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Abstract We derive a maximum principle for optimal control problems with con-
straints given by the coupling of a systemof ordinary differential equations and a partial
differential equation of Vlasov type with smooth interaction kernel. Such problems
arise naturally as Gamma-limits of optimal control problems constrained by ordi-
nary differential equations, modeling, for instance, external interventions on crowd
dynamics by means of leaders. We obtain these first-order optimality conditions in
the form of Hamiltonian flows in the Wasserstein space of probability measures with
forward–backward boundary conditions with respect to the first and secondmarginals,
respectively. In particular, we recover the equations and their solutions by means of a
constructive procedure, which can be seen as the mean-field limit of the Pontryagin
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Maximum Principle applied to the optimal control problem for the discretized density,
under a suitable scaling of the adjoint variables.

Keywords Sparse optimal control · Mean-field limit · Γ -limit · Optimal control with
ODE–PDE constraints · Subdifferential calculus · Hamiltonian flows
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1 Introduction

The study of large crowds of interacting agents has received a growing attention in
the mathematical literature of the last decade, with countless applications in biol-
ogy, ecology, social sciences, and economics. Starting from the seminal papers [1–4],
emphasis has been put on self-organization, i.e., the formation of macroscopic pat-
terns from the superimposition of simple, reiterated binary interaction rules. Several
examples show that spontaneous convergence to pattern formation is not always
guaranteed, e.g., for highly dispersed initial configurations in consensus problems
[5–8]; hence, the issue of controlling and stabilizing these systems arises naturally.
Two major subclasses of controls of multiagent systems have received substantial
attention in the literature: decentralized controls and centralized ones. With con-
trols of the first kind, the problem is recast into a game-theoretic framework, where
agents optimize their individual cost and solutions correspond to Nash equilibria.
With those of the second kind, an external policy-maker controlling the dynamics is
introduced.

When dealing with large populations, in both cases one faces the well-known prob-
lemof the curse of dimensionality, termfirst coined byBellman precisely in the context
of dynamic optimization: the complexity of numerical computations of the solutions
of the above problems blows up as the size of the population increases. A possible
way out is the so-called mean-field approach, where the individual influence of the
entire population on the dynamics of a single agent is replaced by an averaged one: this
results in a unique mean-field equation and allows one the computation of solutions,
cutting loose from the dimensionality.

In the game-theoretic setting, themean-field approach has led to the development of
mean-field games [9,10], whichmodel populations, whose agents are competing freely
with the others toward the maximization of their individual payoff, as, for instance,
in the financial market. The landmark feature of such systems is their capability to
autonomously stabilize without external intervention. However, in reality, societies
exhibit either convergence to undesired patterns or tendencies toward instability that
only an external government can successfully dominate. The need of such interven-
tions, together with the limited amount of resources that governments have at their
disposal, makes the design of stabilization strategies targeting the least number of
agents (nicknamed sparse) a key issue, which has been extensively studied in the
context of dynamics given by systems of ODEs; see [11–15].
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Nevertheless, the concept of sparse control has to be handled with care, when
trying to generalize it at the level of a mean-field dynamics. Indeed, the indistin-
guishability of agents is a fundamental property of the mean-field setting, and it
is in sharp contrast with controls acting sparsely on specific agents. Figuratively,
trying to stabilize a huge crowds with these controls is like steering a river by
means of toothpicks! A first solution to this ambiguity was given in [16,17], where
the control is defined as a locally Lipschitz feedback control with respect to the
state variables, and sparsity refers to its property of having a small support. Such
concept was successfully used in [18] to implement sparse stabilizers for a consen-
sus problem. This interpretation of sparsity appears also in the framework of the
control of more classical PDEs; see [19–22]. An alternative solution for a proper
definition of sparse mean-field control was proposed in [23], where the control
is sparsely applied on a finite number of individuals immersed in the mean-field
dynamics of the rest of the population, resulting in a system, where the controlled
ODEs are coupled with a control-free mean-field PDE (but indirectly controlled
via the coupling). This kind of control was considered in [24] to model the effi-
cient evacuation of a large crowd of pedestrians with the help of very few informed
agents.

First-order optimality conditions, among which the Pontryagin maximum principle
is the most popular, are necessary conditions to be fulfilled by the optimal controls and
theyoften result in a systemof nonlinear equations,which can, in the case of Pontryagin
one, be solved numerically in a relatively simpleway. Hence, they constitute very often
the most viable method toward the numerical computation of (mean-field) optimal
controls. In the context of mean-field games and optimal control problems with PDE
constraints, first-order optimality conditions have received enormous attention; see,
for instance, [25–28], and they served as a tool for the numerical computation of
mean-field controls, see, e.g., [29] and references therein for an extensive discussion
on corresponding numerical methods. To the best of our knowledge, no corresponding
results have appeared so far in the literature for coupled ODE–PDE systems of the
kind considered in [23].

This paper is devoted to the proof of a Pontryagin maximum principle to charac-
terize optima of such control problems. We first remark that we are not interested
in all possible optima, but mainly on those which arise as limits of optimal strate-
gies of the original discrete problems. We call this subclass of the set of optima
mean-field optimal controls (see Definition 1.2). We remark that the interest in this
class of consistent controls complies with the wish of using the continuous models
(independent of the number N of agents) as approximations of the finite-dimensional
ones, to circumvent the curse of dimensionality, possibly determined by a large num-
ber N of agents. Differently from [17,23] here we do not wish just to derive the
existence of mean-field controls as natural limits of the finite-dimensional optimal
controls, but we want additionally to enforce that such a consistency passes naturally
also at the level of the first-order optimality conditions. This reinforced compatibil-
ity provides a tool for the consistent numerical computation of (mean-field) optimal
controls.
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We summarize our result, borrowing a leaf from the diagram in [27], as follows:

Discretized
optimal con-
trol problem

m ODEs + N ODEs

Continuous
optimal con-
trol problem

m ODEs + PDE

Pontryagin
maximum principle

2m ODEs + 2N ODEs

Extended Pontryagin
maximum principle
2m ODEs + PDE

N → +∞

optimality conditions

N → +∞

optimality conditions

We shall provide a set of hypotheses for which the dashed line from the upper-
right to the bottom-right box is valid, hence closing the consistency diagram. Our
strategy shall be the following: we apply the Pontryagin maximum principle (see,
e.g., [30, Theorem 23.11]) to the finite-dimensional optimal control problems (the
solid line from the upper-left to the bottom-left box), and we pass to the mean-field
limit the system of equations obtained with this procedure (the solid line from the
bottom-left to the bottom-right box). The derived limit equation for the state and
the (rescaled) adjoint variables are obtained in the form of Hamiltonian flows in the
Wasserstein space of probability measures, in the sense of [31]. The result will be
a first-order condition valid for all mean-field optimal controls. The existence of
such controls is also proved (see Corollary 2.2), generalizing the results obtained
in [23]. Let us stress again that the extended Pontryagin maximum principle con-
stitutes the set of equations for an efficient numerical solution of the mean-field
optimal control, which can eventually serve as a surrogate control for approxi-
mately solving the finite-dimensional optimal control with N agents for N very large.
While in the present paper we focus on the derivation and the consistency of the
extended Pontryagin Maximum Principle, we postpone to follow up work its effi-
cient numerical solution, as an adaptation of the approaches recently explored in
[29].

More formally, we are interested in deriving optimality conditions for the
solutions of the following optimal control problem subject to coupled ODE–PDE
constraints.
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Problem 1.1 For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the cost
functional

F(u) =
∫ T

0

[
L(y(t), μ(t)) + γ (u(t))

]
dt, (1)

where (y, μ) solve

{
ẏk(t) = (K � μ(t))(yk(t)) + fk(y(t)) + Bku(t), k = 1, . . . ,m,

∂tμ(t) = −∇x · [(K � μ(t) + g(y(t)))μ(t)] ,
(2)

for the given initial datum (y(0), μ(0)) = (y0, μ0) ∈ R
dm × Pc(R

d).

Here, K : Rd → R
d is an interaction potential, whose role and properties will be

discussed in details in Remarks 1.2 and 1.3. Let us already stress here that this kernel
will not represent necessarily physical interaction forces (which could show singular
behaviors), rather “social” interactions in multiagent systems, which we can take the
liberty of assuming smooth. This smoothness assumption is admittedly a technical
and modeling compromise to allow us to consistently derive the extended Pontryagin
maximum principle, otherwise not justifiable rigorously anymore. Additionally, the
cost functional γ above is assumed to be strictly convex, the finite-dimensional set of
controls U is convex and compact, Bk are constant matrices, and Pc(R

d) is the set of
probability measures on Rd with compact support.

Notice that Problem 1.1 generalizes the control problems introduced and studied
in [23]. The existence of mean-field optimal controls for Problem 1.1 can be indeed
obtained along the same lines and will be shortly discussed in Sect. 2.

We shall prove the following main result.

Theorem 1.1 Fix an initial datum (y0, μ0) ∈ R
dm × Pc(R

d) and assume that
Hypotheses (H) in Sect. 1.1 hold. Then, there exists a mean-field optimal control
for Problem 1.1. Furthermore, if u∗ is a mean-field optimal control for Problem 1.1
and (y∗, μ∗) is the corresponding trajectory, then (u∗, y∗, μ∗) satisfies the following
extended Pontryagin maximum principle:
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There exists (q∗(·), ν∗(·)) ∈ Lip([0, T ];Rdm × P1(R
2d)) such that

– there exists RT > 0, depending only on y0, supp(μ0),m, K , g, fk, Bk,U ,

and T , such that supp(ν∗(·)) ⊆ B(0, RT ) and it satisfies π1#ν
∗(t) = μ∗(t)

for all t ∈ [0, T ];
– it holds

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẏ∗
k = ∇qkHc(y∗, q∗, ν∗, u∗),

q̇∗
k = −∇ykHc(y∗, q∗, ν∗, u∗),

∂tν
∗ = −∇(x,r) · ((J∇νHc(y∗, q∗, ν∗, u∗))ν∗) ,

u∗ = argmaxu∈U Hc(y∗, q∗, ν∗, u)

(3)

where J ∈ R
2d×2d is the symplectic matrix

J =
(

0 Id
−Id 0

)
,

the Hamiltonian Hc : R2dm × Pc(R
2d) × R

D → R is defined as

Hc(y, q, ν, u) =
{
H(y, q, ν, u) ifsupp(ν) ⊆ cl(B(0, RT )) ,

+∞ elsewhere;

and H : R2dm × Pc(R
2d) × R

D → R is defined as

H(y, q, ν, u) = 1

2

∫
R4d

(r − r ′) · K (x − x ′) dν(x, r) dν(x ′, r ′)

+
∫
R2d

r · g(y)(x)dν(x, r) +
m∑

k=1

∫
R2d

qk · K (yk − x) dν(x, r)

+
m∑

k=1

qk · ( fk(y) + Bku) − L(y, π1#ν) − γ (u).

