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A B S T R A C T 

 

Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a 

potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-

dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been 

tested in degenerative disorders such as Friedreich’s ataxia, Huntington’s and Alzheiemer’s 

diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been 

characterized only partially. Here we have studied the effects of quinones generated during in vivo 

metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-

1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of 

CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone 

that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363–369]. 

Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-

sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a 

bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous 

CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in 

allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated 

embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60 hours post-

fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude 

that QS10 is potentially more active than idebenone in the treatment of diseases caused by 

complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.  

 

Keywords: Idebenone, electron transfer, complex I, ubiquinone, respiration 

 

Abbreviations: CoQ, coenzyme Q; CRC, Ca2+ retention capacity; FCCP, carbonylcyanide-p-

trifluoromethoxyphenyl hydrazone; Cs, cyclosporin; DMEM, Dulbecco's modified Eagle's medium; 

hpf, hours post-fertilization; idebenone, 2-(10-hydroxydecyl)-5,6-dimethoxy-3-methyl-cyclohexa-

2,5-diene-1,4-dione; NQO1, NAD(P)H:quinone oxidoreductases; OCR, oxygen consumption rate; 

PTP, permeability transition pore; QS4, 6-(9-carboxypropyl)-2,3-dimethoxy-5-methyl-1,4-

benzoquinone; QS6, 6-(9-carboxypentyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone; QS8, 6-(9-

carboxyheptyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone; QS10, 6-(9-carboxynonyl)-2,3-

dimethoxy-5-methyl-1,4-benzoquinone; TMRM, tetramethylrhodamine methyl ester.  
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1. Introduction 

 Ubiquinone, or coenzyme Q (CoQ), is a key electron carrier in the mitochondrial respiratory 

chain [1]. CoQ is reduced by respiratory chain complexes I and II [2,3] and can also receive 

electrons from glycerol-3-phosphate dehydrogenase and from flavoprotein dehydrogenase [4]. 

Mutations in COQ genes involved in CoQ biosynthesis cause primary CoQ deficiency, a clinically 

heterogeneous mitochondrial disorder [5]. Due to its reported antioxidant properties, CoQ has 

also been suggested as a possible treatment in a wide variety of pathological conditions including 

Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia and 

other conditions associated to mitochondrial dysfunction [5-7]. However, there is little evidence 

that CoQ therapy may be beneficial outside of CoQ deficiencies in a strict sense [6], possibly also 

because of the very low solubility and therefore bioavailability of the native CoQ molecule [5-7]. 

 The quinone 2-(10-hydroxydecyl)-5,6-dimethoxy-3-methyl-cyclohexa-2,5-diene-1,4-dione 

(idebenone) is the prototype of short-chain analogues of CoQ, and was developed in Japan in the 

1980s for the treatment of neurodegenerative conditions due to its ability to interact with the 

respiratory chain [8,9]. Idebenone itself cannot substitute for endogenous CoQ [10] but it 

appeared particularly promising as a bypass to defective complex I in Leber Hereditary Optic 

Neuropathy (LHON) [11-17] and OPA1-dependent Dominant Optic Atrophy [18,19]. Indeed, upon 

reduction by cytosolic NAD(P)H oxidoreductase I (NQO1) it can be oxidized by complex III thus 

reactivating electron flow, proton pumping and ATP synthesis [20]. Many quinones have been 

developed and studied with the aim of improving hydrophilicity and pharmacokinetics for patient 

treatment [21,22]. Through the use of a large number of analogues it was shown that effective 

electron transfer to the respiratory chain also requires an appropriate partition coefficient, with an 

inverse correlation between efficacy and ability to induce lipid peroxidation [21].  

Idebenone as such lacks antioxidant activity, a feature that is possessed only by its reduced 

hydroquinone form idebenol [23]. Thus, it is not surprising that idebenone can act both as an 

antioxidant, inhibiting lipid peroxidation [8,9,24] and hydrogen peroxide production from 

glycerophosphate [25], and as a prooxidant [26,27]. Potentially toxic effects of idebenone are 

inhibition of complex I [9,28-30] and sensitization of the permeability transition pore (PTP) [31], an 

inner membrane high-conductance channel whose opening requires matrix Ca2+ and is favored by 

oxidative stress [32]. Interestingly, the PTP-inducing feature of idebenone is not shared by 

idebenol, which is also quite effective in restoring ATP levels in a variety of rotenone-treated cells 

as well as in mediating electron transfer to complex III in hepatocytes and HepG2 cells [20], in 
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complex I-deficient cells and in cybrids harboring the G3460A/MT-ND1 mutation of LHON [33].  

