
1 INTRODUCTION 

Soil-water interaction problems are of great interest 
in the field of geotechnical engineering. Underground 
excavations, pile installations, seepage failures, slope 
instabilities and landslides are just a few examples. In 
many cases, the material involved can experience 
large deformations, which might lead to dramatic 
events endangering human lives.  

The numerical simulation of these problems is 
challenging because the treatment of large defor-
mations, interactions between solid and fluid, and flu-
idization and sedimentation processes is not straight-
forward. 

Large deformations can be effectively simulated 
with the Material Point Method (MPM) (Sulsky et al., 
1994), which is a continuum-based technique that dis-
cretizes the media into a set of Lagrangian material 
points (MP), which move attached to the material and 
carry all the updated information such as velocities, 
strain, stresses, and history variables. Large defor-
mations are simulated by MPs moving through a 
computational nodal grid that covers the full problem 
domain. The main governing equations are solved in-
crementally at the nodes of this grid that typically re-

mains fixed throughout the calculation. Variables re-
quired at the mesh to solve the governing equations 
are transferred from MPs to the nodes using mapping 
functions. The same mapping functions are used to 
update the quantities carried by the MPs by interpola-
tion of the mesh results. This dual description of the 
media, i.e. MPs and nodal grid, prevents mesh distor-
tion problems hence re-meshing techniques are not 
required. In addition, the original 1-phase MPM-for-
mulation has the advantage that the mass is automat-
ically conserved because the total mass of each MP 
remains constant through the calculation. 

The need of taking into account the interaction be-
tween soil and pore fluids brought to the development 
of multi-phase MPM-formulations. Within the recent 
years, several approaches were presented in the liter-
ature to model coupled hydro-mechanical 2-phase 
(e.g., saturated soils) (Zabala & Alonso, 2011; Jassim 
et al. 2013, Abe et al., 2013, Bandara & Soga, 2015, 
Martinelli, 2016) and 3-phase (e.g., partially saturated 
soils) (Yerro et al., 2015) problems (Figure 1).  

The interaction between two phases is formulated 
essentially in two different manners: adopting either 
one set of MPs (i.e., single-point approach, see Sec-
tion 2) or two separate sets of MPs (i.e., double-point 
approach, see Section 3). 
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The aim of this paper is to compare the two formu-
lations emphasizing their limitations and potentiali-
ties in different geotechnical applications. Two nu-
merical examples are presented in order to validate 
and compare the results of both theories. The first ex-
ample (Sec. 4.1) considers a 1D consolidation prob-
lem, while the second (Sec. 4.2) simulates the col-
lapse of a water saturated column. 

 

 
Figure 1 Scheme of multi-phase MPM-formulations 
(modified from Yerro et al. (2015)). 

2 2-PHASE, SINGLE-POINT FORMULATION 

The single-point formulation (Zabala & Alonso, 
2011; Jassim et al. 2013) considers only one set of 
MPs. Each MP represents a portion of saturated po-
rous media and carries the information of the solid 
(solid skeleton) and liquid in the pores (e.g. water). In 
this case, the MPs remain attached to the solid skele-
ton giving a Lagrangian description of the solid-phase 
movement, while the liquid-phase behaviour is de-
scribed with respect the MPs by means of an Eulerian 
approach. 

This formulation has been successfully applied to 
the simulation of CPT in partially drained conditions 
(Ceccato et al. 2016a,b; Galavi et al., 2017), and to 
model landslides and slope failures (Alonso et al, 
2014, Soga et al. 2015; Yerro et al. 2016). 

This work uses the approach proposed by Jassim 
et al. (2013), in which dynamic momentum balances 
of the liquid phase (Eq.1) and the mixture (Eq.2) are 
the governing equations posed at the nodes. In this 
case, all dynamic terms are taken into account, and 𝒂𝑆 
and 𝒂𝐿 are the primary unknowns. Solid and total 
mass balances (Eq.3 and 4), as well as constitutive re-
lationships are solved at the MPs. 

