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—— Abstract

Measurement-based timing analysis (MBTA) is often used to determine the timing behaviour
of software programs embedded in safety-aware real-time systems deployed in various industrial
domains including automotive and railway. MBTA methods rely on some form of instrumenta-
tion, either at hardware or software level, of the target program or fragments thereof to collect
execution-time measurement data. A known drawback of software-level instrumentation is that
instrumentation itself does affect the timing and functional behaviour of a program, resulting in
the so-called probe effect: leaving the instrumentation code in the final executable can negatively
affect average performance and could not be even admissible under stringent industrial qualific-
ation and certification standards; removing it before operation jeopardizes the results of timing
analysis as the WCET estimates on the instrumented version of the program cannot be valid any
more due, for example, to the timing effects incurred by different cache alignments. In this paper,
we present a novel approach to mitigate the impact of instrumentation code on cache behaviour
by reducing the instrumentation overhead while at the same time preserving and consolidating
the results of timing analysis.
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Keywords and phrases WCET, Measurements, Instrumentation overhead
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1 Introduction

Measurement-based timing analysis (MBTA) methods are widely used in application domains
such as automotive, railway or space [19]. With MBTA, execution-time measurements of
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selected fragments of software programs of interest are taken while observing runs of the
program on the target processor, performed under stressful conditions. The highest value,
usually known as high-water mark time (HWMT), is recorded. The HWMT of all code
fragments (the smallest of which is a basic block) in the program are then combined to
determine the worst-case execution time (WCET) of the corresponding task. It is worth
noting that MBTA works on the premise that the testing conditions are representative of
real system operation, so that the HWMT approximates the real WCET.

The places in the code where the required execution-time observations are made are
usually referred to as instrumentation points (ipoints). MBTA generates a run-time trace
that logs which ipoints are traversed at what time during the observation run. Two differing
approaches exist to generate time readings at ipoints: the generation of time traces via
hardware methods has been made possible with the advent of processors with advanced
debug capabilities that do not affect program timing behaviour. Hardware instrumentation
ideally provides transparent generation of timing traces — assuming that collected traces
can be output in a fast-enough and equally transparent way so that no trace data are lost
because of overfull buffers and no explicit program action is to be taken. However, this
support is not present in all processors candidate for use in real-time systems. As a result, in
the general case, software-level solutions are adopted where some form of instrumentation
code is required in the program to generate timing information.

In contrast with its hardware-based counterpart software instrumentation is highly
intrusive, especially on the temporal behaviour. In the presence of caches, instrumentation
code can generate unwanted timing effects far beyond the intrinsic timing penalty of the
additional instrumentation instructions, that would not have been observed in the un-
instrumented (original) program. The user thus faces the dilemma of whether to remove the
instrumentation code from or leave it in the final program.

Removing the instrumentation code from the final executable raises the question of

how the execution-time observations taken with the instrumented code correlate with

the timing behaviour of the un-instrumented program. In fact, both functional and
timing verification would have been conducted on a different software artifact and strong
additional argument must be provided for the analysis result to hold.

Leaving instrumentation code in the final executable spares the burden (for cost and

complexity) of demonstrating equivalent functionality as WCET estimation is performed

on the executable that will be deployed in the operational system. However, certification
and qualification practices may simply not accept the presence of this instrumenter-

added code in the executable. As an immediate effect, leaving instrumentation code in a

program is likely to worsen memory footprint and average performance. Further, some

memory-mapped I/O space — where execution-time readings might be kept — may be
unnecessarily wasted.

In fact, both leaving and removing instrumentation code may have disruptive effects on
the certification process. While there have been several methods to minimise the number
of instrumentation points, without losing too much precision [17], in this paper we show
that even a single instrumentation point can lead to significantly different timing behaviour
between the original (un-instrumented) program and the instrumented version.

