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Abstract

Novel single-cell transcriptome sequencing assays allow researchers to
measure gene expression levels at the resolution of single cells and offer the
unprecendented opportunity to investigate at the molecular level fundamental
biological questions, such as stem cell differentiation or the discovery and
characterization of rare cell types. However, such assays raise challenging
statistical and computational questions and require the development of novel
methodology and software. Using stem cell differentiation in the mouse
olfactory epithelium as a case study, this integrated workflow provides a
step-by-step tutorial to the methodology and associated software for the
following four main tasks: (1) dimensionality reduction accounting for zero
inflation and over dispersion and adjusting for gene and cell-level covariates;
(2) cell clustering using resampling-based sequential ensemble clustering; (3)
inference of cell lineages and pseudotimes; and (4) differential expression
analysis along lineages.
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Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful and promising class of high-throughput assays that enable
researchers to measure genome-wide transcription levels at the resolution of single cells. To properly account for
features specific to sScRNA-seq, such as zero inflation and high levels of technical noise, several novel statistical methods
have been developed to tackle questions that include normalization, dimensionality reduction, clustering, the inference
of cell lineages and pseudotimes, and the identification of differentially expressed (DE) genes. While each individual
method is useful on its own for addressing a specific question, there is an increasing need for workflows that integrate
these tools to yield a seamless scRNA-seq data analysis pipeline. This is all the more true with novel sequencing
technologies that allow an increasing number of cells to be sequenced in each run. For example, the Chromium Single
Cell 3’ Solution was recently used to sequence and profile about 1.3 million cells from embryonic mouse brains.

scRNA-seq low-level analysis workflows have already been developed, with useful methods for quality control
(QC), exploratory data analysis (EDA), pre-processing, normalization, and visualization. The workflow described in
Lun er al. (2016) and the package scater (McCarthy er al., 2017) are such examples based on open-source
R software packages from the Bioconductor Project (Huber er al., 2015). In these workflows, single-cell expression
data are organized in objects of the SCESet class allowing integrated analysis. However, these workflows are mostly
used to prepare the data for further downstream analysis and do not focus on steps such as cell clustering and lineage
inference.

Here, we propose an integrated workflow for dowstream analysis, with the following four main steps: (1) dimension-
ality reduction accounting for zero inflation and over-dispersion, and adjusting for gene and cell-level covariates,
using the zinbwave Bioconductor package; (2) robust and stable cell clustering using resampling-based sequential
ensemble clustering, as implemented in the clusterExperiment Bioconductor package; (3) inference of cell line-
ages and ordering of the cells by developmental progression along lineages, using the s1ingshot R package; and
(4) DE analysis along lineages. Throughout the workflow, we use a single SummarizedExperiment object to store
the scRNA-seq data along with any gene or cell-level metadata available from the experiment See Figure 1.
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Figure 1. Workflow for analyzing scRNA-seq datasets. On the right, main plots generated by the workflow.
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Analysis of olfactory stem cell differentiation using scRNA-seq data

Overview

This workflow is illustrated using data from a scRNA-seq study of stem cell differentiation in the mouse olfactory
epithelium (OE) (Fletcher er al., 2017). The olfactory epithelium contains mature olfactory sensory neurons (mOSN)
that are continuously renewed in the epithelium via neurogenesis through the differentiation of globose basal cells
(GBC), which are the actively proliferating cells in the epithelium. When a severe injury to the entire tissue happens,
the olfactory epithelium can regenerate from normally quiescent stem cells called horizontal basal cells (HBC), which
become activated to differentiate and reconstitute all major cell types in the epithelium.

The scRNA-seq dataset we use as a case study was generated to study the differentiation of HBC stem cells into
different cell types present in the olfactory epithelium. To map the developmental trajectories of the multiple cell
lineages arising from HBCs, scRNA-seq was performed on FACS-purified cells using the Fluidigm C1 microfluidics
cell capture platform followed by Illumina sequencing. The expression level of each gene in a given cell was quantified
by counting the total number of reads mapping to it. Cells were then assigned to different lineages using a statistical
analysis pipeline analogous to that in the present workflow. Finally, results were validated experimentally using in vivo
lineage tracing. Details on data generation and statistical methods are available in Fletcher er al. (2017); Risso et al.
(2017); Street et al. (2017).

It was found that the first major bifurcation in the HBC lineage trajectory occurs prior to cell division, producing
either mature sustentacular (mSUS) cells or GBCs. Then, the GBC lineage, in turn, branches off to give rise to
mOSN and microvillous (MV) (Figure 2). In this workflow, we describe a sequence of steps to recover the lineages
found in the original study, starting from the genes by cells matrix of raw counts publicly available on the NCBI Gene
Expression Omnibus with accession GSE95601.
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Figure 2. Stem cell differentiation in the mouse olfactory epithelium. Reprinted from Cell Stem Cell, Vol 20, Fletcher
et al., Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution Pages No. 817-830, Copyright (2017),
with permission from Elsevier.
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Package versions
The following packages are needed.

# Bioconductor
library(BiocParallel)
library(clusterExperiment)
library (scone)

library (zinbwave)

# GitHub
library(slingshot)

# CRAN
library(doParallel)
library (gam)

library (RColorBrewer)

set.seed (20)

Note that in order to successfully run the workflow, we need the following versions of the Bioconductor packages
scone (1.1.2), zinbwave (0.99.6), and clusterExperiment (1.3.2). We recommend running
Bioconductor 3.6 (currently the devel version; see https://www.bioconductor.org/developers/how-to/useDevel/).

