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Abstract

We develop a method for computing facet-defining valid inequalities for any
mixed-integer set PJ . While our practical implementation does not return only
facet-defining inequalities, it is able to find a separating cut whenever one exists.
The separator is not comparable in speed with the specific cutting-plane generators
used in branch-and-cut solvers, but it is general-purpose. We can thus use it to
compute cuts derived from any reasonably small relaxation PJ of a general mixed-
integer problem, even when there exists no specific implementation for computing
cuts with PJ . Exploiting this, we evaluate, from a computational perspective, the
usefulness of cuts derived from several types of multi-row relaxations. In particular,
we present results with four different strengthenings of the two-row intersection
cut model, and multi-row models with up to fifteen rows. We conclude that only
fully-strengthened two-row cuts seem to offer a significant advantage over two-row
intersection cuts. Our results also indicate that the improvement obtained by going
from models with very few rows to models with up to fifteen rows may not be worth
the increased computing cost.

1 Overview

In the last years, there has been a renewed interest in the MIP research community
for finding new ways to compute general-purpose cutting-planes. Specifically, one of
the subjects of attention was the generation of so-called multi-row cutting-planes, i.e.
inequalities that are valid for relaxations with multiple rows of the problem to be solved.
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In this paper, we aim at evaluating accurately the strength of the multi-row relaxations
that are used to generate these cutting planes. To that end, we develop techniques to
compute the cuts derived from any given relaxation. In other words, we consider the
question of separating valid inequalities from arbitrary mixed-integer sets.

Our work is computational in that we take our models from libraries of mixed-integer
problem instances that are widely used for benchmarking purposes, then numerically
generate cuts for these models. It is also theoretical in that we do not compute cuts
to solve problems faster overall, but rather to evaluate whether they could help solve
problems faster if we had an efficient separator for the associated relaxation. In this
perspective, we build a generic separator to identify those relaxations for which trying to
develop a specific separator would be worthwhile.

Specifically, we study five types of relaxations of a mixed-integer problem, all of them
function of a basis of a linear programming relaxation. While we will later define these
relaxations precisely in a systematic way, we start by presenting why each of them is
interesting to us.

The first relaxation is the m-row intersection cut model

PI := {(x, s) ∈ Zm × Rn
+ : x = f +Rs}

introduced by Balas in [7], and further characterized in the two-row case (i.e. for m = 2)
by Andersen, Louveaux, Weismantel and Wolsey [3] and Cornuéjols and Margot [17].
It consists in dropping, from the original MIP, the integrality constraints on nonbasic
variables and the bounds on basic variables. Furthermore, only one bound on the nonbasic
variables is included in the description of PI (the nonnegativity s ≥ 0), so for any variable
having both a lower and an upper bound, one of them is also dropped (the one that is
not binding in the basis, as can be seen by putting the problem in standard form). There
is a strong relationship between the valid inequalities for PI and the lattice-free sets in
Zm. We will see later that this relationship can be used to easily compute cuts from PI .
These cuts are called intersection cuts.

The other four relaxations consist in various strengthenings of the model PI , which are
built by reintroducing some of the constraints that we dropped earlier. In particular,
Dey and Wolsey [26], Basu, Conforti, Cornuéjols and Zambelli [11] and Fukasawa and
Günlük [32] considered ways to exploit finite bounds on the basic variables x. Specifically,
Dey and Wolsey [26] extend the geometric intuition that is characteristic of intersection
cuts by introducing the concept of S-free set. An S-free set is a convex set that does not
contain any element of S in its interior. In a way similar to the intersection cut approach,
one can generate valid inequalities for the strengthened model

PS-free = {(x, s) ∈ S × Rn
+ : x = f +Rs},

by considering S-free sets instead of lattice-free (i.e. Zm-free) sets. They show that the
resulting inequality is valid if S is the set of integral points in some rational polyhedron.
This condition is not restrictive since, in practice, we define S to be the intersection of
Zm with the bound constraints on x. Furthermore, all valid inequalities for PS-free can
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be obtained through such intersection cuts [26], and there is a one-to-one correspondence
between minimal inequalities for the infinite relaxation of PS-free

{(x, s) ∈ S × R∞+ : x = f +
∑
r∈Rm

rsr, s has a finite support}

and maximal S-free sets in Rm [11].

On the other hand, Dey and Wolsey [25, 27] and Conforti, Cornuéjols and Zambelli [16]
considered the problem of exploiting any integrality constraint on nonbasic variables.
They propose a way to, given a valid intersection cut for PI , strengthen the coefficients
of the nonbasic integer variables by solving a so-called lifting problem. Assuming for
simplicity that the original problem is a pure integer programming problem, the lifting
yields valid inequalities for

{(x, s) ∈ Zm × Zn+ : x = f +Rs}. (1)

Dey and Wolsey [25, 27] show, in the two-row case, that these inequalities are extreme for
the infinite model

{(x, s) ∈ Z2 × Z∞+ : x = f +
∑
r∈R2

rsr, s has a finite support} (2)

if the initial inequality was extreme for the infinite relaxation of PI . The lifting is unique
if the initial intersection cut arises from specific types of lattice-free sets (namely Type-1
and Type-2 triangles [25, 27]) and sequence-dependent otherwise. This has been extended
with analogous results in the multi-row and S-free cases by Conforti, Cornuéjols and
Zambelli [16]. Note that (1) is known as a corner relaxation of the original feasible
set. The corner relaxation was studied in details by Gomory [33, 34] and Gomory and
Johnson [35].

One can also take advantage of the presence of upper bounds on nonbasic variables. An-
dersen, Louveaux and Weismantel [2] tackled that case, taking into account an upper
bound on one nonbasic variable. This can be seen as considering at a pair of two-row
models arising from adjacent simplex bases. They describe geometrically the facet struc-
ture of that relaxation, showing that an additional class of facet-defining valid inequalities
then arises, whose coefficients can be read from pentagons in R2, with a formula that they
develop. Although the problem has not been thoroughly studied for more than one upper
bound, we will consider here the fully-strengthened model

PIU = {(x, s) ∈ Zm × Rn
+ : x = f +Rs, s ≤ U}.

As a consequence, we are probably further away from a practical implementation of a
separator for that particular model than for the other ones.

Lastly, we consider the model Pfull obtained by simultaneously exploiting all the strength-
ening of PI mentioned above. It simply consists in an m-row relaxation of the original
problem, keeping all bounds and integrality constraints on the variables.

We now present some previous computational works that have been performed with multi-
row cuts.
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Espinoza [28] performed the first extensive computational tests with multi-row intersection
cuts. He uses three types of fixed lattice-free sets in Rm. The first is a maximal lattice-
free simplex with integer vertices, the m-dimensional extension of Type-1 triangles (see
e.g. [23] for a classification of the two-dimensional lattice-free sets). The second is a cross
polytope, scaled and translated to contain the 0-1 hypercube, so as to also be a maximal
lattice-free set. The third is the m-dimensional extension of a specific Type-2 triangle.
He exploits the integrality of the nonbasic variable through a heuristic method similar
to Dey and Wolsey’s lifting [27], although without the guarantee of generating facet-
defining inequalities for the corresponding strengthened model. He tested the three types
of lattice-free sets separately for m ∈ {1, . . . , 10}, on MIP instances from MIPLIB 3 [13]
and MIPLIB 2003 [1]. The results of these experiments are promising in that they show
that the addition of multi-row cuts can speed-up the overall branch-and-cut by up to 5%
in geometric mean over the testset, for specific types of cuts and values of m. However,
they also show mixed results in general (i.e. without a priori knowledge of which types of
cuts will be successful), with in most cases a slight increase in computing time over the
solver’s defaults.

Dey, Lodi, Tramontani and Wolsey [21, 22] focused on two-row intersection cuts from
Type-2 triangles. They devise a heuristic method for building a Type-2 triangle that is
parametric in the model data. The aim is to exploit the problem structure, namely the
values of f and R in PI = {(x, s) ∈ Z2 × Rn

+ : x = f + Rs}, to generate strong cuts
that are, in some way, “different” from GMI cuts. The cuts are then strengthened with a
variant of the lifting method of Dey and Wolsey [27], to take advantage of the integrality of
nonbasic variables. The method is tested on modified versions of the randomly generated
multidimensional knapsack instances of Atamtürk [6] in [21]. From these experiments,
they conclude that some two-row cuts do provide an advantage over GMI cuts, although
few of the many two-row cuts generated are eventually helpful. This result emphasizes
the importance of the selection of the two-row cuts. Furthermore, their data show that
in the presence of many nonbasic integer variables, the performance of both two-row and
GMI cuts deteriorates, suggesting a need for different relaxations in that case. To the
contrary, the presence in the original problem of the bounds that are dropped in PI did
not seem to significantly impair the effectiveness of the two-row cuts (compared to when
no such bounds are present). In [22], they perform experiments on MIPLIB instances,
and conclude that exploiting the integrality of nonbasic variables appears more effective
on 2-row split cuts than on Type-2 triangle cuts, on instances with a sparse tableau.

Basu, Bonami, Cornuéjols and Margot [10] study the case of two-row models PI for
which one of the components of f is integral. This situation typically arises when the
optimal basis of the LP relaxation is degenerate, which is frequent in MIP formulations.
They present a heuristic algorithm for generating maximal lattice-free Type-1 and Type-
2 triangles for such model. They show how to compute an intersection cut from these
triangles, and develop a closed-form formula implementing Dey and Wolsey’s lifting [27].
Note that the latter formula applies to all Type-1 and Type-2 triangles, even when both
components of f are fractional. An alternative closed-form formula is also presented,
that exploits nonnegativity of one of the basic variables. Experiments are performed
on instances from a slight modification of MIPLIB 3 [37], measuring the percentage of
gap closed by the two-row cuts. They conclude that the family of cuts that they test is
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effective, but not competitive with GMI cuts.

Basu, Cornuéjols and Molinaro [12] adopt a probabilistic approach to compare the tri-
angle closure of PI to its split closure. Their work presents theoretical estimates of the
relative strength of these two closures, for random PI models with data following uniform
distributions. They use two distinct types of measure for evaluating strength, one showing
the gap between the two closures for the “worst” choice of objective function, and the
other showing the average gap over nonnegative cost vectors. According to the results, the
literature examples illustrating that the triangle closure can be vastly stronger than the
split closure are not necessarily pathological extreme cases. However, they also indicate
that on average, split cuts are as useful as two-row cuts from triangles.

In [36], Louveaux and Poirrier present an exact separator for the two-row intersection
cut model PI . They conclude that two-row intersection cuts close significantly more gap
than one-row intersection cuts, but one can achieve almost as much when restricting to
two-row cuts from split sets, which can be obtained by reading a one-row intersection cut
from a linear combination of the two rows.

Dash, Günlük and Vielma [20] propose some heuristics to computationally evaluate the
strength of cross and crooked cross cuts. Cross cuts are cutting planes obtained by
considering several split disjunctions simultaneously and it has been shown that many
of the multi-row cutting planes considered in this paper can be obtained using cross (or
crooked cross) disjunctions. They also specialize their experiments to finding cross cuts
for two-row relaxations of problems of the MIPLIB. In this respect, their experiment
is very close to the computational experiments proposed in this paper for two-row cuts
as most of the cuts generated here can be obtained using their disjunctions. There are
however two main differences. The first difference comes from the fact that our first aim
is to evaluate specific models and their strengthenings, which cannot be done explicitly
using the disjunctions. The second difference is that, in principle, our approach allows
us to generate all separating facet-defining inequalities for Pfull, whereas it is not known
whether crooked cross cuts do (the crooked cross cut closure has not been proven yet to
be polyhedral [18]).