(4)

– the following conditions for system (3) hold at time 0: y∗(0) = y0 and
ν∗(0)(E × R

d) = μ0(E) for every Borel set E ⊆ R
d ,

– the following conditions for system (3) hold at time T : q∗(T ) = 0 and
ν∗(T )(Rd × E) = δ0(E) for every Borel set E ⊆ R

d , where δ0 is the Dirac
measure centered in 0.

As already mentioned, the formulation given above shows that the dynamics of
(y∗, q∗, ν∗) is essentially an Hamiltonian flow in the Wasserstein space of probability
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measures with respect to state and adjoint variables with Hamiltonian H, in the sense
of [31]. The definition ofHc is introduced to simplify some technical details and does
not alter the result. This fact is remarkably consistent with the dynamics (2), since both
are flows in aWasserstein space. This formulation of the optimality conditions making
use of the formalism of subdifferential calculus in Wasserstein spaces of probability
measures constitutes one of the novelties of the work.

Remark 1.1 For every (y, q, ν) with supp(ν) ⊆ cl(B(0, RT )), (4) immediately
implies that

u ∈ argmax
u∈U

Hc(y, q, ν, u) ⇐⇒ u ∈ argmax
u∈U

(
m∑

k=1

qk · Bku − γ (u)

)
.

Then, the strict convexity of γ and the convexity and the compactness of U imply that
u is uniquely determined by (y, q, ν). This is the reason why we write the equality
symbol in u∗ = argmaxu∈U Hc(y∗, q∗, ν∗, u) in place of an inclusion.

We point out the difference between the usual gradient in R
2d with respect to the

state variables x and the adjoint variables r , denoted by ∇(x,r), and the Wasserstein
gradient ∇ν ofHc. In order to do that, we introduce the functions 	 ∈ C2(Rdm ×R

d ×
R
d;R) and ω ∈ C2(Rd ;Rd), related to the functional L in (1) via

L(y, μ) =
∫
Rd

	
(
y, x,

∫
ωμ
)
dμ(x),

where
∫
ωμ := ωμ(Rd). Denoting with ∇ξ 	 and ∇ς	 the partial derivatives of the

function 	(η, ξ, ς), and with Dω(x) the Jacobian of the function ω evaluated at x , we
will show in Sect. 3 that, whenever ν has supported contained in B(0, RT ), ∇νHc can
be computed explicitly as follows:

– For l = 1, . . . , d, it holds

∇νHc(y, q, ν, u)(x, r) · el =
∫
R2d

(r − r ′) · (DK (x − x ′)el) dν(x ′, r ′)

+ r · (Dx g(y)(x)el) −
m∑

k=1

qk · (DK (yk − x)el)

− ∇ξ 	(y, x,
∫
ωμ) · el

−
(∫

Rd
∇ς	(y, x ′,

∫
ωμ) dμ(x ′)

)
· (Dω(x)el).

(5)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the xl coordinates.
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8 J Optim Theory Appl (2017) 175:1–38

– For l = d + 1, . . . , 2d, it holds

∇νHc(y, q, ν, u)(x, r) · el =
∫
R2d

K (x − x ′) · el−d dν(x ′, r ′) + g(y)(x) · el−d .

(6)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the rl−d coordinates.

Notice that ∇νH(y, q, ν, u) actually does not depend on u, as a consequence of the
fact that the control does not act directly on the PDE component of (2).

The main tool we use to prove Theorem 1.1 is the Pontryagin maximum princi-
ple (henceforth, simply addressed as PMP) for optimal control problems with ODE
constraint. We shall apply it to the following finite-dimensional problems, whose con-
straints converge to the coupled ODE–PDE system of Problem 1.1, as we will show
in Sect. 2. For this reason, we call Theorem 1.1 the extended PMP.

Problem 1.2 For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the cost
functional

FN (u) =
∫ T

0

[
L(y(t), μN (t)) + γ (u(t))

]
dt, (7)

where (y, μN ) solve

{
ẏk = 1

N

∑N
j=1 K (yk − x j ) + fk(y) + Bku, k = 1, . . . ,m

ẋi = 1
N

∑N
j=1 K (xi − x j ) + g(y)(xi ), i = 1, . . . , N ,

(8)

for the given initial datum (y(0), x(0)) = (y0, x0) ∈ R
dm × R

dN , where

μN (t)(x) = 1

N

N∑
i=1

δ(x − xi (t)),

is the empirical measure centered on the trajectory x(·) = (x1(·), . . . , xN (·)).

The extended PMP will be derived after reformulating the finite-dimensional PMP
applied to Problem 1.2 in terms of the empirical measure in the product space of state
variables xi and adjoint variables pi , defined as

νN (x, r) = 1

N

N∑
i=1

δ(x − xi , r − Npi ).

Notice that rescaling the adjoint variables pi by the number N of agents is needed
in order to observe a nontrivial dynamics in the limit; indeed, within this scaling, the
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right-hand side of the finite-dimensional PMP is brought back to the form considered,
for instance, in [32], with a different Hamiltonian.

The structure of the paper is the following. In Sect. 1.1, we recall the basic notations
and introduce the main Hypotheses (H). In Sect. 2, we study the controlled dynamics
subject to a coupled ODE–PDE constraint of the form (2), establishing existence and
uniqueness results for solutions. In Sect. 3, we recall basic facts about subdifferential
calculus in Wasserstein spaces, and we explicitly compute ∇νHc. In Sect. 4, we study
the finite-dimensional Problem 1.2 and apply the PMP to it. In Sect. 5, we prove the
extended PMP, i.e., Theorem 1.1.

1.1 Notation and Hypotheses (H)

We start this section by recalling the notation used throughout the paper.
The constants d, D are two positive integers (the dimension of the space of the

agents and of the control, respectively), T > 0 (the end time of the optimization
procedure), and U is a convex compact subset of RD (set in which controls take
values).

Elements of Rn are always represented as row vectors. Functionals have the fol-
lowing expressions: K : Rd → R

d , each fk satisfies fk : Rdm → R
d , and for every

y ∈ R
dm and μ ∈ P1(R

d), g(y) : Rd → R
d and L(y, μ) : Rd → R. The matrices

Bk are constant d × D matrices.
The spaceP(Rn) is the set of probability measures, which take values onRn , while

the space1 Pp(R
n) is the subset of P(Rn) whose elements have finite pth moment,

i.e.,
∫
Rn

‖x‖pdμ(x) < +∞.

We denote byPc(R
n) the subset ofP1(R

n)which consists of all probability measures
with compact support. Notice that if (μn)n∈N is a sequence in Pc(R

n) and it exists
R > 0 such that supp(μn) ⊆ B(0, R) for all n ∈ N, then (μn)n∈N is compact in
Pp(R

n) for all p ≥ 1.
For any μ ∈ P(Rn) and any Borel function r : Rn1 → R

n2 , we denote by r#μ ∈
P(Rn2) the push-forward of μ through r , defined by

r#μ(B) := μ(r−1(B)) for every Borel set B of Rn2 .

In particular, if one considers the projection operatorsπ1 andπ2 defined on the product
space Rn1 × R

n2 , for every ρ ∈ P(Rn1 × R
n2) we call first (resp., second) marginal

of ρ the probability measure π1#ρ (resp., π2#ρ). Given μ ∈ P(Rn1) and ν ∈ P(Rn2),
we denote with Π(μ, ν) the subset of all probability measures in P(Rn1 ×R

n2) with
first marginal μ and second marginal ν.

On the setPp(R
n), we shall consider the following distance, called theWasserstein

or Monge–Kantorovich–Rubinstein distance,

1 We follow the notation of [33].
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10 J Optim Theory Appl (2017) 175:1–38

W p
p (μ, ν) = inf

{∫
R2n

‖x − y‖pdρ(x, y) : ρ ∈ Π(μ, ν)

}
. (9)

If p = 1, we have the following equivalent expression for the Wasserstein distance:

W1(μ, ν) = sup

{∫
Rn

ϕ(x)d(μ − ν)(x) : ϕ ∈ Lip(Rn), Lip(ϕ) ≤ 1

}
.

We denote by Πo(μ, ν) the set of optimal plans for which the minimum is attained,
i.e.,

ρ ∈ Πo(μ, ν) ⇐⇒ ρ ∈ Π(μ, ν) and
∫
R2n

‖x − y‖pdρ(x, y) = W p
p (μ, ν).

It is well known that Πo(μ, ν) is nonempty for every (μ, ν) ∈ Pp(R
n) × Pp(R

n)

(see [34]), hence the infimum in (9) is actually a minimum. The following definition
is motivated by Definition 10.3.1 and Remark 10.3.3 in [33].

Definition 1.1 Letψ : P2(R
2d) →]−∞,+∞] be a proper and lower semicontinuous

functional, and let ν0 ∈ D(ψ). We say that w ∈ L2
ν0

(R2d) belongs to the (Fréchet)
subdifferential of ψ at ν0, in symbols w ∈ ∂ψ(ν0) if and only if for any ν1 ∈ P2(R

2d)

it holds

ψ(ν1) − ψ(ν0) ≥ inf
ρ∈Πo(ν0,ν1)

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν1, ν0)).

It can be seen [31] that, whenever ∂ψ(ν0) is nonempty, it has an element with minimal
L2

ν0
(R2d)-norm, which we call the Wasserstein gradient ∇νψ(ν0) of ψ at ν0.

For any μ ∈ P1(R
d) and K : R

d → R
d , the notation K � μ stands for the

convolution of K and μ, i.e.,

(K � μ)(x) =
∫
Rd

K (x − x ′)dμ(x ′);

this quantity is well defined whenever K is continuous and sublinear, i.e., there exists
C such that ‖K (ξ)‖ ≤ C(1 + ‖ξ‖) for all ξ ∈ R

d . Furthermore, we shall deal also
with the convolution (∇(x ′,r ′)〈r ′, K (x ′)〉) � ν in R2d , whose explicit expression is

(
(∇(x ′,r ′)〈r ′, K (x ′)〉) � ν

)
(x, r) =

∫
R2d

(∇(x ′,r ′)〈r − r ′, K (x − x ′)〉) dν(x ′, r ′).

Notice that, under the hypotheses we are going to make, this convolution is not always
well defined for ν ∈ P1(R

2d). It is nonethelesswell defined formeasures ν ∈ Pc(R
2d),

that is to say for all the cases that will appear in the sequel.
We shall denote withMb(R

n1;Rn2) the space of bounded Radon vector measures
from R

n1 to R
n2 and with ‖ · ‖Mb(R

n1 ;Rn2 ) the total variation norm on it. If ω ∈
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C(Rd;Rd) is sublinear and μ ∈ P1(R
d), the Radon measure ωμ ∈ Mb(R

d;Rd) is
defined as

ωμ(E) :=
∫
E

ω(x)dμ(x), for every E ⊂ R
d bounded.

We shall denote by
∫
ωμ := ωμ(Rd).

In what follows, we shall consider the space X := R
dm × P1(R

d), together with
the following distance

‖(y, μ) − (y′, μ′)‖X := ‖y − y′‖ + W1(μ,μ′), (10)

where ‖y − y′‖ := ∑m
k=1 ‖yk − y′

k‖	2(Rd ).
Henceforth, we assume that the following regularity properties hold.

