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Abstract

Polynomial interpolation and approximation methods on sampling points along Lissajous curves using
Chebyshev series is an effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to
the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying
function has discontinuities. A possible solution for this problem are spectral filtering methods acting on
the coefficients of the approximating polynomial.
In this work, after a description of the Gibbs phenomenon and classical filtering techniques in one
and several dimensions, we present an adaptive spectral filtering process for the resolution of this
phenomenon and for an improved approximation of the underlying function or image. In this adaptive
filtering technique, the spectral filter depends on the distance of a spatial point to the nearest discontinuity.
We show the effectiveness of this filtering approach in theory, in numerical simulations as well as in the
application in Magnetic Particle Imaging.

1 Introduction
Magnetic Particle Imaging (MPI) is an emerging medical imaging technology which attracted the interest of different research
groups in the last years [14]. This imaging technology is based on the detection of a tracer consisting of superparamagnetic iron
oxide nanoparticles through the superimposition of different magnetic fields.

When the magnetic tracer particles are excited by oscillating magnetic fields, electromagnetic induction generates a voltage
signal in properly positioned receive coils. The magnetic fields are generated in such a way that the acquisition of the signal is
performed following a field-free point along a suitable sampling trajectory.

One possible choice for such sampling trajectories are Lissajous curves [15]. For the reconstruction of the magnetic particle
densities, these curves have a series of advantages, among others, particular sampling points on the curves can be used directly to
obtain a polynomial reconstruction of the density [10, 13].

Particular Lissajous curves for polynomial interpolation and approximation were considered in the framework of the Padua
points [6, 4, 3]. These points form a unisolvent set for polynomial interpolation of total degree in the square, they are explicitly
known and the Lebesgue constant of their interpolation scheme is of minimal growth. For further information, references and
software see the web page [23]. Due to their excellent properties, efforts have been made in order to understand more about these
points for general Lissajous curves. Bivariate Lissajous node points which are provided with properties similar to the Padua points,
were introduced and studied in [10, 11]. Three- and higher dimensional Lissajous curves have been recently studied in [1, 2, 9].
Wheras in [9] particular Lissajous are considered that allow multivariate polynomial interpolation, in [1, 2] a hyperinterpolation
polynomial approximation for Lissajous curves with conjectured optimal parameters has been carried out. This method consists
in using a discretized orthogonal projection of a function into a space of orthogonal polynomials of a fixed total degree.

The polynomial interpolants and hyperinterpolants can be expressed as multivariate Chebyshev series which, by a change of
coordinates, can be expressed also as Fourier series. In applications, many objects are represented by discontinuous functions. In
this case, it is well-known that the presence of discontinuities in the function gives rise to the so called Gibbs phenomenon. The
Gibbs phenomenon causes distortions in the image reconstruction, providing oscillations near the leap points of the function
which affect the whole image. This phenomenon is already widely treated in the literature, see for example [5, 18].

In this work, we study the Gibbs phenomenon and possible resolutions of this problem in the context of polynomial interpolation
on Lissajous node points and in view of applications in MPI. To this end, we review the usage of classical Fourier spectral filtering
[12], we introduce an adaptive spectral filtering process to diminish the Gibbs oscillations and we show its efficiency in theory, in
numerical simulations as well as in some MPI examples. In particular, we proceed as follows: in the next section, we introduce
the Lissajous node points which can be obtained from degenerated or non-degenerated Lissajous curves [11]. For instance, in
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MPI applications we must choose non-degenerate curves as specified in [10]. Indeed, in this case the centre of the square [−1, 1]2

is a Lissajous node which is useful in order to calibrate the MPI scanner.
In Section 3, we give a presentation about multi-dimensional Fourier series and the Gibbs phenomenon. In Section 4, classical
Fourier spectral filters are presented. First, we review the one-dimensional case and then we introduce corresponding filters in
the general multi-dimensional setting such that fundamental properties as the reduction of the Gibbs phenomenon are preserved.
In Section 5, we present a bivariate adaptive filtering process based on the univariate approach given in [20]. In Section 6, we
first modify the adaptive parameter of the filter in order to resolve some distortions appearing in the results of the experiments,
and make a conjecture about a new promising adaptive parameter. Then, we show that the usage of this new parameter improves
the final result of the reconstruction in some MPI simulations.