The work of Fukasawa and Goycoolea [31] does not take place in the context of multi-row
cuts. However, it is very related to our work in that they develop an exact separator for
the mixed-integer knapsack (i.e. one-row) model

P1 = {x ∈ Rn : atx ≤ b, l ≤ x ≤ u, xj ∈ Z,∀j ∈ J}.

Part of the techniques they develop to speed up separation translate directly to our
problem. In particular, they also deploy row-generation to optimize over the polar set of
P1, and they lift valid inequalities from tight bounds (see Section 3). The objective of
their computations is to compare a specific type of cuts alone to all so-called knapsack
cuts, i.e. to all valid inequalities for P1 together. The specific cuts they study are obtained
through the mixed-integer rounding procedure (MIR [38]), which when applied to tableau
rows simply yields GMIs. Their results show that in terms of strengthening of the LP
bound, MIR cuts alone achieve almost as much as knapsack cuts.
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Finally, we note that we are basically using a oracle to separate cutting planes. In this
context, the earlier studies date back to the work of Boyd [14] on Fenchel cuts and of
Applegate et al. [4] on cuts outside of the template paradigm for the TSP. The approach
was later extended to general MIPs by Chvátal, Cook and Espinoza [15]. Our separation
model is quite similar to the one in [15] (it is basically its dual), yet there is a key difference
in that we choose a normalization condition in the polar space that does not introduce
artificial vertices, so that we are guaranteed to get only facet-defining inequalities, without
the need for a tilting procedure. On the other hand, as will be described in Section 3,
we split the separation into two phases for computational reasons, so we need a lifting
procedure to obtain facet-defining inequalities in the original space.

A constant among these results is that they underline the impressive power of the classic
GMI cuts and their variants. This raises the following question: How strong does a
relaxation need to be for the cuts it yields to significantly outperform GMIs? This is one
of the questions we will tackle here.

In Section 2, we cover the basic tools and notations that we build upon. In Section 3,
we present the methods that we use to develop our generic separator. We describe our
experimental setup in Section 4, and the remaining sections detail the results of our
tests. Specifically, we show that only fully-strengthened two-row cuts seem to offer a
significant advantage over two-row intersection cuts (as opposed to cuts that are partially
strengthened through lifting alone, or through the use of S-free sets alone). Our results
also indicate that the improvement obtained by going from four-row to fifteen-row cuts
may not be worth the increased computing cost.

2 Polarity for general polyhedra

We now set aside the question of the relaxation, and focus on the problem of separating
cuts for any given relaxation PJ . Let PJ be the mixed-integer set

PJ = {x ∈ Rn : x ∈ PLP , xj ∈ Z for all j ∈ J} (3)

where PLP is a polyhedron in Rn and J is a subset of N = {1, . . . , n}. Here, we always
assume that PLP is a rational polyhedron. We are interested in the valid inequalities for
conv(PJ). For conciseness, we denote P := conv(PJ). We thus want to characterize the
set of all (α, α0) ∈ Rn+1 such that αTx ≥ α0 is a valid inequality for P :

Q := {(α, α0) ∈ Rn+1 : αTx ≥ α0, for all x ∈ P}. (4)

In order to simplify our statements, it will often be useful to assume that P is a polyhedral
cone. To show that this assumption can be made without loss of generality, we construct
the following “conified” variant of P .

Definition 1. Given a polyhedron P , by the Minkowski-Weyl theorem, there exist finite
sets V, R, and L such that

P = conv(V) + cone(R) + lin(L).
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Let V+ := {(v,−1) ∈ Rn+1 : v ∈ V}, R+ := {(r, 0) ∈ Rn+1 : r ∈ R}, and L+ := {(l, 0) ∈
Rn+1 : l ∈ L}. We define C as

C := cone{V+,R+}+ lin{L+}. (5)

Note that if P is pointed, the sets V , R, and L can be taken as follows: V is the set of the
vertices of P , R is the set of the extreme rays of P , and L is empty. By construction, C is
a polyhedral cone generated by the rays V+, R+, L+ and −L+. The relationship between
the descriptions of P and C is very strong, as shown by the following proposition.

Proposition 1.

(a) v is a vertex of P if and only if (v,−1) is an extreme ray of C.

(b) r is an extreme ray of P if and only if (r, 0) is an extreme ray of C.

(c) l is in the lineality space of P if and only if (l, 0) is in the lineality space of C.

(d) (α, α0) ∈ Rn+1 describes a valid inequality αTx ≥ α0 for P if and only if αTx+α0x0 ≥
0 is valid for C.

(e) (α, α0) ∈ Rn+1 describes a facet-defining inequality αTx ≥ α0 for P if and only if
αTx+ α0x0 ≥ 0 is facet-defining for C.

(f) P = {x ∈ Rn : (x,−1) ∈ C}

Proof. See e.g. [40].

We are now ready to state the properties of Q.

Proposition 2.

(a) Q is a polyhedral cone, and it is the polar of C

(b) C is the polar of Q.

(c) Q is described by

Q =

 (α, α0) ∈ Rn+1 :
αTx ≥ α0 for all x ∈ V
αT r ≥ 0 for all r ∈ R
αT l = 0 for all l ∈ L

 . (6)

(d) Let Q = cone(B)+lin(Γ), where lin(Γ) is the lineality space of Q, and B is a minimal
generating set (i.e. cone(B \ {b}) + lin(Γ) 6= Q for any b ∈ B). A valid inequality
αTx ≥ α0 for P is facet-defining if and only if α ∈ cone(β) + lin(Γ) for some β ∈ B.

7



(e) Q is pointed if and only if P is full-dimensional. In that case, αTx ≥ α0 is facet-
defining for P if and only if (α, α0) is an extreme ray of Q.

Proof. See e.g. [40]. We refer the interested reader to [42] for more details.

Let x∗ be a point that we want to separate. We are looking for a facet-defining inequality
(α, α0) of P such that αTx∗ < α0. Note that, by the separating hyperplane theorem, such
a valid inequality exists if and only if x∗ /∈ P . One can find (α, α0) by maximizing, over
the set of the valid inequalities, the violation at x∗. This corresponds to solving

min αTx∗ −α0

s.t. (α,α0) ∈ Q. (7)

Throughout this paper, we take the convention that variables are emphasized in bold
within optimization problems, so as to distinguish them from constant data. Since Q is
a polyhedron, (7) is a linear programming problem. But since it is a cone, (0, 0) will
be an optimal solution when x∗ ∈ P , and the problem will always be unbounded when
a separating inequality exists. Therefore, in order to choose finite solutions of (7), we
need to impose some normalization on the cut coefficients. Note that fundamentally,
as any cut-generating linear program, (7) only lets us discriminate between separating
and nonseparating valid inequalities for P . In particular, any measure of violation is
dependent on the specific normalization that we adopt.

A common form of normalization is to fix the right-hand side α0 of the cuts. In some
specific contexts, it is possible to fix α0 = 1 without loss of generality (see e.g. [36]).
However, as we are here in the case of a general polyhedron P , we would have to consider
a disjunctive constraint of the type α0 = 1∨α0 = 0∨α0 = −1. Indeed, any valid inequality
(α, α0) can be made to fall into one of these three cases by dividing it by |α0| if α0 6= 0,
but all three cases are necessary in order to cover all the possibilities. Unfortunately,
incorporating such disjunctive constraint, the cut-generating problem could no longer be
modeled as a single linear programming problem (it could be tackled by solving three LPs
however). Note also that Q ∩ {α0 = 0} is still a cone, so we would require an additional
normalization constraint in the case α0 = 0.

An alternative is to bound the magnitude of the cut coefficients with a constraint of the
type

n∑
i=1

|αi| ≤ 1. (8)

The issue with the normalization (8) is that it amounts to intersecting Q with several
half-spaces, as is made obvious by the equivalent linear formulation

−γi ≤ αi ≤ γi, for all i
n∑
i=1

γi ≤ 1.
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When Q is pointed, intersecting it with several half-spaces may yield vertices that do not
correspond to an extreme ray of Q. Therefore, if we optimize over that truncated cone,
we could obtain optimal solutions that do not give facet-defining inequalities.

To overcome these limitations, we adopt a normalization proposed by Balas and Perre-
gaard in [8]

αT (x̃− x∗) = 1 (9)

where x̃ is an arbitrary point that belongs to the convex hull of P . That normalization is
linear, and consists in intersecting Q with a single hyperplane. As we now demonstrate, it
makes the optimization problem bounded, while not cutting away any relevant solutions.

Proposition 3. The optimization problem

s̄ = min αTx∗ −α0

s.t. (α,α0) ∈ Q
αT (x̃− x∗) = 1

(10)

is always bounded. In particular, if (ᾱ, ᾱ0) is an optimal solution and s̄ its objective
function value, then s̄ ≥ −1, which means that the violation of (ᾱ, ᾱ0) at x∗ is at most
one.

Proof. As x̃ ∈ P , αT x̃ ≥ α0 is a valid constraint for Q. The normalization constraint (9)
gives αT x̃ = 1 − αTx∗, which lets us replace αT x̃ in the previous inequality, and obtain
αTx∗ − α0 ≥ −1.

Remark that s̄ = −1 when the optimal solution corresponds to an inequality that is tight
at x̃, because αTx∗ = α0 − 1 if and only if αT x̃ = α0.

We now show that the addition of the normalization constraint does not remove any
interesting valid inequality from the feasible region of the optimization problem (10).

Proposition 4. Given any valid inequality (α, α0) ∈ Q separating x∗ /∈ P , there exists
λ > 0 such that (λα, λα0) ∈ Q separates x∗ and satisfies (λα)T (x̃ − x∗) = 1, for any
x̃ ∈ P .

Proof. By hypothesis, αT x̃ ≥ α0 and αTx∗ < α0. Thus αT x̃ > αTx∗, and αT (x̃− x∗) > 0.
The claim follows, by letting λ = 1/(αT (x̃− x∗)).

Corollary 1. The optimization problem (10) may be infeasible only if x∗ ∈ P .

One motivation for our choice of normalization is that, when P is full-dimensional (i.e.
when Q is pointed), we can obtain facet-defining inequalities for P (i.e. extreme rays of
Q) by using the simplex method. We now show that this result holds even if P is not
full-dimensional.
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Theorem 1. Let P be a polyhedron in Rn. If x∗ ∈ aff(P ) \ conv(P ) and (α, α0) describes
a valid inequality separating x∗ obtained by optimizing over the linear problem (10) with
the simplex method, then αTx ≥ α0 is facet-defining for P .

To prove Theorem 1, we first need Lemmas 1, 2 and 3.

Lemma 1. Let C be a polyhedral cone in Rm with ek /∈ aff(C), and C{k} := C + lin(ek).
If the inequality αTx ≥ 0 is facet-defining for C{k}, then it is facet-defining for C.

Proof. First note that αk = 0. Indeed, since αTx ≥ 0 defines a proper face of C{k}, there
exists w ∈ C{k} such that αTw = 0. Therefore, αT (w + µek) ≥ 0, so αTµek ≥ 0, for all
µ ∈ R.

