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(CBI), Université de Toulouse, CNRS, UPS, Toulouse, France, 3 Department of Biology, University of

Padova, Padova, Italy, 4 Department of Molecular Medicine, University of Padova, Padova, Italy

¤a Current address: School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of

America

¤b Current address: Beckman Center, Stanford University School of Medicine, Stanford, California, United

States of America

¤c Current address: Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo Pref., Japan

¤d Current address: Department of Ophthalmology, University of Saarland, Homburg, Saar, Germany

¤e Current address: Department of Cancer Studies, University of Leicester, Leicester, United Kingdom

* natascia.tiso@unipd.it (NT); patrick.blader@univ-tlse3.fr (PB); bssrnk@bath.ac.uk (RNK)

Abstract

The development of functional peripheral ganglia requires a balance of specification of both

neuronal and glial components. In the developing dorsal root ganglia (DRGs), these compo-

nents form from partially-restricted bipotent neuroglial precursors derived from the neural

crest. Work in mouse and chick has identified several factors, including Delta/Notch signal-

ing, required for specification of a balance of these components. We have previously shown

in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unex-

pected, but crucial, role in sensory neuron fate specification in vivo. In the same study we

described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are

elevated above those of wild-types. Here we investigate the origin of this neurogenic pheno-

type. We demonstrate that the supernumerary neurons are sensory neurons, and that

enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles;

peripheral glial development is also severely abrogated in a manner similar to other sox10

mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals

very low levels of both processes in wild-type and sox10baz1, excluding changes in the bal-

ance of these as an explanation for the overproduction of sensory neurons. Using chemical

inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in

mouse and chick, lateral inhibition during the phase of trunk DRG development is required

to achieve a balance between glial and neuronal numbers. Importantly, however, we show

that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype.

The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG

domain; structural analysis indicates that this change is likely to result in reduced flexibility in

the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA.

Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1
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transcription. We show that overexpression of neurogenin1 is sufficient to produce supernu-

merary DRG sensory neurons in a wild-type background, and can rescue the sensory neu-

ron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We

conclude that an imbalance of neuronal and glial fate specification results from the Sox10

(baz1) protein’s unique ability to drive sensory neuron specification whilst failing to drive glial

development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lat-

eral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in

the developing DRGs, and that a second Sox10-dependent mechanism is necessary.

Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and

glial fates.

Introduction

The neural crest is a fascinating cell-type due to the diversity of cell-types derived from it,

including diverse peripheral neurons, all peripheral glia, multiple pigment and skeletal cell-

types, and various adult stem cells, including those for adult pigment cells[1]. One key ques-

tion in development is how cells of different types are produced in the correct numbers, and

the neural crest has been an excellent model system for addressing this issue [2]. Originating at

the boundary of the neural plate and the non-neural ectoderm, neural crest cells delaminate

from the dorsal neural tube, before undergoing extensive migration throughout the body [3,

4]. Among the derivatives of those migrating on the medial migration pathway between the

spinal cord and the somites are the dorsal root ganglia (DRGs), consisting of both peripheral

neurons and satellite glia, together with the Schwann cells that cover the peripheral nerve

axons.

Work in both mouse and zebrafish has shown that the Sry-related HMG box 10 (Sox10)
gene is crucial for the specification of all non-skeletogenic fates from the neural crest, which

are absent or strongly reduced in numbers in strong loss-of-function mutants[5–13]. In each

case, SOX10 drives expression of lineage-specific transcription factors that control the differ-

entiation of the individual cell-types; in the Sox10mutants, transcription of these factors is

severely reduced[14]. This process is best characterised in the melanocyte, where SOX10 drives

expression ofmicrophthalmia-related transcription factor (Mitf; mitfa in zebrafish), which

encodes a basic Helix-Loop-Helix Leucine Zipper transcription factor and is a master regulator

for melanocyte development[10, 11, 15–19]. For all glial cells, the lineage-specific transcription

factors include SOX10 itself and Pax3[14, 20–23]. In the case of the DRG neurons, fate specifi-

cation depends upon transcriptional activation of neurogenin1 (neurog1) and neurog2, which

encode bHLH transcription factors[24–29], likely acting with other factors[30]. The role for

Sox10 in activating neurog1 has been somewhat controversial. In mouse, careful studies of the

DRG phenotype of the loss-of-function mutants focussed on the glial phenotype; the DRG sen-

sory neuron phenotype was interpreted as a secondary consequence of the failure of glial dif-

ferentiation[20, 31]. In contrast, our studies in zebrafish showed a clear role for Sox10 in

regulating early neurog1 expression, and thus fate specification, which was strongly reduced in

strong loss-of-function mutants [13].

The related question of how the balance of sensory neuron and satellite glial cell numbers is

achieved has also received attention. With Sox10 required for both fates, it seemed that other

factors must be key. Sensory neuron specification, at least in mouse (but not zebrafish[32]),

depends upon Wnt signaling driving transcriptional activation of Neurog1/2[33, 34]. Likewise,
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glial fate specification is stimulated by Neuregulin signaling[35, 36]. Neuregulin signaling

mediated by ErbB3b/ErbB2 is also required for formation of DRGs in zebrafish, perhaps due

to defects in medial pathway migration of neural crest cells[37, 38]. Signaling for sensory neu-

ron specification, but not for other functions of ErbB3b/ErbB2 signaling including glial devel-

opment, are mediated through a complex formed around the scaffold protein Sorbs3[39].

Sonic hedgehog signaling also plays a role in determining sensory neuron number [40]. A key

role is played by Delta-NotchDelta-Notch signaling, via lateral inhibition [41]. In mouse neu-

ral crest stem cells, stimulation of Delta-Notch signaling drives specification of glial fate[42].

Studies in chick have shown that nascent sensory neurons express Delta1 while non-neuronal

cells in the ganglia express high levels of Notch1 [43]. As a consequence, in cells adjacent to

those expressing Delta1 Neurog1 expression is inhibited, neuronal differentiation is delayed

and glial fate specification proceeds [25, 43]. Consistent with this, transgenic suppression of

Notch signaling in the neural crest of mouse also results in a neurogenic phenotype[44, 45]. In

zebrafish, where the initial DRGs are very small, each consisting of only 2–5 neurons and

around 6–10 support cells in 5 days post fertilisation (dpf) larvae, substantial growth of the

DRGs occurs during larval development[46]. Recently, expression of notch1a, deltaA and del-
taD has been noted in non-neuronal cells in DRGs[47]. Furthermore Delta-Notch signaling

has been shown to contribute to the balanced production of neurons and glia during larval

growth of the DRGs[47].

We identified the zebrafish sox10baz1 (hereafter referred to as baz1) mutant during a sox10
allele screen [13]. Our initial observations showed that it combined features typical of other

sox10mutant alleles, such as absence of normal melanocytes and of peripheral glialmyelin
basic protein (mbp) expression, and with a strong effect on xanthophores and iridophores that

resembles, but is not quite as severe as in, a null allele (e.g. sox10m618, hereafterm618). Thus it

appeared to be a strong hypomorph for the former cell-types, but a weaker hypomorph for the

latter. More remarkably, certain neurons of the trunk and tail were more abundant than in

wild-type siblings (a hypermorphic phenotype), in striking contrast to the dramatic reduction

of these cells in all other sox10mutant alleles [13]. Sequencing identified the causal lesion as a

single nucleotide substitution resulting in a V117M change in the HMG domain of the protein.

Here, we provide a comprehensive characterisation of this unique sox10mutant phenotype.

Our data demonstrate that the supernumerary neurons are DRG sensory neurons, that periph-

eral (as well as oligodendrocyte) glial fates are highly reduced, and that the neurons form pre-

cociously in a classic neurogenic phenotype. We show that this DRG sensory neurogenic

phenotype can be partially reproduced by chemical manipulation of Delta-Notch signaling in

early neural crest development. Consistent with this, we show expression of delta genes in

nascent DRGs and in vivo activation of Notch signaling in non-neuronal cells in these early

DRGs. Thus, Delta-Notch signaling plays a role in generating the balance of derivatives in the

early DRGs. However, we show that changes in Notch signaling alone cannot explain the

quantitative aspects of the baz1 phenotype. In silicomodelling suggests that the V117M muta-

tion is likely to change the flexibility of the DNA-binding HMG domain, consistent with the

fate-specific differences in the severity of the Sox10(baz1) phenotype. Importantly, we show

that Sox10(baz1), like Sox10(Wild-Type, WT), but in contrast to classic loss-of-function Sox10

(m618), can readily activate the neurog1 promoter in zebrafish embryos. Consistent with this,

ectopic expression of neurog1 in a sox10 loss-of-function context rescues the sensory neuronal

phenotype. We propose that the baz1DRG phenotype results from severe disruption of the

process of glial specification, whilst remarkably sparing sensory neuron specification; we sug-

gest that a crucial aspect of Sox10-dependent glial specification is a Notch-independent repres-

sion of neurog1 expression that acts alongside Delta-Notch signaling in these nascent sensory

neurons to prevent supernumerary neuronal differentiation. The baz1mutant DRG phenotype

Multiple roles for Sox10 in DRG fate specification
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indicates that Sox10 is important not just for specification of DRG cell-fates, but also for the

balance in the production of both neurons and glia.