We present a novel technique that strikes an optimal balance between the two approaches,
basing on the concept of functionally-neutral program, that is used at system operation.
From the original program (oprog), fnprog is generated by inserting nop instructions at
desired instrumentation points. The neutral nature of nop instructions and the fact that
they can neither generate interrupts nor have input or output dependences simplifies certi-
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fication/qualification argumentation. For the purposes of timing analysis, nop instructions
are replaced by actual instrumentation operations, resulting in an instrumented program
(iprog). The number of nops inserted per ipoint in fnprog is carefully selected so that the
cache alignment of code in fnprog and iprog stays unchanged. This prevents any unwanted
impact on timing behaviour that may stem from variations in cache alignment. The increase
in terms of memory footprint and execution time of fnprog as compared to oprog, instead,
depends on the program and the number of ipoints inserted.

We have applied this method within the scope of measurement-based probabilistic timing
analysis (MBPTA) [2]. Besides its evident benefits on the fronts of qualification and certific-
ation alike, our approach significantly reduces the impact of software-level instrumentation.
In quantitative terms, assuming basic block level instrumentation with two instructions per
ipoint, the average degradation we observed in the computed execution-time bounds was
9.3% for EEMBC benchmark programs and 8.7% for a railway case-study application.

2 Background and Problem Statement

MBTA differentiates between the analysis phase, when verification of timing behaviour takes
place, and the operation phase, when the system is deployed into operation. MBTA computes
WCET estimates with execution-time measurements taken at analysis time, on the condition
that the corresponding bound holds at operation. This requires the user to define test
scenarios that trigger worst-case conditions that can occur during system operation. (We
intentionally omit discussing here how difficult, if at all possible, that is for the user.)

MBPTA [2] is a variant of MBTA that derives probabilistic WCET (pWCET) estimates —
an execution-time distribution expressing the maximum probability that upper bounds the
residual risk that one instance of the program may exceed a given execution-time threshold.
MBPTA handles the sources of execution-time variability caused by hardware and software
effects by ensuring that the jitter they cause at analysis matches or upper bounds that
which occurs during operation [8]. Cache memories, whose behaviour cannot be treated
that way, are time randomised instead [6], so that their impact on execution time can be
studied probabilistically for both analysis and operation conditions and the former can be
made to upper bound the latter. MBPTA employs extreme value theory [9] (EVT) to model
the distribution of extreme (worst-case) execution times (pWCET), considering the timing
impact of randomised hardware resources both individually and collectively.

2.1 Problem Statement

MB(P)TA generates a trace that records which and when ipoints are traversed during

execution. Every such trace is a sequence of <ipointid, timestamp> pairs. Two main steps

take place in the generation of ipoint traces.
Generation. Modern hardware comprises advanced debug interfaces that trigger specific
actions when certain opcodes are executed. For example, debug hardware can be used, on
every branch instruction taken by program execution, to collect a <branch (instruction)
address, execution cycle> pair of trace data. The type of instruction (event) to trace
and the action to perform when such an instruction is hit can be programmed through a
provided interface, e.g. Nexus or GRMON for the LEON processor family [15]. Debug
hardware of that kind is not present in all processors used in real-time systems. In
general, therefore, some form of software instrumentation is needed. To that end, specific
instrumentation instructions are inserted at the desired granularity of information in the
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execution context of the program of interest. For instance, these instructions may read
the time-base register and output its contents to a specific I/O address.

Collection. Once instrumentation (in either hardware or software) is in place, the
execution of the unit of analysis on the target processor results in a set of timestamps and
events. This list is output outside of the processor and dispatched to some off-line analysis
tool. The capture and offloading process can be the source of further interference. On-
chip debug hardware usually includes off-band buses so that the transfer of <timestamp,
event> pairs does not affect the execution of the unit of analysis. Depending on the speed
of the CPU and the quantity of ipoints, the volume of timestamped data can be high.
This can be managed by outputting the data to high-speed ports. Specialised hardware to
process the trace at very high speed has been proposed [12] and exists commercially [14],
which prevents loss of information or stalls of execution.

The generation and collection of this trace may interfere with the system’s timing and
perturb its behaviour. This phenomenon is known as the probe effect, which causes the
instrumented program to have register and cache usage profiles that differ from those of the
original (un-instrumented) program.

