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SUMS OF ONE PRIME POWER AND
TWO SQUARES OF PRIMES IN SHORT INTERVALS

ALESSANDRO LANGUASCO AND ALESSANDRO ZACCAGNINI

Let k ≥ 1 be an integer. We prove that a suitable asymptotic formula for the average number of represen-
tations of integers n = pk

1 + p2
2 + p2

3 , where p1, p2, p3 are prime numbers, holds in intervals shorter than
the ones previously known.

1. Introduction

The problem of representing an integer as a sum of a prime power and of two prime squares is classical.
It is conjectured that every sufficiently large n subject to some congruence conditions can be represented
as n = pk

1 + p2
2 + p2

3 , where k ≥ 1 is an integer. Let now N be a large integer and denote by Ek(N ) the
cardinality of the set of integers not exceeding N that satisfy the necessary congruence conditions but can
not be represented as the sum of a k-th prime power and two prime squares. Several results about Ek(N )
were obtained; the first one to prove a nontrivial estimate for Ek(N ) was Hua [3]. Later Schwarz [15]
and several other authors further improved such an estimate; we recall the contribution of Harman and
Kumchev [2], Leung and Liu [9], Li [10] and Lü [12]. Let ε > 0; so far the best known estimates are
E1(N )� N 1/3+ε by Zhao [17], E2(N )� N 17/20+ε by Harman and Kumchev [2], E3(N )� N 15/16+ε

and, for k≥ 4, Ek(N )� N 1−1/(4k2)+ε both by Brüdern [1]. Recently Liu and Zhang [11] further improved
such results to E3(N )� N 11/12+ε and, for k≥4, Ek(N )� N 1−θ(k)+ε, where θ(k)=min(2k/2+2

; k(k+2))
if k is even, θ(k)=min(3 · 2(k+1)/2

; 8d(k+ 1)2/8e) if k is odd and dxe is the least integer greater than or
equal to x .

Concerning short intervals [N , N + H ], H = o(N ), we recall here that Kumchev and Liu [4] proved
that for every A > 0 we have

E2(N + H)− E2(N )� H(log N )−A,

provided that H ≥ N 7/20. Let now

(1) rk(n)=
∑

pk
1+p2

2+p2
3=n

log p1 log p2 log p3.

In this paper we study the average behaviour of rk(n) over short intervals [N , N + H ], H = o(N ) thus
generalising our result in [6] which just deals with the case k = 1.
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Theorem 1. Let N ≥ 2, 1≤ H ≤ N , k ≥ 1 be integers. Then, for every ε > 0, there exists C = C(ε) > 0
such that

N+H∑
n=N+1

rk(n)=
π

4
H N 1/k

+Ok

(
H N 1/k exp

(
−C

(
log N

log log N

)1/3))
as N →∞, uniformly for N 1−5/(6k)+ε

≤ H ≤ N 1−ε for k ≥ 2 and N 7/12+ε
≤ H ≤ N 1−ε for k = 1.

It is worth remarking that the formula in Theorem 1 implies that every interval [N , N + H ] contains
an integer which is a sum of a prime k-th power and two prime squares, where N 1−5/(6k)+ε

≤ H ≤ N 1−ε

for k ≥ 2 and N 7/12+ε
≤ H ≤ N 1−ε for k = 1. In fact, for k = 1, 2 Zhao’s and Kumchev and Liu’s

estimates previously mentioned lead to better consequences than our Theorem 1, but for k ≥ 3 our result
gives nontrivial information.

Assuming that the Riemann hypothesis (RH) holds, we prove that a suitable asymptotic formula for
such an average of rk(n) holds in much shorter intervals. We need the following auxiliary function: let

(2) E(k) :=


N 3/2 log N + H N 3/4(log N )3/2 if k = 1,
N log N + H N 1/4(log N )2 if k = 2,
N 5/6 log N + H N 1/4 log N + H 1/2 N 1/2 log N if k = 3,
N 3/4+1/k log N if k ≥ 4.

