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Abstract: The identification of patient-tailored linear time invariant glucose-insulin models is
investigated for type 1 diabetic patients, that are characterized by a substantial inter-subject
variability. The individualized linear models are identified by considering a novel kernel-based
nonparametric approach and are compared with a linear time invariant average model in terms of
prediction performance by means of the Coefficient of Determination, Fit, Positive and Negative
Max Errors, and Root Mean Squared Error. Model identification and validation are based on
in-silico data collected from the adult virtual population of the UVA/Padova simulator. The
data generation involves a protocol studied to produce a sufficient input excitation without
compromising patient safety, compatible also with real life scenarios. The identified models are
exploited to synthesize an individualized Model Predictive Controller (MPC) for each patient,
which is used in an Artificial Pancreas to maintain the blood glucose concentration within
an euglycemic range. The MPC used in several clinical studies, synthesized on the basis of
a non-individualized average linear time invariant model, is also considered as reference. The
closed-loop control performance is evaluated in an in-silico study on the adult virtual population
of the UVA/Padova simulator in a perturbed scenario, in which the MPC is blind to random
variations of insulin sensitivity in each virtual patient.

Keywords: Artificial pancreas, Nonparametric identification, Predictive control, Linear
systems, Biomedical control, Biomedical systems.

1. INTRODUCTION

People affected by Type 1 Diabetes Mellitus (T1DM)
are dependent on exogenous insulin administrations to
maintain the blood glucose (BG) concentration within an
euglycemic range because of the destruction of the pan-
creas beta-cells, which are responsible for insulin secretion.
Since manual insulin administration is very difficult and
burdensome for the patient, there is great interest towards
the development of an automatic system called artificial
pancreas (AP), which consists of a subcutaneous (sc) glu-
cose sensor, (CGM, Continuous Glucose Monitor), a sc
insulin pump, and a control algorithm. Several research
projects on AP were supported by the Juvenile Diabetes
Research Foundation, the European Commission, and the
National Institutes of Health (see Bequette (2012), Cobelli
et al. (2009), El-Khatib et al. (2010), Hovorka et al. (2010),
and Weinzimer et al. (2008)). One of the most promising
control techniques for an AP is Model Predictive Control
(MPC), which synthesizes a controller on the basis of a
process model. MPC for AP has been successfully tested
in-silico (see Hovorka et al. (2004), Dua et al. (2006),
Wilinska et al. (2009), Magni et al. (2007), Magni et al.
(2009), Patek et al. (2012), Soru et al. (2012), Toffanin
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et al. (2013), Messori et al. (2014), Grosman et al. (2010),
Lee et al. (2009), Cameron et al. (2011), and Schmidt et al.
(2013)), in-vivo in hospitalized volunteers (see Murphy
et al. (2011), El-Khatib et al. (2010), Breton et al. (2012),
Luijf et al. (2013), and Zisser et al. (2014)), and outside
the hospital (see Leelarathna et al. (2014), Hovorka et al.
(2014), Thabit et al. (2014), Kovatchev et al. (2014),
Russel et al. (2014), Del Favero et al. (2014), and Del
Favero et al. (2015)).
Since diabetic patients are characterized by a substantial
inter-subject variability, the development of individualized
control strategies promises to bring a significant improve-
ment. The aim of this study is to identify an individual-
ized glucose-insulin model usable to synthesize a patient-
tailored MPC. A linear approximation of glucose-insulin
interaction is adequate to capture the essential dynamics
to design an effective and safe MPC control, while guaran-
teeing reduced complexity and low computational burden
in the MPC implementation, as shown in Del Favero et al.
(2014) and other references therein. The model is derived
from an individualized predictor of future glucose values
identified through a nonparametric (NP) approach based
on kernel-based regression (see Pillonetto et al. (2010) and
Pillonetto et al. (2011)). This NP approach has proved to
be more effective in this application than standard identi-
fication techniques (PEM, Prediction Error Methods), Del
Favero et al. (2011).
Both identification and validation are based on in-silico
data collected from the adult virtual population of the
UVA/Padova simulator (see Dalla Man et al. (2014)).



