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Abstract. We deal with a Cauchy problem for a scalar conservation law in one space dimension.
The flux function is assumed to be nonconvex, in particular, to have a single inflection point. We
consider a compactly supported initial datum and regard it as a control. The main result of the
paper states sufficient conditions for a function v to be attained at a fixed time T by a trajectory of
the conservation law.
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1. Introduction. The aim of this paper is to initiate the description of the set
AT of profiles v in BV (R) which can be attained at a fixed time t = T by the entropy
admissible solution of

∂tu+ ∂xf(u) = 0,(1a)

u(0, x) =

{
uc(x) if x ∈ [a, b] ,

0 if x 6∈ [a, b] ,
(1b)

where a < b are given, and uc ∈ L∞(a, b) is regarded as a control. We consider a
flux function f with a single inflection point, normalized so as to fulfill the set of
conditions

(F) a. f is of class C2,
b. f(0) = f ′(0) = f ′′(0) = 0, uf ′′(u) < 0 ∀u 6= 0,
c. f has superlinear growth at ±∞.

A family of classical examples is given by f(u) = −|u|mu, m ≥ 2. We stress that
the conditions in (F)b are introduced here in order to make our statements and
proofs involving generalized characteristics as close as possible to the original paper
by Dafermos [10]. Our analysis applies to any flux function with a single inflection
point satisfying (F)a and (F)c provided f ′′(u) = 0 only at the inflection point. In
section 4 we apply our results to the classical sedimentation model proposed by Kynch
in [17] and we consider the flux function f(u) = −u(1−u)2 which does not satisfy (F)b.

In the existing literature we can distinguish essentially three approaches toward
the study of exact controllability and characterization of the set of attainable profiles
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25030, Besançon, France (carlotta.donadello@univ-fcomte.fr).
§Dipartimento di Matematica, Via Trieste 63, 35121 - Padova, Italy, and Laboratoire de Mathé-
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2236 B. P. ANDREIANOV, C. DONADELLO, AND A. MARSON

for (1a).
The pioneering paper by Ancona and Marson [3], focuses on the exact controlla-

bility for the initial boundary value problem for (1a) in the case of strictly convex flux.
The authors use the theory of generalized characteristics introduced by Dafermos in
[10], and describe for any given time T > 0, the set of states which are attainable in
time T starting from the initial condition u0 = 0 by a control on the boundary data
alone. Under similar hypotheses, Adimurthi, Ghoshal, and Gowda [1, 2] exploit the
explicit representation of solutions given by the Lax–Oleinik formula to construct an
explicit backward solver and give a concise characterization of the set of attainable
profiles for the initial value problem and the boundary value problem in the half–
space and in a strip with two boundaries. Using again the method of generalized
characteristics, Corghi and Marson characterize in [8] the attainable set for a scalar
balance law with strictly convex flux

(2) ut + f(u)x = z(t, x) for t ∈ [0, T ], and x ∈ R ,

where the right-hand side z acts as a distributed control.
In the classical paper [15], Horsin obtains approximate controllability results for

scalar conservation laws by a different approach, which relies on the return method
introduced by Coron [9]. This technique is also an important ingredient in the result
by Chapouly [7] concerning the attainability of C1 profiles for classical solutions of the
balance law (2) on the strip [0, T ]× [0, 1]. In this paper the boundary data at x = 0
and x = 1 act as controls together with the source term z (distributed control) which
only depends on the time variable t. A similar result, in the setting of an entropy
weak solution is due to Perrollaz [19].

The return method has been applied in combination with the vanishing viscosity
approach by Léautaud [18], to study the uniform controllability of scalar conservation
laws. This last paper is also the only one, to our knowledge, in which the flux function
f is allowed to have a finite number of inflection points. Starting from an initial
condition u0 in L∞([0, 1]) and using the boundary data at x = 0 and x = 1 as
controls, the author proves the attainability in time T (depending on the L∞ norm
of u0) of constant states.

Finally, let us mention that for the viscous Burgers equation, constant states
reachable by boundary controls has been studied using the Cole–Hopf transformation
by Glass and Guerrero [12] and Guerrero and Imanuvilov [13].

The results in the present paper are all obtained by an extensive application of
the method of generalized characteristics. This approach naturally leads to a very
fine analysis of the structure of solutions which allows us to give a rather complete
insight of the possible obstructions to attainability. Moreover, we succeed in providing
a complete explicit backward reconstruction of the solution for a significant class of
attainable profiles, which contains all basic situations. However, even if it is certainly
possible to use our results as building blocks toward the analysis of more complex
cases, our work fails to provide an easy to check routine to distinguish attainable
states from nonattainable ones.

1.1. Fine structure of solutions and obstacles to backward reconstruc-
tion. We recall the definition of an entropy admissible solution to (1a)–(1b) (see
[11]).

Definition 1.1. An entropy admissible solution to (1a)–(1b) in the time inter-
val [0, T ] is a continuous function u : [0, T ] → L1

loc(R) which assumes the initial
datum (1b), is a distributional solution to (1a) in ]0, T [×R, and satisfies an entropy
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admissibility condition (see [11]), i.e., for any entropy-entropy flux pair (η, q) with
u 7→ η(u) convex, there holds

(3) ∂tη(u) + ∂xq(u) ≤ 0 in ]0, T [×R

in the sense of distribution.

Throughout our paper we will always deal with solutions u = u(t, x) to (1a) such
that u(t, ·) has finite total variation. Hence, it is not restrictive to normalize u(t, ·) to
be left continuous for any t > 0. In general, distributional solutions to (1a) are not
smooth, regardless of the possible regularity of the initial condition. The demise of
classical solutions coincides with the appearance of jump discontinuities. The method
of generalized characteristics has been introduced by Dafermos in [10] to investigate
the fine structure of the solutions to (1a).

Definition 1.2. Let u ∈ C([0, T ];L1
loc(R)) be an entropy admissible solution of

(1a).
• A classical characteristic associated with u is a curve ξ : [t0, t1] → R2 such

that for some u and for all t ∈ [t0, t1] there holds

ξ(t) = ξ(t0) + f ′(u)(t− t0), u(t, ξ(t)) = u.

• A generalized characteristic associated with u is a Lipschitz continuous curve
ξ : [t0, t1]→ R2 which satisfies the differential inclusion

dξ

dt
(t) ∈ I

[
f ′(u(t, ξ(t)+)), f ′(u(t, ξ(t)))

]
,

where I[a, b] denotes the closed interval of extrema a and b.
Any classical characteristic is a generalized characteristic.

Through any point of jump discontinuity of u passes a funnel of backward gener-
alized characteristic. The core of the results in [10, section 2], concerns the study of
the special properties of minimal and maximal backward generalized characteristics
through a point. To limit the length of our manuscript, we decided not to recall all
of these results but rather to give precise references at any time we apply them.

We recall that the method of generalized characteristics is fully developed only for
the case in which the flux function f admits at most one inflection point. A classical
observation due to Hoff [14] is that, whenever the flux function f admits more than
one inflection point, the interaction between two discontinuities in the solution u to
(1a) can produce outgoing centered rarefaction waves at positive times, and this would
make the analysis far more intricate.

Once a jump discontinuity has appeared in the solution it persists, and its location
describes a Lipschitz continuous curve x = ϕ(t) in the (t, x)-plane. From the definition
of distributional solution, one can check that the values of the left and right traces of
the solution u on the sides of ϕ must satisfy the Rankine–Hugoniot conditions:

(4) f
(
u(t, ϕ(t)+)

)
− f

(
u(t, ϕ(t))

)
= ϕ̇(t)

[
u(t, ϕ(t)+)− u(t, ϕ(t))

]
.

Additionally, if the solution u is entropy admissible, the following inequalities are
satisfied (Lax–Oleinik conditions):

(5) f ′
(
u(t, ϕ(t))

)
≥ ϕ̇(t) ≥ f ′

(
u(t, ϕ(t)+)

)
, x = ϕ(t) .

This implies that the curves of discontinuity are generalized characteristics.
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2238 B. P. ANDREIANOV, C. DONADELLO, AND A. MARSON

If the flux function f in (1a) if strictly convex, then both the inequalities in (5) are
strict, while a classical lemma due to Dafermos [10, Lemma 2.2], specifies that under
the assumptions (F), only the second inequality above is strict. In this framework we
can distinguish two kinds of discontinuities propagating in the solution:

• genuine shocks (which we call shocks in the following), for which both in-
equalities in (5) are strict;

• left contact discontinuities, for which there holds ϕ̇(t) = f ′
(
u(t, ϕ(t))

)
.

As in the convex case, characteristics run into genuine shocks from both sides, while
it may happen that characteristics radiate from one of the sides of a contact discon-
tinuity.

The presence of contact discontinuities is responsible for the two major obstacles
toward the formulation of a fast and easy to apply attainability test. First, recall that
in the convex case, whenever the target profile v suffers from an admissible jump at
x = x̄ joining the states vL and vR, there exist infinitely many ways to reconstruct
backward a solution to (1a) in the triangular region delimited by the minimal and the
maximal backward characteristics

η−x̄ (t) = x̄+ f ′(vL)(t− T ) , η+
x̄ (t) = x̄+ f ′(vR)(t− T ) ,

respectively. This fact can be exploited to produce convenient backward reconstruc-
tions (see, for example, [4]), and it is related to the dissipative properties of admissible
shocks.

On the contrary, since left contact discontinuities must satisfy the Rankine–
Hugoniot condition together with ϕ̇(t) = f ′(vL), it is clear that given the left state of
a left contact discontinuity, the corresponding right state is immediately determined
from the fact that the chord joining (vL, f(vL)) to (vR, f(vR)) needs to have slope
exactly equal to f ′(vL). We call (vL)] the unique possible right state connected to
vL by a left contact discontinuity. This means that there is no freedom in the back-
ward reconstruction of the solution in an immediate right neighborhood of a contact
discontinuity.

We are now ready to illustrate obstacles we have to face in our work. First of all,
we give the following.

Definition 1.3. Let v = v(x) be a function with finite total variation normalized
so that v be left continuous. We say that a line parameterized by

(6) [0, T ] 3 t 7→ x0 + f ′(v(x0))(t− T ) ,

is a candidate backward characteristic.

Indeed, if v is a candidate final profile, in order to reconstruct the initial datum
uc we need to trace backward the characteristic lines associated with the solution u
to (1a)–(1b) attaining v at time t = T . Whenever |t − T | is sufficiently small, such
characteristics can be parameterized by (6), but, in general, generalized characteris-
tics in the solution u are not straight lines. In other words, a candidate characteristic
is a useful geometrical object, which has not a priori a special meaning for the re-
constructed solution. The first obstacle in reconstructing backward a solution from a
given final profile v is the following.

