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Nonparametric change point estimation for survival

distributions with a partially constant hazard rate
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Abstract We present a new method for estimating a change point in the haz-
ard function of a survival distribution assuming a constant hazard rate after
the change point and a decreasing hazard rate before the change point. Our
method is based on fitting a stump regression to p-values for testing hazard
rates in small time intervals. We present three real data examples describ-
ing survival patterns of severely ill patients, whose excess mortality rates are
known to persist far beyond hospital discharge. For designing survival stud-
ies in these patients and for the definition of hospital performance metrics
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(e.g. mortality), it is essential to define adequate and objective end points.
The reliable estimation of a change point will help researchers to identify such
end points. By precisely knowing this change point, clinicians can distinguish
between the acute phase with high hazard (time elapsed after admission and
before the change point was reached), and the chronic phase (time elapsed
after the change point) in which hazard is fairly constant. We show in an ex-
tensive simulation study that maximum likelihood estimation is not robust in
this setting, and we evaluate our new estimation strategy including bootstrap
confidence intervals and finite sample bias correction.

Keywords Change point · Survival · Hazard rate · ICU · Acute phase

1 Introduction

In survival studies of critically ill patients and in the reliability analysis of
components, the structure of the hazard rate as a function of time is of major
interest. Di↵erent phases of the hazard rate have been identified in patients
who had required a therapy in an intensive care unit (ICU) (Schneider et al
2010). In the first phase after ICU admission, the hazard rate has high values
and decreases rapidly over time. This period reflects the acute phase where
the disease is immediately life-threatening. The second phase is defined by
a constant hazard rate over time (long-term survival) and reflects a chronic
phase where survivors of the acute phase have a lower risk of dying, but may
still be su↵ering from long-term sequelae of their preceding organ failure.

The question arises, at which point in time, denoted by the change point,
the second phase starts. This question is important, since it turned out in
di↵erent studies that predictors for long-term and short-term survival are fun-
damentally di↵erent; see Schneider et al (2010) and Callcut et al (2016). Inter-
estingly a comparable problem is encountered with specific products (e.g. auto-
motive electronic), where di↵erent phases of hazard have been proposed when
analyzing the time elapsed after sale and before warranty returns (see Kleyner
and Sandborn 2005; Yang et al 2012; Altun and Comert 2016). The corre-
sponding structures of hazard rates, and the importance of identifying change
points, are comparable to those encountered in survival analyses of critically
ill patients.

There is a rich literature on the estimation of change points in the haz-
ard rate. Many papers address the problem of finding an abrupt change, i.e.
a jump in the hazard function. In an early paper, Matthews and Farewell
(1982) discuss the estimation of piecewise constant hazard with one change
point based on non standard likelihood ratio test theory. Detailed inference
for change point estimation is presented by Loader (1991). Noura and Read
(1990) estimate a proportional hazard model including a change point using
a Weibull model. Other approaches based on the Nelson-Aalen estimator and
on least squares have been developed by Chang et al (1994) and Gijbels and
Gürler (2003). Nonparametric approaches with a general hazard function with
one or more non continuous change points have been addressed by Müller and
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Wang (1990), Antoniadis et al (2000) and Wang et al (2014). The case of a
continuous hazard rate with a change point is on the other hand rarely cov-
ered. In a recent paper, Altun and Comert (2016) use Weibull-Exponential
models to represent the typical L-shaped hazard rates of electronic products.
While the latter authors make use of distributional assumptions, the first non-
parametric approach with a Bayesian estimation strategy using a stochastic
jump process model was proposed by Yang et al (2012).

In this paper, we focus on the case of a hazard function with one change
point and a constant hazard after the change point; the solution of the prob-
lem is motivated by our recent observation of changing hazard rates of ICU
patients. In Section 2, some notation is introduced and maximum likelihood
estimation of the change point is discussed. The new procedures for change
point estimation using p-values are presented in Section 3. A numerical assess-
ment of the di↵erent approaches by an extensive simulation study is presented
in Section 4. In Section 5, the results for three studies on the survival on ICU
patients are discussed followed by some discussion and an outlook in Section 6.

2 Definitions and settings

We are interested in survival times with a distribution function F (t) having a
hazard rate h(t), which is a function of time t > 0 and has the following form

h(t) = h1(t) · I(t < ⌧) + � · I(t � ⌧). (1)

Here, ⌧ > 0 is the change point and I(·) denotes the indicator function. In
the first phase (0; ⌧), the hazard function is a continuous smooth function of t,
denoted by h1(t), while in the second phase [⌧,1), the hazard has the constant
value � > 0. Then, the distribution function F (t) becomes

F (t) = F1(t) · I(t < ⌧) + F1(⌧) · {1� exp[��(t� ⌧)]} · I(t � ⌧) (2)

with F1(t) = 1� exp

✓
�
Z

t

0
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The assumption of a continuous hazard function is framed by h1(⌧) = �.
Furthermore, we allow for non informative right censoring at c

i

> 0 while we
observe n independent data pairs (y

i

, d
i

), i = 1, . . . , n, where y
i

= min(t
i

, c
i

)
and d

i

denotes the event indicator, i.e. d
i

= 0 for censored data (t
i

> c
i

) and
d
i

= 1 for events (t
i

 c
i

).