We categorise those effects as follows:

Direct impact stems from the execution latency of fetching and executing instrumentation

code (icode). The icode usually involves reading internal processor registers, e.g., the

time register, (Afo72~"*“) and outputting the readout to a specific memory address. If
this information is transferred via buses or I/O controllers used by the application under
analysis, this action is bound to interfere with application’s timing behaviour. Furthermore,
if ipoint information is cached, this can also cause significant effects (AS"2~¢™¢)  Not,
all processors are capable of tracing and dumping data implicitly, without using ipoints.
Fast debug links and I/O ports (e.g., GPIO, Ethernet) are often available to dump trace
data transparently to the application as long as the ipoints are conveniently placed in the
program being run. Trace data can be either processed in real-time of stored for off-line
processing.
Indirect impact of the icode arises from the change in the layout of program code in
memory. When an ipoint is inserted in the program, it shifts the position in memory
of the subsequent instructions and hence also their address and possibly its cache set
layout. This may make it considerably difficult for the user to provide evidence that the
execution-time measurements obtained with the instrumented binary (iprog) are larger
or smaller than those obtained with oprog. This in turn causes the pWCET estimates
obtained for iprog to not safely upper bound oprog’s execution time.

The execution time of the original program (EToprog) is affected in a direct manner by
icode in the instrumented program (ETiprog) as shown in the second addend of Equation 1.

icode icode icode icode

E'Tiprog — EToprog+ (Acore—exec+Achip—exec+Acollect) +Amalign (1)

Without loss of generality, we assume that both trace-generation impact, other than execut-

ing icode at the core level, and trace-collection overhead are null (Agolect — AChb=cmee _ gy

and instrumentation overheads only arise from the core execution of ipoints included in the

A core—exec

seode = 0), which however creates a constant execution time overhead.

unit of analysis (
The actual problem stems from the fact that the insertion of the icode may change the

memory layout of the original code in oprog. Unlike the direct impact of icode that is bound

malign
Aiz:ode

This may cause iprog to run either faster or slower than oprog. This may lead to the situation

to be a positive value, misalignment impact ( ) can be either positive or negative.
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Figure 1 Memory impact. Figure 2 Execution-time impact.

in which, despite the direct impact caused by the insertion of icode, the execution-time
distribution and pWCET estimate for iprog are even smaller than those for obtained for

: core—exec chip—ezxec collect malign core—ezxec malign
oprog, 1.e. Aicode + Aicode + Az'code < Aicode 50 Aicoda < Aicode :
2.2 lllustrative Example

In this section we use a small example to demonstrate how instrumentation code can create
unexpected timing behaviour in which the instrumented program yields an execution-time
profile that does not upper bound the profile of the un-instrumented program.

Let us consider the code fragment shown in the left part of Figure 1. This code comprises
a for structure with a nested switch structure. In the example, I'1, I2 and I3 (not shown)
correspond to loop and switch control instructions; 4 — I6 are in the first case of the
switch; I7 — I'10 in the second; and 111 — I'15 in the third. Further assume that before any
instrumentation is applied the code (instruction addresses) is laid out in memory as presented
in (a), occupying 5 cache lines. Further assume that a single instrumentation instruction is
inserted somewhere before this fragment, causing a shift of one instruction and resulting in
the memory layout presented in (b). The body of the loop thus occupies 4 lines.

We executed this code on a light-weight processor simulator comprising a 2-set 2-way
instruction cache. Other than the jitter caused by the instruction cache — 4 cycles in case
of hit and 94 cycles in case of miss — instructions have a back-end latency of 6 cycles. We
assume an arbitrary input vector that causes a different branch of the switch to be triggered
at each loop iteration. We assume A7 = 2 for the only added ipoint.

In terms of MBPTA, this yields the empirical complementary cumulative distribution
functions (ECCDFs) shown in Figure 2(a) from where we see that the execution profile of
the un-instrumented code is higher than that of the instrumented code. If we apply MBPTA

to those observed execution times we obtain the pWCET estimates shown in Figure 2(b).

We observe that both the empirical distribution and the pWCET for the original code are
much higher than those for the instrumented code.

Hence, even a single instrumentation instruction can change the cache layout so that the
instrumented program has lower execution time than the un-instrumented one.