The data cover a 3-day closed-loop (CL) identification
protocol where the patient BG is controlled by the MPC
proposed in Toffanin et al. (2013), synthesized on the basis
of an average linear time invariant model (A-MPC) and
currently used in several clinical trials. The protocol was
designed to produce a sufficient input excitation without
compromising patient safety and is compatible also with
real life settings. A-MPC is also used for the in-silico
generation of the validation data, which involves a 3-
day CL protocol reproducing a standard real life scenario.
The validation performance is evaluated by means of the
Coefficient of Determination (COD), Fit, Positive and
Negative Max Errors (PME and NME, respectively), and
Root Mean Squared Error (RMSE). The identified models
are compared to the average linear time invariant model
used to synthesize the A-MPC.
The MPC synthesized with the individualized models (I-
MPC) and the A-MPC are compared in terms of CL con-
trol performance in an in-silico study on the adult virtual
population of the UVA/Padova simulator in a perturbed
scenario, where the controller is blind to random variations
of insulin sensitivity in each virtual patient.

2. NON-PARAMETRIC APPROACH

This Section reports a concise description of the NP
identification approach, for sake of simplicity presented
for a single input. Details of the multi-input formulation,
needed for our application, can be found in Pillonetto et al.
(2011). The aim is to obtain a linear dynamical model of
the form

y(t) =

∞∑
k=1

q(k)u(t− k) +

∞∑
k=0

w(k)e(t− k) (1)

where u and y are the model input and output, respec-
tively, and e is a white noise signal.

2.1 Linear predictor estimation

Let consider a generic linear one-step ahead predictor of
the form

ŷ(t) =

∞∑
k=1

f(k)y(t− k) +

∞∑
k=1

g(k)u(t− k) (2)

where ŷ is the predicted output, and f and g are the
output and input discrete impulse responses, respectively,
which have to be estimated from noisy measurements. The
estimation of the unknown impulse responses can be per-
formed by solving an optimization problem in an infinite-
dimensional functional space given by a reproducing kernel
Hilbert space (RKHS). The kernel of the RKHS should
reflect the properties of the functions to be estimated and
its choice is a key point in the NP approaches. In this
study, the chosen kernel K is the stable spline kernel (SSK)
proposed in Pillonetto et al. (2010), where the generic
impulse response fSSK to identify is seen as a realization
of a zero-mean Gaussian random process whose covariance
can be written as

Cov(fSSK(k), fSSK(l)) = λ2K(k, l) =

λ2
(
e−β(k+l)e−βmax(k,l)

2
− e−3βmax(k,l)

6

)
(3)

with k, l = 1, 2, . . . ,∞, β > 0, and λ > 0. As explained in
Pillonetto et al. (2011), by defining Kf and Kg the SSK of
f and g, respectively, and letting Hf and Hg denote the
RKHS of deterministic functions on N associated with Kf

and Kg (with norms denoted by ‖ · ‖Hf
and ‖ · ‖Hg ), the

stable spline estimators f̂ , ĝ of f , g are obtained from
the solution of the following Tikhonov-type variational
problem:

(f̂ , ĝ) = arg min
hf∈Hf , hg∈Hg

{
‖y+ −Ahf −Bhg‖2

+γf‖hf‖2Hf
+ γg‖hg‖2Hg

} (4)

[A]ji = y(j − i), [B]ji = u(j − i)
i = 1, 2, . . . ,∞, j = 1, 2, . . . , n

y+ = [y1 y2 . . . yn]T

where ‖ · ‖ is the Euclidean norm, γf = σ2/λ2f , γg = σ2/λ2g,
and n is the number of future samples to consider during
the identification procedure. In view of (3), the covariances
of the impulse responses f and g include the parameters
βf and βg, respectively. Here βf , βg, γf , γg, and σ are
hyperparameters, that have to be properly tuned prior to
the solution of the Tikhonov problem (4). By assuming
known hyperparameters, the solution of (4) is given by

f̂ = λ2fKfA
Tφ

ĝ = λ2gKgB
Tφ

φ = (λ2fAKfA
T + λ2gBKgB

T + σ2In)−1y+

where In is the n× n identity matrix.

2.2 Hyperparameter estimation

By letting ζ denote the hyperparameters vector, as
explained by Pillonetto et al. (2011), the maximum

(marginal) likelihood estimate ζ̂ of ζ is given by

ζ̂ = arg min
ζ
J(y+, ζ)

J(y+, ζ) =
1

2
ln(det[2πV [y+]]) +

1

2
(y+)T (V [y+])−1y+

V [y+] = λ2fAKfA
T + λ2gBKgB

T + σ2In

where J is the opposite log-marginal likelihood of y+.