Now let d = dim(C{k}). Because ek /∈ aff(C), d = dim(C) + 1. Since C ⊆ C{k}, α
Tx ≥ 0

is valid for C. Since αTx ≥ 0 is facet-defining for C{k}, there exist d affinely independent
points y0, . . . , yd−1 in C{k} ∩ {x ∈ Rm : αTx = 0}. We assume without loss of generality
that y0 = 0. The d− 1 points y1, . . . , yd−1 are linearly independent, so the matrix

Y :=
[
y1| · · · |yd−1

]
is full column rank (i.e. rank(Y ) = d − 1). For each point yi, one can construct zi =
yi + µiek with µi ∈ R such that zi ∈ C. The matrix

Z :=
[
z1| · · · |zd−1

]
differs from Y only in the kth row, so its rank is at least d − 2. As αk = 0, αT zi =
αTyi = 0 for all i. Hence, letting z0 = 0, we know d− 1 affinely independent zi points in
C ∩ {x ∈ Rm : αTx = 0}, which is thus of dimension at least d− 2 = dim(C)− 1.

We finally show that it is of dimension exactly dim(C)−1. Indeed, otherwise αTx = 0 for
all x ∈ C, implying that αTx = 0 for all x ∈ C{k} (recall that αk = 0), which contradicts
the hypothesis that αTx ≥ 0 is facet-defining for C{k}.

Lemma 2. Let CK := C + lin({ek : k ∈ K}) be a full-dimensional polyhedral cone in
Rm such that dim(C + lin({ek : k ∈ K, k 6= k̄})) < m for any k̄ ∈ K. If αTx ≥ 0 is
facet-defining for CK, then it is facet-defining for C.

Proof. Because dim(CK\{k̄}) < dim(CK), we know that ek̄ /∈ aff(CK\{k̄}), for all k̄ ∈ K.

Furthermore, ek̄ /∈ aff(CK\K̄), for all k̄ ∈ K̄ ⊆ K. Let κ := |K|, K = {k1, . . . , kκ}, and
Kp := {k1, . . . , kp} where 0 ≤ p ≤ κ. The proof works by backward induction on p. By
hypothesis, αTx ≥ 0 is facet-defining for CKκ . By Lemma 1, if it is facet-defining for CKp ,
then it is also facet-defining for CKp−1 . Finally we obtain that αTx ≥ 0 is facet-defining
for CK0 = C.

Lemma 3. Let Q be a polyhedral cone in Rm and H the hyperplane {α ∈ Rm : πTα = 1}.
If Q ∩H is pointed and α∗ is a vertex of Q ∩H, then
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(a) dim(lin.space(Q)) ∈ {0, 1},

(b) if dim(lin.space(Q)) = 1, then α∗ is on the lineality direction of Q,

(c) if dim(lin.space(Q)) = 0, then α∗ is an extreme ray of Q.

Proof. (a) We contradict dim(lin.space(Q)) ≥ 2. Let l1 and l2 be two distinct vectors of
a basis of the linear space of Q. Both πT l1 6= 0 and πT l2 6= 0, otherwise Q∩H would not
be pointed. Let µ1, µ2 ∈ R be such that πTµ1l1 = 1 and πTµ2l2 = 1. Because l1 and l2 are
distinct vectors of a basis, µ1l1 6= µ2l2. We can construct l′ = µ1l1 − µ2l2 in the lineality
space of Q with πT l′ = 0, which contradicts the fact that Q ∩H is pointed. (b) Let l be
the lineality direction of Q. Again, πT l 6= 0, otherwise Q ∩H would not be pointed. Let
µ ∈ R be such that πTµl = 1. As α∗ is a ray of Q, we can construct α1 := 3

2
α∗ − 1

2
µl and

α2 := 1
2
α∗ + 1

2
µl. One can easily verify that α1, α2 ∈ Q ∩ H, and that α∗ = 1

2
α1 + 1

2
α2,

contradicting the fact that α∗ is a vertex of Q ∩H. (c) Standard.

Proof of Theorem 1. To simplify the proof, we consider that we are looking for a valid
inequality αT r ≥ 0 for C, and rewrite (10) as

min αT r∗

s.t. α ∈ Q
αT (r̃ − r∗) = 1

(11)

where r∗ = (x∗, 1) and r̃ = (x̃, 1). By Proposition 3, we know that the linear programming
problem (11) has a finite optimal objective function value. If the feasible region is not
pointed, then in the solution α∗ returned by the simplex method, some nonbasic free
variables must be fixed at an arbitrary value (typically zero), with a zero reduced cost,
and could not enter the basis at a finite value. Let us denote by K the index set of such
variables, i.e. α∗k is nonbasic and fixed to zero for all k ∈ K. We claim that α∗ is a vertex
of the pointed polyhedron

Q∗K :=
{
α ∈ Q : αT (r̃ − r∗) = 1 and αk = 0, for all k ∈ K

}
obtained by intersecting the feasible region with {αk = 0, for all k ∈ K}. Indeed, it
corresponds to a basic feasible solution for that polyhedron (in the classical sense of a
basic feasible solution, i.e. where all free variables are basic). Note that since none of the
nonbasic free variables could enter the basis at a finite value, Q∗K\{k} is not pointed, for
any k ∈ K. Removing the normalization constraint, we obtain

QK := {α ∈ Q : αk = 0, for all k ∈ K}

which, by Lemma 3 has a lineality space of dimension zero or one. Lemma 3 also specifies
that the point α∗ is either an extreme ray of QK or a lineality direction of QK . The latter
would imply that α∗Tx = 0 is a valid equality for C that separates r∗, contradicting the
hypothesis that r∗ ∈ aff(C). Hence, QK is pointed and α∗ is an extreme ray of QK .

Now observe that QK is the polar of

CK = C + lin({ek : k ∈ K})
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which is full-dimensional since QK is pointed. As α∗ is an extreme ray of QK , α∗Tx ≥ 0
is facet-defining for CK . By Lemma 2, it is also facet-defining for C.

Note that we consider that to each vertex of the feasible region of a linear program,
corresponds at least one basis. This is not true with textbook descriptions of the simplex
method when there are redundant constraints. It is true however with most practical
implementations, where the standard form typically includes one logical variable for each
tableau row (that variable is fixed to zero in phase II).

Remark also that a specific implementation of the simplex method may not ensure that,
as required by the above proof, none of the nonbasic free variables could enter the basis
at a finite value. However, enforcing this condition can easily be implemented as a post-
processing, whenever finding facet-defining inequalities is desirable.

3 Towards a generic MIP separator

We have assumed so far that we have an inner description of P = conv(PJ). However, this
assumption does not hold in practice since, in the context of mixed-integer programming,
we are typically provided with a description of PJ as PJ := PLP ∩ {xJ ∈ Z}, where
PLP := {x ∈ Rn

+ : Ax = b} is a linear relaxation of PJ . To overcome this issue, we adopt
a classic row-generation approach, where we optimize over a relaxation Q(S, T ) of Q and
iteratively strengthen this relaxation by adding to it constraints of Q that are violated by
its incumbent optimal solution.

Given finite sets S ⊆ PJ and T ⊆ recc(conv(PJ)), we start with the partial description
Q(S, T ) of Q given by

Q(S, T ) :=

{
(α, α0) ∈ Rn+1 αTxi ≥ α0 ∀xi ∈ S

αT rj ≥ 0 ∀rj ∈ T

}
, (12)

which is easily seen to be a relaxation of (6). Note that a single vector l in the lineality
space of P (i.e. l ∈ L in (6)) will be represented by two constraints, namely −l, l ∈ T
in (12). We can now find candidate (i.e. possibly invalid) inequalities separating x∗ by
solving the optimization problem

min αTx∗ −α0

s.t. (α,α0) ∈ Q(S, T )
αT (x̃− x∗) = 1

(13)

which we call master problem. Given a candidate inequality (ᾱ, ᾱ0), solving the slave
mixed-integer problem

min ᾱTy
s.t. y ∈ PJ

(14)

shows whether (ᾱ, ᾱ0) is valid. In particular, if (14) has an optimal solution y∗ such that
ᾱTy∗ ≥ α0, then we know that (ᾱ, ᾱ0) is a valid inequality for PJ . If ᾱTy∗ < α0, then
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(ᾱ, ᾱ0) is not a valid inequality for PJ . In that case, since y∗ ∈ PJ , we can add the
constraint αTy∗ ≥ α to Q(S, T ), which is currently violated by (ᾱ, ᾱ0). This amounts
to appending {y∗} to the set S. Finally, if the slave is unbounded, there must exist a
mixed-integer infinite direction r∗ of PJ such that ᾱT r∗ < 0. We thus add to Q(S, T ) the
constraint αT r∗ ≥ 0, which is valid for Q and cuts off (ᾱ, ᾱ0). In other words, we append
{r∗} to T .

For technical reasons, MIP solvers are not well-suited for finding mixed-integer infinite
directions in problems. However, such direction can be found easily by optimizing over
the linear programming relaxation min{ᾱTy : y ∈ PLP} of (14). Indeed, the simplex
method lets us find rays of PLP , and Lemma 4 shows that PLP and conv(PJ) 6= ∅ have
the same recession cone.

Lemma 4. Let PJ be nonempty, PLP be a linear relaxation of PJ (i.e. PJ = PLP ∩{xJ ∈
Z}) and r be a rational direction, the following statements are equivalent:

1. There exists λ > 0 such that λr is a mixed-integer infinite direction of PJ .

2. r is a ray of conv(PJ).

3. r is a ray of PLP .

Proof. (1 ⇒ 3) This follows from PJ ⊆ PLP . (3 ⇒ 1) Since r is rational, there exists
λ > 0 such that λrj ∈ Z for all j ∈ J . Thus for every x ∈ PJ and y = x + λr, y ∈ PLP
and yj ∈ Z for all j ∈ J . Therefore y ∈ PJ . (1 ⇒ 2) This follows from PJ ⊆ conv(PJ).
(2⇒ 3) This follows from conv(PJ) ⊆ PLP .

Note that as long as x̃ ∈ S, the master problem (13) is always bounded, even when
S = {x̃} and T = ∅. Indeed, the proof of Proposition 3 equally applies to the problem

s̄ = min αTx∗ −α0

s.t. αT x̃ ≥ α0.
αT (x̃− x∗) = 1

(15)

The same row-generation method is used by Perregaard and Balas in [39], except that they
limit to linear programming slaves, in order to obtain fast separation. As the objective
here is to have an exact separator, we do not consider such a relaxation.

An overview of the method is presented in Algorithm 1. The separation procedure com-
putes a point of PJ or a ray of PLP at each iteration. That involves solving a linear
programming problem, then a mixed-integer problem whenever the former is bounded, so
the resulting procedure is naturally slow in practice, but can be implemented. Although
we do not aim at having a separator that is fast enough to be useful for speeding up the
resolution of MIPs, preliminary computational results on a small subset of tiny instances
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Step 0 Input: a set PJ and a point x∗ to separate.
Solve a feasibility MIP over PJ .
Let x̃ ∈ PJ be the solution found.
Initialize S := {x̃} and T := ∅.

Step 1 Solve the master problem (13).
Let (ᾱ, ᾱ0) be an optimal solution (if such solution exists).
If the master problem is infeasible or if ᾱTx∗ ≥ ᾱ0:

There is no valid inequality for PJ separating x∗. Stop
Step 2 Solve the slave problem (14).

If the slave problem is infeasible:
Any inequality is valid for PJ . Consider 0 ≥ 1 and stop.