2 Lissajous curves and its nodes in the square
Let Q2 = [−1,1]2 and let n = (n1, n2) ∈ N2 such that n1, n2 are relatively prime. We consider the two-dimensional parametric
Lissajous curve γn

ε
: I →Q2 defined as

γn
ε
(t) :=

�

cos(n2 t)
cos(n1 t − (ε− 1)π/(2n2))

�

(1)

with ε ∈ {1, 2}. If ε= 1 then I = [0,π] and the curve is degenerate, if ε= 2 then I = [0, 2π] and the curve is non-degenerate. In
both cases, the Lissajous curve is 2π-periodic. The degenerate curve γn

1 (t) is however traversed twice as t varies from 0 to 2π.
Although a more general definition can be given [11], the definition (1) is sufficient for the applications we consider.
Observation 1. The Lissajous curve generating one of the 4 families of the Padua points (see [3, 4]) can be written, up to a
reflection with respect to one of the coordinate axis, in the form γ

(n,n+1)
1 or γ(n+1,n)

1 . One of the families of Morrow-Patterson
points considered in [17] can be generated by the curve γ(n+2,n+3)

1 , as they consist in the self-intersection points of such a curve.
We are interested in the sets of points generated by Lissajous curves, in the sense given by the following definition.

Definition 1. Let γn
ε

be a Lissajous curve with ε ∈ {1,2} and let

tεnk :=
πk
εn1n2

, k = 0, ..., 2εn1n2 − 1. (2)

The set
LSn
ε

:= {γn
ε
(tεnk ) : k = 0, ..., 2εn1n2 − 1} (3)

is the set of Lissajous node points related to γn
ε
.

(a) The degenerate curve γ(5,6)
1 . (b) The non-degenerate curve γ(5,6)

2 .

Figure 1: Two examples of Lissajous curves and nodes.

We define also the following index set associated to Lissajous nodes

Γ εn :=
§

(i, j) ∈ N2
0 :

i
εn1
+

j
εn2

< 1
ª

∪ {(0,εn2)} (4)

and consider the polynomial space on Q2:

Πεn := span{φ̂i j(x ) : (i, j) ∈ Γ εn}. (5)

Here
φ̂i j(x ) = T̂i(x1)T̂ j(x2), (6)
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where T̂0(x1) = 1, T̂i(x1) =
p

2 cos(i arccos(x1)) for i ≥ 1 is the normalized i-th Chebyshev polynomial of the first kind.
As derived in [11], we can express the polynomial interpolant Lεn f in the space Πεn of a given function f as

Lεn f (x ) =
∑

(i, j)∈Γ εn
ci j( f )φ̂i j(x ) , (7)

where the coefficients ci j( f ) are uniquely given by the values of the function f on the point set LSn
ε
. Using the change of variables

x = cos(t), y = cos(s), and expanding the set Γ εn in

Γ εnS :=
§

(i, j) ∈ Z2 : (|i|, | j|) ∈ Γ εn
ª

. (8)

we can express the interpolant Lεn f as the Fourier series

Lεn f (t, s) =
∑

(i, j)∈Γ εnS

c̃i j( f ) ei(t)e j(s), (9)

where e j(s) = ei js.

3 Fourier series and the Gibbs phenomenon
Let f : Rν → R be a measurable real-valued function which is 2π-periodic in all of its ν ∈ N arguments. For 1 ≤ p ≤ ∞,
x = (x1, x2, ..., xν), we consider the function space

Lp
2π(R

ν) =
§

f : Rν→ R measurable, 2π-periodic and (2π)−ν
∫

(−π,π)ν
| f (x )|pdx <∞

ª

, (10)

where dx is the ν-dimensional Lebesgue measure, and the (semi)-norm

‖ f ‖p:=











(2π)−ν
�

∫

(−π,π)ν
| f (x )|pdx

�1/p

if 1≤ p <∞,

sup
x∈Rν
| f (x )| if p =∞.

(11)

For f ∈ L1
2π(R

ν), the multidimensional Fourier series of f (in complex form) is defined as

S f (x ) =
∑

n∈Zν
cn( f )en(x ), x ∈ Rν , (12)

cn( f ) = (2π)
−ν

∫

(−π,π)ν
f (x )en(x )dx . (13)

where en(x ) :=
∏ν

j=1 en j
(x j) is the tensor product Fourier basis.