𝜌𝐿𝒂𝐿 = ∇𝑝 − 𝒇𝑑 + 𝜌𝐿𝒃                                          (1)  

𝑛𝑆𝜌𝑆𝒂𝑆 + 𝑛𝐿𝜌𝐿𝒂𝐿 = ∇ ∙ 𝝈 + 𝜌𝑚𝒃                          (2) 

𝐷𝑆𝑛𝐿

𝐷𝑡
= 𝑛𝑆∇ ∙ 𝒗𝑆                                                           (3) 

𝐷𝑆𝜀𝑣𝑜𝑙,𝐿

𝐷𝑡
=

1

𝑛𝐿

[𝑛𝑆∇ ∙ 𝒗𝑆 + 𝑛𝐿∇ ∙ 𝒗𝐿]                         (4) 

where 𝑛𝑆 =volumetric concentration ratio of solid, 𝑛𝐿 
=volumetric concentration ratio of liquid (equivalent 
to porosity in saturated soils), 𝜌𝑆= solid density, 𝜌𝐿 
=liquid density, 𝜌𝑚 =density of the mixture,  𝒗𝑆 and 
𝒗𝐿 are the solid and liquid velocities,  𝝈 =Cauchy total 
stress tensor,  𝒇𝑑 =drag force, and 𝜀𝑣𝑜𝑙,𝐿 =volumetric 
strain of liquid-phase. 𝐷𝑆(∙)/𝐷𝑡 denotes the material 
time derivative with respect to the solid phase. 

In this approach, the flow is considered laminar 
and stationary in slow velocity regime, hence the in-
teraction force between solid and liquid phases (i.e. 
drag force 𝒇𝑑, term in Eq.1) is governed by Darcy’s 
law (Eq.5). This hypothesis can be controversial in 
high velocity flows where drag forces may become 
nonlinear as better explained in the following. 

𝒇𝑑 =
𝑛𝐿𝜇𝐿

𝜅𝐿
(𝒗𝐿 − 𝒗𝑆)  (5) 

In Equation 5 𝜇𝐿 is the dynamic viscosity of the 
liquid and 𝜅𝐿 the liquid intrinsic permeability, which 
are assumed constant throughout the simulation. 

Equation 3 is the expression for the mass balance 
of the solid and is used to update the porosity accord-
ing to volumetric deformation of the solid skeleton. 

In the framework of the 2-phase single-point ap-
proach, solid mass conservation is automatically ful-
filled because the solid mass remains constant in each 
MP. However, this condition is not naturally satisfied 
for the liquid, because liquid can move apart from the 
solid skeleton depending on solid volumetric strain 
changes (porosity changes). Consequently, liquid 
mass in MPs can change and the conservation of the 
liquid mass is totally controlled by the accuracy in 
which the liquid mass balance is solved. Fluxes due 
to spatial variations of liquid mass are neglected in 
the 2-phase single-point formulation (∇𝑛𝐿𝜌𝐿 ≈ 0), 
hence the total mass balance results in Equation 4, 
and describes the volumetric strain rate of the liquid-
phase. This hypothesis is reasonable when gradients 
of porosity are relatively small, but can induce errors 
when two materials with very different porosity are in 
contact. In addition, to obtain Equation 4, liquid is as-
sumed to be weakly compressible. 

Finally, constitutive relationships for solid and liq-
uid are solved at the MPs to update stresses and pore 
pressure. The water is assumed linearly compressible 
via the bulk modulus of the fluid KL and shear stresses 
in the liquid phase are neglected. 

As usual in MPM, Equations 1 and 2 are discre-
tized in space by means of the Galerking method and 
solved in time with a semi-explicit time discretization 
scheme. 

The MPM solution scheme for each time step can 
be summarized as follow: 
1) Liquid nodal acceleration 𝒂𝐿 is calculated by 

solving the discretized form of Equation 1. 