Hypotheses (H)

(K) The function K ∈ C2(Rd;Rd) is odd and sublinear, i.e., there exists CK > 0
such that for all x ∈ R

d it holds

‖K (x)‖ < CK (1 + ‖x‖).

(L) The function L : Rdm × P1(R
d) → R is

L(y, μ) =
∫
Rd

	
(
y, x,

∫
ωμ
)
dμ(x),

with 	 ∈ C2(Rdm × R
d × R

d ;R) and ω ∈ C2(Rd;Rd).
(G) The function g ∈ C2(Rdm; C2(Rd;Rd)) satisfies for all x ∈ R

d and all
y ∈ R

dm

g(y)(x) · x ≤ G1‖x‖2 + G2 max
l=1,...,m

‖yl‖2 + G3,

where the constants G1,G2 and G3 are independent on x and y.
(F) For each k = 1, . . . ,m, the function fk ∈ C2(Rdm;Rd) satisfies for all

y ∈ R
dm

fk(y) · yk ≤ F1 max
l=1,...,m

‖yl‖2 + F2,

where the constants F1 and F2 are independent on y and k.
(U) The set U ⊆ R

D is compact and convex.
(γ ) The function γ : U → R is strictly convex.
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The following remark discusses some examples in the literature falling into the
above framework.

Remark 1.2 The set of Hypotheses (H) allows to consider interaction kernels K
appearing in several well-established multiagent dynamical models. In particular, the
interaction kernel appearing in the Cucker–Smale model [6] which is given by

K (x) :=
(

0
−φ(‖x‖)v

)
,

for x = (x, v)T ∈ R
6 and φ(λ) = κ

(σ 2+λ2)β
, for some fixed parameters κ, σ > 0 and

β ≥ 0, satisfies the hypothesis (K).
The above kernel is a possible choice for the model considered in [23] in combi-

nation with the leader–follower interactions given by

fk(y) :=
(

wk
1
m

∑m
j=1 φ(‖yk − y j‖)(w j − wk)

)

g(y)(x) :=
(

v
1
m

∑m
j=1 φ(‖x − y j‖)(w j − v)

)
,

where y = (y1, w1, . . . , ym, wm) describes the population of leaders. It can be seen
that such fk and g satisfy the hypotheses (F) and (G), respectively.

Another example comes from considering a mollified version of the Hegselmann–
Krause [35] interaction kernel, i.e.,φ(x) = (χ[0,R]�ρε)(x) for some confidence radius
R > 0 and choosing

K (x) := −φ(‖x‖)x for x ∈ R.

Coming back to a second-order system with space–velocity variables, hypothesis
(G) remains satisfied also by adding to g(y)(x) the self-propulsion/friction term

S(x) := (α − β‖v‖2)v.

where α and β are nonnegative parameters. This term, introduced in [36], balances the
self-propulsion of individuals given by αv and the Rayleigh-type friction −β‖v‖2v,
prescribing the speed of each agent ‖v‖ to approach the asymptotic value

√
α/β (if

other effects are ignored), which can be seen as a characteristic limit speed for the
dynamics. S is commonly encountered in the modeling of bacteria and groups of
animals, see, for instance, [7,37].

Regarding the cost functional, various examples can be considered depending on
the behavior one wants to induce on the population of followers. For instance, a
standard problem in the study of the Cucker–Smale model is to find conditions to
ensureflocking, i.e., alignment of thewhole crowd toward the samevelocity.Apossible
choice, fully complyingwith our set of hypotheses is theminimization of the variance2

2 For simplicity of computation, we consider minimization of 4 times the variance.
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of the crowd, by choosing

L1(y, μ) :=
∫
R6

(
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2
)

dμ(x, v)−
∥∥∥∥∥
1

m

m∑
k=1

wk+
∫

v dμ(x, v)

∥∥∥∥∥
2

=
∫
R6

(
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2−

−
(
1

m

m∑
k=1

wk +
∫

v′ dμ(x ′, v′)
)

·
(
1

m

m∑
k=1

wk + v

))
dμ(x, v),

that is of the form L = ∫
R6 	(y, x,

∫
ωμ) dμ(x) by choosing ω(x) = v and

	(y, x, ς) := 2

m

m∑
k=1

‖wk‖2 + 2‖v‖2 −
(
1

m

m∑
k=1

wk + ς

)
·
(
1

m

m∑
k=1

wk + v

)
.

For the control constraints, we assume U := [−1, 1]3m and we choose to penalize the
L2-norm of the control, hence γ (u) := ‖u‖2. Other forms for the cost L can be of
interest. For example, one may want to drive the crowd to a given fixed velocity v̄ and
correspondingly minimize

L2(y, μ) :=
∫
R6

(
1

2m

m∑
k=1

‖wk − v̄‖2 + 1

2
‖v − v̄‖2

)
dμ(x, v),

that is again of the form
∫
R6 	(y, x,

∫
ωμ) dμ(x), with 	 not depending on its third

variable, this time. Lastly, we mention the following cost functional considered in [38]
in connection with the control of the Hegselmann–Krause model: for any fixed x̄ ∈ R,
consider

L3(y, μ) := 1

2
‖y1(T ) − x̄‖2 + 1

2

∫ T

0

∫
R2

‖x − z‖2dμ(t, x)dμ(t, z)dt

+ 1

2

∫ T

0

∫
R

‖x − y1(t)‖2dμ(t, x)dt + 1

2

∫ T

0
‖u(t)‖2dt.

Remark 1.3 In all the mentioned examples, the interaction potential K is smooth. In
such a context, both a mean-field theory relating the particle model and its continuum
limit and suitable quantitative estimates for convergence are well established since
the paper [39]. In the present paper, similar estimates, adapted to our situation, will
be obtained in Lemmata 2.3 and 4.2. While such estimates basically only require
Lipschitz continuity of the potential K , we are, however, forced to require a C2-
regularity for a twofold reason. First of all, at least continuous differentiability of K
(and, as a consequence, of the finite-dimensional Hamiltonian HN defined in (29)
) is needed to give a meaning to the PMP (28) in the sense of Peano’s existence
theorem. Requirements of boundedness and continuity of the gradient are needed in
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the general context of existence theory for Hamiltonian flows, although some very
technical weakening of the hypotheses can be allowed (see [31, Assumptions (H1’)
and (H2’)]). Furthermore, an important requirement to be met is the so-called λ-
convexity, or semiconvexity of the Hamiltonian in the sense of Definition A.1. In the
theory of Hamiltonian flows, this is a key assumption, since it guarantees that the
Hamiltonian stays constant along trajectories (see [31, Theorem 5.2]). In our paper,
the semiconvexity assumption allows for the computation of the Wasserstein gradient
of the functional Hc in Theorem 3.1, along the lines of the general theory in [33,
Chapter 10]. Due to the complicated form ofHc in (4), it is not possible to enforce this
requirement, unless additional smoothness of the involved terms is considered. This
motivates our choice of dealing with a C2 interaction kernel K .

It is clear from the above discussion that the case of a singular interaction ker-
nel, which arises for important problems in mathematical physics, when dealing, for
instance, with Newton- or Coulomb-type interactions, cannot fall into the scope of
this paper. On the other hand, even a complete existence theory for these kind of
problems has not been achieved so far (see [40, Chapter 1.4] for a general discussion),
although relevant results in this framework have appeared in recent years starting from
the seminal papers [41,42].

Remark 1.4 We briefly compare Hypotheses (H) with those of [25,26]. In [25], which
deals with an SDE-constrained optimal control problem, C1,1 functionals with respect
to state variables and the control are considered. Therefore, our hypotheses are just
slightly more restrictive. On the other hand, we do not require differentiability of the
running cost. The authors of [26] deal, instead, with amean-field game-type optimality
conditions to model evacuation scenarios. They derive a first-order condition under
the hypotheses of continuous differentiability of the functionals with respect to the
state variables together with convexity and positivity assumptions. Furthermore, they
deal specifically with an L2 control cost, while we allow ours to be strictly convex.

We now give the rigorous definition of mean-field optimal control.

Definition 1.2 Let (y0, μ0) ∈ R
dm × Pc(R

d) be given. An optimal control u∗ for
Problem 1.1 with initial datum (y0, μ0) is a mean-field optimal control if there exists
a sequence (u∗

N )N∈N ⊂ L1([0, T ];U) and a sequence (μ0
N )N∈N ∈ Pc(R

d) such that

(i) for every N ∈ N,μ0
N (·) := 1

N

∑N
i=1(·−x0i,N ) is a sequence of empiricalmeasures

for some x0i,N ∈ supp(μ0) + B(0, 1) such that μ0
N ⇀ μ0 weakly∗ in the sense

of measures;
(ii) for every N ∈ N, u∗

N is a solution of Problem 1.2 with initial datum (y0, μ0
N );

(iii) there exists a subsequence of (u∗
N )N∈N converging weakly in L1([0, T ];U) to

u∗.

Remark 1.5 As mentioned before, the above definition is motivated by our interest
in optimizers that are close to optimal controls for the original finite-dimensional
problems. Notice also that, since the measuresμ0

N have all compact support contained
in supp(μ0)+cl(B(0, 1)), they form a compact sequence inPp(R

n) for all p ≥ 1, and
therefore, due toweak∗ convergence toμ0, we also have that limN→∞ Wp(μ

0
N , μ0) =

0.
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2 The Coupled ODE–PDE Dynamics

In this section, we first recall results for PDE equations of transport type with nonlocal
interaction velocities, like the one appearing in the second equation of (2). We then
study the coupled ODE–PDE dynamics (2) and we state existence and uniqueness
results of solutions, together with continuous dependence on the initial data (y0, μ0)

and on the control u. The proofs follow closely in the footsteps of similar results
in [23,31,43,44], to which we will refer anytime no substantial modifications of the
argument is needed.

We start by defining the meaning of solution for the equation

∂tμ(t) = −∇x · (v(t, x, μ(t))μ(t)), (11)

where v : [0, T ] × R
n × P1(R

n) → R
n is a given vector field and n ∈ N is the

dimension of the underlying Euclidean space.

Definition 2.1 We say that a map μ : [0, T ] → P1(R
n) is a solution of (11) if the

following holds:

(i) μ has uniformly compact support, i.e., there exists R > 0 such that it holds
supp(μ(·)) ∈ B(0, R);

(ii) μ is continuous with respect to the Wasserstein distance W1;
(iii) μ satisfies (11) in the weak sense, i.e., (see [33, Equation (8.1.4)]),

d

dt

∫
Rn

φ(x) dμ(t)(x) =
∫
Rn

∇φ(x) · v(t, x, μ(t)) dμ(t)(x),

for every φ ∈ C∞
c (Rn;R).

Now, we can formally define the concept of solution of the controlled ODE–PDE
system (2), which applies, mutatis mutandis, to system (3) as well.