Parallel computation

To give the user an idea of the time needed to run the workflow, the function system. time was used to report
computation times for the time-consuming functions. Computations were performed with 2 cores on a MacBook Pro
(early 2015) with a 2.7 GHz Intel Core i5 processor and 8 GB of RAM. The Bioconductor package iocParallel
was used to allow for parallel computing in the zinbwave function. Users with a different operating system may
change the package used for parallel computing and the NCORES variable below.

NCORES <- 2

mysystem = Sys.info () [["sysname"]]

if (mysystem == "Darwin') {
registerDoParallel (NCORES)
register (DoparParam())

}else if (mysystem == "Linux") {
register (bpstart (MulticoreParam(workers=NCORES)))
telse(

print ("Please change this to allow parallel computing on your computer.'")
register (SerialParam())

}

Pre-processing

Counts for all genes in each cell were obtained from NCBI Gene Expression Omnibus (GEO), with accession number
GSE95601. Before filtering, the dataset had 849 cells and 28,361 detected genes (i.e., genes with non-zero read
counts).

Note that in the following, we assume that the user has access to a data folder located at . . /data. Users with a differ-
ent directory structure may need to change the data_dir variable below to reproduce the workflow.

data dir <- "../data/"

urls = c("https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE95601&format=file&file=
GSE95601%5F0eHBCdiff$5FCufflinks%$5FeSet$2ERda%2Egz"
"https://raw.githubusercontent.com/rufletch/p63-HBC-diff/master/ref/
0eHBCdiff clusterLabels.txt")

if(!file.exists(pastel(data dir, "GSE95601 oeHBCdiff Cufflinks eSet.Rda"))) {
download.file(urls[1l], paste0(data dir, "GSE95601 oeHBCdiff Cufflinks eSet.Rda.gz"))
R.utils::gunzip (pasteO (data dir, "GSE95601 oeHBCdiff Cufflinks eSet.Rda.gz"))
}

if(!file.exists(pastel(data dir, "oeHBCdiff clusterLabels.txt"))) {
download.file(urls[2], pasteO(data dir, "oeHBCdiff clusterLabels.txt"))
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}
load(pastel(data dir, "GSE95601 oeHBCdiff Cufflinks eSet.Rda"))

# Count matrix
E <= assayData(Cufflinks_eSet)$counts_table

# Remove undetected genes
E <- na.omit (E)

E <- E[rowSums (E)>0, ]
dim(E)

## [1] 28361 849

We remove the ERCC spike-in sequences and the CreER gene, as the latter corresponds to the estrogen receptor fused
to Cre recombinase (Cre-ER), which is used to activate HBCs into differentiation following injection of tamoxifen (see
Fletcher er al. (2017) for details).

# Remove ERCC and CreER genes

cre <- E["CreER",]

ercc <- E[grep(""ERCC-", rownames (E)),]

E <- E[grep(""ERCC-", rownames (E), invert = TRUE), ]
E <- E[-which (rownames (E)=="CreER"), ]

dim (E)

## [1] 28284 849

Throughout the workflow, we use the class SummarizedExperiment to keep track of the counts and their
associated metadata within a single object. The cell-level metadata contain quality control measures, sequencing
batch ID, and cluster and lineage labels from the original publication (Fletcher ez al., 2017). Cells with a cluster label
of -2 were not assigned to any cluster in the original publication.

# Extract QC metrics
gc <- as.matrix(protocolData (Cufflinks eSet)@data) [,c(1:5, 10:18)]
gc <- cbind(gc, CreER = cre, ERCC reads = colSums (ercc))

# Extract metadata

batch <- droplevels (pData(Cufflinks eSet)SMD cl run id)

bio <- droplevels (pData (Cufflinks eSet)$MD expt condition)

clusterLabels <- read.table (pasteO(data dir, "oeHBCdiff clusterLabels.txt"),
sep = "\t", stringsAsFactors = FALSE)

m <- match (colnames (E), clusterLabels[, 11])

# Create metadata data.frame

metadata <- data.frame ("Experiment" = bio,
"Batch" = batch,
"publishedClusters" = clusterLabels[m,2],
qc)

# Symbol for cells not assigned to a lineage in original data
metadata$publishedClusters[is.na (metadata$publishedClusters)] <- -2

se <- SummarizedExperiment (assays = list (counts = E),

colData = metadata)
se
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Using the Bioconductor R package scone, we remove low-quality cells according to the quality control filter
implemented in the function metric sample filter and based on the following criteria (Figure 3): (1) Filter
out samples with low total number of reads or low alignment percentage and (2) filter out samples with a low detection
rate for housekeeping genes. See the scone vignette for details on the filtering procedure.

# QC-metric-based sample-filtering
data ("housekeeping")
hk = rownames (se) [toupper (rownames (se) )

mfilt <- metric sample filter (assay(se),
nreads =
ralign =
pos_controls =
zcut = 3,
plot = TRUE)

nreads: Thresh = 5.47 , Rm =52, Tot Rm = 52
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Page 7 of 28


https://www.bioconductor.org/packages/release/bioc/vignettes/scone/inst/doc/sconeTutorial.html

F1000Research 2017, 6:1158 Last updated: 07 AUG 2017

After sample filtering, we are left with 747 good quality cells.

# Simplify to a single logical

mfilt <- lapply(simplifyZarray (mfilt[!is.na (mfilt)]), 1, any)
se <- se[, mfilt]

dim(se)

## [1] 28284 747

Finally, for computational efficiency, we retain only the 1,000 most variable genes. This seems to be a reasonna-
ble choice for the illustrative purpose of this workflow, as we are able to recover the biological signal found in the
published analysis (Fletcher e al., 2017). In general, however, we recommend care in selecting a gene filtering scheme,
as an appropriate choice is dataset-dependent.