Results

Supernumerary neurons in Sox10baz1 mutants express sensory, but not

sympathetic or enteric markers, and form precociously

In our initial description of the sox10baz1 phenotype (hereafter referred to as baz1), we showed

that at 5 days post-fertilisation (dpf) embryos homozygous for this allele display an approxi-

mately 2-fold increase in Elav1/Hu-expressing neurons relative to WT siblings at locations

where dorsal root ganglia (DRG) develop, and that this phenotype could be detected as early as

36 hours post-fertilisation (hpf) by monitoring the expression of the proneural gene neurog1
[13]. To address the mechanisms underlying this surprising phenotype, we first sought to con-

firm that the supernumerary neurons are indeed DRG sensory neurons. Like neurog1, expres-

sion of neuronal differentiation1 (neurod1) labels the sensory neuron lineage [24, 48]. In baz1
mutant embryos, neurod1 expression was seen in a substantially increased number of cells on

the medial pathway, in a pattern that strikingly resembled that of Elav1/Hu (Fig 1; [13]).

Counts demonstrated that neurod1+ cells were increased around 3-fold compared with WT

siblings (Fig 1C). Furthermore, neurod1 expression was seen precociously, with expression in

mutants extending further posteriorly (i.e. to developmentally younger regions of the embryo)

at both 36 and 45 hpf (Fig 1A and 1B, right panels). Similarly, supernumerary cells in baz1
mutants were clearly islet1-positive (S1 Fig), consistent with them being specified as sensory

neurons.

In contrast to sensory neuron markers, markers of other NCC-derived peripheral neurons

were absent both at their endogenous site of expression and along the medial pathway (Fig 2).

We had previously shown that Elav1/Hu+-enteric neurons were lacking in baz1mutant

embryos [13]. Here, we complement this observation by showing that phox2b-expressing

enteric progenitors were also missing from the developing gut of baz1mutants at 72 hpf, and

no sign of ectopic phox2b expression was detected on the medial pathway (Fig 2A and 2B).

Likewise, immunofluorescent detection of the sympathetic neuron marker Tyrosine Hydroxy-

lase (TH) was strongly reduced in baz1mutants at 7 dpf with no expression on the medial

pathway (Fig 2C–2N, quantified in R); unexpectedly, embryos occasionally showed ectopic

TH-expressing neurons associated with the Posterior Lateral Line nerve (PLLn; Fig 2L–2N).

These data strongly suggest that the supernumerary neurons detected on the medial pathway

of baz1mutant embryos are restricted to the sensory lineage.

To explore further the temporal aspects of the formation of these supernumerary sensory

neurons we compared the distribution of Elav1/Hu antigen with Tg(sox10(4.9):GFP)ba2, in

which GFP initially labels all neural crest cells, including neural progenitors on the medial

pathway, but later is maintained only in glial cells (Fig 3; [13]). Using GFP as a short-term line-

age marker for neural crest-derived DRG progenitors, we noticed that in WT embryos Elav1/

Hu immunofluorescence was seen in only a few GFP+ cells in the anterior trunk by 36 hpf,

and not until 48 hpf were substantial numbers detected posteriorly (Fig 3A, 3D and 3G; quan-

tified in panels M-O). At these stages many Elav1/Hu-;GFP+ progenitors were seen on the

medial pathway. In sox10m618 mutants (hereafter referred to asm618), reduced numbers of

cells express Elav1/Hu, and most cells remain Elav1/Hu-;GFP+ (Fig 3C, 3F and 3I). In con-

trast, baz1mutants show substantial numbers of Elav1/Hu+;GFP+ double positive cells in

both the anterior and posterior trunk from 36 hpf onwards, and by 48 hpf have approximately

three times as many as stage-matched WT siblings, although we note that not all GFP+ cells

express Elav1/Hu (Fig 3B, 3E, 3H and 3M–3O). By 5 dpf, the GFP signal is often strongly

Multiple roles for Sox10 in DRG fate specification
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reduced, especially in sox10mutants, due to a failure of the GFP to persist in unspecified pre-

cursors; nevertheless, DRG neurons are still distinctive due to their combination of spatial

localisation and Elav1/Hu immunofluorescence. Elevated numbers of neurons remain, but

there are now fewer than at earlier stages (Fig 3J–3L and 3P).

To confirm these observations, we performed time-lapse studies of neuronal specification

in baz1mutant embryos and their WT siblings. We generated fish carrying the Tg(-4.9sox10:

GFP)ba2 and Tg(-8.4neurog1:nRFP)sb3 transgenes and bred them onto the baz1mutant back-

ground [13, 49]. In these fish, early neural crest cells (NCCs), including the nascent DRG, are

Fig 1. Precocious and supernumerary sensory neuron specification in sox10baz1 mutants. A,B)

neurod1 expression is seen in more cells (close-ups in left panels; arrowheads indicate a subset of neurod1+

cells) and extending more posteriorly (right panels; arrowhead marks posteriormost neurod1+ DRG) in baz1

mutants compared with WT siblings at both 36 and 45 hpf. C) Counts of neurod1+ cells on one side of embryo

at 36 and 45 hpf embryos (N = 11 for all conditions except 36 hpf baz1, where N = 13). baz1 mutants

significantly different to WT siblings (Student’s t test; ***, p<0.0001. In this and all subsequent images,

embryos are shown in lateral view with dorsal to the top and anterior to the left, unless otherwise stated. Scale

bar, 100 μm.

doi:10.1371/journal.pone.0172947.g001

Multiple roles for Sox10 in DRG fate specification
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labelled with GFP and neuronal specification is indicated by the initiation of RFP expression

in a subset of these cells (S1 and S2 videos; S2 Fig); time-lapse focused on the posterior trunk,

and typically began at around 36 hpf and continued for up to 25 hours. In WT fish, RFP

expression was not normally detected in NCCs at the beginning of the analysis, but isolated

sensory neurons were specified during the next day of development. In contrast, baz1mutants

regularly showed RFP expression in sensory neurons from the beginning of the time-lapse and

multiple NCCs in each ganglion begin expressing RFP over the course of the analysis.

Finally, we addressed whether a change in the balance of proliferation or apoptosis in the

DRG could account for the increased numbers of sensory neurons in baz1mutant embryos.

Apoptosis rates were assessed by TUNEL in which DRG cells were identified by GFP expres-

sion from the Tg(-4.9sox10:GFP)ba2 transgene at 36 and 48 hpf in baz1mutants and their WT

siblings. Although TUNEL+ cells were detected in embryos at all stages, apoptosis rates in the

DRGs were negligible in either genetic context (Table 1). Likewise, proliferation rates in DRG

were determined using phospho-Histone H3 (pH3) immunofluorescence in baz1mutants and

their WT siblings at 36, 42 and 48 hpf; DRG cells were identified by GFP fluorescence from the

Tg(-4.9sox10:GFP)ba2 transgene (36 hpf) or anti-Elav1/Hu immunofluorescence (42 and 48

Fig 2. Enteric precursors are absent in baz1 mutants and supernumerary neurons in trunk and tail do

not express markers of non-sensory neuronal types. A,B) phox2b expression at 72 hpf in wild-types (A) is

restricted to the enteric neuron progenitors, but is absent from baz1 embryos (B). Tyrosine hydroxylase (TH)

immunofluorescence reveals differentiated sympathetic neurons at 7 dpf in WT (C-E, I-K), whereas these are

much reduced in baz1 mutants (F-H, L-M). White arrows indicate a subset of TH+ neurons. Inset in J

represents enlargement of boxed area to show autonomic neuron chain more clearly. Occasional baz1

mutants show anti-TH immunofluorescence in neurons (*) associated with the PLLn (O-Q). DIC (C,F,I,L,O)

and immunofluorescent TH images (D,G,J,M,P) are merged in panels E,H,K,N,Q respectively. sb, swim

bladder; vs, ventral stripe. R) Quantitation (mean ± s.d.) of anti-TH positive sympathetic neurons in WT

(N = 16) and baz1 mutants (N = 16). * indicates significant difference (two-tailed t test, p<0.001) Scale bar,

