlinear (as recalled in the previous lemma) any sublevel is
bounded. �

Lemma 3.3. Let Ω ⊂ Tn be an open set, ϕ ∈ L2(Ω) and (Ψα)α∈N be a complete orthonormal set
in L2(Tn). Then,

ϕ =

∞
α=0

⟨ϕ,Ψα |Ω⟩L2(Ω)Ψα |Ω (42)

and the set (Ψα |Ω)α∈N contains a subset (Ψα(β)|Ω)β∈N of linearly independent functions which is a
basis of L2(Ω).
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Proof. Any ϕ ∈ L2(Ω) can be extended to ϕ ∈ L2(Tn) by requiring ϕ(x) = ϕ(x) when x ∈ Ω
and ϕ(x) = 0 otherwise. Whence,

ϕ =
∞
α=0

⟨ϕ,Ψα⟩L2(Tn)Ψα (43)

is L2(Tn)-convergent. Now observe that the map ψ → XΩ(ψ) B XΩ · ψ, where XΩ is the charac-
teristic function of Ω, is linear and L2(Tn)-bounded operator. Thus, it is a continuous map and it
follows the equality

XΩ(ϕ) =
∞
α=0

⟨ϕ,Ψα⟩L2(Tn)XΩ(Ψα). (44)

However, it is easily shown that ⟨ϕ,Ψα⟩L2(Tn) = ⟨ϕ,Ψα |Ω⟩L2(Ω) andXΩ(ϕ) = ϕ. This gives,

ϕ =
∞
α=0

⟨ϕ,Ψα |Ω⟩L2(Ω)XΩ(Ψα). (45)

Since any term of the series is zero outside Ω then it follows the L2(Ω)-convergence, and this
directly provides (42). The second statement of the lemma follows from the arbitrary choice of
ϕ. �

Proposition 3.4. Let ϕP,~ and U0 B Br(x0) given by Thm 1.1, and fix the wave functions
(Ψα,~)α∈N as a complete orthonormal set in L2(Tn) given by eigenfunctions in W 2,2(Tn) of the
Schrödinger operator. Then,

∆xϕP,~ =

α∈N

⟨ϕP,~,Ψα,~⟩L2(U0)∆xΨα,~|U0. (46)

Proof. We remind that ϕP,~(x) B (Vol(Br(x0)))−1/2 ei(P ·x+S0(P,x))/~ where S0(P, x) B S(P, x0) +
∇xS(P, x0) · (x − x0). Thus, ϕP,~ ∈ W 2,2(Br(x0)). Moreover, we also recall that ∆x : W 2,2(Br(x0)) →
L2(Br(x0)) is a continuous linear map.

By applying Lemma 3.3, we have

ϕP,~ = lim
N→∞

N
α=0

⟨ϕP,~,Ψα,~⟩L2(U0)Ψα,~|U0 (47)

in L2(U0). Hence, by the continuity of the Laplacian we directly obtain

∆xϕP,~ = lim
N→∞

N
α=1

⟨ϕP,~,Ψα,~⟩L2(U0)∆xΨα,~|U0. (48)

�

Proof of Theorem 1. To begin, we prove that uP,~ is in L2(Ω) and it is normalized.
Ω

|uP,~(x)|2dx =

Ω

���(Vol(Ω))−1/2 ei(P ·x+S(P,x))/~���
2
dx =


Ω

Vol(Ω)−1dx = 1. (49)

Let S0 be as in Lemma 2.1 and ϕP,~(x) B (Vol(Br))−1/2 ei(P ·x+S0(P,x))/~. The normalization of ϕP,~

in L2(Br(x0)) is easily proved in the same way. We now look at uP,~ when normalized onΩ = Br(x0)
and look at an estimate for

Br

|ϕP,~(x) − uP,~(x)|2dx = 2 Vol(Br)−1

Br

1 − cos([S(P, x) − S0(P, x)]/~) dx (50)

≤ 2Vol(Br)−1 Vol(Br) ∥S(P, · ) − S0(P, · )∥L∞(Br (x0)) ~
−1. (51)

Recalling the estimate (27) we have
Br

|ϕP,~(x) − uP,~(x)|2dx ≤ 2π δE(~)e−1/~ ~−1. (52)



081507-9 Lorenzo Zanelli J. Math. Phys. 57, 081507 (2016)