In the remaining part of the paper we will use the notation f =∞(g) with the meaning of g = o( f ). We
have the following

Theorem 2. Assume the Riemann hypothesis (RH). Let N ≥ 2, 1≤ H ≤ N , k ≥ 2 be integers. We have
N+H∑

n=N+1

rk(n)=
π

4
H N 1/k

+Ok(H 2 N 1/k−1
+ H 1/2 N 1/2+1/(2k)(log N )2+ E(k))

as N →∞, uniformly for∞(N 1−1/k(log N )4)≤ H ≤ o(N ), where E(k) is defined in (2).

We remark that a version for k = 1 of Theorem 2 was obtained in [6] and that the definition of E(1) in
(2) corresponds to the error term estimate given there. We further remark that the formula in Theorem 2
implies that every interval [N , N + H ] contains an integer which is a sum of a prime power and two
prime squares, where∞(N 1−1/k(log N )4)≤ H = o(N ).

The proofs of both Theorems 1 and 2 use the original Hardy–Littlewood settings of the circle method
to exploit the easier main term treatment they allow (comparing with the one which would follow using
Lemmas 2.3 and 2.9 of Vaughan [16]).

It is worth remarking that the expected best result using circle method techniques is H ≥ N 1−1/k ; so
our Theorem 2, under the assumption of the Riemann hypothesis, comes very close to this bound. We
also obtained similar results in [7; 8].

2. Notation and lemmas

In this section we make the necessary preparations for the application of the appropriate version of the
circle method in (6) below. We rewrite the average value of rk , defined in (1), over the short interval
[N + 1, N + H ] as the familiar integral of the product of suitable exponential sums over primes. These
exponential sums have a leading term suggested by the prime number theorem. In this section, we provide
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several bounds for the ensuing error terms, in various average forms. These will be used throughout
Sections 3 and 4. See also the comments at the beginning of each section.

Let e(α)= e2π iα, α ∈
[
−

1
2 ,

1
2

]
, L = log N , z = 1/N − 2π iα,

S̃`(α)=
∞∑

n=1

3(n)e−n`/N e(n`α) and Ṽ`(α)=
∞∑

p=2

log p e−p`/N e(p`α).

We maintain here the tilde-notation for coherence with other papers in the literature in which it is used to
distinguish the infinite exponential sums over primes from the one having a finite number of summands.
We remark that

(3) |z|−1
�min(N , |α|−1).

We further set

U (α, H)=
H∑

m=1

e(mα),

and, moreover, we also have the usual numerically explicit inequality

(4) |U (α, H)| ≤min(H ; |α|−1),

see, e.g., on page 39 of Montgomery [13]. We list now the needed preliminary results.

Lemma 3 [5, Lemma 3]. Let `≥ 1 be an integer. Then |S̃`(α)− Ṽ`(α)| �` N 1/(2`).

Lemma 4 [6, Lemma 4]. Let N be a positive integer and µ > 0. Then∫ 1/2

−1/2
z−µe(−nα) dα = e−n/N nµ−1

0(µ)
+Oµ

(
1
n

)
,

where 0 denotes Euler’s gamma function, uniformly for n ≥ 1.

Lemma 5. Let ε be an arbitrarily small positive constant, `≥ 1 be an integer, N be a sufficiently large
integer and L = log N. Then there exists a positive constant c1 = c1(ε), which does not depend on `,
such that ∫ ξ

−ξ

∣∣∣∣S̃`(α)− 0(1/`)`z1/`

∣∣∣∣2dα�` N 2/`−1 exp
(
−c1

(
L

log L

)1/3)
uniformly for 0≤ ξ < N−1+5/(6`)−ε. Assuming RH we get∫ ξ

−ξ

∣∣∣∣S̃`(α)− 0(1/`)`z1/`

∣∣∣∣2dα�` N 1/`ξL2

uniformly for 0≤ ξ ≤ 1
2 .