2.1 Maximum likelihood

We are mainly interested in estimating the unknown change point ⌧ . As a
first approach, we assume a parametric model for the first phase of the hazard
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function. A standard assumption is a Weibull type hazard with parameters
⌘ > 0 and � > 0, i.e.

h(t) =
�

⌘

✓
t

⌘

◆(��1)

· I(t < ⌧) + � · I(t � ⌧);

see e.g. Li et al (2013).
We denote by f1(t) the density and by F1(t) the distribution function of the

Weibull distribution which represents the first phase. Both functions depend
on the parameters � and ⌘. The log likelihood of the observed data (y

i

, d
i

),
i = 1, . . . , n is given by

L(�, ⌘,�, ⌧) =
nX

i=1

(l1i + l2i + l3i + l4i)

with the four components

l1i = d
i

· I(y
i

< ⌧) log f1(yi; �, ⌘)

l2i = (1� d
i

) · I(y
i

< ⌧) logF1(yi; �, ⌘)

l3i = d
i

· I(y
i

� ⌧) [logF1(⌧ ; �, ⌘) + log(�)� �(y
i

� ⌧)]

l4i = (1� d
i

) · I(y
i

� ⌧) (logF1(⌧ ; �, ⌘) + log {1� exp [��(y
i

� ⌧)]})

defined by the status of censoring and the phase corresponding to the observed
time y

i

.
Maximum likelihood (ML) estimation can be performed by using the profile

likelihood for ⌧ and a grid search on the same parameter. The assumption of
a continuous hazard function implies the following parameter restriction

�

⌘

✓
⌧

⌘

◆(��1)

= �;

see also Kleyner and Sandborn (2005). An alternative assumption is a constant
hazard in the first phase, i.e. h1(t) = �1; see Li et al (2013). Further parametric
assumptions using di↵erent parametric distributions for modelling the survival
data in the first phase can be made.

2.2 Robustness of the ML approach

Indeed, all parametric approaches turned out to be rather unstable in our
practical experience and in our simulation studies; for details on the latter
see Section 4.1.1. In particular, the estimation of the change point was highly
dependent on the parametric assumptions on the first phase of the hazard func-
tion. Furthermore, the likelihood turned out to be flat and the ML estimate
did not exist for our real data examples; see Section 5. Therefore, other proce-
dures based on statistical tests have been proposed; see Schneider et al (2010)
for a strategy using p-values of tests for constant hazard. A new approach
without any parametric assumption about the hazard function in Phase 1 is
presented in the next section.
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3 Nonparametric change point estimation

3.1 Change point estimation using p-values

We assume a two phase hazard function h(t), as defined in (1), with a constant
hazard rate in the second phase, i.e. h(t) = � for t � ⌧ . Furthermore, we
assume that the hazard rate of the first phase h1(t) is higher than �. Typical
shapes of such a hazard function are displayed in Figure 1 of Section 4.

We present a strategy for the estimation of the unknown change point ⌧
based on p-values, which was inspired by the proposal for regression models
of Mallik et al (2011). As a first step, we calculate a consistent estimate �̂
for �. The second step consists of performing a series of statistical tests on
suitable intervals (a

k�1; ak] with the null hypothesis H0 : h(t) = �̂ for t 2
(a

k�1; ak] with k = 1, . . . ,K, against the alternative that h(t) > �̂. Since the
null hypothesis is approximately true for a

k�1 � ⌧ , the corresponding p-values,
pv

k

, approximately follow a uniform distribution on (0; 1). If a
k�1 < ⌧ , the

null hypothesis is not true and the corresponding p-values converge to 0 in
probability for increasing sample size. In the last step, these two properties
of the p-values are exploited to fit a two phase piecewise constant regression
model (a so-called stump) to the p-values as outcome variable. The change
point estimate of the regression model for the p-values gives the estimate of
the change point ⌧ of the hazard function.

More specifically, our estimation strategy for the change point ⌧ given i.i.d.
observations (y

i

, d
i

), i = 1 . . . , n, is as follows.

1. We first calculate a consistent estimate �̂ for �. We assume that an upper
limit ⌧

max

for the change point is known, i.e. ⌧  ⌧
max

. Since the hazard
function is constant for t > ⌧

max

, the conditional distribution of (T
i

�
⌧
max

) | (T
i

> ⌧
max

) is exponential. A consistent estimate for � is the
maximum likelihood estimate for the rate parameter of an exponential
distribution calculated on the observations with y

i

> ⌧
max

, i.e.

�̂ =

P
n

i=1 I(yi > ⌧
max

) · d
iP

n

i=1 I(yi > ⌧
max

) · (y
i

� ⌧
max

)
. (3)

2. We define a grid a0 < a1 < · · · < a
K

= ⌧
max

with fixed grid length l,
i.e a

k

= a0 + k · l for k = 1, . . . ,K. The number of events in the interval
(a

k�1; ak] is denoted by X
k

, k = 1, . . . ,K. If the hazard in the kth interval
is equal to �, then X

k

follows a binomial distribution with parameters
N

k

=
P

n

i=1 I(yi > a
k�1) and pr

k

= 1 � exp{��(a
k

� a
k�1)}. Hence, we

perform a one-sided exact binomial test for the null hypothesis H0k : pr
k

=
1� exp{��̂(a

k

� a
k�1)}. The corresponding p-value is

pv
k

= 1� F
bin

(X
k

;N
k

, p̂r
k

), (4)

where F
bin

denotes the binomial distribution function. If there are censored
observations in the interval (a

k�1; ak], we correct the denominator of the
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binomial distribution as

N c

k

=

"
N

k

�
nX

i=1

I(a
k�1 < y

i

 a
k

) · I(d
i

= 0) · yi � a
k�1

a
k

� a
k�1

#
,

where the value in square brackets is rounded to the closest integer number.
3. Was � exactly equal to �̂, the p-values in (4) calculated for a

k�1 � ⌧ would
follow a uniform distribution on (0; 1) with expected value larger than
0.5 because of the discreteness of the test statistic. For the intervals with
a
k�1 < ⌧ , the binomial probability is higher than p̂r

k

, i.e. the corresponding
p-values should be close to 0. To account for both, the estimation of � and
the discreteness of the test statistic, we use a two phase piecewise constant
regression function, E(pv

k

) = � · I(a
k�1 > ⌧), with an unknown constant

� > 0 to model the p-values. The estimate of the change point ⌧ for the
fixed grid a0 < a1 < · · · < a

K

= ⌧
max

is given by

⌧̂
e

= argmin
⌧

(
min
�

KX

k=1

[pv
k

� � · I(a
k�1 > ⌧)]2

)
. (5)

An further alternative, we evaluated, is to replace the p-values calculated at
(4) with their mid-p values, whose expected values are exactly 0.5 if � = �̂.
The corresponding stump regression model, E(pv

k

) = 0.5 · I(a
k�1 > ⌧), is

the one discussed in Mallik et al (2011) though for a rather di↵erent setting.
As we will show in our simulation study (see Section 4), this alternative
does not improve over our original proposal.

