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Abstract: In this work we introduce an algorithm for distributed average consensus which
is able to deal with asynchronous and unreliable communication systems. It is inspired by
two algorithms for average consensus already present in the literature, one which deals with
asynchronous but reliable communication and the other which deals with unreliable but
synchronous communication. We show that the proposed algorithm is exponentially convergent
under mild assumptions regarding the nodes update frequency and the link failures. The
theoretical results are complemented with numerical simulations.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Multi-agent systems, Distributed control and estimation, Control and estimation
with data loss, Asynchronous algorithms, Average consensus

1. INTRODUCTION

In recent years, substantial effort has been dedicated to-
wards the design of distributed algorithms for large-scale
systems. The main driver for this is that, nowadays, the
availability of small and cheap computational units is
becoming widespread. As a consequence, it is affordable
to develop extended systems to monitor and control many
different environments. However, due to the size of this
systems, it is not always possible to collect all the infor-
mation in a single computational unit and sometimes it is
neither advisable, since some of the information collected
by the system could be sensible. Moreover, each unit is
endowed with some computational power which will not
be fully exploited otherwise. Another additional advantage
of using a distributed approach is that the whole system
is in a way safer, since it does not rely on a single unit but
is assigned to many different ones. Distributed algorithms
present two major drawbacks: memory and computational
constraints and need of a reliable communication system.
The first is due to the fact that the units which compose
the system can be quite limited in their computational
and storage capabilities, the second is intrinsic to the dis-
tributed setting, since each unit can exchange information
only with its neighbours in order to perform a global task.

It is therefore fundamental to always consider the prop-
erties of the communication system adopted. One very
important characteristic is the communication protocol,
which can be synchronous or asynchronous. Synchronous
protocols require substantial coordination between the
nodes, and when the number of agents in the system
increases, this coordination can become difficult to achieve.
An asynchronous communication protocol, on the other
hand, has no coordination requirements, but an algorithm
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which uses such a protocol could in general require more
iterations because in each iteration of the algorithm only
a subset of the nodes in the networks are activated. An-
other important feature of the communication system is
its reliability due to the possibility that packets are lost
during the transmission. Obviously, the system should not
lose packets but perfect reliability could be difficult or too
expensive to enforce; to deal with possible packet losses,
either an acknowledgement scheme is developed or the
algorithm is implemented in such a way that the loss of a
packet is not detrimental for the convergence.

In this paper we describe and study a distributed algo-
rithm for average consensus. Basically, each unit has a
given scalar quantity and the aim for each node is to
compute the average of all these quantities. Sensor net-
works represent a remarkable domain where the evaluation
of the average of the measured quantities is required in
several applications Xiao et al. (2005), Carron et al. (2014),
Carli et al. (2011), Garin and Schenato (2010). However,
differently from the rich literature on this topic, we adopt
an asynchronous and unreliable communication system,
and we allow the communication not to be bi-directional,
that is if a unit communicates with another one, the
converse is not assured. In a synchronous and reliable
communication scenario, important works are Boyd et al.
(2004), Olshevsky and Tsitsiklis (2009), Oreshkin et al.
(2010), Dominguez-Garcia and Hadjicostis (2011). When
unreliability in the communication is introduced, some
works have adopted the acknowledgement scheme Chen
et al. (2010) or assumed that each unit can determine
whether the communication works Patterson et al. (2007),
Xiao et al. (2005). However, an acknowledgement scheme
requires additional secondary transmissions, which slow
down the entire algorithm and consume extra energy.
Therefore, in context where the energy consumption is
constrained, the latter scheme is not adoptable and the
transmission has to be reduced only to essential informa-
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tion. In an asynchronous setting, Bénézit et al. (2010)
introduce an algorithm that reaches average consensus
using the so-called ratio consensus. A very interesting
idea is introduced in Dominguez-Garcia et al. (2011) and
Vaidya et al. (2011) where the adopted communication is
synchronous and unreliable. In these works a robust and
synchronous algorithm inspired by Bénézit et al. (2010) is
introduced.