# Filtering to top 1,000 most variable genes
vars <- rowVars (loglp (assay(se)))

names (vars) <- rownames (se)

vars <- sort(vars, decreasing = TRUE)

core <- se[names(vars) [1:1000],]

Dataset structure
Overall, after the above pre-processing steps, our dataset has 1,000 genes and 747 cells.

core

## class: SummarizedExperiment
## dim: 1000 747

## metadata (0) :

## assays(l): counts

## rownames (1000): Cbr2 Cyp2f2 ... Rnfl3 Atp7b

## rowData names (0) :

## colnames(747): OEPO1 N706 S501 OEPO1 N701 S501 ... OEL23 N704 S503
#H OEL23 N703_S502

## colData names (19): Experiment Batch ... CreER ERCC reads

Metadata for the cells are stored in the slot colData from the SummarizedExperiment object. Cells were
processed in 18 different batches.

batch <- colData (core) $Batch

col batch = c(brewer.pal(9, "Setl"), brewer.pal(8, "Dark2"),
brewer.pal (8, "Accent")[1])

names (col batch) = unique (batch)

table (batch)

## batch

## GBCO8A GBCO08B GBCO9A GBC09B P01 P02 PO3A PO3B P04 P05
## 39 40 35 22 31 48 51 40 20 23
## P06 P10 P11 P12 P13 P14 YOl Y04

## 51 40 50 50 60 47 58 42

In the original work (Fletcher er al., 2017), cells were clustered into 14 different clusters, with 151 cells not assigned
to any cluster (i.e., cluster label of -2).

publishedClusters <- colData (core) [, "publishedClusters"]

col clus <- c("transparent", "#1BO9E77", "antiquewhite2", "cyan", "#E7298A",
"#A6CEE3", "#666666", "#EG6ABO2", "#FFED6F", "darkorchid2",
"#B3DE69", "#FF7F00", "#A6761D", "#1F78B4")

names (col clus) <- sort (unique (publishedClusters))

table (publishedClusters)
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## publishedClusters
##% -2 1 2 3 4 5 7 8 9 10 11 12 14 15
## 151 90 25 54 35 93 58 27 74 26 21 35 26 32

Note that there is partial nesting of batches within clusters (i.e., cell type), which could be problematic when correcting
for batch effects in the dimensionality reduction step below.

table (data.frame (batch = as.vector (batch),
cluster = publishedClusters))

#4# cluster

## batch -2 1 2 3 4 5 7 8 910 11 12 14 15
## GBCcO8A 3 0 212 9 O O O O O 2 0 2 9
## GBRCoO8B 8 O 7 5 3 0 0O 0O 1 2 3 0 5 o6
#4# GBCO9A 6 O 1 5 8 0O O O 1 1 O 0 o 7
#4 GBCcO9B 12 0 2 1 3 0O O O 1 O O O 3 o0
#4# PO1 7 0 2 4 315 0 O O O O O O O
## P02 5 2 0 9 315 3 3 2 3 0 2 1 0
## PO3A 5 3 0 2 012 2 9 4 2 0 2 0 O
## PO3B 9 1 2 1 111 1 2 8 1 1 2 0 O
#4# P04 8 0 0 0O 0O 91 0 1 1 O 0 0 O
#4 P05 3 0 0 0 11 3 01 O 2 2 0O O
#4# P06 12 1 2 3 0 8 2 4 8 4 1 2 2 2
## P10 7 3 1 4 0 3 5 8 1 0 2 5 0 1
## P11 6 2 1 1 0 1 5 122 3 1 6 0 1
## P12 10 0 2 O O 410 O 8 2 3 6 4 1
#4# P13 13 1 2 4 0 415 0 4 5 6 1 3 2
#4 P14 9 0 01 2 011 012 2 O 7 0 3
#4# Y01 846 1 1 2 0 0O 0O O O O O O O
## Y04 1031 0 1 0 0O O O O O O O 0 O

Normalization and dimensionality reduction: ZINB-WaVE

In scRNA-seq analysis, dimensionality reduction is often used as a preliminary step prior to downstream analyses, such
as clustering, cell lineage and pseudotime ordering, and the identification of DE genes. This allows the data to become
more tractable, both from a statistical (cf. curse of dimensionality) and computational point of view. Additionally,
technical noise can be reduced while preserving the often intrinsically low-dimensional signal of interest (Dijk e al.,
2017; Pierson & Yau, 2015; Risso et al., 2017).

Here, we perform dimensionality reduction using the zero-inflated negative binomial-based wanted variation extrac-
tion (ZINB-WaVE) method implemented in the Bioconductor R package zinbwave. The method fits a ZINB model
that accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data. The model can include a
cell-level intercept, which serves as a global-scaling normalization factor. The user can also specify both gene-level
and cell-level covariates. The inclusion of observed and unobserved cell-level covariates enables normalization for
complex, non-linear effects (often referred to as batch effects), while gene-level covariates may be used to adjust for
sequence composition effects (e.g., gene length and GC-content effects). A schematic view of the ZINB-WaVE model
is provided in Figure 4. For greater detail about the ZINB-WaVE model and estimation procedure, please refer to the
original manuscript (Risso et al., 2017).

As with most dimensionality reduction methods, the user needs to specify the number of dimensions for the new
low-dimensional space. Here, we use K = 50 dimensions and adjust for batch effects via the matrix X.

Note that if the users include more genes in the analysis, it may be preferable to reduce K to achieve a similar
computational time.

print (system.time (se <- zinbwave(core, K = 50, X = "~ Batch",
residuals = TRUE,
normalizedValues = TRUE)))
## user system elapsed

## 3262.127 678.170 2154.357
Page 9 of 28
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Figure 4. ZINB-WaVE: Schematic view of the ZINB-WaVE model. This figure was reproduced with kind permission
from Risso et al. (2017).