Proof. It follows the line of Lemma 3 of [6] and Lemma 1 of [5]; we just correct an oversight in their
proofs. Both (8) on page 49 of [6] and (6) on page 423 of [5] should read as∫ ξ

1/N

∣∣∣∣ ∑
ρ : γ>0

z−ρ/`0(ρ/`)
∣∣∣∣2dα ≤

K∑
k=1

∫ 2η

η

∣∣∣∣ ∑
ρ : γ>0

z−ρ/`0(ρ/`)
∣∣∣∣2dα,

where η = ηk = ξ/2k , 1/N ≤ η ≤ ξ/2 and K is a suitable integer satisfying K = O(L). The remaining
part of the proofs is left untouched. Hence such oversights do not affect the final result of Lemma 3
of [6] and Lemma 1 of [5]. �
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Lemma 6 [5, Lemma 2]. Let `≥ 2 be an integer, f (`)= L2 if `= 2 and f (`)= 1 if ` > 2. Let further
0< ξ ≤ 1

2 . Then ∫ ξ

−ξ

|S̃`(α)|2 dα�` ξN 1/`L + f (`)

and ∫ ξ

−ξ

|Ṽ`(α)|2 dα�` ξN 1/`L + f (`).

Proof. The first part was proved in Lemma 2 of [5]. For the second part we argue analogously. We use
Corollary 2 of Montgomery and Vaughan [14] with T = ξ , ar = log(r) exp(−r`/N ) if r is prime, ar = 0
otherwise and λr = 2πr`. By the prime number theorem we get∫ ξ

0
|Ṽ`(α)|2 dα =

∑
p

(log p)2e−2p`/N (ξ +O(δ−1
p ))�` ξN 1/`L +

∑
p

(log p)2 p1−`e−2p`/N

since δr = λr − λr−1�` r`−1. The last term is�` 1 if ` > 2 and� L2 otherwise. The second part of
Lemma 6 follows. �

Lemma 7. Let ` ≥ 2 be an integer, f (`) = L2 if ` = 2 and f (`) = 1 if ` > 2. Let 0 < τ < ω ≤ 1
2 and

µ > 0. Let further I (τ, ω) := [−ω,−τ ] ∪ [τ, ω]. Then we have∫
I (τ,ω)
|S̃`(α)|2

dα
|α|µ
�`,µ N 1/`L(ω1−µ

+ τ 1−µ
⊕ log(ω/τ))+ f (`)τ−µ

and ∫
I (τ,ω)
|Ṽ`(α)|2

dα
|α|µ
�`,µ N 1/`L(ω1−µ

+ τ 1−µ
⊕ log(ω/τ))+ f (`)τ−µ,

where ⊕ means that such a term is present only if µ= 1. Assuming further that RH holds, we also get∫
I (τ,ω)

∣∣∣∣S̃`(α)− 0(1/`)`z1/`

∣∣∣∣2 dα
|α|µ
�`,µ N 1/`L2(ω1−µ

+ τ 1−µ
⊕ log(ω/τ)),

where ⊕ means that such a term is present only if µ= 1.

Proof. We first work on [τ, ω]. By partial integration and Lemma 6 we get that∫ ω

τ

|S̃`(α)|2
dα
αµ
� ω−µ

∫ ω

−ω

|S̃`(α)|2 dα+ τ−µ
∫ τ

−τ

|S̃`(α)|2 dα+µ
∫ ω

τ

(∫ ξ

−ξ

|S̃`(α)|2 dα
)

dξ
ξµ+1

�` ω
−µ(ωN 1/`L + f (`))+ τ−µ(τN 1/`L + f (`))+µ

∫ ω

τ

ξN 1/`L + f (`)
ξµ+1 dξ

�`,µ N 1/`L(ω1−µ
+ τ 1−µ

⊕ log(ω/τ))+ f (`)τ−µ.