• Assume that the target profile v suffers from a jump discontinuity at x = x̄,
joining two states vL and vR such that

f(vR) = f(VL) + f ′(vL)(vR − vL) ,

and that the candidate backward characteristics from the points in a left

D
ow

nl
oa

de
d 

07
/1

7/
17

 to
 1

47
.1

62
.2

2.
20

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ATTAINABLE SET FOR A NONCONVEX CONSERVATION LAW 2239

Fig. 1. The left contact discontinuity traveling along the curve ϕ.

neighborhood of x̄ cross one another at positive times. If v is admissible,
their tangent envelope must be a convex Lipschitz curve t 7→ ϕ(t) (see [10,
Theorem 2.2]), and, in this case, our backward reconstruction contains a left
contact discontinuity traveling along the curve ϕ (see Figure 1).
This geometric requirement translates into the fact that the attainability of
v may depend on the values of v, f ′(v), and (see Theorem 3.1, in particular,
conditions (27)–(28)) f ′′(v) on a whole left neighborhood of x̄ and not just
on the values of v(x̄−) and v(x̄+). Of course, the presence of several jumps
in the target profile may ask for additional compatibility conditions.

The second difficulty we face is the following.
• Once we detect the presence of a left contact discontinuity ϕ in our backward

reconstruction, we must trace back in a unique way the candidate backward
characteristics from (t, ϕ(t)), that we denote by ξϕ(t). It might happen that
the curves ξϕ(t) cross one another at positive times and have a convex tangent
envelope t 7→ ϕ2(t). In this case we continue our backward reconstruction
including a second left contact discontinuity in the solution. Again, the values
on the left and on the right of ϕ2 are completely determined from the values
of v and we have no choice in our reconstruction. We know from the results
in [10] that, if v is an admissible target profile, this situation can occur a
finite number of times before we reach t = 0. We call this structure a nesting
of contact discontinuities.

Even in the most simple case, which is briefly described in section 5, the recon-
struction of a solution in the presence of a nesting structure is a delicate matter,
which leads us to look for solutions of a characteristic boundary value problem in
which the boundary datum is not to be taken in the usual hyperbolic sense [5], but
should be imposed as the value of the trace of the solution along the boundary curve;
see section 5.2.

D
ow

nl
oa

de
d 

07
/1

7/
17

 to
 1

47
.1

62
.2

2.
20

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2240 B. P. ANDREIANOV, C. DONADELLO, AND A. MARSON

1.2. Outline of the paper. Notations are introduced in the last part of this
introduction. Section 4 contains an example related to a model of sedimentation. A
direction of perspective research is outlined in subsection 5.3. In hopes of palliating
the technicality of the presentation, we give here a rather detailed summary of the
results in sections 2, 3, and 5.

Section 2: Necessary conditions. Theorem 2.1 states necessary conditions toward
attainability which are reminiscent of the classical necessary conditions for the con-
vex flux case.1 Proposition 2.2 rules out the presence of centered rarefaction waves
focusing at positive time.

Proposition 2.3 is the first evidence of the strong rigid structure of solutions next
to a left contact discontinuity. Basically, on the right of any left contact discontinuity
curve t 7→ ϕ(t) we can define a “triangular” region delimited by ϕ, the maximal
backward characteristic from the point of jump of v, t 7→ η+

x̄ (t), and the line t = 0.
In this region the solution can be reconstructed in a unique way by following the
backward characteristics steaming from the right side of the discontinuity. If nesting
occurs, it must take place outside this region. Starting from this point we limit our
attention to situations in which nesting does not occur, deferring to section 5 some
examples and comments concerning nesting.

Given a continuous target profile v and a time T we define (candidate) backward
characteristics lines as in (15c). Proposition 2.4 gives a necessary condition for this
family of lines to have a convex tangent envelope. This implies a geometric require-
ment for the attainability of v because the characteristics associated with any solution
to (1a) can cross only in a centered rarefaction wave at time t = 0, or they can radiate
from a left contact discontinuity, which is a convex curve.

Proposition 2.5 puts together the results in Propositions 2.3 and 2.4 to formulate
a necessary condition for a contact discontinuity in v to be admissible. Observe that
while the admissibility of a shock discontinuity in the convex case is easily determined
by the values of v on the left and on the right sides of the jump, here we need to impose
conditions on the first and second derivatives of f ′(v) on a whole neighborhood of the
point of jump.

Section 3: Sufficient conditions. The main result in this section is Theorem 3.1,
which collects a set of sufficient conditions for the attainability of a profile v in time
T provided that the points at which v is discontinuous do not accumulate and that
no nesting occurs. The first part of section 3 consists of the statement of the theorem
and of some remarks illustrating the meaning of the conditions. In the hypothesis of
Theorem 3.1 it is possible to determine whether the profile v is attainable by checking
that each of its discontinuities is admissible. Therefore in section 3.1 we detail the
study of three basic situations which will be used as building blocks in the proof of
Theorem 3.1. Lemmas 3.2, 3.3, and 3.4 explain how to construct a control which
allows one to reach the profile v in three basic situations. The last part of section 3
contains the proof of Theorem 3.1.

Section 5: One example of nesting, a different point of view. Section 5.1 contains
the analysis of the simplest possible case of nesting. Some conditions for attainability
are states in a very smooth framework. One explicit example illustrates our results.
Section 5.2 is devoted to presenting a slightly different approach to the problem of
nesting.

1The interested reader may compare the statements of our Theorems 2.1 and 3.1 with the state-
ment of [3, Theorem 1], which gives necessary and sufficient conditions for attainability in the case
of a strictly convex flux function.
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Fig. 2. The points v] and v[.

1.3. Notation. First of all, if a solution to (1a) suffers from jump discontinuity
along a Lipschitz curve x = ϕ(t), we denote by uL(t) and uR(t), respectively, the left
and right limits of u(t, ·) at ϕ(t) whenever they exist, i.e.,

(7) uL(t) = lim
x→ϕ(t)−

u(t, ·) , uR(t) = lim
x→ϕ(t)+

u(t, ·) .

Let f be a flux function satisfying the set of conditions (F). Given v ∈ R, v 6= 0, we
let v] be the solution to (see Figure 2)

(8) f(v]) = f(v) + f ′(v)(v] − v) , v] 6= v ,

so that

(9) f ′(v) =
f(v)− f(v])

v − v]

holds for any v 6= 0. Symmetrically, we denote by v[ the solution to

(10) f(v) = f(v[) + f ′(v[)(v − v[) , v[ 6= v ,

so that

(11) f ′(v[) =
f(v)− f(v[)

v − v[

holds for any v 6= 0. Observe that

v = (v])[ = (v[)],(12)

v · v] < 0 , v · v[ < 0,(13)

hold for any v 6= 0.
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Throughout our paper we assume that the target profile v is a left continuous BV
function with compact support. We define

(14) α
.
= sup

{
x ∈ R : v(y) = 0 ∀ y ≤ x

}
,

so that v(α) = 0. Moreover, if T is the fixed time at which v should be attained, we
let

η−x (τ)
.
= x+ f ′

(
v(x)

)
(τ − T ) = x+ f ′

(
v(x−)

)
(τ − T ) ,(15a)

η+
x (τ)

.
= x+ f ′

(
v(x+)

)
(τ − T ) ,(15b)

be, respectively, the (candidate) minimal and maximal backward characteristics lines
from (T, x) associated with a solution u of (1a) attaining the profile v at time T ,
i.e., u(T, x) = v(x). In case v is continuous at x, minimal and maximal backward
characteristics coincide in a left neighborhood ]T − δ, T ] of t = T , and therefore we
can write

ηx(τ)
.
= x+ f ′

(
v(x)

)
(τ − T ) ,(15c)

where τ ∈ ]T − δ, T ].
The notations D+ and D− stand for the right and left upper Dini derivatives,

respectively,

D+g(x) = lim sup
y→x+

g(y)− g(x)

y − x
, D−g(x) = lim sup

y→x−

g(y)− g(x)

y − x
.

Given any two points a and b in R, we use the notation I(a, b) to indicate the open
interval of extrema a and b. This means that I(a, b) = ]a, b[ if a < b and I(a, b) = ]b, a[
if a > b. Analogously, I[a, b] denotes the closed interval of extrema a and b.

2. Necessary conditions for attainability. Throughout this section we as-
sume that v is the value, at time t = T , of an entropy solution to (1a) defined on
[0, T ]. We analyze the necessary properties of v due to this fact, using the backward
characteristics as the main tool. The conditions in the following theorem are the
exact counterpart of the necessary conditions for attainability stated in [3] for the
convex flux case. They differ from all other conditions stated in this work because
they depend on the value (or the limit value) of the target profile at single points.

Theorem 2.1. Assume that v is a measurable, left continuous, bounded profile,
with finite total variation, so that there exists uc ∈ L∞(a, b) such that the weak entropy
solution u = u(t, x) to (1a)–(1b) fulfills u(T, ·) = v. Let α be defined as (14). Then
the following properties hold.

1. Let x0 ∈ R be given and assume that v(x0+) 6= 0. Then the candidate maxi-
mal backward characteristic from the point (T, x0), t 7→ η+

x0
(t), satisfies

(16) η+
x0

(0) = x0 − f ′(v(x0+))T ≤ b .

2. Assume that v(α+) 6= 0. Then the candidate maximal backward characteristic
from the point (T, α), t 7→ η+

α (t), satisfies

(17) η+
α (0) = α− f ′

(
v(α+)

)
T ≥ a .
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3. Assume that v(α+) = 0. Then there exists a sequence {xn}n∈N such that
xn ↓ α and for any n ∈ N, the candidate maximal backward characteristic
from the point (T, xn), t 7→ η+

xn
(t), satisfies

(18) η+
xn

(0) = xn − f ′(xn+)T > a .

4. Assume that at x = x̄ the function v suffers from a jump discontinuity with
left and right states vL = v(x̄) and vR = v(x̄+), respectively. Then the
following conditions on vL and vR hold.

((a)) f ′(vL) > f ′(vR);

((b)) if vL · vR < 0, then let v]L be as in (8) with v = vL. Then we have

(19) vR /∈ I(vL, v
]
L).

Proof.
1. Assume that (16) fails, and let y = ζ+

x0
(t) be the maximal generalized back-

ward characteristic from (T, x0). Since y = ζ+
x0

(t) is a convex polygonal [10,
Theorem 2.1], we have

ζ+
x0

(t) ≥ x0 + f ′
(
v(x0+)

)
(t− T ) = η+

x0
(t)

with η+
x0

(·) being defined by (15c) (candidate backward characteristic). Since
u(0, x) = 0 for any x > b, in particular, we have u(0, x) = 0 for all x ≥ ζ+

x0
(0),

so that u(t, x) = 0 for any x ≥ ζ+
x0

(t) and any t ≤ T . Hence v(x0+) = 0,
contrary to the assumption.