Adopting the idea of mass transfer given in Vaidya et al.
(2011), but developing an asynchronous algorithm as done
in Bénézit et al. (2010), we describe an algorithm for
average consensus which is provably exponentially con-
vergent to the average in an asynchronous and unreli-
able communication scenario. The convergence proof relies
on the introduction of two assumptions concerning the
communication scheme, one regarding the frequency of
waking up of each node and the other regarding how many
consecutive times a given link can fail. Our interest in this
algorithm is justified by its possible execution in more com-
plex algorithms. In fact, even though it is an interesting
stand-alone algorithm, there are some algorithms which
need average consensus algorithm as a building block, e.g.
the Newton-Raphson algorithm for convex optimization
(see Varagnolo et al. (2016)), some distributed versions
of the Kalman filter (see Carli et al. (2008)) or some
algorithms for energy resources distribution in power grids
(see Dominguez-Garcia and Hadjicostis (2010)). However,
to be used in such algorithms, the average consensus has
to be exponentially convergent. The aforementioned works
by Bénézit et al. (2010) and Vaidya et al. (2011), for
example, do not show whether exponential convergence
is guaranteed in their algorithms. By proving this kind of
convergence for our algorithm, we make possible to use it
in more advanced algorithms which could then be applied
in a realistic communication scenarios (i.e. asynchronous
and unreliable channels).

2. NOTATION & COMMUNICATION PROTOCOLS

Given a scalar x € R, |z| denotes its absolute value.
Given a matrix A € RV*V | [A];; denotes its (i,j)—th
element, and AT indicate its transpose. A vector x is
strictly positive if z; > 0, Vi € {1,...,N}. Given two
vectors x,z € RY, with z; or [x]; we denote its i—th
element and with x/z the Hadamard division of the two
vectors. Iy indicates the N x N identity matrix. A graph
G is represented by the couple (V, &), with V the set of
nodes {1,...,N} and £ C V x V the set of edges. The
number of edges in the graph is E. We consider directed,
strongly connected and static graphs, with all the nodes
having a self loop. Given a node i € V, the set N}
contains all the neighbours which communicate to ¢, that
is Vi), = {j|j € V,i# 3, (j,i) € E}, while the set N,
contains all the neighbours to which ¢ communicates, that
isNi, ={jlieV,i#j (i,j) € E}. Foraset A€V, |¢le
denotes the cardinality of the set. A matrix P € RVX

is row stochastic if P1y = 1y, where 1y is the all-ones
vector of dimension N. Finally, if a,b € R, a < b, [a, ]
indicates the interval between a and b, extremes included.
In the following we briefly describe some of the communi-
cation protocols which are usually adopted in wireless sen-
sors networks given a pre-assigned communication graph,
namely, the synchronous protocols, as opposed to the
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broadcast coordinated asymmetric gossip
asymmetric broadcast gossip symmetric
Fig. 1. Asynchronous communication protocols: the

opaque red node is the one that wakes up (for the
first 3 protocols), the other highlighted nodes are
those which exchange information with it. In gossip
symmetric there is no hierarchy in the nodes selected.

asynchronous ones like broadcast asymmetric, coordinated
broadcast, gossip asymmetric and gossip symmetric.