A similar computation proves the result in [−ω,−τ ] too. The estimate on Ṽ`(α) can be obtained analo-
gously. The estimate on S̃`(α)−0(1/`)/(`z1/`) follows the same line but we need Lemma 5 instead of
Lemma 6. �

In the following we will also need a fourth-power average of S̃2(α).

Lemma 8 [6, Lemma 5]. We have ∫ 1/2

−1/2
|S̃2(α)|

4 dα� N L2.
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3. Proof of Theorem 1

We write the average that we want to study as an integral; see (6). We approximate Ṽk by means of S̃k (see
Lemma 3) and then split S̃k as main term and error term as in (7). This gives rise to the decomposition
in (8). An important feature that we have to take into account is that the L2-average for the error term
provided by Lemma 5 only holds in a rather restricted neighbourhood of 0. Hence, we need a different
argument to bound the contribution of the “periphery” of the interval of integration. The final error term,
therefore, depends both on the width of the “major arc” around 0 and on the quality of Lemma 5. The
allowed range for H is also a direct consequence of the constraint on ξ in the hypothesis of the same
lemma.

Let ε > 0 and H > 2B, where

(5) B = B(N , d)= exp
(

d
(

log N
log log N

)1/3)
,

where d = d(ε) > 0 will be chosen later. Recalling (1), we may write

(6)
N+H∑

n=N+1

e−n/N rk(n)=
∫ 1/2

−1/2
Ṽk(α)Ṽ2(α)

2U (−α, H)e(−Nα) dα.

We find it also convenient to set

(7) E`(α) := S̃`(α)−
0(1/`)
`z1/` .

Letting I (B, H) :=
[
−

1
2 ,−B/H

]
∪
[
B/H, 1

2

]
, using the approximations given by Lemma 3 and

recalling that 0
( 1

2

)
= π1/2, we can write

(8)
N+H∑

n=N+1

e−n/N rk(n)=
∫ B/H

−B/H

π0(1/k)
4kz1+1/k U (−α, H)e(−Nα) dα

+

∫ B/H

−B/H

0(1/k)
kz1/k

(
S̃2(α)

2
−
π

4z

)
U (−α, H)e(−Nα) dα

+

∫ B/H

−B/H
Ek(α)S̃2(α)

2U (−α, H)e(−Nα) dα

+

∫ 1/2

−1/2
Ṽk(α)(Ṽ2(α)

2
− S̃2(α)

2)U (−α, H)e(−Nα) dα

+

∫ 1/2

−1/2
S̃2(α)

2(Ṽk(α)− S̃k(α))U (−α, H)e(−Nα) dα

+

∫
I (B,H)

S̃k(α)S̃2(α)
2U (−α, H)e(−Nα) dα

= J1+J2+J3+J4+J5+J6,

say. Now we evaluate these terms.

3.1. Evaluation of J1. Using Lemma 4, (3) and

(9) e−n/N
= e−1

+O(H/N )
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for n ∈ [N + 1, N + H ], 1≤ H ≤ N , we immediately get

(10) J1 =
π0(1/k)

4k0(1+ 1/k)

N+H∑
n=N+1

n1/ke−n/N
+Ok

(
H
N

)
+Ok

(∫ 1/2

B/H

dα
α2+1/k

)

=
π

4e
H N 1/k

+Ok

(
H 2 N 1/k−1

+ N 1/k
+

(
H
B

)1+1/k)
.

3.2. Estimation of J6. Using S̃k(α) �k N 1/k , (4), Lemma 7 with µ = 1, τ = B/H and ω = 1
2 , we

obtain that

(11) J6�k N 1/k
∫ 1/2

B/H

|S̃2(α)|
2

α
dα�k N 1/k L2

(
N 1/2
+

H
B

)
which, comparing with (10), is under control if H =∞(N 1/2L2) and B =∞(L2) (which is fine thanks
to (5)).