2. Assume by contradiction that (17) fails and, to fix the ideas, assume v(α+) >
0. Let x1 > α be such that v(x) > 0 for any α < x < x1. Then, there exists
δ > 0 such that in the region{

(τ, x) : T − δ ≤ τ ≤ T , x ≤ x1 + f ′
(
(v(x1)

)
(τ − T )

}
there holds u(τ, x) ≥ 0. Hence u is a solution to a conservation law with
convex flux. Since arguing as before we get u(τ, x) = 0 for any x < α +
f ′
(
v(α+)

)
(τ −T ), it turns out that u(T, ·) cannot suffer from a jump discon-

tinuity at x = α.
3. Again, we argue by contradiction, and assume that there exists x̄ > α such

that
x− f ′

(
v(x+)

)
T ≤ a ∀α < x ≤ x̄ .

Let ηx(·) be defined as at (15c). Two cases may occur.
((a)) All of the lines ηx(·), α < x ≤ x̄, focus at (0, a), i.e.,

x− f ′
(
v(x+)

)
T = a ∀α < x ≤ x̄ .

In this case the solution u would contain a centered rarefaction wave
with 0 left state, leading to a contradiction.

((b)) If some of the lines ηx(·), α < x ≤ x̄, do not focus at (0, a), we may
assume that

x− f ′
(
v(x+)

)
T < a ∀α < x ≤ x̄

holds. But then, arguing as above, we can deduce that v(y) = 0 in a
right neighborhood of x = α, contrary to definition (14).
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4. The proof of such properties of admissible jump discontinuities for a weak
entropy solution to (1a) is classical (e.g., see [11, Chapter 8]).

As we limit our attention to the case in which the flux function f in (1a) has
exactly one inflection point, we know that no rarefaction wave can be produced at
positive time by the interaction of two or more wavefronts. Therefore, any candidate
target profile v whose candidate backward characteristics focus at a single point of
R+ × R is not attainable. This fact motivates the following proposition.

Proposition 2.2. Assume that v is an attainable profile, continuous in an in-
terval I, with2 Dxf

′(v(x)) = c > 0 for any x ∈ I. Then c ≤ 1/T .

Proof. If Dxf
′(v(x)) = c for all x ∈ I, then the lines ηx, defined as in (15c) for

x ∈ I, take the form
ηx(τ) = x+ c(x+ a)(τ − T ),

where a is a constant, and intersect at τ = T − 1/c, y = −a. Since in any solution
to (1a) no new rarefactions are created at positive times, τ ≤ 0 must hold.

Remark 1. The proposition above, based on the spread rate of rarefaction waves,
can be compared to the classical Oleinik’s estimate on the decay of positive waves.
It should be noticed that Oleinik’s estimate only holds in the strictly convex/concave
setting, and under the assumptions of Proposition 2.2, f ′′(v(x)) 6= 0 for x ∈ I. A
partial generalization of Oleinik’s estimate in the nonconvex case is the main result
in [16], but as it involves the total variation of the initial condition, we cannot exploit
it in our backward reconstruction.

Now let u be a bounded weak entropy solution to (1a) suffering from a discontinu-
ity along a timelike curve x = ϕ(t) for t ∈ [t0, t1], with right state uR(t) (see (7)). The
(candidate) maximal backward characteristic curve from the point (t, ϕ(t)) is given
by the equation

(20) ξt(τ) = ϕ(t) + f ′
(
uR(t)

)
(τ − t).

We stress that all through the paper, for the reader’s convenience, backward char-
acteristics originated at time T are denoted by the greek letter η, while backward
characteristics originated at earlier times, steaming from a curve of discontinuity in
the solution u, are denoted by the greek letter ξ. It is possible, of course, that some
of the candidate backward characteristics ξt, t ∈ [t0, t1], cross each other. This is at
the origin of the nesting phenomenon evoked in the introduction. However, the next
proposition shows that the lines ξt do not intersect in the region between ϕ and ξt1 .

Proposition 2.3. Assume that u is a bounded measurable weak entropy solution
to (1a) suffering from a left contact discontinuity x = ϕ(t), t ∈ [t0, t1], with right state
uR(t). Let ξt(·) be as at (20), and assume that ξt(τ) ≤ ξt1(τ) for any τ ∈]0, t] and
t ∈ [t0, t1]. Then the function

t 7→ ξt(0) = ϕ(t)− f ′
(
uR(t)

)
t

is increasing.

Proof. If t 7→ ξt(0) is not increasing, then lines (20) cross each other in the time in-
terval ]0, T ]. Hence, the solution u has a (left contact) discontinuity x = ψ(t) such that

ϕ(τ) < ψ(τ) < ξt1(τ) .

Since the discontinuity at x = ψ(t) cannot be canceled [10, Theorem 2.3], and since

2Here Dxf ′(v(x)) denotes the derivative of the function x 7→ f ′(v(x)).
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it cannot intersect the line x = ξt1(τ) due to the structure of minimal and maximal
backward characteristics [10, Theorems 2.1 and 2.2], it turns out that x = ψ(t) inter-
acts with ϕ(t) at a time t̄ ≤ t1. This cannot occur, otherwise ϕ(t) would not be a left
contact discontinuity for t ≥ t̄.

Lemma 2.4 from [10] states that any left contact discontinuity associated with
a BV solution u of (1a) propagates along a strictly convex curve. This fact trans-
lates into a geometric condition on the lines ηx: If v is admissible and the candidate
backward characteristic lines ηx do not reach t = 0 without crossing each other, then
their tangent envelope must necessarily be a strictly convex curve. The following
proposition puts forward conditions on v which ensure that this desirable geometry
is realized.

Proposition 2.4. Let I ⊆ R be an interval, and v ∈ C0(I) be bounded. As-
sume that the function I 3 x 7→ f ′(v(x)) is differentiable with Dxf

′(v(x)) > 0 and
D+(Dxf

′(v(x))) > 0 for all x ∈ I. Then, the tangent envelope of the lines t 7→ ηx(t)
defined at (15c) for x ∈ I is a strictly convex C1 curve x = ϕ(τ), defined in a suitable
interval [t0, t1] ⊆ ]−∞, T ]. Moreover, if Dxf

′(v(x)) ≥ 1/T for all x ∈ I, then the
interval [t0, t1] is contained in [0, T ].

Proof. Observe that, if ϕ exists, then for any τ ∈ [t0, t1] there exists x(τ) ∈ I
such that

ϕ(τ) = x(τ) + f ′
(
v(x(τ))

)
(τ − T ) and ϕ′(τ) = f ′

(
v(x(τ))

)
.

Moreover, since we want ϕ to be strictly convex, the function τ 7→ x(τ) has to be
strictly increasing, and have a strictly increasing inverse, say I 3 x 7→ t(x). Let us
compute t(x) in order to express ϕ in terms of the x-variable. For any x1, x2 ∈ I the
time at which the lines ηx1

and ηx2
intersect is given by

t(x1, x2) = T − x2 − x1

f ′(v(x2))− f ′(v(x1))
< T ,

where we have used that Dxf
′(v(x)) > 0 for all x ∈ I. It follows that

(21) t(x1) = lim
x2→x−

1

t(x1, x2) = T − 1

Dxf ′(v(x1))
.

Hence

(22) ϕ(t(x)) = x+ f ′
(
v(x)

)(
t(x)− T

)
= x−

f ′
(
v(x)

)
Dxf ′(v(x))

.

By construction, being D+(Dxf
′(v(x))) > 0 for all x ∈ I, t(x) turns out to be strictly

increasing. Moreover, as τ 7→ x(τ) is the inverse of x 7→ t(x), (21) implies that for
a.e. t

ϕ′(τ) = x′(τ) +Dxf
′(v(x(τ))

)
x′(τ)(τ − T ) + f ′

(
v(x(τ))

)
= x′(τ)

[
1 +Dxf

′(v(x(τ))
)
(τ − T )

]
+ f ′

(
v(x(τ))

)
= f ′

(
v(x(τ))

)
.

Now one can easily conclude that the map ϕ at (22) fulfills the desired properties.

Remark 2. Observe that, having in mind an admissible profile v, Proposition 2.4
and (21) imply that, if v suffers from a left contact discontinuity at x = x̄, then

Dxf
′(v(x)) = − 1

t(x)− T
→ +∞ as x→ x̄− .
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Fig. 3. The lines ηx and ξt(x).

This behavior is forecast by the general theory on nonconvex conservation law; see [16,
Theorem 3.1].

Assume that an attainable profile v suffers form a jump discontinuity at point
x = x̄ between the states v(x̄) and v(x̄+) = (v(x̄))

]
, and satisfies the hypothesis

of Proposition 2.4 in a left neighborhood I of x̄. In this framework we can define
a curve τ 7→ ϕ(τ) and conclude that any solution u of (1a) attaining the profile v
at time T needs to suffer from a left contact discontinuity along the curve ϕ. It is
easy and extremely important to notice that the values of u on the two sides of ϕ
are completely determined as u(τ, ϕ(τ)) = v(x(τ)) and u(τ, ϕ(τ)+) = (v(x(τ)))

]
, the

latter being defined as at (8) with v = v(x(τ)). Using the inverse function x 7→ t(x)
introduced in the proof of Proposition 2.4 and writing v](x) for (v(x))], we can adapt
the expression (20) to describe the candidate maximal backward characteristic from
(τ, x(τ)) = (t(x), ϕ(t(x))) in terms of the profile v only (see Figure 3),

(23) ξt(x)(τ) = ϕ(t(x)) + f ′
(
v](x)

)
(τ − t(x)) .

For future reference, we notice here that (21) and (22) imply
(24)

ξt(x)(0) = ϕ(t(x))− f ′
(
v](x)

)
t(x) = x−

f ′
(
v(x)

)
Dxf ′(v(x))

− f ′
(
v](x)

) [
T − 1

Dxf ′(v(x))

]
= x+

f ′
(
v](x)

)
− f ′

(
v(x)

)
Dxf ′(v(x))

− f ′
(
v](x)

)
T .

The proof of the following proposition is omitted, since it follows easily from Propo-
sitions 2.3 and 2.4.

Proposition 2.5. Assume that v is a measurable, left continuous, bounded at-
tainable profile, with finite total variation. Assume that v suffers from a left contact
discontinuity at x = x̄ with right state vR. Assume that there exists an open interval
I ⊂ ]−∞, x̄] such that

1. sup I = x̄;
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2. v ∈ C0(I);
3. the function I 3 x 7→ f ′(v(x)) is differentiable and

Dxf
′(v(x)), D+(Dxf

′(v(x))) > 0 for any x ∈ I .

Moreover, let η+
x̄ (·) be defined as at (15b) with x = x̄, ξt(x)(·) be defined as at (23),

and let

(25)

x̃ = sup
{
x ∈ I : ξt(x)(0) ≤ η+

x̄ (0)
}

= sup

{
x ∈ I : x+

f ′
(
v](x)

)
− f ′

(
v(x)

)
Dxf ′(v(x))

− f ′
(
v](x)

)
T ≤ x̄− f ′(vR)T

}

(see Figure 3). Then, the function x 7→ ξt(x)(0) is increasing in I\]x̃, x̄[.