 Although idebenone is generally well-tolerated, the complexity of its effects may explain 

the contradictory results obtained in disease models and in patients [11-19]. A puzzling feature 

related to the in vivo effects is its rapid metabolism through oxidation and shortening of the side 

chain, so that within 2-3 hours of administration parent idebenone is no longer detectable in the 

serum where it is replaced by the QS10, QS8, QS6, QS4 metabolites [34,35]. To what extent the 

decreased idebenone levels reflect cellular uptake of the parent drug is not easy to assess, but it is 

legitimate to ask whether the pharmacological effects of idebenone may also depend, in part at 

least, on its metabolites. We have reinvestigated this question by testing the effect of idebenone 

metabolites on electron transfer and respiration in cellular models of complex I insufficiency, CoQ 

deficiency and in zebrafish (Danio rerio) embryos treated with rotenone. 

 

2. Materials and Methods 

2.1. Chemicals 

Oligomycin, rotenone, antimycin A, pyruvate, carbonylcyanide-p-trifluoromethoxyphenyl 

hydrazone (FCCP), dithiothreitol,  dimethyl sulfoxide and protease inhibitors were from Sigma 

(Milan, Italy). Idebenone was from Apin Chemicals LTD (Oxon, UK). Cyclosporin (Cs) H was a 

generous gift of Dr. Urs Ruegg, Geneva. Calcium Green-5N was from Invitrogen (Milan, Italy). 

Tetramethylrhodamine methyl ester (TMRM) was purchased from Molecular Probes (Eugene, OR).  

2.2. Synthesis of quinones  

The preparation of derivatives QS4, QS6, QS8 and QS10 was performed following the 

synthetic approaches reported by Okamoto et al. [36]. The procedures have been adapted to each 

compound, depending on the commercial availability of the starting materials. In general, 3,4,5-

trimethoxy toluene was allowed to react with an activated form of carboxylic acid (as succinic 

anhydride 1a or acyl chloride 1b-d) in presence of AlCl3 (see scheme 1). When the acyl chloride 

was used, the second carboxylic acid was protected as methyl ester, which was removed by basic 

hydrolysis in situ. Later the corresponding ketones 2 were reduced using sodium borohydride, and 

converted to 3 in presence of acetic acid, hydrogen and Pd/C. To better purify derivatives 3c and 

3d, it was necessary to perform supplementary steps of protection, chromatography and 

deprotection, to achieve the pure products. Derivatives 3 were later oxidized in presence of 

oxygen and selen-Co complex. All the characterizations were in agreement with the literature [36]. 
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Scheme 1. Synthesis of QS4, 6, 8 and 10 

 

2.3. Isolation of mitochondria and Ca2+ retention capacity  

Mouse liver mitochondria  were isolated in 250 mM sucrose, 10 mM Tris, 0.1 mM EGTA, pH 

7.4, as described previously [37]. The mitochondrial Ca2+ retention capacity (CRC) was determined 

by measuring external Ca2+ following addition of 10 μM Ca2+ pulses to medium containing 0.5 

mg/ml of mitochondria. Mitochondria were incubated in 130 mM KCl, 10 mM Mops-Tris, 5 mM 

succinate-Tris, 1 mM Pi-Tris, 10 μM EGTA, 1 M rotenone, 1 μM Calcium Green-5N (see [33] for 

further details), pH 7.4. 

2.4. Cell culture and growth conditions 

Cybrids generated by fusion of enucleated fibroblasts derived from one control (HQB17) 

and one LHON patient (RJ206, harboring the G3460A/MT-ND1 LHON mutation causing the A52T 

amino acid substitution in ND1, a kind gift of Anthony H. Schapira) into osteosarcoma 143B.Tk− 

cells deprived of their own mtDNA [38,39]. XTC.UC1 bear a C insertion at bp3571 in MT-ND1, 

generating a premature stop codon at amino acid 101 of ND1 subunit that prevents complex I 

assembly [40]. The bioenergetics properties of all cells have been characterized described in some 

detail in a previous paper [33]. COQ4 null cells were generated from HEK-293 cells using TALEN 

technology to harbor a duplication of 25 nucleotides in exon 2 of COQ4 (c.84_108dup). This 