2) 𝒂𝐿 is subsequently used to obtain the nodal accel-
eration of the solid 𝒂𝑆 from the discretized form 
of Equation 2. 

3) Velocities and momentum of the MPs are updated 
from nodal accelerations of each phase. 

4) Nodal velocities are then calculated from nodal 
momentum and used to compute the strain rate at 
the MP location.  

5) Liquid and soil constitutive laws give the incre-
ment of excess pore pressure and effective stress 
respectively. 

6) Displacement and position of each MP is updated 
according to the velocity of the solid phase. 

3 2-PHASE, DOUBLE-POINT FORMULATION 

The 2-phase double-point formulation was ini-
tially presented by Bandara (2013) and Wieckowski 
(2013), and later extended by Abe et al. (2013) and 
Martinelli (2016). It assumes that the saturated porous 
media consist of a superposition of two independent 
continuum media, hence the solid skeleton and the 
liquid phase are represented separately by two sets of 
Lagrangian MPs: solid material points (SMPs) and 
liquid material points (LMPs). While SMPs moves at-
tached to the solid skeleton, LMPs follow the liquid 
motion, both carrying properties of respective phases. 
As a result, the required number of MPs to discretize 
a saturated porous domain increases substantially (at 
least it doubles) compared to the single-point formu-
lation. 

An important advantage of this approach com-
pared to the single-point formulation is that the mass 
of all MPs remains constant. Therefore, the conserva-
tion of both solid and liquid mass is fulfilled through 
the calculation. 

Another important feature of the double-point for-
mulation is that LMPs embodies either liquid within 
the pores or free liquid. According to this framework, 
Martinelli (2016) describes three possible domains: 
i) porous media in saturated conditions, when SMPs 

and LMPs share the same grid element, 
ii) porous media in dry conditions, when only SMPs 

are located in the grid element, 
iii) free liquid, when only LMPs are located in the 

grid element.  
In any case, the dynamic behaviour of the contin-

uum can be described with the solid and liquid dy-
namic momentum balances (Eq.6 and 7 respectively) 
which are solved at the nodes of the grid, being 𝒂𝑆 
and 𝒂𝐿 the primary unknowns. Note that solid mo-
mentum balance is considered for convenience in-
stead of momentum balance of the mixture. Solid and 
total mass balances (Eq.4 and 8 respectively) and con-
stitutive relationships are posed at the corresponding 
MPs in order to update secondary variables. 

𝑛𝑆𝜌𝑆𝒂𝑆 = ∇ ∙ 𝝈̅𝑆 + 𝒇𝑑 + 𝑛𝑆𝜌𝑆𝒃 (6) 

𝑛𝐿𝜌𝐿𝒂𝐿 = ∇ ∙ 𝝈̅𝐿 − 𝒇𝑑 + 𝑛𝐿𝜌𝐿𝒃 (7) 

𝐷𝐿𝜀𝑣𝑜𝑙,𝐿

𝐷𝑡
=

1

𝑛𝐿

[𝑛𝑆𝛻 ∙ 𝒗𝑆 + 𝑛𝐿𝛻 ∙ 𝒗𝐿 + 

+(𝒗𝐿 − 𝒗𝑆) ∙ 𝛻𝑛𝐿]           (8) 

In the previous expressions, 𝝈̅𝑆 = 𝝈′ + 𝑛𝑆𝝈𝐿 and 
𝝈̅𝐿 = 𝑛𝐿𝝈𝐿 correspond to the partial stresses for solid 
and liquid phases respectively, 𝝈′ =effective stress 
tensor, and 𝝈𝐿 =stress tensor of the liquid phase 
(equivalent to pore pressure 𝑝 in saturated porous me-
dia). 𝐷𝐿(∙)/𝐷𝑡 denotes the material time derivative 
with respect to the liquid phase. 