Remark 3. In the framework of Proposition 2.5, some properties of the attainable
profile v in the interval x ∈]x̃, x̄[ will be discussed in section 5. We point out that
Proposition 2.5 states that, if a second left contact appears at the left of x = ϕ(t),
then it is necessarily located at the left of x = η+

x̄ (t).

3. Sufficient conditions for attainability. We start by formulating the main
result of this paper, which provides a partial description of the set UT . The mean-
ing of the most technical hypotheses is explained in the three remarks following the
statement.

Theorem 3.1. Let v ∈ BV (R) be a left continuous function with a nowhere dense
set of points of jump discontinuities. Let [α0, β0] be the support of v and let α be defined
as at (14). Assume that the following conditions hold.

1. v fulfills conditions 1–4 of Theorem 2.1.
2. We consider the partition of [α0, β0] into maximal subintervals in which v

is continuous. For any of these maximal subintervals, say I, the following
conditions are fulfilled. Define

(26) J
.
=
{
x ∈ I : Dxf

′(v(x)) > 1/T
}
.

Assume that either J is an empty set, or that the following conditions hold:
((a)) J is a subinterval of I and sup J = sup I = x̄ is a point of jump of v.

We let vL and vR be the left and right states of v at x̄, respectively.
((b)) vL

.
= v(x̄) is different from zero.

((c)) Let v](x) be (v(x))
]

as it is defined by formula (8). We have

D+(Dxf
′(v(x))) > 0 ∀x ∈ J ,(27)

D+

[
x+

f ′
(
v](x)

)
− f ′

(
v(x)

)
Dxf ′(v(x))

− f ′
(
v](x)

)
T

]
≥ 0 ∀x ∈ J .(28)

((d)) Let (v]L)] be as v] in (8) with v = v]L. If vR ∈ I(vL, (v
]
L)]), there holds

(29)
(v]L − vR)

[
f ′(vL)− f ′(v]L)

]
f(vR)− f(vL)− (vR − vL)f ′(vL)

[
T − 1

D−x f ′(v(x̄))

]
≤ T .

Then, v is an attainable profile, i.e., there exists uc ∈ L∞(a, b) such that the weak
entropy solution u = u(t, x) to (1a)–(1b) satisfies u(T, ·) = v.
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Remark 4. If J is empty, all the candidate backward characteristics ηx for x ∈ I
are classical characteristics and reach t = 0 without crossing each other. The backward
reconstruction of v in this case is known, as it only contains genuine shocks and
rarefaction waves; see also Proposition 2.2. When J is not empty the backward
reconstruction of v contains a left contact discontinuity.

Conditions 2(a) and 2(b) are actually necessary conditions. In particular, 2(b) is
related to a property stated by Dafermos in [10, Theorem 2.2]. Indeed, if vL = 0, the
minimal backward characteristic from (t, x̄) is the straight line x = x̄ and no crossing
of characteristics occurs. This is in contradiction with the hypothesis that J is not
empty.

Remark 5. Condition 2(c) tells us that the family of candidate backward charac-
teristics generated from the points (T, x), for x ∈ J , admits a convex tangent envelope
τ 7→ ϕ(τ) and that the candidate maximal backward characteristics ξt(x) defined as
at (23) do not cross at positive times. Indeed, condition (28) means that the function
x 7→ ξt(x)(0) (see (24)), is increasing for all x ∈ J . In other words this condition
excludes the occurrence of nesting phenomena. We postpone to section 5 the analysis
of some situations in which nesting takes place.

Remark 6. In the setting of condition 2(d), namely, if vR ∈ I(vL, (v
]
L)]), the

discontinuity at x = x̄ in the target profile v is not a left contact but a shock. However,
given the structure of the candidate backward characteristics (J is nonempty), we
expect that in any solution u of (1a) attaining v at time T , such a shock originates
from an interaction at τ < T involving a left contact discontinuity. Therefore we
stress that D−x f

′(v(x̄)) is finite, as we are not in the same setting as Remark 2, and
being that D−x f

′(v(x̄)) ≥ 1/T , condition (29) implies

(v]L − vR)
[
f ′(vL)− f ′(v]L)

]
f(vR)− f(vL)− (vR − vL)f ′(vL)

≥ 1 .

The precise form of inequality (29) comes from the construction in the proof of
Lemma 3.4 below.

3.1. The building blocks of our construction. This section is devoted to the
detailed analysis of three basic cases in which the existence of a control function uc can
be easily proved. These cases are used as building blocks in the proof of Theorem 3.1.
Indeed, under the assumptions of Theorem 3.1 the nesting effect cannot be observed;
see Remark 5. Therefore, it is possible to split the support of v into subintervals Ik,
show the existence of controls ukc which allow us to attain the truncated functions v|Ik ,

and finally “glue” together the functions ukc to obtain a control uc such that the weak
entropy solution u = u(t, x) to (1a)–(1b) satisfies u(T, ·) = v. This argument works
because under the assumptions of Theorem 3.1 the domain of dependence of u(T, ·)
on each interval Ik is delimited by the maximal backward generalized characteristics
from t = T , x = inf Ik and t = T , x = sup Ik.

For the reader’s convenience, we fix here the notation and the setting which will
be used all through this section. Roughly speaking, we isolate one of the intervals Ik.

(V) Let v ∈ BV(R) satisfy all the hypotheses of Theorem 3.1 together with the
following stronger assumptions. Let v be left continuous, compactly sup-
ported on ]α0, β0[, and suffering of a single jump discontinuity at the point
x = x̄, connecting the values v(x̄) = vL and vR. For definiteness we as-
sume that vL < 0 (the case vL > 0 is symmetric) and that v(x) = vR for
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all x in ]x̄, β0[.3 We assume, as prescribed by condition 1 of Theorem 3.1,
that the jump (vL, vR) is admissible in the sense of condition 4 of Theo-
rem 2.1. Using the same notation as in Theorem 3.1 we set I

.
= ]α0, x̄[ and

J
.
= {x ∈ I : Dxf

′(v(x)) > 1/T}. If J is not empty, we define

(30) x̂
.
= inf J,

while sup J has to be x̄ according to condition 2(a) of Theorem 3.1.
We recall that the (candidate) backward characteristic lines η+

x , η−x , and ηx have been
introduced at (15). Whenever J is nonempty, condition (27) ensures that the tangent
envelope of the lines τ 7→ ηx(τ) for x ∈ J , is a convex curve x = ϕ(τ), defined for
τ ∈ [t0, t1] with t1 = t(x̄) (see (21)) given by

(31)

t1 = sup
{
t ≤ T : ηx(t) = ηx̄(t) , x ∈ J , x < x̄

}
= sup

x∈I
x<x̄

{
T − x− x̄

f ′(v(x))− f ′(vL)

}
= T − 1

D−x f ′(v(x̄))
,

and t0 given by

(32) t0 = max{t ≥ 0 such that ϕ′(t) = f ′(v(x̂))} .

The presentation articulates into three lemmas, focusing, respectively, on the follow-
ing.

Case 1. The profile v suffers from a shock discontinuity at x = x̄ and the candidate
backward characteristics ηx, for x ∈ I do not cross in the time interval ]0, T ].

Case 2. The set J is not empty, therefore, the candidate backward characteristics
ηx for x ∈ J cross in positive time. The state vR does not belong to the open interval
with extrema v]L and (v]L)]. This means that the profile v suffers either from a left
contact discontinuity at x = x̄, i.e., vR = (vL)], or the discontinuity of v at x̄ can
be solved backward as an interaction occurring at time τ = T and involving a left
contact discontinuity.

Case 3. The set J is not empty but the state vR lies in-between vL and (v]L)].
Therefore, on the one hand, the jump of v at x̄ can only be interpreted as a shock;
on the other hand, the crossing of backward characteristics forces the presence of a
left contact discontinuity in any entropy weak solution u such that u(T ) = v. This
construction is the most intricate.

We stress that in Cases 1, 2, and 3 we can explicitly construct a control function
uc.

Lemma 3.2 (Case 1). Assume that v is as in (V) and that J is empty. Then
one can explicitly provide an initial condition u1 ∈ L∞(η+

α0
(0), η−β0

(0)) , and a weak
entropy solution u (see (34) below), to

(33)

{
∂tu+ ∂xf(u) = 0 ,

u(0, x) = u1(x) ,
0 ≤ t ≤ T , η+

α0
(t) < x < η−β0

(t),

such that u(T, x) = v(x) a.e. in ]α0, β0[.

Proof. In this case we can explicitly construct a backward solution u, hence a
control u1, in the following classical way. The shock wave joining the states vL and

3Please notice that the constructions we perform are essentially the same under the (slightly)
weaker hypothesis that the set Jx>x̄

.
= {x ∈]x̄, β0[ : Dxf ′(v(x)) > 1/T} is empty.
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2250 B. P. ANDREIANOV, C. DONADELLO, AND A. MARSON

vR propagates along the line

s(τ) = x̄+ σ(vL, vR)(τ − T ),

where

σ(vL, vR) =
f(vR)− f(vL)

vR − vL

is the Rankine–Hugoniot speed of the jump (vL, vR). Then

(34) u(τ, y) =


v(x) if η+

α0
(τ) < y = ηx(τ) ≤ η−x̄ (τ) , τ ∈]0, T [ ,

vL if ηx̄(τ) < y ≤ s(τ) ,

vR if s(τ) < y < η−β0
(τ) ,

that is obtained just following up to t = 0 the backward characteristics. Please notice
that in this case the backward reconstruction is far from being unique.

Now we turn our attention to the most interesting case J 6= ∅.

Lemma 3.3 (Case 2). Assume that v is as in (V), J is not empty, and vR does

not belong to the open interval of extrema v]L and (v]L)]. Then one can explicitly
provide an initial condition u2 ∈ L∞(η+

α0
(0), η−β0

(0)) , and a weak entropy solution u
(see (35)–(36c) below) to{

∂tu+ ∂xf(u) = 0 ,

u(0, x) = u2(x) ,
0 ≤ t ≤ T , η+

α0
(t) < x < η−β0

(t) ,

such that u(T, x) = v(x) a.e. in ]α0, β0[.

Proof. As we assume that vL < 0, either 0 < v]L ≤ vR or vR ≤ (v]L)] < 0. If

vR = v]L the discontinuity of v at x = x̄ is a left contact discontinuity. If vR = (v]L)]

the discontinuity of v at x = x̄ can be solved backward as an interaction occurring at
time T between the left contact discontinuities from vL to v]L and from v]L to (v]L)]. In
all other cases the discontinuity of v at x = x̄ can be solved backward as an interaction
occurring at time T between the left contact discontinuity from vL to v]L and a shock

joining v]L to vR; see Figure 4.
Once we fixed the structure of a backward resolution of the discontinuity, the

construction of a control becomes routine. Indeed, assumption (28) ensures that
nesting does not occur, therefore, the backward reconstruction of the solution can be
done up to t = 0 without the appearance of unexpected waves.