4. Expression (5) is based on a grid with constant grid length l. Since the
result depends on the starting point a0, we repeat the estimation process
for the starting points a0, a0 + �/l, . . . , a0 + (J � 1) · (�/l), with � = l/J
for a suitable integer J . We use as estimate for ⌧ the value which gives the
best fit, i.e.

⌧̂ = argmin
⌧

0

@ min
j20,...,J�1

8
<

:min
�

KX

kj=1

⇥
pv

kj � � · I(a
k�1 + j · � > ⌧)

⇤2
9
=

;

1

A ,

(6)
where pv

kj identifies the p-value obtained for the kth interval of the grid
which starts at a0 + j · (�/l), for j = 0, . . . , J � 1. So, the grid length l is a
tuning parameter to be chosen.

The performance of our nonparametric change point estimator is assessed
numerically in Section 4.2. A fitting routine is provided in the R package
CPsurv which is freely available on CRAN.

3.2 Bootstrap inference

To account for possible finite sample bias in the change point estimator defined
by (6) for ⌧ , we propose a bias correction based on a nonparametric bootstrap
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resampling; see Efron and Tibshirani (1993, Chapter 10). We generate B boot-
strap samples {y⇤

b

, d⇤
b

} of size n from the estimated distribution F̂ (t), where
{y⇤

b

, d⇤
b

} = {(y⇤
b1, d

⇤
b1), . . . , (y

⇤
bn

, d⇤
bn

)}, for b = 1, . . . , B. The change point ⌧ in

(2) is replaced by (6) and the constant hazard � in the second phase by �̂. The
distribution function of the first phase, where t < ⌧ , is estimated by calculating
the Kaplan-Meier estimator for our data; this yields a consistent estimator of
F1(t). To mimic the noninformative censoring mechanism, we censor our boot-
strap data using an independent exponential distribution. The corresponding
rate parameter is chosen such that the expected number of censored observa-
tions in the bootstrap samples is in line with the observed number of censored
observations of our sample. We then apply (6) to the bootstrap samples which
results in B bootstrap estimates ⌧̂⇤

b

, b = 1, . . . , B. The bias corrected estimate
of the change point ⌧ is given by

⌧̂
bc

= 2⌧̂ �median(⌧̂⇤
b

)B
b=1; (7)

see Section 3.9.1 of Davison and Hinkley (1997). We call this estimator non-
parametric, since the first part of the distribution function F (t) is estimated
by the nonparametric Kaplan-Meier estimator.

Confidence intervals for ⌧ are also obtained by using the previously de-
scribed nonparametric bootstrap procedure for censored data. We checked the
suitability of both, the symmetric normal approximation confidence interval
and the percentile interval (Davison and Hinkley 1997, Chapter 5). A nested
bootstrap can further be used to include median bias correction. This nested
bootstrap procedure is computer intensive but still feasible.

The performance of the bias corrected nonparametric estimate of ⌧ will be
numerically assessed in Section 4.3, while the real coverage of the bootstrap
confidence intervals is investigated in Section 4.2. Bias corrected estimation
and the computation of confidence intervals is provided by the R package
CPsurv.

3.3 Tuning parameter

As mentioned at the end of Section 3.1, the grid length l is a tuning param-
eter which governs the performance of our nonparametric estimator ⌧̂ for the
change point ⌧ . The simulation study reported in Section 4.4 evaluates di↵er-
ent choices for the grid length l. In fact, the grid length must be chosen in such
a way, that the expected number of events within an interval is not too low.
This is required to provide enough power to detect a possible small change,
even though the chosen binomial test is the uniformly most powerful test for
the given scenario provided that � = �̂. Fixing a too small interval width could
lead to a low number of events within the intervals preceding the true change
point ⌧ . And this in turn could cause a downwards bias in the change point
estimate because of the false negatives. On the other hand, a wide interval
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possibly masks the change point. In Section 5, we present a number of graph-
ical tools for the choice of the tuning parameter, while providing an extensive
discussion of this aspect.

The grid length l furthermore plays a central role in determining the con-
sistency of our nonparametric estimator ⌧̂ . Having defined N1, . . . , NK

as the
number of observations at risk in the K intervals (a

k�1; ak], for i = 1, . . . ,K,
(see Step 2 of the algorithm of Section 3.1), let N

K+1 further represents the
same quantity for the interval (a

K

,1). Let’s further suppose that the change
point ⌧ falls on one extreme of the intervals, say a

k0 . If min(N1, . . . , NK+1)
tends to infinity, the consistent estimator �̂ converges in probability to � and
p̂r

k

! pr
k

. Then, the p-values pr
k

converge to 0 for k < k0 and the expected
value of the p-values on the right of ⌧ coverges to 1/2. The least square esti-
mator of � converges to the true expected value of the p-values on the right
of ⌧ , and this in turn implies ⌧̂

e

to converge to the true change point ⌧ . To
relax the assumption that ⌧ falls on one of the extremes defining the grid,
we further assume that the grid width (a

k

� a
k�1), for k = 1, . . . ,K, shrinks

to zero, while K ! 1, so that eventually ⌧ will fall on one of the extremes.
Consistency is guaranteed provided that the binomial probabilities pr

k

tend
to zero at a lower rate than the interval width l.

4 Numerical assessment

We conducted an extensive simulation study for evaluating our new estima-
tor in realistic set-ups. The first part of the study evaluates both, maximum
likelihood estimation and the alternative settings of the estimating procedure
presented in Section 3.1. In the second part of the simulation study, we ex-
amine our estimation strategy under di↵erent data scenarios with the focus
on its general performance. In the third part, we consider strategies for bias
correction. Di↵erent possible choices of the tuning parameter are evaluated in
the last part of the simulation study.