This formulation presents two additional differ-
ences compared to the single-phase approach. Both 
are related to the fact that the behaviour of the contin-
uum described in the double-point framework can 
vary from dry porous media to pure fluid. This leads 
to extreme changes in flow regime and huge gradients 
of volumetric concentration ratios in transition zones. 

The first one is that the drag force 𝒇𝑑 is generalized 
and Equation 5 is extended in order to account for 
laminar and steady flow in high velocity regime 
(Forchheimer, 1901), leading to Equation 9 where 𝛽 
is the non-Darcy flow coefficient (Ergun, 1952) and 
can be computed with Equation 10 

𝒇𝑑 =
𝑛𝐿

2𝜇𝐿

𝜅𝐿
(𝒗𝐿 − 𝒗𝑆) + 

𝛽𝑛𝐿
3𝜌𝐿|𝒗𝐿 − 𝒗𝑆|(𝒗𝐿 − 𝒗𝑆) + 𝝈𝐿 ∙ ∇𝑛𝐿    (9) 

𝛽 = 𝐵/√𝜅𝐿𝐴𝑛𝐿
3                                                         (10) 

Moreover, the intrinsic permeability 𝜅𝐿 is com-
puted and updated as a function of the effective po-
rosity 𝑛𝐿 with the Kozeny-Carman formula (Bear, 
1972): 

𝜅𝐿 =
𝐷2

𝐴
𝑛𝐿

3/(1 − 𝑛𝐿)2 (11) 

The second difference recalls in the liquid mass 
balance (Eq.8). Now, all convective terms are ac-
counted including the spatial variations of liquid vol-
umetric concentration ratio ((𝒗𝐿 − 𝒗𝑆) ∙ 𝛻𝑛𝐿), hence 
liquid fluxes due to changes in porosity are ac-
counted. Liquid is also considered weakly compress-
ible. 

This formulation can distinguish between mixtures 
characterized by low and high porosities (see Figure 
2). Figure 2a shows a low-porosity mixture, where the 
grains of the solid skeleton are in contact and the be-
haviour can be described by constitutive models de-
veloped for granular materials (solid-like response). 
Conversely, as shown in Figure 2b, in a high-porosity 
mixture the grains are not in contact and float together 
with the liquid phase. In this case, the effective 
stresses are equal to zero and the response of the mix-
ture is described by the Navier-Stokes equation (liq-
uid-like response). 



In the current formulation, the two aforementioned 
states are distinguished through the maximum poros-
ity 𝑛𝑚𝑎𝑥 of the SMP, which is the maximum value of 
the porosity for a given soil in its loosest state. During 
the fluidization process, when the mixture porosity is 
lower than the maximum porosity (𝑛𝐿 = 1 − 𝑛𝑆 <
𝑛𝑚𝑎𝑥), the decrease in the mean effective stress re-
sults in increase in the porosity. When the contact 
forces between the grains vanish, the mean effective 
stress becomes nil. However, the fluidization occurs 
only if the grains are significantly separated, so that 
the porosity of the SMP is larger than 𝑛𝑚𝑎𝑥. In the 
reverse process, i.e. the sedimentation of a fluidized 
mixture, the porosity decreases due to the fact that the 
solid grains get closer to each other. However, the ef-
fective stresses recur only if the porosity is smaller 
than 𝑛𝑚𝑎𝑥, i.e. the grains are close enough to be in 
contact. 

 

Figure 2 Solid-liquid mixture with (a) low porosity (solid-

like response) and (b) high porosity (liquid-like response). 
 
Equation 7 is used to describe the behavior of wa-

ter in the soil-water mixture. In case of liquid-like re-
sponse, the deviatoric part of the stress tensor of the 
liquid is computed using the liquid strain rate tensor 
and a viscosity which takes into account the solid con-
centration ratio of the mixture. In case of solid-like 
behavior the deviatoric stress tensor is set to zero. 

In this formulation, all LMPs belonging to the liq-
uid free surface are detected and the liquid stress is 
set to zero to these material points.  