3.3. Estimation of J5. By (4), Lemmas 3, 6 and 7 with µ= 1, τ = 1/H and ω = 1
2 , we get

(12) J5�

∫ 1/2

−1/2
|S̃2(α)|

2
|Ṽk(α)− S̃k(α)||U (−α, H)| dα

�k H N 1/(2k)
∫ 1/H

−1/H
|S̃2(α)|

2 dα+ N 1/(2k)
∫ 1/2

1/H

|S̃2(α)|
2

α
dα

�k H N 1/(2k)
(

N 1/2L
H
+ L2

)
+ N 1/(2k)(N 1/2L2

+ H L2)

�k N 1/(2k)(N 1/2
+ H)L2.

which, comparing with (10), is under control if H =∞(N 1/2−1/(2k)L2).

3.4. Estimation of J4. Using the identity f 2
−g2
= 2 f ( f −g)−( f −g)2, Lemma 3 and Ṽk(α)�k N 1/k ,

we have

Ṽk(α)(Ṽ2(α)
2
− S̃2(α)

2)�k |Ṽk(α)|(|Ṽ2(α)||Ṽ2(α)− S̃2(α)| + |Ṽ2(α)− S̃2(α)|
2)

�k N 1/4
|Ṽk(α)||Ṽ2(α)| + N 1/2+1/k .

Clearly we have

(13) J4�k N 1/4
∫ 1/2

−1/2
|Ṽk(α)||Ṽ2(α)||U (−α, H)| dα+ N 1/2+1/k

∫ 1/2

−1/2
|U (−α, H)| dα = K1+ K2,

say. Using (4) we get

(14)
∫ 1/2

−1/2
|U (−α, H)| dα�

∫ 1/H

−1/H
H dα+

∫ 1/2

1/H

dα
α
� L

and hence, by (13)–(14), we can write

(15) K2�k N 1/2+1/k L ,

for every k ≥ 1.
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Now we estimate K1; depending on k, we need to perform different computations.
Let k = 1. In this case we will make use of the estimate

(16)
∫ 1/2

−1/2
|Ṽ1(α)|

2 dα =
∑

p

(log p)2e−2p/N
� N L

which immediately follows from the prime number theorem. Using the Cauchy–Schwarz inequality, (16),
(4) and Lemmas 6 and 7 with µ= 2, τ = 1/H and ω = 1

2 , we obtain that

(17) K1� N 1/4
(∫ 1/2

−1/2
|Ṽ1(α)|

2 dα
)1/2(∫ 1/2

−1/2
|Ṽ2(α)|

2
|U (−α, H)|2 dα

)1/2

� N 3/4L1/2
[

H 2
(

N 1/2L
H
+ L2

)
+ N 1/2L + H N 1/2L + H 2L2

]1/2

� H N 3/4L3/2
+ H 1/2 N L .

Hence, by (13) and (15)–(17), for k = 1 we get

(18) J4� N 3/2L + H N 3/4L3/2.

Let k = 2. Using (4), Lemmas 6 and 7 with µ= 1, τ = 1/H and ω = 1
2 , we obtain that

(19) K1� N 1/4
∫ 1/2

−1/2
|Ṽ2(α)|

2
|U (−α, H)| dα

� N 1/4
[

H
(

N 1/2L
H
+ L2

)
+ N 1/2L + N 1/2L2

+ H L2
]

� H N 1/4L2
+ N 3/4L2.

Hence, by (13), (15) and (19), for k = 2 we get

(20) J4� N L + H N 1/4L2.

Let k = 3. Using the Cauchy–Schwarz estimate, (4), Lemmas 6 and 7 with µ= 1, τ = 1/H and ω= 1
2 ,

we obtain that

(21) K1� N 1/4
(∫ 1/2

−1/2
|Ṽ3(α)|

2
|U (−α, H)| dα

)1/2

×

(∫ 1/2

−1/2
|Ṽ2(α)|

2
|U (−α, H)| dα

)1/2

� N 1/4
[

H
(

N 1/3L
H
+ 1

)
+ N 1/3L + N 1/3L2

+ H
]1/2

×

[
H
(

N 1/2L
H
+ L2

)
+ N 1/2L + N 1/2L2

+ H L2
]1/2

� H N 1/4L + H 1/2 N 1/2L + N 2/3L2.