Definition 2.2 Let u ∈ L1([0, T ];U) and (y0, μ0) ∈ X , withμ0 of bounded support,
be given. We say that a map (y, μ) : [0, T ] → X is a solution of the system (2) with
control u if

(i) (y(0), μ(0)) = (y0, μ0);
(ii) the solution is continuous in time with respect to the metric (10) in X ;
(iii) the y coordinates define aCarathéodory solution of the following controlledODE

problem

ẏk(t) = (K � μ(t))(yk(t)) + fk(y(t)) + Bku(t), k = 1, . . . ,m,

for all t ∈ [0, T ];
(iv) μ is a solution of (11), where v : [0, T ]×R

d×P1(R
d) → R

d is the time-varying
vector field defined as follows

v(t, x, μ(t))(x) := (K � μ(t) + g(y(t)))(x).
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We now derive the existence of solutions of (2) as limits for N → ∞ of the system
of ODE (8). We first prove that solutions of (8) coincide with specific solutions of (2).
We then prove the limit result with the help of Lemmas 2.1 and 2.2.

Proposition 2.1 Let N be fixed, and the control u ∈ L1([0, T ];U) be given. Let
(y, xN ) : [0, T ] → X be the corresponding solution of (8), with

xN (t) = (x1,N (t), . . . , xN ,N (t)).

Then, the couple (y, μN ) : [0, T ] → R
dm+dN , with μN (t) being the empirical mea-

sure

μN (t)(x) := 1

N

N∑
i=1

(x − xi,N (t)),

is a solution of (2) with control u.

Proof It can be easily proved by rewriting (2) with μN and arguing exactly as in [17,
Lemma 4.3]. ��
Lemma 2.1 Let K : Rd → R

d satisfy (K) and μ ∈ P1(R
d). Then, it holds K ∗ μ ∈

Liploc(R
d). Furthermore, for all y ∈ R

d it holds

‖(K � μ)(y)‖ ≤ CK

(
1 + ‖y‖ +

∫
Rd

‖x‖dμ(x)

)
.

Proof See, for instance, [17, Lemma 6.4]. ��
Lemma 2.2 Let K : R

d → R
d satisfy (K) and let μ1 : [0, T ] → Pc(R

d) and
μ2 : [0, T ] → P1(R

d) be two continuous maps with respect toW1 satisfying

supp(μ1(t)) ∪ supp(μ2(t)) ⊆ B(0, R),

for every t ∈ [0, T ], for some R > 0. Then for every ρ > 0, there exists constant Lρ,R

such that

‖K � μ1(t) − K � μ2(t)‖L∞(B(0,ρ)) ≤ Lρ,RW1(μ
1(t), μ2(t))

for every t ∈ [0, T ].
Proof A proof of this result may be found, for instance, in [17, Lemma 6.7]. ��
Proposition 2.2 Let y0 ∈ R

dm, μ0 ∈ Pc(R
d), and μ0

N be as in Definition 1.2(i). Let
(uN )N∈N ⊆ L1([0, T ];U) be a sequence of controls such that uN ⇀ u, for some
u ∈ L1([0, T ];U).

Then, the sequence of solutions (yN , μN ) ∈ Lip([0, T ];X ) of (8) with initial
data (y0, μ0

N ) and control uN converges to a solution (y, μ) ∈ Lip([0, T ];X ) of (2)
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with initial data (y0, μ0) and control u. Moreover, there exists a constant ρT > 0,
depending only on y0, supp(μ0), K , g, fk, Bk,U , and T , such that for every N ∈ N,
for every k = 1, . . . ,m and for every t ∈ [0, T ] it holds

‖yk,N (t)‖, ‖yk(t)‖ ≤ ρT and supp(μN (t)), supp(μ(t)) ⊆ B(0, ρT ).

Proof Westart by fixing N > 0 and estimating the growth of the function ‖yk,N (t)‖2+
‖xi,N (t)‖2 for k = 1, . . . ,m and i = 1, . . . N . Denote by

Σ = {(l, j) : l = 1, . . . ,m and j = 1, . . . N }.

From Hypotheses (H), Lemma 2.1 and the compactness of U , it holds

1

2

d

dt

(
‖yk,N‖2 + ‖xi,N‖2

)
= ẏk,N · yk,N + ẋi,N · xi,N

= (
(K � μN )(yk,N ) + fk(y) + Bku

) · yk,N + (
(K � μN )(xi ) + g(y)(xi,N )

) · xi,N
≤ ∥∥(K � μN )(yk,N )

∥∥ ‖yk,N‖ + fk(yN ) · yk,N + ‖Bku‖‖yk,N‖
+ ‖(K � μN )(xi,N )‖‖xi,N‖ + g(yN )(xi,N ) · xi,N

≤ CK

⎛
⎝1 + ‖yk,N‖ + 1

N

N∑
j=1

‖x j,N‖
⎞
⎠ ‖yk,N‖ + F1 max

l=1,...m
‖yl,N‖2 + F2

+ M1‖yk,N‖ + CK

⎛
⎝1 + ‖xi,N‖ + 1

N

N∑
j=1

‖x j,N‖
⎞
⎠ ‖xi,N‖ + G1‖xi,N‖2

+ G2 max
l=1,...m

‖yl,N‖2 + G3

≤ C1 max
(	, j)∈Σ

{
‖y	,N‖2 + ‖x j,N‖2

}
+ C2,

with C1 = 4CK + F1 + G2 + M1 and C2 = CK + F2 + G3 + M1. If we denote with
b(k,i)(t) = ‖yk,N (t)‖2 + ‖xi,N (t)‖2 and with a(t) = max(l, j)∈Σ {b(l, j)(t)}, then the
Lipschitz continuity of a implies that a is a.e. differentiable, while by Stampacchia’s
lemma (see, for instance, [45, Chapter 2, Lemma A.4]) for a.e. t ∈ [0, T ] there exists
a (l, j) ∈ Σ such that

ȧ(t) = d

dt

(
‖yl,N (t)‖2 + ‖x j,N (t)‖2

)
≤ 2C1a(t) + 2C2.

Hence, Gronwall’s lemma and Definition 1.2(i) imply that

a(t) ≤ (a(0) + 2C2t)e
2C1t ≤ (C0 + 2C2t)e

2C1t , (12)

for some uniform constantC0 only depending on y0 and supp(μ0). It then follows that
the trajectories (yN (·), μN (·)) are bounded uniformly in N in a ball B(0, ρT ) ⊂ R

d ,
for
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ρT := √
C0 + 2C2T e

C1T ,

that is positive anddoes not dependon t or on N . This in turn implies that the trajectories
(yN (·), μN (·)) are uniformly Lipschitz continuous in N , as can be easily verified by
computing ‖ẏk,N‖ and ‖ẋi,N‖ and noticing that all the functions involved are bounded
by Hypotheses (H) and the fact that we are inside B(0, ρT ). Therefore

‖ẏk,N (t)‖ ≤ ρ′
T , ‖ẋi,N (t)‖ ≤ ρ′

T , (13)

where the constant ρ′
T does not depend on t or on N .

By an application of the Ascoli–Arzelà theorem for functions on [0, T ] and val-
ues in the complete metric space X , there exists a subsequence, again denoted by
(yN (·), μN (·)) converging uniformly to a limit (y(·), μ(·)), whose trajectories are
also contained in B(0, ρT ). Due to the equi-Lipschitz continuity of (yN (·), μN (·))
and the continuity of the Wasserstein distance, we thus obtain for some LT > 0

‖(y(t2), μ(t2)) − (y(t1), μ(t2))‖X
= lim

N→+∞‖(yN (t2), μN (t2)) − (yN (t1), μN (t1))‖X ≤ LT |t2 − t1|, (14)

for all t1, t2 ∈ [0, T ]. Hence, the limit trajectory (y∗(·), μ∗(·)) belongs as well to
Lip([0, T ];X ).

The same proof as in [23, Theorem 3.3] shows now that (y(·), μ(·)) is a solution
of (2). ��
Corollary 2.1 Let y0 ∈ R

dm, μ0 ∈ Pc(R
d), and u ∈ L1([0, T ];U). Then, there

exists a solution of (2) with control u and initial datum (y0, μ0).

Proof Follows from Proposition 2.2 by taking any sequence of empirical measures
μ0
N as in Definition 1.2(i), and the constant sequence uN ≡ u for all N ∈ N. ��
We now prove the continuous dependence on the initial data that also gives unique-

ness of the solution for (2).

Proposition 2.3 Let the Hypotheses (H) hold. Let u ∈ L1([0, T ],U) be given, and
take two solutions (y1, μ1) and (y2, μ2) of (2) with control u and with initial data
(y0,1, μ0,1), (y0,2, μ0,2) ∈ X , respectively, where μ0,1 and μ0,2 have both compact
support. Then, there exists a constant CT > 0 such that for all t ∈ [0, T ] it holds

‖(y1(t), μ1(t)) − (y2(t), μ2(t))‖X ≤ CT ‖(y0,1, μ0,1) − (y0,2, μ0,2)‖X .

Proof We start by noticing that, by the definition of a solution, we infer the existence of
a ρT > 0 for which y1(·), y2(·) ∈ B(0, ρT ) ⊂ R

dm and supp(μ1(·)), supp(μ2(·)) ⊆
B(0, ρT ) ⊂ R

d .
As a preliminary estimate, by hypothesis (K), Lemma 2.1 and Lemma 2.2 with the

choice ρ = R̂ = ρT , we infer the existence of a constant LK
ρT

> 0 such that

‖(K ∗ μ1)(x) − (K ∗ μ2)(y)‖ ≤ LK
ρT

(W1(μ1, μ2) + ‖x − y‖) . (15)
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holds for every x, y ∈ R
d . Furthermore, if for the sake of brevity we denote by

G := sup
ξ∈B(0,ρT )⊂Rd ,ς∈B(0,ρT )⊂Rdm

‖Dyg(ς)(ξ)‖ and F := max
1≤k≤m

LipB(0,ρT )( fk).

Then, the C2-regularity of g and fk for every k = 1, . . . ,m implies for every y1, y2 ∈
B(0, ρT )

‖g(y1)−g(y2)‖L∞(B(0,ρT )) ≤G‖y1−y2‖ and ‖ fk(y1) − fk(y2)‖ ≤ F‖y1 − y2‖.
(16)

We shall show the continuous dependence estimate by chaining the stability of the
ODE

ẏk(t) = (K � μ(t))(yk(t)) + fk(y(t)) + Bku(t), k = 1, . . . ,m, (17)

with the one of the PDE

∂tμ(t) = −∇x · [(K � μ(t) + g(y(t)))μ(t)] , (18)

first addressing the dependence of (17). By integration, we have

‖y1k (t) − y2k (t)‖ ≤ ‖y0,1k − y0,2k ‖
+
∫ t

0

(
‖(K � μ1(s))(y1k (s)) − (K � μ2(s))(y2k (s))‖+‖ fk(y

1(s))− fk(y
2(s))‖

)
ds.