In a synchronous protocol all the nodes activate at
the same time instants and perform the updating and
communication operations (almost) synchronously. This
protocol requires a common notion of time among the
nodes; indeed all the agents have to wake up simulta-
neously and so a perfect coordination is required. If the
graph is moderately small, requiring synchronization may
not be a great deal, but as the dimension of the network
increases, synchronization can become an issue. Instead,
in asynchronous protocols, during each iteration, only
a small subsets of all the nodes in the network perform
the communication and updating steps. Specifically, in
the broadcast asymmetric protocol, at each iteration,
there is only one node transmitting information to its
out-neighbours, which, based on the received messages,
update their internal variables. At a given iteration, the
(unique) transmitter node is said to be the one that wakes
up (or turns on). The same terminology is applied to the
node that performs the first step of the communication
in the two protocols we describe next. The coordinate
broadcast can be considered as the dual protocol of the
broadcast asymmetric. Indeed, at each iteration, there is
only one node which wakes up, but, instead of sending
information, it polls all its in-neighbours in order to receive
from them some desired messages. In asymmetric gossip
again only one node wakes up but it sends information to
only one of its out-neighbours, typically randomly chosen.
Finally, the symmetric gossip is a protocol that requires
bidirectional communication, that is the communication
graph G has to be undirected (implying N}, = N, for
all i € V); during each iteration an edge of the graph is
selected and only the two nodes which are pointed by this
edge exchange information with each other. Figure 1 gives
a pictorial description of the asynchronous protocols just
described.

3. PROBLEM FORMULATION

Consider N agents (also called nodes) which can com-
municate with each other according to a graph G and
throughout some asynchronous communication protocol.
We assume the communications to be unreliable, that is,
some packet losses might occur during the transmission
of the messages. Each node ¢ € {1,..., N} has a private
scalar quantity ! v; € R, which can be collected in vector
v € RY, and the problem to solve is the evaluation of the
mean of these v;, that is of o = ), v;/N. The evaluation
has to be carried out by each node in a distributed way,

1 The algorithm can be modified to manage multidimensional quan-
tities.
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and the nodes can exchange information among themselves
only if they are neighbours in the graph G.
Formally, denoted by x;(k) the estimate of the mean o
stored in memory by node ¢ at time k, and introducing
the vector x(k) = [z1(k),...,zn(k)]" € RY, the problem
is to develop an algorithm such that
lim z;(k) =0, i€ {1,...,N} = lim x(k) =vly
k—oc0 k—oc0
and such that the update of z;(k) depends only on quan-
tities that belong to the neighbours of node i in N{ .
Distributed algorithms to solve the given problem already
exists if the communication is synchronous, and the real
challenge we want to face is represented by the fact that
the communication is asynchronous and not reliable.
In this paper we assume the agents communicate with each
other through a broadcast asymmetric communication
protocol; however the analysis we propose in next sections
can be adapted to the other communication protocols we
have described in the previous Section.
Due to the communication scenario, some assumptions are
needed concerning how many times a given node wakes up
and how unreliable the communication is. We make the
following (deterministic) assumptions

Assumption 1. (Communications are persistent). There ex-
ists a positive integer 7 such that, for all time instant
k € N, each node performs at least one broadcast trans-
mission within the interval [k, k + 7].

Assumption 2. (Packet losses are bounded). There exists
a positive integer L such that the number of consecutive
communication failures over every directed edge in the
communication graph is smaller than L.

A direct consequence of these assumptions is that, consid-
ering any instant k > 0, in the interval k., k 4+ 1,... k +
L(7 + 1) — 1 each link of the graph G is successfully used
at least once.

4. ASYNCHRONOUS AND ROBUST CONSENSUS

The asynchronous and robust Average Consensus algo-
rithm (ra-AC) we present takes inspiration from the
algorithm presented in Vaidya et al. (2011) but under
asynchronous communication. In particular we adopt a
broadcast asymmetric communication protocol, that is
we only allow one node and, in a second moment, all
its out-neighbours that receive information, to update
part of their variables at each iteration. In Vaidya et al.
(2011), instead, all the nodes at each iteration perform
some computations. Thanks to our assumptions on the
communication, we are able to prove that the convergence
of the algorithm is exponential.

