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Diamond is the paramount phase to understand the evolution and the physico-
chemical condition of the deep portions of the Earth’s mantle, mainly because: (i) it is 
the stable phase through which carbon is stored in the deep mantle for long geologic 
time; (ii) it does contain and preserve different types of inclusions (fluid, mineral, etc.); 
(iii) it is the only material sampling the mantle to depths of 800 km (e.g. Harte, 2010), 
although the majority of the mined diamonds worldwide derive from shallower depth 
(150 to 250 km). The study of mineral inclusions trapped in diamonds allows the 
retrieval of different pieces of information about the Earth’s interior and its active 
geodynamics, providing important clues on the initiation of subduction processes 
(Shirey & Richardson, 2011; Smart et al., 2016), tracking the transfer of material 
through the mantle transition zone (Stachel et al., 2005; Walter et al., 2011), recording 
the timing of ingress of fluids to the continental lithosphere (e.g. Shirey et al., 2004), 
preserving carbonatitic fluid that trigger deep mantle melting (e.g. Schrauder & Navon, 
1994; Kopylova et al., 2010), providing samples of primordial noble gases (e.g. Ozima & 
Igarashi, 2000), and capturing the redox state of the mantle (e.g. Rohrbach & Schmidt, 
2011). 

Unfortunately the majority of the techniques used so far to study the mineral 
inclusions are destructive. It is only in the last decade that the studies on inclusions in 
diamond have started to use non-destructive techniques, providing new information 
which would otherwise be lost using earlier destructive techniques. Such an example is 
the rim fluids around inclusions in diamonds. In this study we present details of the 
experimental setup on the determination of Fe3+/Fetot ratios of mineral inclusions whilst 
still within the diamonds by a non-destructive approach using the Synchrotron 
Mössbauer Source (SMS; Potapkin et al., 2012) at the Nuclear Resonance beamline 



ID18 (Rüffer & Chumakov, 1996), European Synchrotron Radiation Facility (ESRF), 
Grenoble. The extremely small X-ray spot size (10 × 15 µm2) is perfectly suited for our 
purposes as some inclusions are smaller than 30-50 µm and the Fe3+/Fetot variation 
over the same inclusion cannot be performed by using standard laboratory radioactive 
sources because of the larger beam size. The average collection time for thicker 
inclusions (~ 200 µm) was 2 hours per spectrum, whilst the smallest inclusion (~ 
30×30×30 µm3) required a collection time of approximately 10-12 hours in order to get a 
spectrum with nicely distinguishable features and a high signal-to-noise ratio. In 
general, application to a suite of silicate and oxide inclusions in diamonds produced 
comparable results with respect to those obtained using conventional Mössbauer 
sources (e.g. McCammon et al., 2004). 
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