(19)

For the left-hand side of (19), we have that (15), (16), and the uniform bound on y1(·)
and y2(·) yield

‖y1,k(t) − y2,k(t)‖ ≤ ‖y01,k − y02,k‖ +
∫ t

0

(
LK

ρT
W1(μ1(s), μ2(s))+

+ LK
ρT

‖y1,k(s) − y2,k(s))‖ + F‖y1(s) − y2(s)‖
)
ds (20)

We now consider (18). Arguing as in the derivation of [23, Formula (3.14)], together
with the estimate (16), we get

W1(μ
1(t), μ2(t)) ≤ eC1tW1(μ

0,1, μ0,2)

+
∫ t

0
C2e

C1s
(
LK

ρT
W1(μ

1(s), μ2(s))+G‖y1(s) − y2(s)‖
)
ds,

(21)

for some Gronwall’s constants C1,C2 > 0. We finally consider the function

ε(t) := ‖(y1(t), μ1(t)) − (y2(t), μ2(t))‖X

123

Author's personal copy



20 J Optim Theory Appl (2017) 175:1–38

and, combining (20) for each k = 1, . . . ,m and (21), we obtain

ε(t) ≤ ‖y0,1 − y0,2‖ +
∫ t

0

(
mLK

ρT
W1(μ

1(s), μ2(s)) + LK
ρT

‖y1(s) − y2(s))‖

+ mF‖y1(s) − y2(s)‖
)
ds + eC1tW1(μ

0,1, μ0,2)

+
∫ t

0
C2e

C1s
(
LK

ρT
W1(μ

1(s), μ2(s)) + G‖y1(s) − y2(s)‖
)
ds

≤ ε(0)eC1t +
∫ t

0
(mLK

ρT
+ mF + (LK

ρT
+ G)C2e

C1s)ε(s) ds.

Gronwall’s lemma then implies

ε(t) ≤ ε(0)eC1t

(
(mLK

ρT
+ mF)t + (LK

ρT
+ G)C2

C1
(eC1t − 1)

)
.

Since t ∈ [0, T ], the result is proved. ��
Remark 2.1 Goingback to the applicationof theAscoli–Arzelá theorem inProposition
2.2, consider another converging subsequence of (yN , μN ). We can prove that its limit
is another solution of (8). Since the solution is unique for Proposition 2.3, we have that
all converging subsequences of (yN , μN ) have the same limit; hence, the sequence
(yN , μN ) has itself limit (y, μ).

Remark 2.2 Since equicompactly supported solutions are unique, given the initial
datum, by Proposition 2.3, combined with Proposition 2.2 we infer that the support
of the unique solution can be estimated as a function of the data. More precisely, it is
contained in a ball B(0, ρT ), where the constant is depending only on y0, supp(μ0),
K , g, fk , Bk , U , and T .

We conclude this section by stating the existence result on mean-field optimal
controls for Problem 1. To this end, we fix an initial datum (y0, μ0) ∈ X , with μ0

compactly supported and choose a sequence μ0
N as in Definition 1.2(i).

Consider the functional F(u) on L1([0, T ];U) defined in (1), where the pair (y, μ)

defines the unique solution of (2) with initial datum (y0, μ0) and control u. Similarly,
consider the functional FN (u) on L1([0, T ];U) defined in (7), where the pair (yN , μN )

defines the unique solution of (2)with initial datum (y0, μ0
N ) and control u. As recalled

in Proposition 2.2, such solution coincides with the solution of the ODE system (8).
The existence is a consequence of the Γ -convergence of the sequence of func-

tionals (FN )N∈N on L1([0, T ];U) to the target functional F . For the definition of
Γ -convergence, we refer the reader to [46, Definition 4.1, Proposition 8.1].

Theorem 2.1 Let the functionals (1)–(7) and dynamics (2) satisfy Hypotheses (H).
Consider an initial datum (y0, μ0) ∈ R

dm × P1(R
d), and a sequence (μ0

N )N∈N,
where μ0

N is as in Definition 1.2(i). Then, the sequence of functionals (FN )N∈N on
X = L1([0, T ];U) defined in (7) Γ -converges to the functional F defined in (1).
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Proof The proof is the same as [23, Theorem 5.3], provided one uses Ioffe’s theorem
(see, for instance, [47, Theorem 5.8]) to derive

lim inf
N→+∞

∫ T

0
γ (uN (t))dt ≥

∫ T

0
γ (u∗(t))dt,

and conclude that the Γ − lim inf condition also holds in the presence of the control
cost γ . ��

With the same argument as in [23, Corollary 5.4], we get the existence ofmean-field
optimal controls for Problem 1.1 as an immediate corollary.

Corollary 2.2 Let the Hypotheses (H) in Sect. 1.1 hold. For every initial datum
(y0, μ0) ∈ R

dm × Pc(R
d), there exists a mean-field optimal control u∗ for Prob-

lem 1.1.

Remark 2.3 Observe that the previous result does not state uniqueness of the optimal
control for the infinite-dimensional problem. Indeed, in general, we cannot ensure that
all solutions of Problem 1.1 are mean-field optimal controls.

3 The Wasserstein Gradient

We anticipated in Sect. 1 that the dynamics of ν∗ in (3) is an Hamiltonian flow in the
Wasserstein space of probability measures, in the sense of [31]. This means that the
vector field ∇νHc(ν

∗) is an element with minimal norm in the Fréchet subdifferential
at the point ν∗ of the maximized Hamiltonian Hc introduced in the statement of
Theorem 1.1 (we drop for simplicity the y, q and u dependency). The proof of this
fact shall follow the strategy adopted to obtain analogous results in [33, Chapter 10],
which, however, cannot be applied verbatim to our case due to the peculiar nature
of our operators. For the ease of reading, a technical fact (namely, the proof that the
functional Hc is semiconvex along geodesics) is deferred to “Appendix.”

In order to use those techniques, we consider our functionals defined on P2(R
2d)

instead than on P1(R
2d). Since we shall prove in Proposition 4.2 that, whenever

we start from a compactly supported initial datum, the dynamics remains compactly
supported uniformly in time, this assumption does not alter our conclusions.

In what follows, we shall fix y, q ∈ R
dm and u ∈ L1([0, T ];U) and we write, for

the sake of compactness, Hc(ν) in place of Hc(y, q, ν, u). Moreover, we denote by
z = (x, r) a variable in R2d .

Whenever supp(ν) ⊆ cl(B(0, RT )), Hc(ν) can be rewritten as

Hc(ν) = 1

2

∫
R4d

F(z − z′)dν(z)ν(z′) +
∫
R2d

G(z)dν(z) −
∫
R2d

	̂(z,
∫
ω̂ν)dν(z) + Q,
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where have we set

F(x, r) = r · K (x), G(x, r) = r · g(y)(x) +
m∑

k=1

qk · K (yk − x),

	̂ = −	 ◦ (π1, Id), ω̂ = ω ◦ π1,

(22)

and Q collects all the remaining terms not depending on ν. Notice that F is an even
function.

We define the vector field ∇νL : R2d → R
2d as

∇νL(z) = ∇ξ 	̂(z,
∫
ω̂ν) + Dω̂(z)T

(∫
R2d

∇ς 	̂(z′,
∫
ω̂ν)dν(z′)

)
(23)

for every z ∈ R
2d . We can thus define our candidate vector field for the Wasserstein

gradient ∇νHc(ν0) in the case that supp(ν0) ⊆ B(0, RT ):

w := (∇F) � ν + ∇G − ∇νL. (24)

Notice that, by Hypotheses (H), w is a continuous function in z, and hence, it is well
defined ν-a.e. In view of (22), it is straightforward to see that w agrees with the vector
field defined in (5) and (6), after reintroducing the variables (y, q, u) which do not
affect the Wasserstein differentiation, and setting μ = π1#ν.

Lemma 3.1 Let ν ∈ Pc(R
2d). Then, w defined by (24) belongs to L p

ν (R2d) for every
p ∈ [1,+∞], and it satisfies

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1)

=
∫
R6d

(∇F(z0 − z2) + ∇G(z0) − ∇νL(z0)) · (z1 − z0)dρ(z0, z1)dν(z2)
(25)

for every plan ρ ∈ Π(ν, ν′) such that ν′ ∈ Pc(R
2d).

Proof Since w is continuous, the fact that w is L p
ν -integrable follows the fact that ν

has compact support. Equation (25) then follows by Fubini–Tonelli and from the fact
that ρ is compactly supported too by Remark A.1. ��

In the proof of the forthcoming Theorem 3.1, we shall use the followingwell-known
property.

Proposition 3.1 ([33], Theorem 10.3.10) Fix ψ : P2(R
2d) →]−∞,+∞]. Then, for

every ν0 ∈ D(ψ), the metric slope

|∂ψ |(ν0) = lim sup
ν1→ν0

(ψ(ν1) − ψ(ν0))
+

W2(ν1, ν0)

satisfies |∂ψ |(ν0) ≤ ‖w‖L2
ν0
for every w ∈ ∂ψ(ν0).
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Theorem 3.1 Let ν ∈ P2(R
2d) be such that supp(ν) ⊆ B(0, RT ). Then, it holds

ν ∈ D(|∂Hc|) if and only if w as in (24) belongs to L2
ν(R

2d). In this case, ‖w‖L2
ν

=
|∂Hc|(ν), i.e., w = ∇νHc(ν).

Proof We start by assuming that ν ∈ P2(R
2d) satisfies |∂Hc|(ν) < +∞ and proving

that this implies that w belongs to L2
ν(R

2d) as well as the bound ‖w‖L2
ν

≤ |∂Hc|(ν).
We compute the directional derivative ofHc along a direction induced by the transport
map I d +φ, where φ is a smooth function with compact support. We use the shortcut
νs,φ to indicate the measure (I d + sφ)#ν, and we notice that such that supp(νs,φ) ⊆
cl(B(0, RT )) for any sufficiently small s > 0, since supp(ν) is well contained in
B(0, RT ). Denoting by

L̂(ν) =
∫
R2d

	̂(z,
∫
ω̂ν)dν(z) for every ν ∈ P(R2d),

from the chain rule and the dominated convergence it follows

lim
s→0

L̂(νs,φ) − L̂(ν)

s
=
∫
R2d

∇	̂(z,
∫
ω̂ν) · η(z)dν(z), (26)

where η(z) is the vector defined by

η(z) = lim
s→0

1

s

((
z + sφ(z)∫

ω̂νs,φ

)
−
(

z∫
ω̂ν

))

which, by a direct computation, is given by

η(z) :=
(

φ(z)∫
R2d Dω̂(z′)φ(z′)dν(z′)

)

(observe that actually the last 2d components are independent of z). Inserting η into
(26) and using Fubini’s theorem, we get

lim
s→0

L̂(νs,φ) − L̂(ν)

s

=
∫
R2d

∇ξ 	̂(z,
∫
ω̂ν) · φ(z)dν(z)+

∫
R4d

∇ς 	̂(z,
∫
ω̂ν) · (Dω̂(z′)φ(z′)

)
dν(z′)dν(z)

whence exchanging z with z′ in the second integral, and recalling (23), we have

lim
s→0

L̂(νs,φ) − L̂(ν)

s
=
∫
R2d

∇νL(z) · φ(z) dν(z)

On top of this, notice that the map

s �→ F((z0 − z1) + s(φ(z0) − φ(z1))) − F(z0 − z1)

s
+ G(z0 + sφ(z0)) − G(z0)

s
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as s → 0 converges to

∇F(z0 − z1) · (φ(z0) − φ(z1)) + ∇G(z0) · φ(z0).