If the slave problem is unbouned:
Let r be an extreme ray of its LP relaxation PLP that
shows unboundedness (i.e. ᾱT r < 0).
T := T ∪ {r}. Go to Step 1.

If the slave problem has an optimal solution y∗:
If ᾱTy∗ < ᾱ0:

S := S ∪ {y∗}. Go to Step 1.
If ᾱTy∗ ≥ ᾱ0:

ᾱTx ≥ ᾱ0 is a valid inequality for PJ
separating x∗. Stop.

Algorithm 1: Row-generation algorithm for optimizing over Q

clearly showed that computing times involved can be huge, making the cost of the com-
putation prohibitive on any reasonable set of medium-sized benchmark instances. It is
therefore necessary to make our separator faster.

A first possible way is to take advantage of the fact that the point x∗ typically has many
components that are at one of their bounds in the formulation of PLP . In such a case, it is
possible to first focus on the face F̃ = P ∩{xj = x∗j , for all j such that x∗j is at a bound}
of P , and find a valid inequality for F̃ separating x∗. One can then lift that inequality in
order for it to be valid for the whole set P . These ideas were exploited by Applegate et
al. [4] and Perregaard and Balas [39].

The next proposition shows, in the case of one component at a bound, that the lifting is
always feasible and yields a valid inequality for P that also separates x∗. The conclusion
applies to any number of bounds by using Proposition 5 repeatedly, forming a feasible
sequential lifting. Note that the bound constraint is presented in general form fTx ≥ f0

to handle lower or upper bounds equivalently.

Proposition 5. Given P = conv({xi})+cone({rj}) 6= ∅, consider an inequality fTx ≥ f0

that is valid for P and let F := P ∩ {x : fTx = f0}. If F 6= ∅ and αTx ≥ α0 is a valid
inequality for F , then there always exists a finite coefficient µ such that αx+µ(fTx−f0) ≥
α0 is valid for P .
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Proof. See [5].

Note that if αTx ≥ α0 is facet-defining for F , then αx+µ(fTx−f0) ≥ α0 is facet-defining
for P (see [40]).

In case F is empty, i.e. if it is not a proper face of P , then the next proposition provides
a similar result, showing again how to lift to obtain a valid inequality for P .

Proposition 6. If F = ∅, there always exists a finite coefficient µ such that µ(fTx−f0) ≥
1 is valid for P , i.e. we can always lift the inequality 0Tx ≥ 1.

Proof. Since P = conv({xi}) + cone({rj}), an inequality γTx ≥ γ0 is valid for P if and
only if γTxi ≥ γ0 for all i and γT rj ≥ 0 for all j. Let us consider the vertices first. Since
F = ∅, it cannot be that fTxi = f0, otherwise xi would be a feasible point in F . So we
must have fTxi > f0, and hence the condition

µ ≥ 1

fTxi − f0

whose right-hand side is finite. Let us next consider the rays. We must find µ such that
µfT rj ≥ 0. Since fT rj ≥ 0, we get the condition µ ≥ 0 (the same per all rays). Taking
the largest right-hand side of the constraints on µ proves the claim.

In general, if fTx ≥ f0,∀x ∈ P , Proposition 5 shows that an inequality (α, α0) valid
only for the nonempty set P ∩ {fTx = f0} can always be lifted so as to be valid for P .
Proposition 6 indicates that this is also true when P ∩ {fTx = f0} is empty provided
that α = 0 and α0 = 1. While any inequality is valid for the empty set, we proved that
for the special choice of the infeasible constraint 0 ≥ 1, the lifting problem is always
feasible. Note however that when we lift 0 ≥ 1, the lifted inequality is not facet-defining
in general. If one needs facet-defining inequalities, then lifting-based procedures must be
disabled whenever F = ∅.

In all cases, if fTx∗ = f0, then the slack of the lifted inequality at x∗,

αTx∗ + µ(fTx∗ − f0)− α0

is equal to the slack of the initial inequality at x∗,

αTx∗ − α0.

In other words, lifting a valid inequality that is violated at x∗ from a face that is tight at
x∗ yields a new valid inequality that is violated by the same amount at x∗.

We can now apply these concepts to design a two-phase process. Let

P := {x ∈ Rn : Ax = b, l ≤ x ≤ u, xJ ∈ Z}
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and N be the index set of components x∗ that are at a bound, i.e. either x∗j = lj or
x∗j = uj, for all j ∈ N . We denote by B the complement set, B := {1, . . . , n} \N . Note
that since x∗ is an arbitrary point, B does not necessarily index a basis.

In a first phase, we find a valid inequality (ᾱB, ᾱ0) for F := P ∩ {xN = x∗N} using
Algorithm 1. If no such inequality exists, then we can already stop because x∗B ∈ F ⊆ P ,
which means that there is no valid inequality for P that separates x∗. In the special case
where F is empty, we consider (ᾱB, ᾱ0) = (0, 1), as Proposition 6 suggests.

In a second phase, we find a valid inequality (αN , αB, α0) for P , again with Algorithm 1.
But now, we can fix αB = ᾱB and α0 = ᾱ0 +αTNx

∗
N . The above reasoning guarantees that

a feasible solution exists for the coefficients αN and that the violation at x∗ of the initial
cut obtained is conserved through the second phase. Remark also that in the second
phase, the normalization constraint (9) is always satisfied, hence redundant.

Our proposed approach is summarized in Algorithm 2, where the inequalities (α, α0) in
Phases 1 and 2 are found using Algorithm 1.

Init Let N := {j ∈ {1, . . . , n} : x∗j = lj or x∗j = uj} and B = {1, . . . , n} \N
Phase 1 Let P1 := P ∩ {xN = x∗N}.

If P1 = ∅,
(ᾱB, ᾱ0) := (0, 1). Go to Phase 2.

Find a valid inequality (ᾱB, ᾱ0) for P1.
If no such inequality exist,

No valid inequality for P separates x∗. Stop.
Phase 2 Find a valid inequality (αN , ᾱB, α0) for P .

Algorithm 2: Two-phase process

In our preliminary tests, the two-phase process yielded a speedup of about 6.0 over Al-
gorithm 1, on a benchmark testset of 12 small MIPLIB instances. This can be explained
by two factors. Firstly, whenever x∗ ∈ P , we can interrupt the computation at the end of
Phase 1, which should be fast as it operates with smaller slaves. Secondly, the structure
of the Phase 2 master may be simpler, as it has fewer variables. The bottleneck of the
computation is solving the slave MIPs, but due to the simpler structure, Algorithm 1
may require fewer iterations than would be necessary without Phase 1. The cost of the
two-phase process is that we lose some degrees of freedom in choosing the separating
inequality, as the coefficients αB and αN are chosen independently, akin to a sequential
lifting as opposed to a simultaneous lifting. However, we did not exploit these degrees
of freedom previously, as we focus solely on maximizing cut violation with respect to the
chosen normalization (9).

We only proved above that under certain condition, it is possible to lift a valid inequality.
We did not provide a way to compute the lifting coefficient explicitly (µ in Proposition 5
and Proposition 6) as we simply rely on Algorithm 1 to find it. Nevertheless, it may
be interesting to examine the lifting problem itself. That problem has been thoroughly
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studied [41, 24, 5], and we only present here a few properties that are useful in our context.
For simplicity, we assume for the time being that we want to lift the cut coefficient of
only one variable xk, i.e. N = {k}. Let us consider a valid inequality ᾱB ≥ ᾱ0 for
F = P ∩ {xk = x∗k}. We want to find αk such that αkxk + ᾱBxB ≥ ᾱ0 + αkx

∗
k for all

(xk, xB) in P . The condition is trivially satisfied when xk = x∗k. For xk 6= x∗k, we need
αk(x

∗
k − xk) ≤ ᾱBxB − ᾱ0 i.e.

αk ≤
ᾱBxB − ᾱ0

x∗k − xk
∀x ∈ P : xk < x∗k

αk ≥
ᾱBxB − ᾱ0

x∗k − xk
∀x ∈ P : xk > x∗k.

(16)

For a given k, only one of the two types of conditions in (16) can occur, since x∗k is the
value of a bound on xk. Therefore, we can find αk by solving an optimization problem
whose feasible region is either P ∩ {xk < x∗k} or P ∩ {xk < x∗k}. Unfortunately, we can
not solve these problems in practice, be it only because their feasible regions may be open
sets. However, if xk is a binary variable, then the problems reduce to

αk = min {ᾱBxB − ᾱ0 : x ∈ P and xk = 0} (17)

and
αk = −min {ᾱBxB − ᾱ0 : x ∈ P and xk = 1} , (18)

which are mixed-integer programming problems.

Therefore, for a binary variable, it is possible to compute a lifted cut coefficient by solving
a single MIP instead of resorting to the row-generation Algorithm 1, which may need to
solve many MIPs of the same size. In general for |N | ≥ 1, we can compute sequentially
a valid lifted coefficient αk for all the binary variables, by solving for each k the mixed-
integer problem

αk = (1− 2x∗k) min
x∈P

{
ᾱTBxB − ᾱ0 : xN\{k} = x∗N\{k}, xk = 1− x∗k

}
(19)

then setting N := N \ {k} and B := B ∪ {k}. Note that such a lifting is not unique. In
particular, it is sequence-dependent, i.e. it depends on the order according to which it is
applied to the variables.

For general integer and continuous variables, before Phase 2, we try to find lifting coef-
ficients one by one. This is still done through row-generation, but in essence performing
a sequential lifting instead of the simultaneous lifting that is Phase 2. By doing so, we
again lose a degree of freedom that we were not exploiting previously. We do not have
a formal argument for claiming that this sequential lifting would speed up computations.
The intuition is that we will apply row-generation many times, but to solve simpler prob-
lems, and we can only verify it through experimentation. In practice, these procedures
based on lifting further reduced the running time (in geometric mean) on our benchmark
testset of 12 instances, by about 30%.

Finally, we use a number of computational tricks in addition to the improvements men-
tioned above. One of them is of particular interest. We use the callback facilities of the
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branch-and-bound solver to interrupt the resolution of the slave MIP (14) prior to optimal-
ity, when given the opportunity. Indeed, before the termination of the branch-and-bound
method, the global lower bound may already indicate that the candidate inequality is
valid. Conversely, an incumbent integer solution, even nonoptimal, may be violated by
the candidate inequality, effectively proving that it is not valid and providing an addi-
tional constraint for Q(S, T ). In practice, we stop the MIP solver after 1000 consecutive
branch-and-bound nodes without progress in the MIP bound, when the incumbent pro-
vides a violated constraint of Q(S, T ). These computational tricks further halved the
computing time (in geometric mean) on our 12-instances testset.

Overall, our tests show that the final algorithm is, on average, approximately 15 times
faster than Algorithm 1, and more numerically stable, thus providing a better choice for
tackling medium-sized benchmark instances.