In order to keep our presentation as light as possible, we limit the discussion to
the case vR /∈ {v]L, (v

]
L)]}, as the two other cases can easily be inferred from this one.

Call s the line along which the shock joining v]L to vR propagates in the backward
solution,

s(τ) = x̄+ σ(v]L, vR)(τ − T ),

where σ(v]L, vR) is the Rankine–Hugoniot speed of the jump (v]L, vR). We fix the
values of t0 and t1 as in (32) and (31). A backward solution to (1a) with datum
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Fig. 4. The function u at (35).

u(T, x) = v(x) takes the form

(35) u(τ, y) =


v(x) if (τ, y = ηx(τ)) ∈ Ω1 ,

(v(x))] if
(
τ, y = ξt(x)(τ)

)
∈ Ω2 ,

v]L if (τ, y) ∈ Ω3 ,

vR if y ∈]s(τ), η−β0
[, τ ∈]0, T [ ,

where the regions Ωi for i = 1, 2, 3, are defined as follows:

Ω1 =
{

(τ, y) ∈]t1, T [×]η+
α0

(τ), η−x̄ (τ)]
}
∪
{

(τ, y) ∈]t0, t1]×]η+
α0

(τ), ϕ(τ)]
}

(36a)

∪
{

(τ, y) ∈]0, t0[×]η+
α0

(τ), ηx̂(τ)]
}
,

Ω2 = {(τ, y) ∈]t0, t1[×]ϕ(τ), ξt1(τ)]} ∪ {(τ, y) ∈]0, t0]×]ηx̂(τ), ξt1(τ)]} ,(36b)

Ω3 =
{

(τ, y) ∈]t1, T [×]η−x̄ (τ), s(τ)]
}
∪ {(τ, y) ∈]0, t1]×]ξt1(τ), s(τ)]} .(36c)

Then u2 can be constructed, just following backward the backward characteristics up
to t = 0.

Lemma 3.4 (Case 3). Assume that v is as in (V), J is not empty, and vR ∈
I(vL, (v

]
L)]). Then there exists an initial condition u3 ∈ L∞(η+

α0
(0), η−β0

(0)) , such that
the weak entropy solution u to

(37)

{
∂tu+ ∂xf(u) = 0 ,

u(0, x) = u3(x) ,
0 ≤ t ≤ T , η+

α0
(t) < x < η−β0

(t) ,

satisfies u(T, x) = v(x) a.e. in ]α0, β0[.

Remark 7. Regarding Lemma 3.4, we provide at the end of the proof an explicit
formulation of the initial datum u3 and of the solution u to (37) attaining v at time
T .
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2252 B. P. ANDREIANOV, C. DONADELLO, AND A. MARSON

Proof. Our first step in this proof is to find a wave pattern which is compatible
with the information we have on the profile v. Here the jump of v at x̄ can only be
interpreted as a shock and, since J 6= ∅, we can argue the presence of a left contact
discontinuity ϕ in any entropy weak solution u such that u(T ) = v. It is well known
(see [10, Theorem 2.3]) that once a left contact discontinuity appears in a weak entropy
solution of (1a), it cannot disappear but can interact with other waves. Therefore
we conclude that the shock jump in v at x = x̄ corresponds to a shock wave s3 in
u originated from the interaction between ϕ and another discontinuity s0. The idea,
roughly speaking, is the following. First, we use the values of v for x < x̄ to perform a
partial backward reconstruction of the left contact discontinuity ϕ and, in particular,
find the time t1 at which the candidate minimal backward characteristic from (T, x̄)
is tangent to ϕ; see (31). Second, we trace the maximal backward characteristic ξt1
from (t1, ϕ(t1)) and we call x2 the point ξt1(0). We also trace the maximal backward
characteristic η+

x̄ from (T, x̄) and we call (t∗, x∗) the intersection between ξt1 and η+
x̄ ,

(38) ξt1(t∗) = η+
x̄ (t∗) = x∗.

The condition t∗ ≤ 0 turns out to be necessary for the attainability of v (see below).
Finally, we construct a one parameter family of initial conditions (w0

γ)γ∈[t∗,0] such
that

1. the function γ 7→ w0
γ is continuous;

2. all corresponding forward solutions wγ to (1a) have the desired wave pattern
(incoming ϕ and s0, interaction, outgoing s3);

3. there exists a value γ∗ ∈ [t∗, 0] such that the solution wγ∗ associated with
w0
γ∗ attains exactly the profile v at time T .

The rigorous presentation of the proof is divided into several steps.
Step 1: Partial backward reconstruction. We consider the case (v]L)] < vR <

vL < 0. With exactly the same notation as in the proof of Lemma 3.3 we use the
method of characteristics to reconstruct the solution backward in the regions Ω1 and
Ω2; see (36a), (36b), and Figure 5.

We have

x1
.
= η−x̄ (t1) = x̄+ f ′(vL)(t1 − T ) ,(39)

x2
.
= ξt1(0) = x1 − f ′(v]L)t1 .(40)

Step 2: The Riemann problem with data (v]L, vR). In this step we introduce some
notations and describe the self-similar solution to a Riemann problem with data
(v]L, vR) centered at (t = t, x = a):

(41)


ut + f(u)x = 0 for t > t and x ∈ R,

u(t, x) =

{
v]L if x ≤ a,

vR if x > a.

Observe that our assumptions on f and the choice vL < 0 imply 0 < v[R < v]L.
Therefore, the solution to the problem (41) consists of a centered rarefaction wave

with left state v]L and right state v[R, followed by a left contact discontinuity joining
v[R to vR, τ 7→ s0(τ). More precisely, we have

(42)

s0(τ) = a + f ′(v[R)(τ − t)

= a +
f(vR)− f(v[R)

vR − v[R
(τ − t) ,

τ ≥ t ,D
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Fig. 5. The regions Ω1 and Ω2.

We call r = r(τ, y) the rarefaction fan outcoming from (t, a) with left and right state

v]L and v[R, respectively (see Figure 6). It is described as the unique solution to

f ′(r(τ, y)) =
y − a

τ − t
, r(τ, y) ≥ 0 ,

and v[R ≤ r(τ, y) < v]L.
Observe that in order to lighten the notation, the dependence of r and s0 on t, a is

somehow hidden, nevertheless, it is absolutely essential to keep it in mind throughout
the proof.

Step 3: A one parameter family of initial conditions. We recall that the curves
ξt1 and η+

x̄ have been introduced, respectively, at (20) and (31), and (15b). Their
intersection point is (t∗, x∗); see (38) and Figure 6. Let γ ∈ [t∗, 0] be fixed and set
t = γ, a = ξt1(γ). We define the initial condition w0

γ as follows:

(43) w0
γ(y) =


v(x) if y = ηx(0) ∈]η+

α0
(0), ηx̂(0)] ,

(v(x))] if y = ξt(x)(0) ∈]ηx̂(0), x2] ,

r(0, y) if y ∈]x2, s0(0)] ,

vR if y > s0(0),

where α0 is, as usual, the lower extremum of the support of v, x2 is defined at (40),
and s0 at (42). Observe that the value of w0

γ(y) for y ≤ x2 is fixed by following
the backward characteristics from the assigned profile v for all γ ∈ [t∗, 0]. As a
consequence, the solution of the Cauchy problem (1a)–(43), wγ , coincides with the
backward reconstruction in regions Ω1 and Ω3.

For y > x2, w0
γ coincides with the self-similar solution of the Riemann problem

between the states (v]L, vR) centered at (γ, ξt1(γ)). The solution wγ can be constructed
by the method of characteristics until at time τ = t1 the rarefaction fan r reaches the
contact discontinuity ϕ (which we obtained by backward reconstruction).
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Fig. 6. The construction of a family of initial conditions described in Step 3.

Step 4: Forward construction of wγ for τ > t1. For the reader’s convenience, we
point out that Figure 7 illustrates the procedure described in this paragraph in the
case γ = 0. For τ > t1 the contact discontinuity ϕ interacts with the rarefaction fan
r. The result of this interaction is a contact discontinuity with left state r[(τ, s1(τ))
and right state r(τ, s1(τ)), traveling along the curve τ 7→ s1(τ), defined as the unique
solution of the Cauchy problem

(44)

{
s′1 = f ′

(
r[(τ, s1)

)
,

s1(t1) = x1 ,
τ ≥ t1 .

Observe that, thanks to (11), we have

s′1(τ) =
f
(
r[(τ, s1(τ))

)
− f

(
r(τ, s1(τ))

)
r[(τ, s1(τ))− r(τ, s1(τ))

.

Geometrical considerations show that the curve s1 approaches s0 until r attains the
value v[R. Call t3 the time at which the interaction takes place, i.e., s1(t3) = s0(t3).
Let

(45) x3
.
= s1(t3) = s0(t3) = ξt1(γ) + f ′(v[R)t3 ,

and observe that, by construction,

η−x̄ (τ) < s1(τ) < s0(τ) ∀ t1 < τ < t3 .
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For future reference, we call Ω4 the region in the t-x plane delimited by ξt1 , s0, and
s1,

(46) Ω4 =
{

(τ, y) ∈ R2 : τ ∈]γ, t1], ξt1(τ) < y ≤ s0(τ)
}

∪
{

(τ, y) ∈ R2 : τ ∈]t1, t3], s1(τ) < y ≤ s0(τ)
}
.

The interaction between s0 and s1, taking place at (t3, x3), generates a single outgoing
shock discontinuity traveling along the curve τ 7→ s3(τ). We use again the method of
characteristics to define precisely the definition of s3. For any (τ, y) such that

• either τ ∈ [t1, t3] and η−x̄ (τ) ≤ y ≤ s1(τ),
• or τ > t3 and η−x̄ (τ) ≤ y < s0(τ) = x3 + f ′(v[R)(τ − t3),

let s = s(τ, y) ∈ [t1, t3] be such that

y = s1(s) + s′1(s)(τ − s) ,

and define
q(τ, y) = r[

(
s(τ, y), s1(s(τ, y))

)
.

In such a way q = q(τ, y) is a Lipschitz continuous solution to (1a) within its domain
of definition. Then, we let τ 7→ s3(τ) be the solution to the Cauchy problem

(47)

s′3(τ) =
f(vR)− f(q(τ, s3(τ)))

vR − q(τ, s3(τ))
,

s3(t3) = x3 ,

so that y = s3(τ) is a shock curve joining the left state q(τ, s3(τ)) to the right state
vR.