Hence, by (13), (15) and (21), for k = 3 we get

(22) J4� N 5/6L + H N 1/4L + H 1/2 N 1/2L .
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Let k ≥ 4. By (13), Ṽk(α)�k N 1/k and (14) we can write that

(23) J4�k N 3/4+1/k
∫ 1/2

−1/2
|U (−α, H)| dα�k N 3/4+1/k L .

Summarising, from (18), (20) and (22)–(23) we can write that

(24) J4�k E(k),

where E(k) is defined in (2).

3.5. Estimation of J2. Now we estimate J2. Using the identity f 2
− g2
= 2 f ( f − g)− ( f − g)2 we

obtain

(25) J2�k

∫ B/H

−B/H
|E2(α)|

|U (α, H)|
|z|1/2+1/k dα+

∫ B/H

−B/H
|E2(α)|

2 |U (α, H)|
|z|1/k dα = I1+ I2,

say. Using (3), (4) and Lemma 5 we obtain that, for every ε > 0, there exists c1 = c1(ε) > 0 such that

(26) I2�k H N 1/k
∫ B/H

−B/H
|E2(α)|

2 dα�k H N 1/k exp
(
−c1

(
L

log L

)1/3)
provided that H ≥ B N 7/12+ε. Using the Cauchy–Schwarz inequality and arguing as for I2 we get

(27) I1�k H
(∫ B/H

−B/H
|E2(α)|

2 dα
)1/2(∫ B/H

−B/H

dα
|z|1+2/k

)1/2

�k H N 1/k exp
(
−

c1

2

(
L

log L

)1/3)
,

provided that H ≥ B N 7/12+ε. Inserting (26)–(27) into (25) we finally obtain

(28) J2�k H N 1/k exp
(
−

c1

2

(
L

log L

)1/3)
,

provided that H ≥ B N 7/12+ε.

3.6. Estimation of J3. Now we estimate J3. By the Cauchy–Schwarz inequality, (4), Lemmas 8 and 5,
we obtain that, for every ε > 0, there exists c1 = c1(ε) > 0 such that

(29) J3�k

(∫ 1/2

−1/2
|S̃2(α)|

4 dα
)1/2(∫ B/H

−B/H
|Ek(α)|

2
|U (α, H)|2 dα

)1/2

�k H N 1/2L
(∫ B/H

−B/H
|Ek(α)|

2 dα
)1/2

�k H N 1/k exp
(
−

c1

2

(
L

log L

)1/3)
,

provided that H ≥ B N 1−5/(6k)+ε.
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3.7. Final words. Let k ≥ 2. By (8)–(12), (24) and (28)–(29) we have that, for every ε > 0, there exists
c1 = c1(ε) > 0 such that

(30)
N+H∑

n=N+1

e−n/N rk(n)=
π

4e
H N 1/k

+Ok

(
H N 1/k exp

(
−

c1

2

(
L

log L

)1/3)
+

H
B

N 1/k L2
+ E(k)

)

provided that H ≥ B N 1−5/(6k)+ε, where E(k) is defined in (2). The second error term is dominated by
the first one by choosing d = c1 in (5). So from now on we have H ≥ N 1−5/(6k)+ε for k ≥ 2. The third
error term in (30) is now dominated by the first.

Let k = 1. In this case (30) holds provided that H ≥ B N 7/12+ε and the second error term is dominated
by the first one by choosing d = c1 in (5). Hence, for k = 1, we get that H ≥ N 7/12+ε. The third error
term in (30) is now dominated by the first.

