This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE
Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Privacy Aware Data Deduplication for Side
Channel in Cloud Storage

Chia-Mu Yu, Sarada Prasad Gochhayat, Mauro Conti, and Chun-Shien Lu

Abstract—Cloud storage services enable individuals and organizations to outsource data storage to remote servers. Cloud storage
providers generally adopt data deduplication, a technique for eliminating redundant data by keeping only a single copy of a file, thus
saving a considerable amount of storage and bandwidth. However, an attacker can abuse deduplication protocols to steal information.

For example, an attacker can perform the duplicate check to verify whether a file (e.g., a pay slip, with a specific name and salary
amount) is already stored (by someone else), hence breaching the user privacy.

In this paper, we propose ZEUS (zero-knowledge deduplication response) framework. We develop ZEUS and ZEUST, two
privacy-aware deduplication protocols: ZEUS provides weaker privacy guarantees while being more efficient in the communication
cost, while ZEUS* guarantees stronger privacy properties, at an increased communication cost. To the best of our knowledge, ZEUS
is the first solution which addresses two-side privacy by neither using any extra hardware nor depending on heuristically chosen
parameters used by the existing solutions, thus reducing both cost and complexity of the cloud storage. In summary, through the
evaluation on real datasets and comparison to existing solutions, our proposed framework demonstrates its capability of eliminating
data deduplication-based side channel and at the same time keeping the deduplication benefits.

Index Terms—Cloud Storage, Side Channel, Data Deduplication, Privacy.

1 INTRODUCTION

In recent years, the amount of data stored at the cloud
storage (e.g., Dropbox [6]) is increasing rapidly due to the
prevalence of data outsourcing. In order to be cost-effective
and to reduce the bandwidth consumption, cloud storages
use cross-user client-side data deduplication [25], [31] which
eliminates the need to store redundant copies by keeping
only a single copy of the data at the cloud storage (see
Section 2.1). More specifically, when a user wants to upload
a file, (s)he sends a duplicate check request (dc request) to the
cloud storage. Upon receiving the request, the cloud storage
determines whether it has a copy of the requested file in
its storage. If a copy is found, it sends a particular duplicate
check response (dc response) that indicates the existence of
the file, and adds a reference to the existing file, hence
the explicit transmission of file from the user to the cloud
storage is no longer needed; otherwise, the user uploads
entire file to the cloud storage.

Despite the benefits of storage and bandwidth savings,
the above signaling behavior, where the cloud sends a dc
response indicating the file existence status to the user
before the explicit file uploading, creates a side channel for
privacy leakage. In particular, an attacker can identify the
presence of a specific file by partly following the uploading
procedures and checking whether the deduplication occurs.
For example, an attacker can upload several versions of a
pay slip of a particular organization, with a specific name

o Chia-Mu Yu is with Department of Computer Science and Engineering,
National Chung Hsing University, Taiwan, and Taiwan Information
Security Center (TWISC@NCHU), Taiwan. chiamuyu@nchu.edu.tw

e Sarada Prasad Gochhayat and Mauro Conti are with Department of
Mathematics, University of Padua, Italy. saradal987@gmail.com and
conti@math.unipd.it

o Chun-Shien Lu is with Institute of Information Science, Academia Sinica,
Taiwan. lcs@iis.sinica.edu.tw

and different salary amounts to check which version of the
pay slip gets deduplicated. Such a limited privacy exposes
from snooping the file existence status actually leads to
various security and privacy threats, such as confirmation-
of-a-file [15], learn-the-remaining [15], related-files attack
[26], and covert channel [15] (see Section 2.2).

The root cause of the deduplication-based side channel
can be attributed to the deterministic relation between the
dc request and dc response. More specifically, the cloud
deterministically replies a positive dc response to deactivate
the explicit file uploading upon finding the dc requested file
in its storage. Based on the above observation, a straightfor-
ward strategy for the side channel defense is to randomize
the duplicate check procedures. Unfortunately, only very
few countermeasures [14], [15], [20], [26], [30] have been
deployed in the cloud storage system or been proposed in
the literature.

Contribution. We propose zero-knowledge deduplication
response (ZEUS) as a side channel defense based on the
framework of zero-knowledge response for cross-user client-
side deduplication which achieves the two-side privacy
with limited extra communications based on a weak as-
sumption on user behavior. Moreover, we also propose the
advanced countermeasure, ZEUST, by the combined use of
ZEUS and the random threshold solution [15] to achieve a
stronger privacy guarantee with slightly increased commu-
nications. In general, in contrast to the prior methods, ZEUS
and ZEUS™ possess the following advantages.

e (A1) Parameterless Configuration. Existing solutions
[15], [26] usually involve parameters to be heuristi-
cally chosen. The most prominent feature of ZEUS is
that it does not have any parameter to be manually
selected, thus avoiding the difficulty in having a

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1: Comparisons Between Different Side Channel De-
fenses (v': has this property, x: does not have this property)

l ” No Parameter [No Indep. Server [Two-Side Privacy l
Mozy [22]

Harnik et al. [15]
Lee and Choi [20]
Heen et al. [14]
Wang et al. [30]
Shin and Kim [26]
Armknecht et al. [1]

ZEUS (this paper) |
ZEUST (this paper) H

XN XN XN X XX
SNNEREIRNAR
<Dl x| x|« x| x]|x

proper security-performance trade-off in real world
implementation.

« (A2) No Independent Server. ZEUS and ZEUS™ do
not assume the use of extra hardware while existing
solutions require the independent gateway/server
[18]. In essence, the effectiveness of ZEUS and
ZEUS™ relies solely on how the cloud react to the
dc request.

e (A3) Stronger Privacy. Compared to existing solu-
tions that can only have inexistence privacy, ZEUS and
ZEUS™ achieve a much stronger privacy notion, fwo-
side privacy (see Section 3.3).

A comparison table about privacy and assumptions made
by different side channel defenses is shown in Table 1. More
discussions on the comparison can be found in Section 6.

Organization. The rest of the paper is organized as
follows. We first review the related work in Section 2. The
system model is introduced in Section 3. We present our
proposed ZEUS and ZEUS™ solutions in Section 4, followed
by the real dataset evaluation in Section 5. Comparison
and Discussion are presented in Section 6. Afterwards, we
conclude our research in Section 7.

2 BACKGROUND AND RELATED WORKS

Here, we first describe how cross-user client-side data dedu-
plication works (Section 2.1), and the corresponding privacy
threats (Section 2.2). Then, we present an overview of the
state-of-the-art solutions and their weaknesses (Section 2.3).

2.1 Data Deduplication

Data deduplication is a very popular technique adopted by
the cloud storage to eliminate the need to store redundant
data by creating logical pointer to the single instance of
data piece, whenever the cloud storage receives identical
files. The implementation of data deduplication can have
different options, depending on where the deduplication
occurs, the scope of the data that deduplication applies, and
the deduplication granularity. More specifically, the cloud
storage in server-side deduplication determines the need of an
additional copy only after receiving the entire file, whereas
the user in client-side deduplication pro-actively performs the
duplicate check via the interaction with the cloud storage.
Client-side data deduplication is featured by the use of dc
request and dc response, and is illustrated in Fig. 1, where
the dc request (e.g., “Is file f in cloud?”) and dc response
(e.g., “Yes/No”) are used to check whether the user needs

2

to upload the entire data. Note that the duplicate check refers
to the procedures of exchanging dc request and dc response.
In practice, the dc request is usually implemented by the
cryptographic hash (e.g., SHA-256) of the data. Due to the
collision avoidance of the cryptographic hash function, the
user may detect the existence status of f by only examining
the existence status of the hash in the cloud.

On the other hand, in single-user (or intra-user) dedupli-
cation, the deduplication takes place only among the data
uploaded by the same user, while in cross-user (or inter-
user) deduplication, only a single copy of the data will be
stored, irrespective of the ownership of data. In other words,
virtually all of the users in cross-user deduplication share a
single disk in the cloud storage.