We now prove that, for any ~ > 0, it holds uP,~ ∈ Φ(Ω). Indeed,

− 1
2
~2
∆xuP,~(x) =

( |P + ∇xS(P, x)|2
2

− ~
2
∆xS(P, x))uP,~(x). (53)

Thus,

~2∥∆xuP,~∥L2(Ω) (54)

≤ ∥P + ∇xS(P, · )∥2
L∞(Ω) ∥uP,~∥L2(Ω) + ~∥∆xS(P, x)∥L∞(Ω) ∥uP,~∥L2(Ω) (55)

≤ ∥P + ∇xS(P, · )∥2
L∞(Ω) + ~∥∆xS(P, x)∥L∞(Ω) < +∞. (56)

In the same way we prove that ϕP,~ ∈ Φ(Br(x0)), indeed

~2∥∆xϕP,~∥L2(Br (x0)) (57)

≤ ∥P + ∇xS0(P, · )∥2
L∞(Br (x0)) ∥ϕP,~∥L2(Br (x0)) + ~∥∆xS0(P, x)∥L∞(Br (x0)) ∥ϕP,~∥L2(Br (x0))

≤ ∥P + ∇xS0(P, · )∥2
L∞(Br (x0)) = |P + ∇xS(P, x0)|2 < +∞. (58)

We now look at

−1
2
~2
∆xϕP,~(x) + V (x)ϕP,~(x) − H̄(P)ϕP,~(x) (59)

=
( |P + ∇xS0(P, x)|2

2
+ V (x) − H̄(P) − ~

2
∆xS0(P, x)

)
ϕP,~(x) (60)

=
( |P + ∇xS0(P, x)|2

2
+ V (x) − H̄(P))ϕP,~(x). (61)

By applying again the L2(Br(x0))-normalization of ϕP,~ and the estimate (28) shown in Lemma 2.1
we obtain the estimate

 −
1
2
~2
∆xϕP,~ + V (x)ϕP,~ − H̄(P)ϕP,~

L2(Br (x0))
≤ ∥∇xV ∥L2(Br (x0))π δE(~)e−1/~. (62)

To conclude,

−1
2
~2
∆xuP,~ + V (x)uP,~ − H̄(P)uP,~ (63)

=
( |P + ∇xS(P, x)|2

2
+ V (x) − H̄(P) − ~

2
∆xS(P, x))uP,~(x) (64)

= −~
2
∆xS(P, x)uP,~(x) (65)

and the L∞(Ω) - estimate of (65) given by ~∥∆xS(P, · )∥L∞(Ω)/2 is an O(~) - remainder. �

Proof of Theorem 2. The point (ii) implies (i).
To prove the converse, let us now assume that the point (i) holds true. We denote (Ψα,~)α∈N

a complete orthonormal set in L2(Tn) given by eigenfunctions in W 2,2(Tn) of the Schrödinger
operator. Whence

−1
2
~2
∆xΨα,~ + V (x)Ψα,~ = Eα,~Ψα,~,

where

Ψα,~ ∈ W 2,2(Tn)
and ⟨Ψα,~,Ψj,~⟩L2(Tn) = δα j. We remind that all the eigenspaces are finite dimensional and thus
α → Eα,~ is a constant map on bounded subsets of N whose cardinality is the dimension of the
eigenspaces. In what follows, we denote U0 B Br(x0).

By Lemma 3.3 the family (Ψα,~|U0)α∈N generates L2(U0). For the sake of simplicity, we assume
that Ψα,~|U0 are all linearly independent and spanning L2(U0); in fact as shown in Lemma 3.3
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there always exists a subsequence Ψα(β),~|U0 of these functions which are linearly independent and
generating L2(U0).