2.3 Linear model

By considering the predictor (2), estimated by solving (4),
it holds that

y(t) = ŷ(t) + e(t)
and the input-output form of (1) can be approximated as

y(t) =

p∑
k=1

g(k)z−k

1−
p∑
k=1

f(k)z−k
u(t) +

1

1−
p∑
k=1

f(k)z−k
e(t)

where the Z-transform formalism has been used. The
approximation consists in truncating the summations to
p, a tunable parameter that however can be arbitrarily
large. The Z-transforms of q and w of (1) are given by

Q(z) =

p∑
k=1

g(k)z−k

1−
p∑
k=1

f(k)z−k
, W (z) =

1

1−
p∑
k=1

f(k)z−k

and admit a minimal realization of dimension p.

3. GLUCOSE-INSULIN MODELS

For each virtual patient a linear one-step ahead predictor
is derived having the form



ĉ(t) =

p∑
k=1

(f(k)c(t− k) + g1(k)i(t− k) + g2(k)m(t− k))

(5)
where the infused insulin i(k) and the carbohydrates intake
m(k) are the inputs, and the prediction ĉ(k) of the CGM
measurement c(k) of subcutaneous glucose is the output.
From this predictor, the following model is derived:

c(k) = Qim(z)[i(k) m(k)]T +W (z)e(k) (6)

with

Qim(z) =


p∑
k=1

g1(k)z−k

1−
p∑
k=1

f(k)z−k

p∑
k=1

g2(k)z−k

1−
p∑
k=1

f(k)z−k


Its minimal state-space realization can be conveniently
used in the MPC algorithm.

3.1 Identification

The training set is generated in-silico with a 3-day pro-
tocol composed by three meals per day (breakfast, lunch,
and dinner) with additional snacks in each day that are
controlled without announcement (see Soru et al. (2012)
for details about meal announcements). Data are gener-
ated in CL with A-MPC on the adult population of the
UVA/Padova simulator. This protocol is designed to pro-
duce a sufficient input excitation without compromising
patient safety and can be proposed also in real life settings,
where the identification data would be collected in clinical
experiments.
By following the approach described in Section 2, a linear
predictor having the form (5) is identified for each virtual
patient by using c(k) as system output (noisy CGM traces
are generated with the sensor noise model described in
Toffanin et al. (2013)), and i(k) andm(k) as system inputs.
The order of the minimal realization of the identified
models can vary depending on the patients characteristics.

3.2 Validation

Similarly to the training set, the test set is generated in-
silico by considering a 3-day CL protocol in which the meal
amounts and times are changed so as to represent a real life
scenario. The identified models are validated in simulation
by considering the inputs i(k) and m(k) and by setting
e(k) = 0 ∀k (i.e. W (z) is not excited). This correspond to
test model prediction over an infinite prediction horizon.
The model predictions are evaluated through the following
performance indices:

COD = 100

(
1− ‖c(k)− Ig(k)‖22

‖Ig(k)− Īg‖22

)
FIT = 100

(
1− ‖c(k)− Ig(k)‖2

‖Ig(k)− Īg‖2

)
PME = max {max (c(k)− Ig(k)) , 0}
NME = min {min (c(k)− Ig(k)) , 0}

RMSE =

√
‖c(k)− Ig(k)‖22

Ns

where Ig(k) is the interstitial glucose simulated by the non-
linear virtual patient model of the UVA/Padova simulator,
Īg is its average, and Ns is the total number of samples
considered in the validation protocol. Table 1 shows a
comparison of the mean prediction performance achieved

Table 1. Prediction performance indices on the
adult population of the UVA/Padova simula-

tor (mean ± SD)

Average Model NP Models
COD −238.98 (±389.31) 87.04 (±7.98)
FIT −62.26(±87.43) 65.53 (±10.44)
PME 59.15 (±43.57) 22.05 (±6.32)
NME −71.68 (±75.81) −10.13 (±5.01)
RMSE 39.82 (±29.73) 8.08 (±2.40)

on the adult population by the identified NP models and
by the average model used to synthesize A-MPC. The gain
achieved by the NP models is evident.
Fig. 1 shows simulations performed on the validation pro-
tocol with the average patient, i.e. a patient whose param-
eters are the average values of 100 virtual patients of the
adult population. The simulations provided by the corre-
sponding identified NP model and by the model linearized
around the basal equilibrium are also reported. One can
note that the NP model is able to reproduce better the
glucose excursions of the virtual patients especially far
from the basal value (e.g. where glycemia peaks occur due
to the meal intake). Consider also that the average patient
is a favorable case of study for the average linear model,
that has been obtained by linearizing exactly this patient.
On the contrary, it is just a representative case for the NP
techniques.