insertion causes a frameshift at codon 37 with a predicted truncation at codon 39. CoQ was 

measured by HPLC and electrochemical detection [41]. CoQ biosynthesis rate was evaluated by 

measuring incorporation of radiolabelled 4-hydroxybenzoate [42], which was virtually zero. 
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Residual CoQ was detected, however, and it was proportional to the serum content, suggesting 

that it is taken up by cells. Specifically, cellular CoQ content was 5 and 15% of the wild-type value 

at serum concentrations of 3% and 10%, respectively, while CoQ levels were not affected by serum 

in wild-type cells. Cells were grown in Dulbecco's modified Eagle's medium (DMEM; Lonza, Basel, 

Switzerland) containing 10% fetal bovine serum, 2 mM L-glutamine, 100 units/ml penicillin, and 

100 g/ml streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) in a humidified incubator at 

37 °C with 5% CO2. 

2.5. Mitochondrial membrane potential and respiration 

Mitochondrial membrane potential was monitored based on mitochondrial accumulation 

of TMRM by epifluorescence microscopy, and oxygen consumption rate (OCR) with an XF24 

Extracellular Flux Analyzer (Seahorse Agilent) exactly as described previously [33].  

2.6. Zebrafish maintenance and treatment 

Adult zebrafish were maintained in aerated, 28 °C-conditioned saline water according to 

standard protocols. Fish were kept under a 14 hour light/10 hour dark cycle. For mating, males 

and females were separated in the late afternoon, and were freed to start courtship the next 

morning, which ended with egg deposition and fertilization. Eggs were collected, washed with fish 

water (0.5 mM NaH2PO4, 0.5 mM NaHPO4, 0.2 mg/l methylene blue, 3 mg/l Sea Salt (Instant 

Ocean, Blacksburg, VA, USA) and embryos were maintained at 28 °C. Embryos were dechorionated 

at 19 hours post-fertilization (hpf), divided in 6 groups and treated as follows: group 1, group 2 

and group3 were treated in fish water at 20 hpf with 0.06% DMSO (vehicle control), 3 µM 

idebenone or 3 µM QS10, respectively; group 4 and group 5 were pretreated at 20 hpf  with 3 µM 

idebenone or 3 µM QS10, respectively, and treated at 24 hpf with 0.1 µM rotenone; group 6 was 

treated only with 0.1 µM rotenone at 24 hpf. A second experiment was performed in which groups 

1-3 were treated as above, while groups 4 and 5, after rotenone, were treated with 3 µM 

idebenone or 3 µM QS10 every 8 hours. Morphological changes were observed at 28 hpf using a 

Leica S8AP0 optical microscope (Leica microsystems GmbH, Wetzlar, Germany) equipped with 

Nikon Digital Sight Camera DS-L1 (Nikon, Tokyo, Japan). All protocols and manipulations with 

zebrafish were approved by the Ethics Committee of the University of Padova and authorized by 

the Italian Ministry of Health. 
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2.7. Motor ability and survival analysis in zebrafish embryos 

To assess the effects of QS10, idebenone and rotenone during early stages of embryo 

development, the number of spontaneous coiling events observed in 15 s were recorded at 28 hpf 

using the Leica S8AP0 microscope. To evaluate survival rate, 75 embryos from each group were 

observed every 10 hours at 20, 30, 40, 50, 60, 70, 80 hpf. The number of surviving embryos was 

counted at each time point. 

2.8. Statistics 

Unless otherwise stated, each experiment was repeated at least 3 times. Data are 

presented as average ± s.e.m. or, for clarity, as representative experiments (see figure legends for 

details). p values indicated in the figures were calculated with GraphPad or Origin software. 

 

3. Results 

 We synthesized the idebenone metabolites QS10, QS8, QS6 and QS4, which are detected in 

the plasma of patients after administration of idebenone [34,35] (Fig. 1A), and we tested whether 

these compounds have an effect on the CRC, i.e. the threshold matrix Ca2+ required to cause 

opening of the PTP in isolated mitochondria. At variance from idebenone, which decreased the 

CRC with a sensitizing effect on the PTP [33], none of the QS compounds significantly affected the 

CRC when added either as purified without further manipulations (Fig. 1B, open columns) or after 

reduction with DTT (Fig. 1B, grey colums). Although a decreased CRC was observed with QS10 this 

effect was not statistically significant (Fig. 1). Thus, PTP sensitization by idebenone is not a shared 

feature of its metabolites, irrespective of whether they are reduced. 