Since ν has compact support, the dominated convergence theorem, identity (25) and
since ∇F is odd, it holds

+∞ > lim
s→0

Hc((I d + sφ)#ν) − Hc(ν)

s

= 1

2

∫
R4d

∇F(z0 − z1) · (φ(z0) − φ(z1))dν(z0)dν(z1)

+
∫
R2d

(∇G(z0) − ∇νL(z0)) · φ(z0)dν(z0)

=
∫
R2d

w(z0) · φ(z0)dν(z0).

From the last inequality, the assumption that |∂Hc|(ν) < +∞ and using the trivial
estimate

W2((I d + sφ)#ν, ν) ≤ s‖φ‖L2
ν
,

we get

∫
R2d

w(z0) · φ(z0)dν(z0) ≤ |∂Hc|(ν)‖φ‖L2
ν
,

and hence, up to a change of sign of φ, this proves that ‖w‖L2
ν

≤ |∂Hc|(ν).
We now prove that the vector w belongs to the subdifferential of Hc; this shall

imply that w ∈ D(|∂Hc|) and that it is a minimal selection in ∂Hc(ν), by the previous
estimate and Proposition 3.1.

For proving the claim, we start by remarking that, due to Proposition 3.1, the vector
w ∈ L2

ν(R
2d). Now consider a test measure ν, a plan ρ ∈ Πo(ν, ν), and let us compute

the directional derivative ofHc along the direction induced by ρ. If we denote by νs,ρ
the measure ((1 − s)π1 + sπ2)#ρ on R

2d , since it holds ν0,ρ = ν, arguing as in the
previous step we have

lim
s→0

L̂(νs,ρ) − L̂(ν)

s
=
∫
R4d

∇	̂(z0,
∫
ω̂ν) · ζ(z0, z1)dρ(z0, z1), (27)

where ζ(z0, z1) is the vector defined by

ζ(z0, z1) := lim
s→0

1

s

((
(1 − s)z0 + sz1∫

ω̂νs,ρ

)
−
(

z0∫
ω̂ν

))

=
(

z1 − z0∫
R4d Dω̂(z0)(z1 − z0)dρ(z0, z1)

)
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(again, observe that the last 2d components are independent of z0, z1). Inserting ζ into
(27) and using Fubini’s theorem, we get

lim
s→0

L̂(νs,ρ) − L̂(ν)

s
=
∫
R4d

∇ξ 	̂(z0,
∫
ω̂ν) · (z1 − z0)dρ(z0, z1)+

+
∫
R8d

∇ς 	̂(z0,
∫
ω̂ν) · (Dω̂(z0)(z1 − z0)

)
dρ(z0, z1)dρ(z0, z1).

Therefore, exchanging z0, z1 with z0, z1 in the second integral, and recalling (23), we
have

lim
s→0

L̂(νs,ρ) − L̂(ν)

s
=
∫
R4d

∇νL(z0) · (z1 − z0) dρ(z0, z1).

Moreover, for every s ∈ [0, 1], the map

s �→ F((1 − s)(z0 − z0) + s(z1 − z1)) − F(z0 − z0)

s
+ G((1 − s)z0+sz1)−G(z0)

s

as s → 0 converges to

∇F(z0 − z0) · ((z1 − z0) − (z1 − z0)) + ∇G(z0) · (z1 − z0).

Hence, from Proposition A.1, the dominated convergence theorem, identity (25) and
the fact that ∇F is odd, we get

Hc(ν) − Hc(ν) ≥ lim
s→0

Hc(((1 − s)π1 + sπ2)#ρ) − Hc(ν)

s
+ o(W2(ν, ν))

= 1

2

∫
R8d

∇F(z0 − z0) · ((z1 − z0)−(z1−z0)) dρ(z0, z1)dρ(z0, z1)

+ +
∫
R4d

(∇G(z0)−∇νL(z0)) · (z1−z0)dρ(z0, z1)+o(W2(ν, ν))

=
∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν)).

We have thus proven that w ∈ ∂Hc(ν). ��

4 The Finite-Dimensional Problem

In this section, we study the discrete Problem 1.2 and state the PMP for it. We first
recall the following existence result for the optimal control problem.

Proposition 4.1 (Theorem 23.11, [30]) Under Hypotheses (H), Problem 1.2 admits
solutions.

123

Author's personal copy



26 J Optim Theory Appl (2017) 175:1–38

We now introduce the adjoint variables of xi and yk , denoted by pi and qk , respec-
tively, and state the PMP in the following box.

Theorem 4.1 (Theorem 22.2, [30]) Let u∗
N be a solution of Problem 1.2 with

initial datum (y(0), x(0)) = (y0, x0), and denote with (y∗(·), x∗(·)) : [0, T ] →
R
dm+dN the corresponding trajectory. Then, there exists a Lipschitz curve

(y∗(·), q∗(·), x∗(·), p∗(·)) ∈ Lip([0, T ],R2dm+2dN ) solving the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ∗
k = ∇qkHN (y∗, q∗, x∗, p∗, u∗)

q̇∗
k = −∇ykHN (y∗, q∗, x∗, p∗, u∗) k = 1, . . . ,m,

ẋ∗
i = ∇piHN (y∗, q∗, x∗, p∗, u∗)
ṗ∗
i = −∇xiHN (y∗, q∗, x∗, p∗, u∗) i = 1, . . . , N ,

u∗
N = argmax

u∈U
HN (y∗, q∗, x∗, p∗, u),

(28)

with initial datum (y(0), x(0)) = (y0, x0)and terminal datum (q(T ), p(T )) = 0,
where the Hamiltonian HN : R2dm+2dN → R is given by

HN (y, q, x, p, u) =
N∑
i=1

pi ·
⎛
⎝ 1

N

N∑
j=1

K (xi − x j ) + g(y)(xi )

⎞
⎠

+
m∑

k=1

qk ·
⎛
⎝ 1

N

N∑
j=1

K (yk − x j ) + fk(y) + Bku

⎞
⎠

− L(y, μN ) − γ (u),

(29)

with μN = 1
N

∑N
i=1 δ(x − xi ).

Remark 4.1 The general statement of the PMP contains both normal and abnormal
minimizers. In our case, the simpler formulation of the PMP is given by the fact
that we have normal minimizers only. This is a consequence of the fact that the final
configuration is free, see, e.g., [30, Corollary 22.3].

Remark 4.2 The uniqueness of the maximizer of HN follows from the same motiva-
tions reported in Remark 1.1. Indeed, the form of the Hamiltonian implies that for
each u∗ ∈ U it holds

u∗ = argmax
u∈U

HN (y∗, q∗, x∗, p∗, u) when u∗ = argmax
u∈U

(
m∑

k=1

q∗
k · Bku − γ (u)

)
.

In other terms, since the control acts on the y variables only, then we have a simpler
formulation for the maximization of the Hamiltonian HN .
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We now want to embed solutions of the PMP for Problem 1.2 as solutions of the
extended PMP for Problem 1.1. As a first step, we prove that pairs control–trajectories
(u∗

N , (y∗
N , q∗

N , x∗
N , p∗

N )) satisfying system (28) have support uniformly bounded in
time and in N ∈ N. To this end, for every N ∈ N, we introduce the mapping ΦN :
R
2dN → P1(R

2d) as follows

ΦN : (x1, p1, . . . , xN , pN ) �→ 1

N

N∑
i=1

δ(· − xi , · − Npi ). (30)

Proposition 4.2 Let y0 ∈ R
dm, μ0 ∈ Pc(R

d), and μ0
N be as in Definition

1.2(i). Let u∗
N be a solution of Problem 1.2 with initial datum (y0, μ0

N ), and let
(u∗

N , (y∗
N , q∗

N , x∗
N , p∗

N )) be a pair control–trajectory satisfying the PMP for Prob-
lem 1.2 with initial datum (y0, μ0

N ) and control u∗
N given by Theorem 4.1.

Then, the trajectories (y∗
N (·), q∗

N (·), ν∗
N (·)), where ν∗

N := ΦN (x∗
N , p∗

N ), are equi-
bounded and equi-Lipschitz continuous from [0, T ] to Y , where the space Y :=
R
2dm × P1(R

2d) is endowed with the distance

‖(y, q, ν) − (y′, q ′, ν′)‖Y := ‖y − y′‖ + ‖q − q ′‖ + W1(ν, ν′). (31)

Furthermore, there exists RT > 0, depending only on y0, supp(μ0),m, K , g, fk, Bk,

U , and T , such that supp(ν∗
N (·)) ⊆ B(0, RT ) for all N ∈ N. In particular, it holds

H(y∗
N , q∗

N , ν∗
N , u∗

N ) = Hc(y∗
N , q∗

N , ν∗
N , u∗

N ).

Proof As a first step, notice that the pair (y∗
N , x∗

N ) solves the system (8). It then follows
from (12) and (13) that there exist two constants ρT and ρ′

T , not depending on N such
that, for all i = 1, . . . , N , for all k = 1, . . . ,m, and a.e. t ∈ [0, T ] we have

‖y∗
k,N (t)‖ ≤ ρT , ‖x∗

i,N (t)‖ ≤ ρT (32)

‖ẏ∗
k,N (t)‖ ≤ ρ′

T , ‖ẋ∗
i,N (t)‖ ≤ ρ′

T . (33)

From (32), we get that the terms
(

1
N

∑N
j=1 K (xi − x j ) + g(y)(xi )

)
and

(
1
N

∑N
j=1

K (yk − x j ) + fk(y)
)
and all their derivatives are bounded on the trajectories of (28).

It also follows that there exists a uniform constant WT such that

∥∥∥∥∥∥
1

N

N∑
j=1

ω(x∗
j,N (t))

∥∥∥∥∥∥ ≤ WT
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for all t ∈ [0, T ]. Furthermore, a direct computation yields

−∇xi L(y, μN ) = 1

N
∇ξ 	

⎛
⎝y, xi ,

1

N

N∑
j=1

ω(x j )

⎞
⎠

+ 1

N 2Dω(xi )
T

⎡
⎣ N∑
k=1

∇ς	

⎛
⎝y, xk,

1

N

N∑
j=1

ω(x j )

⎞
⎠
⎤
⎦

(34)

while the y-derivatives remain uniformly bounded on the trajectories by regularity of
	 and (33).

Since the terms Bku do not affect the second and the fourth equation in (28), by the
above discussed bounds and a simple combinatorial argument we get the existence of
a uniform constant LT such that the estimates

‖ ṗ∗
i,N (t)‖ ≤ LT

⎛
⎝‖p∗

i,N (t)‖ + 1

N

N∑
j=1

‖p∗
j,N (t)‖ + 1

N

m∑
k=1

‖q∗
k,N (t)‖ + 1

N

⎞
⎠ (35)

and

‖q̇∗
k,N (t)‖ ≤ LT

⎛
⎝ N∑

i=1

‖p∗
i,N (t)‖ + ‖q∗

k,N (t)‖ +
m∑
j=1

‖q∗
j,N (t)‖ + 1

⎞
⎠ (36)

hold for each i = 1, . . . , N , k = 1, . . . ,m and a.e. t ∈ [0, T ]. We now rescale the
pi ’s by setting r∗

i,N := Np∗
i,N and consider the function

εN (t) :=
m∑

k=1

‖q∗
k,N (t)‖ + 1

N

N∑
i=1

‖r∗
i,N (t)‖ .