Normalization

The function zinbwave returns a SummarizedExperiment object that includes normalized expression meas-
ures, defined as deviance residuals from the fit of the ZINB-WaVE model with user-specified gene- and cell-level
covariates. Such residuals can be used for visualization purposes (e.g., in heatmaps, boxplots). Note that, in this case,
the low-dimensional matrix W is not included in the computation of residuals to avoid the removal of the biological
signal of interest.

norm <- assays (se)S$normalizedValues
norm[1:3,1:3]

## OEP01 N706 S501 OEP01 N701 S501 OEP0l N707 S507
## Cbr2 4.557371 4.375069 -4.142697
## Cyp2f2 4.321644 4.283266 4.090283
## Gstml 4.796498 4.663366 4.416324

As expected, the normalized values no longer exhibit batch effects (Figure 5).

norm order <- norm[, order (as.numeric (batch))]

col order <- col batch[batch[order (as.numeric (batch))]]

boxplot (norm order, col = col order, staplewex = 0, outline = 0,
border = col order, xaxt = "n", ylab="Expression measure'")

abline (h=0)

The principal component analysis (PCA) of the normalized values shows that, as expected, cells do not cluster by
batch, but by the original clusters (Figure 6). Overall, it seems that normalization was effective at removing batch
effects without removing biological signal, in spite of the partial nesting of batches within clusters.

pca <- prcomp (t (norm))

par (mfrow = c(1,2))

plot (pca$x, col = col batch[batch], pch = 20, main = "")

plot (pca$x, col = col cluslas.character (publishedClusters)], pch = 20, main = "")
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Dimensionality reduction

The zinbwave function can also be used to perform dimensionality reduction, where, in this workflow, the user-

supplied dimension K of the low-dimensional space is set to K =

50. The resulting low-dimensional matrix W can

be visualized in two dimensions by performing multi-dimensional scaling (MDS) using the Euclidian distance. To
verify that W indeed captures the biological signal of interest, we display the MDS results in a scatterplot with colors

corresponding to the original published clusters (Figure 7).

W <- colData(se) [,
W <- as.matrix (W)
d <- dist (W)

grepl (u W ,

colnames (colData (se

))) ]

fit <- cmdscale(d, eig = TRUE, k = 2)
plot (fit$points, col = col cluslas.character (publishedClusters)], main = "",
pch = 20, xlab = "Component 1", ylab = "Component 2")
legend(x = "topleft", legend = unique (names(col clus)), cex = .5,
fill = unique(col clus), title = "Sample")
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Figure 7. ZINB-WaVE: MDS of the low-dimensional matrix W, where each point represents a cell and cells are
color-coded by original published clustering.

Cell clustering: RSEC

The next step of the workflow is to cluster the cells according to the low-dimensional matrix W computed in the previ-
ous step. We use the resampling-based sequential ensemble clustering (RSEC) framework implemented in the RSEC
function from the Bioconductor R package clusterExperiment. Specifically, given a set of user-supplied base
clustering algorithms and associated tuning parameters (e.g., k-means, with a range of values for k), RSEC gener-
ates a collection of candidate clusterings, with the option of resampling cells and using a sequential tight clustering
procedure, as in Tseng & Wong (2005). A consensus clustering is obtained based on the levels of co-clustering of
samples across the candidate clusterings. The consensus clustering is further condensed by merging similar clusters,
which is done by creating a hierarchy of clusters, working up the tree, and testing for differential expression between
sister nodes, with nodes of insufficient DE collapsed. As in supervised learning, resampling greatly improves the
stability of clusters and considering an ensemble of methods and tuning parameters allows us to capitalize on the
different strengths of the base algorithms and avoid the subjective selection of tuning parameters.

Note that the defaults in RSEC are designed for input data that are the actual (normalized) counts. Here, we are
applying RSEC instead to the low-dimensional W matrix from ZINB-WaVE, for which we make a separate
SummarizedExperiment object. For this reason, we choose to not use certain options in RSEC. In particular, we
do not use the default dimensionality reduction step, since our input W is already in a space of reduced dimension.
Specifically, RSEC offers a dimensionality reduction option for the input to both the clustering routines (dimReduce)
and the construction of the hiearchy between the clusters (dendroReduce). We also skip the option to merge our
clusters based on the amount of differential gene expression between clusters.
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seObj <- SummarizedExperiment (t (W), colData = colData (core))
print (system.time (ceObj <- RSEC (seObj, k0s = 4:15, alphas = c(0.1),
betas = 0.8, dimReduce="none",
clusterFunction = "hierarchicalOl", minSizes=1,

ncores = NCORES, isCount=FALSE,

dendroReduce="none", dendroNDims=NA,

subsampleArgs = list (resamp.num=100,
clusterFunction="kmeans",
clusterArgs=1list (nstart=10)),

verbose=TRUE,

combineProportion = 0.7,

mergeMethod = "none", random.seed=424242,

combineMinSize = 10)))

## Note: clusters will not be merged because argument ’mergeMethod” was not given (or was equal to ’

#4 user system elapsed
## 4083.942 187.405 5069.999

The resulting candidate clusterings can be visualized using the plotClusters function (Figure 8), where columns
correspond to cells and rows to different clusterings. Each sample is color-coded based on its clustering for that row,
where the colors have been chosen to try to match up clusters that show large overlap accross rows. The first row
correspond to a consensus clustering across all candidate clusterings.

plotClusters (ceObj, colPalette = c(bigPalette, rainbow(199)))

The plotCoClustering function produces a heatmap of the co-clustering matrix, which records, for each pair of
cells, the proportion of times they were clustered together across the candidate clusterings (Figure 9).

plotCoClustering (ceOb7j)

ineMany
k0=4
k0=5
k0=6
ko=7
k0=8
k0=9
k0=10
k0=11
k0=12
k0=13
k0=14 \‘
k0=15

Figure 8. RSEC: Candidate clusterings found using the function RSEC from the clusterExperiment package.
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Figure 9. RSEC: Heatmap of co-clustering matrix.