We now fix an arbitrary ϕ~ ∈ Span(ϕP,~), namely,

ϕ~(x) B

P

cP ϕP,~(x), x ∈ U0, (66)

where the sum is taken over a finite set of points P ∈ ℓ · ~ Zn satisfying |E~ − H̄(P)| ≤ δE(~) e−1/~,
such that ϕP,~ are linearly independent, and cP ∈ C not depending on ~. This implies that the sum
in (66) is convergent in L2(U0) to a nonvanishing wave function, and moreover H~ B − 1

2~
2∆x + V

works as

H~ ϕ~ =

P

cP H~ ϕP,~. (67)

Recalling Theorem 1.1, it follows

H~ϕ~ =

P

cP
(
H̄(P)ϕP,~ −

~

2
∆xS · ϕP,~

)
(68)

= H̄(P)

P

cP ϕP,~ −

P

cP (V (x) − V (x0))ϕP,~ (69)

= H̄(P)ϕ~ −

P

cP (V (x) − V (x0))ϕP,~. (70)

We now decompose,

ϕ~(x) =

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~(x), x ∈ U0, (71)

where the series is L2(U0) - convergent thanks to Lemma 3.3. By (68) and the above equality it
follows

H~

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~ = H̄(P)

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~ (72)

−

P

cP (V (x) − V (x0))ϕP,~. (73)

By applying Lemma 3.4,

− 1
2
~2
∆xϕ~ = −

1
2
~2

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)∆xΨα,~ (74)

and since ϕ → Vϕ is L2 - bounded (hence continuous) on L2(U0),
V (x)ϕ~ =


α∈N

⟨ϕ~,Ψα,~⟩L2(U0)V (x)Ψα,~. (75)

Thus, the equality (72) can be rewritten as
α∈N

⟨ϕ~,Ψα,~⟩L2 H~Ψα,~ = H̄(P)

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~ (76)

−

P

cP(V (x) − V (x0))ϕP,~. (77)

Namely, 
α∈N

⟨ϕ~,Ψα,~⟩L2(U0)(Eα,~ − H̄(P))Ψα,~ = −

P

cP(V (x) − V (x0))ϕP,~. (78)
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Recalling that P are selected in such a way |E~ − H̄(P)| ≤ δE(~) e−1/~, we look at
α∈N

⟨ϕ~,Ψα,~⟩L2(U0)(Eα,~ − E~)Ψα,~ (79)

= −

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)(E~ − H̄(P))Ψα,~ (80)

−

P

cP(V (x) − V (x0))ϕP,~.

By denoting as R~ the right-hand side of (80), it easily follows that

∥R~∥L2(U0) ≤ δE(~) e−1/~∥ϕ~∥L2(U0) + ∥V (·) − V (x0)∥L∞(U0)∥ϕ~∥L2(U0). (81)

In view of Lemma 2.1 and thanks to the setting r ≤ π δE(~) e−1/~ ,

∥R~∥L2(U0) ≤
(
δE(~) e−1/~ + ∥∇xV ∥C0(Tn) π δE(~)e−1/~

)∥ϕ~∥L2(U0) (82)

=
(
1 + ∥∇xV ∥C0(Tn) π

)
δE(~) e−1/~ ∥ϕ~∥L2(U0) (83)

where we underline that ∥ϕ~∥L2(U0) ≤


P |cP| and that the sum is supposed to be finite.
The above equality now reads

α∈N
⟨ϕ~,Ψα,~⟩L2(U0)(Eα,~ − E~)Ψα,~ = R~ (84)

or equivalently 
α∈N

⟨ϕ~,Ψα,~⟩L2(U0)(2π~)−n(Eα,~ − E~)Ψα,~ = (2π~)−n R~. (85)

Notice that the above series is in fact computed for the eigenfunctions Ψα,~ (restricted to U0) with
eigenvalues Eα,~ , E~. Let us denote with Π the vector space generated by all such eigenfunctions
and define T : L2(U0) → Π the linear operator

T(ϕ~)(x) B

α∈N

⟨ϕ~,Ψα,~⟩L2(U0)(2π~)−n(Eα,~ − E~)Ψα,~(x), x ∈ U0. (86)

If B B {α ∈ N | Eα,~ , E~} and

ϕ~(x) B −

α∈B

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~(x), x ∈ U0 (87)

then ϕ~ ∈ Π and T(ϕ~) = −T(ϕ~). Notice that T : Π → Π is a diagonal operator with respect to the
basis Ψα,~|U0 of Π, with non-vanishing eigenvalues (2π~)−n(Eα,~ − E~) , 0. As a consequence, T is
invertible on Π. Hence, (85) becomes

− T−1(T(ϕ~)) = (2π~)−n T−1(R~), (88)

which means that

− ϕ~ = (2π~)−n T−1(R~). (89)

It is easily proved that

∥T−1∥Π→Π ≤ sup
α∈N

(2π~)n (E~,α+1 − E~,α)−1 (90)