As the algorithm in Vaidya et al. (2011), also the ra-
AC algorithm is based on the average ratio consensus
introduced in Bénézit et al. (2010). According to the ratio
consensus, variable z; € R of node 7 that reaches consensus
on the mean of the vector v is obtained as the ratio of
two appropriate scalar quantities y; and s;; the update
of y; and s; are made by node 7 as a linear combination
of its own variable and of the companion variables of
its neighbours. However, differently from Bénézit et al.
(2010)), where the communications were assumed to be
reliable, in our communication scenario the packets ex-
changed between two nodes can be lost. In this case, we
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Algorithm 1 ra-AC(time k, node h wakes up)

1: % Node h updates its variables

2: yp(k+1) = |/\I/IZ(I|€-)-1;
3 sn(k+1) = opdy
4wk + 1) = L0

5: ng)(k +1) = J;Ly)(k) +yn(k +1);
6: o (k+1) = o\ (k) + sn(k +1);
7: % Node h broadcasts variable O'}(Ly) (k+1) and cr}(ls) (k+1)
toall j € N,
8: if node j receives o +1) and a,(f)(k + 1) then
0 yi(k+1) =0 (k+1) — p\" (k) + y; (k);
10 sj(k+1) =0 (k+1) - p<h (k) + 55 (k);
j(k+1) .
1 z(k+1) = g,g,ﬁg
122 p"(k+1) = ah J(k+1);
13: <h Dk +1) = o'V (k + 1);
14: end if
15: % The variables of the other nodes are not changed

(y)(

need to ensure that all the information sent by node 7 to its
neighbour j is received by j at least every once in a while.
The remarkable idea that allows to meet this requirement
is that of introducing the use of counters: in particular

node 4 has a counter O'l(y)(k') (0’55)(]{3) respectively) to keep
track of the total y-mass (total s-mass) 2 sent by itself to
its neighbours from time 0 to time k, while node j has a
counter pgzy)(k) (pg-i’s)(k:) resp.) to take into account the
total y-mass (total s-mass) received from its neighbour i
from time 0 to time k (one such variable for all ¢ € j\fljn)

In the update step, if at time k node j receives the packet
from node ¢, the information coming from node ¢ used in
the update of the variable y;(k) (s;(k) resp.) is Ul(y)(k) -
pgz’y)(k) (o) (k) — pgz *)(k) resp.), which implies that the
information previously sent by agent ¢ but not received
due to packet losses was delayed and not lost.

We have inherited the idea of using counters from the
algorithm in Vaidya et al. (2011). Our ra-AC algorithm,
taking inspiration from the latter ideas, carries out a
ratio consensus according to an asynchronous commu-
nication protocol, and the generic k-th iteration is de-
scribed in Algorithm 1. To be implemented, each node
i € {1,...,N} in the network has to keep in memory the
following scalar quantities: y; (k), s;(k), O'Z(y) (k), Ugs) (k) and
py’y)(k), pg-l’s) (k),V(i,7) € &, while the quantity of interest
x; (k) is evaluated as y;(k)/s;(k). We collect variables y; (k)
and s; (k) resp. in the N-dimensional vectors y (k) and s(k).
Suppose that at a given iteration node h wakes up. Then,
the main steps of ra-AC are the following: first node h up-
dates its variables y; and sj dividing their previous value
by the cardinality of its out-neighbours set augmented
by 1 (steps 2-3). Note that this operation leaves in fact
unchanged the value of variable x;,. Then it updates the

counters or,(L and a,(f) (steps 5-6) and sends these updated

2 As in Vaidya et al. (2011), we interchangeably use the word mass
for information, since the physical idea of the transferring of mass
quantities can be helpful in understanding how the algorithm works.
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values to its out-neighbours. Now, if node j € N, receives
the packet from node h, it updates the variables y; and
s; as described in steps 10-11, then it adjourns z; and

it finally stores in memory the new values for p(-h’y)

J
péh’s) (steps 11-12-13). The following Theorem shows that,

with a proper initialization of the variables, the ra-AC
algorithm works as an average consensus algorithm, that
is, the variables z;, i € {1,..., N}, which are updated in
a distributed and iterative way, converge to the average of
the N components of the vector v.