Summarising, for every k ≥ 1 we can write that, for every ε > 0, there exists C = C(ε) > 0 such that

N+H∑
n=N+1

e−n/N rk(n)=
π

4e
H N 1/k

+Ok

(
H N 1/k exp

(
−C

(
L

log L

)1/3))

provided that H ≥ N 1−5/(6k)+ε for k ≥ 2 and H ≥ N 7/12+ε for k = 1. From (9) we get that, for every
ε > 0, there exists C = C(ε) > 0 such that

N+H∑
n=N+1

rk(n)=
π

4
H N 1/k

+Ok

(
H N 1/k exp

(
−C

(
L

log L

)1/3))
+Ok

(
H
N

N+H∑
n=N+1

rk(n)
)

provided that H ≤ N , H ≥ N 1−5/(6k)+ε for k ≥ 2 and H ≥ N 7/12+ε for k = 1. Using en/N
≤ e2 and (30),

the last error term is�k H 2 N 1/k−1. Hence we get

N+H∑
n=N+1

rk(n)=
π

4
H N 1/k

+Ok

(
H N 1/k exp

(
−C

(
L

log L

)1/3))

uniformly for N 1−5/(6k)+ε
≤ H ≤ N 1−ε if k ≥ 2 and for N 7/12+ε

≤ H ≤ N 1−ε if k = 1. Theorem 1
follows.

4. Proof of Theorem 2

We recall (6), which is again the starting point of our analysis. The setting in this case is very similar to
the one we had in Section 3, but it is simpler than the previous one since Lemma 5 now applies to the
whole integration interval. This is easily seen comparing (8) and (31). Furthermore, the bound provided
by Lemma 5 in the conditional case is much stronger than the unconditional one, and the final error term
is correspondingly stronger. The same remark applies to the lower bound for H that we obtain.

Let k ≥ 2, H ≥ 2, H = o(N ) be an integer. We recall that we set L = log N for brevity. From now
on we assume that RH holds. We start again from (6) but in this conditional case we can simplify the
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setting. Recalling definition (7) and that 0
( 1

2

)
= π1/2, we can write

(31)
N+H∑

n=N+1

e−n/N rk(n)=
∫ 1/2

−1/2

π0(1/k)
4kz1+1/k U (−α, H)e(−Nα) dα

+

∫ 1/2

−1/2

0(1/k)
kz1/k

(
S̃2(α)

2
−
π

4z

)
U (−α, H)e(−Nα) dα

+

∫ 1/2

−1/2
Ek(α)S̃2(α)

2U (−α, H)e(−Nα) dα

+

∫ 1/2

−1/2
Ṽk(α)(Ṽ2(α)

2
− S̃2(α)

2)U (−α, H)e(−Nα) dα

+

∫ 1/2

−1/2
S̃2(α)

2(Ṽk(α)− S̃k(α))U (−α, H)e(−Nα) dα

= I1+I2+I3+I4+I5,

say. Now we evaluate these terms.

4.1. Evaluation of I1. Using Lemma 4 we immediately get

(32) I1 =
π0(1/k)

4k0(1+ 1/k)

N+H∑
n=N+1

n1/ke−n/N
+Ok

(
H
N

)
=
π

4e
H N 1/k

+Ok(H 2 N 1/k−1
+ N 1/k).

4.2. Estimation of I5. Clearly I5 = J5 of Section 3.3. Hence we have that

(33) I5�k N 1/(2k)(N 1/2
+ H)L2

which, comparing with (32), is under control if H =∞(N 1/2−1/(2k)L2).

4.3. Estimation of I4. Clearly I4 = J4 of Section 3.4. Hence we have that

(34) I4�k E(k),

where E(k) is defined in (2).