50 μm(C).

doi:10.1371/journal.pone.0172947.g002

Multiple roles for Sox10 in DRG fate specification
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Fig 3. Medial pathway neural precursors undergo precocious and supernumerary differentiation into

neurons in baz1 mutants. Confocal images of developing trunk DRGs of WT (A, D, G, J), baz1 (B, E, H, K)

and m618 mutants (C, F, I, L) showing Elav1/Hu (red) and sox10:GFP (green) at each of 36 (A-C), 42 (D-F),

48 hpf (G-I) and 5 dpf (J-L). Arrowheads indicate subset of Elav1/Hu+ DRG sensory neurons. M-P) Counts

(mean±s.d.) of trunk (Tr) and tail (Ta) and total (TOT) Elav1+ cells in DRGs of baz1 (yellow) and m618 (blue)

mutants and their respective WT siblings. Significantly elevated numbers of neurons are indicated (two-tailed

Student’s t test; **, p<0.01; ***, p<0.001). Note in panels J-L) that variable prominence of Elav1/Hu detection

in spinal cord is an artefact of antibody penetration into CNS at this late stage. Scale bar, 50 μm.

doi:10.1371/journal.pone.0172947.g003
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hpf). In all cases, although pH3+ cells were detected widely in these embryos, proliferation

rates in the DRGs were also negligible (Table 2).

Taken together, these data suggest that the supernumerary neurons detected in the DRG of

baz1mutant embryos at 48 hpf are specified sensory neurons, whereas in WT siblings at the

same stage many NCCs appear to remain in a progenitor state. We also conclude that the bal-

ance of proliferation and apoptosis in the DRG is unlikely to contribute significantly to the

phenotype observed in baz1mutants.

In contrast to the unique sensory neuron phenotype, baz1mutants show a severe defect in

glial fate specification and differentiation that is comparable to, but slightly weaker than, that

of other sox10 alleles we have studied ([50]; S3 Fig). Thus, sox10 expression associated with the

trunk medial pathway in baz1mutants showed a similar pattern to WT, and was more promi-

nent than inm618mutants (compare S3 Fig panel C with panels G and K, white asterisks);

interestingly, the developmentally younger DRGs in the tail more closely resembled those in

m618 (compare S3 Fig panels D with H and L, white asterisks). Not withstanding the mutant

nature of the proteins encoded by these transcripts, the fact that sox10 transcripts are detect-

able enables us to use them as a marker of sox10-expressing cell states, including neural pro-

genitor cells (early) and differentiating glia (later). We interpret these data to suggest that

sox10 expression is initially normal, but then fails to be maintained in putative glia in the sox10
mutant alleles, and that this loss is more pronounced inm618. We also saw a very strong

reduction in the number of foxd3-expressing Schwann cell precursors at 48 hpf on both the

spinal nerves (S3 Fig panels M,P) and the PLLn (S3 Fig panels N,Q), with remaining cells on

the PLLn concentrated near the base of the nerve (S3 Fig panel Q). Absence of peripheral glia

on the PLLn results in supernumerary production of lateral line neuromasts [51]; using isl1 as

a marker for neuromasts [52], we saw that baz1mutants also showed precocious differentia-

tion of neuromasts (S3 Fig panels O,R), confirming the absence of PLLn Schwann cells. In

summary, our analysis shows a consistent picture of reduced glial cell development, with

much reduced numbers of peripheral glial cells and no sign of Schwann cell differentiation.

Table 1. Apoptosis in the DRGs is negligible in baz1 mutants and their WT siblings.

WT baz1

Stage

(hpf)

No.

Embryos

Total No. DRGs

assessed

Total no. GFP+;TUNEL

+ DRG cells

No.

Embryos

Total No. DRGs

assessed

Total no. GFP+;TUNEL

+ DRG cells

36 15 195 1 10 130 3

48 10 250 0 8 200 0

Table shows number of embryos scored, number of DRGs assessed per embryo and total number of TUNEL+ DRG cells in all embryos scored.

doi:10.1371/journal.pone.0172947.t001

Table 2. Proliferation in the DRGs is negligible in baz1 mutants and their WT siblings.

WT baz1

Stage

(hpf)

No.

Embryos

Total No. DRGs

assessed

Total no. GFP+;

pH3+ DRG cells

Total no. Elav1/Hu

+;pH3+ DRG cells

No.

Embryos

Total No. DRGs

assessed

Total no. GFP+;

pH3+ DRG cells

Total no. Elav1/Hu

+;pH3+ DRG cells

36 22 286 6 nd 8 104 1 nd

42 16 320 nd 2 3 60 nd 0

48 15 375 nd 3 5 125 nd 2

Table shows number of embryos scored, number of DRGs assessed per embryo and total number of pH3+ DRG cells in all embryos scored. nd, not

determined

doi:10.1371/journal.pone.0172947.t002
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In addition, oligodendrocyte differentiation is impaired in baz1mutants. Sox10 expression

also marks oligodendrocyte precursors and differentiating oligodendrocytes, and Sox10 is

required for oligodendrocyte differentiation. We asked whether baz1mutants showed defects

in oligodendrocyte development. Using sox10 expression in the ventral CNS as a marker of oli-

godendrocyte precursors, and dispersed expression in scattered cells throughout the CNS as a

marker of oligodendrocytes, we saw no change in oligodendrocyte precursors and specifica-

tion in baz1mutants (S4 Fig panels A-F). In contrast,mbp expression in differentiating oligo-

dendrocytes is reduced, indicating that oligodendrocyte differentiation is impaired in baz1
mutants (S4 Fig panels G,H).

Supernumerary neurons and Notch signaling

The sensory neuron phenotype we describe in baz1mutants shows the hallmarks of a neuro-

genic phenotype, with supernumerary and precocious neuronal differentiation at the

expense of glial cell-types (Fig 3, S2 Fig; [13]). Classically, such phenotypes result from dis-

ruption of Notch signaling. To explore a potential role for Notch signaling in DRG develop-

ment, we first asked if the expression of Notch pathway components could be detected in the

nascent DRGs. For this, we explored the patterns of expression of jagged and delta ligands at

Fig 4. deltaA and deltaD gene expression overlaps with neurog1 in the nascent DRGs. A-C) deltaA

expression (red) clearly overlaps with neurog1 (green) in the nascent DRG (arrows) at 30 hpf. D-F) At 38 hpf,

deltaA expression is clearly seen in the DRGs, but weaker signals make it difficult to discern if expression is in

the same cells as express neurog1 or simply in other cells of the ganglia. G-I) deltaD expression (red) clearly

overlaps with neurog1 (green) in the nascent DRG (arrows) at 38 hpf. All main panels are confocal images of

fluorescent dual-color in situ hybridisations in lateral view, with insets showing y-z planes (left) and x-z planes

(above) for each. Insets in the bottom right of panels C, F and I show enlargements of the double-labeled cells

indicated by the arrows. nc, notochord; sc, spinal cord.

doi:10.1371/journal.pone.0172947.g004
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stages from 24 to 38 hpf, focusing on the posterior trunk region; overlapping expression with

neural crest cells in the nascent DRG was identified by their co-expression of sox10, foxd3 or

neurog1. As expected, the expression of jagged genes was generally detected at low levels.

While we confirmed the previously published patterns of expression, for instance of jag1b
and jag2 in pronephric duct, notochord and spinal cord, we did not see pronounced expres-

sion of jag1a, jag1b or jag2 in nascent DRGs (data not shown), consistent with the findings

of Zecchin et al [53]; over-developing the in situ hybridisations highlighted a low level

expression of jag1a expression in cells adjacent to, but not overlapping with, the nascent

DRGs (data not shown).

In contrast, we found clear expression of delta ligands in the nascent DRGs, identified by

neurog1 expression. We examined all four delta genes, but found that only two (deltaA and del-
taD), showed overlapping or adjacent expression with neurog1-positive DRG cells, consistent

with recently published data [47]. At 30 hpf, deltaA and neurog1 showed strong colocalisation

in individual cells of the nascent DRG (Fig 4A–4C and data not shown). At later stages (shown

at 38 hpf in Fig 4D–4F), deltaA and neurog1 remain expressed in the nascent DRGs, but only

weakly, preventing unequivocal assessment of co-localisation at the single cell level. Similarly,

deltaD expression showed co-localisation with neurog1 in individual cells of the nascent DRGs

at these same stages (Fig 4G–4I and data not shown). We confirmed these observations at 30

hpf for the deltaA and deltaD genes using colocalisation with the alternative DRG marker, neu-
rod1 (S5 Fig). We conclude that Delta-Notch signaling, mediated through one or both of Del-

taA or DeltaD, might contribute to fate specification within zebrafish DRG.