Theorem 3. Under Assumptions 1 and 2 and under the
following initialization for the variables

y(0) = v, s(0) =1y,
(0) = o'¥(0) =0, Vi{l,...,N},
90) = A0 =0, v €
the evolution of the variable x(k),obtained by ra-AC

algorithm, converges exponentially to o1y, o = v' 15/N,
i.e., there exist suitable constants C > 0, 0 < d < 1, s.t.

1\ K
Ix(k) = on | < € (a7) JloO) = o1n ]2, (1)
where 7 = NL(7 + 1).

and

In Section 5 we give only the main steps that lead to the
demonstration. The interested reader can find a complete
proof in Bof et al. (2017).

The bound in (1) depends on our communication scenario
through 7. For a fixed number of nodes N, 7 might
increases, either because each node wakes up less often,
or because each communication link may fail for a longer
period of time (or both), which implies that the dissemi-
nation of information may become more difficult. In Equa-
tion (1), if 7 increases the upper bound becomes larger and
larger, which is coherent with the fact that the information
is spread through the network in a slower way.

Remark 4. If no packet losses occur, the variables agy) (k),
ai(s)(k), pgj’y)(k') and pl(-]’s)(k) can be discarded (and vari-
ables y; and s; of the nodes that receive the information
are updated directly using the packets they receive). The
algorithm we obtain in this case is subsumed by those
presented in (Bénézit et al., 2010).

5. PROOF OF CONVERGENCE

The proof of Theorem 3 is based on the theory of ergodic
coefficients for positive matrices Seneta (2006), applied
to the particular case of stochastic matrices. We first
follow what is done in Vaidya et al. (2011). However, the
Assumptions 1 and 2 allow us to state the results in Vaidya
et al. (2011) without resorting to probability theory and
we exploit the ergodicity theory in such a way that we can
conclude the exponential convergence of the algorithm.

To proceed with the proof, we first introduce a matrix
form for the algorithm, then we study the properties of the
matrices involved and we finally exploit ergodicity theory
to prove the convergence of the algorithm. A step-by-step
detailed proof can be found in Bof et al. (2017).

Matrix form and properties To obtain the matrix
form, we start by introducing, for all (i,j) € &, the
following variables

vy (k) = oV (k) = pi"* (),
(k) = o (k) — p{*) (k)

(8
and collect them in the column vectors v®) (k) =

(3,)
[V((lyz)(k‘)] € RE, vB)(k) = [y((f)j)(k:)] € RE respectively.

Defining the row vectors ¢ (k) = [y(k)T v® (k)T] and
¢ (k) = [s(k)T v (k)T] € RN*E it is possible to
show that there exists a sequence of matrices M (k) €
RWHE)X(N+E) according to which it holds

{ ¢(y)(k + 1) = ¢(y)(k’)M(k) (2)
¢ (k+1) =W (k)M (k) -

Each matrix M (k) depends on the node that wakes up at
time k£ and on which transmissions are successful at the
same time step. In any case, all matrices M (k), which we
collect in the matrix set M, satisfy the following lemma.

Lemma 5. The set of matrices M satisfies

(1) M is a finite set;

(2) each M € M is a row-stochastic matrix;

(3) each positive element in any matrix M € M is lower
bounded by a positive constant c;

(4) given 7 = NL(7 4+ 1), Yk > 0, the stochastic matrix

VO (k) = M(k)M (k+1) - - M(k4+7—1), M(t) € M,

is such that its first NV columns have all the elements
which are strictly positive.

Remark 6. The constant 7 has been evaluated in the worst
possible scenario, in particular assuming that in graph G
there are at least two nodes that communicate with each
other in no less than N — 1 steps and it was also assumed
that the communication along one link fails L — 1 times
consecutively. In a random network G, where the diameter
of the graph is usually much smaller than the number of
nodes, the actual constant 7 according to which the first N
columns of V(7)(k) are strictly positive will be, in general,
much smaller.