In addition, the deduplication can apply to either files
or chunks, depending on the deduplication granularity. For
example, Dropbox [6] performs the chunk-level dedupli-
cation with 4MB chunk size; i.e., each file is partitioned
to chunks of fixed-size and the deduplication works over
chunks. Moreover, the chunk size can also be varied [32];
the use of rolling hash (e.g., Rabin fingerprint [23]) proves
to be useful in identifying the common parts of two similar
contents.

As the above three notions of deduplication are orthogo-
nal to each other, throughout this paper, unless stated other-
wise, the cloud performs cross-user client-side fixed-size chunk-
level data deduplication, seeking the greatest opportunity to
deduplicate the data and therefore reaching the highest
potential of storage and bandwidth savings.

~N

LA

user

Is file fin cloud? (dc request)

Yes/No (dc response)

cloud

Fig. 1: Client-side data deduplication.

2.2 Side Channel in Deduplicated Cloud Storage

The deduplication signal (i.e., dc response), by which the
user detects whether a chunk is already in the cloud, creates
a side channel. Such a side channel is first formally pre-
sented in [15] and may lead to the following privacy leakage
and abuses.

o Confirmation-of-a-File. The confirmation-of-a-file
[11] is originally presented in the context of con-
vergent encryption [8] but can be naturally applied
to our context. More precisely, with the goal of de-
tecting the existence status of a specific chunk, an
attacker verifies his/her suspect by performing the
duplicate check to see whether the deduplication
occurs. The confirmation-of-a-file can be seen as the
most straightforward privacy leakage due to the side
channel.

¢ Learn-the-Remaining-Information. Learn-the-
remaining-information [15] is a brute force-like
strategy, by which the attacker exhaustively
generates all possible unknown pieces and do the
duplicate check. The positive (negative) dc response

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(i.e., the occurrence of deduplication) indicates the
existence (inexistence) of the corresponding chunk.
Here, due to the low min-entropy nature (i.e., high
predictability) [17] of the user content, learn-the-
remaining-information strategy can be thought of
as a repeated invocation of confirmation-of-a-file to
learn the sensitive information of victim.

¢ Related-chunks Attack. Related-chunks attack [26]
can also be seen as an enhanced version of the
confirmation-of-a-file. More precisely, with the fact
that all of the individual chunks from a particular file
are actually dependent on each other, the existence of
a given proportion of chunks of the file serve as an
evidence of file existence. In this way, related-chunks
can claim the file existence in a more efficient and
more effective manner.

o Covert Channel. Covert channel is a steganographic
channel, by which the information is exchanged by
two parties that are not allowed to communicate.
By using the side channel here, attackers can cre-
ate a covert channel to bypass the censorship and
communicate with each other [13], [15]. For example,
one party selectively uploads or deletes a predefined
chunk c. Another performs the duplicate check on
¢ and checks the dc response to detect the absence
or presence of ¢, which are decoded as bit 0 or 1,
respectively.

We particularly note that the side channel here is powerful
but would be easy to be exploited; any attacker with the
privileges of only a normal cloud storage user can abuse the
dc response as a side channel.

2.3 State-of-the-Art Solutions and Their Weaknesses

Harnik et al. [15] first identified the risk of side channel
in deduplicated cloud storage and proposed to randomize
the deduplication threshold for each chunk. The deduplication
threshold is defined as the number of copies needed for
triggering the deduplication; a popular choice is 1 for all
chunks, which means that the subsequent uploadings of the
same chunk will be deduplicated if a copy can be found.
Harnik et al. made an observation that the deduplication-
based side channel is due to the publicly known and fixed
deduplication threshold. More precisely, when seeing the
positive (negative) dc response!, the attacker knows that
deduplication is (not) triggered and chunk is (not) in the
storage. To obfuscate the dc response, Harnik et al. [15]
proposed to use random threshold (RT) on a per-chunk ba-
sis. In RT, the per-chunk deduplication thresholds are kept
secret. As a consequence, even when seeing the negative
dc response, it might be the case where a couple of copies
have been in the storage but the number of copies still
does not reach the threshold. In practice, a deduplication
threshold ¢; for the chunk ¢; is selected uniformly at ran-
dom from [1, B], where B is a predefined upper bound of
deduplication threshold. Despite the simplicity of RT, it has
many disadvantages. For example, the choice of B remains
unclear, despite an obvious trade-off between the overhead
savings and privacy (e.g., larger B implies better privacy).

1. Positive (negative) dc response means a copy is (not) found.

3

Most importantly, in RT, when the attacker sees a positive
dc response, (s)he can be fully confident of chunk existence,
hence breaching the existence privacy (see Section 3.3).

Different implementations of RT actually have the subtle
performance and privacy differences. The subtlety mainly
lies in how a deduplication threshold ¢; for chunk ¢; is de-
termined. For example, Harnik et al. [15] proposed to select
t; for chunk c¢; uniformly at random beforehand. Lee and
Choi [20] determined ¢; by making a random choice at each
upload and claimed to have better privacy than Harnik et
al.’s method. Nevertheless, Armknecht et al. [1] stated that
the methods in [15] and in [20] are equivalent in terms of the
privacy guarantee. Instead of uniform sampling over [1, B],
Wang et al. [30] determined the deduplication thresholds
based on a game-theoretic approach. In particular, Wang et
al. modeled the deduplication as a dynamic non-cooperative
game between the attacker and cloud. The attacker is aimed
to learn the cloud’s payoff through repeated game iterations.
Wang et al. claimed to have more efficiency but remain the
same privacy level if game-theoretic deduplication thresh-
olds are used. Nevertheless, the payoff matrix in [30] is
fixed and cannot be adapted with the attacker’s alternative
strategies. In fact, Armknecht et al. [1] recently proved that
deduplication thresholds uniformly sampled from [1, B|
achieve the optimal defense for the natural privacy measure.
Unfortunately, all of the proposals here fall in the category
of RT and therefore share the same weaknesses.

Another approach for the side channel defense is to use
an extra hardware to obfuscate the network traffic. The
rationale is that if a proxy, sitting between the user and
cloud, able to cache dc requests, it can obfuscate the network
traffic by manipulating the order of transmitting data. For
example, Heen et al. [14] assumed that each user will be
equipped with a gateway from the cloud storage provider.
In this sense, the gateway can break the deterministic re-
lation between dc requests and dc responses by the late
forwarding policy. On the other hand, Shin and Kim [26]
assumed an independent trusted server that can perform
the similar task and achieve the differentially private dedu-
plicate check. The downside of the solutions in this category
is the use of extra hardware. Though Heen et al. claimed
the practicality by showing the real applications such as
NeufGiga and BT Digital Vault, their gateway setting is
still not a popular implementation choice, restricting their
applications. The use of the method in [26] also completely
sacrifices the bandwidth saving at the user side.

Mozy [22] conducted an alternative approach; its belief
is that only small-size files contain sensitive information
and their existence status matters. In this sense, given a
threshold for the file size for the deduplication, the dedupli-
cation functions normally if the size of incoming file is larger
than the threshold and the deduplication is deactivated
otherwise. Nonetheless, the biggest challenge in this method
is also the choice of the threshold for the file size.

3 SYSTEM MODEL

In this section, we discuss the Network Model and the
Threat Model that we will consider in this paper.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

3.1 Network Model

We consider a cloud storage, which employs cross-user
client-side fixed-sized chunk-level data deduplication. As
mentioned in Section 2.1, client-side deduplication is fea-
tured by the check-first-data-later framework. In particular,
the file to be uploaded is partitioned to chunks c of bit length
@. The user performs the duplicate check on ¢, consisting of an
exchange of dc request and dc response. More precisely, the
dc request h(c), where h(:) is a cryptographic hash function
(e.g., SHA-256), is used to query the existence status of c.
The user uploads the chunks only when receiving negative
dc responses (i.e., a deduplication signal indicating the
chunk inexistence).

Formally, we define the one-chunk, one-round interaction
duplicate check protocol as follows.

Definition 1. A one-chunk, one-round-interaction duplicate
check protocol is defined as f(c,aux), where c is the
chunk that the uploading user has interest to know the
existence status and auz denotes the auxiliary infor-
mation required for duplicate check. In particular, the
arguments ¢ and auz of f(-) can be seen as materials up-
loaded by the user while f(c, auz) denotes the materials
responded by the cloud.