1:5
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- Ensure that iprog exec.
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Figure 3 Schematics of the proposed approach.

3 Proposal

The proposal we present in this section aims to help the user be assured that the version of
the program used for WCET analysis leads to an execution-time distribution that reliably
upper bounds the execution time of the version of the program used during operation. As a
secondary goal, we want to reduce A7 “*““ to produce tighter WCET estimates.

Our approach uses three versions of the program of interest, see Figure 3: oprog, the ori-
ginal program, fnprog, its augmented functionally-neutral version, which is used in operation,

and iprog, the instrumented executable, which is used for analysis.

fnprog. This is a version of oprog augmented with nop instructions inserted to bound the
indirect impact of the icode (A7"*49™
functional behaviour that can therefore be used in operation. However, an argument (which
we denote Al) is needed to show that fnprog provides the same functional output as oprog.
Furthermore, we also need to prove that the average performance of fnprog is near and not

unacceptably worse than that of oprog.

). This modification results in a program with unaltered

The nop instructions in fnprog are inserted at all places where ipoints are needed.
The number of nop instructions inserted per ipoint is sufficient to ensure that, when the
actual instrumentation instructions are inserted in iprog, no cache-line misalignment occurs.
Typically, one or two instrumentation instructions per ipoint are sufficient to collect timing
information, depending on the actual hardware support and instruction set. Hence, fnprog
includes one or two nops at the place of each ipoint. It is worth noting that oprog may
already include some nops. For instance, in an architecture with delayed branches (e.g.,
SparcV8), delayed slots may not be filled with useful instructions or nops, depending on
compiler flags or program semantics. Further, some compilers include options that insert
nops to enforce memory alignment at the level of function, branches, jumps and loops (e.g.
-falign-functions=n, ~-falign-labels=n, -falign-loops=n, ~-falign-jumps=n in GCC).
Those nops are just fine for placing instrumentation code in iprog.

iprog. The execution-time measurement traces needed by MB(P)TA are obtained from a
modified version of fnprog. In that version, which we call instrumented binary, iprog, some or
even all of the inserted nops are replaced by actual instrumentation instructions impacting
execution time. This change is made in a way that causes no code realignment with respect
to fnprog which simplifies ensuring that the execution-time traces obtained from iprog can
be reliably used to derive a pWCET estimate for fnprog as used in operation. A further
argument (A2) is needed to show that the execution-time behaviour of iprog is never less
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than that of fnprog, so that the execution-time observations taken for iprog can be used to
upper bound the WCET of fnprog.

If our approach is adopted, the required nops could be automatically added by the
(qualified) compiler. The number of nops and the level they are added could be easily
controlled via compiler parameters, e.g. ~fnopcount=n and -fnoplevel=basicblock.

3.1 Functionally-neutral impact of fnprog (A1)

The use of nops simplifies providing arguments that fnprog does not change the functional
behaviour of oprog: most of today’s Instruction Set Architectures (ISAs) include nop-type
instructions, whose function is to perform no operation in the processor other than fetch
and, possibly, decode, where the instruction is usually stripped from the execution stream.

The main advantage of using nops is that they are functionally neutral: (1) by definition,
a nop performs no operation; (2) its execution does not change status flags or any other
control registers; (3) a nop generates neither raises interrupts nor exceptions; (4) a nop uses
no architectural (programmer accessible) register, which allows inserting nops anywhere in
the code; and (5) a nop has no input and no output (register) dependences. From all these
properties it follows that fnprog cannot change the functional behaviour of oprog.

From the average performance standpoint, whose improvement we defined as our second
goal, nops usually take a few cycles to execute. In some architectures, the processor may even
strip nops out from the pipeline before they reach the execution stage. This is in contrast
with actual instrumentation instructions that usually need to access off-core (or off-chip)
resources such as I/O ports or trace buffers, thus incurring longer execution times.