Ergodicity theory and convergence of ra-AC We
first briefly recall some useful concepts of ergodicity theory.
An exhaustive explanation for ergodicity theory can be
found in Seneta (2006).

Given a stochastic matrix P € RV*N  a coefficient of
ergodicity for P quantifies how much its rows are different
from each other. Two well-known coefficients of ergodicity
for a stochastic matrix P are

6(P) := maxmax |[Pli,; — [Plil
J 21,22
A(P) :=1—min E min {[PJ;, j, [Pli,; } -
1,22 j

As all the coefficients of ergodicity, it holds that 0 <
0(P)<land 0 <A(P) <L

Consider now a stochastic matrix P such that 6(P) < .
Selecting two elements in any column of P, the difference
between these two elements is necessarily smaller than .
Consider now a vector y € RY which sums to 0, that is
1In "y = 0. Let us define the related quantities

Ypos = Z y; > 1, Yneg = Z y; <0, Ypos T Yneg = 0,
i|y; >0 iy <0
and suppose that3 y,0s > 0. It is possible to show that

3 The bound in Equation 3, is still verified if y; = 0 Vi.
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N
Iy Pl < v lyil (3)

i=1

An important property that holds for 6(-) and A(+) is the
following: given h stochastic matrices Py, ..., Py, then

h
§(PLPy - Py) gH (4)

A stochastic matrix P such that )\( ) < 1is called scram-
bling, and a sufficient condition for P to be scrambling
is that at least one column is strictly positive,as can be
verified by the definition of A(-).
Let us apply this theory to our forward product of matrices
that define the evolution of the algorithm as seen in (2),
that is matrix T'(k) = M(0)M (1) --- M(k), which is such
that ¢ (k + 1) = ¢ (0)T (k). We first define

hT—1

[T ME), h>1, Mk)eM
k=(h—1)T
which, by Lemma 5, has strictly positive columns. As a
consequence, A(W(h)) < 1 for all h > 1. The number of
different W (h) is finite and, collecting all W (h) in set W, it
is possible to define value d = maxy ey A(W), d < 1. Due
to Formula 4, we have that, for big enough k, 6(T'(k)) < 1
and in particular the following lemma holds

Lemma 7. The constant f = d*/7), 0 < 8 < 1, is such
that §(T(k)) < B for k > 7.

W (h) =

Lemma 7 implies that the coefficient of ergodicity for T'(k)
converges to 0 as k goes to infinity.

Let us finally prove convergence in case vector v is zero
mean, ¥ = 0. For k > 7, by Lemma 7 we have §(T'(k)) <
(. Starting from Formula (3), and remembering that the
first N elements of ¢ (0) are y(0) and the other elements
are 0, some algebraic manipulation leads to *

il 1= (2| < s Sl < 8 S

and then to

x(k-+1)[J* < 252 ’““(ZIz&)_ 255 B2 |x(0)]12

It is then possible to prove that, using constant C' =
N2 /(ud), the inequality holds for all k, that is

e(k)[* < C (@ 7)¥|[x(0)[%, & > 0. ()
So, we have shown the exponential convergence of the
algorithm when vector v is 0-mean, since vector x(k) is
converging to 01 y.
Finally this convergence result can be generalized to the
case in which v is such that © # 0, obtaining

o (k) = o1 || < C(d"/7)¥||x5(0) — oln]|, k> 0.