The distribution of cells across the consensus clusters can be visualized in Figure 10 and is as follows:

table (primaryClusterNamed (ceOb7j))

##
## -1 cl c2 c3 c4 c5 c6 c7
## 175 149 99 123 11 107 50 33

plotBarplot (ceObj, legend = FALSE)

The distribution of cells in our workflow’s clustering overall agrees with that in the original published clustering
(Figure 11), the main difference being that several of the published clusters were merged here into single clusters.
This discrepancy is likely caused by the fact that we started with the top 1,000 genes, which might not be enough to
discriminate between closely related clusters.

ceObj <- addClusters (ceObj, colData (ceObj) $publishedClusters,
clusterLabel = "publishedClusters")

## change default color to match with Figure 7
clusterLegend (ceObj) SpublishedClusters[, "color"] <-
col clus[clusterLegend (ceObj) SpublishedClusters[, "name"]]

plotBarplot (ceObj, whichClusters=c ("combineMany", "publishedClusters"),
xlab = "", legend = FALSE)

Figure 12 displays a heatmap of the normalized expression measures for the 1,000 most variable genes, where cells are
clustered according to the RSEC consensus.
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Figure 10. RSEC: Barplot of number of cells per cluster for our workflow’s RSEC clustering.

150 —

100 —

50 —

Figure 11. RSEC: Barplot of number of cells per cluster, for our workflow’s RSEC clustering, color-coded by

original published clustering.

# Set colors for cell clusterings

colData (ceObj) SpublishedClusters <- as.factor (colData (ceObj) $publishedClusters)

origClusterColors <- bigPalette[l:nlevels (colData (ceObj) $publishedClusters) ]

experimentColors <- bigPalette[l:nlevels (colData (ceOb]j)S$Experiment) ]
batchColors <- bigPalette[l:nlevels(colData (ceObj) $Batch) ]
metaColors <- list ("Experiment" = experimentColors,

"Batch" = batchColors,

"publishedClusters" = origClusterColors)

plotHeatmap (ceObj, visualizeData = assays(se)$normalizedValues,
whichClusters = "primary", clusterFeaturesData = "all",
clusterSamplesData = "dendrogramValue", breaks = 0.99,
sampleData = c("publishedClusters", "Batch", "Experiment"),
clusterLegend = metaColors, annlLegend = FALSE, main = "")
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Finally, we can visualize the cells in a two-dimensional space using the MDS of the low-dimensional matrix W and
coloring the cells according to their newly-found RSEC clusters (Figure 13); this is anologous to Figure 7 for the
original published clusters.

palDF <- ceObj@clusterLegend[[1]]
pal <- palDF[, "color"]
names (pal) <- palDF[, "name'"]

pal["-1"] = "transparent"
plot (fit$points, col = pal[primaryClusterNamed (ceObj)], main = "", pch = 20,
xlab = "Componentl", ylab = "Component2")
legend(x = "topleft", legend = names(pal), cex = .5,
fill = pal, title = "Sample")

T combineMany
(IO | | M 1 M Y /M0 published Cllu
IIIIH LW N1 S AR ALY T NWMA TN Batch
N ACORAE (I ISOINEN) (NN | DONUNON IIIIIII Experiment

Figure 12. RSEC: Heatmap of the normalized expression measures for the 1,000 most variable genes, where rows
correspond to genes and columns to cells ordered by RSEC clusters.
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Figure 13. RSEC: MDS of the low-dimensional matrix W, where each point represents a cell and cells are color-
coded by RSEC clustering.

Page 16 of 28



F1000Research 2017, 6:1158 Last updated: 07 AUG 2017

Cell lineage and pseudotime inference: Slingshot

We now demonstrate how to use the R software package s1ingshot to infer branching cell lineages and order cells
by developmental progression along each lineage. The method, proposed in Street ez al. (2017), comprises two main
steps: (1) The inference of the global lineage structure (i.e., the number of lineages and where they branch) using a min-
imum spanning tree (MST) on the clusters identified above by RSEC and (2) the inference of cell pseudotime variables
along each lineage using a novel method of simultaneous principal curves. The approach in (1) allows the identification
of any number of novel lineages, while also accommodating the use of domain-specific knowledge to supervise parts of
the tree (e.g., known terminal states); the approach in (2) yields robust pseudotimes for smooth, branching lineages.

The two steps of the Slingshot algorithm are implemented in the functions getLineages and getCurves,
respectively. The first takes as input a low-dimensional representation of the cells and a vector of cluster labels. It fits
an MST to the clusters and identifies lineages as paths through this tree. The output of getLineages is an object
of class SlingshotDataSet containing all the information used to fit the tree and identify lineages. The function
getCurves then takes this object as input and fits simultaneous principal curves to the identified lineages. These
functions can be run separately, as below, or jointly by the wrapper function slingshot.