 We next tested whether, as is the case for idebenol [33], reduced QS metabolites could 

support electron transfer in mitochondria treated with rotenone. Mitochondrial membrane 

potential was measured in HQB17 cells based on TMRM accumulation. It should be recalled that in 

order to observe depolarization by rotenone it is essential to inhibit the F-ATP synthase, which 

would otherwise maintain the membrane potential by proton pumping coupled to the hydrolysis 

of ATP [43]. Consistent with our previous report, addition of DTT alone could not maintain the 

membrane potential after addition of oligomycin to rotenone-treated HQB17 cells (Fig. 2A). QS4, 

the species with the shortest side chain, which is the main metabolic fraction of idebenone in 

plasma and its main excreted metabolite [34,35], was likewise unable to allow maintenance of the 

mitochondrial membrane potential in the same protocols (Fig. 2B), and a similar negative result 
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was obtained with QS6 and QS8 (results not shown). On the other hand, oligomycin did not cause 

depolarization when QS10 was added in the presence of DTT (Fig. 2C) or after it had been reduced 

with NaBH4 (Fig. 2D). Depolarization could be induced by antimycin A, indicating that QS10 was 

feeding electrons into complex III (Fig. 2C,D). It should be mentioned that the slight effect of QS10  

was not significant, while the differential effect of oligomycin in cells treated with reduced QS10 

and DTT alone (Panels 2C,D – compare with 2A) was highly reproducible, and became statistically 

significant within 1 minute of the addition of oligomycin (omitted for clarity).  

 We next directly assessed the effects of QS10 on respiration. When added to HQB17 cells, 

reduced QS10 did not significantly affect basal respiration, oligomycin sensitivity or maximal 

respiration induced by FCCP (Fig. 3A). This is an important finding because it indicates that QS10 

does not decrease electron transfer at complex I, which would result in respiratory inhibition. On 

the other hand, reduced QS10 allowed maintenance of oxygen consumption after the addition of 

rotenone; the effect was significant when rotenone was added shortly after QS10 (Fig. 3A) while 

the effect decreased at later time points (results not shown), suggesting that in HQB17 cells QS10 

may not be efficiently reduced. When assayed in RJ206 cells (bearing the missense G3460A/MT-

ND1 mutation of LHON) and in XTC.UC1 cells (that do not fully assemble complex I due to a C 

insertion at bp3571 in MT-ND1, generating a stop codon at amino acid 101 of ND1 subunit) QS10 

promoted a sizeable rotenone-insensitive respiration (Fig. 3B and C, respectively).  

 Idebenone cannot replace endogenous CoQ in restoring ATP levels in fibroblasts from 

patients affected by primary CoQ deficiencies [10]. We reasoned that this negative result could 

have been due, in part at least, to inhibition of complex I [28], an effect that according to our 

current results is not observed with QS10. We therefore tested the effects of QS10 in a cell line 

where synthesis of CoQ had been prevented by genetic ablation of COQ4. The basal respiratory 

activity was expectedly very low, and corresponded to about 10% of the rate of cells reexpressing 

COQ4 (not shown) and to 10% of the rate displayed by HQB17 cells (Fig. 3D, compare with A). 

Addition of QS10 significantly increased the rate of basal respiration, and this effect was not due 

to uncoupling because the increased OCR was inhibited by oligomycin (Fig. 3D). Another quite 

remarkable result of this experiment is that QS10-dependent respiration was rotenone-sensitive, 

i.e. it was due to the redox interactions of QS10 with complexes I/II and complex III of the 

respiratory chain. Thus, QS10 can be reduced by complex I and reconstitute electron flux within 

the respiratory chain of CoQ-deficient cells, although recovery of respiration was only partial.  
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  The predictive value of the efficacy of drugs in cell-based assays is inevitably limited. In 

order to further explore their effects in a living organism, we treated with idebenone and QS10 

developing zebrafish embryos, and assessed whether they could be protected from toxicity of 0.1 

µM rotenone administered at 24 hpf (Fig. 4A). Analysis of respiration of individual embryos 4 

hours later revealed that rotenone reduced the OCR to about 10% (Fig. 4B), while a 4hr 

pretreatment with idebenone or QS10 maintained respiration to 20% and 40% of the vehicle-

treated value, respectively (Fig. 4B). Rotenone caused marked developmental abnormalities 

starting from the posterior tail region, where the hypoblast (mesodermal tissue progenitor cells 

that will generate the nothocord), skeletal muscle precursors and intermediate cell mass 