The MPM solution scheme for each time step can 
be summarized as follow: 
1) Nodal acceleration of the liquid 𝒂𝐿 is calculated 

by solving the discretized form of Equation 7. 
2) Nodal acceleration of the solid 𝒂𝑆 is calculated by 

solving the discretized form of Equation 6. 
3) Velocities and momentum of the MPs are updated 

from nodal accelerations of each phase.  
4) Nodal velocities are then calculated from nodal 

momentum and used to compute the strain rate at 
the MP location.  

5) Liquid and soil constitutive laws give the incre-
ment of liquid stress and effective stress respec-
tively in LMP and SMP. 

6) All LMPs that belong to the liquid free surface are 
detected. 

7) Displacement and position of each MP is updated 
according to the corresponding velocity field. 

The double-point formulation has been used to 
simulate the submerged column collapse (Martinelli 
and Rohe, 2015), the fluidization of a vertical column 
test (Bolognini et al., 2017), the interaction between 
water jet and soil bed (Liang et al. 2017), the simula-
tion of the crater development around a damaged 
pipeline (Martinelli et al. 2017a), and a dike failure 
(Martinelli et al., 2017b). Other applications are also 
presented in Martinelli (2016). 

4 EXAMPLES 

Two numerical examples are presented in this sec-
tion. The first one is a 1D consolidation problem, and 
the aim of it is to validate both theories with an ana-
lytical solution. The second example considers the 
collapse of a saturated sand column and shows the im-
portance of considering the mobility of the two 
phases separately and the spatial and temporal varia-
tion of the volumetric concentration ratios 𝑛𝐿 and 𝑛𝑆. 

4.1 1D consolidation 

The two 2-phase formulations are validated by means 
of the problem of one dimensional consolidation for 
which an analytical solution by Terzaghi exists for the 
case of small deformations. In this case, the assump-
tions of laminar liquid flow through the pores, con-
stant volumetric concentration and permeability are 
well satisfied. 

A 1m-column of saturated weightless, linear-elas-
tic material is considered (Tab. 1). The column is dis-
cretised with 40 rows of 6 tetrahedral elements. 
Standard oedometric boundary conditions are ap-
plied, the base of the column is impermeable and the 
top is permeable. Each element contains 4 MPs (sin-
gle-point formulation) or 4 LMPs and 4 SMPs (dou-
ble-point formulation). Note that the number of MPs 
required to discretize the problem doubles in the dou-
ble-point analysis. 

A total load of 10 kPa is applied at the top of the 
column. The initial pore pressure is p0 =10 kPa and 
the initial effective stress is 0. Subsequently, the wa-
ter is allowed to drain out of the top surface. Gradu-
ally, the load redistributes from the pore pressure to 
the soil skeleton.  

This example considers a seepage problem in a ho-
mogeneous media at small deformations, thus the in-
trinsic permeability is assumed constant throughout 
the simulation and the second term of Equation 9 can 
be neglected. 

Figure 3 shows the change of normalized pore 
pressure over the normalized height of the column 
with time for selected MPs. The dimensionless time 
factor 𝑇 is defined as: 

𝑇 =  
𝑐𝑣𝑡

ℎ2
                                                                       (12) 



with cv = consolidation coefficient, h = height of the 
column. 

The results of both formulations are in excellent 
agreement with the analytical solution, thus validat-
ing the implementation. 

In this example the single-point and the double-
point formulation give the same results, i.e. they are 
both well applicable when the fluid flow is laminar 
and the spatial variability of the porosity is negligible, 
which is the case of many seepage problems in engi-
neering. 