From (35) and (36), we deduce, possibly enlarging the constant LT , that

|ε̇N (t)| ≤ LT ((1 + m)εN (t) + 1) . (37)

Defining then the increasing functions ηN (t) through ηN (t) := supτ∈[0,t] εN (T − τ),
and observing that it holds ηN (0) = 0 for the boundary conditions in Theorem 4.1,
from (37) and Gronwall’s lemma, we obtain ηN (τ ) ≤ LT τeLT τ . With this, since
εN (t) ≤ ηN (T ), and using (37), we get

εN (t) ≤ LT T e
LT (1+m)T and |ε̇N (t)| ≤ LT

(
LT (1 + m)T eLT (1+m)T + 1

)
(38)

for a.e. t ∈ [0, T ]. Since by definition of ν∗
N (t) and standard properties of the Wasser-

stein distance W1 it holds
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W1(ν
∗
N (t + τ), ν∗

N (t))

≤ √
2

(
1

N

N∑
i=1

‖x∗
i,N (t + τ) − x∗

i,N (t)‖ + 1

N

N∑
i=1

‖r∗
i,N (t + τ) − r∗

i,N (t))‖
)

,

from the previous inequality, (32), (33), (37), and (38) we obtain that y∗
N (t) and q∗

N (t)
are equibounded that there exist a constant, denoted by RT , such that supp(ν∗

N (t)) ⊂
B(0, RT ) for all t ∈ [0, T ] and that (y∗

N , q∗
N , ν∗

N ) are equi-Lipschitz continuous from
[0, T ] with values in Y . ��
Proposition 4.3 Let N ∈ N and u∗

N ∈ L p([0, T ];U) be an optimal control
for Problem 1.2 with given initial datum (y0N , x0N ) ∈ R

dm+dN and denote by
(y∗

N (·), q∗
N (·), x∗

N (·), p∗
N (·)) ∈ Lip([0, T ],R2dm+2dN ) the corresponding trajectory

of the PMP with maximized Hamiltonian HN .
Define ν∗

N := ΦN (x∗
1,N , p∗

1,N , . . . , x∗
N ,N , p∗

N ,N ) with ΦN as in (30) and assume
that supp(ν∗

N (·)) ⊆ B(0, RT ). Then, the control u∗
N is optimal for Problem 1.1 and

(y∗
N , q∗

N , ν∗
N , u∗

N ) satisfies the extended Pontryagin maximum principle.

Proof First observe that, by Proposition 4.2, the following identity holds

Hc(y
∗
N , q∗

N , ν∗
N , u∗

N ) = H(y∗
N , q∗

N , ν∗
N , u∗

N ).

Moreover, for every t ∈ [0, T ]
u∗
N (t) = argmax

u∈U
HN (y∗

N (t), q∗
N (t), x∗

N (t), p∗
N (t), u)

⇐⇒ u∗
N (t) = argmax

u∈U
H(y∗

N (t), q∗
N (t), ν∗

N (t), u),

due to the specific form of the Hamiltonian HN and H, see Remark 4.2.
Rewriting HN in terms of ν∗

N (·), we have that HN (y∗
N , q∗

N , x∗
N , p∗

N , u∗
N ) and

H(y∗
N , q∗

N , ν∗
N , u∗

N ) only differ for a term which is independent on yk and qk ; hence,
equations for ẏ∗

k,N , q̇∗
k,N in the PMP for Problem 1.2 and in the extended PMP for

Problem 1.1 coincide.
We further notice that for all i = 1, . . . , N , since DK is even we have

− N∇xi
1

N 2

N∑
h=1

rh ·
N∑
j=1

K (xh − x j )

= − 1

N

⎛
⎝ N∑

j=1

DK (xi − x j )
T ri −

N∑
h=1

DK (xh − xi )
T rh

⎞
⎠

= − 1

N

⎛
⎝ N∑

j=1

DK (xi − x j )
T (ri − r j )

⎞
⎠

= −
∫
R2d

DK (xi − x ′)T (ri − r ′) dνN (x ′, r ′)
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after setting νN = 1
N

∑N
i=1 δ(x − xi , r − ri ). Observe that also the right-hand side of

(34) can be rewritten in terms of νN (through μN = π1#νN ), yielding

−N∇xi L(y, μN ) = −∇ξ 	

(
y, xi ,

∫
ωμN

)

− Dω(xi )
T
[∫

∇ς	

(
y, x ′,

∫
ωμN

)
dμN (x ′)

]
.

With the previous equalities, by setting ν∗
N := ΦN (x∗

1,N , p∗
1,N , . . . , x∗

N ,N , p∗
N ,N ) as

well as r∗
i,N = Np∗

i,N , the identity

J (∇νHc(y
∗
N , q∗

N , ν∗
N , u∗

N ))(x∗
i,N , r∗

i,N ) =
(

N∇riHN (y∗
N , q∗

N , x∗
N , p∗

N , u∗
N )

−N∇xiHN (y∗
N , q∗

N , x∗
N , p∗

N , u∗
N )

)
,

(39)

simply follows by differentiating in (29) and comparing with (5) and (6). Since the
boundary conditions of Problem 1.2 and Problem 1.1 coincide too, the result follows
now by (39) arguing, for instance, as in [17, Lemma 4.3]. ��

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We first recall that we already proved in Corol-
lary 2.2 that there exists a mean-field optimal control for Problem 1.1. We now want
to prove that all mean-field optimal controls are solutions of the extended PMP.

Let u∗ be a mean-field optimal control for Problem 1.1 with initial datum (y0, μ0).
Fix μ0

N as in Definition 1.2(i), and consider a sequence (u∗
N )N∈N of optimal con-

trols of Problem 1.2 with initial datum (y0, μ0
N ), having a subsequence (which, for

simplicity, we do not relabel) weakly converging to u∗ in L1([0, T ];U). Denote
with (y∗

N , x∗
N ) the trajectory of (8) corresponding to the control u∗

N and the initial
datum (y0, μ0

N ) of Problem 1.2. Compute the corresponding pair control–trajectory
(u∗

N , (y∗
N , q∗

N , x∗
N , p∗

N )) satisfying the PMP for Problem 1.2 that exists due to Theo-
rem 4.1. Set ν∗

N := ΦN (x∗
N , p∗

N ) and r∗
N := Np∗

N . By Proposition 4.2, the trajectories
(y∗

N , q∗
N , ν∗

N ) are equibounded and equi-Lipschitz from [0, T ] to the product space
Y = R

2dm × P1(R
2d) endowed with the distance (31), and the empirical measures

ν∗
N have equibounded support. Moreover, the pair (u∗

N , (y∗
N , q∗

N , ν∗
N )) satisfies the

extended PMP by Proposition 4.3.
By the Ascoli–Arzelà theorem, we have that there exists a subsequence, which we

denote again with (y∗
N , q∗

N , ν∗
N ), that converges to the vector-measure-valued curve

(y∗, q∗, ν∗) : [0, T ] → R
dm × P1(R

2d) uniformly with respect to t ∈ [0, T ]. Since
by definition π1#ν

∗
N = μ∗

N , by the convergence of μ∗
N to μ∗ proved in Proposition

2.2, we get π1#ν
∗ = μ∗. Observe that (y∗, q∗, ν∗) is a Lipschitz function with respect

to time and ν∗ has support contained in B(0, RT ) for all t ∈ [0, T ]. Moreover, by
the boundary conditions for each N , we have that y∗(0) = y0, π1#(ν

∗(0)) = μ0 and
q∗(T ) = 0, π2#(ν

∗(T ))(r) = δ(r).
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Fix now t ∈ [0, T ]. To shorten notation, let E : Rdm ×R
D → R be the functional,

strictly concave with respect to u, defined as

E(q, u) =
m∑

k=1

qk · Bku − γ (u) .

Recall that by (28) and by Remark 4.2, u∗
N (t) satisfies

u∗
N (t) = argmax

u∈U
E(q∗

N (t), u) ,

since the maximum is uniquely determined by strict concavity. Since U is bounded,
by definition E(·, u) is continuous uniformly with respect to u ∈ U . The convergence
of q∗

N (t) to q∗(t) then implies that every accumulation point vt ∈ U of u∗
N (t) must

satisfy

vt = argmax
u∈U

E(q∗(t), u) (40)

and is therefore uniquely determined. This shows that the sequence u∗
N is pointwise

converging in [0, T ] to the function v(t) := vt . Due to the boundedness of U , we
further have that u∗

N → v in L1((0, T );U). Since u∗
N was already converging to u∗

weakly in L1((0, T );U), it must be u∗(t) = v(t) for a.e. t ∈ (0, T ), which together
with (40) implies that

u∗
N → u∗ strongly in L1((0, T );U) (41)

and that

u∗(t) = argmax
u∈U

E(q∗(t), u)

for a.e. t ∈ [0, T ]. Due to the explicit expression of H(y, q, ν, u) in (4), this is
equivalent to say that

H(y∗(t), q∗(t), ν∗(t), u∗(t)) = argmax
u∈U

H(y∗(t), q∗(t), ν∗(t), u)

for a.e. t ∈ [0, T ].
We finally prove that (y∗, q∗, ν∗) satisfies the Hamiltonian system (3) with con-

trol u∗. Due to equi-Lipschitz continuity, we have that the derivatives (ẏ∗
N , q̇∗

N ),
and ∂tν

∗
N converge to (ẏ∗, q̇∗), and ∂tν

∗, respectively, weakly in L1([0, T ];R2md)

and in the sense of distributions. Observe now that by (5) and (6) the vector field
∇νHc(y, q, ν)(·, ·), which is independent of u, depends continuously on (y, q, ν). By
the uniform convergence of (y∗

N , q∗
N , ν∗

N ) and since supp(ν∗
N (t)) ⊂ B(0, RT ) for all

t ∈ [0, T ], we get that

∇νHc(y
∗
N (t), q∗

N (t), ν∗
N (t))(x, r) ⇒ ∇νHc(y

∗(t), q∗(t), ν∗(t))(x, r),
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uniformly with respect to t ∈ [0, T ] and (x, r) ∈ B(0, RT ). From this, using again the
narrow convergence of ν∗

N (t) to ν∗(t) and since it holds that supp(ν∗
N (t)) ⊂ B(0, RT ),

we then get the uniform bound

‖ (J∇νHc(y
∗
N (t), q∗

N (t), ν∗
N (t))

)
ν∗
N (t)‖Mb(R

D,RD) ≤ CT ,

for some constant CT independent of t ∈ [0, T ], as well as the narrow convergence

(
J∇νHc(y

∗
N (t), q∗

N (t), ν∗
N (t))