Inspired by our motivating example, we generated the data from a Weibull
distribution with parameters ⌘ and � in the first phase and a constant hazard
in the second phase, where t � ⌧ . We considered two main cases, a continuous
change in the hazard function and a relevant jump in the same at the change
point. More specifically, observations are simulated according to the survival
distribution characterized by the hazard function

h(t) = h1(t) · I(t < ⌧) + � · I(t � ⌧), where h1(t) =
�

⌘
·
✓
t

⌘

◆
��1

,

with ⌘ = 100 and � = 0.44. For the change point we evaluated the values
⌧ 2 {50, 55, 90, 100}. In the continuous setting, the constant hazard after the
change point was given by � = h1(⌧). In the second scenario we set the hazard
after the change point to � = h1(⌧)/2, which causes a drop in the hazard rate
at ⌧ . Two template hazard functions for both scenarios are given in Figure 1 for
⌧ = 50 and ⌧ = 90. As upper bound for ⌧ we used, depending on the setting,
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Fig. 1 Two template hazard functions of the assessed simulation scenarios for the change
point values ⌧ = 50 (on the left) and ⌧ = 90 (on the right). The dotted line represents the
Weibull-Exponential two phase model for which the hazard function drops at the change
point, while the dashed line corresponds to the same model but with a continuous change
in the hazard at ⌧ . Both models are characterized by the same h1(t) hazard function in the
first phase, i.e. where t < ⌧ .

⌧
max

= 200 if ⌧ 2 {50, 55} and ⌧
max

= 360 if ⌧ 2 {90, 100}. Two di↵erent
sample sizes were assessed, n = 1, 000 and n = 5, 000. To summarize the
results of the simulation study we considered as summary measures the mean,
the median, the mean average distance (MAD) and the root mean squared
error (RMSE) of 1,000 simulations.

4.1 Assessed estimation strategies

In the first run of the simulation study, we checked which of the following
estimation strategies performs best:

1. ML estimation as presented in Section 2.1 for exact and rounded data us-
ing a grid search.

2. our new estimator ⌧̂ under alternative settings. The latter are defined by
combining the following options (see Section 3.1):

– the two types of regression model for the p-values, i.e. E(pv
k

) = � ·
I(a

k�1 > ⌧) and E(pv
k

) = 0.5 · I(a
k�1 > ⌧);

– the use of common p-values or of mid-p values;
– di↵erent values for the grid length l.

4.1.1 Maximum likelihood estimation

The results presented in the upper half of Table 1 show that maximum likeli-
hood (ML) estimation gives the best results when we use the exact data. This
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Table 1 Simulation results for the Weibull-Exponential two phase model and change point
⌧ . Randomly censored survival times with a continuous hazard rate were generated. The
results for maximum likelihood (ML) estimation for exact and rounded data are shown in
the upper table. The results in the lower table consider several settings for our new estimator
⌧̂ for exact data. Here, n denotes the sample size and l the grid length. Flexible � relates
to a flexible stump regression model, while � = 0.5 indicates a stump regression model with
� = 0.5. The median, mean, mean average distance (MAD) and root mean squared error
(RMSE) for 1,000 repetitions are presented.

setting ML estimation
n ⌧ data median mean MAD RMSE

1000 50 exact 46 47 7.57 9.31
1000 55 exact 51 52 7.50 9.78
1000 90 exact 86 88 38.42 42.71
1000 100 exact 96 99 49.22 53.92
1000 50 rounded 87 91 41.26 47.65
1000 55 rounded 95 99 49.41 55.56
1000 90 rounded 147 159 109.2 119.03
1000 100 rounded 162 176 125.57 135.96

setting nonparametric estimation
n ⌧ test regression l median mean MAD RMSE

1000 50 p-value � = 0.5 10 40 48 19.04 29.46
1000 50 mid-p � = 0.5 10 40 52 20.99 33.42
1000 50 p-value flexible � 10 41 46 15.97 22.06
1000 50 mid-p flexible � 10 41 46 16.09 22.78
1000 50 p-value � = 0.5 20 42 63 27.77 45.26
1000 50 mid-p � = 0.5 20 45 67 31.38 51.07
1000 50 p-value flexible � 20 46 60 24.18 38.99
1000 50 mid-p flexible � 20 45 60 25.11 40.99

finding is in line with the known large sample properties of general likelihood
theory, despite the fact that we are not in a regular setting as the likelihood
function is not di↵erentiable in ⌧ . However, rounding on full days, which repre-
sents only a slight, though rather common, modification of the data in medical
frameworks, causes a breakdown in the performance of the ML estimator. This
is supported by our experience with practical data, where we faced convergence
problems and instability issues using the likelihood function. Additional simu-
lations using ML estimation with a misspecified parametric distribution in the
first phase also yielded high values of MAD and RMSE (results not shown).

4.1.2 Settings for the new estimator

We present only results using the exact data, since there was basically no
di↵erence with rounded data for the new estimator. The results in the second
part of Table 1 indicate that using a flexible value for the � coe�cient reduces
the MAD and the RMSE compared to when � = 0.5. Furthermore, using
the mid-p value does not improve the estimator based on standard p-values.
Therefore, the following runs of the simulation study will focus on the setting
where � is estimated using standard p-values. The choice of the grid length l,
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which is the main tuning parameter in our procedure, has a rather high impact
on the performance of the estimator. In our simulation scenarios, a small value
(l=10) yielded much better results than the larger width of 20. We will further
explore this aspect in the last part of the simulation study (Section 4.4).