≤ [ inf
α∈N

(2π~)−n (E~,α+1 − E~,α)]−1 = δE(~)−1 < +∞. (91)

By applying (83), (89) and (91) we are now in the position to provide the estimate

∥ϕ~∥L2(U0) ≤ (2π~)−n δE(~)−1
(
1 + ∥∇xV ∥C0(Tn) π

)
δE(~) e−1/~ ∥ϕ~∥L2(U0)

≤ (2π~)−n (1 + ∥∇xV ∥C0(Tn) π
)

e−1/~ ∥ϕ~∥L2(U0). (92)



081507-12 Lorenzo Zanelli J. Math. Phys. 57, 081507 (2016)

As a consequence, the following decomposition holds true:

ϕ~(x) + ϕ~(x) =

α∈A

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~(x), x ∈ U0, (93)

where A B N \ B = {α ∈ N | Eα,~ = E~} is a finite set. Now define

ψ~(x) B

α∈A

⟨ϕ~,Ψα,~⟩L2(U0)Ψα,~(x), x ∈ Tn, (94)

which is a Schrödinger eigenfunction in W 2,2(Tn) (not necessarily normalized on Tn) for the eigen-
value E~. �

ACKNOWLEDGMENTS

We are grateful to Thierry Paul for the many useful discussions on the energy quasimodes
problem. This work has been supported by the National Group of Mathematical Physics (INDAM-
GNFM) within the Junior Project 2014/2015 “weak KAM theory: dynamical aspects and applica-
tions.”

1 Asch, J. and Knauf, A., “Quantum transport on KAM tori,” Commun. Math. Phys. 205, 113 (1999).
2 Cannarsa, P. and Sinestrari, C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control (Birkhäuser,

2004).
3 Evans, L. C., “Effective Hamiltonians and quantum states,” in Seminaire: Équations aux Dérivées Partielles, Exp. No. XXII

(École Polytechnique, Palaiseau, 2001), 13pp.
4 Evans, L. C., “Some new PDE methods for weak KAM theory,” Calculus Var. PDE 17, 159-177 (2003).
5 Evans, L. C., “Towards a quantum analog of weak KAM theory,” Commun. Math. Phys. 244(2), 311-334 (2004).
6 Evans, L. C. and Gomes, D., “Effective Hamiltonians and averaging for Hamiltonian dynamics I,” Arch. Ration. Mech.

Anal. 157, 1-33 (2001).
7 Fathi, A., Weak KAM Theorem and Lagrangian Dynamics. Preprint, Pisa Version 16, Cambridge University Press, 2005.
8 Howard, R., “Alexandrov’s theorem on the second derivatives of convex functions,” Lecture Notes, http://people.math.sc.

edu/howard/Notes/alex.pdf, 1998.
9 Guillemin, V. and Sternberg, S., Semi-Classical Analysis (International Press, Boston, MA, 2013).

10 Popov, G., “Invariant tori, effective stability, and quasimodes with exponentially small error terms. I,” Ann. Henri Poincare
1(2), 223-248 (2000).

11 Wunsch, J., “Non-concentration of quasimodes for integrable systems,” Commun. PDE 37(8), 1430 (2012).
12 Ngoc, S. V., “Quantum monodromy and Bohr-Sommerfeld rules,” Lett. Math. Phys. 55, 205-217 (2001).
13 Reed, M. and Simon, B., Methods of Modern Mathematical Physics (Academic Press, 1978), Vol. IV.
14 Rifford, L., “On viscosity solutions of certain Hamilton-Jacobi equations: Regularity results and generalized Sard’s theo-

rems,” Commun. PDE 33(3), 517-559 (2008).

http://dx.doi.org/10.1007/s002200050670
http://dx.doi.org/10.1007/s00526-002-0164-y
http://dx.doi.org/10.1007/s00220-003-0975-5
http://dx.doi.org/10.1007/PL00004236
http://dx.doi.org/10.1007/PL00004236
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://people.math.sc.edu/howard/Notes/alex.pdf
http://dx.doi.org/10.1007/PL00001004
http://dx.doi.org/10.1080/03605302.2011.626102
http://dx.doi.org/10.1023/A:1010944312712
http://dx.doi.org/10.1080/03605300701382522