In general, the duplicate check protocol can be designed
such that the user performs multi-round interactions with
the cloud to determine whether the existence status of mul-
tiple chunks. However, to ease the notational complexity,
we only present the definition of one-chunk, one-round-
interaction duplicate check protocol. The above definition
can be easily extended to the case of multi-chunk, multi-
round-interaction duplicate check protocol. One can also see
that, in essence, dc request consists of both ¢ and auz, and
dc response refers to f(c, auz), from Definition 1 point of
view.

3.2 Threat Model

For an arbitrarily chosen chunk c, the user (including at-
tacker) does not know its existence status, except that the
user uploads c previously. More specifically, if p denotes the
probability that an arbitrary chunk is in the cloud, then p
is assumed to be very small®>. By using side channel attack,
the attacker aims to learn the existence status of a given
chunk c. In other words, the objective of the attacker is to
know whether there is already a copy of c in the cloud stor-
age. Under the conventional deduplication framework, to
determine whether c is stored in a cloud server, the attacker
with the knowledge of c also performs duplicate check. If
the corresponding dc response is positive (negative), then

2. This assumption can be justified as follows. Consider the case
where the chunk size is 4MB (also the chunk size currently used
by Dropbox). For an attacker without the prior knowledge of a

chunk ¢, the probability p that an arbitrary chunk c is in the cloud

50 242043
could be approximately calculated as %, where the

denominator denotes the total number of combinations for chunks
of 4MB size and the numerator denotes the estimated number of
distinct chunks stored in Dropbox. Note that it is reported by Dropbox
Tech Blog (https://blogs.dropbox.com/tech/2016/03/magic-pocket-
infrastructure/) that Dropbox hosts approximately 500 petabytes of
user data. We can see from the above calculation that, if no prior
knowledge on c is available, the probability that an arbitrary chunk
is in the cloud is negligible.

4

the attacker would conclude the (non)existence of chunk ¢
in the storage system.

The attacker does not have any obligation to complete
the uploading and thus can abruptly abort the uploading at
any time instant. Furthermore, we consider a Sybil attacker.
In particular, due to the easy-to-register nature of the current
commercial cloud storage’, the Sybil attacker is able to
create a number of legitimate accounts (termed as Sybil
accounts) of the cloud storage, and to repeatedly perform
independent deduplication checks on chunks. The Sybil
accounts also can freely choose to obey or disobey the file
uploading procedure at any time instant. We do not assume
the ratio of Sybil accounts that can be created by the attacker.
In other words, the privacy of our proposed solutions (see
Section 4.2 and Section 4.3) is independent of the ratio of
Sybil accounts. Thus, even in the extreme case that all the
accounts controlled by the attacker are Sybil accounts (i.e.,
the ratio of Sybil accounts is 100%), our proposed solutions
can still achieve their claimed privacy.

The attacker also seeks the assistance by using extra
hardware and software. For example, the attacker may have
a network sniffer sitting between the host and cloud to
check the packet content. Moreover, the attacker is allowed
to check whether the chunk c is accessed. In essence, if a
chunk is not accessed or not transmitted after the duplicate
check, this implies the existence of the chunk.

3.3 Privacy Notion

Here, two privacy notions, existence privacy and inexistence
privacy, are defined. The existence privacy refers to the
case where the attacker cannot confirm the chunk existence
except for the chunks uploaded by himself/herself. More
formally, we have the following definition of existence pri-
vacy.

Definition 2. Suppose that c is the chunk of attacker’s
interest; i.e., the attacker without prior knowledge of
c is aimed to know the existence status of c. Let C
be the event that c¢ is in the cloud, f(-) the duplicate
check protocol, and aux the auxiliary data. The dupli-
cate check protocol f(-) achieves existence privacy if
P[C|f(c,auz)] = P[C], except that f(c, aux) has clearly
indicated the existence of c.

Basically, when a duplicate check protocol satisfies existence
privacy, its dc response leaks no information on the exis-
tence status of c. On the other hand, the inexistence privacy
refers to an opposite case, where the attacker cannot confirm
the chunk inexistence. Similarly, we have the following
definition of inexistence privacy.

Definition 3. Suppose that c is the chunk of attacker’s
interest; i.e., the attacker without prior knowledge of c
is aimed to know the existence status of c. Let C be
the event that ¢ is not in the cloud, f(-) the duplicate
check protocol, and aux the auxiliary data. The dupli-
cate check protocol f(-) achieves inexistence privacy if
P[C|f(c,auz)] = P[C], except that f(c, aur) has clearly
indicated the inexistence of c.

3. One can register a new account and have GBs of free space from
cloud storage by simply presenting email address.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

As mentioned in Section 2.3, RT [15] does achieve the
inexistence privacy, but does not achieve the existence pri-
vacy; once receiving the positive dc response, the attacker
immediately knows that the chunk already has a copy
in the cloud. The above claim can be formally stated as
P[C|RT(c) = “~"] = P[C] and P[C|RT(c) = “+"] =1 #
P[C], where RT(c) = “~"" (RT(c) = “+") means a negative
(positive) dc response returned by the cloud running RT.

Here, we argue that the existence privacy is more im-
portant than the inexistence privacy because the former
actually leaks more information. Consider the threats due
to the deduplication-based side channel in Section 2.2. Most
of the threats rely on the fact that a specific chunk is in the
cloud; such a fact gives the attacker information about the
content in the specific chunk, which could be a severe pri-
vacy leakage. An obvious example is learn-the-remaining-
information; once confirming the chunk existence, the at-
tacker learns the sensitive content. The existence privacy
does not completely eliminate the possibility of four threats
in Section 2.2, but significantly mitigates these threats.

A deduplicate check protocol with side channel defense
achieves two-side privacy if both existence privacy and
inexistence privacy are fulfilled. According to Definition
2 and Definition 3, a two-side private deduplicate check
protocol means that the dc response does not include any
information about the existence status of a specific chunk.
We conjecture that such a deduplicate check protocol cannot
have any deduplication gain either. We, instead, have a
weaker version of existence privacy defined as follows.

Definition 4. Suppose that c is the chunk of attacker’s
interest; i.e., the attacker without prior knowledge of
c is aimed to know the existence status of c. Let C
be the event that ¢ is in the cloud, f(-) the duplicate
check protocol, and aux the auxiliary data. The duplicate
check protocol f(-) achieves weaker existence privacy if
P[C|f(c,auz)] = 1/2, except that f(c,auz) has clearly
indicated the existence of c.

The difference between Definition 2 and Definition 4 is
that, while P[C|f(c,auz)] = P[C] = p in the former,
P[C|f(e,auz)] = 1/2 in the latter. The above definition of
weak existence privacy states that, even after seeing the dc
response, the attacker can only still make a random guess on
the existence status of c. We particularly note that, though
numerically P[C|f (¢, auz)] is increased from p in Definition
2 to 1/2 in Definition 4, this makes nearly no impact on the
probability that the attacker confirms the existence status of
a single chunk ¢, in the absence of correlation among multi-
ple chunks. In the following, a two-side private deduplicate
check protocol means the fulfillment of both weak existence
privacy and inexistence privacy, unless stated otherwise.

As mentioned in Section 2.3, RT [12] and its variants [1],
[20], [30] achieve only one-side privacy. The heuristic in [14]
assumes a trusted gateway but does not have formal privacy
guarantee. The solution in [26] achieves differential privacy,
which is a privacy notion similar to two-side privacy. Mozy
[22] eliminates the side channel, only for small-size files.

There are the other security and privacy issues around

5

the design of cloud storage?, such as the reconciliation
between the encryption and deduplication [18], proof of
ownership (POW) [12], key management [19], and poison
attack [3]. These issues are orthogonal to the side channel.
Throughout this paper, we focus only on the side channel.

4 PROPOSED SOLUTIONS

In this section, we first present the strawman countermea-
sure and their security flaws in Section 4.1. After that, we
propose the first solution ZEUS with the minimal overhead
in Section 4.2. The second solution ZEUS™ via the integra-
tion of ZEUS and the existing RT solution having two-side
privacy guarantee is presented in Section 4.3.