4.2 Main evaluation

For our main evaluation, we assumed di↵erent change points, and di↵erent cen-
soring scenarios. Under all scenarios, we evaluated our nonparametric change
point estimator using a 10 days grid length. As will be shown in Section 4.4,
the best results are achieved with this choice of the tuning parameter. Our
scenarios considered the change point values ⌧ 2 {50, 55, 90, 100}, and three
types of right censoring (random censoring, Type I censoring at t = 540 and
no censoring). The amount of censored observations in the data ranged be-
tween 5% and 20%; we won’t further comment these rates as they didn’t
influence the performance of our nonparametric estimator. The sample size
was n 2 {1, 000, 5, 000}. The results are presented in Table 2. Our estimator
performs much better, i.e. exhibits a much smaller MAD, for the scenario with
a jump. This is not surprising, since the information provided by the data for
the change point is obviously higher. Furthermore, the MAD for the scenarios
with a change point at ⌧ 2 {90, 100} is higher than for those with a change
point at ⌧ 2 {50, 55}. This is due to the structure of the hazard rate; see
Figure 1, where the change point is more pronounced at ⌧ 2 {50, 55}. If we
focus on the practically more relevant case of no jump in the hazard function,
there is a substantial reduction of the MAD when increasing the sample size.
The coverage rate for both types of bootstrap confidence intervals is accept-
able for the higher sample size. The coverage rate is low for the di�cult case
when ⌧ 2 {90, 100} and n = 1, 000. For the continuous hazard case, there is no
substantial bias for ⌧ 2 {50, 55}, but for ⌧ 2 {90, 100} there seems to be a bias
even for the high sample size of 5,000. Therefore, a bias correction procedure
was developed and assessed.

4.3 Bias correction

We checked our bias correction procedure from Section 3.2 for the scenario with
no jump. Since the results were similar for the di↵erent censoring schemes we
present only results for the case of no censoring; see Table 3. The bias correc-
tion reduces the bias, but MAD and RMSE are increased. This bias-variance
trade-o↵ was observed under all other scenarios (results not presented). There-
fore, a bias correction can be useful, but it should not be applied as the stan-
dard procedure.
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Table 2 Simulation results for the Weibull-Exponential two phase model, with and without
a jump in the hazard rate at the change point ⌧ . The data were generated using di↵erent
censoring types. The simulation was run with the R package CPsurv (v1.0.0). Two sample
sizes were considered, n = 1, 000 and n = 5, 000, for the grid length l = 10. The median,
mean, mean average distance (MAD) and root mean squared error (RMSE) for 1,000 repe-
titions are presented. The average (ø) length and real coverage (cover) are given for both,
the normal approximation and the percentile confidence intervals.

setting estimation ci normal ci percentile
n ⌧ l median mean MAD RMSE ø length cover ø length cover

no censoring; continuous hazard

1000 50 10 41 44 13.63 17.82 66 0.90 66 0.92
1000 55 10 44 47 14.54 18.36 66 0.88 66 0.90
1000 90 10 68 72 24.31 28.30 84 0.75 81 0.77
1000 100 10 74 77 27.39 31.34 85 0.69 81 0.73
5000 50 10 46 51 10.41 16.54 67 0.96 65 0.98
5000 55 10 52 55 10.23 15.85 66 0.96 63 0.97
5000 90 10 80 83 14.90 19.17 80 0.91 76 0.93
5000 100 10 87 90 16.18 19.88 80 0.88 75 0.89
no censoring; hazard with jump at ⌧
1000 50 10 54 57 8.36 14.17 52 0.94 49 0.96
1000 55 10 60 62 8.27 13.91 52 0.95 49 0.98
1000 90 10 93 96 8.32 14.61 54 0.95 51 0.98
1000 100 10 103 106 7.98 13.27 54 0.96 51 0.99
5000 50 10 56 59 9.61 15.39 53 0.91 48 0.89
5000 55 10 61 65 9.78 15.21 52 0.92 48 0.87
5000 90 10 95 99 8.85 14.51 54 0.93 48 0.93
5000 100 10 105 109 8.83 14.78 53 0.93 48 0.93
random censoring; continuous hazard

1000 50 10 41 46 15.97 22.06 77 0.90 78 0.93
1000 55 10 44 49 16.61 22.49 77 0.88 77 0.91
1000 90 10 67 74 28.86 35.99 119 0.82 119 0.84
1000 100 10 72 79 31.73 37.69 118 0.78 116 0.81
5000 50 10 46 52 12.28 20.06 78 0.96 77 0.97
5000 55 10 51 56 11.93 19.75 76 0.95 74 0.96
5000 90 10 78 85 20.10 28.74 112 0.90 108 0.92
5000 100 10 86 92 20.88 28.45 109 0.89 105 0.90
random censoring; hazard with jump at ⌧
1000 50 10 54 58 9.19 17.49 59 0.94 56 0.96
1000 55 10 60 63 9.24 17.18 58 0.96 55 0.98
1000 90 10 93 98 10.48 19.60 72 0.96 67 0.98
1000 100 10 103 106 9.42 16.48 70 0.97 66 0.99
5000 50 10 55 60 9.83 16.97 59 0.94 54 0.90
5000 55 10 61 65 9.88 15.39 58 0.94 53 0.89
5000 90 10 95 99 9.68 17.09 69 0.96 62 0.93
5000 100 10 105 110 10.76 18.71 67 0.95 60 0.94
type I censoring; continuous hazard

1000 50 10 41 45 13.74 18.26 68 0.91 69 0.93
1000 55 10 44 48 14.87 19.68 69 0.88 68 0.9
1000 90 10 68 70 23.77 27.17 74 0.72 71 0.76
1000 100 10 73 76 27.19 30.90 76 0.66 73 0.72
5000 50 10 46 51 10.45 16.33 69 0.96 67 0.98
5000 55 10 52 56 10.73 17.04 68 0.96 66 0.97
5000 90 10 79 82 14.83 18.34 67 0.87 64 0.91
5000 100 10 87 90 16.66 20.20 67 0.84 64 0.89
type I censoring; hazard with jump at ⌧
1000 50 10 54 58 8.55 15.08 55 0.95 52 0.96
1000 55 10 60 62 8.45 14.66 55 0.95 51 0.98
1000 90 10 93 96 8.18 14.37 52 0.95 50 0.98
1000 100 10 103 106 7.85 13.22 52 0.96 50 0.99
5000 50 10 56 59 9.35 15.05 56 0.93 51 0.89
5000 55 10 61 65 9.94 15.94 55 0.92 50 0.87
5000 90 10 95 99 8.90 15.32 50 0.92 46 0.91
5000 100 10 105 109 8.96 15.02 49 0.92 45 0.94
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Table 3 Simulation results for the Weibull-Exponential two phase model with a continuous
hazard at the change point ⌧ 2 {55, 90}. The generated data are neither rounded nor
censored. The simulation was run with the R package CPsurv (v1.0.0). Two sample sizes
were considered, n = 1, 000 and n = 5, 000, for the grid length l = 10. The median, mean,
mean average distance (MAD) and root mean squared error (RMSE) for 1,000 repetitions
are presented.