Moreover, for N ∈ N, we introduce the partial Fourier sum

SN f (x ) =
∑

k∈Zν
‖k‖∞≤N

ck( f )ek(x ), x ∈ Rν , (14)

where ‖k‖∞= ‖(k1, k2, ..., kν)‖∞= sup {|k1|, |k2|, ..., |kν|}.
The theory of Fourier series can be applied also to approximate integrable functions which are defined on a more general bounded
domains. In order to do this and to preserve a possible continuity of the function, symmetrization and periodic extension
techniques can be applied. In applications, we often deal with functions that are discontinuous and piecewise regular, in the
sense given by the following definition.
Definition 2. Let Ω ⊂ Rν be bounded, open and Lipschitz, and f : Ω→ R. We say that f is piecewise regular, if there exists a
Lipschitz partition (Ωi)i=1,...,n of Ω, where Ωi is an open set with Lipschitz boundary for every i = 1, . . . , n, and regular functions
fi : Ωi → R such that f coincides with fi on Ωi for all i = 1, ..., n.

From now on we consider discontinuous and piecewise regular functions. The exact regularity class of the functions fi will be
relevant only later on for particular error estimates.
It is well-known that if we try to approximate such functions through a Fourier series then the Gibbs phenomenon arises. This
phenomenon is caused by the slow decay (first order) of the Fourier coefficients |ck( f )| as N in the series (14) becomes larger.
Further, it affects the reconstruction of a function as distortions and oscillations are generated on the whole domain and, in
particular, close to the discontinuities. A more detailed discussion of this phenomenon in one and several dimensions is provided
in [16].
In the following lines, we take as example the function g : [−1,1]2→ R defined as

g(x , y) =

�

1 x2 + y2 ≤ (0.6)2 ,

0 otherwise.
(15)
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The function g and the appearance of the Gibbs phenomenon in its polynomial approximation are displayed in Figure 2.

(a) The original function g given in (15). (b) Polynomial approximation L64,66 g interpolating g along the curve
γ
(32,33)
2 .

Figure 2: Example of the Gibbs phenomenon for polynomial interpolation of the indicator function for a disk.

4 Fourier spectral filters
A possible solution for the problem presented in the previous section is to accelerate the decay rate of the coefficients in the sum
(14) by using appropriate spectral filter functions. It is well-known that the Gibbs phenomenon does not disappear just by cutting
down the high coefficients, so a step function would be useless as a filter. To this aim, we introduce the following definition of a
spectral filter of order p (cf. [12, Def 3.1, p.650]).
Definition 3. An even function σ : R→ R is called a spectral filter of order p if:

1. σ ∈ C p−1.

2. σ(0) = 1, σ(l)(0) = 0 for 1≤ l ≤ p− 1.

3. σ(η) = 0 for |η| ≥ 1.

These conditions provide smooth and bell-shaped filter functions that have compact support. The compact support ofσ ensures
that the corresponding filtered Fourier series (21) is a finite sum of trigonometric basis functions. Condition 2. is a regularity condi-
tion and guarantees almost vanishing moments of order p of the mollifier function (24) in the space domain, cf. [20, Theorem 2.2].

Some examples of filters for |η| ≤ 1 are (cf. [12, p. 654]) :

• The FejÃ c©r filter (first order)
σ(η) = 1− |η|. (16)

• The Lanczos or sinc filter (first order)

σ(η) =
sin(πη)
πη

. (17)

• The raised cosine filter (second order)

σ(η) =
1
2
(1+ cos(πη)). (18)

• The exponential filter of order p (p even)
σ(η) = e−α|η|

p
. (19)

In this case, since σ(1) = e−α, the exponential filter does not respect the formal definition of filter. In applications, we set
the value of α such that e−α is in the range of the computer’s roundoff error.

It is well-known (see for example [12]) that such a filtering process provides a reduction of the uniform error ‖ f − SσN f ‖∞ away
from the discontinuities.

Now, let σ be a spectral filter according to Definition 3. For a fixed N ∈ N, we can consider the sequence (σk)k∈Z given by

σk = σ
�

k
N

�

, k ∈ Z, (20)

and introduce the filtered Fourier series
SσN f (x) =

∑

k∈Z

σkck( f )ek(x). (21)
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We construct a tensor product pattern of ν one-dimensional filters

σk = σk1
σk2
· · ·σkν = σ

�

k1

N

�

σ

�

k2

N

�

· · ·σ
�

kν
N

�

, −N ≤ k1, k2, ..., kν ≤ N (22)

so that we can generalize the series (21) to the multi-dimensional setting by

SσN f (x ) =
∑

k∈Zν
σk ck( f )ek(x ). (23)

Using the variable η = (η1,η2, ...,ην), the underlying function σ(η) = σ(η1)σ(η2) · · ·σ(ην) is well defined and has similar
properties of the univariate function. Indeed, it is easy to observe that if σ is a one-dimensional filter of order p and α =
(α1,α2, . . . ,αν) ∈ Zν≥0, α 6= 0, then:

1. σ ∈ C p−1.