The solution to (47) is defined starting from τ = t3 until the point (τ, s3(τ))
reaches the line η−x̄ . This happens in finite time since the slope of η−x̄ is larger than
s′3(τ) for all τ > t3. We call t̄ the time at which the crossing takes place. This allows
for the following definition

(48) Ω5 =
{

(τ, y) ∈ R2 : τ ∈]t1, t3], η−x̄ (τ) < y < s1(τ)
}

∪
{

(τ, y) ∈ R2 : τ ∈]t3, t̄], η
−
x̄ (τ) < y < s3(τ)

}
.

The solution of the Cauchy problem (1a)–(43), wγ , is the piecewise Lipschitz con-
tinuous function defined as follows for τ ∈]0, t̄] (see Figure 7 for the case γ = 0),

(49) wγ(τ, y) =



v(x) if (τ, y = ηx(τ)) ∈ Ω1 ,

(v(x))] if
(
τ, y = ξt(x)(τ)

)
∈ Ω2 ,

r(τ, y) if (τ, y) ∈ Ω4 ,

q(τ, y) if (τ, y) ∈ Ω5 ,

vR if y ∈]s0(τ), η−β0
(τ)] and τ ≤ t3 ,

or y ∈]s3(τ), η−β0
(τ)] and τ ∈]t3, t̄] .

The lemma is proved if we can show that there exists a value of γ for which t̄ is
exactly equal to T . Observe that, as we pointed out in Remark 5, the hypotheses of
the lemma exclude the presence of a second left contact discontinuity in the region Ω2,
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Fig. 7. The case (v]L)] < vR < vL < 0.

as the backward characteristics issued from the curve φ reach t = 0 before intersecting
each other. For this reason we are not allowed to consider initial conditions suffering
from a jump discontinuity at a point y ∈]ηx̂(0), x2[. Therefore, when we consider
γ = 0 we obtain the solution of (1a) with the desired wave pattern (incoming ϕ and
s0, interaction, outgoing s3) in which the curves s3 and ηx̄ intersect earlier than for
any larger value of γ.

Remark 8. We remark that a necessary condition toward the attainability of the
profile v is t∗ < 0, i.e.,

(50) x2 < η+
x̄ (0) = x̄− f ′(vR)T .

Indeed, assume (50) does not hold (see Figure 8). Since f ′(v[R) > f ′(vR), we get

(51) x3 > x̄+ f ′(vR)(t3 − T ) .

Notice that s′3(τ) > f ′(vR) for any τ due to the admissibility conditions for shock
discontinuities, and that vR is the right state of s3. Due to (51) we have s3(T ) > x̄.
Hence, s3 and η−x̄ do not interact in the time interval [t3, T ], contrary to the fact that
t̄ ≤ T . A similar argument shows that if γ = t∗, then, for sure, t̄ > T .

The next step in this proof shows that if our original target profile satisfies the
hypothesis (29) of Theorem 3.1, then in wγ=0, s3(t̄) = ηx̄(t̄) at time t̄ < T .

Step 5: Under assumption (29), in wγ=0 there holds t̄ < T . Now we use conser-
vation in the region Ω5, defined at (48), in order to determine t̄. We have

∫∫
Ω5

∂tu+ ∂xf(u) dxdt = 0 ,
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Fig. 8. Remark 8.

so that, by the divergence theorem,

0 =

∫ t̄

t3

−q(t, s3(t))s′3(t) + f
(
q(t, s3(t))

)
dt(52a)

+

∫ t3

t1

−q(t, s1(t))s′1(t) + f
(
q(t, s1(t))

)
dt(52b)

+

∫ t̄

t1

q(t, η−x̄ (t))(η−x̄ )′(t)− f
(
q(t, η−x̄ (t))

)
dt .(52c)

Let us compute the three integrals in (52). Regarding (52a), since Rankine–Hugoniot
conditions hold along x = s3(t), we get

−q(t, s3(t))s′3(t) + f
(
q(t, s3(t))

)
= −vRs′3(t) + f(vR) ∀ t3 < t < t̄ ,

and, hence,

∫ t̄

t3

−q(t, s3(t))s′3(t) + f
(
q(t, s3(t))

)
dt

= −vR
(
s3(t̄)− x3

)
+ f(vR)(t̄− t3)

= −vR(x̄− x3) + vRf
′(vL)T − f(vR)t3 +

[
f(vR)− vRf ′(vL)

]
t̄ .

Now we compute (52b). Since Rankine–Hugoniot conditions hold along s1, we get

−q(t, s1(t))s′1(t)+f
(
q(t, s1(t))

)
= −r(t, s1(t)+)s′1(t)+f

(
r(t, s1(t)+)

)
∀ t ∈ ]t1, t3[ .

D
ow

nl
oa

de
d 

07
/1

7/
17

 to
 1

47
.1

62
.2

2.
20

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2258 B. P. ANDREIANOV, C. DONADELLO, AND A. MARSON

Using, again, conservation in the region Ω4 (see (46)), we get∫ t3

t1

−q(t, s1(t))s′1(t) + f
(
q(t, s1(t))

)
dt

=

∫ t3

t1

−r(t, s1(t)+)s′1(t) + f
(
r(t, s1(t)+)

)
dt

=

∫ t3

γ

−r(t, s0(t))s′0(t) + f
(
r(t, s0(t))

)
dt

+

∫ t1

γ

r(t, ξt1(t)+)ξ′t1(t)− f
(
r(t, ξt1(t)+)

)
dt ,

and being that∫ t3

γ

−r(t, s0(t))s′0(t) + f
(
r(t, s0(t))

)
dt =

∫ t3

γ

−v[Rs′0(t) + f(v[R) dt

=
[
− v[Rf ′(v[R) + f(v[R)

]
(t3 − γ) ,∫ t1

γ

r(t, ξ′t1(t)+)ξ′t1(t)− f
(
r(t, ξ′t1(t)+)

)
dt =

∫ t1

γ

v]Lξ
′
t1(t)− f(v]L) dt

=
[
v]Lf

′(v]L)− f(v]L)
]
(t1 − γ) ,

and using Rankine–Hugoniot conditions along s0, we obtain∫ t3

t1

−q(t, s1(t))s′1(t) + f
(
q(t, s1(t))

)
dt

=
[
− vRf ′(v[R) + f(vR)

]
(t3 − γ) +

[
v]Lf

′(v]L)− f(v]L)
]
(t1 − γ) .

Regarding (52c), observe that q(t, η−x̄ (t)) = vL, so that we obtain∫ t̄

t1

q(t, η−x̄ (t))(η−x̄ )′(t)− f
(
q(t, η−x̄ (t))

)
dt =

∫ t̄

t1

vL(η−x̄ )′(t)− f(vL) dt

=
[
vLf

′(vL)− f(vL)
]
(t̄− t1) .

From (52), and observing that by construction of x1, ξt1(γ), and x3,

x3 − x̄ = γf ′(v]L)− f ′(vL)T + f ′(v[R)t3 +
[
f ′(vL)− f ′(v]L)

]
t1 ,

we obtain

(53)

[
f(vR)− f(vL)− (vR − vL)f ′(vL)

]
t̄

+
[
f(vL)− f(v]L) + vR

(
f ′(vL)− f ′(v]L)

)
+ v]Lf

′(v]L)− vLf ′(vL)
]
t1

+
[
vRf

′(v]L) + vRf
′(v[R)− v]Lf

′(v]L) + f(v]L)− f(vR)
]
γ = 0 .

Since
f(vR)− f(vL)−

(
vR − vL

)
f ′(vL) 6= 0

due to the fact that (v]L)] < vR < vL, and being that

f(vL)− f(v]L) = f ′(vL)(vL − v]L) ,
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we recover

(54) t̄ = −
(vR − v]L)

[
f ′(vL)− f ′(v]L)

]
f(vR)− f(vL)− (vR − vL)f ′(vL)

t1+

−
vRf

′(v]L) + vRf
′(v[R)− v]Lf ′(v

]
L) + f(v]L)− f(vR)

f(vR)− f(vL)− (vR − vL)f ′(vL)
γ .

Using the expression of t1 at (31) and due to (29), we get t̄ ≤ T if γ = 0. As

vR < 0 < v[R < v]L the assumption (F)b ensures that the coefficient in front of γ is
negative. Then it is possible to find γ = γ∗ ∈ [t∗, 0] in order to get t̄ = T . It follows
that u3 = w0

γ with γ = γ∗ in (43), and u = wγ with γ = γ∗ in (49) are, respectively,
the explicit formulation of an initial datum u3 and a solution u to (37) attaining v at
time T .

3.2. Proof of Theorem 3.1. Assume that v satisfies all conditions in the state-
ment of Theorem 3.1. We consider the partition of [α0, β0] into maximal subinter-
vals in which v is continuous, namely, [α0, β0] = ∪n≥1In, In =]xn, xn+1]. Define
Jn = {x ∈ In : Dxf

′(v(x)) > 1/T}. Consider now the function

(55) vn(x) =


v(x+

n ) if α0 ≤ x ≤ xn,
v(x) if x ∈ In,
v(x+

n+1) if xn+1 < x ≤ β0,

and observe that vn satisfies the hypotheses of one of the three lemmas, Lemmas 3.2,
3.3, or 3.4. Therefore, there exists a control unc which we can use as initial condition
in (1) to attain the profile vn at time T . Under the hypotheses of Theorem 3.1, in
particular, in the absence of nesting structure, we are sure that the control function
unc is constant outside the interval Yn = [ηx+

n
(0), ηx+

n+1
(0)[. Therefore, the function

(56) uc(y) =
∑
n=≥0

unc (y)1Yn
(y)

can be used as initial condition in (1) to attain the profile v at time T .

4. Application to Kynch’s sedimentation model. In this section we give an
explicit example on the application of Lemma 3.4 to a real life problem. We consider
the classical model for sedimentation proposed by Kynch in [17]; see also [6] for an
introduction to the model from an historical point of view and a short account of the
related literature.

The model describes the sedimentation of the solid part of a suspension in a
cylindrical batch of height L. The unknown function in the equation is the local
solid fraction of the suspension, u, which varies between 0 and a maximal value umax.
For technical reasons (presence of a suitable mixing device), the only relevant space
dimension in the problem is the height above the bottom of the batch, x ∈ [0, L].
The ansatz used by Kynch is that the velocity of sedimentation, V , at any level x
depends on the value of the local solid fraction u, so that the flux function is given
by f(u) = V (u)u. If we write t for the time variable, the model takes the form of a
scalar conservation law in one space dimension,

(57) ∂tu+ ∂x
(
V (u)u

)
= 0 .
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Given the parameterization of the batch it is natural to impose that f is negative for
u ∈ [0, umax] and attains zero for u = 0 and u = umax. One can find many different
constitutive equations for V in the existing literature. In this example, to allow for
explicit computations, we take umax = 1 and we consider V (u) = −(1 − u)2, which
leads to the flux function f(u) = −u(1− u)2, so that (57) becomes

(58) ∂tu− ∂x
(
u(1− u)2

)
= 0 .