 
Table 1 Material parameters 

Parameter  Value 

Initial porosity [-] 𝑛𝐿 0.4 

Grain density [kg/m3] 𝜌𝑆 2650 

Liquid density [kg/m3] 𝜌𝐿 1000 

Intrinsic permeability [m2] 𝜅𝐿 1.0214e-10 

Dynamic viscosity [kPa s] 𝜇𝐿 1.002e-6 

Young modulus [kPa] E 10000 

Poisson ratio [-]  0.2 

Fluid bulk modulus [kPa] KL 21500 

Consolidation coefficient [m2/s] 𝑐𝑣 1.1 
 

 
 

 
Figure 3 Results of 1D consolidation problem 

4.2 Column collapse 

In this section, we consider the collapse of a column 
of saturated soil in air. This problem is well suited to 
highlight the differences between the two approaches 
considered in this study. 

The geometry is shown in Figure 4, a 1m-wide 2m-
high column, subjected to gravity is allow to collapse 
on a flat surface. All the boundaries of the model are 
impermeable. The bottom boundary is fully fixed, 
while roller boundary conditions are applied at the re-
maining surfaces. The width of the model perpendic-

ular to the xy-plane of Figure 4 is 0.2m and it is dis-
cretized with only one row of elements to simulate 
quasi-2D conditions with a full 3D code. 

A standard linear elastic perfectly plastic constitu-
tive model with a Mohr-Coulomb failure criterion is 
used for the solid skeleton and a standard Newtonian 
compressible constitutive model is used for water. 
The material parameters are listed in Table 2. Initial 
effective stresses are generated via K0 procedure and 
the pressure distribution is assumed hydrostatic. 

In both formulations, tensile stress is not allowed 
in the liquid by setting a cavitation threshold to 0kPa, 
this prevents numerical problems with traction 
stresses in the double-point formulation which will be 
further investigated in the future. 

Figure 5 shows the results obtained with the sin-
gle-point formulation. The motion is driven by grav-
ity: a shear surface develops and part of the soil ac-
celerates flowing on the flat surface; kinetic energy is 
dissipated by friction inside the soil mass and at the 
base and by the drag force. Finally, the material de-
celerates and stops. 

With the single-point formulation the MPs carry 
the information of both solid and liquid, thus the ma-
terial is assumed to be fully saturated throughout the 
computation. In contrast, the double-point formula-
tion allows large relative movements between SMPs 
and LMPs and thus the separations between the 
phases (Fig. 6). 

During the column collapse using the double-point 
approach, SMPs moves ahead with respect to LMPs 
developing a granular front and a small layer of dry 
material can be recognized at the surface (Fig. 6). 
This phenomenon is often recognized in debris flow 
(Gray et al. 2009, Johnson et al. 2012, Pudasaini 
2012). Recently, it has been shown that the formation 
of a fluid front, i.e. the liquid moves ahead of the 
solid, or a granular front depends on the shear rate of 
the moving mass, the characteristics of the grain as-
sembly (e.g. particle concentration) and the viscosity 
of the fluid (Leonardi et al. 2015). 

In the implemented double-point formulation, the 
effect of partial saturation, e.g. suction, in the behav-
iour of elements filled only with solid MPs is not con-
sidered, thus the soil is assumed to be dry. 

Figure 7 shows the liquid volumetric concentration 
ratio (nL) at different time instants. It is null in the dry 
part of the soil; moreover, it should be noted that it 
varies significantly in space and time (Fig. 7). For this 
reason, the term ∇𝑛𝐿 should not be neglected in the 
governing equation of motion (Eq. 8). 

During column collapse, the solid concentration 
decreases along the superficial and front part of the 
moving mass, because solid grains tend to separate. 
When they are no longer in contact between each 
other the effective stresses nullify and the soil is in a 
liquefied state. The transition between the solid and 
the liquefied state is controlled by a maximum poros-
ity of 𝑛𝑚𝑎𝑥 = 0.5. Figure 8 shows with blue dots the 



solid MP which are in a liquefied state, i.e. for which 
the effective stress is null. 