setting raw estimate bias corrected
n ⌧ l median mean MAD RMSE median mean MAD RMSE

1000 55 10 44 47 14.54 18.36 44 50 17.21 24.42
1000 90 10 68 72 24.31 28.30 70 77 27.16 35.21
5000 55 10 52 55 10.23 15.85 52 57 13.47 23.01
5000 90 10 80 83 14.90 19.17 80 87 18.19 27.44

Table 4 Simulation results for the Weibull-Exponential two phase model with a continuous
hazard at the change point ⌧ 2 {55, 90}. The generated data are randomly censored. The
simulation was run with the R package CPsurv (v1.0.0). Two sample sizes were considered,
n = 1, 000 and n = 5, 000, for the grid length l 2 {3, 5, 10, 20}. The median, mean, mean
average distance (MAD) and root mean squared error (RMSE) for 1,000 repetitions are
presented. The average (ø) length and real coverage (cover) are given for both, the normal
approximation and the percentile confidence intervals.

setting estimation ci normal ci percentile
n ⌧ l median mean MAD RMSE ø length cover ø length cover

1000 55 3 35 36 19.81 21.52 35 0.38 33 0.35
1000 55 5 39 40 16.78 19.03 47 0.64 45 0.69
1000 55 10 44 49 16.61 22.49 77 0.88 77 0.91
1000 55 20 49 62 24.09 37.56 109 0.92 118 0.97
1000 90 3 51 53 37.55 40.17 60 0.33 57 0.33
1000 90 5 58 61 31.78 35.11 78 0.56 74 0.57
1000 90 10 67 74 28.86 35.99 119 0.82 119 0.84
1000 90 20 75 92 37.55 56.02 177 0.91 191 0.93
5000 55 3 44 45 11.04 12.57 30 0.62 28 0.64
5000 55 5 47 49 9.55 11.43 42 0.85 40 0.87
5000 55 10 51 56 11.93 19.75 76 0.95 74 0.96
5000 55 20 55 69 22.53 38.90 111 0.93 114 0.98
5000 90 3 67 68 22.44 24.56 47 0.48 44 0.44
5000 90 5 72 74 18.98 22.11 64 0.73 61 0.73
5000 90 10 78 85 20.10 28.74 112 0.90 108 0.92
5000 90 20 84 102 30.22 51.87 177 0.94 183 0.97

4.4 Tuning parameter

We focused on the case of a continuous hazard function and checked di↵erent
choices for the grid length l. The estimators were compared for l 2 {3, 5, 10, 20},
each for ⌧ 2 {55, 90} and n 2 {1, 000, 5, 000} using randomly censored data.
The results are presented in Table 4.4. The RMSE and MAD were similar for
the 10 days grid, while there was a substantial loss in the performance of the
estimator for l = 20. Furthermore, the real coverage of confidence intervals
was notably below the nominal value for the small interval widths l = 3, 5. So
the choice of l = 10 is optimal in our setting. Interestingly, this holds for both,
small (n = 1, 000) and large (n = 5, 000) sample sizes. We obtained similar
results for the other two censoring schemes.



14 Alessandra R. Brazzale et al.

0 200 400 600

0.
00

0
0.

00
4

0.
00

8

survival time (days)

ha
za

rd
 ra

te
 p

er
 d

ay

Data set 1

0 200 400 600
0.

00
0

0.
00

4
0.

00
8

0.
01

2

survival time (days)

ha
za

rd
 ra

te
 p

er
 d

ay

Data set 2

0 50 150 250 350

0.
00

0
0.

00
2

0.
00

4

survival time (days)

ha
za

rd
 ra

te
 p

er
 d

ay

Data set 3

Fig. 2 Smoothed risk function per day (bold line) with 95% confidence bands (dashed
line) for patient survival. The solid and dotted vertical lines, respectively identify our non-
parametric estimate of the change point and the corresponding 95% bootstrap confidence
interval based on the normal approximation, obtained using a 20 days grid length. Data set
1: Survival of critically ill patients after successful acute phase therapy. Data set 2: Survival
of patients after severe trauma. Data set 3: Postoperative survival of patients after a partial
hepatectomy.

5 Application

We assessed the potential of our nonparametric change point estimator by
applying it to both, the motivating example (survival times of critically ill
patients) introduced in Section 1, and to two further sets of data from the
authors’ collaborative work.

Figure 2 displays the smoothed risk function per day for the three data
sets considered: our motivating example is shown on the left, while the second
and third data sets on patient survival are shown in the middle and rightmost
panels. The three risk functions exhibit the typical L-shaped form of a two
phase model, where the acute phase (first part) is characterized by a more
or less rapid decrease of the hazard rate, which then stabilizes in the post
acute phase (second part). In all three cases, the model defined in Section 2
well describes the dynamics of the survival process. However, the maximum
likelihood estimate of the change point of interest does not exist in all three
cases. The profile likelihood function for ⌧ , in fact, keeps increasing as the latter
moves towards infinity. Furthermore, the three data sets are characterized by a
decreasing information content, causing a broadening of the confidence bands
for the hazard function.