4.1 Strawman Solutions

In addition to the deduplication threshold randomization
[15], the most straightforward idea to uncorrelate the dc
request and dc response is to randomize the dc response.
A naive implementation of such a random response approach
goes as follows. Let chunk existences 0 and 1 represent the
absence and presence of the chunks in the cloud, respec-
tively. The dc response — (+) indicates that the user has
to (does not need to) upload the chunk. Then, the naive
random response strategy can be illustrated in Table 2.
Note that we refer dc table to as the table describing the
dc requests and dc responses (e.g., Table 2) thereafter. We
can observe that when the chunk is absent, the cloud has
no choice but returns a negative dc response, instructing
the user to upload the chunk. On the other hand, when the
chunk is present, the server has the flexibility for the dc
response.

Though the design objective of random response is to
reveal nothing about the chunk existence status, unfortu-
nately, the positive response in Table 2 invariably indicates
the chunk existence, thus violating existence privacy. Even
worse, the Sybil attacker can also conclude the inexistence
of chunk ¢ by using Sybil accounts to perform independent
duplicate checks on c. More specifically, each Sybil account
uploads h(c), gains the dc response, but aborts the com-
munication with the cloud right before c is uploaded. By
doing so, the attacker does not change the existence status
of c. When all Sybil accounts gain negative dc responses, the
attacker is highly confident that c is not in cloud.

TABLE 2: dc Table for Strawman zero-knowledge response
Approach

[chunk c existence [dc response |
0 =
1 /-

4. Currently, to the best of our knowledge, Mozy is the only public
cloud storage provider that attempts to eliminate the privacy leakage
from the side channel in client-side deduplicated cloud storage systems.
However, there are other techniques that address the data privacy,
rather than privacy issue of side channel. For example, convergent
encryption is used by the cloud for encrypted data deduplication.
Convergent encryption has been adopted by public cloud storage
providers including Mega [21] and Bitcasa [2] and by a free/open
decentralized cloud storage system, Tahoe-LAFS [27].

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

One might consider that the use of time limit between
subsequent duplicate checks could be useful in reducing
the ability of independent duplicate checks. Nevertheless,
the attacker can easily circumvent the countermeasure by
using different Sybil accounts. Another plausible approach
is that, with the observation that the independent duplicate
checks require the incomplete uploading, the cloud may ask
users to complete the uploading; otherwise, the account will
be blocked. Here, the complete uploading means that once
receiving negative dc response, the user explicitly uploads
the chunk. However, because Sybil accounts can be created
with limited cost or even for free, a Sybil attacker can still
bypass this approach by performing the duplicate check,
disconnecting to the cloud right before chunk uploading,
and leaving some Sybil accounts blocked.

42 ZEUS

Here, we present the design principle behind ZEUS, fol-
lowed by the formal description of ZEUS.

4.2.1 Design Principle

Basically, the failure of the naive random response in coun-
teracting side channel can be attributed to the following two
reasons.

e (R1) A distinguishable response exists. Here, the
distinguishable response is defined as the dc response
appearing only once in dc table. For example, + in
Table 2 is a distinguishable response. The attacker
seeing + immediately knows the chunk existence,
breaching the existence privacy.

e (R2) An incomplete uploading can always be ex-
ploited by the attacker. The incomplete uploading en-
ables the attacker to repeatedly run duplicate checks.
The potentially different or the same dc responses
may leak information on the chunk existence status.

Now, we propose the following three techniques, (T1)~(T3),
to circumvent the above difficulties and to develop our
side channel defense, ZEUS. Note that (T1) and (T2) are
developed to counteract (R1) while (T3) nullifies the effect
of (R2).

TABLE 3: dc table for naive implementation of double chunk
uploading

[c1 existence | co existence | dc response |
0 0 E—
0 1 —_—
1 0 +, —
1 1 +, +

TABLE 4: dc table for the implementation of XOR obfusca-
tion

[c1 existence [cz existence | dc response |
0 0 2

0 1 1
1 0 1
1 1 0

6

(T1) Double Chunk Uploading. The first technique
is, instead of uploading a single chunk, to upload
two chunks at once. Table 3 shows the corresponding
dc table. Unfortunately, the naive implementation
of double chunk uploading, as shown in Table 3,
where the user sends two individual dc requests and
receives two individual dc responses, is not helpful
in preventing the privacy leakage, because this can
only be regarded as doing the ordinary duplicate
check twice. However, combined with XOR obfus-
cation described below, the randomness in the dc
response makes the attacker much more difficult to
distinguish between chunk existence and inexistence.
(T2) XOR Obfuscation. The direct use of (T1) does
not prevent the privacy leakage; however, if we
perform encodings on both dc responses and the
uploaded chunks, then the chunk existence status is
hidden behind the deduplication result. More specif-
ically, for the dc request (h(c1),h(c2)) in double
chunk uploading, the dc response consists of a single
number that indicates the number of chunks needed
to be uploaded, instead of a pair of ordinary dc
responses, as shown in Table 4. Now, there would
only be three cases for the possible dc response here,
which are 0, 1 and 2. If the dc response is 2 (0),
two (no) chunks need to be uploaded; otherwise,
the exclusive-or (XOR) of the two chunks, ¢; @ cs, is
uploaded. In this way, the user always uploads c; ©c
and cannot distinguish between the case where ¢; is
but ¢, is not in the cloud and the opposite case, when
the cloud has owned a copy of one of them.

(T3) Dirty Chunk List. If the complete uploading
can always be ensured, the privacy leakage can be
significantly mitigated. Nonetheless, as mentioned
in Section 4.1, the Sybil attacker may still perform
independent duplicate checks by leveraging the Sybil
accounts. To counteract such an abuse of free cloud
accounts, we mark the chunk that has been requested
but eventually is not uploaded as a dirty chunk.
Afterwards, dc requests containing dirty chunks will
invariably receive the dc response 2. The rationale
behind this design is that dirty chunks could po-
tentially be exploited by the attacker and therefore
all the subsequent duplicate checks relevant to dirty
chunks will always not trigger the deduplication.
The above policy of using dirty chunks can be im-
plemented by keeping a list (called dirty chunk list, L)
containing all of the hashes of dirty chunks. When re-
ceiving the dc request, the cloud first checks whether
the hashes appear in L. If so, the cloud returns 2;
otherwise, return the value according to a publicly
known dc table in ZEUS (described below).

TABLE 5: Design space of dc table for ZEUS

| c1 existence [co existence | dc response |

0 0 T
0 1 X9
1 0 3
1 1 x4

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF ISTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
TABLE 6: dc table for ZEUS

[c1 existence | cp existence | dc response |
0 0 2

0 1 1
1 0 1
1 1 1

The Design of dc table in ZEUS. Despite the above
three techniques, we face a challenge of how to assign
proper values to ;s in Table 5 such that both privacy and
deduplication benefits are kept. In fact, the design space
is rather limited, though the number of obvious options is
3% = 81, because each z; has three choices 0, 1, and 2. Here,
for notation simplicity, we abuse the vector representation
to represent different dc table realizations. For example, the
vector [2 11 0] represents the table 4. In fact, we can have
the following four observations, which can be used to signif-
icantly shrink the design space. Also for the representation
simplicity, the notation z; € {0, 1,2} means the dc response
in different cases. The notation z; represents the case, where
both chunks ¢; and ¢y are not in the cloud, the notation z»
represents the case where c; is not but ¢, is in the cloud, and
SO on.

e (01) When ¢; and ¢; in the dc request (h(c1), h(c2))
are all not in the cloud, the cloud is forced to return 2;
otherwise, at least one chunk will be missing. Thus,
1 has to be 2.

e (02) Similarly, except for x4, all of z;, z2, and 3
cannot be 0; otherwise, at least one chunk will be
missing. Thus, we derive the constraints of z; # 0,
x9 # 0, and z3 # 0 in the design.

e (03) Though being unable to know the existence
status of a given chunk before processing the chunk
(as mentioned in Section 3.2), the attacker can con-
firm the existence of a chunk c; if the attacker him-
self/herself uploads c; previously. We particularly
note that this does not violate the privacy because
the user who uploaded chunks has no doubt to
be confident that his/her chunk is in the cloud.
However, with the knowledge that a given chunk
c1 exists in the cloud, the attacker can infer the
existence status of ¢y, if the table is ill-designed. More
specifically, if x5 # x4, the attacker can distinguish
between the cases z3 and z4 by observing the dc
response corresponding to the duplicate check on
(h(c1), h(c2)). In this sense, the constraint of z3 = x4
needs to be satisfied.

e (04) The observation (O3) can also apply to the
symmetric case where the existence of ¢, has been
known by the attacker interested in the existence
status of c¢;. Thus, the constraint of x2 = x4 also
needs to be satisfied.