We then asked whether DRG cells were responding to these ligands by activating the Notch

pathway. For this, we used the Notch reporter line, Tg(12xNRE:eGFP), bearing twelve Notch

Responsive Elements (NRE) upstream of the coding sequence of eGFP [54]. DRG cells were

identified using a Tg(sox10(7.2):mRFP) reporter line [55]. As previously described for another

Notch reporter line, strong eGFP expression is detected in all blood vessels [56], but we also

see weaker signals overlapping the DRG (arrows and asterisk in Fig 5A–5G). While co-expres-

sion of eGFP and RFP was best seen at 48 hpf, overlap between the Notch-reporter and the

DRG marker was detected as early as 36 hpf (Fig 5A–5G; data not shown). We conclude that

Delta-Notch signaling is active within neural crest cells of the nascent DRG in zebrafish

embryos starting at a stage before 36 hpf. These data are fully consistent with the delta expres-

sion patterns reported above and with the idea that DRG neuronal numbers are regulated, at

least in part, by this pathway.

Finally, we asked whether loss of Notch signaling phenocopies the baz1DRG phenotype.

Classical zebrafish mutants affecting Delta-Notch signaling show early defects in neural crest

specification [27], precluding examination of later roles in DRG formation. Notch signaling

depends upon γ-secretase-mediated cleavage of Notch receptor that can be blocked with

DAPT, a γ -secretase inhibitor that has been widely used to study Notch function in zebrafish

[57]. We, thus, asked whether DAPT treatment could modulate the number of DRG sensory

neurons. We found that a 30–72 hpf treatment window (i.e. extending throughout the initial

phase of sensory neuron specification) resulted in a significant increase in DRG sensory neu-

rons in both trunk and tail, although the degree of increase was not as striking as in the baz1
mutants (Fig 6A–6H, quantified in 6I; compare Figs 1 and 3). As reported before, treated

embryos showed a bending of the antero-posterior axis (Fig 6C, compare Fig 6A), but are oth-

erwise morphologically grossly normal. To verify the specificity of this effect, we used a second

γ -secretase inhibitor, Compound E [58], which gave a quantitatively comparable increase in

DRG sensory neuron numbers (Fig 6J). We conclude that DRG neuron number in zebrafish,

as in mouse and chick, is regulated by Notch signaling, a conclusion also reached in a recent,

independent study [47].

Multiple roles for Sox10 in DRG fate specification
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Fig 5. Notch signaling is active in nascent DRGs. Neural crest cells in the DRGs of 48 hpf embryos

(arrows) were readily identified by expression of mRFP reporter in sox10:mRFP fish (A). These overlapped

with eGFP expression from the 12xNRE:eGFP (Notch signaling) reporter (B), as shown in superimposed

image (C and D). Close-ups of individual DRGs labelled with asterisk are shown in panels E and F. Panel G

shows DRGs (white arrows, yellow signals) as single plane acquisitions, in lateral view (top left), transversal

Multiple roles for Sox10 in DRG fate specification
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Implicit in the above analysis is the assumption that Notch signaling is affected in, and thus

likely contributes to, the baz1mutant phenotype, whereas inm618mutants, Notch signaling

was likely to remain intact. However, it is conceivable that Notch signaling might be unaffected

in both mutant contexts, and that differences in another mechanism are solely responsible for

the distinct sensory neuron phenotypes ofm618 and baz1mutants. To test our assumption, we

evaluated Notch signaling in the DRGs ofm618 and baz1mutants, by crossing the Tg(12xNRE:

eGFP) reporter onto the respective sox10mutant backgrounds. Assessing DRG cells at 48 hpf,

while we consistently observed Notch reporter activity inm618mutants (Fig 7B), DRG signals

were considerably weakened in baz1mutants (Fig 7E). Quantification of the fluorescence

intensity from the DRGs confirmed that Notch signaling in baz1mutants was reduced by

around 50% (Fig 7F), whereas inm618mutants levels were not significantly changed com-

pared with WT siblings (Fig 7C). Reduction of Notch signaling in baz1 and normal activation

in m618 mutants was also observed using an additional Notch responsive line expressing a

nuclear-localized red protein Tg(EPV.Tp1-Mmu.Hbb:NLS-mCherry)[59], thus confirming our

view (top right), dorsal view (bottom left) and mini global view (bottom right). Note that in all panels eGFP is

also strongly visible in blood vessels, as expected for the Notch reporter. nc, notochord; sc, spinal cord.

doi:10.1371/journal.pone.0172947.g005

Fig 6. Notch inhibition phenocopies the sox10baz1 DRG phenotype. A-H) Posterior trunks of WT

embryos treated with 100 μM DAPT from 30–72 hpf (C,D,G,H) and controls exposed to DMSO carrier alone

(A,B,E,F). E-F show enlargements of A-D. Treated embryos show dorsally-curved body axis (C).

Immunofluorescence for Elav1/Hu revealed increased numbers of DRG sensory neurons (arrowhead). I,J)

Quantitation of DRG sensory neurons in 5 dpf embryos after treatment with 100 μM DAPT (I, orange) or

100 μM Compound E (J, orange) from 30–72 hpf; compared with control DMSO-treated embryos (yellow in I

and J), sensory neuron numbers are significantly increased (***) when Notch signaling is inhibited. While

trunk refers to the entire somitic region from posterior to the otic vesicle to the anus, tail refers to the post-anal

body; posterior trunk refers to the 7 most posterior somatic segments dorsal to the yolk sac extension. N = 13

(Control, I), 13 (DAPT, I), 16 (Control DMSO, J) and 15 (Comp. E, J). Significance of elevated numbers of

neurons was evaluated by two-tailed Student’s t test (**, p<0.01; ***, p<0.001).

doi:10.1371/journal.pone.0172947.g006
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previous results with an independently generated Notch reporter allele (data not shown). In all

cases fluorescence from the dorsal aorta and intersomitic vessels was comparable between

mutants and their respective WT siblings. We saw consistent reduction in Notch reporter

expression in the neural tube of baz1mutants compared with WT siblings, whereas inm618
mutants Notch signaling appeared, if anything, to be elevated compared to siblings (Fig 7B,

7C, 7E and 7F; S6 Fig). It is likely that the elevated levels inm618mutants may at least in part

be an artefact of the lack of melanin (which will partially quench the fluorescent signal). How-

ever, the significantly lowered expression in baz1mutants is unexpected, but conceivably

results from differences in oligodendrocyte progenitor development in these two different

mutant alleles; this will require further investigation. Meanwhile, in the context of DRG devel-

opment, we conclude that, as predicted, Notch signaling remains active in the DRGs ofm618
mutants, but is significantly reduced in baz1mutants. Analysis of gfp transcriptional expres-

sion in these lines, using sox10 to label medial pathway neural crest cells in the nascent DRGs

confirms this interpretation (S7 Fig).

Sox10(baz1) protein retains transcriptional activity at the neurog1 locus

The baz1DRG phenotype is consistent with a decrease of Notch signaling. However, the quan-

titative difference in the increase in neuronal number in baz1 compared with the maximum

effect of chemical inhibition of Notch signaling suggested this is, at best, only a partial explana-

tion. The baz1mutation results in a single amino acid substitution (V117M) in the DNA bind-

ing HMG domain [13]. Molecular dynamics simulation studies confirmed the expectation that

the Sox10(baz1) substitution results in relatively subtle changes in the protein, most strikingly

an apparent reduction in the flexibility of the HMG domain (S8 Fig). Whilst these observations

will require detailed experimental confirmation, they are consistent with the hypothesis that

Sox10(baz1) may show differential affinity for the regulatory sequences of target genes, retain-

ing transcriptional activity at some target genes whilst losing activity at others.