From the original published work, we know that the start cluster should correspond to HBCs and the end clusters to
MV, mOSN, and mSUS cells. Additionally, we know that GBCs should be at a junction before the differentiation
between MV and mOSN cells (Figure 2). The correspondance between the clusters we found here and the original
clusters is as follows.

table (data.frame (original = publishedClusters, ours = primaryClusterNamed (ceObj)))

## ours

## original -1 cl c2 c¢3 c4 c5 c6 c7

## -2 49 40 6 3511 5 3 2

## 1 4050 0 0 O O O O

## 2 1 024 0 0 O 0 O

## 3 2 249 1 0 0 0 O

## 4 4 1 030 0 0O 0 O

## 5 3654 0 3 0 0 0 O

## 7 5 0 053 0 0 0 O

## 8 27 0 0O 0 O 0 O O

## 9 3 0 1 1 067 2 O

## 10 1. 0 0 O O 025 O

## 11 2 217 0 0 0 0 O

## 12 0 0 0O 0 035 0 O

## 14 5 0 1 0 0 020 O

## 15 0 0 1 0 0O 0 0 31
Cluster Description Color  Correspondence
name
c HBC blue original 1, 5
c2 GBC green  original 2, 3, 11
c3 mSUS red original 4, 7
c4 Contaminants orange original -2
c5 mOSN purple  original 9, 12
c6 Immature Neurons brown  original 10, 14
c7 MV cyan original 15
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Cells in cluster c4 have a cluster label of —2 in the original published clustering, meaning that they were not assigned
to any cluster. These cells were actually identified as non-sensory contaminants, as they overexpress gene Reg3g (see
Figure S1 from Fletcher e al. (2017) and Figure 14), and were removed from the original published clustering. While it
is reassuring that our workflow clustered these cells separately, with no influence on the clustering of the other cells, we
removed cluster c4 to infer lineages and pseudotimes, as cells in this cluster do not participate in the cell differentiation
process. Note that, out of the 77 cells overexpressing Reg3g, 11 are captured in cluster c4 and 21 are unclustered in
our workflow’s clustering (see Figure 14). However, we retain the remaining 45 cells to infer lineages as they did not
seem to influence the clustering.

cd4 <- rep("other clusters", ncol (se))

c4 [primaryClusterNamed (ceObj) == "c4"] <- "cluster c4"
boxplot (loglp (assay(se) ["Reg3g", 1) ~ primaryClusterNamed (ceObj),
ylab = "Reg3g log counts", cex.axis = .8, cex.lab = .8)

To infer lineages and pseudotimes, we apply Slingshot to the 4-dimensional MDS of the low-dimensional matrix W.
We found that the Slingshot results were robust to the number of dimensions k for the MDS (we tried k from 2 to 5).
Here, we use the unsupervised version of Slingshot, where we only provide the identity of the start cluster but not of
the end clusters.

our cl <- primaryClusterNamed (ceObj)

cl <- our clf!our cl %in% c("-1", "c4")]
pal <- pal[!names(pal) %in% c("-1", "c4")]
X <= W[!our cl %in% c("-1", "c4"), ]

mds <- cmdscale(dist(X), eig = TRUE, k = 4)
X <- mds$points

lineages <- getlineages (X, clusterLabels = cl, start.clus = "cl1")

Before fitting the simultaneous principal curves, we examine the global structure of the lineages by plotting the
MST on the clusters. This shows that our implementation has recovered the lineages found in the published work
(Figure 15). The s1ingshot package also includes functionality for 3-dimensional visualization as in Figure 2, using
the plot3d function from the package rgl.

pairs (lineages, type="lineages", col = pallcl])

Having found the global lineage structure, we now construct a set of smooth, branching curves in order to infer the
pseudotime variables. Simultaneous principal curves are constructed from the individual cells along each lineage,
rather than the cell clusters. This makes them more stable and better suited for assigning cells to lineages. The final
curves are shown in Figure 16.
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Figure 14. RSEC: Boxplots of the log count of gene Reg3g stratified by cluster.
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Figure 15. Slingshot: Cells color-coded by cluster in a 4-dimensional MDS space, with connecting lines between
cluster centers representing the inferred global lineage structure.

Figure 16. Slingshot: Cells color-coded by cluster in a 4-dimensional MDS space, with smooth curves representing
each inferred lineage.
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lineages <- getCurves (lineages)
pairs(lineages, type="curves", col = pal[cl])

lineages

## class: SlingshotDataSet

#4#
## Samples Dimensions
## 561 4
##

## lineages: 3

## Lineagel: cl c¢c2 «c6 5

## Lineage2: cl c2 c7

## Lineage3: cl c3

##

## curves: 3

## Curvel: Length: 7.7816 Samples: 362.44
## Curve2: Length: 7.6818 Samples: 272.31
## Curve3: Length: 4.5271 Samples: 266.81

In the workflow, we recover a reasonable ordering of the clusters using the unsupervised version of slingshot. However,
in some other cases, we have noticed that we need to give more guidance to the algorithm to find the correct ordering.
getLineages has the option for the user to provide known end cluster(s). Here is the code to use slingshot ina
supervised setting, where we know that clusters ¢3 and c7 represent terminal cell fates.

lineages <- getlineages (X, clusterlLabels = cl, start.clus = "cl",
end.clus = c("c3", "c7"))
lineagees <- getCurves (lineages)
pairs(lineages, type="curves", col = pal[primaryClusterNamed (ceObj)])
pairs(lineages, type='"lineages", col = pal[primaryClusterNamed (ceObj)],
show.constraints = TRUE)

lineages

Differential expression analysis along lineages
After assigning the cells to lineages and ordering them within lineages, we are interested in finding genes that have
non-constant expression patterns over pseudotime.