Comparing Figures 5 and 6 it can be noted that the 
simulations with the single-point formulation predicts 
longer runout of the soil mass. This is probably due 
to the underestimation of the drag force (Eq. 5) be-
cause the assumption of the validity of Darcy’s law is 
not satisfied in this case. 

The definition of the drag force is a key issue in 
this type of problems. Figure 9 compares the results 
obtained considering a material with a reference solid 
particle diameter d=7mm and using a drag force com-
puted as follows: 

a) Neglecting the quadratic term in Equation 9, 
i.e. the second addend, and assuming 𝜅𝐿=con-
stant (Fig. 9a) 

b) Neglecting the quadratic term in Equation 9, 
and updating the intrinsic permeability using 
Equation 11 (Fig. 9b); 

c) Considering the full form of Equation 9, and 
updating the intrinsic permeability using 
Equation 11 (Fig. 9c). 

It can be seen that the movement of the liquid 
phase differs significantly in the considered cases. 

 
Table 2 Material parameters (** applicable only for the single-
point formulation, *applicable only for the double-point for-
mulation) 

Parameter  Value 

Initial porosity [-] 𝑛𝐿 0.4 

Grain density [kg/m3] 𝜌𝑆 2650 

Liquid density [kg/m3] 𝜌𝐿 1000 

Intrinsic permeability [m2] 𝜅𝐿 1.021e-10** 

Dynamic viscosity [kPa s] 𝜇𝐿 1.002e-6 

Young modulus [kPa] 𝐸 10000 

Poisson ratio [-]  0.2 

Fluid bulk modulus [kPa] KL 21500 

K0 coefficient [-] K0 0.5 

Ref. grain size diameter [mm] d 2* 

Ergun parameter A 150* 

Ergun parameter B 1.75* 

Maximum porosity 𝑛𝑚𝑎𝑥 0.5* 
 

5 DISCUSSION AND CONCLUSIONS 

This paper presents and compares two recently pro-
posed approaches to simulate multiphase problems 
with MPM, i.e. 2-phase single-point formulation and 
2-phase double-point formulation. 

2-phase granular-fluid mixture flows are charac-
terized primarily by the relative motion and interac-
tion between the solid and fluid phases. Drag is one 
of the very basic and important mechanisms of two-
phase flow as it incorporates coupling between the 
phases. The drag force used in the applied double-
point formulation considers the gradient of the volu-
metric phase concentration, a linear (laminar-type, at 
low velocity) and quadratic (nonlinear-type, at high 
velocity) contribution. In contrast, the drag force used 
in the single-point formulation assumes the validity 
of the Darcy law, thus it is only valid when the fluid 
motion inside the pores is laminar. 

The single-point and the double-point formula-
tions are equivalent and both are well applicable to 
seepage problems when the fluid velocity is low and 
the spatial variability of solid concentration is negli-
gible. However, because the number of MPs required 
to discretize the saturated media is much larger in the 
double-point formulation, the single-point formula-
tion can be slightly more efficient.  

In contrast, the use of double-point formulation is 
necessary when flow velocity and variability of con-
centrations are relevant. Moreover, interaction be-
tween porous media and free liquid can be captured. 
This is an important feature in many problems such 
as the study of debris flow propagation, dike stability, 
erosion and scouring and other coastal applications. 

 

 

 

 
 

Figure 4 Geometry and discretization of the column collapse problem. 

 



 
Figure 5 2-phase single-point formulation. (a) solid velocity, (b) liquid velocity. 

 

 

 
Figure 6 SMP and LMP with the double-point formulation 
 

 

 
Figure 8 Phase status of SMP during column collapse. 
 

 

 
Figure 7 Liquid volumetric concentration ratio at the LMP. 
 

 

 
Figure 9 Effect of drag force equation on the SMP and LMP po-
sition at t=0.85s: (a) linear term only, 𝜅𝐿=const.; (b) linear term 
only, 𝜅𝐿≠const; (c) linear and quadratic term, 𝜅𝐿≠const. 
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