(containing progenitors of hematopoietic and vascular tissues) are located [44,45]. We observed 

signs of progressive tissue necrosis and degradation (dark zone indicated by arrows in Fig. 4C) 

which would spread rostrally as the embryo degradation proceeds. After treatment with 

idebenone embryos where protected only partially from the degenerative process, as 

demonstrated by a curly tail phenotype (Fig. 4C, arrowheads) while treatment with QS10 was 

quite effective at preventing the developmental abnormalities (Fig. 4C, bottom panels). Living fish 

were also tested for their motor ability by monitoring coiling events, spontaneous movements 

that normal embryos perform. Rotenone completely abolished motility, and this effect was 

rescued by pretreatment with QS10 but not idebenone (Fig. 4D). It should be mentioned that 

treatment  with each quinone in the absence of rotenone caused a mild but not significant motor 

impairment.  

 We also monitored the effects of idebenone and QS10 on survival of rotenone-treated 

zebrafish. Within 6-10 hours of the addition of rotenone 50% of the embryos were dead, and no 

fish survived beyond 60-70 hpf (Fig. 5A,B closed circles; compared to vehicle, all values were 

significant with p of at least 0.001). Administration of a single dose of idebenone caused zebrafish 

cell death (Fig. 5A, open squares; compared to vehicle, all values were significant with p of at least 

0.001), which blunted the rescue from rotenone toxicity (Fig. 5A, closed squares; compared to 

rotenone alone values were significant only up to 50 hpf with p of at least 0.001). A single dose of 

QS10 instead did not cause major toxicity (Fig. 5A, open triangles; compared to vehicle all values 

were not significant) and prevented rotenone-induced death up to 70 hpf (Fig. 5A, closed 

triangles; compared to rotenone alone values were significant with p of at least 0.001 and 0.05 up 

to 60 and 70 hpf, respectively). Repeated additions of idebenone worsened its toxicity (Fig. 5B, 

open squares; compared to vehicle, all values were significant with p of at least 0.001); and if 
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anything made rotenone toxicity at 40 hpf even worse (Fig. 5B, closed squares, compare with 

rotenone alone, closed circles). Remarkably, repeated additions of QS10 affected survival only 

slightly (Fig. 5B, open triangles; compared to vehicle, values were significantly different only at or 

above 60 hpf with p of 0.05) while they improved protection from rotenone toxicity with 50% 

embryos still surviving at 80 hpf (Fig. 5B, closed triangles; compared to rotenone alone all values 

were significant with p of at least 0.001).   

 

4. Discussion 

The main finding of the present manuscript is that QS10, which is generated during in vivo 

metabolism of idebenone [34,35], can provide a useful bypass of the respiratory defect in cells 

treated with rotenone or possessing deficient complex I, as reported previously for the parent 

compound [20,21]. Unlike idebenone [10], however, QS10 was also able to partially restore 

respiration in cells lacking endogenous CoQ and to rescue zebrafish embryos from rotenone acute 

toxicity in vivo.  

The requirements for an effective bypass of defective complex I by idebenone and other 

short chain quinones are beginning to emerge. Besides cell permeation, an efficient reducing 

system is necessary, and this can be provided by NQO1 [20]. Through the analysis of a panel of 70 

quinones it was later discovered that efficacy also critically depends on the physicochemical 

properties of the entire molecule rather than on the quinone moiety as such [21]. The most 

important issue appears to be whether the compound induces lipid peroxidation since an inverse 

correlation was found between this effect and quinone efficacy [21]. Another issue is stability, and 

this is an intriguing aspect of idebenone pharmacology. As already mentioned, parent idebenone 

is rapidly metabolized by oxidation and side chain shortening so that within 2-3 hours of 

administration it is no longer detectable in the serum [34,35]. Our observation that QS10 (but not 

QS8, QS6 and QS4) can restore electron transfer through inhibited or defective complex I is 

therefore a step forward in understanding the basis for the in vivo effects of idebenone. 