Such a flux function suffers from an inflection point at u = 2/3, but it does not satisfy
the conditions we fixed in (F)b in order to simplify our presentation. Nevertheless all
the results in the previous sections apply to this case. In analogy with the notation
introduced in (8)–(10), for any v we have

(59) v] = 2(1− v) , (v])] = 2(2v − 1) , v[ = 1− v

2
.

Since the volume fraction of solid u varies in the interval [0, 1], we need v ∈ [1/2, 3/4]
in order to have v] and (v])] in the same interval [0, 1].

Fix T = 2, and consider the final profile

(60) v2(x) =



1/2 if x ≤ 1/2 ,

4
√

7−
√

4 + 3
√

15− 28x

6
√

7
if 1/2 < x ≤ 59

112
,

224− 13
√

154

84
if x >

59

112
.

We illustrate how the backward reconstruction exploited in the proof of Lemma 3.4,
allows us to construct an initial datum u0 such that the solution u = u(t, x) to (58)
with u(0, ·) = u0 fulfills u(2, ·) = v2.

The target profile suffers from a jump discontinuity at x̄ = 59/112. In the follow-
ing we call

vL
.
= v(59/112) =

56−
√

154

84
, vR

.
= v(59/112+) =

224− 13
√

154

336
.

A straightforward computation (see (59)), gives us

v]L =
28 +

√
154

42
, (v]L)] =

14−
√

154

21
,

so we can check that vR ∈ [(v]L)], vL]. For future use we also compute

v[R =
448 + 13

√
154

672
.

Observe that, being that Dxf
′(v(x)) = (2

√
15− 28x)−1, the interval J at (26) is

nonempty, sup J = x̄, and inf J = x̂ = 1/2, and t1 = 1; see (31). The convex envelope
of the lines ηx defined at (15c) for x ∈ J =]1/2, 59/112] is

ϕ(t) =
1

112
t2 +

1

4
t . t ≤ 1

.
= t1 ,

Moreover, being that (v]L)] < vR < vL and

−
(vR − v]L)

[
f ′(vL)− f ′(v]L)

]
f(vR)− f(vL)− (vR − vL)f ′(vL)

t1 =
16

9
< 2 = T ,
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the assumption (29) is satisfied. Hence, all hypotheses of Lemma 3.4 are fulfilled.
Plugging t̄ = T = 2 and t1 = 1 into (54), we easily find the value γ = γ∗ which allows
us to construct the initial condition

(61)

γ∗ = −

[
f(vR)− f(vL)− (vR − vL)f ′(vL)

vRf ′(v
]
L) + vRf ′(v[R)− v]Lf ′(v

]
L) + f(v]L)− f(vR)

]

·

[
2 +

(vR − v]L)
[
f ′(vL)− f ′(v]L)

]
f(vR)− f(vL)− (vR − vL)f ′(vL)

]

= −6823432 + 5667200
√

154

391268487
≈ −0.197183 .

From (39) and (40) we get

x1 =
29

112
, x2 =

3

16
.

With the choice (61) of γ = γ∗ and using (42), we get

a = x1 + f ′(v]L)(γ∗ − 1) =
1166007253− 6476800

√
154

6260295792
≈ 0.173415 ,

s0(0) = a− f ′(v[R)γ∗ =
4734091037 + 32282800

√
154

25041183168
≈ 0.205051 .

Hence, from (43), we get that an initial datum by means of which we get v2 at time
T = 2 is given by

u0(x) =



1/2 if x ≤ 0 ,

2
√

7 +
√

4 + 3
√

1− 4x

3
√

7
if 0 < x ≤ 3/16 ,

2

3
+

√
γ∗ + 3x− 3a

γ∗
if 3/16 < x ≤ s0(0) ,

224− 13
√

154

336
if x > s0(0) .

5. More complex structures. This section consists of two parts. First, in
section 5.1 we present a simple case of nesting in a very smooth framework. We
state some conditions for attainability and we provide an explicit example. This
presentation is, of course, far from being exhaustive but it is sufficient to illustrate
the main features of the problem.

In sections 5.2 and 5.3 we present some ideas toward the construction of a recursive
procedure which could be used to simplify the problem in more general situations,
and that leads to a prospective research direction.

5.1. Two nested contact discontinuities. Let v be an attainable profile suf-
fering from a jump discontinuity at x = x̄, connecting the states vL = v(x̄−), and

vR = v(x̄+) = v]L. We assume that tracing back the candidate backward characteris-
tics ηx, one finds that there exist x1 and x2 such that

• for all x ∈ JLx̄ =]x1, x̄] the lines ηx graze from the left contact discontinuity
τ 7→ ϕ1(τ);

• for all x ∈ JRx̄ =]x̄, x2] the lines ηx graze from the left contact discontinuity
τ 7→ ϕ2(τ).
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Fig. 9. Configuration with two consecutive contact discontinuities.

It is well known that, once a left contact discontinuity appears in the solution, it per-
sists until it interacts with a second left contact or with a shock; see [10, Theorem 2.3].
This means that the admissible profile v must suffer from a second jump discontinuity,
taking place at x = x2. The proposition below, whose proof is straightforward in the
light of the analysis in the preceding sections, formalizes these necessary conditions.

Proposition 5.1. In the hypothesis above there exists ¯̄x ∈ R, such that
• ¯̄x > x̄ and v(¯̄x−) 6= v(¯̄x+);
• (v(¯̄x−), v(¯̄x+)) is an admissible jump in the sense of condition 4 of Theo-

rem 2.1;
• the set J¯̄x

.
= {x̄ < x ≤ ¯̄x : Dxf

′(v(x)) > 1/T}, analogous to the set J defined
in (26), is exactly ]x̄, ¯̄x] and for all x ∈ J¯̄x there holds D+ (Dxf

′(v(x))) > 0.

Regarding the lines τ 7→ ξt(x)(τ) defined as in (23) as the candidate backward
characteristics from (t(x), ϕ1(t(x))), two configurations are possible. If they do not
cross each other in positive time, it means that the left contact discontinuities ϕ1 and
ϕ2 are essentially disconnected one from the other. Otherwise, we conclude that the
lines ξt(x) graze from ϕ2 and nesting occurs (see Figure 9). This second case is the one
we are interested in. Without surprise, we have that in a configuration like the one in
Figure 9, not only the jump in x̄ must be admissible in the sense of Theorem 2.1, but
there is also a compatibility condition among the values of v in a left and in a right
neighborhood of x̄.

Theorem 5.2. Let v be a piecewise C2 attainable profile at time T , suffering from
a jump at x = x̄ with left and right states vL and vR = v]L, respectively. Assume that
in a neighborhood of (T, x̄) the configuration described above and illustrated in Figure 9
occurs. Then

(62) lim
x→x̄+

Dxf
′(v(x)) = lim

x→x̄−

[
Dxf

′(v(x))
]2
Dxf

′(v](x))

D2
xxf
′(v(x))

[
f ′(vL)− f ′(vR)

] .D
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Proof. Let s(x̄) ∈]0, T [ be such that η+
x̄ (s(x̄)) = ϕ2(s(x̄)). Due to (21) it turns

out that

(63) s(x̄) = T − lim
x→x̄+

1

Dxf ′(v(x))
.

Now we compute s(x̄) using the fact that there exists t0 < s(x̄) such that for τ ∈
]t0, s(x̄)] the curve x = ϕ2(τ) is the convex envelope of the maximal characteristics
grazing from x = ϕ1(τ). Let I be a suitable left neighborhood of x̄ such that x =
ϕ1(τ) is the tangent envelope of the backward characteristics grazing from (T, x),
x ∈ I, so that (22) holds with ϕ = ϕ1. Hence, we can write the maximal backward
characteristics from ϕ1 as

(64) ξt(x)(τ) = ϕ1(t(x)) + f ′(v](x))(τ − t(x)) .

Such a line intersects η+
x̄ at time

s(x̄, x) = −
ϕ1(t(x))− x̄−

(
f ′(v](x))t(x)− f ′(vR)T

)
f ′(v](x))− f ′(vR)

.

Letting x→ x̄− we get

s(x̄) = T + lim
x→x̄−

D2
xxf
′(v(x))

[
f ′(vR)− f ′(vL)

][
Dxf ′(v(x))

]2
Dxf ′(v](x))

,

that together with (63) gives (62)

In the spirit of Proposition 2.4 and having in mind the configuration at Figure 9,
one can easily formulate conditions on the values of v on JLx̄ in order that the tangent
envelope of the the family of lines {ξt(x)}x∈JL

x̄
at (64), turns out to be a convex,

Lipschitz continuous curve.

5.1.1. An example. Consider again the Kynch model for sedimentation (58),
and let

(65) v3(x) =



1/2 if x ≤ 3

4
,

1

6

[
4−

√
5

14
+

3

14

√
93− 112x

]
if

3

4
< x ≤ 93

112
,

14 +
√

10 + 3
√

169− 196x

21
if

93

112
< x ≤ 165

196
,

2

7
if x >

165

196
,

be a candidate final profile at time T = 3 for a solution to (58). In order to reconstruct
an initial datum for (58) from v3, we trace backward the lines {ηx}x∈]3/4,165/196] (see
Figure 9, where x̄ = 93/112),

ηx(t) = x+f ′(v3(x))(t−3) =


x+

17−
√

93− 112x

56
(t− 3) if 3/4 < x ≤ 93

112
,

x+
13−

√
169− 196x

49
(t− 3) if

93

112
< x ≤ 165

196
.
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The tangent envelope of ηx for x ∈]3/4, 93/11] can be easily computed by means
of (21)–(22), and it turns out to be the convex curve

ϕ1(t) =
1

112
t2 +

1

4
t , 0 ≤ t ≤ 3 .

Such a curve is a candidate left contact discontinuity in the (candidate) solution
u = u(t, x) to (58) attaining v3 at time T = 3. The left and right states of x = ϕ1(t),

say u1(t) and u]1(t), respectively, must fulfill

f ′(u1(t)) = ϕ′1(t) =
f(u]1(t))− f(u1(t))

u]1(t)− u1(t)
,

and hence we obtain that

u1(t) =
1

6

(
4−

√
14− 3t

14

)
, u]1(t) =

1

3

(
2 +

√
14− 3t

14

)

hold. Now, trace backward the lines {ξ1,t}t∈[0,3] (see Figure 9),

ξ1,t(τ)
.
= ϕ1(t) + f ′(u]1(t))(τ − t) = − 1

16
t2 +

1

4
t+

1

14
tτ ,

that are the candidate backward maximal characteristics from (t, ϕ1(t)) in the candi-
date solution u = u(t, x) that we would like to reconstruct. It turns out that

ξ1,3(7/4) = lim
x→93/112+

ηx(7/4) ,

where 7/4 = s(x̄) in Figure 9. Hence we can consider the tangent envelope of the
family of lines {

ηx : x ∈]93/112, 165/196]
}
∪
{
ξ1,t : t ∈ [2, 3]

}
.