All results reported in this section were obtained with the code available
through our R package CPsurv (v1.0.0). The nonparametric raw (⌧̂) and
median bias corrected (⌧̂

bc

) estimates are based on traditional p-values, with
an unknown � in the stump regression model. Two grid lengths were explored:
10 days and 20 days. The 95% bootstrap confidence intervals are based on
999 replicates and use the normal approximation; 49 replicates were used for
median bias correction.
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Table 5 Raw (⌧) and median bias corrected (⌧̂
bc

) nonparametric change point estimates,
with corresponding 95% bootstrap confidence intervals based on the normal approximation
for the three examples considered. Data set 1: Survival of critically ill patients. Data set 2:
Survival after severe trauma. Data set 3: Postoperative survival after partial hepatectomy.
Two grid lengths were used: 10 days and 20 days. The estimate of � in the stump regression
model is also provided.

l = 10 l = 20

estimate Data set 1 Data set 2 Data set 3 Data set 1 Data set 2 Data set 3

⌧̂ 200 93 32 200 141 62
ci normal (140; 260) (37; 147) (1; 63) (132; 268) (55; 227) (27; 97)

⌧̂
bc

200 114 30 198 159 75
ci normal (120; 280) (28; 200) (0; 74) (122; 274) (14; 304) (28; 122)

�̂ 0.40 0.75 0.51 0.26 0.65 0.49

5.1 Data set 1: Survival of critically ill patients

The aim of this first case study was to identify the onset of the chronic phase
after a successful ICU-therapy. The study was conducted in the surgical inten-
sive care unit (ICU) of the Department of General, Visceral, Transplantation,
Vascular and Thoracic Surgery, University School of Medicine, Grosshadern
Campus, LMU Munich, Germany. The study period extended from March 1,
1993 till February 28, 2005, and included a total of 1,638 patients who met the
primary inclusion criteria. Right censoring occurred after 730 days; 913 events
(deaths) were registered. This data set was first analyzed by Schneider et al
(2010), who set the starting point of the chronic phase at day 198 after ICU
submission using a procedure based on the likelihood ratio test for a constant
hazard rate.

Table 5 reports the raw ⌧̂ and the median bias corrected (⌧̂
bc

) estimates of
the change point for the two grid lengths considered, together with their 95%
confidence intervals. In all, 778 events were used for estimation, having set
⌧
max

= 300. The raw estimate and its lower and upper confidence bounds for
the 20 days grid are further shown in Figure 2 as solid and dotted vertical lines.
The results are in close agreement with the estimate reported in Schneider et al
(2010), and they are very stable. The median bias corrected confidence bands
are slightly larger.

Table 5 also reports the least squares estimates of � for the stump regression
model with l = 10 and l = 20: both are lower than the theoretically expected
value of 0.5, which holds for continuous test statistics. The topmost panels in
Figure 3 illustrate the p-values used to estimate the stump regression model
with, superimposed, the least squares fit used for the two grid lengths. The
bottom line bar plots report the percentage of events per unit at risk present
in each interval.
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5.2 Data set 2: Survival after severe trauma

The survival times of this second data set refer to patients, who had experi-
enced a severe trauma and had been admitted between 2005 and 2010 to a
level I trauma center (Hospital of the University of Munich, Grosshadern and
Innenstadt Campus, LMU Munich, Germany). Inclusion criteria were primary
admission via trauma room following traumatic injury with a consecutive ICU
stay of two or more days. A total of 543 patients met the inclusion criteria; 89
deaths were recorded. The survival time ranged from 2 to 3,401 days. Right
censoring is assumed to have occurred randomly. Most studies on mortality
following a severe trauma have been restricted to in-hospital stay or 30-day
mortality. There is, however, growing evidence that the risk of dying after a
severe trauma injury will not drop to the baseline value of the general popula-
tion even for those who have survived up to hospital discharge (Eriksson et al
2016). The aim of this second study was to estimate the point in time, where
the acute phase (phase of excess mortality) ends.

We set ⌧
max

= 700 days, which roughly corresponds to a two years period.
In all, 77 events out of the 89 present in the data set contributed to the
estimation of ⌧ . The raw (⌧̂) and median bias corrected (⌧̂

bc

) estimates for the
two considered grid lengths are given in Table 5, together with the least squares
fit of �. The raw estimate for the 10 days grid amounts to day 93 (3 months),
which identifies the end of the acute phase with a margin of error of ± 54 days,
while the median bias corrected estimate raises this value to somewhat less
than 4 months, i.e. 114 ± 86 days. In both cases, the commonly used reference
value for the end point (day 30 after the injury) lies only marginally within the
95% confidence interval supporting the hypothesis that short follow-up times
(e.g. 28-day mortality) only poorly reflect the true survival of patients after a
severe trauma. When using a 20 days grid, these estimates are further enlarged
by around one and a half months, setting ⌧ to, respectively, 141 ± 86 days
and 159 ± 145 days. There is, however, a larger uncertainty as shown by the
wider confidence intervals. Graphical inspection of the smoothed risk function
per day for this data set (middle panel of Figure 2) and of the percentages of
events for unit at risk (not shown here) supports the raw estimate obtained
from the 20 days grid length.

5.3 Data set 3: Postoperative survival after partial hepatectomy

The issue in this analysis is to correctly identify the end of the immediate
postoperative period (IPP) after a partial hepatectomy. For the first analysis
of this data set (Schiergens et al 2015), we had used a preliminary version of
the estimation procedure presented in this paper, which stopped at Step 3 (see
p. 6) and didn’t account for possible finite sample bias. Confidence intervals
were obtained by nonparametric bootstrap resampling. In particular, we had
been able to show that after liver resection for primary and secondary malig-
nancies, 90-day rather than the commonly used 30-day or in-hospital mortality
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Fig. 3 p-values used to estimate the stump regression model with superimposed least
squares fit (top) and percentage of events per unit at risk for each interval (bottom) for
Data set 1 on survival of critically ill patients after a successful acute phase therapy. The
estimation used 778 events out of the 913 present, for a total of 1,638 observations, and
⌧
max

= 300. Two grid lengths were explored: 10 days and 20 days.

should be used to avoid underreporting of deaths. The original analysis had
been based on 784 of 1,032 originally analyzed patients, who all had under-
gone elective liver resection with a curative intent between 2003 and 2013. A
total of 95 patients with benign tumors had been excluded and further 153
patients could not be included in the analysis because of missing data. The
change point had been estimated to be at day 80 after surgery, with a 95%
confidence interval of (40; 100) days. The rightmost panel of Figure 2 reports
the smoothed, unadjusted daily hazard rate of the study population up to one
year.