Importantly, QS10 was found to be way more stable in plasma than parent idebenone (which was 

virtually undetectable after 1 hour of administration), and QS10 concentrations were intermediate 

between those of QS4 (highest) and of QS6 (lowest). Given that QS4 and QS6 were inactive in 

promoting electron transfer in the presence of rotenone and oligomycin, we suspect that the 

pharmacological effects of idebenone are actually mediated by QS10. This would also explain lack 

of idebenone toxicity in vivo in spite of inhibitory effect of idebenone on electron transfer at 
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complex I [28]. Our data suggest that the QS10 metabolite is not an inhibitor of complex I, as 

indicated by its ability to partially reconstitute coupled electron transfer in cells lacking 

endogenous CoQ. This finding may pave the way to treatment of both complex I and CoQ 

deficiencies with short-chain quinones, which do not present the solubility and bioavailability 

problems encountered with CoQ supplementation. Major open questions remain, particularly as 

to whether QS10 will be absorbed, reaching pharmacologically relevant concentrations in 

mammals; and whether cellular uptake and reduction by NQO1 or other donor systems will be 

adequate to support bypass of defective complex I in relevant tissues. In this respect, the results 

obtained in zebrafish are encouraging.  

Zebrafish has been used as an in vivo model of rotenone toxicity both in low-dose exposure 

studies modeling the features of Parkinson’s disease [46-48] and as a surrogate of mitochondrial 

respiratory chain dysfunction [49-51]. Depending on dose and time of treatment observed 

phenotypes were body deformities (such as small head and eyes, trunk and tail deformation) with 

progressive necrosis and tissue degradation [49,50], motor function deficits reminiscent of those 

of Parkinson’s disease [46,48] and early, severe developmental delays with arrest at the tail-bud 

stage [51]. Our studies generally agree with the morphological and functional alterations 

described in these previous studies, with detection of morphological abnormalities, motor deficits 

and progressive tissue necrosis and degradation. Of relevance is the lack of protection by 

idebenone treatment on fish survival after treatment with rotenone, which was also noted in a 

previous study [49]. However, our study is the first to have assessed the effect of rotenone on 

respiration of individual zebrafish embryos, which adds a relevant mechanistic basis to the 

protective effects of QS10. Indeed, the rescue by QS10 correlates with its ability to partially 

restore respiration in zebrafish treated with rotenone.  

An obvious question is whether the results obtained in zebrafish are predictive of the 

potential beneficial/toxic effects of QS10 in mammals [52]. Within 5 days of fertilization zebrafish 

larvae develop functional pancreas, liver, bowel, hematopoietic tissue, cardiovascular system, 

kidney and blood-brain barrier that perform the same functions as their human counterparts, with 

a highly conserved integrated physiology [53-56]. Furthermore, 82% of disease-causing human 

proteins have an obvious orthologue in zebrafish with strong similarity of functional domains [57], 

and the zebrafish permeability transition is indistinguishable from that of mammals [58]. Although 

less is known about biotransformation of xenobiotics, recent studies demonstrate that zebrafish 

does possess a full complement of cytochrome P450 genes that have orthologues in humans, with 
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50-90% homology of protein sequence and conservation of enzymatic activity [57,59,60]. 

Comparison of liver microsomes from zebrafish and humans showed that some drugs and 

hormones (paracetamol, dexamethasone, dextromethorphan and diclofenac) underwent similar 

modifications, while others (testosterone and midazolam) either generated different metabolites 

or were not metabolized at all [61]. However, three model quinones underwent phase I reactions 

similar to those observed in humans [62]. Since zebrafish embryos and larvae have negligible or 

low biotransformation capacity compared to adults, we suspect that the effects we observed are 

indeed due to QS10. Thus, the present results in human cell models and zebrafish represent a 

strong rationale for the testing of QS10 in mammalian disease models of complex I and CoQ 

deficiencies.  
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Figure legends 

 

Fig. 1. Structure of CoQ10, idebenone, QS10, QS8, QS6, QS4 and their effects on the mitochondrial Ca2+ 

retention capacity. A, Chemical structures of the indicated quinones and of idebenone metabolites 

generated from idebenone in vivo. B, Ca2+ retention capacity of mitochondria isolated from mouse liver and 

treated with 50 M Idebenone (IdB), QS10, QS8, QS6 or QS4 in their oxidized form (open bars) or reduced 

with 0.5 mM DTT (gray bars). Error bars denote s.d. Mitochondria were resuspended at 0.5 mg/ml and the 

Ca2+ retention capacity (in nmol Ca2+ x mg-1 protein) was determined following additions of 5 μM Ca2+. The 

incubation medium contained 130 mM KCl, 10 mM MOPS-Tris, 5 mM succinate, 1 mM Pi-Tris, 10 μM EGTA, 

1 μM Calcium Green-5N, 1 μM rotenone. **p = 0.0061. 