Remark 8. It is possible to adequately modify the algo-
rithm in order to work also in the other asynchronous
communication scenarios introduced in Section 2. If some
deterministic assumptions equivalent to the ones in this
paper hold, the proof of convergence of the modified al-
gorithm can be obtained by the one just described, intro-
ducing appropriate modifications in the constructions of

4 Tt is possible to show that s;(k) > ¢ for all i and k.

ARMSE(2000) | p = 20% p = 50% p=80%
r=0.25 0.395 0.635 1.22

r = 0.33 0.033 0.131 0.45
r=0.5 1.621075 9.1710—% 0.0319

Table 1. Values of ARMSFE at time k = 2000,
computed over M = 500 Monte Carlo runs for
different values of r and p.

matrices M (k) and showing that the properties in Lemma
5 are still verified.

Remark 9. The idea of using a consensus algorithm with
an augmented state in order to prove the convergence
of this particular ratio consensus is taken from Vaidya
et al. (2011). However, in the latter the communication is
synchronous, that is at each iteration all the nodes perform
some updates, and moreover the results concerning the
convergence are given in probability. In the set-up illus-
trated in this paper, the algorithm is asynchronous and
the convergence result is stated considering a worst-case
scenario. This is a consequence of the two assumptions we
made, which, remarkably, also allow us to prove that the
convergence is exponential.

6. SIMULATIONS

In this section we show the results of some simulations
done for ra-AC. The set-up of the simulations is the
following: the number of agents considered is N = 50,
the underlying communication graph is random geometric,
with the agents arranged in a squared environment of
edge equal to 1 and with maximum distance between
neighbouring nodes equal to r. In addition, in order to
work on directed graphs, some of the links have been forced
to be unidirectional. The value of 7 and L for Assumptions
1 and 2 are respectively 75 and 10. In particular, we
consider a probability 0 < p < 1 of losing a given packet,
but if the link that is selected has failed to transmit for
L — 1 previous consecutive times, then the link is forced to
be reliable without considering the packet loss probability.
In Table 1 we give the averaged root mean squared error
(ARMSE) of the results. In particular, for each value of d
and p selected, we run M = 500 Monte Carlo runs (MCR)
for different graph realizations. Denoting with x;,(k) the
value x(k) obtained in the i—th MCR, then

ARMSE(k) = - Z |l )~ ol

The results of the blmulatlons show that the more con-
nected the graph is, the faster the convergence is. On the
other hand, the packet loss probability, as expected, makes
the convergence slower. Note that for r = 0.25 | even at
iteration 2000 the convergence is still not good. However,
even in the best case, at iteration 2000 all the nodes have
woken up at most 40 times, and so, due to the presence
of packet losses and the fact that each node have only few
neighbours, this is not surprising.

Figure 2 shows the time evolution for the ARMSE(k), in
case r = 1/3. For all the different values of the packet
loss probability it is possible to appreciate the exponential
convergence of the algorithm. Finally, Figure 3 shows the
time evolution of the variables of a single node in the net-
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Fig. 2. ARMSE as a function of time for 3 different

values for the packet loss probability, evaluated over
M = 500 MCR. The value for the maximum distance
r between nodes is 1/3.

Fig. 3. Time evolution for the scalar variables z14(k),
y14(k) and s14(k) for one run of the algorithm. In
this simulation r» = 1/3 and p = 20%.

work. It is interesting to see that, while the ratio between
y14(k) and s14(k) exponentially converges to the mean o,
the single variables do not converge but keep oscillating.
This behaviour is typical in the ratio consensus algorithm
in presence of unidirectional links and packet losses.

7. CONCLUSIONS

In this paper we presented an algorithm which allows each
node in the network to reach consensus on the mean of
some private constants which belong to each agent. We
gave the proof for the exponential convergence of the
algorithm under mild conditions and we carried out some
simulations to further verify its performance.

As future research, we want to apply ra-AC as the fun-
damental block for consensus in the Newton-Raphson al-
gorithm presented in Varagnolo et al. (2016). Newton-
Raphson is an algorithm that allows to distributively
minimize the sum of convex cost functions and one of
the steps of its iterations is a consensus. Introducing ra-
AC in its implementation would make Newton-Raphson
an asynchronous and robust algorithm, where the latter
features are important in real applications.
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