The results of our re-analysis are given in Table 5. We set ⌧
max

= 200
and assumed censoring to have occurred randomly; 93 out of the original 95
events were retained for estimation. The change point estimates based on a
20 days grid are in line with the findings of Schiergens et al (2015): the raw
estimate amounts to 62 days with 95% confidence interval (27; 92) days, while
the corresponding values, when median bias correction is adopted, are 75 and
(28; 122) days. Both confidence intervals only marginally include the commonly
used 30 days reference value. However, the results are di↵erent, when a 10 days
grid is used. Long-term survival was estimated to start at day 32 (1; 63) or at
day 30 (0; 74). The latter result would be in agreement with the commonly
used 30 days reference end point of the acute postoperative phase, though it
may be due to the high amount of uncertainty present in the data. A graphical
inspection of the smoothed risk function per day (rightmost panel of Figure 2)
and of the percentages of events for unit at risk (not shown here) are more in
favour of the raw estimate of day 75 as the end point based on a 20 days grid.
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6 Discussion

We have developed a new procedure for estimating a change point in an L-
shaped hazard function. We assume a declining hazard rate for the time in-
terval preceding the change point ⌧ , and a constant hazard rate thereafter.
This shape of the hazard rate is typical for applications in medicine when
modelling survival of severely ill patients, and in material science for testing
the reliability of complex electronic systems. Since we do not make any para-
metric assumption on the hazard function for the time interval preceding the
change point, our procedure is nonparametric. While most approaches in the
literature assume a jump in the hazard rate, our procedure is valid for data
with and without a jump.

Our new estimator is based on p-values, which result from testing the
hypothesis of a specific value for the hazard rates in suitable time intervals.
The change point is estimated by fitting a stump regression model, with a jump
at the change point, to these p-values. Our method was inspired by Mallik et al
(2011), who adopt a similar strategy in a regression context and proofed it to
be consistent. Furthermore, it represents the extension of previous attempts
which, though plausible, did not have a theoretical foundation. These solutions
were also based on p-values, but used the first significant p-value as estimating
criterion (see our preliminary results in Schneider et al 2010).

Alternative approaches for finding a change point in a setting with two
or more constant hazard rates (see e.g. Matthews and Farewell 1982; Loader
1991; Noura and Read 1990) are not appropriate in our situation where the
hazard rates may rapidly decrease before the change point is reached. Maxi-
mum likelihood and pseudo maximum likelihood approaches using a Weibull
model have been proposed in reliability theory to model the hazard rate for
the time interval preceding the change point; see Kleyner and Sandborn (2005)
and Altun and Comert (2016). These authors show that the parametric ap-
proach is useful for estimating the change point and for reliability prediction
based on the respective model. However, maximum likelihood estimation may
not be robust to model misspecification when estimating the change point; see
Gürler and Yenigün (2011). In our applications, the di↵erent maximum like-
lihood approaches did not lead to acceptable results. In our simulation study,
we found that the maximum likelihood estimator is highly non robust, i.e.
small deviations from the distributional assumptions or rounding led to high
bias.

An estimation strategy, which does not rely on parametric assumptions and
looked appropriate for our setting, has been proposed by Yang et al (2012).
These authors develop a rather complex Bayesian procedure, for which however
no software is provided. Hence, we weren’t able to compare their strategy with
our new approach.

We checked the performance of our new estimator by an extensive simula-
tion study. In scenarios, which are similar to our data applications, our new
estimator showed a good performance, especially for those set-ups with a drop
in the hazard rate or with a rather steep decline of the hazard function in the
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time interval preceding the change point. In particular, the bootstrap based
confidence intervals had an acceptable coverage rate. Furthermore, our esti-
mator reliably identified the change point in data sets with varying contents
of information.

Our new approach has also some limitations, which derives from the neces-
sity to define two tuning parameters (see Section 3.1). First, we need to fix an
upper bound for the change point (Step 1). In our applications it was always
possible to identify reasonable values for ⌧

max

by graphical inspection of the
smoothed risk function, and our estimation procedure was robust concerning
the choice of this upper bound. Second, the grid length to be used in our
procedure (Step 4) is a tuning parameter, which, according to our simulation
studies can have a relevant e↵ect on the performance of the estimator. In Sec-
tion 3.3, and for the real data applications, we carefully discussed this aspect.
Furthermore, we developed and illustrated some graphical tools to support the
decision on which value to choose (Section 5). The new methodology presented
in this paper was implemented in the R-package called CPsurv (Nonparamet-

ric Changepoint Estimation for Survival Data), which is freely available on
CRAN. A data driven choice of the tuning parameter is subject of further
research, as well as the formal proof of consistency for our estimator.

Our new estimator proved to be highly e↵ective in medical applications. In
Section 5, we discussed three di↵erent applications in detail, which showed that
our procedure is useful for handling di�cult data problems. From a practical
perspective, our results can be expected to have a relevant impact on health-
care performance measurements and on the definition of hospital performance
metrics. In hospital systems benchmarking performance is an essential part of
quality control, and mortality after a procedure or injury is one of the most im-
portant performance parameters. Usually, mortality data are based upon those
who survive only to hospital discharge (Callcut et al 2016). There is, however,
growing evidence that a significant portion of patients, who had a major pro-
cedure or injury, will die after discharge or transfer to other institutions such
as rehabilitation or weaning units (Callcut et al 2016; Schneider et al 2010).
These observations have led the British Medical Journal to declare that anal-
yses based only on in-hospital deaths can be potentially biased by di↵erences
in hospitals’ discharge practices (Pouw et al 2013). Therefore, Schneider et al
(2010) proposed to expand the follow-up period used for benchmarking until
a point, which is no longer defined by the location of the patient, but by his
survival time. A reasonable end point of the follow-up period would be the day
beyond which there is a relative stabilization in survival. For critically ill pa-
tients, it has been suggested to use day 60 or day 90 after ICU admission as the
end point of the follow-up. These time spans, however, are subjective and have
not been based on the empirical properties of the survival function. Therefore,
an objective change point estimation procedure based on patient data—such
as our—is highly desirable to standardize performance measurements.
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