With an easy computation we get the convex curve

ϕ2(t) =

(
1

7
t+

1

2

)2

, t ∈ [0, 2] ,

which is another candidate left contact discontinuity in the solution u (see Figure 9
again). The (candidate) forward left characteristics grazing from (t, ϕ2(t)) for t ∈
[0, 7/4] are exactly the (candidate) backward maximal characteristics from (t, ϕ1(t))
for t ∈ [2, 3] (nesting configuration). Now, observe that

f(v3(165/196+))− f(v3(165/196))

v3(165/196+)− v3(165/196)
=

11

49
= ϕ′2(2) .

Hence, we can redefine ϕ2(·) as

ϕ2(t) =


(

1

7
t+

1

2

)2

if t ∈ [0, 2] ,

11

49
t+

33

196
if t > 2 ,
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and it turns out to be a (candidate) left contact discontinuity with left and right states

u2(t) =


14 + 2

√
2(14− 3t)

21
if 0 ≤ t < 2 ,

6

7
if t ≥ 2 ,

u]2(t) =


14− 4

√
2(14− 3t)

21
if 0 ≤ t < 2 ,

2

7
if t ≥ 2 ,

respectively. The lines {ξ1,t}t∈[0,2[ do not intersect each other in the time interval
[0, 2[, and the same happens for the family of lines

ξ2,t(τ) = ϕ2(t) + f ′(u]2(t))(τ − t) =


(

1

7
t+

1

2

)2

+
8t− 21

49
(τ − t) if t ∈ [0, 2[ ,

33

196
+

16

49
t− 5

49
τ if t ≥ 2 ,

that are the candidate backward maximal characteristics from (t, ϕ2(t)), t ∈ [0, 3]. It
follows that we can reconstruct the initial datum u0 which is driven to v3 by means
of (58) by using the method of characteristics, and thus obtain

u0(x) =



1/2 if x ≤ 0 ,

2
√

7 +
√

4 + 3
√

1− 4x

3
√

7
if 0 < x ≤ 1/4 ,

14− 2
√

16 + 3
√

23− 28x

21
if 1/4 < x ≤ 23/28 ,

2/7 if x > 23/28 .

5.2. A recursive procedure. In this section we introduce a recursive proce-
dure which might help in the investigation of the cases in which a nesting of contact
discontinuities is detected. This different approach does not lead to a complete an-
swer to the problem of characterization of the set of attainable states, but allows us
to formulate one additional necessary condition for attainability.

The main idea in the recursive procedure is the following. Let v be a candidate
admissible profile suffering from a jump discontinuity at x = x̄ between the states
vL and vR. We do not make any assumption on the values of v for x > x̄. Assume
that backward characteristics from a left neighborhood J of x̄ do intersect, and that
their tangent envelope is a convex curve x = ϕ1(τ), defined in a left neighborhood of
t1 ≤ T , with t1 given by (31), namely,

t1 = T − 1

D−x f ′(v(x̄))
.

The profile v is not supposed to satisfy condition 2(c) of Theorem 3.1, therefore, it
might happen that the maximal backward characteristics from the points (t, ϕ1(t)),
which we call ξ1,t, cross each other before reaching t = 0.

We are interested in the case in which the lines ξ1,t admit a convex tangent enve-
lope τ 7→ ϕ2(τ), along which any possible backward reconstruction of v experiences
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Fig. 10. The recursive procedure.

a contact discontinuity. This means that, starting from the values of the final profile
v on the interval J , we deduce the presence of two left contact discontinuities in any
backward reconstruction of v.

In this different approach we do not try to construct ϕ2 directly. The idea is
to construct, on a left closed neighborhood J1 of the point (t1, ϕ1(t1)), a profile
x 7→ w1(x) at t = t1 in which the discontinuity at ϕ1(t1) does not appear, and then
try to iterate the method. The key idea behind this approach is that the profile w1

is not a backward reconstruction of v, because in w1 the left contact discontinuity ϕ1

is missing. Observe that we did something very similar in the proof of Lemma 3.4,
Step 4, where we find an explicit equation for the curve τ 7→ s3(τ).

We proceed in the following way (see Figure 10).
1. First step. Call u1,R(t) the state at the right of ϕ1 at time t and let ξ1,t be

the candidates backward characteristic from (t, ϕ1(t)), defined as ξt in (20)
with ϕ = ϕ1 and uR(t) = u1,R(t). This implies that using the parameteriza-
tion (23) we have u1,R(t(x)) = v](x). We define

w1(ξ1,t(x)(t1)) = v](x) ,

so that
w1(ξ1,t(t1)) = u1,R(t) .

In such a way, considering w1 as a part of a final profile at time t = t1, the
candidate maximal backward characteristics from the points (t1, x), x ∈ J1,
are exactly the curves ξ1,t, i.e., if x = ξ1,t(t1), then

x+ f ′(w1(x))(τ − t1) = ξ1,t(τ) ∀ τ .

2. Second step. By construction, the tangent envelope of the maximal backward
characteristics from (t1, x), x ∈ J1, is exactly x = ϕ2(τ), defined in a left
neighborhood of t2 ≤ t1 with t2 expressed in terms of w1 and t1 as

t2 = t1 −
1

D−x f ′(w1(x))
∣∣
x=ϕ1(t1)

.
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At time t2 we are now able to construct a candidate final profile w2 defined in
a left neighborhood J2 of ϕ2(t2) using the same method exploited to construct
w1 and, hence, considering the lines

ξ2,t(τ) = ϕ2(t) + f ′(u2,R(t))(τ − t) ,

where u2,R(t) is the state at the right of ϕ2 chosen so that, if ϕ′2(t) =
f ′(u2,L(t)), then u2,R(t) = (u2,L(t))]. Then w2 is defined as

w2(ξ2,t(t2)) = u2,R(t) .

3. Now it is clear how we can proceed. Once we reconstruct the convex curve
x = ϕn(τ), that turns out to be a left contact discontinuity with left state
un,L(t) and right state un,R(t) = (un,L(t))], we can define the lines

ξn,t(τ) = ϕn(t) + f ′(un,R(t))(τ − t) ,

and then wn as

wn(ξn,t(tn)) = un,R(t) .

If the lines ξn,t do intersect in ]0, T ], then their tangent envelope is a convex
curve x = ϕn+1(τ) starting at time

tn+1 = tn −
1

D−x f ′(wn(x))
∣∣
x=ϕn(tn)

.

Since in a solution u to (1a) the maximal backward characteristic starting from a
point (T, x̄) with u(T, x̄+) 6= 0 is a polygonal line with a finite number of nodes [10,
Theorem 2.1] (see Figure 11), we can hope to obtain a control uc in (1b) only if there
exists N ∈ N such that

(66) tN < 0 and β
.
= ϕ1(t1) +

N∑
i=1

(
ϕi+1(ti+1)− ϕi(ti)

)
< b .

Using the expression for ti, such conditions can be rewritten as

(67)
1

Dxf ′(v(x̄))
+

N∑
n=1

1

D−x f ′(wn(x))
∣∣
x=ϕn(tn)

> T

and

(68) x̄+
f ′(v(x̄−))

D−x f ′(v(x̄))
+

N∑
n=1

f ′
(
wn(ϕn(tn)−)

)
D−x f ′(wn(x))

∣∣
x=ϕn(tn)

< b .

Notice that the recursive procedure above does not allow for a complete treatment
of the problem. This is related to the fact that, even at the first iteration of the
procedure, we would not be able to define the profile w1 on the right of ϕ1(t1).
Indeed, even if condition (66) is fulfilled, we would not be able to decide whether the
final profile is attainable or not; see the proof of Lemma 3.4 for an example in this
direction.
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Fig. 11. Condition (66).

5.3. A prospective research direction. Starting from the recursive proce-
dure introduced above, it should be possible to obtain a numerical algorithm testing
attainability of profiles associated with simple cases of nesting.

Definition 5.3. For any T > 0, we call AT the set of all profiles v verifying the
assumptions of Theorem 3.1 for attainability at t = T .

Obviously, if T1 < T2, then AT2
⊂ AT1

. Assume that v is a profile attainable at
time T associated with a nested structure (see Figure 10). In particular, this means
that v does not belong to AT . We start the backward reconstruction of the profile
v, as described in section 3, up to the first time at which nesting occurs, t2 ∈]0, T [
(see Figures 10 and 11). This means that the solution u1 that we obtain from v
by backward reconstruction contains a left contact discontinuity traveling along the
curve x = ϕ1(t). Moreover, the right backward characteristics τ 7→ ξt(τ) issued from
the points (t, ϕ1(t)) cross each other before t = 0, and their tangent envelope is a
new left contact x = ϕ2(t) (see Figure 10). We call t2 the largest time at which this
interaction takes place, so that v ∈ AT−t2 . Therefore the tangent envelope of the
curves ξt must be a second contact discontinuity x = ϕ2(t) (see Figure 10). Assume
now that
(NH) no nesting occurs in the portion of the plane {(t, x) : t ∈ [0, T ], x ≤ ϕ1(t)}.

Then we can use the idea of the recursive procedure to construct a profile v1, at
time t = T , defined piecewise as

1. v1(ξ1,t(x)(T )) = v](x) for x ≤ ξ1,t1(T );

2. v1(x) = v](x̄) for x ∈]ξ1,t1(T ), x̄];
3. v1(x) = v(x) for all x > x̄.

In such a way, if we apply the procedure of the backward reconstruction of section 3
starting from the profile v1, we obtain a solution, call it u2, which does not contain
any longer the left contact discontinuity x = ϕ1(t). Moreover, for such a backward
reconstruction, x = ϕ2(t) is the leftmost left contact discontinuity obtained as the
tangent envelope of the backward characteristics from (t, T ), x < x̄. The solution u2
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is defined up to t3 < t2 (see Figure 11), where a nesting configuration may well appear
again. Observe that in such a way v1 belongs to AT−t3 and, moreover, v belongs to
AT−t3 too. Indeed, we can piece together u1 and u2 defining

u(t, x) =

{
u1(t, x) if x < ϕ1(t) or t ≥ t2 ,

u2(t, x) if t3 ≤ t < t2 and x ≥ ϕ1(t) ,

and obtain a solution u to (1a) in [t3, T ] × R such that u(t, ·) = v. We can iterate
inductively this procedure, and, if the analogous part of the (NH) hypothesis holds
at each step, we obtain a decreasing sequence of times tk, and a sequence of profiles
vk belonging to AT−tk+2

.
The explicit verification of the set of properties imposed by this construction

(basically, one should check the assumptions of Theorem 3.1 at each step, plus a
condition similar to (NH)) seems extremely expensive in practice. Nonetheless, these
assumptions illustrate well the nature of the backward resolution of the nonconvex
conservation law (1a), where solutions should be constructed by piecing together
patches of backward and forward solutions, as in the proof of Lemma 3.4. Numerical
experiments with this version of the recursive procedure will be considered elsewhere.
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