We have previously shown that null alleles of sox10 display a substantial reduction in DRG

sensory neurons that correlates with reduced expression of neurog1 [13]; Neurog1 is the

Fig 7. Quantification of Notch reporter differences in m618 and baz1 mutants at 48 hpf. A-F) confocal

acquisitions of WT control (A,D) and mutant (B, m618; E, baz1) trunk regions, followed by Notch reporter

(NRE:EGFP) fluorescence analysis (C,F). A slight increase of reporter signal is detected in the neural tube

(nt) and dorsal root ganglia (drg, arrowhead) of m618 mutants (B) compared to controls (A), while a decrease

of signal is detected in the same regions of baz1 mutants (compare E with D). Relative fluorescence intensity

(RFI) in aorta (a) and intersomitic vessels (v) appears unmodified in all conditions. n = 6 measurements per

condition. n.s. = not significant; ** = p<0.01; *** = p<0.001.

doi:10.1371/journal.pone.0172947.g007
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obligate proneural gene for DRG sensory neuron specification in zebrafish [29]. We have also

shown that Sox10(WT) but not Sox10(m618) drives ectopic neurog1 transcription when mis-

expressed [13]. Given the generally strong loss-of-function nature of the baz1 phenotype, the

increase in neurog1 expressing cells on the medial pathway in baz1 embryos is particularly sur-

prising. Since it seemed unlikely that this increase simply reflected a reduction in Notch activ-

ity, we asked whether Sox10(baz1) retains the ability to drive neurog1 expression. To test this,

we took advantage of a previously reported Tg(-8.4neurog1:GFP)sb1 transgenic line that largely

replicates the endogenous neurog1 expression pattern in neuronal precursors, including the

DRG sensory neurons [49]. Consistent with our published results, GFP transcription from the

transgene was not driven by mis-expression of Sox10(m618) (Fig 8B). In contrast, Sox10(baz1)

induced GFP transcription in a manner similar to Sox10(WT) (Fig 8A and 8C), indicating that

the baz1 mutation does not affect Sox10 transcriptional activity at the neurog1 locus. These

results suggest that the increase in DRG sensory neurons seen in baz1mutants is not solely

due to a reduction in Notch signaling.

Neurog1 rescues sensory neurons in sox10 morphants

Our data clearly indicated both that neurog1 is precociously and ectopically expressed in

nascent baz1DRG and that Sox10(baz1) protein retains the capacity to contribute to this

expression ([13] and this report). To address whether an increase in neurog1 expression is suf-

ficient to promote DRG neuron specification as in baz1mutants, we mis-expressed Neurog1

using the Tg(hsp70l:neurog1)ups1 line [60]. When Tg(hsp70l:neurog1)ups1 embryos were heat

shocked in a WT background a robust increase in DRG sensory neuron cell numbers is

detected (Fig 8B and 8C’, quantified in A). We next asked if mis-expression in the absence of

Sox10 activity rescues DRG sensory neuron specification. For these experiments we used a

morpholino to phenocopy the sox10mutant phenotype. This morpholino has previously been

shown to phenocopy the pigment cell phenotypes of the sox10m618 allele [61], but its effect on

sensory neurons had not been assessed. As expected, injection of the morpholino into WT

embryos resulted in a strong decrease in sensory neuron numbers compared with controls

(Fig 9D and 9D’, quantified in A). Activation of Tg(hsp70l:neurog1)ups1 transgene in sox10
morphant embryos, however, resulted in dramatic rescue of DRG neuron cell numbers (Fig

9D and 9E’, quantified in A); the rescued DRG neurons were frequently arranged as highly

expanded DRG, qualitatively phenocopying the baz1 phenotype. We conclude that in the baz1
mutants, Sox10(baz1)-dependent activation of neurog1 expression functions in conjunction

with reduced Notch signaling to drive the specification of supernumerary DRG neurons.

Discussion

In this study, we have comprehensively extended the description of the neural phenotypes of

the baz1mutants, showing clearly that the glial, as well as enteric and sympathetic neuron phe-

notypes are similar to other strong loss-of-function sox10 alleles. Interestingly, the baz1 sen-

sory neuron phenotype is restricted to the DRGs and does not affect the placode-derived

neurons of the cranial ganglia (data not shown). We provide evidence arguing against any

changes in the balance of DRG cell proliferation/apoptosis underlying the baz1 phenotype.

Instead, using molecular markers and timelapse studies with double transgenic reporter lines,

we note the strikingly precocious and supernumerary nature of that DRG sensory neuron phe-

notype. These features are typical of defects in lateral inhibition processes, driven by Notch sig-

naling. Previous work in mouse and chick had shown that Delta-Notch signaling controls

neuronal versus glial fate choice in the DRGs[42, 43], leading us to test the hypothesis that this

mechanism was conserved in zebrafish DRGs. We used two Notch signaling inhibitors (DAPT

Multiple roles for Sox10 in DRG fate specification
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Fig 8. Sox10(baz1) retains transcriptional activity at neurog1. Tg(8.4neurog1:GFP) embryos were

injected with expression plasmids encoding variants of Sox10. Embryos were heat-shocked at 7 hpf and fixed

at 10 hpf. Expression of the Sox10 variant proteins was detected by immunofluorescent detection of their Myc

tags (green) and activation of the neurog1 reporter gene is seen by In situ hybridisation against the gfp mRNA

(red). Note how both WT and baz1 proteins activate Tg(8.4neurog1:GFP) reporter expression (A C), whereas

Multiple roles for Sox10 in DRG fate specification
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and compound E) in a 30–72 hpf time-window, combined with transgenic reporter studies to

show that Notch signaling is active in the DRGs at these developmental stages. Our expression

studies of all known Notch ligands clearly implicate DeltaA and/or DeltaD, and not the other

Deltas nor the Jaggeds, as the relevant signals. Although the jagged genes’ expression patterns

do not overlap with neurog1, sox10 or foxd3, making a direct role in DRG development

unlikely, the wide expression of jag1a in neural cells close to cells expressing these markers,

allows the possibility that Jag1a might have some role in DRG development. Indeed,

m618 does not (B). Apparent non-autonomous activation of gfp after expression of Sox10(baz1) but not

Sox10(WT) nor Sox10(m618) was reproducibly seen, but always restricted to cells adjacent to those

expressing Sox10(baz1); the mechanism underlying this remains unclear but could be related to differential

stability of the various Sox10 proteins.

doi:10.1371/journal.pone.0172947.g008

Fig 9. Global mis-expression of Neurog1 is sufficient to phenocopy the baz1 mutant DRG phenotype.

(A) Quantification of mean (±s.d.) total numbers of Elav1/Hu+ DRG neurons in tail (blue), trunk (green) or total

(red). The number of embryos analysed was 6 (WT control), 6 (hs:ngn1), 8 (MO sox10) and 7 (MO sox10, hs:

ngn1). Significance of differences as determined by two-tailed Student’s t test comparisons is indicated by *
(p<0.05), ** (p<0.001) and *** (p<0.0005). Control (B-C’) or sox10-morpholino injected (D-E’) embryos were

left uninduced (B,B’,D,D’) or subjected to heat-shock (C,C’,E,E’) and subsequently processed for Elav1/Hu

immunofluorescence at 5 dpf; embryos were heat-shocked at 28hpf for 1 hour. Panels show lateral views of

trunk (B,C,D,E) and close-ups of representative DRGs (B’,C’,D’,E’).

doi:10.1371/journal.pone.0172947.g009
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expression of Jagged1 has been documented in mouse DRGs, at the E10.5 developmental stage

[62]. However, our studies of the effects of Jag1a knockdown using previously characterised

morpholinos [63] resulted in significant increases in isl1+ Rohon-Beard neurons but showed

no effects on numbers of either isl1+ motor neurons nor sox10+ neural crest cells in the DRG

domain (NT, unpub. data). These data indicate that Notch signaling in the early stages of DRG

development depends predominantly on DeltaA and DeltaD. McGraw et al. [47] also used

DAPT treatment, independently supported by a transgenic approach to inhibit Notch signal-

ing, to assess the requirement for Notch signaling in regulating neuron cell number in larval

DRGs. Their treatment windows partially overlapped those used in our study, extending from

2 to 5 dpf, and achieved changes in DRG neuron number quantitatively comparable to those

observed in our Notch inhibitor studies described here. McGraw and colleagues demonstrated

the expression of deltaA and deltaD in cells adjacent to differentiating DRG sensory neurons

and suggested that Delta-Notch signaling in DRG progenitors controls neuron cell number.

Here, we confirm and extend their observations using i) co-expression of in situ markers neu-
rog1 and neurod1 with delta gene expression to show that early neuronal progenitors are

expressing delta genes, but importantly also ii) by directly demonstrating that activation of

Notch signaling is detectable in vivo in the early DRGs.

Our study and others’ [47, 64] have left open the possibility of non-autonomous effects of

the Notch signaling, but the demonstration here of activated Notch signaling in DRGs, cou-

pled with our and the Raible groups [47] demonstration of expression of Delta-Notch signal-

ing components in these cells, provides strong support for the idea of an autonomous

function in the DRGs. Furthermore, recent in vivo studies in mouse using aWnt1-Cre trans-

gene to target the neural crest showed an autonomous role for Notch signaling in mouse

DRGs[44, 45], so it seems that Delta-Notch signaling in the nascent DRG, and then continu-

ing through larval development as neurons are added in the zebrafish [47], is a conserved

mechanism crucial for the balanced production of neurons and glia in vivo. Importantly,

consistent with this proposal, our direct assessment of Notch signaling levels in the sox10
mutant DRGs clearly shows that Notch signaling is active inm618mutants at levels compa-

rable to WT siblings, but that there is substantial reduction in autonomous signaling activity

in baz1mutants.