Based on (01)~(04), only two configurations, [22 2 2]
and [2111]7, are eligible as a candidate of dc table de-
sign. Nonetheless, though the [22 2 2] design offers the
strongest privacy guarantee, it does not have any storage
and bandwidth savings. Hence, the only feasible solution
for the dc table is [2 1 1 1]7, as shown in Table 6.

7

The use of £ implies that the attacker no longer has
the capability of performing independent duplicate checks.
More specifically, the attacker has two options, uploading
the chunk and aborting the connection, after the dupli-
cate check. The former results in the chunk existence, and
therefore the subsequent duplicate checks involving the up-
loaded chunks provide no additional information to the user
because of the same dc response in 22, 23, and z4 (see Table
6). The latter results in the nullification of the deduplication
on dirty chunks, and therefore the subsequent duplicate
checks always return 2 to the user and also provide no
additional information to the user.

4.2.2 Algorithmic Procedures

The formal description of ZEUS is shown in Fig. 2, where
the user attempts to upload a file f to the cloud. The file f is
first partitioned to chunks (step 1). Due to the double chunk
uploading in ZEUS, the user checks whether the number
of chunks is even and whether the size of the last chunk
is equal to the predefined chunk size. If not, we generate
bit sequence of appropriate length and concatenate it to the
file f (steps 3~6). After that, the user performs duplicate
check on (h(c;),h(cit1)), @ € [1,3,...,7 — 1], on pairs of
chunks (step 8). The cloud, after receiving (h(c;), h(ci+1)),
checks whether the involved chunks are dirty (step 9). The
cloud always returns 2 to the user if so, and returns either
1 or 2 according to the dc table shown in Table 6 (step
10). Depending on the received dc response, the user either
uploads ¢; @ ¢y or uploads ¢; and ¢y explicitly to the cloud
(steps 13~20).

Algorithm: ZEUS

Input: file f with chunk size ¢, and dirty chunk list £
01 user partitions f into chunks cy, . ..
02 wusersetsn=mn

03 if bit length |c,,| # ¢

04 user performs padding to ¢,

05 if nisodd

06 user picks random chunk ¢, 11 and 7 =n + 1

07 forie{1,3,...,n—1}

08 user performs duplicate check on (h(c;), h(cit1))
09 if h(CZ) §é L and h(Ci+1) ¢ L

IC’I’L

10 cloud replies 1 or 2 according to Table 6
11 else
12 cloud replies dc response 2
13 if user receives dc response 1
14 user uploads ¢; @ ¢;41 to the cloud
15 if cloud does not receive ¢; ® ¢;41
16 £:£U{Ci70¢+1}
17 else
18 user uploads ¢; and ¢;1 to the cloud
19 if cloud does not receive ¢; and ¢;41
20 EZEU{Ci7CZ‘+1}

Fig. 2: ZEUS.

The design of the dc table in ZEUS has a distinguishable
response (R1) for the case of z;. Thus, at the first sight, one
may consider that ZEUS violates the inexistence privacy,

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

because the attacker receiving the response 2 can always
confirm the chunk inexistence. The details of the argument
that ZEUS achieves the two-side privacy (i.e., both existence
privacy and inexistence privacy) will be described in Section
4.24.

4.2.3 Performance Evaluation of ZEUS

One can easily see that ZEUS does not sacrifice the storage
saving because ZEUS only affects how the cloud reacts to
the dc request. Here, we evaluate the performance mainly
in terms of the extra communication cost incurred by the
use of ZEUS. One can see from Table 4 and Table 6 that
the difference between the original data deduplication and
ZEUS lies in the case of z4. More precisely, in such a case, the
user in ZEUS needs to upload c; & ¢z of length ¢ whereas
the user in the original deduplication does not.

Let p be the probability that an arbitrary chunk is in the
cloud. In the original deduplication, the expected commu-
nication cost of uploading two chunks can be calculated as

2(1—p)’¢+ (1 — p)po + p(1 — p)o. @)

On the other hand, the expected communication cost of
uploading two chunks in ZEUS can be calculated as

2(1—p)?¢ + (1 — p)pd + p(1 — p)é + p°¢. @)

The difference in the communication cost between Eq. (1)
and Eq. (2) is p?¢, which also shows the price to pay for the
privacy.

4.2.4 Privacy of ZEUS

To learn the existence status of a specific chunk, the only
option left to the attacker is to perform duplicate check. In
the following, the privacy is evaluated based on what the
attacker learns from the duplicate checks.

Single Duplicate Check. From Table 6, at this moment,
we know that ZEUS violates the inexistence privacy, be-
cause the dc response 2 invariably indicates the chunk
inexistence of queried chunks. Now, we have the following
privacy result of ZEUS.

Theorem 1. ZEUS achieves weak existence privacy under the
condition of single duplicate check.

Proof: If both ¢; and ¢y in the dc request (h(c1),h(ca))
are not controlled by the attacker, where ¢, is the chunk of
attacker’s interest, the attacker can only confirm the chunk
inexistence when receiving the dc response 2 by chance.
Moreover, as mentioned in Section 3.2, we assume that
the attacker cannot know the existence status of ¢; if the
user does not upload it. Thus, though the duplicate check
(h(c1), h(c2)) with the very likely inexistence of ¢; can be
used to identify the existence status of co (see Table 6), the
attacker is unable to have such kind of duplicate check. In
fact, one might consider that an arbitrarily chosen chunk
c1 is very unlikely to be in the cloud. In this way, the
attacker can claim to detect the existence status of c; by

8

differentiating z; and z,. However, given the dc response 1,
the probability of ¢, in the cloud can be formulated as

P[Cs|R,] 3)
_ P[R1|Co| P[Cy] @)
 P[R1|C5]P[Cs] + P[R1|C5]P[Cs]

_ 1x P[CQ] (5)

1 x P[Cy] + P[Ry|Cs)(1 — P[Cy))

_ P[CY] ©)
where w1 = P[R1|Cg, Ol}P[Cl]

and w9 = P[R1|ég, Cl]P[Cﬂ

p p @)

p+(1=p)(0xp+1xp) 2p—p>
where R; denotes the event that the cloud response is 1, C'
denotes the event that chunk 2 is in cloud, C5 denotes the
event that chunk 2 is not in cloud, p denotes the probability
that an arbitrary chunk is in cloud, the first equality comes
from P[A|B] = 1B A]I;[[il]‘j‘r]g[gl] aprap and the second
equality comes from P[R;|C;] = 1. From the above, we
see that P[C3|R;]| =~ % and therefore P[Cy|R;] =~ %, if
P[C5] = p, p is rather small (as mentioned in Section 3.2).
Hence, the attacker still cannot make sure cs is in the cloud
even when seeing dc response 1.

On the other hand, the attacker can upload c; explicitly
to ensure the existence of c¢; before performing duplicate
check. However, the duplicate check (h(c1), h(c2)) with the
guaranteed existence of ¢; does not help the attacker gain
extra existence information of ¢y (see Table 6). |

Multiple Duplicate Checks. Consider the case where
the attacker attempts to learn the existence status of cy
by invoking duplicate checks more than once. Here, the
multiple duplicate checks can be categorized as three types
based on the relation among the chunks in the consecutive
dc requests.

e (M1) The chunks in dc requests are all different.

e (M2) The chunks in two dc requests have a single
chunk overlapping.

e (MB3) The chunks in all the dc requests are the same.