4 Experimental setup

We aim at obtaining a reasonable evaluation of the percentage of gap closed by cuts from
various relaxations. We work on the MIPLIB 3 problem instances [13], which are first
preprocessed using the CPLEX 12.6 MIP solver (we performed only basic preprocessing,
with default settings; there is no root node processing or cut generation). Note that
the cuts we generate are rank-1 only with respect to these preprocessed instances, since
for example, strengthened bounds could be considered as cutting planes. Therefore, for
consistency, all the objective function gaps are also measured with respect to the pre-
processed instances. All runs are obtained on an Intel Xeon X5650 2.67 GHz, with the
memory usage of CPLEX limited to 8Gb per instance. The general layout of our exper-
iment is summarized in Algorithm 3. For each instance, we start by optimizing over the
LP relaxation and we compute an optimal LP tableau. From that tableau, we build the
multi-row relaxations that we will use throughout the computation. We also compute a
round of GMI cuts from that tableau, and add them to the formulation (we use our own
GMI cut generator for that purpose). Note that these new constraints are not consid-
ered when forming the multi-row relaxations: all the multi-row models considered in our
computations come directly from an LP tableau of the initial preprocessed formulation.
We then enter the main loop. At each iteration we try to separate the current LP op-
timal point with each multi-row model, add the separating cuts to the formulation, and
compute a new optimal point for the resulting LP.

We now describe how we construct the multi-row models. From a theoretical perspective,
closures are a useful tool to evaluate the strength of a family of cutting planes. For a
given family of cuts, the first closure of a MIP is the polyhedron obtained by adding,
to the LP relaxation, all the cuts of the family that arise from models constructed from
that LP relaxation. In practice, it means that each row of the underlying models can be
a linear combination of any set of rows from any tableau of the LP relaxation. The ith
closure is obtained by adding cuts from models constructed upon the (i− 1)th closure. A
cut is said to be rank-i with respect to its family if it is valid for the ith closure, but not
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1 Input: a mixed-integer problem P , its linear relaxation PLP
2
3 Optimize over PLP .
4 Generate a round of GMIs from the optimal tableau.
5 Build multi-row models from the optimal tableau.
6 Add the GMIs to PLP
7
8 do
9 Optimize over PLP . Let x∗ be the optimal solution.

10
11 for each multi-row model,
12 generate a cut, trying to separate x∗.
13 end for
14 Add the separating cuts to PLP .
15 while at least one cut was added.

Algorithm 3: Main cut-generation loop

the (i− 1)th.

Because our separator is still too slow for that purpose, we can not claim to be even
approaching the computation of a first closure for the various types of cuts we test. We
thus have to determine a way to select the relaxations from which to generate cuts. Our
first attempt is to focus on one optimal tableau, and build models from all combinations
of rows that can be directly read from that tableau. This is a natural choice since in
practice, most cutting planes are generated from simplex tableaux, and intersection cuts
from an optimal tableau are guaranteed to separate the corresponding optimal vertex.
This yields

(
m
k

)
k-row models for a MIP with m rows.

Remark that all the relaxations that we consider are strengthenings of the intersection
cut model PI . We assume that in a practical context, the corresponding cuts would
be generated with variants of the intersection cut method. For that reason, we will
consider only models for which all basic variables are integer-constrained and at least one
component of the right-hand side f is fractional. Recall that we build all the models
directly from data of the initial (preprocessed) problem, hence we generate only rank-1
cuts.

Computational issues can arise when computing cuts with our separator. Many of the
steps in Algorithm 1 can fail for various reasons. We impose iteration limits on every MIP
computation. Numerical issues happen too. For example, the solver can claim that the
slave MIP (14) is unbounded while its LP relaxation is not (indeed those two problems are
preprocessed separately to avoid other issues), or encounter variables whose value is too
large to be represented internally. The solver sometimes claims the master LP (10) to be
unbounded, which is not possible by construction, or infeasible while lifting, which should
not happen either. Algorithm 1 is itself subject to an iteration limit, and we enforce a
global time limit of 4 hours per instance. Memory is also available in limited amounts,
and the code may run out of space.
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Finally, we discard valid inequalities that have bad numerical properties or do not separate
the point x∗: if the violation at x∗ is less than 10−4, if the dynamism of the constraint
(i.e. the quotient of the largest and the smallest nonzero cut coefficient) is larger than
1010, or if its efficacy (i.e. the violation divided by the norm) is less than 10−4. Both
cuts with small violation and cuts with small efficacy are more likely to cause degeneracy-
related numerical issues around the current LP optimum. Specifically, cuts with small
efficacy are known to typically cut off a tiny volume of the LP relaxation, in which case
the corresponding exact-arithmetic valid inequality may not be violated at all.

In the above failure cases, the computation stops for the concerned model but can continue
with other models. In practice, issues arise for a number of models in most of the instances.
But as long as, at each iteration of Algorithm 3, one or more models generate separating
inequalities, the process can continue. For example, over the experiment run to generate
Table 1, we successfully generated a total of 40358 cuts and encountered 1852 failures
over 93 instances. For all of these, we still have a result, and for 14 of them, we even
have a proof that, at the last iteration, no more gap could be closed with cuts from the
selected models. This is made possible by the fact that Phase-1 is enough to show the
latter, while actually computing a cut requires completing Phase-2, which is much more
difficult computationally.

Note that the separation procedure outlined in Algorithm 1, along with its two-phase
counterpart, is, in principle, exact, meaning that it will find a violated inequality if and
only if one exists. However, implementations of Algorithm 1 may not be exact because
of finite precision arithmetic, tolerances, and resource limits. In particular, our imple-
mentation is not exact because we are relying on a finite precision solver such as CPLEX
and because of the numerical safeguards just described, although it can be considered
reasonably accurate for well behaved instances. Since the indicator that we use to mea-
sure the strength of the models is the gap closed by the cut they yield, we do not need to
guarantee that our cuts are facet-defining in the computations that generate the tables.
As we do not constrain our separator to generate only facet-defining inequalities, we can
disable the LP post-processing necessary to cope with nonbasic free variables, and enable
the lifting of 0 ≥ 1 inequalities when the Phase-1 slave MIP is infeasible.

The section “All pairs of rows” of Table 1 presents the results obtained by running Algo-
rithm 3 with the selection of 2-row models described above. The column cuts indicates
the number of cuts that are tight at the last iteration of Algorithm 3. The column %gc
indicates the percentage of gap closed by all the cuts generated. A “X” in the column
ex. indicates that the separation is theoretically exact with respect to the selection of
models (i.e. we can prove that no more gap could be closed with cuts from that selection
of models). Again, this is only theoretically exact, because it does not take into account
the numerical inaccuracies incurred by the floating-point representation of numbers. The
section “GMIs only” is provided for comparison, and shows the number of GMIs that we
computed from the initial optimal tableau and the percentage of gap that they close. We
run our test on 62 of the 65 MIPLIB 3 instances: dsbmip and enigma have no integrality
gap and no optimal solution is known for dano3mip.

We observe that, on average, the amount of gap closed by the two-row cuts (40.2%) is
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significantly higher than the gap closed by the GMIs (22.6%). This is not surprising,
since we consider full two-row models here, i.e. we do not drop any integrality or bound
constraint on the variables. On the other hand, our main observation in Table 1 is that the
running time is not satisfactory. We hit the global time limit (4 hours) in most instances,
and we have exact separation for only 16 of them.

These excessive computing times can be blamed in part on the sheer number of two-row
models we select when taking all suitable pairs of rows from an optimal tableau. Moreover,
this problem is bound to get worse when considering relaxations with more than two rows.
In order to alleviate the computational burden caused by this policy, we now look for a
more restricted selection of models that could nevertheless provide similar results.

We try to construct models whose rows have similar supports. This is motivated by the
extreme case where the rows have disjoint supports. In that case indeed, valid inequalities
for the model are just conic combinations of valid inequalities for the individual rows. In
order to have rows with similar supports, we design the heuristic row selector summarized
in Algorithm 4. It first builds, for each row of the tableau, a cluster of other rows that have
a similar support. Then, it loops through the clusters constructing one multi-row model
with the rows in each one. Our intent with this heuristic is to favor models from rows
with similar supports, while covering all rows of the tableau. Note that the constraints
mentioned earlier for each row to have an integer-constrained basic variable, and for each
model to have a fractional-valued basic variable, are incorporated into the heuristic.

1 Input: A m-row simplex tableau and k, the target number of rows per model
2
3 for each row i of the tableau,
4 build a cluster of 5k − 1 rows having a support most similar to row i
5 end for
6
7 i := 1.
8 while models < MODELS MAX,
9 Find a subset of k − 1 rows in the cluster i such that the k-row model

10 built from that subset and i does not already form a selected model.
11
12 if such a subset exist,
13 build a k-row model from these rows and row i
14 end if
15
16 i := (i+ 1) mod m.
17 end

Algorithm 4: Heuristic selection of multi-row models

At line 4 of Algorithm 4, we need to define a measure for the similarity of the supports of
two rows. Let Sc be the number of columns in which both rows have nonzero coefficients,
and Sd the number of columns in which exactly one row has a nonzero coefficients. We
choose to maximize a score given by Sc − Sd, i.e. we score positively columns where
both rows have nonzero coefficients and penalize columns where one row has a zero and
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GMIs only All pairs of rows Heuristic selection
name cuts %gc time cuts %gc ex. time cuts %gc ex.

10teams 101 57.1 [4h] 4 57.1 [4h] 4 57.1
air03 3 100 0.5 31 100 X 0.6 31 100 X
air04 100 7.9 [4h] 13 7.9 [4h] 13 7.9
air05 101 4.6 [4h] 8 4.6 [4h] 8 4.6

arki001 7 0.0 [4h] 7 0.0 [4h] 7 0.0
bell3a 14 39.0 118.6 121 59.0 X 11.0 29 55.7 X
bell5 17 14.5 567.6 45 91.2 264.1 26 19.3 X

blend2 5 16.0 369.6 40 28.2 X 19.6 11 20.0 X
cap6000 2 39.9 [4h] 2 39.9 [4h] 2 39.9
danoint 31 0.3 [4h] 319 1.7 [4h] 319 1.7
dcmulti 36 47.8 [4h] 214 73.3 3520.5 175 59.8 X

egout 8 31.9 2.0 31 100.0 X 0.8 21 98.4 X
fast0507 100 1.7 [4h] 5 1.7 [4h] 5 1.7

fiber 22 69.2 7623.8 581 87.0 X 703.8 281 81.3 X
fixnet6 11 22.3 [4h] 155 51.0 2315.3 69 36.5 X
flugpl 7 10.8 2.7 6 51.2 X 1.5 6 50.8 X

gen 6 1.3 [4h] 7 39.2 [4h] 7 39.2
gesa2 40 27.6 [4h] 220 73.8 1336.9 196 70.8

gesa2 o 70 30.7 [4h] 465 81.0 2368.3 272 48.0
gesa3 37 20.5 [4h] 431 60.5 964.9 278 56.1

gesa3 o 64 50.5 [4h] 394 80.6 13182.1 351 77.8
gt2 11 47.2 [4h] 66 58.6 13837.6 78 58.6

harp2 22 22.8 [4h] 20 22.8 [4h] 20 22.8
khb05250 19 73.2 9437.8 455 99.2 2013.9 218 91.4 X
l152lav 7 2.0 [4h] 4 3.1 [4h] 4 3.1

lseu 5 20.5 9175.0 57 70.2 X 8747.3 57 70.2 X
markshare1 6 0.0 5968.7 1 0.0 1212.1 1 0.0
markshare2 7 0.0 11193.7 1 0.0 2506.7 1 0.0

mas74 11 6.7 [4h] 10 6.9 [4h] 10 6.9
mas76 10 6.4 [4h] 6 6.4 [4h] 6 6.4

misc03 4 8.6 5469.9 78 9.8 38.0 9 8.6 X
misc06 16 28.5 3439.3 175 75.4 54.6 27 48.8 X
misc07 5 0.7 4027.3 62 0.9 X 2.6 13 0.7 X
mitre 101 50.7 [4h] 828 67.3 [4h] 828 67.3