4. INDIVIDUALIZED MPC CONTROLLER

Based on the MPC algorithm presented in Toffanin et al.
(2013), the I-MPC is obtained for each patient using the
linear model derived by the minimal state space realization
of (6). Moreover, the cost function to be minimized is
tuned directly on the identified model.

4.1 Controller calibration

First define the cost function

J(x(k), i(·), k) =

PH−1∑
j=0

(qc(c(k + j)− y0(k + j))2

+(i(k + j)− i0(k + j))2) + ‖x(k +N)‖2P

(7)

where i(k) is the insulin to be infused at each time k,
x(k) the NP model state, PH the prediction horizon, i0(k)
the insulin suggested by the patient conventional therapy,
y0(k) the glucose set-point, P the solution of the discrete
time Riccati equation, and qc a parameter that quantifies
the controller aggressiveness. The latter is tuned through a
calibration procedure driven by the following minimization
problem:

q̂c = arg min
qc

{
‖[XCV GA YCV GA]‖2 + (log10(qc)− ξ)2

}
qoc = min{max{q̂c, ql}, qh}

(8)
where qoc is the optimized qc, ql and qh are minimum and
maximum allowed values, respectively, ξ is a parameter,
andXCV GA and YCV GA are the coordinates on the Control
Variability Grid Analysis (CVGA) introduced in Magni
et al. (2008) and refined in Soru et al. (2012). The
calibration cost of (8) is composed by two terms. The
aim of the first one is to obtain a qoc value that is able to
maintain the patient BG as close as possible to 110 mg/dl,
that corresponds to the left corner of the CVGA (an
example of which is shown in Fig. 4). The second is used to
bias the log10(qoc ) value to ξ ∈ [log10(qm) log10(qM )]. High
ξ values will make I-MPC an aggressive controller while
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Fig. 1. Glucose simulations on the validation protocol: comparison with the average adult virtual patient. The simulations
are generated by the nonlinear model (blue solid line), by the identified NP model (orange solid line), and by the
linearized model around the basal equilibrium (green dashed line). The latter is used to synthesize A-MPC.

low ξ values will make I-MPC more conservative. The
problem (8) is minimized in a protocol that is composed
by three meals and one night and is simulated in CL
with the I-MPC on the identified NP model (i.e. the
virtual patient and the controller share the same linear
identified NP model). This procedure is entirely performed
automatically by a trial and error approach and can
be exploited to find the optimal qoc value. In order to
synthesize a conservative I-MPC for each patient, ξ has
been imposed close to log10(qm). This choice is motivated
by the higher average PME achieved during the validation
protocol with respect to the average NME (as shown in
Table 1), which reveals the tendency of the identified
NP models to slightly overestimate the actual patient
glycaemia.
It is worth to emphasize that the presented calibration
procedure is different with respect to that described in
Soru et al. (2012), where the calibrations were performed
on the nonlinear models of the adult virtual population
and, in order to obtain an estimate of the optimal qoc
for the real patient, a regression model based on clinical
parameters was identified. In this study, the calibration is
performed directly on the identified NP linear model and
the derived optimal qoc value is used for the considered
diabetic patient.

5. SIMULATION RESULTS

I-MPC and A-MPC were simulated in CL with a per-
turbed simulation protocol on the adult population of the
UVA/Padova simulator. The loop is closed In order to
evaluate the robustness in presence of model uncertainties,
the controller is blind to a random ±25% variation of
the patients insulin sensitivity. The considered simulation
protocol is depicted in Fig. 2, the postprandial periods
are defined as 4 hour time intervals after each meal and
the night period begins at 23:00 and lasts 8 hours. If
glycemia falls below 65 mg/dl, the protocol imposes 16
g of carbohydrates administration, called hypo treatment
(HT). Two consecutive HT are separated by at least 30
min.
The CL control performance was evaluated by means of