Fig. 2. Effects of reduced QS4 and QS10 on mitochondrial TMRM fluorescence in HQB17 cybrids. HQB17 

cells were loaded with 10 nM TMRM in the presence of 2 μg/ml cyclosporin H. Where indicated  1 mM DTT,  

50 μM QS4 or 50 μM QS10 preincubated with DTT, or QS10 reduced with NaBH4 (Red QS10) were added. 

Further additions were 4 μM rotenone (R), 5 μM oligomycin (O), 1 μM antimycin A (AA) and 4 μM FCCP (F).  

Data in each panel are presented as mean  s.e.m. of 3 independent experiments. 

 

Fig. 3. Effects of reduced QS10 on cellular respiration in situ. A, HQB17 cells (40,000/well); B, RJ206 cells 

(40,000/well); C, XTC.UC1 (50,000/well); D, COQ4KO cells (50,000/well) were plated in Seahorse 24-well 

plates and respiration was measured in the absence (open bars) or presence (grey bars) of 50 μM QS10 

prereduced with NaBH4. After recording basal respiration (Basal), 1 μg/ml oligomycin (Oligo), 0.2 μM (A,B) 

0.1 μM (C) or 0.05 μM (D) FCCP were sequentially added. Rotenone (Rot, 1 μM) was added right after 

recording the basal rate of respiration for 21 minutes in a separate set of experiments (panel A) or after 

FCCP (panels B-D). Antimycin A-insensitive (non mitochondrial) oxygen consumption rate (OCR) was 

subtracted. Data are mean of at least 3 independent experiments run in triplicate ± s.e.m. (*) p values ≤ 

0.05; (***) p values ≤ 0.001, Student t test, Graphpad Software. 

 

Fig. 4. Effects of idebenone, QS10 and rotenone on zebrafish embryo respiration, morphology and coiling. 

A, Scheme of embryo treatment. Embryos were treated with 3 µM idebenone (IdB) or 3 µM QS10 at 20 

hours post-fertilization (hpf) and with 0.1 µM of rotenone at 24 hpf, and all analyses were performed at 28 

hpf.  B, Oxygen consumption rate (OCR) of individual embryos treated with vehicle (open circles), rotenone 

(closed circles), rotenone in combination with idebenone (closed squares) or rotenone in combination with 

QS10 (closed triangles).  Where indicated 1 μM antimycin A (AA) was added. Traces represent mean values 

± s.e.m. of 3 independent experiments. Respiration of rotenone-treated embryos supplemented with 

idebenone and QS10 was significantly different from respiration of rotenone-treated embryos (p was lower 
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than 0.001). C, Morphology of zebrafish embryos was analyzed at 28 hpf and the corresponding images are 

shown. Left rows, vehicle; right rows, rotenone. Note the developmental zebrafish alteration due to 

rotenone toxicity (arrows) and the residual abnormal morphology (curly tail) of embryos treated with 

rotenone plus idebenone (arrowheads). D, Spontaneous coiling events of embryos treated with rotenone 

(Rot), idebenone (IdB) and QS10 are indicated (+). Bars represent mean values  s.e.m. of 5 independent 

experiments. ** p = 0.0082, *** p = 0.0022.  

 

Fig. 5. Effects of idebenone, QS10 and rotenone on zebrafish embryo survival. A,B the percentage of 

surviving fish treated as described in Fig. 4A was monitored. Open circles, vehicle; closed circled, 0.1 μM 

rotenone added where indicated (arrow); open squares, idebenone; open triangles, QS10; closed squares, 

idebenone plus rotenone; closed triangles, QS10 plus rotenone. Treatment with idebenone and QS10 

(arrows) was done only once at 20 hpf in the experiments of panel A, while it was repeated every 8 hours in 

the experiments of panel B. Statistical data (omitted for clarity in the figure) are reported in the main text, 

refer to the s.e.m. and were obtained with two way ANOVA, Origin 8 Software. Each group of treatment 

included 75 embryos.  
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Highlights 

 Idebenone is a short-chain quinone used to bypass defective mitochondrial complex I 

 The QS10 metabolite can partially replace endogenous coenzyme Q but also mediate 

electron transfer in the presence of rotenone 

 QS10 but not idebenone rescues zebrafish from rotenone toxicity 
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