More formally, for each lineage, we use the robust local regression method loess to model in a flexible, non-linear
manner the relationship between a gene’s normalized expression measures and pseudotime. We then can test the null
hypothesis of no change over time for each gene using the gam package. We implement this approach for the neuronal
lineage and display the expression measures of the top 100 genes by p-value in the heatmap of Figure 17.

t <- pseudotime (lineages) [,1]
y <- assays(se)$normalizedvValues[, l!our cl %in% c("-1", "c4")]
gam.pval <- apply(y,1l, function(z) {
d <- data.frame(z=z, t=t)
tmp <- gam(z ~ lo(t), data=d)
p <- summary (tmp) [4][[1]][1,5]
p
1)

topgenes <- names (sort(gam.pval, decreasing = FALSE)) [1:100]

heatdata <- y[rownames (se) %in% topgenes, order(t, na.last = NA)]
heatclus <- cllorder(t, na.last = NA)]

ce <- clusterExperiment (heatdata, heatclus, transformation = identity)

#match to existing colors

cols <- clusterLegend (ceObj) $combineMany[, "color"]

names (cols) <- clusterLegend (ceObj) $combineMany[, "name'"]
clusterLegend (ce) Sclusterl[, "color"] <- cols[clusterLegend(ce)$clusterl[, "name"]]

plotHeatmap (ce, clusterSamplesData = "orderSamplesValue", breaks = .99)
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Figure 17. DE: Heatmap of the normalized expression measures for the 100 most significantly DE genes for the
neuronal lineage, where rows correspond to genes and columns to cells ordered by pseudotime.

Further developments

In an effort to improve scRNA-seq data analysis workflows, we are currently exploring a variety of applications and
extensions of our ZINB-WaVE model. In particular, we are developing a method to impute counts for dropouts; the
imputed counts could be used in subsequent steps of the workflow, including dimensionality reduction, clustering, and
cell lineage inference. In addition, we are extending ZINB-WaVE to identify differentially expressed genes, both in
terms of the negative binomial mean and the zero inflation probability, reflecting, respectively, gradual DE and on/off
DE patterns. We are also developing a method to identify genes that are DE either within or between lineages inferred
from Slingshot.

Finally, a new S4 class called SingleCellExperiment is currently under development (https://github.com/drisso/
SingleCellExperiment). This new class is essentially a SummarizedExperiment class with a couple of additional
slots, the most important of which is reducedDims, which, much like the assays slot of SummarizedExperi-
ment, can contain one or more matrices of reduced dimension. This new SingleCellExperiment class would be
a valuable addition to the workflow, as we could store in a single object the raw counts as well as the low-dimensional
matrix created by the ZINB-WaVE dimensionality reduction step. Once the implementation of this class is stable, we
would like to incorporate it to the workflow.

Conclusion

This workflow provides a tutorial for the analysis of scRNA-seq data in R/Bioconductor. It covers four main steps: (1)
dimensionality reduction accounting for zero inflation and over-dispersion and adjusting for gene and cell-level covari-
ates; (2) robust and stable cell clustering using resampling-based sequential ensemble clustering; (3) inference of cell
lineages and ordering of the cells by developmental progression along lineages; and (4) DE analysis along lineages.
The workflow is general and flexible, allowing the user to substitute the statistical method used in each step by a dif-
ferent method. We hope our proposed workflow will ease technical aspects of sScRNA-seq data analysis and help with
the discovery of novel biological insights.
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Software and data availability
The source code for this workflow can be found at https://github.com/fperraudeau/singlecellworkflow. Archived source
code as at time of publication: http://doi.org/10.5281/zenodo0.826211 (Perraudeau et al., 2017).

The four packages used in the workflow (scone, zinbwave, clusterExperiment, and slingshot)
are Bioconductor R packages and are available at, respectively, https://bioconductor.org/packages/scone, https:/
bioconductor.org/packages/zinbwave, https://bioconductor.org/packages/clusterExperiment, and https://github.com/
kstreet13/slingshot.

Data used in this workflow are available from NCBI GEO, accession GSE95601.
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The authors have developed an easy to follow workflow which goes beyond preparing single-cell data for
analysis, showing how to use existing methods and packages to normalize, perform dimension reduction,
construct cell lineages and perform differential testing along those lineages. The workflow seems like it
will be useful, and | hope the authors can update the workflow as new frameworks come into play (e.g.
SingleCellExperiment).

| have the following suggestions for improving the workflow:

It would be useful to put a link to the source code (or to the section where the link to the source code
exists) near the top of the document.

| was confused a bit by "the first major bifurcation in the HBC lineage trajectory occurs prior to cell
division". Can you be more specific about what you are referring to here by cell division, as without
knowledge of the system, I'm not sure where the cell division you refer to should appear.

"within a single object": It may be good to explain what an "object" here is. You could, for example, refer to
Figure 2 of the Bioconductor Nature Methods paper .

Misspelling: "reasonnable”

On filtering for most variable genes, | understand this decision, and | also recommend it during workshops
before making ordination plots. | know that students are not always certain why we care about variance
(unsupervised). | like to mention that these are the genes where the "action" is. A side point, the log(x+1)
is not variance stabilizing for RNA-seq counts in general. This filter can give higher priority to low count
genes than to genes where there is interesting biological variability (though | do not doubt that the very
high biological variance genes will be preserved). It might be useful to show a vsn::meanSdPlot() for the
matrix log1p(assay(se))?

“correcting for batch effects": What are batch effects? (Of course, | know what they are, but a reader may
not, and you could cite some of the single cell literature here.)

“Note that, in this case, the low-dimensional matrix W is not included in the computation of residuals to
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avoid the removal of the biological signal of interest.": | understood this sentence only on a second pass
through. One problem is that you haven't defined W in the text yet (only in Figure 4). | would only
reference the matrix W if you have defined it.

Figure 6: Can you change the figure width so that PC1 is not squished?

Is there a circularity to the recovery of published clusters in Figure 67 Was ZINB-WaVE used in Fletcher
(2017)?