In (M1), the attacker can only confirm the chunk inex-
istence when receiving the dc response 2 by chance. In
(M2), without loss of generality, we assume that two dc
requests are (h(c1),h(c2)) and (h(c1), h(cs3)), respectively.
After performing duplicate check (h(cy), h(cz)), the attacker
has the option of whether he/she uploads the chunk(s), ir-
respective of dc response. If the attacker chooses to abort the
communication, this results in the case where the next du-
plicate check (h(cq), h(c3)) invariably returns dc response 2
because of dirty chunk c;. If the attacker chooses to upload
the chunk(s), ¢; will be in the cloud after the duplicate check
(h(c1), h(c2)). As a consequence, the next duplicate check
(h(c1), h(c3)) with the guaranteed existence of ¢; gives no
additional information about the existence status of cs.

In (M3), the attacker also faces the same difficulty; if
the attacker chooses to upload the chunk(s), ¢; will be in
the cloud after the duplicate check (h(c1), h(c2)). As a con-
sequence, the next duplicate check (h(cy),h(cs)) with the
guaranteed existence of ¢; gives no additional information
about the existence status of cs.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Hence, because of the above arguments, due to our
design of ZEUS from the perspective of attacker’s gain, the
multiple duplicate checks collapse to single duplicate check.

Inexistence Privacy of ZEUS. Here, we state a special
case where ZEUS in fact also (very occasionally) achieves
the inexistence privacy by considering the user behaviors
and network conditions. In particular, in the real world,
due to the unpredictable user behaviors (e.g., shut down the
PC/laptop even when the task is unfinished), the instability
of Internet connection (e.g., unstable 3G /4G communication
during the high-speed moving), and the software/hardware
error (e.g., the crash of OS), it may be normal even for users
to have short period of disconnection, naturally resulting
in the incomplete uploading. Recall that when seeing the
indistinguishable response 2, the attacker originally can
invariably claim the inexistence of both queried chunks.
Nevertheless, with the above consideration, the cloud can
also claim that dc response 2 for (h(c1), h(cz2)) results from
the previous incomplete uploading of either ¢; or c. In this
case, c; and ¢y might already have a copy in the cloud. The
cloud has possibility that it has ¢; (or ¢3) but is still forced
to return 2, gaining the inexistence privacy.

We particularly note that the inexistence privacy from
the above consideration is just an accidental case; this ar-
gument is too strong and impractical, which cannot cover
most of the other typical cases with reliable data uploading.
Therefore, despite the above argument, we still consider that
ZEUS cannot achieve inexistence privacy.

4.2.5 Implementation Details

The dirty chunk list £ can be implemented by a Bloom
filter" (termed as dirty Bloom filter, DBF) for efficient space
utilization and queries. The use of DBF in ZEUS incurs
the additional processing overhead. Note that DBF needs
to be maintained in the memory for avoiding slow disk I/O
operations. Both processing and memory overhead from the
DBF are minor. Since DBF has to be kept in the memory and
the query for a Bloom filter is only constant time, the check
of dirty chunks merely imposes minor computation burden.

Two options are available for implementing DBFE. First,
the cloud allocates a fixed-size memory space for the con-
ventional Bloom filter as DBE. Let p, be the probability
that a chunk will be marked as dirty because of incomplete
uploading and NV be the expected number of distinct chunks
processed by the cloud every year. Then, the memory
space of size —p,0N In(pys,)/(In2)? bits for DBF suffices
to provide the membership query of DBF with the desired
false positive probability py, for 8 years [4]. In the case of
Dip = 1076, N = 108, 4 = 1, and p, = 10712, Bloom
filter occupies approximately 3MB. The second method is
to implement dynamic Bloom filter [10] as DBF. Dynamic
Bloom filter gradually grows the size when more and more
elements are inserted. Compared to the first implementation
choice of DBF, dynamic Bloom filter offers adaptive memory
usage, at the cost of slightly increased programming effort.

The step 4 of Fig. 2 is used for the data padding when the
size of the last chunk is not ¢. The padding is not necessary
in the original client-side deduplication; however, due to

5. Bloom filter [4] is a space-efficient probabilistic data structure that
supports the membership query with false positives

9

the use of XOR obfuscation, the padding is needed in our
setting. Thus, in the cloud, each chunk is associated with a
real chunk size. Most of the chunks will be associated with
¢ as real chunk size. However, a few of the chunks in the
cloud with be with a number smaller than ¢. The real chunk
size gives the user ability to remove the padding 0’s in the
last chunk after the user downloads the file in the future.

The step 6 of Fig. 2 is used if the number of chunks is
odd in total. In this case, the user generates and uploads
one extra random chunk. This extra chunk can also be seen
as the additional bandwidth overhead incurred by ZEUS.
However, the extra bandwidth consumption due to this
extra chunk is negligible with the consideration of a large
number of files are uploaded. Hence, we do not consider
the bandwidth consumption in Eq. (2).

4.3 ZEUS™

The inexistence privacy of ZEUS is in fact achieved by
assuming that even benign users may also abort the upload-
ing due to the unreliable connection or unpredictable user
behavior. In practice, the occurrence of such an undesirable
situations for benign users can be substantially mitigated by
developing a more reliable client-side software. Moreover,
compared to the number of real inexistent chunks, the
number of chunks that are marked as dirty due to the
abnormal communication abortion is rather limited. Thus,
one may claim that the inexistence privacy of ZEUS relies
on a strong assumption, making it impractical in reality.

Here, the idea of eliminating the strong assumption
while keeping the two-side privacy in ZEUS is to combine
the use of ZEUS and RT. With the observation that ZEUS
and RT offer the existence privacy and inexistence privacy,
respectively, the advantage of such a hybrid use (termed as
ZEUS™) is obvious; the two-side privacy of ZEUS™ is based
on the protocol design, instead of the exterior assumption
on the user behavior and network conditions. The formal
description of ZEUS™ is shown in Fig. 3. In essence, ZEUS™
can be thought of as a two-stage obfuscation; the first stage
randomizes the dc response through the RT technique and
the second stage further obfuscates the output of the first
stage through the dc table.

One can see from Fig. 3 that the only difference between
ZEUS and ZEUS™ is the use of RT (steps 10~17). In essence,
ZEUS™ works like ZEUS, except that the chunk existences
(i.e., c1 existence and cy existence) in Table 6 are deter-
mined base on the RT principle. Recall that RT principle
(see Section 2.3) is that each chunk c¢; is associated with
a deduplication threshold ¢; known only to the cloud and
the deduplication will not be triggered if the number of
copies of ¢; does not exceed t;. Note that “# ¢;” denotes
the number of times that the cloud receives ¢;. We also note
that in ZEUS™ the cloud does not need to keep t; copies
in the storage; an additional counter for keeping track of
¢; suffices to fulfill RT principle without sacrificing disk
utilization.

4.3.1 Performance and Privacy Evaluation of ZEUS™

As the communication cost due to the use of RT is de-
pendent on ¢;’s and the chunk distribution, no closed-form
formulation like Eq. (2) can be obtained. As a result, as a

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm: ZEUS™
Input: file f with chunk size ¢, and dirty chunk list £
01 wuser partitions f into chunks ¢y, ..., ¢,
02 wusersetsn=n
03 if bit length |c,,| # &
04 user performs padding to ¢,
05 if nisodd
06 user picks random chunk ¢, 11 and 2 =n + 1
07 forie{1,3,...,n—1}
08 user performs duplicate check on (h(c;), h(ci+1))
09 ifh(e) ¢ Land h(ciy1) ¢ £
10 if # ¢; in the cloud < t;
11 ¢; existence is set as 0
12 else
13 c¢; existence is set as 1
14 if # ¢;41 in the cloud < ;41
15 ci+1 existence is set as 0
16 else
17 Ci+1 existence is set as 1
18 cloud replies 1 or 2 according to Table 6
19 else
20 cloud replies dc response 2
21 if user receives dc response 1
22 user uploads ¢; ® ¢;41 to the cloud
23 if cloud does not receive ¢; and ¢;41
24 ,C:,CU{CZ‘,CZ‘_H}
25 else
26 user uploads ¢; and ¢; 41 to the cloud
27 if cloud does not receive ¢; and c; 11
28 £:£U{Ci,ci+1}
Fig. 3: ZEUS™.

combined use of ZEUS and RT, the bandwidth consumption
of ZEUS™ will be empirically evaluated based on the real
dataset in Section 5

On the other hand, we have the privacy result of ZEUS™
as follows.