4.4. Estimation of I2. Now we estimate I2. Using the identity f 2
−g2
=2 f ( f −g)−( f −g)2 we obtain

(35) I2�k

∫ 1/2

−1/2
|E2(α)|

|U (α, H)|
|z|1/2+1/k dα+

∫ 1/2

−1/2
|E2(α)|

2 |U (α, H)|
|z|1/k dα = J1+ J2,

say. Using (3), (4), Lemma 5 and Lemma 7 first with µ = 1/k, τ = 1/N , ω = 1/H and then with
µ= 1+ 1/k, τ = 1/H , ω = 1

2 , we obtain

(36) J2�k H N 1/k
∫ 1/N

−1/N
|E2(α)|

2 dα+ H
∫ 1/H

1/N
|E2(α)|

2 dα
α1/k +

∫ 1/2

1/H
|E2(α)|

2 dα
α1+1/k

�k H N 1/k−1/2L2
+ H 1/k N 1/2L2

�k H 1/k N 1/2L2.
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For J1 we need few cases. Let k ≥ 3. Using the Cauchy–Schwarz inequality and arguing as for J2 (in this
case Lemma 7 is used first with µ= 1, τ = 1/N , ω= 1/H and then with µ= 1, τ = 1/H , ω= 1

2 ), we get

(37) J1�k H N 1/2+1/k
(∫ 1/N

−1/N
dα
)1/2(∫ 1/N

−1/N
|E2(α)|

2 dα
)1/2

+ H
(∫ 1/H

1/N

dα
α2/k

)1/2(∫ 1/H

1/N
|E2(α)|

2 dα
α

)1/2(∫ 1/2

1/H

dα
α2+2/k

)1/2(∫ 1/2

1/H
|E2(α)|

2 dα
α

)1/2

�k H N 1/k−1/4L + H 1/2+1/k N 1/4L(1+ L)1/2+ H 1/2+1/k N 1/4L(1+ L)1/2

�k H N 1/k−1/4L + H 1/2+1/k N 1/4L3/2

� H 1/2+1/k N 1/4L3/2.

For k = 2 arguing as before we get

(38) J1� H N 1/4L2.

Combining (35)–(38), and assuming H ≥ N 1/2, we finally obtain

(39) I2�k H 1/2+1/k N 1/4L2

for every k ≥ 2.

4.5. Estimation of I3. Now we estimate I3. By the Cauchy–Schwarz inequality, (4) and Lemma 8 we
obtain

(40) I3�k

(∫ 1/2

−1/2
|S̃2(α)|

4 dα
)1/2(∫ 1/2

−1/2
|Ek(α)|

2
|U (α, H)|2 dα

)1/2

�k N 1/2L
(

H 2
∫ 1/H

−1/H
|Ek(α)|

2 dα+
∫ 1/2

1/H
|Ek(α)|

2 dα
α2

)1/2

�k H 1/2 N 1/2+1/(2k)L2,

where in the last step we used Lemma 5 and 7 with µ= 2, τ = 1/H and ω = 1
2 .

4.6. Final words. Recalling (2), by (31)–(34) and (39)–(40), we can finally write for H ≥ N 1/2 that

(41)
N+H∑

n=N+1

e−n/N rk(n)=
π

4e
H N 1/k

+Ok(H 2 N 1/k−1
+ H 1/2 N 1/2+1/(2k)L2

+ E(k))

which is an asymptotic formula for∞(N 1−1/k L4)≤ H ≤ o(N ). From (9) we get
N+H∑

n=N+1

rk(n)=
π

4e
H N 1/k

+Ok(H 2 N 1/k−1
+ H 1/2 N 1/2+1/(2k)L2

+ E(k))+Ok

(
H
N

N+H∑
n=N+1

rk(n)
)
.

Using en/N
≤ e2 and (41), it is easy to see that the last error term is�k H 2 N 1/k−1

+H 3/2 N−1/2+1/(2k)L2
+

H N−1 E(k). Hence we get
N+H∑

n=N+1

rk(n)=
π

4e
H N 1/k

+Ok(H 2 N 1/k−1
+ H 1/2 N 1/2+1/(2k)L2

+ E(k)),

uniformly for∞(N 1−1/k L4)≤ H ≤ o(N ). Theorem 2 follows.
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