mkc 31 1.4 [4h] 44 1.4 [4h] 44 1.4
mod008 5 21.6 [4h] 4 21.6 [4h] 4 21.6
mod010 5 100 0.3 15 100 X 0.2 15 100 X
mod011 22 31.3 [4h] 19 31.4 [4h] 19 31.4

modglob 28 17.3 6035.8 97 58.0 110.9 39 31.9
noswot 14 0.0 151.3 42 0.0 X 4.3 12 0.0 X

nw04 2 29.8 [4h] 4 29.9 [4h] 4 29.9
p0033 4 34.4 6.9 59 100.0 X 6.5 59 100.0 X
p0201 14 0.4 [4h] 75 17.8 8114.0 33 15.8 X
p0282 23 3.2 4781.9 174 42.3 2087.6 143 41.9 X
p0548 31 61.7 33.3 112 99.9 X 16.7 112 99.9 X
p2756 81 51.7 [4h] 528 97.2 4330.7 404 77.5 X

pk1 15 0.0 [4h] 1 0.0 9706.5 1 0.0
pp08a 53 51.4 171.0 97 80.4 X 13.3 85 76.2 X

pp08acuts 41 31.5 [4h] 57 47.9 3234.4 46 46.9
qiu 23 1.7 [4h] 18 1.8 [4h] 18 1.8

qnet1 21 11.8 [4h] 7 12.0 [4h] 7 12.0
qnet1 o 10 23.3 [4h] 39 25.1 [4h] 41 25.1

rentacar 13 5.0 [4h] 22 5.7 [4h] 24 5.7
rgn 12 5.0 226.7 33 42.0 26.7 32 25.1 X

rout 29 3.6 [4h] 13 3.8 [4h] 13 3.8
set1ch 121 28.2 5432.9 166 62.8 X 37.4 153 61.8 X

seymour 50 6.2 [4h] 24 10.9 [4h] 24 11.0
stein27 21 0.0 624.8 7 0.0 X 10.6 4 0.0 X
stein45 16 0.0 [4h] 7 0.0 93.8 3 0.0 X

swath 13 6.4 [4h] 25 31.4 [4h] 25 31.4
vpm1 15 6.2 179.2 41 17.1 X 4.0 25 15.9 X
vpm2 21 7.3 515.5 63 42.1 58.5 47 33.6 X

average 28.1 22.6 9580.6 107.3 40.2 16
62

6880.4 77.7 35.7 28
62

geometric 17.0 0.0 2994.7 33.2 0.0 - 835.2 24.5 0.0 -

Table 1: All full two-row models and heuristically selected subset
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the other not. We also tried a score given by Sc/(Sc + Sd), with slightly less appealing
results [40].

The section “Heuristic selection” of Table 1 shows results obtained with two-row models
constructed according to Algorithm 4. Compared to when reading all two-row models
from an optimal tableau, the average percentage of gap closed drops from 40.2% to 35.7%,
but the running times are divided by a factor 3 in geometric mean, and the number of
instances with exact separation almost doubles. Moreover, the percentage of gap closed
in the second column is within 1% of result in the first column for 39 of the 62 instances
(63%), and within 2% for 45 instances (73%). In Table 1 and in all later tables, MODELS MAX

is set to the number m of rows in the preprocessed formulation of the problem. Note that
each row corresponds to an instance for which every test presented succeeded. As a
consequence, the testsets may vary from table to table. We will detail in the later tables
which instances are missing if any.

5 Gomory mixed-integer, one-row and two-row cuts

Armed with a reasonable heuristic model selector, we can now compare the strength of
various relaxations. A first question that can be tackled regards the strength of one-row
models. We know that, given a one-row model, the GMI formula provides a facet-defining
inequality for the integer hull. But how much tighter would a formulation become when
also considering the other facet-defining inequalities of that one-row model? This question
is studied in depth by Fukasawa and Goycoolea, who develop an exact separator for mixed-
integer knapsack cuts [31]. While more generic and hence slower, our separator can be
exploited for similar purposes.

Table 2 shows our results for that experiment. As before, our code starts by generating
a round of Gomory mixed-integer cuts from an optimal simplex tableau. The “GMIs”
columns show the number of such cuts generated, and the resulting amount of gap they
close. The “One-row (Pfull)” columns shows the effect of separating over the corresponding
one-row models, possibly generating cuts that are not GMIs. Anticipating on the following
sections, the last group of columns shows the amount of gap closed by a comparable
number of (fully-strengthened) two-row models. Despite the different settings (we work
on preprocessed instances, and do not use exact arithmetic), our conclusions are very
similar to the ones in [31]. In terms of gap closed, generic one-row cuts achieve barely
more (25.9% in average) than what is already obtained with GMIs (22.6%), despite the
fact that we generate more one-row cuts on average, and add them on top of the GMIs.

6 Strengthened intersection cuts

In this section we focus on two-row models, and test in more detail the classes of models
presented in Section 1. We can now compare the strength of various relaxations for a
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GMIs One-row (Pfull) Two-row (Pfull)
name cuts %gc cuts %gc ex. cuts %gc ex.

10teams 101 57.1 4 57.1 4 57.1
air03 3 100 31 100 X 31 100 X
air04 100 7.9 13 7.9 13 7.9
air05 101 4.6 8 4.6 8 4.6

arki001 7 0.0 13 0.0 7 0.0
bell3a 14 39.0 8 39.4 X 29 55.7 X
bell5 17 14.5 24 18.7 26 19.3 X

blend2 5 16.0 3 16.7 X 11 20.0 X
cap6000 2 39.9 2 39.9 2 39.9
danoint 31 0.3 5 0.3 319 1.7
dcmulti 36 47.8 43 50.9 X 175 59.8 X

egout 8 31.9 9 36.4 X 21 98.4 X
fast0507 100 1.7 5 1.7 5 1.7

fiber 22 69.2 72 73.2 X 281 81.3 X
fixnet6 11 22.3 27 27.0 X 69 36.5 X
flugpl 7 10.8 4 10.8 X 6 50.8 X

gen 6 1.3 6 1.3 X 7 39.2
gesa2 40 27.6 53 29.1 196 70.8

gesa2 o 70 30.7 95 33.1 X 272 48.0
gesa3 37 20.5 115 21.9 X 278 56.1

gesa3 o 64 50.5 124 50.7 351 77.8
gt2 11 47.2 27 56.8 X 78 58.6

harp2 22 22.8 20 22.8 20 22.8
khb05250 19 73.2 150 91.4 218 91.4 X
l152lav 7 2.0 12 6.1 4 3.1

lseu 5 20.5 47 23.4 X 57 70.2 X
markshare1 6 0.0 1 0.0 1 0.0
markshare2 7 0.0 1 0.0 1 0.0

mas74 11 6.7 27 9.1 X 10 6.9
mas76 10 6.4 22 9.1 6 6.4

misc03 4 8.6 7 8.6 X 9 8.6 X
misc06 16 28.5 13 28.5 X 27 48.8 X
misc07 5 0.7 9 0.7 X 13 0.7 X
mitre 101 50.7 575 76.2 828 67.3

mkc 31 1.4 46 1.8 44 1.4
mod008 5 21.6 15 22.6 X 4 21.6
mod010 5 100 15 100 X 15 100 X
mod011 22 31.3 22 31.3 19 31.4

modglob 28 17.3 18 18.1 X 39 31.9
noswot 14 0.0 9 0.0 X 12 0.0 X

nw04 2 29.8 6 31.1 4 29.9
p0033 4 34.4 13 60.0 X 59 100.0 X
p0201 14 0.4 18 0.4 X 33 15.8 X
p0282 23 3.2 66 14.7 X 143 41.9 X
p0548 31 61.7 81 97.1 X 112 99.9 X
p2756 81 51.7 129 70.9 X 404 77.5 X

pk1 15 0.0 2 0.0 1 0.0
pp08a 53 51.4 46 51.4 X 85 76.2 X

pp08acuts 41 31.5 32 31.7 46 46.9
qiu 23 1.7 24 1.7 18 1.8

qnet1 21 11.8 14 12.0 7 12.0
qnet1 o 10 23.3 37 27.3 41 25.1

rentacar 13 5.0 11 5.0 24 5.7
rgn 12 5.0 12 10.0 X 32 25.1 X

rout 29 3.6 37 4.6 13 3.8
set1ch 121 28.2 120 28.2 X 153 61.8 X

seymour 50 6.2 14 7.0 X 24 11.0
stein27 21 0.0 1 0.0 X 4 0.0 X
stein45 16 0.0 2 0.0 X 3 0.0 X

swath 13 6.4 23 11.4 25 31.4
vpm1 15 6.2 10 6.5 X 25 15.9 X
vpm2 21 7.3 20 8.1 X 47 33.6 X

average 28.1 22.6 39.0 25.9 34
62

77.7 35.7 28
62

Table 2: GMIs, one-row and two-row cuts
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basic nonbasic
∈ Z bounds ∈ Z bounds

PI X T

S-free X X T

lifting X X T

PIU X X
Pfull X X X X

Table 3: Strengthenings of PI : X: keep, T: keep binding

fixed set of two-row models.

Recall that PI is the intersection cut model. In particular, its two-row version is

PI = {(x, s) ∈ Z2 × Rn
+ : x = f +Rs}.

We can strengthen the intersection cut model by reintroducing bounds on the basic vari-
ables x, yielding

PS-free = {(x, s) ∈ S × Rn
+ : x = f +Rs}.

We can also exploit the integrality of the nonbasic variables by solving the so-called lifting
problem, and obtain valid inequalities for

Plifting = {(x, s) ∈ Z2 × Rn
+ : x = f +Rs, sj ∈ Z for all j ∈ J}.

Finally, taking advantage of upper bounds on the nonbasic variables, we can generate
inequalities that are valid for

PIU = {(x, s) ∈ Z2 × Rn
+ : x = f +Rs, s ≤ U}.

If we denote by Pfull a two-row model where we keep all integrality and bound constraints
on the variables, PI consists in dropping from Pfull bounds on the two basic variables,
integrality on nonbasic variables, and any nonbinding bound on the nonbasic variables.
This is shown in Table 3, along with the constraints that are reintroduced in PS-free, Plifting

and PIU .

Table 4 shows the gap closed with a unique selection of two-row models, but different
relaxations, namely PI , PS-free, Plifting, PIU and Pfull. Note that for PI , we use the exact
separator described in [36], which also served as a crosscheck for the generic separator
presented here. If, for an instance, the amount of gap closed by one type of relaxation
is lower than the gap closed by a weaker type of relaxation (due to our separator not
being able to perform exact separation on that instance), then we display the number
corresponding to the weaker relaxation. This situation is denoted by a * in the table.
The instance arki001 is missing from this table, because we encounter numerical issues
in some of the computations.