3.2 fnprog’s WCET is upper bounded by that of iprog (A2)

The difference between fnprog and iprog is that some nops in the former are changed to
actual instrumentation instructions in the latter. The number of nops inserted at the place
of each ipoint in fnprog is such that exactly the same cache-line alignment occurs in fnprog
and in iprog. The net result is an increase in the execution time of iprog in comparison to
fnprog since the instrumentation code takes longer to execute than nops. The fact that this
overhead has an additive nature ipoint by ipoint — in a processor free of timing anomalies —
facilitates making an argument about the fact that the resulting execution-time distribution
collected with iprog upper bounds that of fnprog. Notably, the execution time of fnprog might
be lower than that of oprog, owing to the instruction cache effects described before. However,
this does not create any issue since fnprog is the one that will be deployed to operation.

Recent work [7] in the specific context of MBPTA [2] for time-randomised caches [6] helps
us contend that the execution time of iprog does indeed upper bound that of fnprog. Let
18,4 be a sequence of instructions to which we add a set O of new operations — both acting
within core (e.g. add) and on memory — resulting in the extended instruction sequence I.S¢,:.

The authors of [7] show that the probabilistic execution time (pET) of IS¢, is higher
than the pET of I.S,.,. We say that pET (157) > pET(155) if, for any cut-off probability,
the execution time of 157 is higher than or equal to the execution time of I.Sj. We contend
that this argument can be made for standard MBTA, not just MBPTA, but we leave the
corresponding demonstration as future work.

In addition to cache-related icode variability — which we attack in this paper — measurement-
based timing analysis needs to handle timing anomalies if they can happen.

1:7
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Table 1 Average increase in code size and execution time of fnprog and iprog normalized to oprog.

no. instruct. H Code Size H execution time fnprog ‘ execution time iprog

1 inst./2 inst. || 6.87%/13.74% || 4.35%/9.28% | 8.33%/17.54%

4 Experimental Results

So far we have provided arguments in support to the fact that our functionally-neutral
approach provides a reasonable solution to the software instrumentation problem from the
qualification and certification standpoint as fnprog can be safely deployed instead of the
oprog and iprog. In our experimental evaluation we aimed at providing evidence that the
fnprog always exhibits pWCET that tightly upper bounds oprog and is always lower than
iprog. For our evaluation we use the well-known EEMBC automotive benchmark suite [11].
In particular, we use the following benchmark programs: a2time (A2), aifftr (Al), aifirf
(AF), aiifft (AT), bitmnp (BI),cacheb (CB), canrdr (CN), idctrn (ID), iirflt (II),
matrix (MA). We also use a railway case-study application that is part of the European
Railway Traffic Management System (ERTMS) [4] initiative that seeks to define a unique
European train signalling standard. Our focus is on the on-board unit of the ERTMS, called
European Train Control System (ETCS). We consider 10 different input sets (SO to S9). For
the iprog we assume 1 and 2 instrumentation instructions per ipoint.

We focus on the pessimistic scenario where ipoints are added at basic block boundary —
the smallest granularity of instrumentation in general. While in this case the instrumentation
impact is high, we have seen that a single instrumentation point can cause unwanted cache
effects between the instrumented and non-instrumented code. In the presence of techniques
reducing the number of ipoints (see Related Work Section), the overhead introduced by our
approach will naturally reduce. We use a cycle-accurate processor simulator that implements
4KB L1 instruction- and data-caches, which comprise 128 sets and 2 ways each. Both caches
implement random placement and replacement [6]. The access latency to the L1 caches is 1
cycle and that to main memory is 28 cycles. For the instrumentation instructions, we assume
they have the cost of 2 cycles.

4.1 Execution Time and Code Size Increase Due to Instrumentation

Table 1 shows the increase in code size and execution time incurred by fnprog and iprog
respectively. We can see that fnprog incurs moderate overhead in footprint — between 7%
and 14% — when one or two nop operations are added per ipoint per basic block. In terms of
execution time, the impact is 5% and 10% when 1 and 2 instructions are added respectively.
Meanwhile iprog incurs higher execution time overheads: 9% and 19% respectively.

Per-benchmark results (not depicted for space constraints), show a clear relation between
program’s average basic block size the the code size impact of nops. In terms of time, in
addition to average basic block size the average duration of each instruction (program’s CPI)
determines the execution overhead of nops.