It might seem that a natural interpretation of our baz1 data is that in this sox10mutant allele

DRG development occurs in the absence of effective Delta-Notch signaling, perhaps because

expression of one or more signaling components is Sox10-dependent and thus compromised

in the mutant DRGs i.e. the DRG phenotype is simply a neurogenic phenotype. This conclu-

sion would be consistent with observations from mouse, showing that Notch-1 expression in

nascent DRGs is much reduced in Sox10Dom homozygotes[20]. But we note that that same

study showed that Sox10Dom mutants have a reduced number of DRG sensory neurons com-

pared to WT siblings, and this is consistent with the typical loss-of-function sox10 phenotype

seen in zebrafish [10, 13, 50]. Furthermore, in zebrafish, we show directly here that while

Notch signaling is reduced in the developing DRGs of baz1mutants, it is apparently intact in

the more typicalm618mutant allele. Thus, the molecular explanation for the differential sen-

sory neuron phenotypes is that Sox10 regulates expression of neurog1 [13], and this is missing

in these typical sox10mutants, whereas in baz1mutants neurog1 activation by Sox10 is

retained and Notch signaling is impaired. Finally, we note that quantitatively the effects on

DRG sensory neuron numbers of disrupting Delta-Notch signaling using two different drugs

(DAPT and Compound E) or a transgenic approach (c. 25–30% increase; [47] and this study)

are consistently distinct from that of the baz1mutant (c. 250% increase; [13] and this study).

This suggests that the explanation for the baz1 phenotype must be more than simply loss of

Delta-Notch signaling.
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In this context, the surprisingly nuanced effects on neural crest development in the unique

baz1mutant is revealing. These mutants combine a strong loss-of-function phenotype for pig-

ment cells and glia with a gain of function-type DRG sensory neuron phenotype. Our sox10 in
situ data indicate that a key role for Sox10 in maintenance of its own expression in glial cells is

impaired; this is an important observation since Sox10 is a key transcription factor driving

glial cell differentiation[20, 31, 65–68]. Thus glial development is largely prevented, consistent

with the precocious differentiation of secondary neuromasts shown here. Crucially, however,

Sox10-mediated transcriptional activation of neurog1 is substantially normal in DRG sensory

neurons. The subtle substitution (V117M) of hydrophobic residues in the Sox10(baz1) mutant

DNA-binding HMG domain would seem compatible with sequence-specific alterations in

DNA binding properties, a view supported by our initial in silicomodelling approaches. These

simulations suggested that the baz1mutation might result in modifications to the flexibility of

the HMG domain structure, but it will require more detailed molecular dynamic and experi-

mental structural analyses to explore the impact of the substitution in detail. For now, we pre-

dict that expression of key targets in glial (e.g. sox10) and melanocyte (e.g.mitfa) development

fails as in other loss-of-function alleles, whereas a select subset of targets (e.g. neurog1) remain

activated at approximately normal levels.

How do these effects combine to generate a neurogenic sensory neuron phenotype in the

DRGs? Studies in mouse Sox10 mutants have nicely demonstrated that extracellular signals

influencing neural crest cell fate decisions are differentially interpreted depending upon the

cellular context and levels of Sox10 protein (and thus, presumably, Sox10 activity)[67]. We

propose a model that combines our data with the current understanding of the cellular origin

of DRG neurons so as to explain this unique phenotype (Fig 10). An elegant study by the Raible

group established that zebrafish DRGs are derived from bipotent sensory neuroglial precursors

that express low level neurog1[29]. They showed that in normal development a subset of these

progenitors maintain and upregulate neurog1 and thus become sensory neurons, whilst the

remaining cells downregulate neurog1 expression and become glial cells; furthermore, in neu-
rog1mutants, all progenitors adopt a glial fate. We note the neurogenic phenotype and recall-

ing its established mechanism, we assume that Sox10 dependent alterations of Delta-Notch

signaling are significant. In a WT situation (normal Sox10), Sox10 promotes upregulation of

neurog1 in some precursors as they adopt a neuronal fate. Positive feedback between Neurog1

and Delta expression in the nascent sensory neurons results in enhanced Delta-Notch signaling

and, together with Sox10-dependent maintenance of sox10 expression, this promotes glial fate

choice in Notch-responsive cells, achieving a balance of cell-types. Inm618mutants, Sox10-de-

pendent neurog1 and sox10 expression are both impaired, resulting in reduced numbers of sen-

sory neurons and a complete absence of glial differentiation; hence, many DRG progenitors

fail to become specified and remain in a progenitor state. Our data shows that Sox10(m618)

protein is incapable of activating neurog1 expression, so the ‘escaper’ neurons are clearly not

Sox10-dependent; indeed, in previous work we showed that production of the remaining sen-

sory neurons depends upon Sox9b activity [13]. The number of sensory neurons formed in the

m618mutant DRGs is restricted to a WT number, likely due to the intact Notch signaling that

we show here. In contrast, in baz1mutants, Sox10(baz1) retains the ability to activate neurog1
expression so that sensory neuron specification occurs normally. But in addition, Delta-Notch

signaling fails to be activated and Sox10-dependent activation of neurog1 in neighbouring pro-

genitors in the nascent DRG fails to be repressed. As the neuronal fate is not correctly

repressed in putative “glial precursors”, this results in a neurogenic phenotype. As described so

far, this would be expected to result in a DRG phenotype equivalent to that generated by inhi-

bition of Notch signaling i.e. a relatively modest increase in DRG neuron numbers. So, how do

we explain the elevated numbers of sensory neurons in the baz1DRGs? We deduce that Sox10
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must have a role in repressing neuronal development in glial progenitors that is independent

of Delta-Notch signaling. As noted, in baz1mutants, Sox10-dependent positive feedback on

sox10 expression is reduced too, so that glial fates fail to be specified. The baz1 phenotype dem-

onstrates that one important aspect of this glial fate specification process is a further negative

feedback on neuronal development, one that is independent of Delta-Notch signaling but

which reinforces Notch signaling-dependent repression of neurog1 expression (Factor X in Fig

10). Although the molecular details of this mechanism remain to be discovered, the baz1 phe-

notype demonstrates that in its absence persistent neurog1 expression will drive the majority of

DRG progenitors to adopt a sensory neuronal fate, consistent with our neurog1 overexpression

data which in both wild-type and sox10 loss-of-function situations promotes formation of

Fig 10. Model of fate specification in DRG development. A) Integrating our data from this study with

previous work we suggest how the initial DRG consisting of bipotent DRG progenitors (black rectangles)

become specified (second row) and the resultant cell-fates adopted (bottom row). We outline the process in

WT (neuron (N, cyan) and glial fates (G, magenta); first column), baz1 (neuron only; second column), m618

(failure to undergo fate specification; third column) and neurog1 mutants (all adopt glia; fourth column). The

model summarises at each stage the relative levels of inputs (large font is high activity, small font is weak

activity) from each of Sox10, Neurog1, Notch signaling and a Sox10-dependent Factor X, proposed to provide

a repressive input on neurog1 expression. Colour coding of text indicates function of each input (i.e. Neurog1

drives sensory neuron, Notch signaling and Factor X drive glial specification), but Sox10 (which has

independent roles in specification of both fates) is shown in both colours where WT, and in blue in baz1 and in

black in m618 to reflect the neural fate specification activity retained in these mutants. In the case of Sox10

input, note that also font size in neighbouring cells refers to activity with respect to fate being adopted by each

cell, since baz1 mutant reveals that these roles can be separated. The underlying gene regulatory network is

outlined in panel B). Asterisk in m618 cells denotes that sensory neuron specification in m618 mutants occurs

in the absence of Sox10 activity, as a result of Sox9b-mediated transcription of neurog1[13]. See text for

further details. We note that the data from Fig 8 indicates the possibility that Sox10(baz1) may have unique

non-autonomous effects on neurog1 expression, which, if confirmed, would require modification of the model

proposed.

doi:10.1371/journal.pone.0172947.g010
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DRGs with strongly elevated sensory neuron numbers. Our study of the effects of over-

expressing the different Sox10 proteins (Fig 8) shows unexpected Sox10-;Neurog1+ cells adja-

cent to the expected Sox1+;Neurog1+ cells where Sox10(baz1) was overexpressed. These might

be explained by destabilisation of the Sox10(baz1) protein or, more unexpectedly, by an appar-

ent short-range, non-autonomous effect of Sox10(baz1). The former suggestion would be con-

sistent with the general loss-of-function type phenotype displayed by this mutant; in this

context, it might be that the ability to maintain activation of neurog1 would be exceptional.