2. σ(0) = 1, (Dασ)(0) = 0 for 1≤ |α| ≤ p− 1, where Dα is the usual multi-dimensional derivative of σ with respect to the
multi-index α.

3. σ(η) = 0 for ‖η‖∞≥ 1.

In particular, it follows that the function σ acts on high multi-variate frequences in a similar way as σ does in the univariate case.

5 Adaptive spectral filtering
Spectral filters as introduced in the previous section act on the Fourier coefficients and do not consider the physical position
of the discontinuities. It is known that the operation of such spectral filters is equivalent to mollification in the physical space.
Indeed, defining the mollifier

Φσ(y) :=
1

2π

∑

k∈Z

σkek(y) (24)

we can write

SσN f (x)≡ f ∗Φσ(x) =
∫ π

−π
Φσ(y) f (x − y)dy . (25)

This global mollification does not differentiate between different regions in space and yields blurred images (see for instance
Figure 3 (a)) if the global filter is too strong, or has no impact on the Gibbs phenomenon if the filter is too weak. It is therefore
reasonable to consider filters that apply a strong filtering on the function f only in the region in which the discontinuities are
located. To this end, we consider the following adaptive filter function introduced in [20]

σp(η) =







exp
� |η|p

η2 − 1

�

|η|< 1 ,

0 |η| ≥ 1 ,
(26)

where p : R→ R+ is a function depending on the position x . In our discussion, the parameter function p = p(x) is the key for the
adaptivity. Since p > 0 is not necessarily a natural number, we use the notation

‖ f ‖C p =max
k≤p
‖ f (k)‖∞, k ∈ N, (27)

p!= Γ (p+ 1). (28)

We restrict our discussion to the two-dimensional case. However, all given considerations are true also in a higher-dimensional
setting. For y = (y1, y2) ∈ R2 and p = (p1, p2), we set

Φσ
p
(y) :=

1
4π2

∑

k∈Z2

σ
p
k ek(y), (29)

where
σ

p
k = σ

p1
k1
σ

p2
k2

, (30)

and the filter functions σpi
ki

, i ∈ {1,2}, are given as in (26).
Let ξ= (ξ1,ξ2) be the closest point of discontinuity with respect to a point x = (x1, x2) in the euclidean norm. For i = 1, 2, we
set δi(x ) = |x i − ξi |. Note that the two distance functions δ1 and δ2 depend on both variables x1 and x2.
Lemma 1. Let σp be as defined in (26). Then there exist constants Mσ,ησ > 0 independent from p such that

‖σp‖C p≤ Mσ(p!)2η−p
σ

. (31)

Proof. See [20] Lemma 2.1.

Using Lemma (1), we obtain the following error estimate for adaptive filtering.
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Theorem 2. Let f : Ω ⊂ R2→ R be a piecewise analytic function on some open bounded Lipschitz domain Ω. Then, setting

p = (p1(x ), p2(x )) = ((Nη
∗
1δ1(x ))

1/2, (Nη∗2δ2(x ))
1/2), (32)

with suitable choosen parameters η∗1,η∗2, the error | f − Sσ
p

N f | decays with an asymptotic exponential rate away from the points
of discontinuity of f . Here, the adaptive approximant Sσ

p

N f is given by Sσ
p

N f = f ∗Φσp
with the mollifier Φσ

p
defined in (29)

and the parameters p1, p2 given in (32).

Proof. The proof combines a tensor product approach with univariate arguments given in [20]. In order to reduce it to the result
[20, Theorem 2.1] of the univariate case, particular care has to be given to the correct implementation of the adaptivity strategy
(32) and a proper splitting of the involved double sums. The details are elaborated in [16] p.28–33.

Remarks

• In this section we required the analyticity of f away from its discontinuities. If f is not analytic, the exponential convergence
of the approximation error is in general lost and, depending on the regularity of the function, a subexponential or polynomial
decay rate is obtained.