Theorem 2. ZEUS™ achieves two-side privacy under the
condition of single duplicate check.

Proof: Due to the similarity between ZEUS and ZEUS™,
we can easily know that ZEUS™ achieves weak existence
privacy, based on Theorem 1.

Simply speaking, ZEUS™ can be seen as the cloud run-
ning RT first to determine positive/negative dc response
and then running ZEUS to obfuscate the dc response out-
putted by RT. The breach of inexistence privacy of ZEUS is
due to the distinguishable dc response 2. However, with the
use of RT, the dc response 2 for the dc request (h(c1), h(cz2))
can also possibly be attributed to the unsaturated ¢; and
ty. Consider an extreme case that the attacker has perfect
confidence that the chunk ¢; is not in the cloud and aims
to detect the existence status of the chunk cs. In this way,
ZEUST will be degenerated to RT, which has been known
to achieve inexistence privacy, as shown in Section 3.3. Thus,
we know that ZEUS™ also achieves inexistence privacy.
In fact, the lack of inexistence privacy in ZEUS is now

10

compensated by the use of RT, resulting in the two-side
privacy in ZEUS™. [|

5 REAL DATASET EVALUATION

The storage saving will not be affected by the side channel
defense. In particular, the schemes belonging to random
threshold category [1], [15], [20], [30] gain the privacy by sac-
rificing the bandwidth saving and the schemes belonging to
extra hardware category [14], [26] gains the privacy mainly
by forwarding the request packets with certain delays.
ZEUS and ZEUS™ also do not sacrifice the storage saving;
instead, certain communications that are not needed will
be required in ZEUS and ZEUS™. Thus, in our evaluation,
we only focus on the communication cost. Note that the
communication cost used in our measurements is defined
as the number of bits required during the entire chunk
uploading process, including the duplicate check (i.e., dc
request and dc response) and explicit chunk uploading (i.e.,
the chunk ¢, if necessary).

The datasets we used in our evaluation are Enron Email
Dataset [9], The Oxford Buildings Dataset [29], and traffic-
signs-dataset [28]. We chose these datasets because we
believe that ordinary users have the demand to backup
the email and multimedia content to the cloud storage.
We carried out the evaluations on Fedora 12 Linux op-
erating systems of kernel 2.6.35.9 SMP on Intel Core 2
Duo 3GHz. The evaluation program was written in Python
2.7.6 . We implemented the hash function SHA-256 from
OpenSSL library. Fig. 4 reports the statistics of the above
three datasets. In the setting of our evaluation, we picked
1000 files uniformly at random and uploaded them to the
cloud. Afterwards, we chose 200 files uniformly at random
to perform duplicate checks and explicit chunk uploading if
necessary.

File size distribution

File size distribution

Number of Files

Number of Files
]
N

Numb f Files

File sizes

(c) Traffic.

File sizes

(b) Oxford.

File sizes

(a) Enron.

Fig. 4: The statistics of datasets used in our experiment.

Since the schemes belonging to random threshold cate-
gory [1], [15], [20], [30] only has inexistence privacy guaran-
tee while the schemes belonging to extra hardware category
[14], [26] assume the assistance of extra hardware, the com-
parison is made among the original data deduplication (no
privacy is considered, maximum deduplication opportu-
nity), ZEUS, ZEUS™ (B = 5), ZEUS™ (B = 20), and ZEUS™
(B = 40), where B is a deduplication threshold specified in
RT (see also Section 2.3). Such a comparison shows addi-
tion communication burden incurred by the use of ZEUS
and ZEUS™ with different parameter settings. Moreover,
both ZEUS and ZEUS™ have an inherent dirty chunk list
(T3) to prevent the attacker from gaining existence status
information by iteratively performing dc requests on the
same chunks. Dirty chunks refer to the chunks on which
no deduplication is triggered, and furthermore all of the dc

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

requests relevant to dirty chunks will not trigger dedupli-
cation. Thus, the use of dirty chunks actually compromise
the deduplication benefit. Thus, the same set of evaluations
applies with different ratios of dirty chunks (0%, 10%, and
25%)°%. The evaluation results show the impact of the ratio
of dirty chunks on the communication cost.

Fig. 5 shows the communication costs with varying
chunk sizes without dirty chunks. This reflects the case of
the real communication cost in the sense that the attacker
may be unwilling to create the deduplication-based side
channel given the use of ZEUS and ZEUS™ and benign
users infrequently have the abnormal disconnection. Thus,
there would be very few percentages of dirty chunks in the
cloud.

Communication Co:

Chunk size e

(c) Traffic.

Chunk size

(a) Enron. (b) Oxford.

Fig. 5: Communication cost for different chunk sizes (no
dirty chunk).

Obviously, since the original data deduplication finds
the maximum opportunity for the data deduplication, it
has the lowest communication cost. ZEUS has the second
lowest communication cost because, compared to ZEUST,
ZEUS does not have the communication cost incurred by
RT. Moreover, a comparison among ZEUS™ with different
B’s clearly shows the larger B implies more communication
cost. The gap between the communication costs of original
data deduplication and ZEUS actually is dependent on the
dataset characteristic. As shown in Egs. (1) and (2), ZEUS
incurs only p?¢ extra communications, compared to the
original data deduplication. Thus, in an extreme case where
no duplicate chunk can be found, ZEUS and the original
deduplication have the same communication cost, because
the duplicate check will not fall in the case of z4 in Table 5.
The above argument also shows that the gap will be varied
on different datasets.

Figs. 5, 6, and 7 show the comparison of different side
channel defenses with varying ratios of dirty chunks. Here,
for simplicity, though the number of dirty chunks would
grow with the increasing number of dc requests, we choose
to randomly select a fixed percentage of chunks as dirty
chunks, to see the impact of the number of dirty chunks

6. By its definition, dirty chunks cannot be deduplicated for privacy
concern, sacrificing the corresponding deduplication benefit. Thus, “no
dirty chunk” is used to represent the basis (or say, ideal case) of
deduplication benefit for ZEUS and ZEUS*. On the other hand, as
mentioned in Section 4.2.4, dirty chunks could be due to either the
attacker who issues the dc request but does not upload the chunk or
the benign user who suffers from, for example, network connection
problem. We believe that, in reality, the attacker may cause only a
few dirty chunks, and there will not be too many network connection
problems. Note that obviously 10% and 25% are over-estimations of the
ratio of dirty chunks. For example, if the cloud handle 1EB (10'® bytes)
data, this means that at least 10'7 bytes are dirty, which is impossible
in commercial clouds. We chose 10% and 25% as the maximum ratios
of dirty chunks to see their impact on the deduplication benefit.

11

on the communication cost. One can see from Figs. 5, 6,
and 7 that, given the deduplication with the side channel
defense, more dirty chunks imply more communication cost
required. The reason is obvious; if the cloud finds either
chunk in the dc request dirty, it cancels the deduplication
functionality for the dc request. Thus, more dirty chunks in
the cloud imply more communication cost required.

bits)

Communication Cost (in bits)

Communication Cost

" Chunk size

(c) Traffic.

" Chunk size

(a) Enron. (b) Oxford.

Fig. 6: Communication cost for different chunk sizes (10%
dirty chunks).

One can also see that the ratio of dirty chunks has
more impact on ZEUS, in contrast to ZEUST, in terms of
communication cost. In fact, one can see that ZEUS™ with
B = 40 in Figs. 5, 6, and 7 have similar communication
cost. This can be attributed to the fact that the chunks
already have a very low probability to be deduplicated,
even if no dirty is in the cloud. Thus, the consideration of
the increased number of dirty chunks makes only negligible
impact on the communication cost. On the other hand, the
chunks in the original deduplication and ZEUS can find
a better deduplication opportunity in the cloud without
dirty chunks. However, this deduplication benefit will be
nullified to some extent in the cloud with dirty chunks.
Hence, we can see a clear increase of communication cost
when comparing Figs. 5, 6, and 7.