Our data showing neurog1 transgene activation by Sox10 proteins (Fig 9) strongly support

previous data indicating a direct role for Sox10 in DRG sensory neuron specification via acti-

vation of neurog1 expression[13]. Our transgene data indicate that crucial regulatory elements

lie in the region 8.4 kb upstream of the transcriptional start site; consistent with this, we note

the presence of multiple Sox10 binding sites in this interval (RM and PB, unpub. data). Further

work to characterise the specific binding sites and their regulation will be necessary to fully

understand sensory neuron specification. To the best of our knowledge it remains unclear if

this mechanism is conserved in mouse [13, 20, 31], although we find conserved Sox10 binding

sites upstream of neurog1 and neurog2 in mouse.

Together, our data indicates that in the zebrafish DRGs, Sox10 has a crucial role in estab-

lishing the ratios of neuronal and glial cell-types, through roles in fate specification of both sen-

sory neurons and glia (via transcriptional activation of neurog1 expression in nascent neurons

and sox10maintenance in prospective glial cells, respectively), but also by a mechanism of neu-

ronal fate repression in prospective glial cells that is independent of Notch signaling. A detailed

dissection of the molecular mechanisms underlying this intriguing and unexpected role will

depend upon extensive characterisation of the structure of the gene regulatory network under-

lying glial fate specification and differentiation.

Materials and methods

Fish husbandry and zebrafish strains

All animals were handled in accordance with the relevant national and international guide-

lines. Animals in the Kelsh lab are housed in a facility certified by the Home Office, and the

work was approved by the University of Bath Animal Welfare and Ethical Review Body and

performed under Home Office Project Licenses PPL30/2415 and PPL30/2937. Animals in the

Blader lab were housed in a facility certified by the French Ministry of Agriculture: approval

ID B-31-555-10. The work in the Blader lab is monitored by a local ethics committee (FRBT

C2EA-01). All animals in the Tiso lab were handled under the Italian Ministry of Health autho-

rization n. 407/2015 (UniPD Ethical Committee Reference: OPBA n. 50/2014). Embryos were

collected from natural matings and staged (hours post fertilization (hpf) at 28.5˚C) according

to Kimmel et al. [69]. They were incubated at 28.5˚C in 100ml petri dishes containing embryo

medium (0.137M NaCl, 5.4mM KCl, 0.25mM Na2HPO4, 0.44mM KH2PO4, 1.3mM CaCl2,

1.0mM MgSO4, 4.2mM NaHCO3). Strains used were as described previously: sox10m618 and

sox10baz1 [10, 13]; Tg(neurog1(-8.4):nRFP)sb3, Tg(neurog1(-8.4):EGFP)sb1Tg and Tg(neurog1
(-3.1):EGFP)sb2Tg [49]; Tg(hsp70l:neurog1)ups1 [60], Tg(-4.9sox10:eGFP)ba2 [13], Tg(sox10(7.2):
mRFP) [55]; Tg(−2.4 kb neurod1:GFP)ia50 [70]; Tg(12xNRE:eGFP) and Tg(12xNRE:mCherry)
[54]. Homozygous mutant embryos were readily identified by pigmentation phenotype.

Whole-mount in situ hybridisation, antibody staining and TUNEL

analysis, imaging and statistical analysis

These were performed as previously described [13], with mutants and siblings in same tube and

>20 embryos processed per condition and representative embryos selected for imaging.
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Experiments were performed at least in duplicate. Fluorescent dual color In situ hybridization,

based on FastRed/FastBlue double staining, was performed as described in Lauter et al. [71]. In
situ probes were as follows: deltaA, deltaB, and deltaD [72], deltaC [73], foxd3[74], jgd1a, jgd1b,

jgd2 [53],mbp[75], neurog1[28], neurod[28], notch1a [76], notch1b [77], notch2 [78], notch3
[79], sox10 [10], and egfp (Tol2 Kit vector). Antibody staining was largely performed as

described in [40]. Prior to primary antibody incubation, embryos were permeabilized with 5μl/

ml of proteinase K for 30 mins at 37˚C, then rinsed with 5% goat serum at RT for 5 mins and

washed 3x1 hour with distilled water at RT. Antibodies used were Hu/Elav1 (1:700 mAb 16A11)

[80], Tyrosine Hydroxylase (1:500, Immunostar, Cat. # 22941) and Alexa Fluor 488 goat-mouse

IgG (1:750, Molecular Probes, Cat. # A11001). For post mortem imaging, embryos were cleared

and mounted in glycerol/PBS buffer. For in vivo imaging of transgenic lines, embryos were anes-

thetized in tricaine (0.016%) and mounted in 1% low melting agarose/PBS buffer. Embryos

were analysed and imaged using either an LSM510 confocal microscope (Carl Zeiss Imaging) or

an Eclipse E800 (Nikon) microscope using appropriate filters and a SPOT digital camera (Diag-

nostic Instruments) or an AxioImager M2 with Apotome 2 (Zeiss), or using a spectral confocal

microscope (Leica SP5), able to selectively acquire near-red fluorescence from FastRed and far-

red emission from FastBlue. Image analysis and 3D processing were performed using either

ZEN 2009 (Carl Zeiss Imaging) or Volocity 6.0 software (Perkin Elmer). Images were minimally

processed using Photoshop (Adobe, Creative Suite 6) to adjust levels, contrast and brightness.

Fluorescence quantification was obtained with the Measurements tool of the Volocity 6.0 soft-

ware, by fluorescent dot counting performed on maximum projection images of selected ana-

tomical regions (ROI dimension: 10 μm x 10 μm x 50 μm; 6 measurements/condition). Counts

of DRG cells were performed on 1 side of an embryo only. Statistical analysis was performed

using the Prism Statistical Package (GraphPad, San Diego, CA).

Timelapse studies

For timelapse analysis of DRG development embryos were mounted in 0.6% low melting

point agarose in glass-bottomed dishes after dechorionation and anaesthesis in 0.004% tri-

caine. Imaging was performed using either LSM510META or LSM5 Live confocal microscopes

(Carl Zeiss Imaging), with image processing using either ZEN 2009 (Carl Zeiss Imaging) or

Imaris 7.1 software (Bitplane A6, Zurich, Switzerland). Embryos were staged by position of

PLL primordium [69] at start of experiment. Up to 4 embryos were imaged simultaneously,

with wild-type (WT) and baz1mutants mounted alongside each other. Images were taken at

30 min intervals for up to c. 25 h.

Notch inhibitor studies

Notch inhibitor studies were performed on dechorionated embryos (dishes were coated in 2%

agarose to prevent adhesion of embryos to dish during treatment. DAPT-treatment was per-

formed according to Geling et al (2002) [57], using 100 μM DAPT in 2% DMSO in embryo

medium. Compound E[58] was used in a similar way[81], with embryos treated with 100μM

(diluted into 2% DMSO) working solution. In all cases, dishes were wrapped in foil during

treatment to exclude light.

Neurog1 regulation assays

PCR fragments were inserted into a previously described vector to generate Myc-tagged fusion

proteins for Sox10(WT), Sox10(m618) and Sox10(baz1) under the control of the hsp70l pro-

moter [60]. These plasmids were injected into embryos from the Tg(neurog1(-8.4):EGFP)sb1
line. Embryos were subsequently heat-shocked for 1 hour starting at 7 hpf, and fixed at 9.5 hpf.
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Finally, in situ hybridisations coupled with Myc immunodetections were performed to identify

cells expressing the fusion proteins (anti-Myc “9E10”; [82]) and to address whether expression

of the reporter transgene (gfpmRNA) had been induced in these cells. Three independent

injection/induction experiments were performed for each Sox10 variant; at least 40 embryos

were injected with each construct. While embryos injected with hs:sox10(m618)never resulted

in ectopic activation of the neurog1(-8.4):EGFP transgene despite all embryos displaying cells

expressing Myc-tagged protein after heatshock, both hs:sox10(WT) and hs:sox10(baz1) injec-

tion/induction resulted in robust ectopic gfp expression. In the case of hs:sox10(WT) injection/

induction, ectopic expression of gfpwas restricted to Myc-positive cells whereas gfp+/Myc-

negative cells were often seen adjacent to gfp+/Myc+ cells when injection/induction was per-

formed with the hs:sox10(baz1) transgene.