It appears in the table that individual strengthenings do not bring a lot of improvement
over intersection cuts. The gap closed goes from 23.0% to 29.1% by adding intersection
cuts (i.e. cuts from PI) over GMIs. But cuts from PS-free, Plifting and PIU barely make
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GMIs PI PS−free Plifting PIU Pfull

name %gc %gc ex. %gc ex. %gc ex. %gc ex. %gc ex.
10teams 57.1 57.1 X 57.1 X 57.1 57.1 X 57.1

air03 100 100 X 100 X 100 X 100 X 100 X
air04 7.9 7.9 8.2 7.9 7.9 *8.2
air05 4.6 4.8 X 5.1 *4.8 4.8 X *5.1

bell3a 39.0 52.5 X 54.9 X *52.5 52.9 X 55.7 X
bell5 14.5 14.9 X 14.9 X 15.1 X 19.2 X 19.3 X

blend2 16.0 16.9 X 17.0 17.2 X 19.8 X 20.0 X
cap6000 39.9 40.1 X 40.1 X *40.1 40.8 *40.8
danoint 0.3 1.7 X 1.7 X 1.7 1.7 1.7
dcmulti 47.8 50.3 X 56.6 X 51.9 53.4 59.8 X

egout 31.9 94.2 X 97.9 X 94.2 X 98.4 X 98.4 X
fast0507 1.7 1.7 1.7 1.7 1.7 1.7

fiber 69.2 70.8 X 70.8 X *70.8 71.5 X 81.3 X
fixnet6 22.3 30.6 X 31.2 X *30.6 36.5 X 36.5 X
flugpl 10.8 13.3 X 13.2 43.0 X 13.3 50.8 X

gen 1.3 9.5 24.6 *9.5 9.9 X 39.2
gesa2 27.6 56.5 56.9 *56.5 57.4 70.8

gesa2 o 30.7 42.5 X 42.4 47.1 42.8 48.0
gesa3 20.5 47.1 X 53.5 *47.1 47.7 X 56.1

gesa3 o 50.5 69.8 X 72.8 *69.8 70.2 X 77.8
gt2 47.2 47.2 X 51.0 X 51.0 51.0 X 58.6

harp2 22.8 25.2 26.7 X *25.2 *25.2 *26.7
khb05250 73.2 73.2 X 73.2 X 73.2 X 91.4 X 91.4 X
l152lav 2.0 2.0 9.7 X 2.0 2.7 *9.7

lseu 20.5 21.7 X 22.4 X *21.7 22.3 X 70.2 X
markshare1 0.0 0.0 X 0.0 X 0.0 0.0 X 0.0
markshare2 0.0 0.0 X 0.0 0.0 0.0 0.0

mas74 6.7 6.7 X 6.7 X 6.7 6.7 6.9
mas76 6.4 6.4 X 6.4 X 6.4 6.4 X 6.4

misc03 8.6 8.6 X 8.6 X 8.6 X 8.6 X 8.6 X
misc06 28.5 48.3 48.8 X 48.3 48.3 48.8 X
misc07 0.7 0.7 X 0.7 X 0.7 X 0.7 X 0.7 X
mitre 50.7 81.7 81.7 *81.7 *81.7 *81.7

mkc 1.4 1.4 20.5 1.6 10.8 *20.5
mod008 21.6 21.6 X 21.6 X 21.6 21.6 X 21.6
mod010 100 100 X 100 X 100 X 100 X 100 X
mod011 31.3 36.3 X *36.3 *36.3 *36.3 *36.3

modglob 17.3 26.2 X 26.6 26.9 *26.2 31.9
noswot 0.0 0.0 X 0.0 X 0.0 0.0 X 0.0 X

nw04 29.8 29.8 X 29.8 29.8 X 29.8 29.9
p0033 34.4 34.8 X 44.3 X 45.8 38.0 X 100.0 X
p0201 0.4 6.5 X 8.6 X *6.5 6.5 X 15.8 X
p0282 3.2 4.7 14.0 *4.7 15.0 41.9 X
p0548 61.7 61.7 X 62.1 X 69.3 87.9 99.9 X
p2756 51.7 53.0 X 61.9 55.5 X 67.0 X 77.5 X

pk1 0.0 0.0 X 0.0 X 0.0 0.0 X 0.0
pp08a 51.4 76.2 X 76.2 *76.2 *76.2 76.2 X

pp08acuts 31.5 41.7 X 44.2 *41.7 *41.7 46.9
qiu 1.7 1.9 *1.9 *1.9 1.9 *1.9

qnet1 11.8 16.3 22.7 X *16.3 *16.3 *22.7
qnet1 o 23.3 30.2 X 36.5 X *30.2 *30.2 *36.5

rentacar 5.0 5.5 *5.5 *5.5 5.5 5.7
rgn 5.0 5.0 X 5.0 5.0 5.0 X 25.1 X

rout 3.6 4.1 6.5 *4.1 *4.1 *6.5
set1ch 28.2 61.6 X 61.7 X 61.7 X 61.7 X 61.8 X

seymour 6.2 7.1 X 9.4 7.1 7.1 X 11.0
stein27 0.0 0.0 X 0.0 X 0.0 0.0 X 0.0 X
stein45 0.0 0.0 X 0.0 X 0.0 X 0.0 X 0.0 X

swath 6.4 6.7 X 6.7 31.4 6.7 31.4
vpm1 6.2 14.6 X 14.9 X 14.6 15.3 X 15.9 X
vpm2 7.3 25.0 X 28.4 X 25.0 X 30.3 33.6 X

average 23.0 29.1 47
61

31.2 35
61

30.5 14
61

31.0 32
61

37.5 28
61

Table 4: Strengthenings of PI
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the percentage of gap closed exceed 31%. The gap closed jumps to 37.5% only when
considering cuts from Pfull .

Unfortunately, our results regarding Plifting are of limited significance. It is indeed ex-
tremely hard for Algorithm 1 to separate from Plifting, as indicated by the very low number
of instances with exact separation for these models. Intuitively, this can be explained by
the fact that to build Plifting from Pfull, we drop a number of bound constraints on the
variables, but keep all integrality constraints (see Table 3). And while all the difficulty
in solving MIPs comes from the integrality of the variables, the bound constraints are
very useful for the branch-and-bound method to reduce the enumeration space. As a
consequence, the average percentage of gap closed by our separator is often even lower
for the Plifting models than for the weaker PI models (as denoted by a * in the table). We
can somewhat mitigate the issue by looking only at instances for which the separation is
exact for all of the tests, at the cost of reducing the testset. We have exact results with
Plifting for only 14 instances, but if they are any indication, they tend to confirm that
Plifting does not clearly outperform PI .

The conclusion of [36] states that two-row intersection cuts are not strong enough to
consistently beat one-row cuts, if considering one-row models from linear combinations
of rows of the simplex tableau. So while the situation for Plifting is less definite, Table 4
shows that cuts from PS-free and PIU are probably not strong enough either. On the other
hand, if one could generate practically cuts for the fully-strengthened model Pfull, it may
be a promising provider of useful cuts beyond GMIs. Note that this is not a side-effect of
taking the maximum of all previous columns. Indeed, without this operation, Pfull would
still close 36.3% of gap on average, despite having fewer proofs of exact separation than
PI , PS−free or PIU .

7 Cuts from several tableaux

In all the computations performed so far, we limited ourselves to rank-1 valid inequalities
from one simplex tableau. We mentioned in the previous section that most of the two-row
cuts generated in [36] could be obtained as GMIs from linear combinations of rows of the
tableau. And the various simplex tableaux describing a linear problem are precisely linear
combinations of the rows of each other. Moreover, Balas and Perregaard [9] showed that
the most-violated inequality for a simple disjunction on one variable could be obtained
through the lift-and-project method as a GMI from a specific simplex tableau. They
demonstrate that the corresponding cuts can be generated efficiently and are useful. Dash
and Goycoolea [19] also showed that, in general, one can generate stronger rank-1 cuts by
considering multiple LP tableaux. This emphasizes the need to reproduce our results for
more than one basis of the LP relaxation.

In particular, the small but consistent advantage that two-row intersection cuts enjoy over
GMIs read directly from the tableau in terms of gap closure could vanish in the presence
of GMIs from other bases. This could be the case, for example, if two-row cuts close
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more gap only because so many more of them can be generated. Or, to the contrary, the
two-row cuts could become significantly stronger when read from several bases.

In order to answer these questions, we need a method to explore different bases of the LP
relaxation. We use the relax-and-cut method proposed by Fischetti and Salvagnin [29]
in the context of the generation of GMI cuts. It is a simple way to find feasible bases of
the LP relaxation, and it has been successfully used as one of several main components
to approximate the first split closure [30].

The method consists in computing a round of GMIs from the optimal tableau, then
adding them as Lagrangean penalties to the objective function instead of as additional
constraints to the feasible region. When re-optimizing over the LP relaxation with this
modified objective function, one may obtain a different basis. The process can be iterated
in order to find more bases. We refer to [29] for a more detailed exposition of the method.

Table 5 and Table 6 show the results for two-row intersection cuts and full two-row
models, respectively. Not shown in the table, for clarity, is that 21 bases are considered
for each instance when considering multiple bases, except for air03, mod010, pp08a,
pp08acuts and swath (where the relax-and-cut method only explores 1, 1, 2, 2 and 12
bases respectively). Note also that we limit ourselves to 100 models per tableau in this
experiment, in order to keep the total number of models per instance manageable. The
instances 10teams and arki001 are missing from these tables, because we could not find
an integer feasible solution within the prescribed iteration limit (100 branch-and-bound
nodes). We need such a solution in our relax-and-cut framework.

From one basis, GMIs close 22.4% of gap on average, and two-row intersection cuts close
five more percentage points at 27.0%. When using relax-and-cut, we generate more GMIs
and two-row cuts, as we compute them from up to 21 different bases. Then, GMIs
close 33.0% and two-row intersection cuts close again five more percentage points at
38.3%. Similar results hold for cuts from the full two-row model Pfull. From one basis,
strengthened two-row cuts, at 34.7%, close 12 more percentage points of gap than GMIs.
From up to 21 different bases, they close also 12 more percentage points than GMIs, at
45.5%.

Contrary to our earlier suggestions, the strengthening provided by two-row cuts on top
of GMIs seems to consistently carry over to the situation where we generate cuts from
several bases. This conclusion holds both in the case of intersection cuts and in the case
of cuts from the full model.