Communication Cost (in bits)

Chunk size

(a) Enron. (b) Oxford.

(c) Traffic.

Fig. 7: Communication cost for different chunk sizes (25%
dirty chunks).

6 COMPARISON AND DISCUSSIONS

The schemes belonging to random threshold category [1],
[15], [20], [30] only has inexistence privacy guarantee be-
cause the positive dc response always corresponds to the
chunk existence, irrespective of the setting of 5. In addition,
the choice of B determines the trade-off between the dedu-
plication benefits and privacy, but unfortunately remains
unclear. Thus, only the requirement of no independent
server is satisfied in Table 1. On the other hand, the schemes
belonging to extra hardware category [14], [26] assume the
assistance of extra hardware, making the requirement of no
independent server unsatisfied.

One can see from Section 4.2 that ZEUS serves as the side
channel defense without the additional server and manual

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE

Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

parameter. ZEUS can also achieve the two-side privacy,
however, with the assumption 4.2.4 that not only the at-
tacker but also benign users also create dirty chunks. Recall
that due to the unstable connection to the cloud, benign
users may indeed create dirty chunks. Nonetheless, the dc
response 2 due to such dirty chunks is very unlikely to
occur, compared to the dc response 2 due to two inexistent
chunks. As a result, the attacker receiving the dc response
2 may still have strong confidence that the queried chunks
are not in the cloud. Thus, we only have a triangle sign for
two-side privacy in Table 1.

ZEUST is the hybrid solution; it inherits the problem
of choosing a proper B from RT and therefore has a cross
sign in Table 1. However, because RT and ZEUS protect
the inexistence privacy and existence privacy, respectively,
ZEUS™ works as the side channel defense with two-side
privacy.

7 CONCLUSION

Although client-side data deduplication has been widely
adopted by cloud storage services to eliminate redundant
data and communications, it leaks the privacy of the chunk
existence status, resulting in more sophisticated threats. In
this paper, we develop two solutions, ZEUS and ZEUS™,
based on the framework of zero-knowledge deduplication
response, preventing the attacker from gaining the existence
status information from duplicate checks. While ZEUS and
ZEUST is able to offer a stronger privacy notion, two-side
privacy, our real dataset evaluations also confirm that ZEUS
and ZEUS™ incur slightly increased communications.

ACKNOWLEDGMENT

This research was partly funded by MOST 105-2923-E-001-
002-MY2 (MOST-CNR joint project), MOST 104-2628-E-155-
001-MY2, MOST 105-2923-E-002-014-MY3, MOST 105-2218-
E-155-010. Mauro Conti is supported by a Marie Curie
Fellowship funded by the European Commission (agree-
ment PCIG11-GA-2012-321980). This work is also partially
supported by the EU TagltSmart! Project (agreement H2020-
ICT30-2015-688061), the EU-India REACH Project (agree-
ment ICI+/2014/342-896), and by the projects “Physical-
Layer Security for Wireless Communication”, and “Content
Centric Networking: Security and Privacy Issues" funded by
the University of Padua. This work is partially supported
by the grant n. 2017-166478 (3696) from Cisco University
Research Program Fund and Silicon Valley Community
Foundation.

REFERENCES

[1] F. Armknecht, C. Boyd, G. T. Davies, and Gjesteen. Side channels
in deduplication: trade-offs between leakage and efficiency. ACM
Conference on Computer and Communications Security (ASIACCS),
2017.

[2] Bitcasa. http://www.bitcasa.com

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked en-
cryption and secure deduplication. Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), 2013.

[4] A. Broder and M. Mitzenmacher. Network applications of bloom
filters: a survey. Internet Mathematics, vol. 1, no. 4, pp. 485 - 509,
2004.

12

[5] R.Chen, Y. Mu, G. Yang, and F. Guo. BL-MLE: block-level message-
locked encryption for secure large file deduplication. IEEE Transac-
tions on Information Forensics and Security, vol. 10, no. 12, pp. 2643 -
2652, Dec 2015.

[6] Dropbox. https://www.dropbox.com

[7] M. Dutch. Understanding data deduplication ratios. SNIA Data
Management Forum, 2008.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. IEEE International Conference on Distributed Computing
Systems (ICDCS), 2001.

[9] Enron Email Dataset. https://www.cs.cmu.edu/~./enron/

[10] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The dynamic bloom
filters. IEEE Transactions on Knowledge and Data Engineering, vol. 22,
no. 1, pp. 120 - 133, 2010.

[11] Hack Tahoe-LAFS! https://tahoe-lafs.org/hacktahoelafs/

drew_perttula.html

[12] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of
ownership in remote storage systems. ACM conference on Computer
and Communications Security (CCS), 2011.

[13] H. Hovhannisyan, K. Lu, R. Yang, W. Qi,]. Wang, and M. Wen. A
novel deduplication-based covert channel in cloud storage service.
IEEE Global Communications Conference (GLOBECOM), 2015.

[14] O. Heen, C. Neumann, L. Montalvo, and S. Defranc. Improving
the resistance to side-channel attacks on cloud storage services.
International Conference on New Technologies, Mobility and Security
(NTMS), 2012.

[15] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in
cloud services: Deduplication in cloud storage. IEEE Security &
Privacy, vol. 8, no. 6, pp. 40—47, 2010.

[16] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou. Secure
and efficient cloud data deduplication with randomized tag. IEEE
Transactions on Information Forensics and Security, vol. 12, no. 3, pp.
532 - 543, Mar 2017.

[17] S.Keelveedhi, M. Bellare, and T. Ristenpart. Dupless: Server-aided
encryption for deduplicated storage. USENIX Security Symposium,
2013.

[18] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of en-
crypted data without additional independent servers. ACM Con-
ference on Computer and Communications Security (CCS), 2015.

[19] J. Li, X. Chen, M. Lj, J. Li, P. P. C. Lee, and W. Lou. Secure dedu-
plication with efficient and reliable convergent key management,
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp- 1615-1625, 2014.

[20] S. Lee and D. Choi. Privacy-preserving cross-user source-based
data deduplication in cloud storage. International Conference on ICT
Convergence (ICTC). 2012.

[21] Mega. https://mega.nz

[22] Mozy. https://mozy.com/

[23] M. O. Rabin. Fingerprinting by random polynomials. Center for
Research in Computing Technology, Harvard University. Tech Re-
port TR-CSE-03-01. Retrieved 2007-03-22.

[24] H. Ritzdorf, G. O. Karame, C. Soriente, and S. Capkun. On
information leakage in deduplicated storage systems. ACM Cloud
Computing Security Workshop (CCSW), 2016.

[25] V. Rabotka and M. Mannan. An evaluation of recent secure dedu-
plication proposals. Journal of Information Security and Applications,
vol. 27, pp. 3-18, Apr. 2016.

[26] Y. Shin and K. Kim. Differentially private client-side data dedupli-
cation protocol for cloud storage services. Security and Communica-
tion Networks, vol. 8, pp. 2114 - 2123, 2015.

[27] Tahoe-LAFS. https://tahoelafs.org

[28] Traffic signs dataset.
http://www.cvl.isy.liu.se/en/research/
datasets/traffic-signs-dataset/download/

[29] The Oxford Buildings Dataset.

http://www.robots.ox.ac.uk/\$7Evgg/data/oxbuildings/

[30] B. Wang, W. Lou, and Y. T. Hou. Modeling the side-channel
attacks in data deduplication with game theory. IEEE Conference
on Communications and Network Security (CNS), 2015.

[31] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y.
Zhang, and Y. Zhou. A comprehensive study of the past, present,
and future of data deduplication. Proceedings of the IEEE, vol. 104,
pp. 1681-1710, Sept 2016.

[32] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Y. Zhang, and
Q. Liu. FastCDC: a fast and efficient content-defined chunking ap-

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2794542, IEEE
Transactions on Cloud Computing

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

proach for data deduplication. USENIX Annual Technical Conference,
2016.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