4.2 pWCET estimates

For the case of 2 instrumentation operations per ipoint, we compare the pWCET estim-
ates obtained from the execution-time measurements from oprog, fnprog and iprog. We
collected 1,000 runs for each version, which have sufficed to pass the MBPTA convergence
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Figure 4 Histogram and MBPTA projection for a2time.

Table 2 pWCET estimates for 1072 for fnprog and iprog normalized to oprog.
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prog. || A2 AT AF AT BF BI CB CcN D II MA

26.4% 3.8% 11.6% 71% 11.5% 11.9% 21% 14.1% 12.3% 11.9% 6.4%
33.0% 9.3% 221% 12.4% 22.0% 16.8% 4.0% 27.1% 23.3% 21.6% 12.7%

fnprog
iprog

criteria [2]. Figure 4 shows the execution-time histogram and the resulting pWCET estimate
for a2time benchmark. We observe how fnprog is close to oprog’s. Further, changing nops
by instrumentation instructions causes iprog’s execution-time to upper bound fnprog’s.

For the other benchmarks, Table 2 summarises the difference observed for the three
versions of the program for a cut-off probability of 1072 per run. As shown, fnprog is
relatively tight with respect to oprog. The only exception is A2, which includes many basic
blocks, and therefore takes a higher density of nops.

4.3 Railway case study

Table 3 reports analogous results for the railway case study for 2 instrumentation instructions
per ipoint. The results are even tighter on average than those we obtained for the EEMBC
benchmarks, with an average increase in pWCET estimates of 8.7% and 11.9% for fnprog and
iprog respectively. The code size increase observed is 12%, which is also less than the average
incurred with the EEMBC benchmarks. Overall, our proposed solution provably abates the
negative misalignment effects of icode, for a small cost in execution time in general.

5 Related Work

The literature on measurement-based timing analysis is abundant [17, 10, 16, 17, 1, 19].

In [10], the authors discuss the pros and cons of several ways to collect execution traces
and how the frequency of ipoints results in light-weight or heavy-weight instrumentation.

Measurements can be taken (i.e., ipoints can be placed) at program boundaries. However,
hybrid mechanisms exist to identify smaller program parts. The particular segments used
are extracted from an analysis of the Control-Flow Graph [5, 1]. The segments (partitions)
are chosen to facilitate the derivation of a WCET by composing the WCET of each segment,
facilitating measurements [17, 1] or reducing the number of ipoints. Some of these techniques
also work on an automatic generation of input data [5, 17, 18]. In [5], the authors decompose
execution paths into sub-paths and then use formal methods to derive the required test data
(in an automatic manner) and measure the execution time of the sub-paths.

WCET 2016
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Table 3 pWCET estimates for 1072 for fnprog and iprog w.r.t. that for oprog.

prog. || so st S2 S3 s4 S5 S6 S7 S8 S9

8.4% 7.6% 9.5% 9.1% 8.1% 9.5% 9.4% 8.3% 8.6% 8.9%
11.5% 10.4% 121% 123% 122% 13.3% 124% 11.9% 122% 11.1%

fnprog
iprog

In [13], the authors propose the concept of context-sensitive traces to capture the impact
of execution history on the precision of measurement-based execution-time estimates. This
is done using the concept of “call string” that defines the sequence (of the last k calls) that
keeps information similar to the call stack. For trace collection, some research approaches
developed an FPGA board to transfer information from the target to the host to increase
trace processing capabilities [12]. Other approaches propose on-line aggregation of timing
data removing the need for collecting and post-processing long traces [3].

6 Conclusions and Future Work

We have presented a new approach to mitigate the impact of instrumentation code to prevent
cache misalignments from occurring between the instrumented and un-instrumented versions
of the program under analysis, while incurring low overhead in terms of execution time. In
particular, we build upon the use of functionally-neutral operations such as nops to create a
program version to be deployed that is functionally equivalent to the original program, and
has a provable lower execution time than the instrumented version.

As part of our future work we plan to evaluate the fnprog approach in a real hardware
platform and a commercial timing analysis tool. We also plan to extend the argumentation
about the timing impact of iprog w.r.t. fnprog to non probabilistic timing analysis.
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