• The tensor product structure allows us to extend this result also to a general ν-dimensional setting, the adaptive parameter
then becomes

p =
�

(Nη∗1δ1(x ))
1/2, (Nη∗2δ2(x ))

1/2, ..., (Nη∗
ν
δν(x ))

�1/2
.

• Note that the functions δi(x ) are not necessarily continuous at all points x , so that also Sσ
p

N f in Theorem 2 is also not
necessarily a continuous function. This results in striped distortions in the filtered images as can be seen in Figure 3 (b).
To define δi(x ) in case there is no unique closest discontinuity, one can take the average distance over all possible closest
points.

6 Numerics
In this section we first modify the adaptive parameter of the filter with the aim to resolve some distortions appearing in the
results of the experiments, making a conjecture about a new adaptive parameter. Then, we show that the usage of this new
parameter improves the final result of the reconstruction also in MPI simulations.

(a) Spectrally filtered polynomial L(64,66)g using the raised cosine
filter (18).

(b) Spectrally filtered polynomial L(64,66)g using the distorted adapt-
ive spectral filtering.

Figure 3: Approximation of the function g with filtered polynomial interpolants. The adaptive filter in b) is based on the strategy (33) with the
parameters (n1, n2) = (32, 33) and η= 0.23. The edges (marked in green) were determined using the Canny edge detector [7], see Section 6.2.

6.1 Modification of the adaptive parameter

We consider again the bivariate setting. In order to use the adaptive parameter p in the spectral filtering process for the
interpolating polynomial at the Lissajous nodes LSεn , we slightly alter the parameter p in (32). We set

p =
�

(ηn1δ1(x ))
1/2, (ηn2δ2(x ))

1/2
�

, (33)

where n1, n2 are the underlying frequency parameters of the Lissajous curve and η = η∗1 = η
∗
2 is an appropriate constant. We

observed in [16] that (see also Figure 3), using the adaptive parameter (33) similar to the one suggested in Theorem 2, the
filtered image gets affected by striped distortions which are generated at the discontinuities of the functions δ1(x ) and δ2(x ).

In order to improve the final result and to avoid the appearance of these stripes, we can modify the definition of the adaptive
parameters trying to improve our result. We point out that the following part of this section is conjectured from experiments and
observations and is not supported by the theory as before.
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Instead of the two parameters p1, p2 considered so far, we can consider a unique parameter p which depends on the Euclidean
distance

d(x ) = ‖x − ξ‖2=
Æ

δ1(x )2 +δ2(x )2. (34)

Note that in comparison to δ1(x ), δ2(x ) the function d(x ) is continuous. Letting N =
Æ

n2
1 + n2

2 and modifying the initial
parameters as

p1 = (ηNδ1)
1/2, p2 = (ηNδ2)

1/2, (35)

we propose to take p as follows

p =
q

p4
1 + p4

2 = ηNd(x ). (36)

so that we can consider the adaptive parameter p = (p, p).
In the filtering process, we have to deal with two different situations. Using a strong filter, we get a robust reduction of the Gibbs
phenomenon on the whole image, but we also cause a large smoothing effect close to the edges of the object represented by the
function. On the other hand, using a weak filter we almost preserve the function near the discontinuities, but we can not greatly
reduce the Gibbs phenomenon. Our aim is to find a trade-off between these two aspects.
Noticing that the parameter p depends linearly on d(x ), we conjecture the following:

Conjecture 3. Let Φ : [0,+∞)→ [0,+∞) be a function such that:

• Φ(0) = 0,

• Φ is a regular and increasing function in [0,+∞),
• Φ has a saturation property, that is there exists ε > 0 such that

Φ(x)≥ x (37)

for x ∈ [0,ε].

Then, there exists a function Φ with these three properties, possibly depending on the function f , such that using the adaptive
parameter

p = ηNΦ(d(x )) (38)

the final result of the filtering process can be improved in terms of resolution of the Gibbs phenomenon and the accuracy of the
approximation of the image.

A possible family of functions which have the described three properties and which we consider for our experiments is

Φβ (x) = xβ , (39)

with 0< β < 1. For this family, we can define the new parameter

pβ = ηN(d(x ))β . (40)

Remark
The new parameter pβ is more sensitive and has a larger variation in small distances with respect to the linear one given in (36).
On the other hand, pβ has a saturation effect as the distance increases. Since we do not have theoretical guidelines, the tuning of
the parameter β is performed through an heuristic search. In our setting with a discretized grid of 201 points in the interval
[−1, 1], a suitable choice for the applications we have investigated so far is β = 1/4.