)
ν∗
N (t) ⇀

(
J∇νHc(y

∗(t), q∗(t), ν∗(t))
)
ν∗(t)

for all t ∈ [0, T ]. Testing with functions φ ∈ C∞
c ([0, T ] × R

2d ;R), the two above
properties are enough to show that

∇(x,r) ·
(
(J∇νHc(y

∗
N (t), q∗

N (t), ν∗
N (t)))ν∗

N (t)
)

⇀

∇(x,r) ·
(
(J∇νHc(y

∗(t), q∗(t), ν∗(t)))ν∗(t)
)

in the sense of distributions, so that ν∗ solves the third equation in (3).
For all k = 1, . . . ,m, taking derivatives in the explicit expression in (4) and using

the definition of Hc, we have that ∇ykHc(y, q, ν, u) is actually independent of u and
is continuous with respect to the Euclidean convergence on (y, q) and the narrow
convergence on measures ν with compact support in a fixed ball B(0, RT ). Therefore,
since (y∗

N , q∗
N , ν∗

N ) converges to (y∗, q∗, ν∗) uniformly with respect to t ∈ [0, T ], and
there is no dependence on u, for all k = 1, . . . ,m we have that

∇ykHc(y
∗
N (t), q∗

N (t), ν∗
N (t), u∗

N (t)) → ∇ykHc(y
∗(t), q∗(t), ν∗(t), u∗(t))

in R
d uniformly with respect to t ∈ [0, T ]. It then follows that q∗ solves the second

equation in (3).
A similar argument, also using the L1 convergence of u∗

N to u∗ proved in (41),
shows that

∇qkHc(y
∗
N (t), q∗

N (t), ν∗
N (t), u∗

N (t)) → ∇qkHc(y
∗(t), q∗(t), ν∗(t), u∗(t))

in L1([0, T ];Rd) for all k = 1, . . . ,m, so that y∗ solves the first equation in (3). This
concludes the proof of Theorem 1.1.

6 Conclusions

In this article, we proved a mean-field version of the Pontryagin maximum princi-
ple. We considered an optimal control problem composed of a system of ordinary
differential equations coupled with a partial differential equation of Vlasov type with
smooth interaction kernel. We derived a first-order condition for optimizers of such
problem that we wrote as an Hamiltonian flow in the Wasserstein space of probability
measures.
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Appendix: Semiconvexity Along Geodesics of Hc

Throughout the section,K shall denote a convex, compact subset ofR2d . The following
property shall be used to prove that the subdifferential of Hc is nonempty.

Definition A.1 Let ψ : P2(R
n) →] − ∞,+∞] be a proper, lower semicontinuous

functional. We say that ψ is semiconvex along geodesics whenever, for every ν0, ν1 ∈
P2(R

n) and every optimal transport plan ρ ∈ Πo(ν0, ν1) there existsC ∈ R for which
for every s ∈ [0, 1] it holds

ψ(((1 − s)π1 + sπ2)#ρ)

≤ (1 − s)ψ(ν0) + sψ(ν1) + Cs(1 − s)W2
2 (ν0, ν1)).

In order to prove the semiconvexity of Hc, we shall establish the semiconvexity of
the following functionals:

Ĥ
1
c(ν) = 1

2

∫
R4d

F̂(z − z′)dν(z)ν(z′) +
∫
Rd

Ĝ(z)dν(z),

Ĥ
2
c(ν) =

∫
Rd

	̂(z,
∫
ω̂ν)dν(z),

where F̂ , Ĝ, 	̂, and ω̂ are C2 functions. The desired result will then follow by noticing
that Hc(ν) = Ĥ

1
c(ν) + Ĥ

2
c(ν) for F̂ = F , Ĝ = G, 	̂ = −	 ◦ (π1, Id), ω̂ = ω ◦ π1 and

K = cl(B(0, RT )).
The following simple property will be needed to prove semiconvexity of the above

functionals.

Lemma A.1 Let ν0, ν1 ∈ Pc(R
2d) with support contained in K. Let ρ ∈ Π(ν0, ν1)

and set

νs = ((1 − s)π1 + sπ2)#ρ, (42)

for every s ∈ [0, 1]. Then, it holds

supp(νs) ⊆ K for all s ∈ [0, 1].

Proof We first notice that for every ρ ∈ Π(ν0, ν1) it holds

supp(ρ) ⊆ K × K . (43)
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This follows from the equality

R
4d\(K × K) = (R2d × (R2d\K)) ∪ ((R2d\K) × R

2d)

and from the fact that both R
2d × (R2d\K)) and (R2d\K) × R

2d are ρ-null sets by
hypothesis.

To prove Lemma A.1, it suffices to show that for all f ∈ C(R2d) satisfying f ≡ 0
on K it holds

∫
R2d

f dνs = 0. (44)

Indeed,

∫
R2d

f dνs =
∫
R4d

f d((1 − s)π1 + sπ2)#ρ(z0, z1)

=
∫
R4d

f ((1 − s)z0 + sz1)dρ(z0, z1)

=
∫
K×K

f ((1 − s)z0 + sz1)dρ(z0, z1),

since, by (43), supp(ρ) ⊆ K × K. The convexity of K implies (1 − s)z0 + sz1 ∈ K
for every s ∈ [0, 1], which, together with the assumption f ≡ 0 in K, yield (44), as
desired. ��

In what follows, we shall make use of the following, well-known result.

Remark A.1 LetK be a convex, compact subset ofR2d and let f ∈ C2(R2d;R). Then,
there exists CK, f ∈ R depending only on K and f such that

f ((1 − s)x0 + sx1) ≤ (1 − s) f (x0) + s f (x1) + CK, f s(1 − s)‖x0 − x1‖2, (45)

for every x0, x1 ∈ R
2d and s ∈ [0, 1].

We now prove the semiconvexity of Ĥ1
c .

Lemma A.2 Let ν0, ν1 ∈ Pc(R
2d) and let ρ ∈ Π(ν0, ν1). Then, there exists C ∈ R

independent of ν0 and ν1 for which

Ĥ
1
c(((1 − s)π1 + sπ2)#ρ) ≤ (1 − s)Ĥ1

c(ν0) + sĤ1
c(ν1) + Cs(1 − s)W2

2 (ν0, ν1)

holds for every s ∈ [0, 1].
Proof We may assume supp(ν0), supp(ν1) ⊆ K for some convex and compact set
K ⊂ R

2d , otherwise the inequality is trivial. Hence, from Lemma A.1, it follows
supp(νs) ⊆ K for every s ∈ [0, 1]. But then, since F̂ and Ĝ are both C2, the result
follows as in [33, Proposition 9.3.2, Proposition 9.3.5]. ��

123

Author's personal copy



J Optim Theory Appl (2017) 175:1–38 35

Corollary A.1 Let ω̂ ∈ C2(R2d ;Rd), ν0, ν1 ∈ Pc(R
2d), ρ ∈ Π(ν0, ν1) and define νs

as in (42) for s ∈ [0, 1]. If we set

ξs =
∫
R2d

ω̂dνs, (46)

then

‖ξs − (1 − s)ξ0 − sξ1‖ ≤ Cs(1 − s)W2
2 (ν0, ν1),

for all s ∈ [0, 1], where C is independent of ν0 and ν1.

Proof Follows from Lemma A.2 applied first to the functions F̂ ≡ 0 and Ĝ ≡ ω̂, and
then to F̂ ≡ 0 and Ĝ ≡ −ω̂. ��

The semiconvexity of Ĥ2
c will be deduced as a corollary of the following estimate.

Lemma A.3 Suppose that 	̂ ∈ C2(R2d × R
d;R), let z0, z1 ∈ K and set zs = (1 −

s)z0 + sz1 for all s ∈ [0, 1]. Furthermore, let ν0, ν1 ∈ Pc(R
2d), ρ ∈ Π(ν0, ν1) and

define νs and ξs as in (42) and (46) for s ∈ [0, 1]. Then, for all s ∈ [0, 1], it holds

	̂(zs, ξs) ≤ (1 − s)	̂(z0, ξ0) + s	̂(z1, ξ1) + CK,	̂,ω̂
s(1 − s)W2

2 (ν0, ν1)

+ CK,	̂,ω̂
s(1 − s)‖z0 − z1‖2,

for some constant CK,	̂,ω̂
depending only on K, 	̂ and ω̂.

Proof Since K is compact, zs ∈ K for all s ∈ [0, 1]. Moreover, (1 − s)ξ0 + sξ1 ∈ K′
for all s ∈ [0, 1], for some convex and compact set K′ ⊂ R

d . Notice that from (45)
follows

	̂(zs, (1 − s)ξ0 + sξ1) ≤ (1 − s)	̂(z0, ξ0) + s	̂(z1, ξ1)

+ CK,K′s(1 − s)
(
‖z0 − z1‖2 + ‖ξ0 − ξ1‖2

)
,

(47)

and from the definition of ξs and Jensen’s inequality, we get

‖ξ0 − ξ1‖2 ≤ LipK(ω)W2
1 (ν0, ν1) ≤ LipK(ω)W2

2 (ν0, ν1). (48)

Moreover, for every s ∈ [0, 1] it holds

‖	̂(zs, ξs) − 	̂(zs, (1 − s)ξ0 + sξ1)‖ ≤ LipK×K′ ‖ξs − (1 − s)ξ0 − sξ1‖
≤ LipK×K′s(1 − s)CW2

2 (ν0, ν1).
(49)
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Hence, for every s ∈ [0, 1], using (47), (48) and (49), we get

	̂(zs, ξs) = 	̂(zs, ξs) − 	̂(zs, (1 − s)ξ0 + sξ1) + 	̂(zs, (1 − s)ξ0 + sξ1)

≤ (1 − s)	̂(z0, ξ0) + s	̂(z1, ξ1) + CK,	̂,ω̂
s(1 − s)W2

2 (ν0, ν1)

+ CK,	̂,ω̂
s(1 − s)‖z0 − z1‖2.

This concludes the proof. ��
Corollary A.2 Let ν0, ν1 ∈ Pc(R

2d) and ρ ∈ Πo(ν0, ν1). Then, there exists C ∈ R

independent of ν0 and ν1 for which

Ĥ
2
c(((1 − s)π1 + sπ2)#ρ) ≤ (1 − s)Ĥ2

c(ν0) + sĤ2
c(ν1) + Cs(1 − s)W2

2 (ν0, ν1)

holds for every s ∈ [0, 1].
Proof Notice that, by Lemma A.1, Ĥ2

c (νs) can be rewritten as

Ĥ
2
c(νs) =

∫
K×K

	̂(zs, ξs)dρ(z0, z1),

Furthermore, since ρ ∈ Πo(ν0, ν1) it holds

∫
K×K

‖z0 − z1‖2dρ(z0, z1) =
∫
R4d

‖z0 − z1‖2dρ(z0, z1) = W2
2 (ν0, ν1),

the thesis follows from Lemma A.3. ��
Proposition A.1 The functional Hc is semiconvex along geodesics.

Proof Follows directly from LemmaA.2 and Corollary A.2, by noticing thatHc(ν) =
Ĥ

1
c(ν) + Ĥ

2
c(ν) for F̂ = F , Ĝ = G, 	̂ = −	 ◦ (π1, Id), ω̂ = ω ◦ π1 and K =

cl(B(0, RT )). ��
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