Can you say what the meaning of the color white is in Figure 8 (in the text or caption near this figure)?

Figure 15 refers back to Figure 2 but does not use the same color scheme for the known cell types, so the
reader cannot verify if you've recovered the lineages from the publication. It would be good therefore to
have a legend for these figures (Fig 15 and following) indicating which cell types the colors refer to (this
information is in the unlabeled table above, but should be included as a legend here).

Can you briefly describe what a GAM is ahead of Figure 177
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7 Andrew McDavid
Department of Biostatistics, University of Rochester Medical Center, Rochester, NY, USA

Major comments:

1.

3.

There is something wrong with the data download link in the F1000 version so that | am unable to
download these files and actually reproduce the workflow. | experimented a bit to see if | could
figure out how to download the data anyways, but will reserve further evaluation of this submission
until this issue can be resolved by the authors.

“m
urls =
c("https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE95601&format=file&file=GSE95601%5F(
"https://raw.githubusercontent.com/rufletch/p63-HBC-diff/master/ref/oeHBCdiff_clusterLabels.)

a. This workflow will likely be out-of-date when the underlying packages transition to use
SingleCellExperiment. This is actually a positive thing because many of the more opaque lines of
code (involving subsetting ERCC genes, etc) will be more streamlined.

b. It requires installation of the development branch of bioconductor, which impacts the usefulness
of the workflow to the average user. | expect the authors will revise this tutorial when Bioconductor
3.6 is released and use of the devel branch is no longer necessary. Additionally “slingshot™ is an
requirement, but currently only exists on github and no SHA1 provided. | hope that “slingshot™ will
be added as a bioconductor package shortly. In the meantime, a tag must be added to the git repo
for the release being used in this workflow and instructions provided for how to install this tag.
Additionally, the authors may wish to note that installation instructions for the packages will be
provided at the end of the workflow so that someone proceeding sequentially will not be tripped up.

c.Opaque code is presented in order to generate plots, e.g.

“ir)

palDF <- ceObj@clusterLegend[[1]]

pal <- palDF[, "color"]

names(pal) <- palDF[, "name"]

pal["-1"] = "transparent”

plot(fit$points, col = pal[primaryClusterNamed(ceObj)], main ="", pch = 20, xlab = "Component1",
ylab = "Component2") legend(x = "topleft", legend = names(pal), cex = .5, fill = pal, title =
"Sample")

While this complexity may be necessary, perhaps some of it could be encapsulated as accessor
functions in the package? Too much complexity here may cause users to miss the forest for the
trees.

The authors could better motivate (or at least explain the impact of) some of the default parameters
and procedures.
Why do we set a zcut threshold of 3 for the "scone’ filtering?
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® Why K=50 for zinbwave?
® RSEC parameters

How should a user decide on a value for these parameters?

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Referee Expertise: Statistics and bioinformatics

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Referee Report 03 August 2017

doi:10.5256/f1000research.13120.r24385

?

Stephanie C. Hicks
Department of Biostatistics and Computational Biology, Dana—-Farber Cancer Institute, Boston, MA, USA

In this article, the authors Perraudeau, Risso, Street, Purdom and Dudoit present a nice workflow for
normalization, dimensionality reduction, clustering, and lineage inference of single-cell RNA-seq data
(scRNA-seq) using R packages from the open-source Bioconductor project. | enthusiastically agree with
the authors on an “increasing need for workflows that integrate these tools to yield a seamless
scRNA-seq data analysis pipeline” and this workflow is a great step in the right direction. However, | have
some constructive suggestions that will better integrate other previously developed work and improve this
workflow.
1. In this workflow, the authors start with a count table. However, the majority of researchers will start
with raw reads (e.g. a FASTQ file). It would be great if the author discussed current best practices
for the quantification step of scRNA-seq data. Alternatively, the authors could point to other
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references that have already been developed.

2. 1 would like to see the authors take advantage of the rich functionality and data exploration tools for
cell- and gene-specific quality control (QC) introduced in low-level analysis workflows such as the
one from Lun et al. (2016) . Also, in this workflow, the authors create multiple
SummarizedExperiment objects (e.g. one with only the top 1000 highly variable genes (HVGs),
one with all genes, etc). This doesn’'t seem efficient, especially with large single cell data sets such
as the 1.3 million cells from embryonic mouse brains. | think both of these concerns can now be
addressed with efforts such as the recently developed SingleCellExperiment Bioconductor object (
https://github.com/drisso/SingleCellExperiment). For example, the authors could add a “USE”
column in the gene- or cell-specific meta table to represent whether or not a particular gene in a
particular cell met the filtering criteria applied. The authors could store W in the reduceDim assay
of the SingleCellExperiment object.

3. In ZINB-WaVE, the authors specify the number of dimensions for the low-dimensional space (K) to
be K=50. Could the authors add more details for the reader explaining why they picked K=50 and
describe situations in which a user would want to specify a higher or lower K? In particular, it would
be useful to discuss computational time in terms of number of genes and cells. Also, it would be
useful to note that if you only wanted to use ZINB-WaVE to remove known covariates for
normalization, you can use K=0.

Minor comments:

1. When selecting the top 1000 HVGs, why do the authors not take into account the overall

mean-variance relationship and only select genes based on the variance?

2. It would be great if the authors referenced other tools available for similar analyses currently
available. For example there are several available packages for normalization of scRNA-seq data,
such as calculating global scaling factors can be done with scran (
https://bioconductor.org/packages/release/bioc/html/scran.html) or gene and cell-specific scaling
factors using SCnorm (https://github.com/rhondabacher/SCnorm). Alternatively, users might want
to try using relative transcript counts using Census (
https://bioconductor.org/packages/release/bioc/html/monocle.html).
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