Figure 4: Spectrally filtered polynomial L(64,66)g using the adaptive strategy (40) with β = 1/4 and η= 0.0224.
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6.2 MPI applications

In the MPI reconstruction scheme described in [13], the density of the magnetic particles is derived by a measurement based
approach, i.e. the MPI imaging operator is measured as a system matrix in a calibration procedure. To lower the costs, these
measurements were reduced to the node points LSεn of a Lissajous curve, the sampling trajectories of MPI mentioned at the
beginning of the manuscript. Once the reconstruction is performed on these sampling points by solving a linear system of
equations (including the measured system matrix), the whole reconstruction of the particle density can be obtained by polynomial
interpolation on the Lissajous node points. To obtain a filtered polynomial reconstruction, we proceed as follows.

1. Take the reconstructed particle density on the node points LSεn of the Lissajous curve as described in [13].

2. Obtain a first reconstruction by interpolating the function values on the Lissajous nodes LSεn using the polynomial
interpolation described in Section 2, see also [10, 11].

3. Apply the first spectral filtering process as described in Section 4.

4. Use an edge-detector (in our case the Canny edge detector [7]) on the filtered reconstruction in order to find the edges
and the distances required for the adaptivity.

5. Apply the final adaptive filtering procedure on the first reconstruction.

Remarks

• The Canny edge detector turned out to be a good choice for our purpose. A comparison between various edge detection
algortihms is given in [8], where it is also mentioned that “Canny proves the better detector for outer and inner lines of
objects forming edges and has better immunity to noise than Sobel, Prewitt and Roberts detector”.

• To get for each point x its closest discontinuity point with respect to the Euclidan distance, we used the Matlab function
ipdm.m (Inter-Point Distance Matrix) by John D’Errico. The function is downloadable at the Matlab File Exchange of
MathWorks.

In order to prove the effectiveness of our results, we used the SSIM (Structural SIMilarity index) parameter, which is a standard
method for measuring the similarity between two images. The images we considered are two 201× 201 matrices representing
two phantoms: one consisting of a circle and the other consisting of two bars (see Fig. 5).

Figure 5: The original phantoms.

The experiments (in Matlab) were done by considering, as a domain containing our phantoms, the square [−1, 1]2 discretized
as a grid of 201×201 points (which is the evaluation matrix). In order to include polynomial interpolation on Lissajous nodes, we
modified and extended some functions of the Cheb f un 5.3.0 package [22]. The details are elaborated in the master thesis [16].

All reconstructions in [−1, 1]2 have been done using the node points LS(66,64) of a non-degenerate Lissajous curve of degree
(33, 32) providing the parametric curve γ(33,32)

2 .
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Figure 6: First reconstruction obtained by interpolating along the Lissajous curve.
SSIM= 0.665, SSIM= 0.616.

Figure 7: Final reconstruction using the adaptive filtering method described in Section 6.2 using a raised cosine filter for the first filtering
and the parameters β = 1/4,η= 0.0224 for the final adaptive filtering. The edges detected by the Canny edge detector are marked in green.
SSIM= 0.701, SSIM= 0.649.

In MPI, there exist various other ways than spectral methods to deal with the reconstrucion of images in the presence of
edges and noise. A very efficient approach based on variational methods has been treated in [19].

7 Conclusions
Sampling along Lissajous curves followed by polynomial interpolation is an effective way to approximate functions without using
a very large number of sampling points and it is a suitable procedure for MPI applications. However, in the reconstruction of
discontinuous functions it is inevitable to face the Gibbs phenomenon.
Classic Fourier spectral filtering methods are efficient in diminishing the distortions given by the Gibbs phenomenon, but they
also provide a general smoothing in the image and they cause a loss of definition. In our algorithm presented in this work, these
classic spectral methods have been shown to be useful in order to improve the quality of the images prior to the application of
edge-detectors and adaptive filtering methods.
Using the adaptive parameter suggested by the theory, the image reconstruction is affected by some distortions caused by the
introduction of separated one-dimensional distances in a tensor product setting.
In order to improve the final result, we conjectured a different parameter depending on the euclidean distance between points
and related closest discontinuities. After that, we presented a new idea using a non-linear dependence on the distance in the
parameter. This brought an improvement in the general quality of the final reconstructed image.

As a future goal, we hope to improve these results in order to obtain more accuracy in the theory as well as an improved
reconstruction quality in the application.
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