8 More than two rows

So far we have focused on two-row cuts because we have comparison points for them that
are better understood than in the general multi-row case. Our separator however is not
limited to two-row cuts, and we present in this section results with more than two rows.
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From 1 basis From up to 21 bases
GMIs PI GMIs PI

name cuts %gc cuts %gc ex. cuts %gc cuts %gc ex.
air03 3 100 31 100 X 3 100 31 100 X
air04 100 7.9 20 7.9 100 7.9 20 7.9
air05 101 4.6 8 4.8 X 101 4.6 8 4.8

bell3a 14 39.0 11 52.5 X 28 54.2 24 59.9 X
bell5 17 14.5 11 14.9 X 23 34.7 58 35.6 X

blend2 5 16.0 3 16.9 X 14 20.7 7 23.5 X
cap6000 2 39.9 6 40.1 X 21 44.6 12 44.8 X
danoint 31 0.3 35 1.7 80 0.7 47 1.7
dcmulti 36 47.8 43 49.9 X 77 64.3 74 68.1 X

egout 8 31.9 12 94.2 X 20 50.3 24 99.7 X
fast0507 100 1.7 7 1.7 100 1.7 7 1.7

fiber 22 69.2 21 70.8 X 60 79.7 55 79.9 X
fixnet6 11 22.3 18 30.6 X 29 33.0 42 47.4 X
flugpl 7 10.8 8 13.3 X 8 11.3 8 13.3 X

gen 6 1.3 13 9.5 28 40.1 36 40.3 X
gesa2 40 27.6 62 30.4 104 35.2 200 37.6

gesa2 o 70 30.7 93 32.0 X 174 47.4 259 58.2
gesa3 37 20.5 28 43.4 X 55 33.7 215 49.7

gesa3 o 64 50.5 85 63.1 109 54.0 399 66.0
gt2 11 47.2 8 47.2 X 33 58.1 23 58.7 X

harp2 22 22.8 20 25.2 99 28.7 37 30.1
khb05250 19 73.2 15 73.2 X 40 86.9 48 91.0 X
l152lav 7 2.0 39 2.0 38 13.8 24 13.8 X

lseu 5 20.5 9 21.7 X 44 41.2 19 41.2 X
markshare1 6 0.0 1 0.0 X 12 0.0 1 0.0 X
markshare2 7 0.0 2 0.0 X 14 0.0 2 0.0 X

mas74 11 6.7 7 6.7 X 28 7.0 8 7.0 X
mas76 10 6.4 6 6.4 X 53 6.7 6 6.7 X

misc03 4 8.6 7 8.6 X 17 17.6 25 17.6 X
misc06 16 28.5 17 48.3 24 44.7 42 88.6
misc07 5 0.7 9 0.7 X 8 0.7 20 0.7 X
mitre 101 50.7 225 50.7 X 316 87.8 915 87.8 X

mkc 31 1.4 53 1.4 139 25.5 74 32.9 X
mod008 5 21.6 1 21.6 X 33 35.9 7 35.9 X
mod010 5 100 15 100 X 5 100 15 100 X
mod011 22 31.3 39 34.8 X 153 40.8 127 46.2 X

modglob 28 17.3 30 24.7 X 91 50.6 70 59.2 X
noswot 14 0.0 9 0.0 X 15 0.0 53 0.0

nw04 2 29.8 2 29.8 X 22 66.1 11 66.1 X
p0033 4 34.4 5 34.8 X 18 53.9 9 53.9 X
p0201 14 0.4 15 6.5 X 63 13.9 117 18.8 X
p0282 23 3.2 27 4.6 78 9.9 31 12.4 X
p0548 31 61.7 32 61.7 X 76 81.5 96 83.3 X
p2756 81 51.7 72 52.2 X 167 95.0 161 95.1 X

pk1 15 0.0 1 0.0 X 16 0.0 2 0.0 X
pp08a 53 51.4 79 76.2 X 72 60.0 89 85.3 X

pp08acuts 41 31.5 39 38.8 X 41 31.5 42 39.6 X
qiu 23 1.7 13 1.9 107 5.4 66 6.0 X

qnet1 21 11.8 9 12.7 X 124 24.4 42 29.3
qnet1 o 10 23.3 13 30.2 X 52 39.8 61 48.3 X

rentacar 13 5.0 11 5.5 14 5.0 20 5.6
rgn 12 5.0 7 5.0 X 88 35.3 30 38.3 X

rout 29 3.6 11 4.1 102 8.1 21 9.4 X
set1ch 121 28.2 123 55.5 X 155 29.0 154 60.2 X

seymour 50 6.2 5 6.2 X 76 10.2 40 10.2 X
stein27 21 0.0 2 0.0 X 22 0.0 3 0.0 X
stein45 16 0.0 2 0.0 X 16 0.0 2 0.0 X

swath 13 6.4 30 6.6 X 52 22.0 68 22.0
vpm1 15 6.2 18 14.6 X 32 9.1 40 23.2 X
vpm2 21 7.3 24 24.4 X 57 13.8 68 33.1

average 27.2 22.4 26.1 27.0 46
60

62.4 33.0 70.2 38.3 45
60

Table 5: Relax and cut: two-row intersection cuts

29



From 1 basis From up to 21 bases
GMIs Pfull GMIs Pfull

name cuts %gc cuts %gc ex. cuts %gc cuts %gc ex.
air03 3 100 31 100 X 3 100 31 100 X
air04 100 7.9 13 7.9 100 7.9 13 7.9
air05 101 4.6 8 4.6 101 4.6 8 4.6

bell3a 14 39.0 29 55.7 X 28 54.2 24 59.9 X
bell5 17 14.5 26 19.3 X 23 34.7 41 50.3

blend2 5 16.0 11 20.0 X 14 20.7 24 26.6 X
cap6000 2 39.9 2 39.9 21 44.6 8 44.6
danoint 31 0.3 37 1.7 80 0.7 49 1.7
dcmulti 36 47.8 105 58.0 X 77 64.3 139 78.7 X

egout 8 31.9 21 98.4 X 20 50.3 47 100.0 X
fast0507 100 1.7 5 1.7 100 1.7 5 1.7

fiber 22 69.2 150 80.3 X 60 79.7 111 84.7
fixnet6 11 22.3 69 36.5 X 29 33.0 79 50.5
flugpl 7 10.8 6 50.8 X 8 11.3 7 68.6 X

gen 6 1.3 7 39.2 28 40.1 49 76.5
gesa2 40 27.6 100 62.6 104 35.2 392 70.0

gesa2 o 70 30.7 113 34.5 X 174 47.4 377 70.2
gesa3 37 20.5 65 49.7 55 33.7 296 75.1

gesa3 o 64 50.5 91 70.9 X 109 54.0 524 79.3
gt2 11 47.2 78 58.6 33 58.1 52 60.4

harp2 22 22.8 20 22.8 99 28.7 27 28.7
khb05250 19 73.2 218 91.4 X 40 86.9 134 95.8
l152lav 7 2.0 4 3.1 38 13.8 29 14.9

lseu 5 20.5 57 70.2 X 44 41.2 37 78.2
markshare1 6 0.0 1 0.0 12 0.0 1 0.0
markshare2 7 0.0 1 0.0 14 0.0 2 0.0

mas74 11 6.7 10 6.9 28 7.0 8 7.0
mas76 10 6.4 6 6.4 53 6.7 6 6.7

misc03 4 8.6 9 8.6 X 17 17.6 52 17.7 X
misc06 16 28.5 25 48.8 X 24 44.7 71 91.7
misc07 5 0.7 13 0.7 X 8 0.7 55 0.8
mitre 101 50.7 240 50.7 X 316 87.8 1131 87.8

mkc 31 1.4 46 1.4 139 25.5 75 45.2
mod008 5 21.6 4 21.6 33 35.9 8 36.4
mod010 5 100 15 100 X 5 100 15 100 X
mod011 22 31.3 19 31.4 153 40.8 69 40.9

modglob 28 17.3 36 29.5 91 50.6 203 70.4
noswot 14 0.0 12 0.0 X 15 0.0 64 0.0 X

nw04 2 29.8 4 29.9 22 66.1 11 68.3
p0033 4 34.4 59 100.0 X 18 53.9 76 100.0 X
p0201 14 0.4 32 15.8 X 63 13.9 90 16.2
p0282 23 3.2 95 41.7 X 78 9.9 99 49.7
p0548 31 61.7 108 99.9 X 76 81.5 243 100.0 X
p2756 81 51.7 193 72.9 167 95.0 179 95.6

pk1 15 0.0 1 0.0 16 0.0 2 0.0
pp08a 53 51.4 85 76.2 X 72 60.0 111 85.4 X

pp08acuts 41 31.5 43 43.0 41 31.5 49 43.5
qiu 23 1.7 15 1.9 107 5.4 32 5.6

qnet1 21 11.8 7 12.0 124 24.4 27 24.4
qnet1 o 10 23.3 39 25.1 52 39.8 29 40.1

rentacar 13 5.0 24 5.7 14 5.0 14 5.6
rgn 12 5.0 32 25.1 X 88 35.3 46 68.1

rout 29 3.6 13 3.8 102 8.1 23 8.7
set1ch 121 28.2 134 55.5 X 155 29.0 168 60.4 X

seymour 50 6.2 21 10.2 X 76 10.2 31 13.4
stein27 21 0.0 4 0.0 X 22 0.0 6 0.0 X
stein45 16 0.0 2 0.0 X 16 0.0 2 0.0 X

swath 13 6.4 25 31.4 52 22.0 84 34.0
vpm1 15 6.2 25 15.9 X 32 9.1 101 25.8 X
vpm2 21 7.3 44 33.6 X 57 13.8 115 48.7

average 27.2 22.4 45.1 34.7 31
60

62.4 33.0 96.7 45.5 16
60

Table 6: Relax and cut: full two-row models
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Figure 1: Number of instances with exact separation (of 62 instances)

To simplify the presentation, we only cover the k-row extension of the Pfull model. The
interested reader can find the raw data for the graphs of this section in [40].

We first focus on the speed of our separator. Figure 1 shows the number of instances for
which the separation is exact. The latter number quickly drops when going from 1- to
5-row cuts, but then stays around 15 from 5- through 15-row cuts. Figure 2 shows the
geometric mean of the running times over the 62 MIPLIB instances we use. Computing
times indeed increase with the number of rows, but for up to k = 15, we do not see yet a
dramatic growth in the computational cost.

The average of the percentage of gap closed by the k-row cuts is plotted on Figure 3. That
value reaches 37% for k = 3, but does not exceed 39% for any other k ≤ 15, indicating
that there would be limited interest in separating k-row cuts with these values of k. Of
course, this may be due to our separator being unable to separate as many cuts for the
models with more rows. However, we will see in the next figure that the limited increase
in gap closure happens despite a significant increase in the number of cuts generated.

Indeed Figure 4 displays, for each value of k, the average number of cuts generated by
our separator and the number among them that are tight at x∗ at the end of Algorithm 3.
Recall that the number of k-row models considered is at most m independently of k. The
number of cuts that are tight at the end stays around 60 in average and varies very little
for the different values of k. Meanwhile, the number of cuts that had to be generated
raises significantly with increasing k. This means that when generating multi-row cuts
with more rows, one needs to compute many more cuts, indicating that the complexity of
the facial structure of multi-row models may raise one more hurdle for the use of multi-row
cuts with many rows.

9 Summary

We implemented a separator for arbitrary mixed-integer sets. Computationally, the task
is inherently costly, and a separator with such a generic scope is bound to be slow in
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Figure 2: Geometric mean of the running time (on 62 instances)

Figure 3: Average percentage of gap closed (on 62 instances)

Figure 4: Number of cuts generated (�) and tight at the end (♦), on 62 instances
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practice. Our first naive implementation was unable to provide meaningful results, even
for some of the smallest instances in MIPLIB 3. To partially mitigate the issue, we
developed a series of tricks, mainly based on the concept of lifting inequalities that are
valid for faces of the feasible region.

Using our improved separator, we show that on average over our testset, two-row inter-
section cuts close around 6% more gap than GMIs. Further, cuts from fully-strengthened
two-row models close an additional 8% of the gap. We remark however that strengthening
only partially the two-row models yields almost no improvement over intersection cuts.
We then try generating GMIs and two-row cuts from several feasible bases of the LP
relaxation, with surprisingly similar results. This leads us to conclude that the usefulness
of two-row cuts, although limited, is not canceled by the effect of GMIs when considering
cuts from several tableaux.

We also use our implementation to separate multi-row cuts with more than two rows.
The running times show that the separator scales acceptably for up to 15 rows. On the
other hand, the percentage of gap closure we obtain seems to tail off after 4- or 5-row
cuts, indicating that there would be little interest in generating multi-row cuts with more
than 5 rows, unless we can use much more than 15 rows.
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