Molecular modeling

3D prediction. HMG box from human SOX-9 bound to the DNA sequence 5'-
CTCTTTGAGAAG-3'has been used as template structure (pdb: 4EUW). Given that wild type

and baz1 mutant proteins share 98% sequence identity with the template, backbone and con-

served amino-acids have been preserved. Non-conserved amino acids side chains have been

reconstructed using the side-chain placement tool SCWRL 4.0 [83].

MD simulation. All simulation steps were carried over using the AMBER03 force field

[84] within the GROMACS 5.04 (http://www.gromacs.org/) software package [85] for both

wild type and baz1 mutant structural models. The simulation was run in a cubic box with a 1.0

nm edge length and the system was solvated with Simple Point Charge water (SPC), a generic

equilibrated 3-point solvent model. In order to neutralize the systems, 15 sodium ions were

added to replace 15 water molecules. Electrostatic interactions were calculated by the Particle

Mesh Ewald (PME) method [86] and All bond lengths were constrained by the LINCS algo-

rithm [87]. Energy minimization was performed and the systems were subjected to a steepest

descent energy minimization until reaching a tolerance force of no greater than 1000 kJ mol-1

nm-1. Equilibration of the solvent and ions around the protein-DNA complex was conducted

in two phases. The system was slowly heated up from 0 K to 300 K under an NVT ensemble

(constant Number of particles, Volume, and Temperature) for 100-ps. After temperature equil-

ibration, pressure stabilization was carried out under an NPT ensemble for 100-ps, wherein

the Number of particles, Pressure, and Temperature are all constant and the Parrinello-Rah-

man barostat was used [88]. The integration time step was 2 fs for both NVT and NPT. Com-

plete MD simulation was run for 100000000 steps (200 ns) at a constant temperature of 300 K

and a constant pressure of 1 atm. The trajectories were obtained using “gmx trjconv” GRO-

MACS tool, corrected for periodicity, and analyzed by using “gmx rms” GROMACS utility in

order to obtain the Root-Mean-Square Deviation (RMSD). Principal Components Analysis

(PCA) has been carried out on the final trajectories by building the covariance matrix of the

atomic fluctuations using the “gmx covar”. The set of eigenvectors and eigenvalues was

obtained from the diagonalisation of the matrix using “gmx anaeig” tool. The first three princi-

pal components representing the largest-amplitude collective motions have been considered.

Supporting information

S1 Fig. Supernumerary sensory neurons in baz1 mutants express isl1. A, B) Expression of

isl1 at 48 hpf in WT (A) and baz1 (B) is seen in DRGs (�), but is especially prominent in the

baz1mutants where supernumerary cells are often more ventrally positioned and thus more

prominent.

(TIF)
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S2 Fig. Timelapse movie frames. Extracted frames from S1 video (WT, left) and S2 video

(baz1, right) of 4 segments of trunk of Tg(-4.9sox10:eGFP)ba2; Tg(neurog1(-8.4)):nRFP). Arrows

indicate subset of DRG neurons (nRFP+). Time since timelapse initiated indicated in Hrs;Mins.

(JPG)

S3 Fig. Glial specification is severely defective in baz1 mutants similar to other sox10
mutant alleles. A-L) sox10 expression at 48 hpf. Columns show sox10-expressing cells in head

(A, E, I), lateral pathway of trunk (B, F, J), medial pathway of trunk (C, G, K) and tail (D, H, L)

respectively of 48 hpf WT (A-D), baz1 (E-H) andm618 (I-L) mutant embryos. Glia of cranial

ganglia and Schwann cell precursors on cranial and PLL nerve (white arrowheads) are promi-

nent in WT, but highly reduced or nearly absent in baz1 andm618mutants respectively. Cells

of DRGs (white asterisk) form a prominent segmentally reiterated pattern on the medial path-

way of trunk and tail of WT, but are reduced in sox10mutants; note that in tail, where cells are

developmentally younger, the DRG patterns are more similar. Xanthoblasts (black asterisk)

are prominent on lateral pathway of WTs, but reduced and absent in baz1 andm618mutants

respectively. M,N,P,Q) foxd3 expression at 48 hpf. Expression in Schwann cell precursors asso-

ciated with spinal nerves forms segmentally reiterated pattern readily seen in WT (M), but

numbers of cells are much reduced in baz1 (P). foxd3-expressing Schwann cell precursors

(white arrowhead) on PLLn are prominent in WT (N), but highly reduced in number in baz1
at 48 hpf (Q), where they are usually seen only anteriorly. O,R) Supernumerary neuromasts in

baz1mutants. Whole mount In situ hybridisation with isl1 probe in 48 hpf WT (O) and baz1
mutant (R). Note supernumerary neuromasts (black arrowheads) in baz1mutant. Photos all

from single, typical individual of each genotype, after PTU treatment.

(TIF)

S4 Fig. Oligodendrocyte differentiation, but not specification, is disrupted in baz1
mutants. A,B) Oligodendrocyte precursors at 48 hpf in trunk spinal cord express sox10 and

are indistinguishable in number and distribution in WT (A) and baz1mutant (B). C,D) sox10
expression in dispersing oligodendrocyte of hindbrain; note that numbers and dorsoventral

distribution strongly resemble wild-type siblings. E,F) sox10 expression in oligodendrocyte

progenitors in the ventralmost spinal cord are unaffected at 72 hpf; region of somites 7–11 is

shown. G,H) Oligodendrocyte differentiation is abnormal as shown by strongly decreased

mbp expression in hindbrain of 72 hpf embryo.

(TIF)

S5 Fig. deltaA and deltaD gene expression overlaps with neurod1 in the nascent DRGs.

A-C) deltaA expression (red) is faint, but overlaps with neurod1 (green) in the nascent DRG

(arrows) at 30 hpf. D-F) At 30 hpf, deltaD expression (red) overlaps with neurod1 (green) in

the nascent DRG (arrows). G-I) deltaA expression (red) clearly overlaps with deltaD (green) in

the nascent DRG (arrows) at 30 hpf. All main panels are confocal images of fluorescent dual-

color In situ hybridisations in lateral view, with insets showing y-z planes (left) and x-z planes

(above) for each. nc, notochord; sc, spinal cord.

(TIF)

S6 Fig. m618 and baz1 Sox10 alleles exhibit different effects on Notch signaling activation.

A-D) bright field (A,C) and fluorescent (B,D) views of control (ctrl) and mutant (m618, baz1)

embryos in Notch reporter (NRE:EGFP) transgenic background.m618 embryos and their con-

trols do not show dramatic differences in Notch reporter activation, while baz1mutants

exhibit decreased fluorescent signals compared to controls. All panels display 36 hpf embryos

in lateral view, anterior to the left. Scale bar: 1 mm.

(JPG)
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S7 Fig. Transcriptional analysis of Notch reporter expression in sox10 mutants. A-F) fluo-

rescent WISH analysis in baz1 and WT sib shows a decrease of sox10 and Notch reporter tran-

scription in the DRG regions (arrows) of the mutant (D-F), compared to the control (A-C).

G-L) fluorescent WISH analysis inm618 and WT sib shows a decrease of sox10 and persistency

of Notch reporter transcription in the DRG regions (arrows) of the mutant (J-L), compared to

the control (G-I). All panels display embryonic trunk regions at 30 hpf, in lateral view with

anterior to the left.

(JPG)

S8 Fig. Molecular dynamics (MD) simulation of wild type and Sox10(Baz1) HMG

box bound to DNA. The results of the principal component analysis of the first three largest-

amplitude collective motions are reported. A,B) Energy minimized models of wild type (A)

and Sox10(baz1)(B) mutant respectively. Both minimum and maximum extremes of the fluc-

tuations are shown as white ribbons and the average structure is shown as black ribbon. Valine

and methionine are highlighted in sticks. C-F) Root mean square deviation (RMSD; y-axis) of

each structure of the MD trajectory with the corresponding energy minimized structure from

200 ns MD simulation (x-axis time in ns). Panels show the backbone (C,D) and DNA fluctua-

tions (E,F) of wild type (C,E) and Sox10(baz1)(D,F).

(TIF)

S1 video. Timelapse of trunk of Tg(-4.9sox10:eGFP)ba2; Tg(neurog1(-8.4)):nRFP) on WT

background from 36 hpf, showing limited numbers of nascent DRG cells (cytoplasmic

green) activating neurog1 reporter transgene (nuclear red). Arrow indicates typical DRG

sensory neuron.

(AVI)

S2 video. Timelapse of trunk of Tg(-4.9sox10:eGFP)ba2; Tg(neurog1(-8.4)):nRFP) on baz1
background from 36 hpf, showing precocious and supernumerary differentiation of

nascent DRG cells (cytoplasmic green) into neurog1+ neurons (nuclear red). Arrows indi-

cates subset of DRG sensory neurons.

(AVI)
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