Table 2. MPC CL performance achieved with
the perturbed simulation protocol. ∗ repre-
sents p–value < 0.05, ∗∗ p–value < 0.03 and ∗∗∗

p–value < 0.001

O N PP

A (mg/dl)
I-MPC 136.74∗∗∗ 114.14∗∗∗ 150.10
A-MPC 140.55 120.99 149.25

SD (mg/dl)
I-MPC 26.56∗∗∗ 6.44 23.98
A-MPC 25.22 7.57 24.67

Tt (%)
I-MPC 87.17 99.73 79.99
A-MPC 87.04 99.63 79.69

Ttt (%)
I-MPC 58.43∗∗ 96.26∗ 39.30
A-MPC 55.50 94.39 38.08

Ta (%)
I-MPC 12.15 0.15 19.35
A-MPC 12.25 0.22 19.13

Tb (%)
I-MPC 0.67 0.12 0.65
A-MPC 0.71 0.15 1.17

Th (%)
I-MPC 0.11 0.00 0.15
A-MPC 0.10 0.00 0.21

#HT
I-MPC 45 1 30
A-MPC 49 1 41

# pats with HT
I-MPC 7 1 7
A-MPC 9 1 7

the average glucose (A), the glucose standard deviation
(SD), the time spent within [70 180] mg/dl or time in
target (Tt), the time spent within [80 140] mg/dl or time in
tight target (Ttt), the time spent above 180 mg/dl or time
above target (Ta), the time spent below 70 mg/dl or time
below target (Tb), the time spent below 50 mg/dl or time
in hypo (Th), the number of HT (# HT), and the number
of patients with at least one HT (# pats with HT). Table
2 shows the control performance achieved by I-MPC and
A-MPC on the perturbed simulation protocol of Fig. 2.
The O, N, and PP columns represent the outcome indices
computed during the overall (O) scenario, during the night
(N), and by considering the CL postprandial (PP) periods,
respectively. The p–values used to evaluate the statistical
significance of the indices differences are shown in Ta-
ble 2, with ∗ representing p–value < 0.05, ∗∗ represent-
ing p–value < 0.03, and ∗∗∗ representing p–value < 0.001.
p–values calculation is performed with the paired t-test
if the distributions are normally distributed or with the



Fig. 2. Simulation protocol composed by 5 meals (4 CL meals), and one CL night.

Fig. 3. Blood glucose time courses achieved on the perturbed simulation protocol with I-MPC and A-MPC in terms of
mean (central solid line) and standard deviations (vertical bars). CL start is represented by the solid red vertical
line. The dashed black and the dot dashed brown lines represent tight target range ([80 140] mg/dl) and the target
range ([70 180] mg/dl), respectively. PP represents a CL postprandial period.

Wilcoxon signed-rank test if at least one of the distribution
is not normally distributed. Lilliefors test is used to check
the normality.
I-MPC is able to significantly reduce the average glucose,
to increase the Tt, to significantly increase the Ttt and to
reduce Tb and Ta at the same time. Th is slightly increased
during the O period, but the # HT are reduced during
both O and PP periods. The glucose SD is significantly
increased during the O period and is reduced during N
and PP. It is interesting to note that all the HT events
are concentrated in less than 10 patients with both the
controllers. Figures 3 and 4 show the blood glucose time
courses and the CVGA achieved with I-MPC and A-MPC
on the perturbed simulation protocol. I-MPC moves the
majority of the CVGA points towards the B-zone and
achieves a better glucose control after each meal.

6. CONCLUSION

The presented NP approach was able to identify effective
patient-tailored linear time invariant glucose-insulin mod-
els. The CL control performance was improved and the
individualized models identification was based on a proto-
col studied to produce a sufficient input excitation without
compromising patient safety. Thanks to the compatibility
of the identification protocol with real life scenarios, the
presented identification method can be used in-vivo, where
data coming from clinical experiments can be used to
synthesize an individualized MPC for AP. Furthermore, in
order to find the optimal tuning, the individualized MPC
cost function is automatically calibrated by a trial and
error approach on the identified NP model.
A possible future improvement of this work could address
the addition of high frequency poles as prior information
for the NP identification. The modified prior could re-
duce the glucose over- and underestimation of the identi-
fied models especially during the postprandial excursions,
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where the fastest model dynamics are excited, thus further
improving the resulting CL control performance.
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